summaryrefslogtreecommitdiff
path: root/site/datasets/verified/lfpw.csv
blob: ac34778ec2ec71f4ad10695875bbd6e4735197c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
id,country,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
0,,LFPW,lfpw,0.0,0.0,,,,main,,Localizing Parts of Faces Using a Consensus of Exemplars,2011
1,China,LFPW,lfpw,28.2290209,112.99483204,"National University of Defense Technology, China",mil,ac51d9ddbd462d023ec60818bac6cdae83b66992,citation,http://downloads.hindawi.com/journals/cin/2015/709072.pdf,An Efficient Robust Eye Localization by Learning the Convolution Distribution Using Eye Template,2015
2,United Kingdom,LFPW,lfpw,52.9387428,-1.20029569,University of Nottingham,edu,529b1f33aed49dbe025a99ac1d211c777ad881ec,citation,http://eprints.eemcs.utwente.nl/26776/01/Pantic_Fast_and_Exact_Bi-Directional_Fitting.pdf,Fast and exact bi-directional fitting of active appearance models,2015
3,Netherlands,LFPW,lfpw,52.2380139,6.8566761,University of Twente,edu,529b1f33aed49dbe025a99ac1d211c777ad881ec,citation,http://eprints.eemcs.utwente.nl/26776/01/Pantic_Fast_and_Exact_Bi-Directional_Fitting.pdf,Fast and exact bi-directional fitting of active appearance models,2015
4,China,LFPW,lfpw,31.32235655,121.38400941,Shanghai University,edu,63fd7a159e58add133b9c71c4b1b37b899dd646f,citation,http://wei-shen.weebly.com/uploads/2/3/8/2/23825939/posecorrection.pdf,Exemplar-Based Human Action Pose Correction,2014
5,China,LFPW,lfpw,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,63fd7a159e58add133b9c71c4b1b37b899dd646f,citation,http://wei-shen.weebly.com/uploads/2/3/8/2/23825939/posecorrection.pdf,Exemplar-Based Human Action Pose Correction,2014
6,United States,LFPW,lfpw,47.6423318,-122.1369302,Microsoft,company,63fd7a159e58add133b9c71c4b1b37b899dd646f,citation,http://wei-shen.weebly.com/uploads/2/3/8/2/23825939/posecorrection.pdf,Exemplar-Based Human Action Pose Correction,2014
7,United States,LFPW,lfpw,42.3614256,-71.0812092,Microsoft Research Asia,company,63fd7a159e58add133b9c71c4b1b37b899dd646f,citation,http://wei-shen.weebly.com/uploads/2/3/8/2/23825939/posecorrection.pdf,Exemplar-Based Human Action Pose Correction,2014
8,China,LFPW,lfpw,22.4162632,114.2109318,Chinese University of Hong Kong,edu,57ebeff9273dea933e2a75c306849baf43081a8c,citation,http://mmlab.ie.cuhk.edu.hk/archive/CNN/data/CNN_FacePoint.pdf,Deep Convolutional Network Cascade for Facial Point Detection,2013
9,China,LFPW,lfpw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,57ebeff9273dea933e2a75c306849baf43081a8c,citation,http://mmlab.ie.cuhk.edu.hk/archive/CNN/data/CNN_FacePoint.pdf,Deep Convolutional Network Cascade for Facial Point Detection,2013
10,Canada,LFPW,lfpw,43.0095971,-81.2737336,University of Western Ontario,edu,f7ae38a073be7c9cd1b92359131b9c8374579b13,citation,http://www.digitalimaginggroup.ca/members/Shuo/07487053.pdf,Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression,2017
11,Canada,LFPW,lfpw,42.960348,-81.226628,"London Healthcare Sciences Centre, Ontario, Canada",edu,f7ae38a073be7c9cd1b92359131b9c8374579b13,citation,http://www.digitalimaginggroup.ca/members/Shuo/07487053.pdf,Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression,2017
12,United Kingdom,LFPW,lfpw,55.0030632,-1.57463231,Northumbria University,edu,f7ae38a073be7c9cd1b92359131b9c8374579b13,citation,http://www.digitalimaginggroup.ca/members/Shuo/07487053.pdf,Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression,2017
13,Canada,LFPW,lfpw,43.0012953,-81.2550455,"St. Joseph's Health Care, Ontario, Canada",edu,f7ae38a073be7c9cd1b92359131b9c8374579b13,citation,http://www.digitalimaginggroup.ca/members/Shuo/07487053.pdf,Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression,2017
14,United States,LFPW,lfpw,37.3936717,-122.0807262,Facebook,company,dcd2ac544a8336d73e4d3d80b158477c783e1e50,citation,https://arxiv.org/pdf/1709.01591.pdf,Improving Landmark Localization with Semi-Supervised Learning,2018
15,United States,LFPW,lfpw,37.3706254,-121.9671894,NVIDIA,company,dcd2ac544a8336d73e4d3d80b158477c783e1e50,citation,https://arxiv.org/pdf/1709.01591.pdf,Improving Landmark Localization with Semi-Supervised Learning,2018
16,Canada,LFPW,lfpw,45.5010087,-73.6157778,University of Montreal,edu,dcd2ac544a8336d73e4d3d80b158477c783e1e50,citation,https://arxiv.org/pdf/1709.01591.pdf,Improving Landmark Localization with Semi-Supervised Learning,2018
17,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,034b3f3bac663fb814336a69a9fd3514ca0082b9,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/alabort_cvpr2015.pdf,Unifying holistic and Parts-Based Deformable Model fitting,2015
18,China,LFPW,lfpw,31.83907195,117.26420748,University of Science and Technology of China,edu,084bd02d171e36458f108f07265386f22b34a1ae,citation,http://7xrqgw.com1.z0.glb.clouddn.com/3000fps.pdf,Face Alignment at 3000 FPS via Regressing Local Binary Features,2014
19,United States,LFPW,lfpw,47.6423318,-122.1369302,Microsoft,company,084bd02d171e36458f108f07265386f22b34a1ae,citation,http://7xrqgw.com1.z0.glb.clouddn.com/3000fps.pdf,Face Alignment at 3000 FPS via Regressing Local Binary Features,2014
20,United Kingdom,LFPW,lfpw,51.24303255,-0.59001382,University of Surrey,edu,2d2e1d1f50645fe20c051339e9a0fca7b176422a,citation,https://arxiv.org/pdf/1803.05536.pdf,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,2018
21,United Kingdom,LFPW,lfpw,56.1454119,-3.9205713,University of Stirling,edu,2d2e1d1f50645fe20c051339e9a0fca7b176422a,citation,https://arxiv.org/pdf/1803.05536.pdf,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,2018
22,China,LFPW,lfpw,31.4854255,120.2739581,Jiangnan University,edu,2d2e1d1f50645fe20c051339e9a0fca7b176422a,citation,https://arxiv.org/pdf/1803.05536.pdf,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,2018
23,China,LFPW,lfpw,30.642769,104.06751175,"Sichuan University, Chengdu",edu,2d2e1d1f50645fe20c051339e9a0fca7b176422a,citation,https://arxiv.org/pdf/1803.05536.pdf,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,2018
24,Germany,LFPW,lfpw,48.48187645,9.18682404,Reutlingen University,edu,2d2e1d1f50645fe20c051339e9a0fca7b176422a,citation,https://arxiv.org/pdf/1803.05536.pdf,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,2018
25,United States,LFPW,lfpw,45.57022705,-122.63709346,Concordia University,edu,266ed43dcea2e7db9f968b164ca08897539ca8dd,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_037.pdf,Beyond Principal Components: Deep Boltzmann Machines for face modeling,2015
26,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,266ed43dcea2e7db9f968b164ca08897539ca8dd,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_037.pdf,Beyond Principal Components: Deep Boltzmann Machines for face modeling,2015
27,United States,LFPW,lfpw,40.47913175,-74.43168868,Rutgers University,edu,3b470b76045745c0ef5321e0f1e0e6a4b1821339,citation,https://pdfs.semanticscholar.org/8e72/fa02f2d90ba31f31e0a7aa96a6d3e10a66fc.pdf,Consensus of Regression for Occlusion-Robust Facial Feature Localization,2014
28,United States,LFPW,lfpw,37.3309307,-121.8940485,"Adobe Research, San Jose, CA",company,3b470b76045745c0ef5321e0f1e0e6a4b1821339,citation,https://pdfs.semanticscholar.org/8e72/fa02f2d90ba31f31e0a7aa96a6d3e10a66fc.pdf,Consensus of Regression for Occlusion-Robust Facial Feature Localization,2014
