1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
id,country,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
0,,Helen,helen,0.0,0.0,,,,main,,Interactive Facial Feature Localization,2012
1,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,bae86526b3b0197210b64cdd95cb5aca4209c98a,citation,https://arxiv.org/pdf/1802.01777.pdf,"Brute-Force Facial Landmark Analysis With a 140, 000-Way Classifier",2018
2,China,Helen,helen,28.2290209,112.99483204,"National University of Defense Technology, China",mil,1b8541ec28564db66a08185510c8b300fa4dc793,citation,,Affine-Transformation Parameters Regression for Face Alignment,2016
3,China,Helen,helen,31.83907195,117.26420748,University of Science and Technology of China,edu,084bd02d171e36458f108f07265386f22b34a1ae,citation,http://7xrqgw.com1.z0.glb.clouddn.com/3000fps.pdf,Face Alignment at 3000 FPS via Regressing Local Binary Features,2014
4,United States,Helen,helen,47.6423318,-122.1369302,Microsoft,company,084bd02d171e36458f108f07265386f22b34a1ae,citation,http://7xrqgw.com1.z0.glb.clouddn.com/3000fps.pdf,Face Alignment at 3000 FPS via Regressing Local Binary Features,2014
5,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,5bd3d08335bb4e444a86200c5e9f57fd9d719e14,citation,https://pdfs.semanticscholar.org/5bd3/d08335bb4e444a86200c5e9f57fd9d719e14.pdf,3 D Face Morphable Models “ Inthe-Wild ”,0
6,United States,Helen,helen,38.7768106,-94.9442982,Amazon,company,5bd3d08335bb4e444a86200c5e9f57fd9d719e14,citation,https://pdfs.semanticscholar.org/5bd3/d08335bb4e444a86200c5e9f57fd9d719e14.pdf,3 D Face Morphable Models “ Inthe-Wild ”,0
7,Finland,Helen,helen,65.0592157,25.46632601,University of Oulu,edu,5bd3d08335bb4e444a86200c5e9f57fd9d719e14,citation,https://pdfs.semanticscholar.org/5bd3/d08335bb4e444a86200c5e9f57fd9d719e14.pdf,3 D Face Morphable Models “ Inthe-Wild ”,0
8,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,12095f9b35ee88272dd5abc2d942a4f55804b31e,citation,https://pdfs.semanticscholar.org/1209/5f9b35ee88272dd5abc2d942a4f55804b31e.pdf,DenseReg : Fully Convolutional Dense Shape Regression Inthe-Wild Rıza,0
9,United States,Helen,helen,38.7768106,-94.9442982,Amazon,company,12095f9b35ee88272dd5abc2d942a4f55804b31e,citation,https://pdfs.semanticscholar.org/1209/5f9b35ee88272dd5abc2d942a4f55804b31e.pdf,DenseReg : Fully Convolutional Dense Shape Regression Inthe-Wild Rıza,0
10,United Kingdom,Helen,helen,51.5231607,-0.1282037,University College London,edu,12095f9b35ee88272dd5abc2d942a4f55804b31e,citation,https://pdfs.semanticscholar.org/1209/5f9b35ee88272dd5abc2d942a4f55804b31e.pdf,DenseReg : Fully Convolutional Dense Shape Regression Inthe-Wild Rıza,0
11,United Kingdom,Helen,helen,51.24303255,-0.59001382,University of Surrey,edu,2d2e1d1f50645fe20c051339e9a0fca7b176422a,citation,https://arxiv.org/pdf/1803.05536.pdf,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,2018
12,United Kingdom,Helen,helen,56.1454119,-3.9205713,University of Stirling,edu,2d2e1d1f50645fe20c051339e9a0fca7b176422a,citation,https://arxiv.org/pdf/1803.05536.pdf,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,2018
13,China,Helen,helen,31.4854255,120.2739581,Jiangnan University,edu,2d2e1d1f50645fe20c051339e9a0fca7b176422a,citation,https://arxiv.org/pdf/1803.05536.pdf,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,2018
14,China,Helen,helen,30.642769,104.06751175,"Sichuan University, Chengdu",edu,2d2e1d1f50645fe20c051339e9a0fca7b176422a,citation,https://arxiv.org/pdf/1803.05536.pdf,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,2018
15,Germany,Helen,helen,48.48187645,9.18682404,Reutlingen University,edu,2d2e1d1f50645fe20c051339e9a0fca7b176422a,citation,https://arxiv.org/pdf/1803.05536.pdf,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,2018
16,United States,Helen,helen,45.57022705,-122.63709346,Concordia University,edu,266ed43dcea2e7db9f968b164ca08897539ca8dd,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_037.pdf,Beyond Principal Components: Deep Boltzmann Machines for face modeling,2015
17,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,266ed43dcea2e7db9f968b164ca08897539ca8dd,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_037.pdf,Beyond Principal Components: Deep Boltzmann Machines for face modeling,2015
18,Germany,Helen,helen,52.5098686,13.3984513,"Amazon Research, Berlin",company,ba1c0600d3bdb8ed9d439e8aa736a96214156284,citation,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2017/papers/1570347043.pdf,Complex representations for learning statistical shape priors,2017
19,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,ba1c0600d3bdb8ed9d439e8aa736a96214156284,citation,http://www.eurasip.org/Proceedings/Eusipco/Eusipco2017/papers/1570347043.pdf,Complex representations for learning statistical shape priors,2017
20,United States,Helen,helen,40.47913175,-74.43168868,Rutgers University,edu,3b470b76045745c0ef5321e0f1e0e6a4b1821339,citation,https://pdfs.semanticscholar.org/8e72/fa02f2d90ba31f31e0a7aa96a6d3e10a66fc.pdf,Consensus of Regression for Occlusion-Robust Facial Feature Localization,2014
21,United States,Helen,helen,37.3309307,-121.8940485,"Adobe Research, San Jose, CA",company,3b470b76045745c0ef5321e0f1e0e6a4b1821339,citation,https://pdfs.semanticscholar.org/8e72/fa02f2d90ba31f31e0a7aa96a6d3e10a66fc.pdf,Consensus of Regression for Occlusion-Robust Facial Feature Localization,2014
22,Spain,Helen,helen,41.40657415,2.1945341,Universitat Oberta de Catalunya,edu,cc4fc9a309f300e711e09712701b1509045a8e04,citation,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf,Continuous Supervised Descent Method for Facial Landmark Localisation,2016
23,Spain,Helen,helen,41.386608,2.16402,Universitat de Barcelona,edu,cc4fc9a309f300e711e09712701b1509045a8e04,citation,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf,Continuous Supervised Descent Method for Facial Landmark Localisation,2016
24,Thailand,Helen,helen,13.65450525,100.49423171,Robotics Institute,edu,cc4fc9a309f300e711e09712701b1509045a8e04,citation,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf,Continuous Supervised Descent Method for Facial Landmark Localisation,2016
25,United States,Helen,helen,40.44415295,-79.96243993,University of Pittsburgh,edu,cc4fc9a309f300e711e09712701b1509045a8e04,citation,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf,Continuous Supervised Descent Method for Facial Landmark Localisation,2016
26,Canada,Helen,helen,43.0095971,-81.2737336,University of Western Ontario,edu,f7ae38a073be7c9cd1b92359131b9c8374579b13,citation,http://www.digitalimaginggroup.ca/members/Shuo/07487053.pdf,Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression,2017
27,Canada,Helen,helen,42.960348,-81.226628,"London Healthcare Sciences Centre, Ontario, Canada",edu,f7ae38a073be7c9cd1b92359131b9c8374579b13,citation,http://www.digitalimaginggroup.ca/members/Shuo/07487053.pdf,Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression,2017
28,United Kingdom,Helen,helen,55.0030632,-1.57463231,Northumbria University,edu,f7ae38a073be7c9cd1b92359131b9c8374579b13,citation,http://www.digitalimaginggroup.ca/members/Shuo/07487053.pdf,Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression,2017
29,Canada,Helen,helen,43.0012953,-81.2550455,"St. Joseph's Health Care, Ontario, Canada",edu,f7ae38a073be7c9cd1b92359131b9c8374579b13,citation,http://www.digitalimaginggroup.ca/members/Shuo/07487053.pdf,Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression,2017
30,China,Helen,helen,40.0044795,116.370238,Chinese Academy of Sciences,edu,2a4153655ad1169d482e22c468d67f3bc2c49f12,citation,http://cseweb.ucsd.edu/~mkchandraker/classes/CSE291/Winter2018/Lectures/FaceAlignment.pdf,Face Alignment Across Large Poses: A 3D Solution,2016
31,United States,Helen,helen,42.718568,-84.47791571,Michigan State University,edu,2a4153655ad1169d482e22c468d67f3bc2c49f12,citation,http://cseweb.ucsd.edu/~mkchandraker/classes/CSE291/Winter2018/Lectures/FaceAlignment.pdf,Face Alignment Across Large Poses: A 3D Solution,2016
32,China,Helen,helen,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,655ad6ed99277b3bba1f2ea7e5da4709d6e6cf44,citation,https://arxiv.org/pdf/1803.06598.pdf,Facial Landmarks Detection by Self-Iterative Regression Based Landmarks-Attention Network,2018
33,United States,Helen,helen,42.3614256,-71.0812092,Microsoft Research Asia,company,655ad6ed99277b3bba1f2ea7e5da4709d6e6cf44,citation,https://arxiv.org/pdf/1803.06598.pdf,Facial Landmarks Detection by Self-Iterative Regression Based Landmarks-Attention Network,2018
34,United Kingdom,Helen,helen,53.22853665,-0.54873472,University of Lincoln,edu,232b6e2391c064d483546b9ee3aafe0ba48ca519,citation,http://doc.utwente.nl/89696/1/Pantic_Optimization_problems_for_fast_AAM_fitting.pdf,Optimization Problems for Fast AAM Fitting in-the-Wild,2013
35,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,232b6e2391c064d483546b9ee3aafe0ba48ca519,citation,http://doc.utwente.nl/89696/1/Pantic_Optimization_problems_for_fast_AAM_fitting.pdf,Optimization Problems for Fast AAM Fitting in-the-Wild,2013
36,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,75fd9acf5e5b7ed17c658cc84090c4659e5de01d,citation,http://eprints.nottingham.ac.uk/31442/1/tzimiro_CVPR15.pdf,Project-Out Cascaded Regression with an application to face alignment,2015
37,Denmark,Helen,helen,57.01590275,9.97532827,Aalborg University,edu,087002ab569e35432cdeb8e63b2c94f1abc53ea9,citation,http://openaccess.thecvf.com/content_cvpr_workshops_2015/W09/papers/Irani_Spatiotemporal_Analysis_of_2015_CVPR_paper.pdf,Spatiotemporal analysis of RGB-D-T facial images for multimodal pain level recognition,2015
38,Spain,Helen,helen,41.5008957,2.111553,"Computer Vision Center, UAB, Barcelona, Spain",edu,087002ab569e35432cdeb8e63b2c94f1abc53ea9,citation,http://openaccess.thecvf.com/content_cvpr_workshops_2015/W09/papers/Irani_Spatiotemporal_Analysis_of_2015_CVPR_paper.pdf,Spatiotemporal analysis of RGB-D-T facial images for multimodal pain level recognition,2015
39,China,Helen,helen,39.9041999,116.4073963,Key Lab of Intelligent Information Processing of Chinese Academy of Sciences,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,https://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014
