1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
<!doctype html>
<html>
<head>
<title>MegaPixels</title>
<meta charset="utf-8" />
<meta name="author" content="Adam Harvey" />
<meta name="description" content="" />
<meta name="referrer" content="no-referrer" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<link rel='stylesheet' href='/assets/css/fonts.css' />
<link rel='stylesheet' href='/assets/css/css.css' />
</head>
<body>
<header>
<a class='slogan' href="/">
<div class='logo'></div>
<div class='site_name'>MegaPixels</div>
<span class='sub'>The Darkside of Datasets</span>
</a>
<div class='links'>
<a href="/search/">Face Search</a>
<a href="/datasets/">Datasets</a>
<a href="/research/">Research</a>
<a href="/about/">About</a>
</div>
</header>
<div class="content">
<section><h1>Labeled Faces in The Wild</h1>
</section><section><div class='meta'><div><div class='gray'>Created</div><div>2007</div></div><div><div class='gray'>Images</div><div>13,233</div></div><div><div class='gray'>People</div><div>5,749</div></div><div><div class='gray'>Created From</div><div>Yahoo News images</div></div><div><div class='gray'>Search available</div><div>[Searchable](#)</div></div></div></section><section><p>Labeled Faces in The Wild is amongst the most widely used facial recognition training datasets in the world and is the first dataset of its kind to be created entirely from Internet photos. It includes 13,233 images of 5,749 people downloaded from the Internet, otherwise referred to by researchers as “The Wild”.</p>
<h2>INTRO</h2>
<p>It began in 2002. Researchers at University of Massachusetts Amherst were developing algorithms for facial recognition and they needed more data. Between 2002-2004 they scraped Yahoo News for images of public figures. Two years later they cleaned up the dataset and repackaged it as Labeled Faces in the Wild (LFW).</p>
<p>Since then the LFW dataset has become one of the most widely used datasets used for evaluating face recognition algorithms. The associated research paper “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments” has been cited 996 times reaching 45 different countries throughout the world.</p>
<p>The faces come from news stories and are mostly celebrities from the entertainment industry, politicians, and villains. It’s a sampling of current affairs and breaking news that has come to pass. The images, detached from their original context now server a new purpose: to train, evaluate, and improve facial recognition.</p>
<p>As the most widely used facial recognition dataset, it can be said that each individual in LFW has, in a small way, contributed to the current state of the art in facial recognition surveillance. John Cusack, Julianne Moore, Barry Bonds, Osama bin Laden, and even Moby are amongst these biometric pillars, exemplar faces provided the visual dimensions of a new computer vision future.</p>
<h2>Commercial Use</h2>
<p>The dataset is used by numerous companies for benchmarking algorithms. According to the benchmarking results page <sup class="footnote-ref" id="fnref-lfw_results"><a href="#fn-lfw_results">1</a></sup> provided by the authors, there over 2 dozen commercial uses of the LFW face dataset.</p>
<div class="footnotes">
<hr>
<ol><li id="fn-lfw_results"><p>"LFW Results". Accessed Dec 3, 2018. <a href="http://vis-www.cs.umass.edu/lfw/results.html">http://vis-www.cs.umass.edu/lfw/results.html</a><a href="#fnref-lfw_results" class="footnote">↩</a></p></li>
</ol>
</div>
</section>
</div>
<footer>
<div>
<a href="/">MegaPixels.cc</a>
<a href="/about/disclaimer/">Disclaimer</a>
<a href="/about/terms/">Terms of Use</a>
<a href="/about/privacy/">Privacy</a>
<a href="/about/">About</a>
<a href="/about/team/">Team</a>
</div>
<div>
MegaPixels ©2017-19 Adam R. Harvey /
<a href="https://ahprojects.com">ahprojects.com</a>
</div>
</footer>
</body>
<script src="/assets/js/app/site.js"></script>
</html>
|