29,China,LFPW,lfpw,40.0044795,116.370238,Chinese Academy of Sciences,edu,2a4153655ad1169d482e22c468d67f3bc2c49f12,citation,http://cseweb.ucsd.edu/~mkchandraker/classes/CSE291/Winter2018/Lectures/FaceAlignment.pdf,Face Alignment Across Large Poses: A 3D Solution,2016
30,United States,LFPW,lfpw,42.718568,-84.47791571,Michigan State University,edu,2a4153655ad1169d482e22c468d67f3bc2c49f12,citation,http://cseweb.ucsd.edu/~mkchandraker/classes/CSE291/Winter2018/Lectures/FaceAlignment.pdf,Face Alignment Across Large Poses: A 3D Solution,2016
31,United Kingdom,LFPW,lfpw,53.22853665,-0.54873472,University of Lincoln,edu,232b6e2391c064d483546b9ee3aafe0ba48ca519,citation,http://doc.utwente.nl/89696/1/Pantic_Optimization_problems_for_fast_AAM_fitting.pdf,Optimization Problems for Fast AAM Fitting in-the-Wild,2013
32,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,232b6e2391c064d483546b9ee3aafe0ba48ca519,citation,http://doc.utwente.nl/89696/1/Pantic_Optimization_problems_for_fast_AAM_fitting.pdf,Optimization Problems for Fast AAM Fitting in-the-Wild,2013
33,United Kingdom,LFPW,lfpw,52.9387428,-1.20029569,University of Nottingham,edu,75fd9acf5e5b7ed17c658cc84090c4659e5de01d,citation,http://eprints.nottingham.ac.uk/31442/1/tzimiro_CVPR15.pdf,Project-Out Cascaded Regression with an application to face alignment,2015
34,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,788a7b59ea72e23ef4f86dc9abb4450efefeca41,citation,http://eprints.eemcs.utwente.nl/26840/01/Pantic_Robust_Statistical_Face_Frontalization.pdf,Robust Statistical Face Frontalization,2015
35,Netherlands,LFPW,lfpw,52.2380139,6.8566761,University of Twente,edu,788a7b59ea72e23ef4f86dc9abb4450efefeca41,citation,http://eprints.eemcs.utwente.nl/26840/01/Pantic_Robust_Statistical_Face_Frontalization.pdf,Robust Statistical Face Frontalization,2015
36,China,LFPW,lfpw,39.9041999,116.4073963,Key Lab of Intelligent Information Processing of Chinese Academy of Sciences,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,https://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014
37,China,LFPW,lfpw,40.0044795,116.370238,Chinese Academy of Sciences,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,https://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014
38,China,LFPW,lfpw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,https://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014
39,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,https://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014
40,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,e4754afaa15b1b53e70743880484b8d0736990ff,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf,300 Faces In-The-Wild Challenge: database and results,2016
41,United Kingdom,LFPW,lfpw,52.9387428,-1.20029569,University of Nottingham,edu,e4754afaa15b1b53e70743880484b8d0736990ff,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf,300 Faces In-The-Wild Challenge: database and results,2016
42,Netherlands,LFPW,lfpw,52.2380139,6.8566761,University of Twente,edu,e4754afaa15b1b53e70743880484b8d0736990ff,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf,300 Faces In-The-Wild Challenge: database and results,2016
43,United States,LFPW,lfpw,38.2167565,-85.75725023,University of Louisville,edu,9a4c45e5c6e4f616771a7325629d167a38508691,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Mostafa_A_Facial_Features_2015_CVPR_paper.pdf,A facial features detector integrating holistic facial information and part-based model,2015
44,Egypt,LFPW,lfpw,31.21051105,29.91314562,Alexandria University,edu,9a4c45e5c6e4f616771a7325629d167a38508691,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Mostafa_A_Facial_Features_2015_CVPR_paper.pdf,A facial features detector integrating holistic facial information and part-based model,2015
45,Egypt,LFPW,lfpw,27.18794105,31.17009498,Assiut University,edu,9a4c45e5c6e4f616771a7325629d167a38508691,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Mostafa_A_Facial_Features_2015_CVPR_paper.pdf,A facial features detector integrating holistic facial information and part-based model,2015
46,China,LFPW,lfpw,31.4854255,120.2739581,Jiangnan University,edu,60824ee635777b4ee30fcc2485ef1e103b8e7af9,citation,http://epubs.surrey.ac.uk/808177/1/Feng-TIP-2015.pdf,Cascaded Collaborative Regression for Robust Facial Landmark Detection Trained Using a Mixture of Synthetic and Real Images With Dynamic Weighting,2015
47,United Kingdom,LFPW,lfpw,51.2421839,-0.5905421,University of Surrey Guildford,edu,60824ee635777b4ee30fcc2485ef1e103b8e7af9,citation,http://epubs.surrey.ac.uk/808177/1/Feng-TIP-2015.pdf,Cascaded Collaborative Regression for Robust Facial Landmark Detection Trained Using a Mixture of Synthetic and Real Images With Dynamic Weighting,2015
48,China,LFPW,lfpw,39.9041999,116.4073963,Key Lab of Intelligent Information Processing of Chinese Academy of Sciences,edu,22e2066acfb795ac4db3f97d2ac176d6ca41836c,citation,https://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,2014
49,China,LFPW,lfpw,40.0044795,116.370238,Chinese Academy of Sciences,edu,22e2066acfb795ac4db3f97d2ac176d6ca41836c,citation,https://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,2014
50,China,LFPW,lfpw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,22e2066acfb795ac4db3f97d2ac176d6ca41836c,citation,https://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,2014
51,United States,LFPW,lfpw,42.3614256,-71.0812092,Microsoft Research Asia,company,63d865c66faaba68018defee0daf201db8ca79ed,citation,https://arxiv.org/pdf/1409.5230.pdf,Deep Regression for Face Alignment,2014
52,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,5e9ec3b8daa95d45138e30c07321e386590f8ec7,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/eleftheriadis_tip.pdf,Discriminative Shared Gaussian Processes for Multiview and View-Invariant Facial Expression Recognition,2015
53,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,35f921def890210dda4b72247849ad7ba7d35250,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhou_Exemplar-Based_Graph_Matching_2013_ICCV_paper.pdf,Exemplar-Based Graph Matching for Robust Facial Landmark Localization,2013
54,China,LFPW,lfpw,35.86166,104.195397,"Megvii Inc. (Face++), China",company,1a8ccc23ed73db64748e31c61c69fe23c48a2bb1,citation,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Zhou_Extensive_Facial_Landmark_2013_ICCV_paper.pdf,Extensive Facial Landmark Localization with Coarse-to-Fine Convolutional Network Cascade,2013
55,United Kingdom,LFPW,lfpw,52.17638955,0.14308882,University of Cambridge,edu,023be757b1769ecb0db810c95c010310d7daf00b,citation,https://arxiv.org/pdf/1507.03148.pdf,Face Alignment Assisted by Head Pose Estimation,2015
56,United Kingdom,LFPW,lfpw,51.5247272,-0.03931035,Queen Mary University of London,edu,023be757b1769ecb0db810c95c010310d7daf00b,citation,https://arxiv.org/pdf/1507.03148.pdf,Face Alignment Assisted by Head Pose Estimation,2015
57,United States,LFPW,lfpw,42.36782045,-71.12666653,Harvard University,edu,023be757b1769ecb0db810c95c010310d7daf00b,citation,https://arxiv.org/pdf/1507.03148.pdf,Face Alignment Assisted by Head Pose Estimation,2015
58,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,71b07c537a9e188b850192131bfe31ef206a39a0,citation,https://pdfs.semanticscholar.org/71b0/7c537a9e188b850192131bfe31ef206a39a0.pdf,Faces InThe-Wild Challenge : database and results,2016