40,China,Helen,helen,40.0044795,116.370238,Chinese Academy of Sciences,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,https://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014
41,China,Helen,helen,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,https://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014
42,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,https://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014
43,Israel,Helen,helen,32.77824165,34.99565673,Open University of Israel,edu,62e913431bcef5983955e9ca160b91bb19d9de42,citation,https://arxiv.org/pdf/1511.04031.pdf,Facial Landmark Detection with Tweaked Convolutional Neural Networks,2018
44,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,034b3f3bac663fb814336a69a9fd3514ca0082b9,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/alabort_cvpr2015.pdf,Unifying holistic and Parts-Based Deformable Model fitting,2015
45,China,Helen,helen,39.9808333,116.34101249,Beihang University,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018
46,United States,Helen,helen,32.7283683,-97.11201835,University of Texas at Arlington,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018
47,China,Helen,helen,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018
48,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,4068574b8678a117d9a434360e9c12fe6232dae0,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos_automatic_2014.pdf,Automatic Construction of Deformable Models In-the-Wild,2014
49,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,1d0128b9f96f4c11c034d41581f23eb4b4dd7780,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/robust_spherical_harmonics.pdf,Automatic construction Of robust spherical harmonic subspaces,2015
50,China,Helen,helen,39.9041999,116.4073963,Key Lab of Intelligent Information Processing of Chinese Academy of Sciences,edu,22e2066acfb795ac4db3f97d2ac176d6ca41836c,citation,https://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,2014
51,China,Helen,helen,40.0044795,116.370238,Chinese Academy of Sciences,edu,22e2066acfb795ac4db3f97d2ac176d6ca41836c,citation,https://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,2014
52,China,Helen,helen,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,22e2066acfb795ac4db3f97d2ac176d6ca41836c,citation,https://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,2014
53,China,Helen,helen,22.4162632,114.2109318,Chinese University of Hong Kong,edu,ac6c3b3e92ff5fbcd8f7967696c7aae134bea209,citation,https://arxiv.org/pdf/1607.05046.pdf,Deep Cascaded Bi-Network for Face Hallucination,2016
54,China,Helen,helen,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,ac6c3b3e92ff5fbcd8f7967696c7aae134bea209,citation,https://arxiv.org/pdf/1607.05046.pdf,Deep Cascaded Bi-Network for Face Hallucination,2016
55,United States,Helen,helen,37.36566745,-120.42158888,"University of California, Merced",edu,ac6c3b3e92ff5fbcd8f7967696c7aae134bea209,citation,https://arxiv.org/pdf/1607.05046.pdf,Deep Cascaded Bi-Network for Face Hallucination,2016
56,United States,Helen,helen,42.3614256,-71.0812092,Microsoft Research Asia,company,63d865c66faaba68018defee0daf201db8ca79ed,citation,https://arxiv.org/pdf/1409.5230.pdf,Deep Regression for Face Alignment,2014
57,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,35f921def890210dda4b72247849ad7ba7d35250,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhou_Exemplar-Based_Graph_Matching_2013_ICCV_paper.pdf,Exemplar-Based Graph Matching for Robust Facial Landmark Localization,2013
58,United States,Helen,helen,42.3614256,-71.0812092,Microsoft Research Asia,company,898ff1bafee2a6fb3c848ad07f6f292416b5f07d,citation,,Face Alignment via Regressing Local Binary Features,2016
59,China,Helen,helen,31.83907195,117.26420748,University of Science and Technology of China,edu,898ff1bafee2a6fb3c848ad07f6f292416b5f07d,citation,,Face Alignment via Regressing Local Binary Features,2016
60,United States,Helen,helen,47.6423318,-122.1369302,Microsoft,company,898ff1bafee2a6fb3c848ad07f6f292416b5f07d,citation,,Face Alignment via Regressing Local Binary Features,2016
61,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,71b07c537a9e188b850192131bfe31ef206a39a0,citation,https://pdfs.semanticscholar.org/71b0/7c537a9e188b850192131bfe31ef206a39a0.pdf,Faces InThe-Wild Challenge : database and results,2016
62,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,71b07c537a9e188b850192131bfe31ef206a39a0,citation,https://pdfs.semanticscholar.org/71b0/7c537a9e188b850192131bfe31ef206a39a0.pdf,Faces InThe-Wild Challenge : database and results,2016
63,Netherlands,Helen,helen,52.2380139,6.8566761,University of Twente,edu,71b07c537a9e188b850192131bfe31ef206a39a0,citation,https://pdfs.semanticscholar.org/71b0/7c537a9e188b850192131bfe31ef206a39a0.pdf,Faces InThe-Wild Challenge : database and results,2016
64,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,f095b5770f0ff13ba9670e3d480743c5e9ad1036,citation,http://doc.utwente.nl/103789/1/Pantic_Fast_Algorithms_for_Fitting_Active_Appearance_Models.pdf,Fast Algorithms for Fitting Active Appearance Models to Unconstrained Images,2016
65,Netherlands,Helen,helen,52.2380139,6.8566761,University of Twente,edu,f095b5770f0ff13ba9670e3d480743c5e9ad1036,citation,http://doc.utwente.nl/103789/1/Pantic_Fast_Algorithms_for_Fitting_Active_Appearance_Models.pdf,Fast Algorithms for Fitting Active Appearance Models to Unconstrained Images,2016
66,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,f095b5770f0ff13ba9670e3d480743c5e9ad1036,citation,http://doc.utwente.nl/103789/1/Pantic_Fast_Algorithms_for_Fitting_Active_Appearance_Models.pdf,Fast Algorithms for Fitting Active Appearance Models to Unconstrained Images,2016
67,United Kingdom,Helen,helen,53.22853665,-0.54873472,University of Lincoln,edu,624496296af19243d5f05e7505fd927db02fd0ce,citation,http://eprints.eemcs.utwente.nl/25815/01/Pantic_Gauss-Newton_Deformable_Part_Models.pdf,Gauss-Newton Deformable Part Models for Face Alignment In-the-Wild,2014
68,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,624496296af19243d5f05e7505fd927db02fd0ce,citation,http://eprints.eemcs.utwente.nl/25815/01/Pantic_Gauss-Newton_Deformable_Part_Models.pdf,Gauss-Newton Deformable Part Models for Face Alignment In-the-Wild,2014
69,United Kingdom,Helen,helen,53.22853665,-0.54873472,University of Lincoln,edu,6a4ebd91c4d380e21da0efb2dee276897f56467a,citation,http://eprints.nottingham.ac.uk/31441/1/tzimiroICIP14b.pdf,HOG active appearance models,2014
70,China,Helen,helen,40.0044795,116.370238,Chinese Academy of Sciences,edu,696236fb6f986f6d5565abb01f402d09db68e5fa,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Wei_Learning_Adaptive_Receptive_CVPR_2017_paper.pdf,Learning adaptive receptive fields for deep image parsing networks,2017
71,China,Helen,helen,32.0565957,118.77408833,Nanjing University,edu,696236fb6f986f6d5565abb01f402d09db68e5fa,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Wei_Learning_Adaptive_Receptive_CVPR_2017_paper.pdf,Learning adaptive receptive fields for deep image parsing networks,2017
72,China,Helen,helen,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,696236fb6f986f6d5565abb01f402d09db68e5fa,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Wei_Learning_Adaptive_Receptive_CVPR_2017_paper.pdf,Learning adaptive receptive fields for deep image parsing networks,2017
73,United Kingdom,Helen,helen,52.17638955,0.14308882,University of Cambridge,edu,c17a332e59f03b77921942d487b4b102b1ee73b6,citation,https://pdfs.semanticscholar.org/c17a/332e59f03b77921942d487b4b102b1ee73b6.pdf,Learning an appearance-based gaze estimator from one million synthesised images,2016
74,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,c17a332e59f03b77921942d487b4b102b1ee73b6,citation,https://pdfs.semanticscholar.org/c17a/332e59f03b77921942d487b4b102b1ee73b6.pdf,Learning an appearance-based gaze estimator from one million synthesised images,2016
75,Germany,Helen,helen,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,c17a332e59f03b77921942d487b4b102b1ee73b6,citation,https://pdfs.semanticscholar.org/c17a/332e59f03b77921942d487b4b102b1ee73b6.pdf,Learning an appearance-based gaze estimator from one million synthesised images,2016
76,United States,Helen,helen,45.55236,-122.9142988,Intel Corporation,company,9ef2b2db11ed117521424c275c3ce1b5c696b9b3,citation,https://arxiv.org/pdf/1511.04404.pdf,Robust Face Alignment Using a Mixture of Invariant Experts,2016
77,Germany,Helen,helen,48.7863462,9.2380718,Daimler AG,company,3a8846ca16df5dfb2daadc189ed40c13d2ddc0c5,citation,https://arxiv.org/pdf/1901.10143.pdf,Validation loss for landmark detection,2019
78,South Africa,Helen,helen,-33.95828745,18.45997349,University of Cape Town,edu,3bc376f29bc169279105d33f59642568de36f17f,citation,http://www.dip.ee.uct.ac.za/~nicolls/publish/sm14-visapp.pdf,Active shape models with SIFT descriptors and MARS,2014
79,United States,Helen,helen,33.9832526,-118.40417,USC Institute for Creative Technologies,edu,0a6d344112b5af7d1abbd712f83c0d70105211d0,citation,http://ict.usc.edu/pubs/Constrained%20local%20neural%20fields%20for%20robust%20facial%20landmark%20detection%20in%20the%20wild.pdf,Constrained Local Neural Fields for Robust Facial Landmark Detection in the Wild,2013
80,China,Helen,helen,23.09461185,113.28788994,Sun Yat-Sen University,edu,3be8f1f7501978287af8d7ebfac5963216698249,citation,https://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,Deep Cascaded Regression for Face Alignment,2015
81,Singapore,Helen,helen,1.2962018,103.77689944,National University of Singapore,edu,3be8f1f7501978287af8d7ebfac5963216698249,citation,https://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,Deep Cascaded Regression for Face Alignment,2015
82,China,Helen,helen,40.00229045,116.32098908,Tsinghua University,edu,329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,2017
83,China,Helen,helen,22.4162632,114.2109318,Chinese University of Hong Kong,edu,329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,2017
84,France,Helen,helen,48.8407791,2.5873259,University of Paris-Est,edu,0293721d276856f0425d4417e22381de3350ac32,citation,https://hal-upec-upem.archives-ouvertes.fr/hal-01790317/file/RK_SSD_2018.pdf,Customer Satisfaction Measuring Based on the Most Significant Facial Emotion,2018
