1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
id,country,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
0,,Duke MTMC,duke_mtmc,0.0,0.0,,,,main,,"Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking",2016
1,United States,Duke MTMC,duke_mtmc,35.9990522,-78.9290629,Duke University,edu,c9b98c98357a154bceb2287c427c5fa9c17b4a07,citation,https://arxiv.org/pdf/1803.05872.pdf,Virtual CNN Branching: Efficient Feature Ensemble for Person Re-Identification,2018
2,United States,Duke MTMC,duke_mtmc,42.3614256,-71.0812092,Microsoft Research Asia,company,1e2f07f7231eef629c78cba4ada0c9be29d77254,citation,,Group Re-Identification: Leveraging and Integrating Multi-Grain Information,2018
3,China,Duke MTMC,duke_mtmc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,1e2f07f7231eef629c78cba4ada0c9be29d77254,citation,,Group Re-Identification: Leveraging and Integrating Multi-Grain Information,2018
4,China,Duke MTMC,duke_mtmc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,1e2f07f7231eef629c78cba4ada0c9be29d77254,citation,,Group Re-Identification: Leveraging and Integrating Multi-Grain Information,2018
5,China,Duke MTMC,duke_mtmc,24.4399419,118.09301781,Xiamen University,edu,2788a2461ed0067e2f7aaa63c449a24a237ec341,citation,https://arxiv.org/pdf/1708.04896.pdf,Random Erasing Data Augmentation,2017
6,United States,Duke MTMC,duke_mtmc,32.7768233,-117.0693407,"California State University, San Marcos",edu,9643dabbf1771d2d82ded2fde3baaa15a67f6e56,citation,,Unsupervised Joint Subspace and Dictionary Learning for Enhanced Cross-Domain Person Re-Identification,2018
7,China,Duke MTMC,duke_mtmc,32.0565957,118.77408833,Nanjing University,edu,9643dabbf1771d2d82ded2fde3baaa15a67f6e56,citation,,Unsupervised Joint Subspace and Dictionary Learning for Enhanced Cross-Domain Person Re-Identification,2018
8,United Kingdom,Duke MTMC,duke_mtmc,51.5247272,-0.03931035,Queen Mary University of London,edu,e323bbaef9ea9a6257b7464e4cc146d690d0d55b,citation,https://arxiv.org/pdf/1811.08400.pdf,Single-Label Multi-Class Image Classification by Deep Logistic Regression,2019
9,China,Duke MTMC,duke_mtmc,28.2290209,112.99483204,"National University of Defense Technology, China",mil,59f357015054bab43fb8cbfd3f3dbf17b1d1f881,citation,https://pdfs.semanticscholar.org/59f3/57015054bab43fb8cbfd3f3dbf17b1d1f881.pdf,Unsupervised Multi-Object Detection for Video Surveillance Using Memory-Based Recurrent Attention Networks,2018
10,United Kingdom,Duke MTMC,duke_mtmc,51.5231607,-0.1282037,University College London,edu,59f357015054bab43fb8cbfd3f3dbf17b1d1f881,citation,https://pdfs.semanticscholar.org/59f3/57015054bab43fb8cbfd3f3dbf17b1d1f881.pdf,Unsupervised Multi-Object Detection for Video Surveillance Using Memory-Based Recurrent Attention Networks,2018
11,China,Duke MTMC,duke_mtmc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,a0dfc588cd1bc35a06734a31fca81e7adc94b940,citation,https://arxiv.org/pdf/1803.08580.pdf,Weighted Bilinear Coding over Salient Body Parts for Person Re-identification,2018