59,United Kingdom,LFPW,lfpw,52.9387428,-1.20029569,University of Nottingham,edu,71b07c537a9e188b850192131bfe31ef206a39a0,citation,https://pdfs.semanticscholar.org/71b0/7c537a9e188b850192131bfe31ef206a39a0.pdf,Faces InThe-Wild Challenge : database and results,2016
60,Netherlands,LFPW,lfpw,52.2380139,6.8566761,University of Twente,edu,71b07c537a9e188b850192131bfe31ef206a39a0,citation,https://pdfs.semanticscholar.org/71b0/7c537a9e188b850192131bfe31ef206a39a0.pdf,Faces InThe-Wild Challenge : database and results,2016
61,United Kingdom,LFPW,lfpw,53.22853665,-0.54873472,University of Lincoln,edu,624496296af19243d5f05e7505fd927db02fd0ce,citation,http://eprints.eemcs.utwente.nl/25815/01/Pantic_Gauss-Newton_Deformable_Part_Models.pdf,Gauss-Newton Deformable Part Models for Face Alignment In-the-Wild,2014
62,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,624496296af19243d5f05e7505fd927db02fd0ce,citation,http://eprints.eemcs.utwente.nl/25815/01/Pantic_Gauss-Newton_Deformable_Part_Models.pdf,Gauss-Newton Deformable Part Models for Face Alignment In-the-Wild,2014
63,United Kingdom,LFPW,lfpw,53.22853665,-0.54873472,University of Lincoln,edu,6a4ebd91c4d380e21da0efb2dee276897f56467a,citation,http://eprints.nottingham.ac.uk/31441/1/tzimiroICIP14b.pdf,HOG active appearance models,2014
64,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,500b92578e4deff98ce20e6017124e6d2053b451,citation,http://eprints.eemcs.utwente.nl/25818/01/Pantic_Incremental_Face_Alignment_in_the_Wild.pdf,Incremental Face Alignment in the Wild,2014
65,Netherlands,LFPW,lfpw,52.2380139,6.8566761,University of Twente,edu,500b92578e4deff98ce20e6017124e6d2053b451,citation,http://eprints.eemcs.utwente.nl/25818/01/Pantic_Incremental_Face_Alignment_in_the_Wild.pdf,Incremental Face Alignment in the Wild,2014
66,United Kingdom,LFPW,lfpw,52.17638955,0.14308882,University of Cambridge,edu,c17a332e59f03b77921942d487b4b102b1ee73b6,citation,https://pdfs.semanticscholar.org/c17a/332e59f03b77921942d487b4b102b1ee73b6.pdf,Learning an appearance-based gaze estimator from one million synthesised images,2016
67,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,c17a332e59f03b77921942d487b4b102b1ee73b6,citation,https://pdfs.semanticscholar.org/c17a/332e59f03b77921942d487b4b102b1ee73b6.pdf,Learning an appearance-based gaze estimator from one million synthesised images,2016
68,Germany,LFPW,lfpw,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,c17a332e59f03b77921942d487b4b102b1ee73b6,citation,https://pdfs.semanticscholar.org/c17a/332e59f03b77921942d487b4b102b1ee73b6.pdf,Learning an appearance-based gaze estimator from one million synthesised images,2016
69,China,LFPW,lfpw,40.0044795,116.370238,Chinese Academy of Sciences,edu,a820941eaf03077d68536732a4d5f28d94b5864a,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Zhang_Leveraging_Datasets_With_ICCV_2015_paper.pdf,Leveraging Datasets with Varying Annotations for Face Alignment via Deep Regression Network,2015
70,China,LFPW,lfpw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,a820941eaf03077d68536732a4d5f28d94b5864a,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Zhang_Leveraging_Datasets_With_ICCV_2015_paper.pdf,Leveraging Datasets with Varying Annotations for Face Alignment via Deep Regression Network,2015
71,Sweden,LFPW,lfpw,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,1824b1ccace464ba275ccc86619feaa89018c0ad,citation,http://www.csc.kth.se/~vahidk/face/KazemiCVPR14.pdf,One millisecond face alignment with an ensemble of regression trees,2014
72,United States,LFPW,lfpw,35.3070929,-80.735164,"North Carolina Univ., Charlotte, NC, USA",edu,3fb3c7dd12561e9443ac301f5527d539b1f4574e,citation,http://research.cs.rutgers.edu/~xiangyu/paper/iccv13_face_final.pdf,Pose-Free Facial Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Shape Model,2013
73,United States,LFPW,lfpw,40.47913175,-74.43168868,Rutgers University,edu,3fb3c7dd12561e9443ac301f5527d539b1f4574e,citation,http://research.cs.rutgers.edu/~xiangyu/paper/iccv13_face_final.pdf,Pose-Free Facial Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Shape Model,2013
74,United States,LFPW,lfpw,32.7283683,-97.11201835,University of Texas at Arlington,edu,3fb3c7dd12561e9443ac301f5527d539b1f4574e,citation,http://research.cs.rutgers.edu/~xiangyu/paper/iccv13_face_final.pdf,Pose-Free Facial Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Shape Model,2013
75,United States,LFPW,lfpw,45.55236,-122.9142988,Intel Corporation,company,9ef2b2db11ed117521424c275c3ce1b5c696b9b3,citation,https://arxiv.org/pdf/1511.04404.pdf,Robust Face Alignment Using a Mixture of Invariant Experts,2016
76,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,03f98c175b4230960ac347b1100fbfc10c100d0c,citation,http://courses.cs.washington.edu/courses/cse590v/13au/intraface.pdf,Supervised Descent Method and Its Applications to Face Alignment,2013
77,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,131e395c94999c55c53afead65d81be61cd349a4,citation,https://arxiv.org/pdf/1612.02203.pdf,A Functional Regression Approach to Facial Landmark Tracking,2018
78,United Kingdom,LFPW,lfpw,52.9387428,-1.20029569,University of Nottingham,edu,131e395c94999c55c53afead65d81be61cd349a4,citation,https://arxiv.org/pdf/1612.02203.pdf,A Functional Regression Approach to Facial Landmark Tracking,2018
79,United Kingdom,LFPW,lfpw,51.24303255,-0.59001382,University of Surrey,edu,7a0b78879a13bd42c63cd947f583129137b16830,citation,https://pdfs.semanticscholar.org/7a0b/78879a13bd42c63cd947f583129137b16830.pdf,A Multiresolution 3D Morphable Face Model and Fitting Framework,2016
80,Germany,LFPW,lfpw,48.48187645,9.18682404,Reutlingen University,edu,7a0b78879a13bd42c63cd947f583129137b16830,citation,https://pdfs.semanticscholar.org/7a0b/78879a13bd42c63cd947f583129137b16830.pdf,A Multiresolution 3D Morphable Face Model and Fitting Framework,2016
81,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,b730908bc1f80b711c031f3ea459e4de09a3d324,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/tifs_aoms.pdf,Active Orientation Models for Face Alignment In-the-Wild,2014
82,United Kingdom,LFPW,lfpw,53.22853665,-0.54873472,University of Lincoln,edu,b730908bc1f80b711c031f3ea459e4de09a3d324,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/tifs_aoms.pdf,Active Orientation Models for Face Alignment In-the-Wild,2014
83,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,1a85956154c170daf7f15f32f29281269028ff69,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/active_pictorial_structures.pdf,Active Pictorial Structures,2015
84,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,293ade202109c7f23637589a637bdaed06dc37c9,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos2016adaptive.pdf,Adaptive cascaded regression,2016
85,Finland,LFPW,lfpw,65.0592157,25.46632601,University of Oulu,edu,293ade202109c7f23637589a637bdaed06dc37c9,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos2016adaptive.pdf,Adaptive cascaded regression,2016
86,China,LFPW,lfpw,40.0044795,116.370238,Chinese Academy of Sciences,edu,86c053c162c08bc3fe093cc10398b9e64367a100,citation,https://pdfs.semanticscholar.org/86c0/53c162c08bc3fe093cc10398b9e64367a100.pdf,Cascade of forests for face alignment,2015