85,Tunisia,Helen,helen,34.7361066,10.7427275,"University of Sfax, Tunisia",edu,0293721d276856f0425d4417e22381de3350ac32,citation,https://hal-upec-upem.archives-ouvertes.fr/hal-01790317/file/RK_SSD_2018.pdf,Customer Satisfaction Measuring Based on the Most Significant Facial Emotion,2018
86,United States,Helen,helen,42.4505507,-76.4783513,Cornell University,edu,ce9e1dfa7705623bb67df3a91052062a0a0ca456,citation,https://arxiv.org/pdf/1611.05507.pdf,Deep Feature Interpolation for Image Content Changes,2017
87,United States,Helen,helen,38.8997145,-77.0485992,George Washington University,edu,ce9e1dfa7705623bb67df3a91052062a0a0ca456,citation,https://arxiv.org/pdf/1611.05507.pdf,Deep Feature Interpolation for Image Content Changes,2017
88,China,Helen,helen,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,2d294bde112b892068636f3a48300b3c033d98da,citation,https://arxiv.org/pdf/1808.01558.pdf,Deep Multi-Center Learning for Face Alignment,2018
89,China,Helen,helen,31.2284923,121.40211389,East China Normal University,edu,2d294bde112b892068636f3a48300b3c033d98da,citation,https://arxiv.org/pdf/1808.01558.pdf,Deep Multi-Center Learning for Face Alignment,2018
90,China,Helen,helen,23.09461185,113.28788994,Sun Yat-Sen University,edu,30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,citation,https://arxiv.org/pdf/1510.09083.pdf,Deep Recurrent Regression for Facial Landmark Detection,2018
91,Singapore,Helen,helen,1.2962018,103.77689944,National University of Singapore,edu,30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,citation,https://arxiv.org/pdf/1510.09083.pdf,Deep Recurrent Regression for Facial Landmark Detection,2018
92,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,0209389b8369aaa2a08830ac3b2036d4901ba1f1,citation,https://arxiv.org/pdf/1612.01202.pdf,DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild,2017
93,United Kingdom,Helen,helen,51.5231607,-0.1282037,University College London,edu,0209389b8369aaa2a08830ac3b2036d4901ba1f1,citation,https://arxiv.org/pdf/1612.01202.pdf,DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild,2017
94,United States,Helen,helen,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,191d30e7e7360d565b0c1e2814b5bcbd86a11d41,citation,http://homepages.rpi.edu/~wuy9/DiscriminativeDeepFaceShape/DiscriminativeDeepFaceShape_IJCV.pdf,Discriminative Deep Face Shape Model for Facial Point Detection,2014
95,United States,Helen,helen,39.2899685,-76.62196103,University of Maryland,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,https://arxiv.org/pdf/1601.07950.pdf,Face Alignment by Local Deep Descriptor Regression,2016
96,United States,Helen,helen,40.47913175,-74.43168868,Rutgers University,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,https://arxiv.org/pdf/1601.07950.pdf,Face Alignment by Local Deep Descriptor Regression,2016
97,United States,Helen,helen,43.1576969,-77.58829158,University of Rochester,edu,beb8d7c128ccbdc6b63959a763ebc505a5313c06,citation,https://arxiv.org/pdf/1812.03252.pdf,Face Completion with Semantic Knowledge and Collaborative Adversarial Learning,2018
98,China,Helen,helen,40.0044795,116.370238,Chinese Academy of Sciences,edu,beb8d7c128ccbdc6b63959a763ebc505a5313c06,citation,https://arxiv.org/pdf/1812.03252.pdf,Face Completion with Semantic Knowledge and Collaborative Adversarial Learning,2018
99,United Kingdom,Helen,helen,51.24303255,-0.59001382,University of Surrey,edu,438e7999c937b94f0f6384dbeaa3febff6d283b6,citation,https://arxiv.org/pdf/1705.02402.pdf,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",2017
100,China,Helen,helen,31.4854255,120.2739581,Jiangnan University,edu,438e7999c937b94f0f6384dbeaa3febff6d283b6,citation,https://arxiv.org/pdf/1705.02402.pdf,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",2017
101,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,84e6669b47670f9f4f49c0085311dce0e178b685,citation,https://arxiv.org/pdf/1502.00852.pdf,Face frontalization for Alignment and Recognition,2015
102,Netherlands,Helen,helen,52.2380139,6.8566761,University of Twente,edu,84e6669b47670f9f4f49c0085311dce0e178b685,citation,https://arxiv.org/pdf/1502.00852.pdf,Face frontalization for Alignment and Recognition,2015
103,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,2f7aa942313b1eb12ebfab791af71d0a3830b24c,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos2015feature.pdf,Feature-Based Lucas–Kanade and Active Appearance Models,2015
104,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,2f7aa942313b1eb12ebfab791af71d0a3830b24c,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos2015feature.pdf,Feature-Based Lucas–Kanade and Active Appearance Models,2015
105,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,1c1a98df3d0d5e2034ea723994bdc85af45934db,citation,http://www.cs.nott.ac.uk/~pszmv/Documents/ICCV-300w_cameraready.pdf,Guided Unsupervised Learning of Mode Specific Models for Facial Point Detection in the Wild,2013
106,China,Helen,helen,22.4162632,114.2109318,Chinese University of Hong Kong,edu,f070d739fb812d38571ec77490ccd8777e95ce7a,citation,https://zhzhanp.github.io/papers/PR2015.pdf,Hierarchical facial landmark localization via cascaded random binary patterns,2015
107,China,Helen,helen,22.53521465,113.9315911,Shenzhen University,edu,f070d739fb812d38571ec77490ccd8777e95ce7a,citation,https://zhzhanp.github.io/papers/PR2015.pdf,Hierarchical facial landmark localization via cascaded random binary patterns,2015
108,United States,Helen,helen,34.0224149,-118.28634407,University of Southern California,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016
109,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016
110,Singapore,Helen,helen,1.2962018,103.77689944,National University of Singapore,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,https://arxiv.org/pdf/1711.06055.pdf,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017
111,China,Helen,helen,39.9586652,116.30971281,Beijing Institute of Technology,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,https://arxiv.org/pdf/1711.06055.pdf,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017
112,China,Helen,helen,23.0490047,113.3971571,South China University of China,edu,7d7be6172fc2884e1da22d1e96d5899a29831ad2,citation,https://arxiv.org/pdf/1703.01605.pdf,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,2017
113,China,Helen,helen,22.46935655,114.19474194,Education University of Hong Kong,edu,7d7be6172fc2884e1da22d1e96d5899a29831ad2,citation,https://arxiv.org/pdf/1703.01605.pdf,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,2017
114,United States,Helen,helen,34.0224149,-118.28634407,University of Southern California,edu,d28d32af7ef9889ef9cb877345a90ea85e70f7f1,citation,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Kim_Local.pdf,Local-Global Landmark Confidences for Face Recognition,2017
115,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,d28d32af7ef9889ef9cb877345a90ea85e70f7f1,citation,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Kim_Local.pdf,Local-Global Landmark Confidences for Face Recognition,2017
116,China,Helen,helen,40.0044795,116.370238,Chinese Academy of Sciences,edu,303a7099c01530fa0beb197eb1305b574168b653,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Occlusion-Free_Face_Alignment_CVPR_2016_paper.pdf,Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders,2016
117,China,Helen,helen,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,303a7099c01530fa0beb197eb1305b574168b653,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Occlusion-Free_Face_Alignment_CVPR_2016_paper.pdf,Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders,2016
118,Sweden,Helen,helen,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,1824b1ccace464ba275ccc86619feaa89018c0ad,citation,http://www.csc.kth.se/~vahidk/face/KazemiCVPR14.pdf,One millisecond face alignment with an ensemble of regression trees,2014
119,United States,Helen,helen,35.3103441,-80.73261617,University of North Carolina at Charlotte,edu,89002a64e96a82486220b1d5c3f060654b24ef2a,citation,http://research.rutgers.edu/~shaoting/paper/ICCV15_face.pdf,PIEFA: Personalized Incremental and Ensemble Face Alignment,2015
120,United States,Helen,helen,45.57022705,-122.63709346,Concordia University,edu,6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d,citation,https://arxiv.org/pdf/1607.00659.pdf,Robust Deep Appearance Models,2016
121,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d,citation,https://arxiv.org/pdf/1607.00659.pdf,Robust Deep Appearance Models,2016
122,China,Helen,helen,40.0044795,116.370238,Chinese Academy of Sciences,edu,7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/He_Robust_FEC-CNN_A_CVPR_2017_paper.pdf,Robust FEC-CNN: A High Accuracy Facial Landmark Detection System,2017
123,China,Helen,helen,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/He_Robust_FEC-CNN_A_CVPR_2017_paper.pdf,Robust FEC-CNN: A High Accuracy Facial Landmark Detection System,2017
124,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,788a7b59ea72e23ef4f86dc9abb4450efefeca41,citation,http://eprints.eemcs.utwente.nl/26840/01/Pantic_Robust_Statistical_Face_Frontalization.pdf,Robust Statistical Face Frontalization,2015
125,Netherlands,Helen,helen,52.2380139,6.8566761,University of Twente,edu,788a7b59ea72e23ef4f86dc9abb4450efefeca41,citation,http://eprints.eemcs.utwente.nl/26840/01/Pantic_Robust_Statistical_Face_Frontalization.pdf,Robust Statistical Face Frontalization,2015
126,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,7cdf3bc1de6c7948763c0c2dfa4384dcbd3677a0,citation,http://eprints.eemcs.utwente.nl/27129/01/sagonas2016robust.pdf,Robust Statistical Frontalization of Human and Animal Faces,2016
127,Netherlands,Helen,helen,52.2380139,6.8566761,University of Twente,edu,7cdf3bc1de6c7948763c0c2dfa4384dcbd3677a0,citation,http://eprints.eemcs.utwente.nl/27129/01/sagonas2016robust.pdf,Robust Statistical Frontalization of Human and Animal Faces,2016
128,United States,Helen,helen,40.47913175,-74.43168868,Rutgers University,edu,04ff69aa20da4eeccdabbe127e3641b8e6502ec0,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Sequential_Face_Alignment_CVPR_2016_paper.pdf,Sequential Face Alignment via Person-Specific Modeling in the Wild,2016
