summaryrefslogtreecommitdiff
path: root/README.md
diff options
context:
space:
mode:
authorCameron <cysmith1010@gmail.com>2016-10-11 16:44:43 -0600
committerGitHub <noreply@github.com>2016-10-11 16:44:43 -0600
commit1b3e00480b9d99f34fea068009efe45bc76111fd (patch)
tree07f30473beecdfabae8bfc4756e50ee556f23d5a /README.md
parent7e62bbfd0b02dc9e56bcc98dd992aa55772cd2f6 (diff)
Modified README
Diffstat (limited to 'README.md')
-rw-r--r--README.md5
1 files changed, 2 insertions, 3 deletions
diff --git a/README.md b/README.md
index b16379f..c194ac4 100644
--- a/README.md
+++ b/README.md
@@ -165,7 +165,6 @@ Animations can be rendered by applying the algorithm to each source frame. For
* Download the [VGG-19 model weights](http://www.vlfeat.org/matconvnet/pretrained/) (see the "VGG-VD models from the *Very Deep Convolutional Networks for Large-Scale Visual Recognition* project" section). More info about the VGG-19 network can be found [here](http://www.robots.ox.ac.uk/~vgg/research/very_deep/).
* After downloading, copy the weights file `imagenet-vgg-verydeep-19.mat` to the project directory.
-
## Usage
### Basic Usage
@@ -246,8 +245,8 @@ python neural_style.py --video \
* `--init_img_type`: Image used to initialize the network. *Choices*: `content`, `random`, `style`. *Default*: `content`
* `--max_size`: Maximum width or height of the input images. *Default*: `512`
* `--content_weight`: Weight for the content loss function. *Default*: `5e0`
-* `--style_weight`: Weight for the style loss function. *Default*: `1e4`
-* `--tv_weight`: Weight for the total variational loss function. *Default*: `0`
+* `--style_weight`: Weight for the style loss function. *Default*: `1e3`
+* `--tv_weight`: Weight for the total variational loss function. *Default*: `1e-3`
* `--temporal_weight`: Weight for the temporal loss function. *Default*: `2e2`
* `--content_layers`: *Space-separated* VGG19 layer names used for the content image. *Default*: `conv4_2`
* `--style_layers`: *Space-separated* VGG19 layer names used for the style image. *Default*: `relu1_1 relu2_1 relu3_1 relu4_1 relu5_1`