87,United Kingdom,LFPW,lfpw,51.5247272,-0.03931035,Queen Mary University of London,edu,86c053c162c08bc3fe093cc10398b9e64367a100,citation,https://pdfs.semanticscholar.org/86c0/53c162c08bc3fe093cc10398b9e64367a100.pdf,Cascade of forests for face alignment,2015
88,United States,LFPW,lfpw,33.9832526,-118.40417,USC Institute for Creative Technologies,edu,0a6d344112b5af7d1abbd712f83c0d70105211d0,citation,http://ict.usc.edu/pubs/Constrained%20local%20neural%20fields%20for%20robust%20facial%20landmark%20detection%20in%20the%20wild.pdf,Constrained Local Neural Fields for Robust Facial Landmark Detection in the Wild,2013
89,United Kingdom,LFPW,lfpw,52.17638955,0.14308882,University of Cambridge,edu,029b53f32079063047097fa59cfc788b2b550c4b,citation,https://pdfs.semanticscholar.org/f4e3/c42df13aeed9196647d4e3fe0f84fa725252.pdf,Continuous Conditional Neural Fields for Structured Regression,2014
90,United States,LFPW,lfpw,34.0224149,-118.28634407,University of Southern California,edu,029b53f32079063047097fa59cfc788b2b550c4b,citation,https://pdfs.semanticscholar.org/f4e3/c42df13aeed9196647d4e3fe0f84fa725252.pdf,Continuous Conditional Neural Fields for Structured Regression,2014
91,Italy,LFPW,lfpw,44.4056499,8.946256,"Istituto Italiano di Tecnologia, Genova, Italy",edu,14ff9c89f00dacc8e0c13c94f9fadcd90e4e604d,citation,http://www.hamedkiani.com/uploads/5/1/8/8/51882963/wacv_presentation.pdf,Correlation filter cascade for facial landmark localization,2016
92,Singapore,LFPW,lfpw,1.2962018,103.77689944,National University of Singapore,edu,14ff9c89f00dacc8e0c13c94f9fadcd90e4e604d,citation,http://www.hamedkiani.com/uploads/5/1/8/8/51882963/wacv_presentation.pdf,Correlation filter cascade for facial landmark localization,2016
93,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,5239001571bc64de3e61be0be8985860f08d7e7e,citation,https://arxiv.org/pdf/1607.06871.pdf,Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling,2016
94,United States,LFPW,lfpw,45.57022705,-122.63709346,Concordia University,edu,5239001571bc64de3e61be0be8985860f08d7e7e,citation,https://arxiv.org/pdf/1607.06871.pdf,Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling,2016
95,China,LFPW,lfpw,23.09461185,113.28788994,Sun Yat-Sen University,edu,3be8f1f7501978287af8d7ebfac5963216698249,citation,https://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,Deep Cascaded Regression for Face Alignment,2015
96,Singapore,LFPW,lfpw,1.2962018,103.77689944,National University of Singapore,edu,3be8f1f7501978287af8d7ebfac5963216698249,citation,https://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,Deep Cascaded Regression for Face Alignment,2015
97,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,0209389b8369aaa2a08830ac3b2036d4901ba1f1,citation,https://arxiv.org/pdf/1612.01202.pdf,DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild,2017
98,United Kingdom,LFPW,lfpw,51.5231607,-0.1282037,University College London,edu,0209389b8369aaa2a08830ac3b2036d4901ba1f1,citation,https://arxiv.org/pdf/1612.01202.pdf,DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild,2017
99,United States,LFPW,lfpw,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,191d30e7e7360d565b0c1e2814b5bcbd86a11d41,citation,http://homepages.rpi.edu/~wuy9/DiscriminativeDeepFaceShape/DiscriminativeDeepFaceShape_IJCV.pdf,Discriminative Deep Face Shape Model for Facial Point Detection,2014
100,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,2fb8d7601fc3ad637781127620104aaab5122acd,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/zhou2016estimating.pdf,Estimating Correspondences of Deformable Objects “In-the-Wild”,2016
101,Finland,LFPW,lfpw,65.0592157,25.46632601,University of Oulu,edu,2fb8d7601fc3ad637781127620104aaab5122acd,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/zhou2016estimating.pdf,Estimating Correspondences of Deformable Objects “In-the-Wild”,2016
102,United States,LFPW,lfpw,39.2899685,-76.62196103,University of Maryland,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,https://arxiv.org/pdf/1601.07950.pdf,Face Alignment by Local Deep Descriptor Regression,2016
103,United States,LFPW,lfpw,40.47913175,-74.43168868,Rutgers University,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,https://arxiv.org/pdf/1601.07950.pdf,Face Alignment by Local Deep Descriptor Regression,2016
104,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,6d8c9a1759e7204eacb4eeb06567ad0ef4229f93,citation,https://arxiv.org/pdf/1707.05938.pdf,"Face Alignment Robust to Pose, Expressions and Occlusions",2016
105,United States,LFPW,lfpw,42.718568,-84.47791571,Michigan State University,edu,6d8c9a1759e7204eacb4eeb06567ad0ef4229f93,citation,https://arxiv.org/pdf/1707.05938.pdf,"Face Alignment Robust to Pose, Expressions and Occlusions",2016
106,South Korea,LFPW,lfpw,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,72e10a2a7a65db7ecdc7d9bd3b95a4160fab4114,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_094.pdf,Face alignment using cascade Gaussian process regression trees,2015
107,United Kingdom,LFPW,lfpw,51.5247272,-0.03931035,Queen Mary University of London,edu,4b6387e608afa83ac8d855de2c9b0ae3b86f31cc,citation,http://www.researchgate.net/profile/Heng_Yang3/publication/263813517_Face_Sketch_Landmarks_Localization_in_the_Wild/links/53d3dd3b0cf220632f3ce8b3.pdf,Face Sketch Landmarks Localization in the Wild,2014
108,China,LFPW,lfpw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4b6387e608afa83ac8d855de2c9b0ae3b86f31cc,citation,http://www.researchgate.net/profile/Heng_Yang3/publication/263813517_Face_Sketch_Landmarks_Localization_in_the_Wild/links/53d3dd3b0cf220632f3ce8b3.pdf,Face Sketch Landmarks Localization in the Wild,2014
109,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,ebedc841a2c1b3a9ab7357de833101648281ff0e,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885615000116-main.pdf,Facial landmarking for in-the-wild images with local inference based on global appearance,2015
110,Netherlands,LFPW,lfpw,52.2380139,6.8566761,University of Twente,edu,ebedc841a2c1b3a9ab7357de833101648281ff0e,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885615000116-main.pdf,Facial landmarking for in-the-wild images with local inference based on global appearance,2015
111,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,2f7aa942313b1eb12ebfab791af71d0a3830b24c,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos2015feature.pdf,Feature-Based Lucas–Kanade and Active Appearance Models,2015
112,United Kingdom,LFPW,lfpw,52.9387428,-1.20029569,University of Nottingham,edu,2f7aa942313b1eb12ebfab791af71d0a3830b24c,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos2015feature.pdf,Feature-Based Lucas–Kanade and Active Appearance Models,2015
113,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,375435fb0da220a65ac9e82275a880e1b9f0a557,citation,http://eprints.lincoln.ac.uk/17528/7/__ddat02_staffhome_jpartridge_tzimiroTPAMI15.pdf,From Pixels to Response Maps: Discriminative Image Filtering for Face Alignment in the Wild,2015
114,Netherlands,LFPW,lfpw,52.2380139,6.8566761,University of Twente,edu,375435fb0da220a65ac9e82275a880e1b9f0a557,citation,http://eprints.lincoln.ac.uk/17528/7/__ddat02_staffhome_jpartridge_tzimiroTPAMI15.pdf,From Pixels to Response Maps: Discriminative Image Filtering for Face Alignment in the Wild,2015