12,United States,Duke MTMC,duke_mtmc,39.95472495,-75.15346905,Temple University,edu,a0dfc588cd1bc35a06734a31fca81e7adc94b940,citation,https://arxiv.org/pdf/1803.08580.pdf,Weighted Bilinear Coding over Salient Body Parts for Person Re-identification,2018
13,China,Duke MTMC,duke_mtmc,23.0502042,113.39880323,South China University of Technology,edu,a0dfc588cd1bc35a06734a31fca81e7adc94b940,citation,https://arxiv.org/pdf/1803.08580.pdf,Weighted Bilinear Coding over Salient Body Parts for Person Re-identification,2018
14,China,Duke MTMC,duke_mtmc,40.00229045,116.32098908,Tsinghua University,edu,a0dfc588cd1bc35a06734a31fca81e7adc94b940,citation,https://arxiv.org/pdf/1803.08580.pdf,Weighted Bilinear Coding over Salient Body Parts for Person Re-identification,2018
15,China,Duke MTMC,duke_mtmc,30.672721,104.098806,University of Electronic Science and Technology of China,edu,ed2ba6448db8cf945ca24d4df11916c2c5c3edd1,citation,,Rapid Pedestrian Detection Based on Deep Omega-Shape Features with Partial Occlusion Handing,2018
16,China,Duke MTMC,duke_mtmc,30.19331415,120.11930822,Zhejiang University,edu,5b062562a8067baae045df1c7f5a8455d0363b5a,citation,https://arxiv.org/pdf/1810.06996.pdf,SCPNet: Spatial-Channel Parallelism Network for Joint Holistic and Partial Person Re-Identification,2018
17,China,Duke MTMC,duke_mtmc,40.0044795,116.370238,Chinese Academy of Sciences,edu,5b062562a8067baae045df1c7f5a8455d0363b5a,citation,https://arxiv.org/pdf/1810.06996.pdf,SCPNet: Spatial-Channel Parallelism Network for Joint Holistic and Partial Person Re-Identification,2018
18,China,Duke MTMC,duke_mtmc,38.88140235,121.52281098,Dalian University of Technology,edu,e8dac6b899e2be56b4d8b4b5bfb422eb1fe2cb68,citation,,A novel two-stream saliency image fusion CNN architecture for person re-identification,2017
19,United States,Duke MTMC,duke_mtmc,29.58333105,-98.61944505,University of Texas at San Antonio,edu,e8dac6b899e2be56b4d8b4b5bfb422eb1fe2cb68,citation,,A novel two-stream saliency image fusion CNN architecture for person re-identification,2017
20,China,Duke MTMC,duke_mtmc,31.83907195,117.26420748,University of Science and Technology of China,edu,d4a5c9b2197b6bc476aa296b8d59515c9684e97d,citation,,CA3Net: Contextual-Attentional Attribute-Appearance Network for Person Re-Identification,2018
21,United States,Duke MTMC,duke_mtmc,40.1019523,-88.2271615,UIUC,edu,c2a5f27d97744bc1f96d7e1074395749e3c59bc8,citation,https://arxiv.org/pdf/1804.05275.pdf,Horizontal Pyramid Matching for Person Re-identification,2019
22,United States,Duke MTMC,duke_mtmc,37.8718992,-122.2585399,UC Berkeley,edu,8ba606d7667c50054d74083867230abbed755574,citation,https://arxiv.org/pdf/1811.01268.pdf,"ReXCam: Resource-Efficient, Cross-Camera Video Analytics at Enterprise Scale",2018
23,United States,Duke MTMC,duke_mtmc,41.78468745,-87.60074933,University of Chicago,edu,8ba606d7667c50054d74083867230abbed755574,citation,https://arxiv.org/pdf/1811.01268.pdf,"ReXCam: Resource-Efficient, Cross-Camera Video Analytics at Enterprise Scale",2018
24,United States,Duke MTMC,duke_mtmc,47.6423318,-122.1369302,Microsoft,company,8ba606d7667c50054d74083867230abbed755574,citation,https://arxiv.org/pdf/1811.01268.pdf,"ReXCam: Resource-Efficient, Cross-Camera Video Analytics at Enterprise Scale",2018
