summaryrefslogtreecommitdiff
path: root/README.md
diff options
context:
space:
mode:
authorCameron <cysmith1010@gmail.com>2016-10-26 00:21:53 -0600
committerGitHub <noreply@github.com>2016-10-26 00:21:53 -0600
commitbb968cab6afee2a80aa841588477a410fb6d66d4 (patch)
tree86e71c6c406d1d6e6e06f8c6d383a3d7316680b4 /README.md
parentcf22bd02a4fa6879476f27f1904d708642781f88 (diff)
Update README.md
Diffstat (limited to 'README.md')
-rw-r--r--README.md50
1 files changed, 49 insertions, 1 deletions
diff --git a/README.md b/README.md
index ef15203..2cbd54c 100644
--- a/README.md
+++ b/README.md
@@ -42,7 +42,6 @@ Here we reproduce Figure 3 from the first paper, which renders a photograph of t
</p>
### Content / Style Tradeoff
-
The relative weight of the style and content can be controlled.
Here we render with an increasing style weight applied to [Red Canna](http://www.georgiaokeeffe.net/red-canna.jsp):
@@ -175,6 +174,55 @@ Here we reproduce Figure 6 from the first paper:
*Top row (left to right)*: Initialized with the content image, the style image, white noise (RNG seed 1)
*Bottom row (left to right)*: Initialized with white noise (RNG seed 2), white noise (RNG seed 3), white noise (RNG seed 4)
+### Layer Representations
+The feature complexities and receptive field sizes increase down the VGG-199 CNN heirarchy. The rows in the below figure show the increasing complexity and size of local image structures as an increasing subset of CNN layers are used. The columns show the alpha/beta ratio which is the relative weighting of the the content and style reconstruction (see Content / Style Tradeoff).
+
+Here we reproduce Figure 3 from [the original paper](https://arxiv.org/abs/1508.06576):
+<table align='center'>
+<tr align='center'>
+<td></td>
+<td>1 x 10^-5</td>
+<td>1 x 10^-4</td>
+<td>1 x 10^-3</td>
+<td>1 x 10^-2</td>
+</tr>
+<tr>
+<td>relu1_1</td>
+<td><img src="examples/layers/relu1_1_1e5.png" width="192"></td>
+<td><img src="examples/layers/relu1_1_1e4.png" width="192"></td>
+<td><img src="examples/layers/relu1_1_1e3.png" width="192"></td>
+<td><img src="examples/layers/relu1_1_1e2.png" width="192"></td>
+</tr>
+<tr>
+<td>relu2_1</td>
+<td><img src="examples/layers/relu2_1_1e5.png" width="192"></td>
+<td><img src="examples/layers/relu2_1_1e4.png" width="192"></td>
+<td><img src="examples/layers/relu2_1_1e3.png" width="192"></td>
+<td><img src="examples/layers/relu2_1_1e2.png" width="192"></td>
+</tr>
+<tr>
+<td>relu3_1</td>
+<td><img src="examples/layers/relu3_1_1e5.png" width="192"></td>
+<td><img src="examples/layers/relu3_1_1e4.png" width="192"></td>
+<td><img src="examples/layers/relu3_1_1e3.png" width="192"></td>
+<td><img src="examples/layers/relu3_1_1e2.png" width="192"></td>
+</tr>
+<tr>
+<td>relu4_1</td>
+<td><img src="examples/layers/relu4_1_1e5.png" width="192"></td>
+<td><img src="examples/layers/relu4_1_1e4.png" width="192"></td>
+<td><img src="examples/layers/relu4_1_1e3.png" width="192"></td>
+<td><img src="examples/layers/relu4_1_1e2.png" width="192"></td>
+</tr>
+<tr>
+<td>relu5_1</td>
+<td><img src="examples/layers/relu5_1_1e5.png" width="192"></td>
+<td><img src="examples/layers/relu5_1_1e4.png" width="192"></td>
+<td><img src="examples/layers/relu5_1_1e3.png" width="192"></td>
+<td><img src="examples/layers/relu5_1_1e2.png" width="192"></td>
+</tr>
+</table>
+
## Setup
#### Dependencies:
* [tensorflow](https://github.com/tensorflow/tensorflow)