115,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,e42998bbebddeeb4b2bedf5da23fa5c4efc976fa,citation,https://pdfs.semanticscholar.org/e429/98bbebddeeb4b2bedf5da23fa5c4efc976fa.pdf,Generic Active Appearance Models Revisited,2012
116,United Kingdom,LFPW,lfpw,53.22853665,-0.54873472,University of Lincoln,edu,e42998bbebddeeb4b2bedf5da23fa5c4efc976fa,citation,https://pdfs.semanticscholar.org/e429/98bbebddeeb4b2bedf5da23fa5c4efc976fa.pdf,Generic Active Appearance Models Revisited,2012
117,United Kingdom,LFPW,lfpw,52.9387428,-1.20029569,University of Nottingham,edu,1c1a98df3d0d5e2034ea723994bdc85af45934db,citation,http://www.cs.nott.ac.uk/~pszmv/Documents/ICCV-300w_cameraready.pdf,Guided Unsupervised Learning of Mode Specific Models for Facial Point Detection in the Wild,2013
118,United States,LFPW,lfpw,34.0224149,-118.28634407,University of Southern California,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016
119,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016
120,China,LFPW,lfpw,31.4854255,120.2739581,Jiangnan University,edu,9d57c4036a0e5f1349cd11bc342ac515307b6720,citation,https://arxiv.org/pdf/1808.05399.pdf,Landmark Weighting for 3DMM Shape Fitting,2018
121,United Kingdom,LFPW,lfpw,51.24303255,-0.59001382,University of Surrey,edu,9d57c4036a0e5f1349cd11bc342ac515307b6720,citation,https://arxiv.org/pdf/1808.05399.pdf,Landmark Weighting for 3DMM Shape Fitting,2018
122,China,LFPW,lfpw,40.0044795,116.370238,Chinese Academy of Sciences,edu,321c8ba38db118d8b02c0ba209be709e6792a2c7,citation,http://www.cbsr.ia.ac.cn/users/jjyan/ICCVW2013.pdf,Learn to Combine Multiple Hypotheses for Accurate Face Alignment,2013
123,China,LFPW,lfpw,40.00229045,116.32098908,Tsinghua University,edu,329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,2017
124,China,LFPW,lfpw,22.4162632,114.2109318,Chinese University of Hong Kong,edu,329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,2017
125,United States,LFPW,lfpw,33.6404952,-117.8442962,University of California Irvine,edu,65126e0b1161fc8212643b8ff39c1d71d262fbc1,citation,http://vision.ics.uci.edu/papers/GhiasiF_CVPR_2014/GhiasiF_CVPR_2014.pdf,Occlusion Coherence: Localizing Occluded Faces with a Hierarchical Deformable Part Model,2014
126,China,LFPW,lfpw,40.0044795,116.370238,Chinese Academy of Sciences,edu,303a7099c01530fa0beb197eb1305b574168b653,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Occlusion-Free_Face_Alignment_CVPR_2016_paper.pdf,Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders,2016
127,China,LFPW,lfpw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,303a7099c01530fa0beb197eb1305b574168b653,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Occlusion-Free_Face_Alignment_CVPR_2016_paper.pdf,Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders,2016
128,United Kingdom,LFPW,lfpw,50.7944026,-1.0971748,Cambridge University,edu,2fda461869f84a9298a0e93ef280f79b9fb76f94,citation,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/09/2016_WACV_Baltrusaitis_OpenFace.pdf,OpenFace: An open source facial behavior analysis toolkit,2016
129,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,2fda461869f84a9298a0e93ef280f79b9fb76f94,citation,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/09/2016_WACV_Baltrusaitis_OpenFace.pdf,OpenFace: An open source facial behavior analysis toolkit,2016
130,United States,LFPW,lfpw,35.3103441,-80.73261617,University of North Carolina at Charlotte,edu,89002a64e96a82486220b1d5c3f060654b24ef2a,citation,http://research.rutgers.edu/~shaoting/paper/ICCV15_face.pdf,PIEFA: Personalized Incremental and Ensemble Face Alignment,2015
131,China,LFPW,lfpw,31.28473925,121.49694909,Tongji University,edu,7aafeb9aab48fb2c34bed4b86755ac71e3f00338,citation,https://pdfs.semanticscholar.org/7aaf/eb9aab48fb2c34bed4b86755ac71e3f00338.pdf,Real Time 3D Facial Movement Tracking Using a Monocular Camera,2016
132,Japan,LFPW,lfpw,32.8164178,130.72703969,Kumamoto University,edu,7aafeb9aab48fb2c34bed4b86755ac71e3f00338,citation,https://pdfs.semanticscholar.org/7aaf/eb9aab48fb2c34bed4b86755ac71e3f00338.pdf,Real Time 3D Facial Movement Tracking Using a Monocular Camera,2016
133,United States,LFPW,lfpw,45.57022705,-122.63709346,Concordia University,edu,6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d,citation,https://arxiv.org/pdf/1607.00659.pdf,Robust Deep Appearance Models,2016
134,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d,citation,https://arxiv.org/pdf/1607.00659.pdf,Robust Deep Appearance Models,2016
135,China,LFPW,lfpw,40.0044795,116.370238,Chinese Academy of Sciences,edu,7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/He_Robust_FEC-CNN_A_CVPR_2017_paper.pdf,Robust FEC-CNN: A High Accuracy Facial Landmark Detection System,2017
136,China,LFPW,lfpw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/He_Robust_FEC-CNN_A_CVPR_2017_paper.pdf,Robust FEC-CNN: A High Accuracy Facial Landmark Detection System,2017
137,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,7cdf3bc1de6c7948763c0c2dfa4384dcbd3677a0,citation,http://eprints.eemcs.utwente.nl/27129/01/sagonas2016robust.pdf,Robust Statistical Frontalization of Human and Animal Faces,2016
138,Netherlands,LFPW,lfpw,52.2380139,6.8566761,University of Twente,edu,7cdf3bc1de6c7948763c0c2dfa4384dcbd3677a0,citation,http://eprints.eemcs.utwente.nl/27129/01/sagonas2016robust.pdf,Robust Statistical Frontalization of Human and Animal Faces,2016
139,United States,LFPW,lfpw,40.47913175,-74.43168868,Rutgers University,edu,04ff69aa20da4eeccdabbe127e3641b8e6502ec0,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Sequential_Face_Alignment_CVPR_2016_paper.pdf,Sequential Face Alignment via Person-Specific Modeling in the Wild,2016
140,United States,LFPW,lfpw,32.7283683,-97.11201835,University of Texas at Arlington,edu,04ff69aa20da4eeccdabbe127e3641b8e6502ec0,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Sequential_Face_Alignment_CVPR_2016_paper.pdf,Sequential Face Alignment via Person-Specific Modeling in the Wild,2016
141,China,LFPW,lfpw,22.304572,114.17976285,Hong Kong Polytechnic University,edu,3c88ffb74573c87c994106b3ae164f316182fc2c,citation,https://opus.lib.uts.edu.au/bitstream/10453/43334/1/SAC-AAM_v10_Huiling_20151023_modifiedVersion.pdf,Shape-appearance-correlated active appearance model,2016
142,Australia,LFPW,lfpw,-33.8840504,151.1992254,University of Technology,edu,3c88ffb74573c87c994106b3ae164f316182fc2c,citation,https://opus.lib.uts.edu.au/bitstream/10453/43334/1/SAC-AAM_v10_Huiling_20151023_modifiedVersion.pdf,Shape-appearance-correlated active appearance model,2016
143,China,LFPW,lfpw,39.98177,116.330086,National Laboratory of Pattern Recognition,edu,4a1d640f5e25bb60bb2347d36009718249ce9230,citation,http://ir.ia.ac.cn/bitstream/173211/4555/1/CVPR14FaceAlignmentCameraReady.pdf,Towards Multi-view and Partially-Occluded Face Alignment,2014
144,Singapore,LFPW,lfpw,1.2962018,103.77689944,National University of Singapore,edu,4a1d640f5e25bb60bb2347d36009718249ce9230,citation,http://ir.ia.ac.cn/bitstream/173211/4555/1/CVPR14FaceAlignmentCameraReady.pdf,Towards Multi-view and Partially-Occluded Face Alignment,2014
145,China,LFPW,lfpw,22.4162632,114.2109318,Chinese University of Hong Kong,edu,433a6d6d2a3ed8a6502982dccc992f91d665b9b3,citation,https://arxiv.org/pdf/1409.0602.pdf,Transferring Landmark Annotations for Cross-Dataset Face Alignment.,2014