25,China,Duke MTMC,duke_mtmc,30.491766,114.396237,South-Central University for Nationalities,edu,cbf5b3469c7216c37733efca6c2cdb94357b14a7,citation,,Person Re-identification Based on Feature Fusion and Triplet Loss Function,2018
26,China,Duke MTMC,duke_mtmc,30.60903415,114.3514284,Wuhan University of Technology,edu,cbf5b3469c7216c37733efca6c2cdb94357b14a7,citation,,Person Re-identification Based on Feature Fusion and Triplet Loss Function,2018
27,China,Duke MTMC,duke_mtmc,32.0565957,118.77408833,Nanjing University,edu,3b24dcb3a1ff4811386b3467943c0ccad266bc99,citation,https://arxiv.org/pdf/1811.08561.pdf,Adaptive Re-ranking of Deep Feature for Person Re-identification,2018
28,Australia,Duke MTMC,duke_mtmc,-37.8087465,144.9638875,RMIT University,edu,3b24dcb3a1ff4811386b3467943c0ccad266bc99,citation,https://arxiv.org/pdf/1811.08561.pdf,Adaptive Re-ranking of Deep Feature for Person Re-identification,2018
29,China,Duke MTMC,duke_mtmc,22.3874201,114.2082222,Hong Kong Baptist University,edu,3cbf60c4a73fadd05b59c3abd19df032303e8577,citation,,Incremental Deep Hidden Attribute Learning,2018
30,China,Duke MTMC,duke_mtmc,30.508964,114.410577,Huazhong University of Science of Technology,edu,3cbf60c4a73fadd05b59c3abd19df032303e8577,citation,,Incremental Deep Hidden Attribute Learning,2018
31,Japan,Duke MTMC,duke_mtmc,35.6924853,139.7582533,"National Institute of Informatics, Japan",edu,3cbf60c4a73fadd05b59c3abd19df032303e8577,citation,,Incremental Deep Hidden Attribute Learning,2018
32,Japan,Duke MTMC,duke_mtmc,35.6924853,139.7582533,"National Institute of Informatics, Japan, Tokyo, Japan",edu,3cbf60c4a73fadd05b59c3abd19df032303e8577,citation,,Incremental Deep Hidden Attribute Learning,2018
33,South Korea,Duke MTMC,duke_mtmc,35.2265288,126.839987,Gwangju Institute of Science and Technology,edu,5317bd54ad696f40594d78c3464d86d8e39bd75b,citation,https://arxiv.org/pdf/1901.08787.pdf,Multiple Hypothesis Tracking Algorithm for Multi-Target Multi-Camera Tracking with Disjoint Views,2018
34,China,Duke MTMC,duke_mtmc,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,0db41739f514c4c911c54a4c90ab5f07db3862dc,citation,https://pdfs.semanticscholar.org/0db4/1739f514c4c911c54a4c90ab5f07db3862dc.pdf,NCA-Net for Tracking Multiple Objects across Multiple Cameras,2018
35,United Kingdom,Duke MTMC,duke_mtmc,51.4584837,-2.6097752,University of Bristol,edu,92939c68b2075d0446fee540bd174b6da26fea05,citation,https://arxiv.org/pdf/1806.04074.pdf,Semantically Selective Augmentation for Deep Compact Person Re-Identification,2018
36,China,Duke MTMC,duke_mtmc,40.00229045,116.32098908,Tsinghua University,edu,69a7c8bca699ee4100fbe6a83b72459c132a6f10,citation,https://pdfs.semanticscholar.org/69a7/c8bca699ee4100fbe6a83b72459c132a6f10.pdf,Aware Person Re-identification across Multiple Resolutions,2018
37,Thailand,Duke MTMC,duke_mtmc,13.74311795,100.53287901,Chulalongkorn University,edu,fcec633bbdeaab2d61fcc6d86f74383ccc3621f9,citation,,Robust video editing detection using Scalable Color and Color Layout Descriptors,2017
