1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
<!doctype html>
<html>
<head>
<title>MegaPixels</title>
<meta charset="utf-8" />
<meta name="author" content="Adam Harvey" />
<meta name="description" content="COFW: Caltech Occluded Faces in The Wild" />
<meta name="referrer" content="no-referrer" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<link rel='stylesheet' href='/assets/css/fonts.css' />
<link rel='stylesheet' href='/assets/css/tabulator.css' />
<link rel='stylesheet' href='/assets/css/css.css' />
<link rel='stylesheet' href='/assets/css/leaflet.css' />
<link rel='stylesheet' href='/assets/css/applets.css' />
</head>
<body>
<header>
<a class='slogan' href="/">
<div class='logo'></div>
<div class='site_name'>MegaPixels</div>
</a>
<div class='links'>
<a href="/datasets/">Datasets</a>
<a href="/about/">About</a>
</div>
</header>
<div class="content content-">
<section><div class='left-sidebar'><div class='meta'><div><div class='gray'>Years</div><div>1993-1996</div></div><div><div class='gray'>Images</div><div>14,126</div></div><div><div class='gray'>Identities</div><div>1,199 </div></div><div><div class='gray'>Origin</div><div>Web Searches</div></div><div><div class='gray'>Funded by</div><div>ODNI, IARPA, Microsoft</div></div></div></div><h2>Caltech Occluded Faces in the Wild</h2>
<p>(PAGE UNDER DEVELOPMENT)</p>
<p>COFW is "is designed to benchmark face landmark algorithms in realistic conditions, which include heavy occlusions and large shape variations" [Robust face landmark estimation under occlusion].</p>
<p>RESEARCH below this line</p>
<blockquote><p>We asked four people with different levels of computer vision knowledge to each collect 250 faces representative of typical real-world images, with the clear goal of challenging computer vision methods.
The result is 1,007 images of faces obtained from a variety of sources.</p>
</blockquote>
<p>Robust face landmark estimation under occlusion</p>
<blockquote><p>Our face dataset is designed to present faces in real-world conditions. Faces show large variations in shape and occlusions due to differences in pose, expression, use of accessories such as sunglasses and hats and interactions with objects (e.g. food, hands, microphones, etc.). All images were hand annotated in our lab using the same 29 landmarks as in LFPW. We annotated both the landmark positions as well as their occluded/unoccluded state. The faces are occluded to different degrees, with large variations in the type of occlusions encountered. COFW has an average occlusion of over 23%.
To increase the number of training images, and since COFW has the exact same landmarks as LFPW, for training we use the original non-augmented 845 LFPW faces + 500 COFW faces (1345 total), and for testing the remaining 507 COFW faces. To make sure all images had occlusion labels, we annotated occlusion on the available 845 LFPW training images, finding an average of only 2% occlusion.</p>
</blockquote>
<p><a href="http://www.vision.caltech.edu/xpburgos/ICCV13/">http://www.vision.caltech.edu/xpburgos/ICCV13/</a></p>
<blockquote><p>This research is supported by NSF Grant 0954083 and by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA R&D Contract No. 2014-14071600012.</p>
</blockquote>
<p><a href="https://www.cs.cmu.edu/~peiyunh/topdown/">https://www.cs.cmu.edu/~peiyunh/topdown/</a></p>
</section><section>
<h3>Information Supply Chain</h3>
<!--
<div class="map-sidebar right-sidebar">
<h3>Legend</h3>
<ul>
<li><span style="color: #f2f293">■</span> Industry</li>
<li><span style="color: #f30000">■</span> Academic</li>
<li><span style="color: #3264f6">■</span> Government</li>
</ul>
</div>
-->
<p>
To understand how COFW Dataset has been used around the world...
affected global research on computer vision, surveillance, defense, and consumer technology, the and where this dataset has been used the locations of each organization that used or referenced the datast
</p>
</section>
<section class="applet_container">
<div class="applet" data-payload="{"command": "map"}"></div>
</section>
<div class="caption">
<div class="map-legend-item edu">Academic</div>
<div class="map-legend-item com">Industry</div>
<div class="map-legend-item gov">Government</div>
Data is compiled from <a href="https://www.semanticscholar.org">Semantic Scholar</a> and has been manually verified to show usage of COFW Dataset.
</div>
<section>
<p class='subp'>
Standardized paragraph of text about the map. Sed ut perspiciatis, unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam eaque ipsa, quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt, explicabo.
</p>
</section><section>
<div class="hr-wave-holder">
<div class="hr-wave-line hr-wave-line1"></div>
<div class="hr-wave-line hr-wave-line2"></div>
</div>
<h2>Supplementary Information</h2>
</section><section class="applet_container">
<h3>Citations</h3>
<p>
Citations were collected from <a href="https://www.semanticscholar.org">Semantic Scholar</a>, a website which aggregates
and indexes research papers. The citations were geocoded using names of institutions found in the PDF front matter, or as listed on other resources. These papers have been manually verified to show that researchers downloaded and used the dataset to train and/or test machine learning algorithms.
</p>
<p>
Add button/link to download CSV
</p>
<div class="applet" data-payload="{"command": "citations"}"></div>
</section><section>
<h3>Who used COFW Dataset?</h3>
<p>
This bar chart presents a ranking of the top countries where citations originated. Mouse over individual columns
to see yearly totals. These charts show only the top 10 countries overall.
</p>
</section>
<section class="applet_container">
<div class="applet" data-payload="{"command": "chart"}"></div>
</section><section><p>TODO</p>
<h2>- replace graphic</h2>
</section>
</div>
<footer>
<div>
<a href="/">MegaPixels.cc</a>
<a href="/about/disclaimer/">Disclaimer</a>
<a href="/about/terms/">Terms of Use</a>
<a href="/about/privacy/">Privacy</a>
<a href="/about/">About</a>
<a href="/about/team/">Team</a>
</div>
<div>
MegaPixels ©2017-19 Adam R. Harvey /
<a href="https://ahprojects.com">ahprojects.com</a>
</div>
</footer>
</body>
<script src="/assets/js/dist/index.js"></script>
</html>
|