146,China,LFPW,lfpw,40.00229045,116.32098908,Tsinghua University,edu,433a6d6d2a3ed8a6502982dccc992f91d665b9b3,citation,https://arxiv.org/pdf/1409.0602.pdf,Transferring Landmark Annotations for Cross-Dataset Face Alignment.,2014
147,United States,LFPW,lfpw,40.47913175,-74.43168868,Rutgers University,edu,3d78c144672c4ee76d92d21dad012bdf3c3aa1a0,citation,http://www.rci.rutgers.edu/~vmp93/Journal_pub/IJCV_20170517_v4.pdf,Unconstrained Still/Video-Based Face Verification with Deep Convolutional Neural Networks,2017
148,United States,LFPW,lfpw,39.2899685,-76.62196103,University of Maryland,edu,3d78c144672c4ee76d92d21dad012bdf3c3aa1a0,citation,http://www.rci.rutgers.edu/~vmp93/Journal_pub/IJCV_20170517_v4.pdf,Unconstrained Still/Video-Based Face Verification with Deep Convolutional Neural Networks,2017
149,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,5c124b57699be19cd4eb4e1da285b4a8c84fc80d,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Zhao_Unified_Face_Analysis_2014_CVPR_paper.pdf,Unified Face Analysis by Iterative Multi-output Random Forests,2014
150,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,4c87aafa779747828054cffee3125fcea332364d,citation,https://pdfs.semanticscholar.org/4c87/aafa779747828054cffee3125fcea332364d.pdf,View-Constrained Latent Variable Model for Multi-view Facial Expression Classification,2014
151,Netherlands,LFPW,lfpw,52.2380139,6.8566761,University of Twente,edu,4c87aafa779747828054cffee3125fcea332364d,citation,https://pdfs.semanticscholar.org/4c87/aafa779747828054cffee3125fcea332364d.pdf,View-Constrained Latent Variable Model for Multi-view Facial Expression Classification,2014
152,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,303065c44cf847849d04da16b8b1d9a120cef73a,citation,https://arxiv.org/pdf/1701.05360.pdf,"3D Face Morphable Models ""In-the-Wild""",2017
153,United States,LFPW,lfpw,40.47913175,-74.43168868,Rutgers University,edu,afdf9a3464c3b015f040982750f6b41c048706f5,citation,https://arxiv.org/pdf/1608.05477.pdf,A Recurrent Encoder-Decoder Network for Sequential Face Alignment,2016
154,China,LFPW,lfpw,30.672721,104.098806,University of Electronic Science and Technology of China,edu,88e2574af83db7281c2064e5194c7d5dfa649846,citation,http://downloads.hindawi.com/journals/cin/2017/4579398.pdf,A Robust Shape Reconstruction Method for Facial Feature Point Detection,2017
155,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,5f5906168235613c81ad2129e2431a0e5ef2b6e4,citation,https://arxiv.org/pdf/1601.00199.pdf,A Unified Framework for Compositional Fitting of Active Appearance Models,2016
156,France,LFPW,lfpw,49.4583047,1.0688892,Rouen University,edu,0b0958493e43ca9c131315bcfb9a171d52ecbb8a,citation,https://pdfs.semanticscholar.org/0b09/58493e43ca9c131315bcfb9a171d52ecbb8a.pdf,A Unified Neural Based Model for Structured Output Problems,2015
157,China,LFPW,lfpw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,7343f0b7bcdaf909c5e37937e295bf0ac7b69499,citation,http://wuyuebupt.github.io/files/csi.pdf,Adaptive Cascade Deep Convolutional Neural Networks for face alignment,2015
158,United States,LFPW,lfpw,38.99203005,-76.9461029,University of Maryland College Park,edu,3504907a2e3c81d78e9dfe71c93ac145b1318f9c,citation,https://arxiv.org/pdf/1605.02686.pdf,An End-to-End System for Unconstrained Face Verification with Deep Convolutional Neural Networks,2015
159,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,06c2dfe1568266ad99368fc75edf79585e29095f,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/joan_cvpr2014.pdf,Bayesian Active Appearance Models,2014
160,United Kingdom,LFPW,lfpw,52.9387428,-1.20029569,University of Nottingham,edu,056ba488898a1a1b32daec7a45e0d550e0c51ae4,citation,https://arxiv.org/pdf/1608.01137.pdf,Cascaded Continuous Regression for Real-Time Incremental Face Tracking,2016
161,United Kingdom,LFPW,lfpw,52.9387428,-1.20029569,University of Nottingham,edu,72a1852c78b5e95a57efa21c92bdc54219975d8f,citation,http://eprints.nottingham.ac.uk/31303/1/prl_blockwise_SDM.pdf,Cascaded regression with sparsified feature covariance matrix for facial landmark detection,2016
162,United States,LFPW,lfpw,43.07982815,-89.43066425,University of Wisconsin Madison,edu,2e091b311ac48c18aaedbb5117e94213f1dbb529,citation,http://pages.cs.wisc.edu/~lizhang/projects/collab-face-landmarks/SmithECCV2014.pdf,Collaborative Facial Landmark Localization for Transferring Annotations Across Datasets,2014
163,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,88e2efab01e883e037a416c63a03075d66625c26,citation,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w36/Zadeh_Convolutional_Experts_Constrained_ICCV_2017_paper.pdf,Convolutional Experts Constrained Local Model for 3D Facial Landmark Detection,2017
164,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,963d0d40de8780161b70d28d2b125b5222e75596,citation,https://arxiv.org/pdf/1611.08657.pdf,Convolutional Experts Constrained Local Model for Facial Landmark Detection,2017
165,Poland,LFPW,lfpw,52.22165395,21.00735776,Warsaw University of Technology,edu,f27b8b8f2059248f77258cf8595e9434cf0b0228,citation,https://arxiv.org/pdf/1706.01789.pdf,Deep Alignment Network: A Convolutional Neural Network for Robust Face Alignment,2017
166,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,38cbb500823057613494bacd0078aa0e57b30af8,citation,https://arxiv.org/pdf/1704.08772.pdf,Deep Face Deblurring,2017
167,France,LFPW,lfpw,49.4583047,1.0688892,Normandie University,edu,9ca7899338129f4ba6744f801e722d53a44e4622,citation,https://arxiv.org/pdf/1504.07550.pdf,Deep neural networks regularization for structured output prediction,2018
168,United States,LFPW,lfpw,43.07982815,-89.43066425,University of Wisconsin Madison,edu,0eac652139f7ab44ff1051584b59f2dc1757f53b,citation,https://arxiv.org/pdf/1611.01584.pdf,Efficient Branching Cascaded Regression for Face Alignment under Significant Head Rotation,2016
169,China,LFPW,lfpw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,5c820e47981d21c9dddde8d2f8020146e600368f,citation,https://pdfs.semanticscholar.org/5c82/0e47981d21c9dddde8d2f8020146e600368f.pdf,Extended Supervised Descent Method for Robust Face Alignment,2014
170,China,LFPW,lfpw,32.0565957,118.77408833,Nanjing University,edu,f633d6dc02b2e55eb24b89f2b8c6df94a2de86dd,citation,http://parnec.nuaa.edu.cn/pubs/xiaoyang%20tan/journal/2016/JXPR-2016.pdf,Face alignment by robust discriminative Hough voting,2016
171,Poland,LFPW,lfpw,52.22165395,21.00735776,Warsaw University of Technology,edu,eb48a58b873295d719827e746d51b110f5716d6c,citation,https://arxiv.org/pdf/1706.01820.pdf,Face Alignment Using K-Cluster Regression Forests With Weighted Splitting,2016
172,United States,LFPW,lfpw,30.44235995,-84.29747867,Florida State University,edu,9207671d9e2b668c065e06d9f58f597601039e5e,citation,https://pdfs.semanticscholar.org/9207/671d9e2b668c065e06d9f58f597601039e5e.pdf,Face Detection Using a 3D Model on Face Keypoints,2014
173,United Kingdom,LFPW,lfpw,51.5247272,-0.03931035,Queen Mary University of London,edu,1a140d9265df8cf50a3cd69074db7e20dc060d14,citation,https://pdfs.semanticscholar.org/1a14/0d9265df8cf50a3cd69074db7e20dc060d14.pdf,Face Parts Localization Using Structured-Output Regression Forests,2012
174,United States,LFPW,lfpw,35.9542493,-83.9307395,University of Tennessee,edu,5e97a1095f2811e0bc188f52380ea7c9c460c896,citation,http://web.eecs.utk.edu/~rguo1/FacialParsing.pdf,Facial feature parsing and landmark detection via low-rank matrix decomposition,2015