129,United States,Helen,helen,32.7283683,-97.11201835,University of Texas at Arlington,edu,04ff69aa20da4eeccdabbe127e3641b8e6502ec0,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Sequential_Face_Alignment_CVPR_2016_paper.pdf,Sequential Face Alignment via Person-Specific Modeling in the Wild,2016
130,United States,Helen,helen,40.47913175,-74.43168868,Rutgers University,edu,c8ca6a2dc41516c16ea0747e9b3b7b1db788dbdd,citation,https://arxiv.org/pdf/1609.02825.pdf,Track Facial Points in Unconstrained Videos,2016
131,United States,Helen,helen,32.7298718,-97.1140116,The University of Texas at Arlington,edu,c8ca6a2dc41516c16ea0747e9b3b7b1db788dbdd,citation,https://arxiv.org/pdf/1609.02825.pdf,Track Facial Points in Unconstrained Videos,2016
132,China,Helen,helen,22.4162632,114.2109318,Chinese University of Hong Kong,edu,433a6d6d2a3ed8a6502982dccc992f91d665b9b3,citation,https://arxiv.org/pdf/1409.0602.pdf,Transferring Landmark Annotations for Cross-Dataset Face Alignment.,2014
133,China,Helen,helen,40.00229045,116.32098908,Tsinghua University,edu,433a6d6d2a3ed8a6502982dccc992f91d665b9b3,citation,https://arxiv.org/pdf/1409.0602.pdf,Transferring Landmark Annotations for Cross-Dataset Face Alignment.,2014
134,Canada,Helen,helen,49.8091536,-97.13304179,University of Manitoba,edu,3bf249f716a384065443abc6172f4bdef88738d9,citation,https://arxiv.org/pdf/1812.01063.pdf,A Hybrid Instance-based Transfer Learning Method,2018
135,United States,Helen,helen,40.47913175,-74.43168868,Rutgers University,edu,afdf9a3464c3b015f040982750f6b41c048706f5,citation,https://arxiv.org/pdf/1608.05477.pdf,A Recurrent Encoder-Decoder Network for Sequential Face Alignment,2016
136,South Korea,Helen,helen,37.26728,126.9841151,Seoul National University,edu,b4362cd87ad219790800127ddd366cc465606a78,citation,https://pdfs.semanticscholar.org/b436/2cd87ad219790800127ddd366cc465606a78.pdf,A Smartphone-Based Automatic Diagnosis System for Facial Nerve Palsy,2015
137,Canada,Helen,helen,43.66333345,-79.39769975,University of Toronto,edu,3a54b23cdbd159bb32c39c3adcba8229e3237e56,citation,https://arxiv.org/pdf/1805.12302.pdf,Adversarial Attacks on Face Detectors Using Neural Net Based Constrained Optimization,2018
138,United States,Helen,helen,32.8800604,-117.2340135,University of California San Diego,edu,3ac0aefb379dedae4a6054e649e98698b3e5fb82,citation,https://arxiv.org/pdf/1802.02137.pdf,An Occluded Stacked Hourglass Approach to Facial Landmark Localization and Occlusion Estimation,2017
139,United Kingdom,Helen,helen,53.8066815,-1.5550328,The University of Leeds,edu,c5ea084531212284ce3f1ca86a6209f0001de9d1,citation,https://pdfs.semanticscholar.org/c5ea/084531212284ce3f1ca86a6209f0001de9d1.pdf,Audio-visual speech processing for multimedia localisation,2016
140,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,06c2dfe1568266ad99368fc75edf79585e29095f,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/joan_cvpr2014.pdf,Bayesian Active Appearance Models,2014
141,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,ccf16bcf458e4d7a37643b8364594656287f5bfc,citation,https://pdfs.semanticscholar.org/ccf1/6bcf458e4d7a37643b8364594656287f5bfc.pdf,Cascade for Landmark Guided Semantic Part Segmentation,2016
142,China,Helen,helen,31.4854255,120.2739581,Jiangnan University,edu,60824ee635777b4ee30fcc2485ef1e103b8e7af9,citation,http://epubs.surrey.ac.uk/808177/1/Feng-TIP-2015.pdf,Cascaded Collaborative Regression for Robust Facial Landmark Detection Trained Using a Mixture of Synthetic and Real Images With Dynamic Weighting,2015
143,United Kingdom,Helen,helen,51.2421839,-0.5905421,University of Surrey Guildford,edu,60824ee635777b4ee30fcc2485ef1e103b8e7af9,citation,http://epubs.surrey.ac.uk/808177/1/Feng-TIP-2015.pdf,Cascaded Collaborative Regression for Robust Facial Landmark Detection Trained Using a Mixture of Synthetic and Real Images With Dynamic Weighting,2015
144,China,Helen,helen,22.304572,114.17976285,Hong Kong Polytechnic University,edu,4836b084a583d2e794eb6a94982ea30d7990f663,citation,https://arxiv.org/pdf/1611.06642.pdf,Cascaded Face Alignment via Intimacy Definition Feature,2017
145,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,72a1852c78b5e95a57efa21c92bdc54219975d8f,citation,http://eprints.nottingham.ac.uk/31303/1/prl_blockwise_SDM.pdf,Cascaded regression with sparsified feature covariance matrix for facial landmark detection,2016
146,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,4140498e96a5ff3ba816d13daf148fffb9a2be3f,citation,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Li_Constrained.pdf,Constrained Ensemble Initialization for Facial Landmark Tracking in Video,2017
147,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,963d0d40de8780161b70d28d2b125b5222e75596,citation,https://arxiv.org/pdf/1611.08657.pdf,Convolutional Experts Constrained Local Model for Facial Landmark Detection,2017
148,United States,Helen,helen,32.87935255,-117.23110049,"University of California, San Diego",edu,ee418372b0038bd3b8ae82bd1518d5c01a33a7ec,citation,https://pdfs.semanticscholar.org/ee41/8372b0038bd3b8ae82bd1518d5c01a33a7ec.pdf,CSE 255 Winter 2015 Assignment 1 : Eye Detection using Histogram of Oriented Gradients and Adaboost Classifier,2015
149,Poland,Helen,helen,52.22165395,21.00735776,Warsaw University of Technology,edu,f27b8b8f2059248f77258cf8595e9434cf0b0228,citation,https://arxiv.org/pdf/1706.01789.pdf,Deep Alignment Network: A Convolutional Neural Network for Robust Face Alignment,2017
150,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,a0b1990dd2b4cd87e4fd60912cc1552c34792770,citation,https://pdfs.semanticscholar.org/a0b1/990dd2b4cd87e4fd60912cc1552c34792770.pdf,Deep Constrained Local Models for Facial Landmark Detection,2016
151,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,38cbb500823057613494bacd0078aa0e57b30af8,citation,https://arxiv.org/pdf/1704.08772.pdf,Deep Face Deblurring,2017
152,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,9b8f7a6850d991586b7186f0bb7e424924a9fd74,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/disentangling-modes-variation.pdf,Disentangling the Modes of Variation in Unlabelled Data,2018
153,China,Helen,helen,30.642769,104.06751175,"Sichuan University, Chengdu",edu,b29b42f7ab8d25d244bfc1413a8d608cbdc51855,citation,https://arxiv.org/pdf/1702.02719.pdf,Effective face landmark localization via single deep network,2017
154,China,Helen,helen,22.304572,114.17976285,Hong Kong Polytechnic University,edu,4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7,citation,https://arxiv.org/pdf/1611.09956.pdf,Efficient likelihood Bayesian constrained local model,2017
155,China,Helen,helen,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,5c820e47981d21c9dddde8d2f8020146e600368f,citation,https://pdfs.semanticscholar.org/5c82/0e47981d21c9dddde8d2f8020146e600368f.pdf,Extended Supervised Descent Method for Robust Face Alignment,2014
156,China,Helen,helen,32.0565957,118.77408833,Nanjing University,edu,f633d6dc02b2e55eb24b89f2b8c6df94a2de86dd,citation,http://parnec.nuaa.edu.cn/pubs/xiaoyang%20tan/journal/2016/JXPR-2016.pdf,Face alignment by robust discriminative Hough voting,2016
157,Romania,Helen,helen,46.7723581,23.5852075,Technical University,edu,f0ae807627f81acb63eb5837c75a1e895a92c376,citation,https://pdfs.semanticscholar.org/f0ae/807627f81acb63eb5837c75a1e895a92c376.pdf,Facial Landmark Detection using Ensemble of Cascaded Regressions,2016
158,Czech Republic,Helen,helen,50.0764296,14.41802312,Czech Technical University,edu,37c8514df89337f34421dc27b86d0eb45b660a5e,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Uricar_Facial_Landmark_Tracking_ICCV_2015_paper.pdf,Facial Landmark Tracking by Tree-Based Deformable Part Model Based Detector,2015
159,China,Helen,helen,32.0565957,118.77408833,Nanjing University,edu,5b0bf1063b694e4b1575bb428edb4f3451d9bf04,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Yang_Facial_Shape_Tracking_ICCV_2015_paper.pdf,Facial Shape Tracking via Spatio-Temporal Cascade Shape Regression,2015
160,Switzerland,Helen,helen,47.376313,8.5476699,ETH Zurich,edu,a66d89357ada66d98d242c124e1e8d96ac9b37a0,citation,https://arxiv.org/pdf/1608.06451.pdf,Failure Detection for Facial Landmark Detectors,2016
161,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53,citation,https://arxiv.org/pdf/1707.05653.pdf,Faster than Real-Time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses,2017
162,United Kingdom,Helen,helen,51.24303255,-0.59001382,University of Surrey,edu,70a69569ba61f3585cd90c70ca5832e838fa1584,citation,https://pdfs.semanticscholar.org/70a6/9569ba61f3585cd90c70ca5832e838fa1584.pdf,Friendly Faces: Weakly Supervised Character Identification,2014
163,United States,Helen,helen,37.36566745,-120.42158888,"University of California, Merced",edu,f0a4a3fb6997334511d7b8fc090f9ce894679faf,citation,https://arxiv.org/pdf/1704.05838.pdf,Generative Face Completion,2017
164,United States,Helen,helen,28.0599999,-82.41383619,University of South Florida,edu,ba21fd28003994480f713b0a1276160fea2e89b5,citation,https://pdfs.semanticscholar.org/ba21/fd28003994480f713b0a1276160fea2e89b5.pdf,Identification of Individuals from Ears in Real World Conditions,2018
165,United States,Helen,helen,28.59899755,-81.19712501,University of Central Florida,edu,a40edf6eb979d1ddfe5894fac7f2cf199519669f,citation,https://arxiv.org/pdf/1704.08740.pdf,Improving Facial Attribute Prediction Using Semantic Segmentation,2017
166,Germany,Helen,helen,48.263011,11.666857,Technical University of Munich,edu,e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5,citation,https://pdfs.semanticscholar.org/e617/8de1ef15a6a973aad2791ce5fbabc2cb8ae5.pdf,Improving Facial Landmark Detection via a Super-Resolution Inception Network,2017
167,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,9ca0626366e136dac6bfd628cec158e26ed959c7,citation,https://arxiv.org/pdf/1811.02194.pdf,In-the-wild Facial Expression Recognition in Extreme Poses,2017
168,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,500b92578e4deff98ce20e6017124e6d2053b451,citation,http://eprints.eemcs.utwente.nl/25818/01/Pantic_Incremental_Face_Alignment_in_the_Wild.pdf,Incremental Face Alignment in the Wild,2014
