summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCameron <cysmith1010@gmail.com>2016-10-26 01:54:44 -0600
committerGitHub <noreply@github.com>2016-10-26 01:54:44 -0600
commit5331725909db9fbc496380eba78492301051755e (patch)
tree47da904147d3f771c4dfde4548f4a1981a0674d2
parentbb968cab6afee2a80aa841588477a410fb6d66d4 (diff)
Update README.md
-rw-r--r--README.md42
1 files changed, 21 insertions, 21 deletions
diff --git a/README.md b/README.md
index 2cbd54c..706f8cd 100644
--- a/README.md
+++ b/README.md
@@ -172,7 +172,7 @@ Here we reproduce Figure 6 from the first paper:
<img src="examples/initialization/init_random_4.png" height="192">
</p>
*Top row (left to right)*: Initialized with the content image, the style image, white noise (RNG seed 1)
-*Bottom row (left to right)*: Initialized with white noise (RNG seed 2), white noise (RNG seed 3), white noise (RNG seed 4)
+*Bottom row (left to right)*: Initialized with white noise (RNG seeds 2, 3, 4)
### Layer Representations
The feature complexities and receptive field sizes increase down the VGG-199 CNN heirarchy. The rows in the below figure show the increasing complexity and size of local image structures as an increasing subset of CNN layers are used. The columns show the alpha/beta ratio which is the relative weighting of the the content and style reconstruction (see Content / Style Tradeoff).
@@ -187,39 +187,39 @@ Here we reproduce Figure 3 from [the original paper](https://arxiv.org/abs/1508.
<td>1 x 10^-2</td>
</tr>
<tr>
-<td>relu1_1</td>
+<td>conv1_1</td>
<td><img src="examples/layers/relu1_1_1e5.png" width="192"></td>
-<td><img src="examples/layers/relu1_1_1e4.png" width="192"></td>
-<td><img src="examples/layers/relu1_1_1e3.png" width="192"></td>
-<td><img src="examples/layers/relu1_1_1e2.png" width="192"></td>
+<td><img src="examples/layers/conv1_1_1e4.png" width="192"></td>
+<td><img src="examples/layers/conv1_1_1e3.png" width="192"></td>
+<td><img src="examples/layers/conv1_1_1e2.png" width="192"></td>
</tr>
<tr>
-<td>relu2_1</td>
+<td>conv2_1</td>
<td><img src="examples/layers/relu2_1_1e5.png" width="192"></td>
-<td><img src="examples/layers/relu2_1_1e4.png" width="192"></td>
-<td><img src="examples/layers/relu2_1_1e3.png" width="192"></td>
-<td><img src="examples/layers/relu2_1_1e2.png" width="192"></td>
+<td><img src="examples/layers/conv2_1_1e4.png" width="192"></td>
+<td><img src="examples/layers/conv2_1_1e3.png" width="192"></td>
+<td><img src="examples/layers/conv2_1_1e2.png" width="192"></td>
</tr>
<tr>
-<td>relu3_1</td>
+<td>conv3_1</td>
<td><img src="examples/layers/relu3_1_1e5.png" width="192"></td>
-<td><img src="examples/layers/relu3_1_1e4.png" width="192"></td>
-<td><img src="examples/layers/relu3_1_1e3.png" width="192"></td>
-<td><img src="examples/layers/relu3_1_1e2.png" width="192"></td>
+<td><img src="examples/layers/conv3_1_1e4.png" width="192"></td>
+<td><img src="examples/layers/conv3_1_1e3.png" width="192"></td>
+<td><img src="examples/layers/conv3_1_1e2.png" width="192"></td>
</tr>
<tr>
-<td>relu4_1</td>
+<td>conv4_1</td>
<td><img src="examples/layers/relu4_1_1e5.png" width="192"></td>
-<td><img src="examples/layers/relu4_1_1e4.png" width="192"></td>
-<td><img src="examples/layers/relu4_1_1e3.png" width="192"></td>
-<td><img src="examples/layers/relu4_1_1e2.png" width="192"></td>
+<td><img src="examples/layers/conv4_1_1e4.png" width="192"></td>
+<td><img src="examples/layers/conv4_1_1e3.png" width="192"></td>
+<td><img src="examples/layers/conv4_1_1e2.png" width="192"></td>
</tr>
<tr>
-<td>relu5_1</td>
+<td>conv5_1</td>
<td><img src="examples/layers/relu5_1_1e5.png" width="192"></td>
-<td><img src="examples/layers/relu5_1_1e4.png" width="192"></td>
-<td><img src="examples/layers/relu5_1_1e3.png" width="192"></td>
-<td><img src="examples/layers/relu5_1_1e2.png" width="192"></td>
+<td><img src="examples/layers/conv5_1_1e4.png" width="192"></td>
+<td><img src="examples/layers/conv5_1_1e3.png" width="192"></td>
+<td><img src="examples/layers/conv5_1_1e2.png" width="192"></td>
</tr>
</table>