175,China,LFPW,lfpw,32.0565957,118.77408833,Nanjing University,edu,5b0bf1063b694e4b1575bb428edb4f3451d9bf04,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Yang_Facial_Shape_Tracking_ICCV_2015_paper.pdf,Facial Shape Tracking via Spatio-Temporal Cascade Shape Regression,2015
176,United Kingdom,LFPW,lfpw,52.9387428,-1.20029569,University of Nottingham,edu,e5533c70706109ee8d0b2a4360fbe73fd3b0f35d,citation,https://arxiv.org/pdf/1703.07332.pdf,"How Far are We from Solving the 2D & 3D Face Alignment Problem? (and a Dataset of 230,000 3D Facial Landmarks)",2017
177,United Kingdom,LFPW,lfpw,52.17638955,0.14308882,University of Cambridge,edu,9901f473aeea177a55e58bac8fd4f1b086e575a4,citation,https://arxiv.org/pdf/1509.04954.pdf,Human and sheep facial landmarks localisation by triplet interpolated features,2016
178,United Kingdom,LFPW,lfpw,52.9387428,-1.20029569,University of Nottingham,edu,9ca0626366e136dac6bfd628cec158e26ed959c7,citation,https://arxiv.org/pdf/1811.02194.pdf,In-the-wild Facial Expression Recognition in Extreme Poses,2017
179,United States,LFPW,lfpw,29.7207902,-95.34406271,University of Houston,edu,466f80b066215e85da63e6f30e276f1a9d7c843b,citation,http://cbl.uh.edu/pub_files/07961802.pdf,Joint Head Pose Estimation and Face Alignment Framework Using Global and Local CNN Features,2017
180,United Kingdom,LFPW,lfpw,52.9387428,-1.20029569,University of Nottingham,edu,2c14c3bb46275da5706c466f9f51f4424ffda914,citation,http://braismartinez.com/media/documents/2015ivc_-_l21-based_regression_and_prediction_accumulation_across_views_for_robust_facial_landmark_detection.pdf,"L2, 1-based regression and prediction accumulation across views for robust facial landmark detection",2016
181,China,LFPW,lfpw,22.4162632,114.2109318,Chinese University of Hong Kong,edu,390f3d7cdf1ce127ecca65afa2e24c563e9db93b,citation,https://pdfs.semanticscholar.org/6e80/a3558f9170f97c103137ea2e18ddd782e8d7.pdf,Learning and Transferring Multi-task Deep Representation for Face Alignment,2014
182,China,LFPW,lfpw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,c00f402b9cfc3f8dd2c74d6b3552acbd1f358301,citation,https://arxiv.org/pdf/1608.00207.pdf,Learning deep representation from coarse to fine for face alignment,2016
183,China,LFPW,lfpw,40.00229045,116.32098908,Tsinghua University,edu,df80fed59ffdf751a20af317f265848fe6bfb9c9,citation,http://ivg.au.tsinghua.edu.cn/paper/2017_Learning%20deep%20sharable%20and%20structural%20detectors%20for%20face%20alignment.pdf,Learning Deep Sharable and Structural Detectors for Face Alignment,2017
184,United Kingdom,LFPW,lfpw,52.3793131,-1.5604252,University of Warwick,edu,0bc53b338c52fc635687b7a6c1e7c2b7191f42e5,citation,https://pdfs.semanticscholar.org/a32a/8d6d4c3b4d69544763be48ffa7cb0d7f2f23.pdf,Loglet SIFT for Part Description in Deformable Part Models: Application to Face Alignment,2016
185,United Kingdom,LFPW,lfpw,51.5247272,-0.03931035,Queen Mary University of London,edu,0f81b0fa8df5bf3fcfa10f20120540342a0c92e5,citation,https://arxiv.org/pdf/1501.05152.pdf,"Mirror, mirror on the wall, tell me, is the error small?",2015
186,United Kingdom,LFPW,lfpw,53.46600455,-2.23300881,University of Manchester,edu,daa4cfde41d37b2ab497458e331556d13dd14d0b,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Rajamanoharan_Multi-View_Constrained_Local_ICCV_2015_paper.pdf,Multi-view Constrained Local Models for Large Head Angle Facial Tracking,2015
187,South Africa,LFPW,lfpw,-33.95828745,18.45997349,University of Cape Town,edu,36e8ef2e5d52a78dddf0002e03918b101dcdb326,citation,http://www.milbo.org/stasm-files/multiview-active-shape-models-with-sift-for-300w.pdf,Multiview Active Shape Models with SIFT Descriptors for the 300-W Face Landmark Challenge,2013
188,United States,LFPW,lfpw,33.6404952,-117.8442962,University of California at Irvine,edu,bd13f50b8997d0733169ceba39b6eb1bda3eb1aa,citation,https://arxiv.org/pdf/1506.08347.pdf,Occlusion Coherence: Detecting and Localizing Occluded Faces,2015
189,United States,LFPW,lfpw,42.718568,-84.47791571,Michigan State University,edu,b53485dbdd2dc5e4f3c7cff26bd8707964bb0503,citation,http://cvlab.cse.msu.edu/pdfs/Jourabloo_Liu_IJCV_2017.pdf,Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting,2017
190,Canada,LFPW,lfpw,45.5010087,-73.6157778,University of Montreal,edu,3176ee88d1bb137d0b561ee63edf10876f805cf0,citation,https://arxiv.org/pdf/1511.07356.pdf,Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation,2016
191,Taiwan,LFPW,lfpw,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,27c6cd568d0623d549439edc98f6b92528d39bfe,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Hsu_Regressive_Tree_Structured_ICCV_2015_paper.pdf,Regressive Tree Structured Model for Facial Landmark Localization,2015
192,United States,LFPW,lfpw,38.2167565,-85.75725023,University of Louisville,edu,84bc3ca61fc63b47ec3a1a6566ab8dcefb3d0015,citation,http://www.cvip.louisville.edu/wwwcvip/research/publications/Pub_Pdf/2012/BTAS%20144.pdf,Rejecting pseudo-faces using the likelihood of facial features and skin,2012
193,Australia,LFPW,lfpw,-35.28121335,149.11665331,"Australian National University, Canberra",edu,24e099e77ae7bae3df2bebdc0ee4e00acca71250,citation,http://users.cecs.anu.edu.au/~hexm/papers/heng_tip.pdf,Robust Face Alignment Under Occlusion via Regional Predictive Power Estimation,2015
194,China,LFPW,lfpw,22.4162632,114.2109318,Chinese University of Hong Kong,edu,24e099e77ae7bae3df2bebdc0ee4e00acca71250,citation,http://users.cecs.anu.edu.au/~hexm/papers/heng_tip.pdf,Robust Face Alignment Under Occlusion via Regional Predictive Power Estimation,2015
195,United Kingdom,LFPW,lfpw,51.5247272,-0.03931035,Queen Mary University of London,edu,24e099e77ae7bae3df2bebdc0ee4e00acca71250,citation,http://users.cecs.anu.edu.au/~hexm/papers/heng_tip.pdf,Robust Face Alignment Under Occlusion via Regional Predictive Power Estimation,2015
196,United States,LFPW,lfpw,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,1c1f957d85b59d23163583c421755869f248ceef,citation,https://arxiv.org/pdf/1709.08127.pdf,Robust Facial Landmark Detection Under Significant Head Poses and Occlusion,2015
197,United States,LFPW,lfpw,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,c3d3d2229500c555c7a7150a8b126ef874cbee1c,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Wu_Shape_Augmented_Regression_ICCV_2015_paper.pdf,Shape Augmented Regression Method for Face Alignment,2015
198,Australia,LFPW,lfpw,-33.8809651,151.20107299,University of Technology Sydney,edu,77875d6e4d8c7ed3baeb259fd5696e921f59d7ad,citation,https://arxiv.org/pdf/1803.04108.pdf,Style Aggregated Network for Facial Landmark Detection,2018
199,China,LFPW,lfpw,40.00229045,116.32098908,Tsinghua University,edu,e8523c4ac9d7aa21f3eb4062e09f2a3bc1eedcf7,citation,https://arxiv.org/pdf/1701.07174.pdf,Toward End-to-End Face Recognition Through Alignment Learning,2017
200,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,7cfbf90368553333b47731729e0e358479c25340,citation,http://www.andrew.cmu.edu/user/kseshadr/TPAMI_2016_Paper_Final_Submission.pdf,"Towards a Unified Framework for Pose, Expression, and Occlusion Tolerant Automatic Facial Alignment",2016