169,Netherlands,Helen,helen,52.2380139,6.8566761,University of Twente,edu,500b92578e4deff98ce20e6017124e6d2053b451,citation,http://eprints.eemcs.utwente.nl/25818/01/Pantic_Incremental_Face_Alignment_in_the_Wild.pdf,Incremental Face Alignment in the Wild,2014
170,China,Helen,helen,40.00229045,116.32098908,Tsinghua University,edu,8dd162c9419d29564e9777dd523382a20c683d89,citation,https://arxiv.org/pdf/1806.02479.pdf,Interlinked Convolutional Neural Networks for Face Parsing,2015
171,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,2c14c3bb46275da5706c466f9f51f4424ffda914,citation,http://braismartinez.com/media/documents/2015ivc_-_l21-based_regression_and_prediction_accumulation_across_views_for_robust_facial_landmark_detection.pdf,"L2, 1-based regression and prediction accumulation across views for robust facial landmark detection",2016
172,China,Helen,helen,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,c00f402b9cfc3f8dd2c74d6b3552acbd1f358301,citation,https://arxiv.org/pdf/1608.00207.pdf,Learning deep representation from coarse to fine for face alignment,2016
173,China,Helen,helen,31.83907195,117.26420748,University of Science and Technology of China,edu,b5f79df712ad535d88ae784a617a30c02e0551ca,citation,http://staff.ustc.edu.cn/~juyong/Papers/FaceAlignment-2015.pdf,Locating Facial Landmarks Using Probabilistic Random Forest,2015
174,United Kingdom,Helen,helen,52.3793131,-1.5604252,University of Warwick,edu,0bc53b338c52fc635687b7a6c1e7c2b7191f42e5,citation,https://pdfs.semanticscholar.org/a32a/8d6d4c3b4d69544763be48ffa7cb0d7f2f23.pdf,Loglet SIFT for Part Description in Deformable Part Models: Application to Face Alignment,2016
175,United Kingdom,Helen,helen,53.4717306,-2.2399239,Manchester Metropolitan University,edu,6fd4048bfe3123e94c2648e53a56bc6bf8ff4cdd,citation,https://pdfs.semanticscholar.org/6fd4/048bfe3123e94c2648e53a56bc6bf8ff4cdd.pdf,Micro-facial movement detection using spatio-temporal features,2016
176,United Kingdom,Helen,helen,51.5247272,-0.03931035,Queen Mary University of London,edu,0f81b0fa8df5bf3fcfa10f20120540342a0c92e5,citation,https://arxiv.org/pdf/1501.05152.pdf,"Mirror, mirror on the wall, tell me, is the error small?",2015
177,South Africa,Helen,helen,-33.95828745,18.45997349,University of Cape Town,edu,36e8ef2e5d52a78dddf0002e03918b101dcdb326,citation,http://www.milbo.org/stasm-files/multiview-active-shape-models-with-sift-for-300w.pdf,Multiview Active Shape Models with SIFT Descriptors for the 300-W Face Landmark Challenge,2013
178,United States,Helen,helen,40.51865195,-74.44099801,State University of New Jersey,edu,bbc5f4052674278c96abe7ff9dc2d75071b6e3f3,citation,https://pdfs.semanticscholar.org/287b/7baff99d6995fd5852002488eb44659be6c1.pdf,Nonlinear Hierarchical Part-Based Regression for Unconstrained Face Alignment,2016
179,United States,Helen,helen,33.6404952,-117.8442962,University of California at Irvine,edu,bd13f50b8997d0733169ceba39b6eb1bda3eb1aa,citation,https://arxiv.org/pdf/1506.08347.pdf,Occlusion Coherence: Detecting and Localizing Occluded Faces,2015
180,United States,Helen,helen,33.6404952,-117.8442962,University of California Irvine,edu,65126e0b1161fc8212643b8ff39c1d71d262fbc1,citation,http://vision.ics.uci.edu/papers/GhiasiF_CVPR_2014/GhiasiF_CVPR_2014.pdf,Occlusion Coherence: Localizing Occluded Faces with a Hierarchical Deformable Part Model,2014
181,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,4a8480d58c30dc484bda08969e754cd13a64faa1,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/paper_offline.pdf,Offline Deformable Face Tracking in Arbitrary Videos,2015
182,Germany,Helen,helen,52.14005065,11.64471248,Otto von Guericke University,edu,7d1688ce0b48096e05a66ead80e9270260cb8082,citation,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w44/Saxen_Real_vs._Fake_ICCV_2017_paper.pdf,Real vs. Fake Emotion Challenge: Learning to Rank Authenticity from Facial Activity Descriptors,2017
183,United Kingdom,Helen,helen,51.24303255,-0.59001382,University of Surrey,edu,3c6cac7ecf546556d7c6050f7b693a99cc8a57b3,citation,https://pdfs.semanticscholar.org/3c6c/ac7ecf546556d7c6050f7b693a99cc8a57b3.pdf,Robust facial landmark detection in the wild,2016
184,Germany,Helen,helen,53.8338371,10.7035939,Institute of Systems and Robotics,edu,4a04d4176f231683fd68ccf0c76fcc0c44d05281,citation,http://home.isr.uc.pt/~pedromartins/Publications/pmartins_icip2018.pdf,Simultaneous Cascaded Regression,2018
185,United States,Helen,helen,34.0224149,-118.28634407,University of Southern California,edu,11fc332bdcc843aad7475bb4566e73a957dffda5,citation,https://arxiv.org/pdf/1805.03356.pdf,SPG-Net: Segmentation Prediction and Guidance Network for Image Inpainting,2018
186,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,d140c5add2cddd4a572f07358d666fe00e8f4fe1,citation,https://pdfs.semanticscholar.org/d140/c5add2cddd4a572f07358d666fe00e8f4fe1.pdf,Statistically Learned Deformable Eye Models,2014
187,Australia,Helen,helen,-33.8809651,151.20107299,University of Technology Sydney,edu,77875d6e4d8c7ed3baeb259fd5696e921f59d7ad,citation,https://arxiv.org/pdf/1803.04108.pdf,Style Aggregated Network for Facial Landmark Detection,2018
188,Germany,Helen,helen,50.7791703,6.06728733,RWTH Aachen University,edu,d32b155138dafd0a9099980eceec6081ab51b861,citation,https://arxiv.org/pdf/1902.03459.pdf,Super-realtime facial landmark detection and shape fitting by deep regression of shape model parameters,2019
189,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,59d8fa6fd91cdb72cd0fa74c04016d79ef5a752b,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Zafeiriou_The_Menpo_Facial_CVPR_2017_paper.pdf,The Menpo Facial Landmark Localisation Challenge: A Step Towards the Solution,2017
190,Sweden,Helen,helen,55.7039571,13.1902011,Lund University,edu,995d55fdf5b6fe7fb630c93a424700d4bc566104,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Nilsson_The_One_Triangle_ICCV_2015_paper.pdf,The One Triangle Three Parallelograms Sampling Strategy and Its Application in Shape Regression,2015
191,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,671bfefb22d2044ab3e4402703bb88a10a7da78a,citation,https://arxiv.org/pdf/1811.03492.pdf,Triple consistency loss for pairing distributions in GAN-based face synthesis.,2018
192,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,5c124b57699be19cd4eb4e1da285b4a8c84fc80d,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Zhao_Unified_Face_Analysis_2014_CVPR_paper.pdf,Unified Face Analysis by Iterative Multi-output Random Forests,2014
193,France,Helen,helen,49.3849757,1.0683257,"INSA Rouen, France",edu,891b10c4b3b92ca30c9b93170ec9abd71f6099c4,citation,https://pdfs.semanticscholar.org/891b/10c4b3b92ca30c9b93170ec9abd71f6099c4.pdf,2 New Statement for Structured Output Regression Problems,2015
194,France,Helen,helen,49.4583047,1.0688892,Rouen University,edu,891b10c4b3b92ca30c9b93170ec9abd71f6099c4,citation,https://pdfs.semanticscholar.org/891b/10c4b3b92ca30c9b93170ec9abd71f6099c4.pdf,2 New Statement for Structured Output Regression Problems,2015
195,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,e4754afaa15b1b53e70743880484b8d0736990ff,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf,300 Faces In-The-Wild Challenge: database and results,2016
196,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,e4754afaa15b1b53e70743880484b8d0736990ff,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf,300 Faces In-The-Wild Challenge: database and results,2016
197,Netherlands,Helen,helen,52.2380139,6.8566761,University of Twente,edu,e4754afaa15b1b53e70743880484b8d0736990ff,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf,300 Faces In-The-Wild Challenge: database and results,2016
198,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,303065c44cf847849d04da16b8b1d9a120cef73a,citation,https://arxiv.org/pdf/1701.05360.pdf,"3D Face Morphable Models ""In-the-Wild""",2017
199,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,2e3d081c8f0e10f138314c4d2c11064a981c1327,citation,https://arxiv.org/pdf/1603.06015.pdf,A Comprehensive Performance Evaluation of Deformable Face Tracking “In-the-Wild”,2017
200,Italy,Helen,helen,40.3515155,18.1750161,"National Research Council of Italy, Institute of Applied Sciences and Intelligent Systems, Lecce, Italy",edu,6e38011e38a1c893b90a48e8f8eae0e22d2008e8,citation,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w22/Del_Coco_A_Computer_Vision_ICCV_2017_paper.pdf,A Computer Vision Based Approach for Understanding Emotional Involvements in Children with Autism Spectrum Disorders,2017
201,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,131e395c94999c55c53afead65d81be61cd349a4,citation,https://arxiv.org/pdf/1612.02203.pdf,A Functional Regression Approach to Facial Landmark Tracking,2018
202,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,131e395c94999c55c53afead65d81be61cd349a4,citation,https://arxiv.org/pdf/1612.02203.pdf,A Functional Regression Approach to Facial Landmark Tracking,2018
203,France,Helen,helen,49.4583047,1.0688892,Normandie University,edu,2df4d05119fe3fbf1f8112b3ad901c33728b498a,citation,https://pdfs.semanticscholar.org/2df4/d05119fe3fbf1f8112b3ad901c33728b498a.pdf,A regularization scheme for structured output problems : an application to facial landmark detection,2016
204,United States,Helen,helen,40.00471095,-83.02859368,Ohio State University,edu,9993f1a7cfb5b0078f339b9a6bfa341da76a3168,citation,https://arxiv.org/pdf/1609.09058.pdf,"A Simple, Fast and Highly-Accurate Algorithm to Recover 3D Shape from 2D Landmarks on a Single Image",2018
205,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,5f5906168235613c81ad2129e2431a0e5ef2b6e4,citation,https://arxiv.org/pdf/1601.00199.pdf,A Unified Framework for Compositional Fitting of Active Appearance Models,2016
206,France,Helen,helen,49.4583047,1.0688892,Rouen University,edu,0b0958493e43ca9c131315bcfb9a171d52ecbb8a,citation,https://pdfs.semanticscholar.org/0b09/58493e43ca9c131315bcfb9a171d52ecbb8a.pdf,A Unified Neural Based Model for Structured Output Problems,2015
207,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,b730908bc1f80b711c031f3ea459e4de09a3d324,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/tifs_aoms.pdf,Active Orientation Models for Face Alignment In-the-Wild,2014
208,United Kingdom,Helen,helen,53.22853665,-0.54873472,University of Lincoln,edu,b730908bc1f80b711c031f3ea459e4de09a3d324,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/tifs_aoms.pdf,Active Orientation Models for Face Alignment In-the-Wild,2014
209,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,293ade202109c7f23637589a637bdaed06dc37c9,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos2016adaptive.pdf,Adaptive cascaded regression,2016
210,Finland,Helen,helen,65.0592157,25.46632601,University of Oulu,edu,293ade202109c7f23637589a637bdaed06dc37c9,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/antonakos2016adaptive.pdf,Adaptive cascaded regression,2016
211,Australia,Helen,helen,-34.920603,138.6062277,Adelaide University,edu,45e7ddd5248977ba8ec61be111db912a4387d62f,citation,https://arxiv.org/pdf/1711.00253.pdf,Adversarial Learning of Structure-Aware Fully Convolutional Networks for Landmark Localization,2017
212,China,Helen,helen,32.0565957,118.77408833,Nanjing University,edu,45e7ddd5248977ba8ec61be111db912a4387d62f,citation,https://arxiv.org/pdf/1711.00253.pdf,Adversarial Learning of Structure-Aware Fully Convolutional Networks for Landmark Localization,2017
213,China,Helen,helen,32.035225,118.855317,Nanjing University of Science & Technology,edu,45e7ddd5248977ba8ec61be111db912a4387d62f,citation,https://arxiv.org/pdf/1711.00253.pdf,Adversarial Learning of Structure-Aware Fully Convolutional Networks for Landmark Localization,2017
214,United States,Helen,helen,38.99203005,-76.9461029,University of Maryland College Park,edu,3504907a2e3c81d78e9dfe71c93ac145b1318f9c,citation,https://arxiv.org/pdf/1605.02686.pdf,An End-to-End System for Unconstrained Face Verification with Deep Convolutional Neural Networks,2015
215,United States,Helen,helen,39.738444,-84.17918747,University of Dayton,edu,1f9ae272bb4151817866511bd970bffb22981a49,citation,https://arxiv.org/pdf/1709.03170.pdf,An Iterative Regression Approach for Face Pose Estimation from RGB Images,2017
216,China,Helen,helen,40.0044795,116.370238,Chinese Academy of Sciences,edu,86c053c162c08bc3fe093cc10398b9e64367a100,citation,https://pdfs.semanticscholar.org/86c0/53c162c08bc3fe093cc10398b9e64367a100.pdf,Cascade of forests for face alignment,2015
217,United Kingdom,Helen,helen,51.5247272,-0.03931035,Queen Mary University of London,edu,86c053c162c08bc3fe093cc10398b9e64367a100,citation,https://pdfs.semanticscholar.org/86c0/53c162c08bc3fe093cc10398b9e64367a100.pdf,Cascade of forests for face alignment,2015
218,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,056ba488898a1a1b32daec7a45e0d550e0c51ae4,citation,https://arxiv.org/pdf/1608.01137.pdf,Cascaded Continuous Regression for Real-Time Incremental Face Tracking,2016
219,United States,Helen,helen,43.07982815,-89.43066425,University of Wisconsin Madison,edu,2e091b311ac48c18aaedbb5117e94213f1dbb529,citation,http://pages.cs.wisc.edu/~lizhang/projects/collab-face-landmarks/SmithECCV2014.pdf,Collaborative Facial Landmark Localization for Transferring Annotations Across Datasets,2014
220,China,Helen,helen,40.0044795,116.370238,Chinese Academy of Sciences,edu,faead8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b,citation,https://arxiv.org/pdf/1611.10152.pdf,Combining Data-Driven and Model-Driven Methods for Robust Facial Landmark Detection,2018
221,Canada,Helen,helen,45.3290959,-75.6619858,"National Research Council, Italy",edu,08ecc281cdf954e405524287ee5920e7c4fb597e,citation,https://pdfs.semanticscholar.org/08ec/c281cdf954e405524287ee5920e7c4fb597e.pdf,Computational Assessment of Facial Expression Production in ASD Children,2018
222,United Kingdom,Helen,helen,51.5247272,-0.03931035,Queen Mary University of London,edu,dee406a7aaa0f4c9d64b7550e633d81bc66ff451,citation,https://arxiv.org/pdf/1710.01453.pdf,Content-Adaptive Sketch Portrait Generation by Decompositional Representation Learning,2017
223,China,Helen,helen,23.09461185,113.28788994,Sun Yat-Sen University,edu,dee406a7aaa0f4c9d64b7550e633d81bc66ff451,citation,https://arxiv.org/pdf/1710.01453.pdf,Content-Adaptive Sketch Portrait Generation by Decompositional Representation Learning,2017
224,United Kingdom,Helen,helen,52.17638955,0.14308882,University of Cambridge,edu,029b53f32079063047097fa59cfc788b2b550c4b,citation,https://pdfs.semanticscholar.org/f4e3/c42df13aeed9196647d4e3fe0f84fa725252.pdf,Continuous Conditional Neural Fields for Structured Regression,2014
225,United States,Helen,helen,34.0224149,-118.28634407,University of Southern California,edu,029b53f32079063047097fa59cfc788b2b550c4b,citation,https://pdfs.semanticscholar.org/f4e3/c42df13aeed9196647d4e3fe0f84fa725252.pdf,Continuous Conditional Neural Fields for Structured Regression,2014
226,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,88e2efab01e883e037a416c63a03075d66625c26,citation,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w36/Zadeh_Convolutional_Experts_Constrained_ICCV_2017_paper.pdf,Convolutional Experts Constrained Local Model for 3D Facial Landmark Detection,2017
227,Sweden,Helen,helen,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,656a59954de3c9fcf82ffcef926af6ade2f3fdb5,citation,https://pdfs.semanticscholar.org/656a/59954de3c9fcf82ffcef926af6ade2f3fdb5.pdf,Convolutional Network Representation for Visual Recognition,2017
228,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,7360a2adcd6e3fe744b7d7aec5c08ee31094dfd4,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/deep-deformable-convolutional.pdf,Deep and Deformable: Convolutional Mixtures of Deformable Part-Based Models,2018
229,Finland,Helen,helen,65.0592157,25.46632601,University of Oulu,edu,7360a2adcd6e3fe744b7d7aec5c08ee31094dfd4,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/deep-deformable-convolutional.pdf,Deep and Deformable: Convolutional Mixtures of Deformable Part-Based Models,2018
230,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,5239001571bc64de3e61be0be8985860f08d7e7e,citation,https://arxiv.org/pdf/1607.06871.pdf,Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling,2016
231,United States,Helen,helen,45.57022705,-122.63709346,Concordia University,edu,5239001571bc64de3e61be0be8985860f08d7e7e,citation,https://arxiv.org/pdf/1607.06871.pdf,Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling,2016
232,United States,Helen,helen,37.3239177,-122.0129693,"NEC Labs, Cupertino, CA",company,61f04606528ecf4a42b49e8ac2add2e9f92c0def,citation,https://arxiv.org/pdf/1605.01014.pdf,Deep Deformation Network for Object Landmark Localization,2016
233,France,Helen,helen,49.4583047,1.0688892,Normandie University,edu,9ca7899338129f4ba6744f801e722d53a44e4622,citation,https://arxiv.org/pdf/1504.07550.pdf,Deep neural networks regularization for structured output prediction,2018
234,China,Helen,helen,39.9808333,116.34101249,Beihang University,edu,5a7e62fdea39a4372e25cbbadc01d9b2204af95a,citation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Miao_Direct_Shape_Regression_CVPR_2018_paper.pdf,Direct Shape Regression Networks for End-to-End Face Alignment,2018
235,United States,Helen,helen,32.7283683,-97.11201835,University of Texas at Arlington,edu,5a7e62fdea39a4372e25cbbadc01d9b2204af95a,citation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Miao_Direct_Shape_Regression_CVPR_2018_paper.pdf,Direct Shape Regression Networks for End-to-End Face Alignment,2018
236,China,Helen,helen,34.1235825,108.83546,Xidian University,edu,5a7e62fdea39a4372e25cbbadc01d9b2204af95a,citation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Miao_Direct_Shape_Regression_CVPR_2018_paper.pdf,Direct Shape Regression Networks for End-to-End Face Alignment,2018
237,United States,Helen,helen,43.07982815,-89.43066425,University of Wisconsin Madison,edu,0eac652139f7ab44ff1051584b59f2dc1757f53b,citation,https://arxiv.org/pdf/1611.01584.pdf,Efficient Branching Cascaded Regression for Face Alignment under Significant Head Rotation,2016
238,Brazil,Helen,helen,-13.0024602,-38.5089752,Federal University of Bahia,edu,b07582d1a59a9c6f029d0d8328414c7bef64dca0,citation,https://arxiv.org/pdf/1710.07662.pdf,Employing Fusion of Learned and Handcrafted Features for Unconstrained Ear Recognition,2018
239,United States,Helen,helen,28.0599999,-82.41383619,University of South Florida,edu,b07582d1a59a9c6f029d0d8328414c7bef64dca0,citation,https://arxiv.org/pdf/1710.07662.pdf,Employing Fusion of Learned and Handcrafted Features for Unconstrained Ear Recognition,2018
240,Spain,Helen,helen,41.5008957,2.111553,Autonomous University of Barcelona,edu,a40f8881a36bc01f3ae356b3e57eac84e989eef0,citation,https://arxiv.org/pdf/1703.03305.pdf,"End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks",2017
241,Netherlands,Helen,helen,51.816701,5.865272,Radboud University Nijmegen,edu,a40f8881a36bc01f3ae356b3e57eac84e989eef0,citation,https://arxiv.org/pdf/1703.03305.pdf,"End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks",2017
242,Spain,Helen,helen,41.40657415,2.1945341,Universitat Oberta de Catalunya,edu,a40f8881a36bc01f3ae356b3e57eac84e989eef0,citation,https://arxiv.org/pdf/1703.03305.pdf,"End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks",2017
243,United States,Helen,helen,34.0224149,-118.28634407,University of Southern California,edu,49258cc3979103681848284470056956b77caf80,citation,https://5443dcab-a-62cb3a1a-s-sites.googlegroups.com/site/tuftsyuewu/epat-euclidean-perturbation.pdf?attachauth=ANoY7crlk9caZscfn0KRjed81DVoV-Ec6ZHI7txQrJiM_NBic36WKIg-ODwefcBtfgfKdS1iX28MlSXNyB7pE0D7opPjlGqxBVVa1UuIiydhFOgkXlXGfrYqSPS6749JeYWDkfvwWraRfB_CK8bu77jAEA2sIVNgaVRa_7zvmzwnstLwSUowbYC1LRc5yDt8ieT_jdEb_TuhMgR2j03BdHgyUkVjl0TXRukYHWglDOxzHAKwj0vsb4U%3D&attredirects=0,EPAT: Euclidean Perturbation Analysis and Transform - An Agnostic Data Adaptation Framework for Improving Facial Landmark Detectors,2017
244,United States,Helen,helen,37.3307703,-121.8940951,Adobe,company,992ebd81eb448d1eef846bfc416fc929beb7d28b,citation,https://pdfs.semanticscholar.org/992e/bd81eb448d1eef846bfc416fc929beb7d28b.pdf,Exemplar-Based Face Parsing Supplementary Material,2013