201,Poland,LFPW,lfpw,52.22165395,21.00735776,Warsaw University of Technology,edu,e52272f92fa553687f1ac068605f1de929efafc2,citation,https://repo.pw.edu.pl/docstore/download/WUT8aeb20bbb6964b7da1cfefbf2e370139/1-s2.0-S0952197617301227-main.pdf,Using a Probabilistic Neural Network for lip-based biometric verification,2017
202,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,2e3d081c8f0e10f138314c4d2c11064a981c1327,citation,https://arxiv.org/pdf/1603.06015.pdf,A Comprehensive Performance Evaluation of Deformable Face Tracking “In-the-Wild”,2017
203,United Kingdom,LFPW,lfpw,50.7944026,-1.0971748,Cambridge University,edu,cc96eab1e55e771e417b758119ce5d7ef1722b43,citation,https://arxiv.org/pdf/1511.05049.pdf,An Empirical Study of Recent Face Alignment Methods,2015
204,China,LFPW,lfpw,22.4162632,114.2109318,Chinese University of Hong Kong,edu,cc96eab1e55e771e417b758119ce5d7ef1722b43,citation,https://arxiv.org/pdf/1511.05049.pdf,An Empirical Study of Recent Face Alignment Methods,2015
205,China,LFPW,lfpw,35.86166,104.195397,"Megvii Inc. (Face++), China",company,064b797aa1da2000640e437cacb97256444dee82,citation,https://arxiv.org/pdf/1511.04901.pdf,Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression,2015
206,Germany,LFPW,lfpw,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,9b9ccd4954cf9dd605d49e9c3504224d06725ab7,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w13/papers/Schwarz_DriveAHead_-_A_CVPR_2017_paper.pdf,DriveAHead — A Large-Scale Driver Head Pose Dataset,2017
207,China,LFPW,lfpw,32.0565957,118.77408833,Nanjing University,edu,91883dabc11245e393786d85941fb99a6248c1fb,citation,https://arxiv.org/pdf/1608.04188.pdf,Face Alignment In-the-Wild: A Survey,2017
208,United Kingdom,LFPW,lfpw,51.521975,-0.130462,"Birkbeck College, London, UK",edu,38192a0f9261d9727b119e294a65f2e25f72d7e6,citation,https://arxiv.org/pdf/1410.1037.pdf,Facial feature point detection: A comprehensive survey,2018
209,Australia,LFPW,lfpw,-33.8809651,151.20107299,University of Technology Sydney,edu,38192a0f9261d9727b119e294a65f2e25f72d7e6,citation,https://arxiv.org/pdf/1410.1037.pdf,Facial feature point detection: A comprehensive survey,2018
210,China,LFPW,lfpw,34.1235825,108.83546,Xidian University,edu,38192a0f9261d9727b119e294a65f2e25f72d7e6,citation,https://arxiv.org/pdf/1410.1037.pdf,Facial feature point detection: A comprehensive survey,2018
211,China,LFPW,lfpw,30.19331415,120.11930822,Zhejiang University,edu,bd8e2d27987be9e13af2aef378754f89ab20ce10,citation,http://bksy.zju.edu.cn/attachments/tlxjxj/2016-10/99999-1477633998-1097578.pdf,Facial feature points detecting based on Gaussian Mixture Models,2015
212,Japan,LFPW,lfpw,35.2742655,137.01327841,Chubu University,edu,62f0d8446adee6a5e8102053a63a61af07ac4098,citation,http://www.vision.cs.chubu.ac.jp/MPRG/C_group/C072_yamashita2015.pdf,Facial point detection using convolutional neural network transferred from a heterogeneous task,2015
213,Sweden,LFPW,lfpw,58.3978364,15.5760072,Linköping University,edu,ebd5df2b4105ba04cef4ca334fcb9bfd6ea0430c,citation,https://arxiv.org/pdf/1403.6888.pdf,Fast Localization of Facial Landmark Points,2014
214,Croatia,LFPW,lfpw,45.801121,15.9708409,University of Zagreb,edu,ebd5df2b4105ba04cef4ca334fcb9bfd6ea0430c,citation,https://arxiv.org/pdf/1403.6888.pdf,Fast Localization of Facial Landmark Points,2014
215,United States,LFPW,lfpw,29.736724,-95.3931825,Houston University,edu,5b2cfee6e81ef36507ebf3c305e84e9e0473575a,citation,https://arxiv.org/pdf/1704.02402.pdf,GoDP: Globally Optimized Dual Pathway deep network architecture for facial landmark localization in-the-wild,2018
216,United States,LFPW,lfpw,43.07982815,-89.43066425,University of Wisconsin Madison,edu,fd615118fb290a8e3883e1f75390de8a6c68bfde,citation,https://pdfs.semanticscholar.org/fd61/5118fb290a8e3883e1f75390de8a6c68bfde.pdf,Joint Face Alignment with Non-parametric Shape Models,2012
217,United Kingdom,LFPW,lfpw,51.49887085,-0.17560797,Imperial College London,edu,47471105d9ee2276e14ab4a3a4d66ef58612188f,citation,https://arxiv.org/pdf/1708.06023.pdf,Joint Multi-view Face Alignment in the Wild,2019
218,United Kingdom,LFPW,lfpw,51.5247272,-0.03931035,Queen Mary University of London,edu,d511e903a882658c9f6f930d6dd183007f508eda,citation,https://www.computer.org/csdl/proceedings/fg/2013/5545/00/06553766.pdf,Privileged information-based conditional regression forest for facial feature detection,2013
219,China,LFPW,lfpw,31.4854255,120.2739581,Jiangnan University,edu,2d072cd43de8d17ce3198fae4469c498f97c6277,citation,http://www.ee.surrey.ac.uk/CVSSP/Publications/papers/Feng-IEEE-SPL-2015.pdf,Random Cascaded-Regression Copse for Robust Facial Landmark Detection,2015
220,United Kingdom,LFPW,lfpw,51.24303255,-0.59001382,University of Surrey,edu,2d072cd43de8d17ce3198fae4469c498f97c6277,citation,http://www.ee.surrey.ac.uk/CVSSP/Publications/papers/Feng-IEEE-SPL-2015.pdf,Random Cascaded-Regression Copse for Robust Facial Landmark Detection,2015
221,Italy,LFPW,lfpw,46.0658836,11.1159894,University of Trento,edu,b48d3694a8342b6efc18c9c9124c62406e6bf3b3,citation,,Recurrent Convolutional Shape Regression,2018
222,United States,LFPW,lfpw,33.9850469,-118.4694832,"Snapchat Research, Venice, CA",company,b48d3694a8342b6efc18c9c9124c62406e6bf3b3,citation,,Recurrent Convolutional Shape Regression,2018
223,United States,LFPW,lfpw,34.13710185,-118.12527487,California Institute of Technology,edu,2724ba85ec4a66de18da33925e537f3902f21249,citation,,Robust Face Landmark Estimation under Occlusion,2013
224,United States,LFPW,lfpw,47.6423318,-122.1369302,Microsoft,company,2724ba85ec4a66de18da33925e537f3902f21249,citation,,Robust Face Landmark Estimation under Occlusion,2013
225,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,1035b073455165a31de875390977c8c09a672f2d,citation,https://pdfs.semanticscholar.org/1035/b073455165a31de875390977c8c09a672f2d.pdf,Robust Facial Landmark Localization Under Simultaneous Real-World Degradations,2015
226,China,LFPW,lfpw,22.4162632,114.2109318,Chinese University of Hong Kong,edu,2f489bd9bfb61a7d7165a2f05c03377a00072477,citation,https://pdfs.semanticscholar.org/2f48/9bd9bfb61a7d7165a2f05c03377a00072477.pdf,Structured Semi-supervised Forest for Facial Landmarks Localization with Face Mask Reasoning,2014
227,United Kingdom,LFPW,lfpw,51.5247272,-0.03931035,Queen Mary University of London,edu,2f489bd9bfb61a7d7165a2f05c03377a00072477,citation,https://pdfs.semanticscholar.org/2f48/9bd9bfb61a7d7165a2f05c03377a00072477.pdf,Structured Semi-supervised Forest for Facial Landmarks Localization with Face Mask Reasoning,2014
228,United States,LFPW,lfpw,40.4441619,-79.94272826,Carnegie Mellon University,edu,fd4ac1da699885f71970588f84316589b7d8317b,citation,https://arxiv.org/pdf/1405.0601.pdf,Supervised Descent Method for Solving Nonlinear Least Squares Problems in Computer Vision,2014
229,China,LFPW,lfpw,40.0044795,116.370238,Chinese Academy of Sciences,edu,e0162dea3746d58083dd1d061fb276015d875b2e,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Shao_Unconstrained_Face_Alignment_CVPR_2017_paper.pdf,Unconstrained Face Alignment Without Face Detection,2017
230,United Kingdom,LFPW,lfpw,51.7534538,-1.25400997,University of Oxford,edu,73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c,citation,https://arxiv.org/pdf/1705.02193.pdf,Unsupervised Learning of Object Landmarks by Factorized Spatial Embeddings,2017