245,United States,Helen,helen,43.07982815,-89.43066425,University of Wisconsin Madison,edu,992ebd81eb448d1eef846bfc416fc929beb7d28b,citation,https://pdfs.semanticscholar.org/992e/bd81eb448d1eef846bfc416fc929beb7d28b.pdf,Exemplar-Based Face Parsing Supplementary Material,2013
246,China,Helen,helen,35.86166,104.195397,"Megvii Inc. (Face++), China",company,1a8ccc23ed73db64748e31c61c69fe23c48a2bb1,citation,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Zhou_Extensive_Facial_Landmark_2013_ICCV_paper.pdf,Extensive Facial Landmark Localization with Coarse-to-Fine Convolutional Network Cascade,2013
247,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,6d8c9a1759e7204eacb4eeb06567ad0ef4229f93,citation,https://arxiv.org/pdf/1707.05938.pdf,"Face Alignment Robust to Pose, Expressions and Occlusions",2016
248,United States,Helen,helen,42.718568,-84.47791571,Michigan State University,edu,6d8c9a1759e7204eacb4eeb06567ad0ef4229f93,citation,https://arxiv.org/pdf/1707.05938.pdf,"Face Alignment Robust to Pose, Expressions and Occlusions",2016
249,Poland,Helen,helen,52.22165395,21.00735776,Warsaw University of Technology,edu,eb48a58b873295d719827e746d51b110f5716d6c,citation,https://arxiv.org/pdf/1706.01820.pdf,Face Alignment Using K-Cluster Regression Forests With Weighted Splitting,2016
250,France,Helen,helen,48.8507603,2.3412757,"Sorbonne Universités, Paris, France",edu,31e57fa83ac60c03d884774d2b515813493977b9,citation,https://arxiv.org/pdf/1703.01597.pdf,Face Alignment with Cascaded Semi-Parametric Deep Greedy Neural Forests,2018
251,United States,Helen,helen,30.44235995,-84.29747867,Florida State University,edu,9207671d9e2b668c065e06d9f58f597601039e5e,citation,https://pdfs.semanticscholar.org/9207/671d9e2b668c065e06d9f58f597601039e5e.pdf,Face Detection Using a 3D Model on Face Keypoints,2014
252,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,bc704680b5032eadf78c4e49f548ba14040965bf,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Trigeorgis_Face_Normals_In-The-Wild_CVPR_2017_paper.pdf,"Face Normals ""In-the-Wild"" Using Fully Convolutional Networks",2017
253,United Kingdom,Helen,helen,51.5231607,-0.1282037,University College London,edu,bc704680b5032eadf78c4e49f548ba14040965bf,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Trigeorgis_Face_Normals_In-The-Wild_CVPR_2017_paper.pdf,"Face Normals ""In-the-Wild"" Using Fully Convolutional Networks",2017
254,China,Helen,helen,23.09461185,113.28788994,Sun Yat-Sen University,edu,a4ce0f8cfa7d9aa343cb30b0792bb379e20ef41b,citation,https://arxiv.org/pdf/1812.03887.pdf,Facial Landmark Machines: A Backbone-Branches Architecture with Progressive Representation Learning,2018
255,China,Helen,helen,22.2081469,114.25964115,University of Hong Kong,edu,a4ce0f8cfa7d9aa343cb30b0792bb379e20ef41b,citation,https://arxiv.org/pdf/1812.03887.pdf,Facial Landmark Machines: A Backbone-Branches Architecture with Progressive Representation Learning,2018
256,Israel,Helen,helen,32.06932925,34.84334339,Bar-Ilan University,edu,e4f032ee301d4a4b3d598e6fa6cffbcdb9cdfdd1,citation,https://arxiv.org/pdf/1805.01760.pdf,Facial Landmark Point Localization using Coarse-to-Fine Deep Recurrent Neural Network,2018
257,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,ebedc841a2c1b3a9ab7357de833101648281ff0e,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885615000116-main.pdf,Facial landmarking for in-the-wild images with local inference based on global appearance,2015
258,Netherlands,Helen,helen,52.2380139,6.8566761,University of Twente,edu,ebedc841a2c1b3a9ab7357de833101648281ff0e,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885615000116-main.pdf,Facial landmarking for in-the-wild images with local inference based on global appearance,2015
259,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,375435fb0da220a65ac9e82275a880e1b9f0a557,citation,http://eprints.lincoln.ac.uk/17528/7/__ddat02_staffhome_jpartridge_tzimiroTPAMI15.pdf,From Pixels to Response Maps: Discriminative Image Filtering for Face Alignment in the Wild,2015
260,Netherlands,Helen,helen,52.2380139,6.8566761,University of Twente,edu,375435fb0da220a65ac9e82275a880e1b9f0a557,citation,http://eprints.lincoln.ac.uk/17528/7/__ddat02_staffhome_jpartridge_tzimiroTPAMI15.pdf,From Pixels to Response Maps: Discriminative Image Filtering for Face Alignment in the Wild,2015
261,China,Helen,helen,31.30104395,121.50045497,Fudan University,edu,37381718559f767fc496cc34ceb98ff18bc7d3e1,citation,https://pdfs.semanticscholar.org/3738/1718559f767fc496cc34ceb98ff18bc7d3e1.pdf,Harnessing Synthesized Abstraction Images to Improve Facial Attribute Recognition,2018
262,China,Helen,helen,31.19884,121.432567,Jiaotong University,edu,37381718559f767fc496cc34ceb98ff18bc7d3e1,citation,https://pdfs.semanticscholar.org/3738/1718559f767fc496cc34ceb98ff18bc7d3e1.pdf,Harnessing Synthesized Abstraction Images to Improve Facial Attribute Recognition,2018
263,Spain,Helen,helen,42.797263,-1.6321518,Public University of Navarra,edu,8c0a47c61143ceb5bbabef403923e4bf92fb854d,citation,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w22/Larumbe_Improved_Strategies_for_ICCV_2017_paper.pdf,Improved Strategies for HPE Employing Learning-by-Synthesis Approaches,2017
264,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,3352426a67eabe3516812cb66a77aeb8b4df4d1b,citation,https://arxiv.org/pdf/1708.06023.pdf,Joint Multi-view Face Alignment in the Wild,2017
265,China,Helen,helen,22.4162632,114.2109318,Chinese University of Hong Kong,edu,390f3d7cdf1ce127ecca65afa2e24c563e9db93b,citation,https://pdfs.semanticscholar.org/6e80/a3558f9170f97c103137ea2e18ddd782e8d7.pdf,Learning and Transferring Multi-task Deep Representation for Face Alignment,2014
266,China,Helen,helen,40.00229045,116.32098908,Tsinghua University,edu,df80fed59ffdf751a20af317f265848fe6bfb9c9,citation,http://ivg.au.tsinghua.edu.cn/paper/2017_Learning%20deep%20sharable%20and%20structural%20detectors%20for%20face%20alignment.pdf,Learning Deep Sharable and Structural Detectors for Face Alignment,2017
267,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,d9deafd9d9e60657a7f34df5f494edff546c4fb8,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Wang_Learning_the_Multilinear_CVPR_2017_paper.pdf,Learning the Multilinear Structure of Visual Data,2017
268,Canada,Helen,helen,45.504384,-73.6128829,Polytechnique Montréal,edu,4f77a37753c03886ca9c9349723ec3bbfe4ee967,citation,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Hasan_Localizing_Facial_Keypoints_2013_ICCV_paper.pdf,"Localizing Facial Keypoints with Global Descriptor Search, Neighbour Alignment and Locally Linear Models",2013
269,Canada,Helen,helen,43.66333345,-79.39769975,University of Toronto,edu,4f77a37753c03886ca9c9349723ec3bbfe4ee967,citation,http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W11/papers/Hasan_Localizing_Facial_Keypoints_2013_ICCV_paper.pdf,"Localizing Facial Keypoints with Global Descriptor Search, Neighbour Alignment and Locally Linear Models",2013
270,United States,Helen,helen,38.7768106,-94.9442982,Amazon,company,e7265c560b3f10013bf70aacbbf0eb4631b7e2aa,citation,https://arxiv.org/pdf/1805.10483.pdf,Look at Boundary: A Boundary-Aware Face Alignment Algorithm,2018
271,China,Helen,helen,39.993008,116.329882,SenseTime,company,e7265c560b3f10013bf70aacbbf0eb4631b7e2aa,citation,https://arxiv.org/pdf/1805.10483.pdf,Look at Boundary: A Boundary-Aware Face Alignment Algorithm,2018
272,China,Helen,helen,40.00229045,116.32098908,Tsinghua University,edu,e7265c560b3f10013bf70aacbbf0eb4631b7e2aa,citation,https://arxiv.org/pdf/1805.10483.pdf,Look at Boundary: A Boundary-Aware Face Alignment Algorithm,2018
273,United States,Helen,helen,32.87935255,-117.23110049,"University of California, San Diego",edu,1b0a071450c419138432c033f722027ec88846ea,citation,http://cvrr.ucsd.edu/publications/2016/YuenMartinTrivediITSC2016.pdf,Looking at faces in a vehicle: A deep CNN based approach and evaluation,2016
274,Iran,Helen,helen,35.704514,51.40972058,Amirkabir University of Technology,edu,6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cb,citation,https://arxiv.org/pdf/1706.06247.pdf,Low Resolution Face Recognition Using a Two-Branch Deep Convolutional Neural Network Architecture,2017
275,United States,Helen,helen,42.3583961,-71.09567788,MIT,edu,6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cb,citation,https://arxiv.org/pdf/1706.06247.pdf,Low Resolution Face Recognition Using a Two-Branch Deep Convolutional Neural Network Architecture,2017
276,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,47e8db3d9adb79a87c8c02b88f432f911eb45dc5,citation,https://arxiv.org/pdf/1509.05715.pdf,MAGMA: Multilevel Accelerated Gradient Mirror Descent Algorithm for Large-Scale Convex Composite Minimization,2016
277,United Kingdom,Helen,helen,53.46600455,-2.23300881,University of Manchester,edu,daa4cfde41d37b2ab497458e331556d13dd14d0b,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Rajamanoharan_Multi-View_Constrained_Local_ICCV_2015_paper.pdf,Multi-view Constrained Local Models for Large Head Angle Facial Tracking,2015
278,China,Helen,helen,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,d03265ea9200a993af857b473c6bf12a095ca178,citation,https://pdfs.semanticscholar.org/d032/65ea9200a993af857b473c6bf12a095ca178.pdf,Multiple deep convolutional neural networks averaging for face alignment,2015
279,France,Helen,helen,49.3849757,1.0683257,"INSA Rouen, France",edu,0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a,citation,https://arxiv.org/pdf/1807.05292.pdf,Neural Networks Regularization Through Representation Learning,2018
280,France,Helen,helen,49.4583047,1.0688892,"LITIS, Université de Rouen, Rouen, France",edu,0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a,citation,https://arxiv.org/pdf/1807.05292.pdf,Neural Networks Regularization Through Representation Learning,2018
281,United Kingdom,Helen,helen,53.7641378,-2.7092453,University of Central Lancashire,edu,ef52f1e2b52fd84a7e22226ed67132c6ce47b829,citation,https://pdfs.semanticscholar.org/ef52/f1e2b52fd84a7e22226ed67132c6ce47b829.pdf,Online Eye Status Detection in the Wild with Convolutional Neural Networks,2017
282,United Kingdom,Helen,helen,50.7944026,-1.0971748,Cambridge University,edu,2fda461869f84a9298a0e93ef280f79b9fb76f94,citation,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/09/2016_WACV_Baltrusaitis_OpenFace.pdf,OpenFace: An open source facial behavior analysis toolkit,2016
283,United States,Helen,helen,40.4441619,-79.94272826,Carnegie Mellon University,edu,2fda461869f84a9298a0e93ef280f79b9fb76f94,citation,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/09/2016_WACV_Baltrusaitis_OpenFace.pdf,OpenFace: An open source facial behavior analysis toolkit,2016
284,Sweden,Helen,helen,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,12d8730da5aab242795bdff17b30b6e0bac82998,citation,https://arxiv.org/pdf/1411.6509.pdf,Persistent Evidence of Local Image Properties in Generic ConvNets,2015
285,United States,Helen,helen,33.6404952,-117.8442962,UC Irvine,edu,5711400c59a162112c57e9f899147d457537f701,citation,https://pdfs.semanticscholar.org/5711/400c59a162112c57e9f899147d457537f701.pdf,Recognizing and Segmenting Objects in the Presence of Occlusion and Clutter,2016
286,United States,Helen,helen,41.2097516,-73.8026467,IBM Research T. J. Watson Center,company,ac5d0705a9ddba29151fd539c668ba2c0d16deb6,citation,https://arxiv.org/pdf/1801.06066.pdf,RED-Net: A Recurrent Encoder–Decoder Network for Video-Based Face Alignment,2018
287,United States,Helen,helen,40.47913175,-74.43168868,Rutgers University,edu,ac5d0705a9ddba29151fd539c668ba2c0d16deb6,citation,https://arxiv.org/pdf/1801.06066.pdf,RED-Net: A Recurrent Encoder–Decoder Network for Video-Based Face Alignment,2018
288,Singapore,Helen,helen,1.3484104,103.68297965,Nanyang Technological University,edu,2bfccbf6f4e88a92a7b1f2b5c588b68c5fa45a92,citation,https://arxiv.org/pdf/1807.11079.pdf,ReenactGAN: Learning to Reenact Faces via Boundary Transfer,2018
289,China,Helen,helen,39.993008,116.329882,SenseTime,company,2bfccbf6f4e88a92a7b1f2b5c588b68c5fa45a92,citation,https://arxiv.org/pdf/1807.11079.pdf,ReenactGAN: Learning to Reenact Faces via Boundary Transfer,2018
290,Italy,Helen,helen,46.0658836,11.1159894,University of Trento,edu,f61829274cfe64b94361e54351f01a0376cd1253,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Tulyakov_Regressing_a_3D_ICCV_2015_paper.pdf,Regressing a 3D Face Shape from a Single Image,2015
291,Singapore,Helen,helen,1.3484104,103.68297965,Nanyang Technological University,edu,4d23bb65c6772cb374fc05b1f10dedf9b43e63cf,citation,https://pdfs.semanticscholar.org/4d23/bb65c6772cb374fc05b1f10dedf9b43e63cf.pdf,Robust face alignment and partial face recognition,2016
292,United States,Helen,helen,34.13710185,-118.12527487,California Institute of Technology,edu,2724ba85ec4a66de18da33925e537f3902f21249,citation,,Robust Face Landmark Estimation under Occlusion,2013
293,United States,Helen,helen,47.6423318,-122.1369302,Microsoft,company,2724ba85ec4a66de18da33925e537f3902f21249,citation,,Robust Face Landmark Estimation under Occlusion,2013
294,United States,Helen,helen,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,1c1f957d85b59d23163583c421755869f248ceef,citation,https://arxiv.org/pdf/1709.08127.pdf,Robust Facial Landmark Detection Under Significant Head Poses and Occlusion,2015
295,Germany,Helen,helen,48.263011,11.666857,Technical University of Munich,edu,1121873326ab0c9f324b004aa0970a31d4f83eb8,citation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Merget_Robust_Facial_Landmark_CVPR_2018_paper.pdf,Robust Facial Landmark Detection via a Fully-Convolutional Local-Global Context Network,2018
296,United States,Helen,helen,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,c3d3d2229500c555c7a7150a8b126ef874cbee1c,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Wu_Shape_Augmented_Regression_ICCV_2015_paper.pdf,Shape Augmented Regression Method for Face Alignment,2015
297,Canada,Helen,helen,43.66333345,-79.39769975,University of Toronto,edu,33ae696546eed070717192d393f75a1583cd8e2c,citation,https://arxiv.org/pdf/1708.08508.pdf,Subspace selection to suppress confounding source domain information in AAM transfer learning,2017
298,Finland,Helen,helen,65.0592157,25.46632601,University of Oulu,edu,f3745aa4a723d791d3a04ddf7a5546e411226459,citation,,The Menpo Benchmark for Multi-pose 2D and 3D Facial Landmark Localisation and Tracking,2018
299,United Kingdom,Helen,helen,51.59029705,-0.22963221,Middlesex University,edu,f3745aa4a723d791d3a04ddf7a5546e411226459,citation,,The Menpo Benchmark for Multi-pose 2D and 3D Facial Landmark Localisation and Tracking,2018
300,United Kingdom,Helen,helen,50.7369302,-3.53647672,University of Exeter,edu,f3745aa4a723d791d3a04ddf7a5546e411226459,citation,,The Menpo Benchmark for Multi-pose 2D and 3D Facial Landmark Localisation and Tracking,2018
301,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,f3745aa4a723d791d3a04ddf7a5546e411226459,citation,,The Menpo Benchmark for Multi-pose 2D and 3D Facial Landmark Localisation and Tracking,2018
302,Germany,Helen,helen,49.01546,8.4257999,Fraunhofer,company,50ccc98d9ce06160cdf92aaf470b8f4edbd8b899,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Qu_Towards_Robust_Cascaded_2015_CVPR_paper.pdf,Towards robust cascaded regression for face alignment in the wild,2015
303,Germany,Helen,helen,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,50ccc98d9ce06160cdf92aaf470b8f4edbd8b899,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Qu_Towards_Robust_Cascaded_2015_CVPR_paper.pdf,Towards robust cascaded regression for face alignment in the wild,2015
304,Switzerland,Helen,helen,46.5184121,6.5684654,École Polytechnique Fédérale de Lausanne,edu,50ccc98d9ce06160cdf92aaf470b8f4edbd8b899,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Qu_Towards_Robust_Cascaded_2015_CVPR_paper.pdf,Towards robust cascaded regression for face alignment in the wild,2015
305,Poland,Helen,helen,52.22165395,21.00735776,Warsaw University of Technology,edu,e52272f92fa553687f1ac068605f1de929efafc2,citation,https://repo.pw.edu.pl/docstore/download/WUT8aeb20bbb6964b7da1cfefbf2e370139/1-s2.0-S0952197617301227-main.pdf,Using a Probabilistic Neural Network for lip-based biometric verification,2017
306,United States,Helen,helen,33.6404952,-117.8442962,UC Irvine,edu,397085122a5cade71ef6c19f657c609f0a4f7473,citation,https://pdfs.semanticscholar.org/db11/4901d09a07ab66bffa6986bc81303e133ae1.pdf,Using Segmentation to Predict the Absence of Occluded Parts,2015
307,China,Helen,helen,39.980196,116.333305,"CASIA, China",edu,708f4787bec9d7563f4bb8b33834de445147133b,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Huang_Wavelet-SRNet_A_Wavelet-Based_ICCV_2017_paper.pdf,Wavelet-SRNet: A Wavelet-Based CNN for Multi-scale Face Super Resolution,2017
308,China,Helen,helen,40.0044795,116.370238,Chinese Academy of Sciences,edu,708f4787bec9d7563f4bb8b33834de445147133b,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Huang_Wavelet-SRNet_A_Wavelet-Based_ICCV_2017_paper.pdf,Wavelet-SRNet: A Wavelet-Based CNN for Multi-scale Face Super Resolution,2017
309,United Kingdom,Helen,helen,51.49887085,-0.17560797,Imperial College London,edu,044d9a8c61383312cdafbcc44b9d00d650b21c70,citation,,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,2013
310,United Kingdom,Helen,helen,53.22853665,-0.54873472,University of Lincoln,edu,044d9a8c61383312cdafbcc44b9d00d650b21c70,citation,,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,2013
311,Netherlands,Helen,helen,52.2380139,6.8566761,University of Twente,edu,044d9a8c61383312cdafbcc44b9d00d650b21c70,citation,,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,2013
312,Italy,Helen,helen,46.0658836,11.1159894,University of Trento,edu,b48d3694a8342b6efc18c9c9124c62406e6bf3b3,citation,,Recurrent Convolutional Shape Regression,2018
313,United States,Helen,helen,33.9850469,-118.4694832,"Snapchat Research, Venice, CA",company,b48d3694a8342b6efc18c9c9124c62406e6bf3b3,citation,,Recurrent Convolutional Shape Regression,2018
314,Italy,Helen,helen,40.3515155,18.1750161,"National Research Council of Italy, Institute of Applied Sciences and Intelligent Systems, Lecce, Italy",edu,523db6dee0e60a2d513759fa04aa96f2fed40ff4,citation,,Study of Mechanisms of Social Interaction Stimulation in Autism Spectrum Disorder by Assisted Humanoid Robot,2018
315,Italy,Helen,helen,38.1937335,15.5542057,"National Research Council of Italy, Institute of Applied Sciences and Intelligent Systems, Messina, Italy",edu,523db6dee0e60a2d513759fa04aa96f2fed40ff4,citation,,Study of Mechanisms of Social Interaction Stimulation in Autism Spectrum Disorder by Assisted Humanoid Robot,2018
316,United States,Helen,helen,37.3307703,-121.8940951,Adobe,company,95f12d27c3b4914e0668a268360948bce92f7db3,citation,https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf,Interactive Facial Feature Localization,2012
317,United States,Helen,helen,37.3936717,-122.0807262,Facebook,company,95f12d27c3b4914e0668a268360948bce92f7db3,citation,https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf,Interactive Facial Feature Localization,2012
318,United States,Helen,helen,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,95f12d27c3b4914e0668a268360948bce92f7db3,citation,https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf,Interactive Facial Feature Localization,2012
319,United States,Helen,helen,33.9832526,-118.40417,USC,edu,0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,citation,https://arxiv.org/pdf/1708.07517.pdf,FacePoseNet: Making a Case for Landmark-Free Face Alignment,2017
320,Israel,Helen,helen,32.77824165,34.99565673,Open University of Israel,edu,0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,citation,https://arxiv.org/pdf/1708.07517.pdf,FacePoseNet: Making a Case for Landmark-Free Face Alignment,2017
321,United Kingdom,Helen,helen,52.9387428,-1.20029569,University of Nottingham,edu,c46a4db7247d26aceafed3e4f38ce52d54361817,citation,https://arxiv.org/pdf/1609.09642.pdf,A CNN Cascade for Landmark Guided Semantic Part Segmentation,2016
322,United States,Helen,helen,38.9869183,-76.9425543,"Maryland Univ., College Park, MD, USA",edu,59b6e9320a4e1de9216c6fc49b4b0309211b17e8,citation,https://pdfs.semanticscholar.org/59b6/e9320a4e1de9216c6fc49b4b0309211b17e8.pdf,Robust Representations for unconstrained Face Recognition and its Applications,2016
|