38,China,Duke MTMC,duke_mtmc,30.672721,104.098806,University of Electronic Science and Technology of China,edu,a20f132a30e99541aa7ba6dddac86e6a393778e8,citation,https://arxiv.org/pdf/1809.08556.pdf,Self Attention Grid for Person Re-Identification,2018
39,China,Duke MTMC,duke_mtmc,39.98177,116.330086,Chinese Academy of Sciences & University of Chinese Academy of Sciences,edu,56423685e039d82d3cc88f797fc2b73f2d93e200,citation,,A Unified Generative Adversarial Framework for Image Generation and Person Re-identification,2018
40,China,Duke MTMC,duke_mtmc,39.9922379,116.30393816,Peking University,edu,56423685e039d82d3cc88f797fc2b73f2d93e200,citation,,A Unified Generative Adversarial Framework for Image Generation and Person Re-identification,2018
41,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,f8f92624c8794d54e08b3a8f94910952ae03cade,citation,,CamStyle: A Novel Data Augmentation Method for Person Re-Identification,2019
42,China,Duke MTMC,duke_mtmc,24.4399419,118.09301781,Xiamen University,edu,f8f92624c8794d54e08b3a8f94910952ae03cade,citation,,CamStyle: A Novel Data Augmentation Method for Person Re-Identification,2019
43,Australia,Duke MTMC,duke_mtmc,-35.2776999,149.118527,Australian National University,edu,f8f92624c8794d54e08b3a8f94910952ae03cade,citation,,CamStyle: A Novel Data Augmentation Method for Person Re-Identification,2019
44,China,Duke MTMC,duke_mtmc,22.4162632,114.2109318,Chinese University of Hong Kong,edu,08d2a558ea2deb117dd8066e864612bf2899905b,citation,https://arxiv.org/pdf/1807.09975.pdf,Person Re-identification with Deep Similarity-Guided Graph Neural Network,2018
45,China,Duke MTMC,duke_mtmc,39.993008,116.329882,SenseTime,company,08d2a558ea2deb117dd8066e864612bf2899905b,citation,https://arxiv.org/pdf/1807.09975.pdf,Person Re-identification with Deep Similarity-Guided Graph Neural Network,2018
46,China,Duke MTMC,duke_mtmc,39.9808333,116.34101249,Beihang University,edu,7bfc5bbad852f9e6bea3b86c25179d81e2e7fff6,citation,,Online Inter-Camera Trajectory Association Exploiting Person Re-Identification and Camera Topology,2018
47,China,Duke MTMC,duke_mtmc,40.00229045,116.32098908,Tsinghua University,edu,be79ad118d0524d9b493f4a14a662c8184e6405a,citation,,Attend and Align: Improving Deep Representations with Feature Alignment Layer for Person Retrieval,2018
48,China,Duke MTMC,duke_mtmc,40.00229045,116.32098908,Tsinghua University,edu,13ea9a2ed134a9e238d33024fba34d3dd6a010e0,citation,https://arxiv.org/pdf/1703.05693.pdf,SVDNet for Pedestrian Retrieval,2017
49,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,13ea9a2ed134a9e238d33024fba34d3dd6a010e0,citation,https://arxiv.org/pdf/1703.05693.pdf,SVDNet for Pedestrian Retrieval,2017
50,China,Duke MTMC,duke_mtmc,30.19331415,120.11930822,Zhejiang University,edu,608dede56161fd5f76bcf9228b4dd8c639d65b02,citation,https://arxiv.org/pdf/1807.00537.pdf,SphereReID: Deep Hypersphere Manifold Embedding for Person Re-Identification,2018
51,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,15e1af79939dbf90790b03d8aa02477783fb1d0f,citation,https://arxiv.org/pdf/1701.07717.pdf,Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in Vitro,2017
52,China,Duke MTMC,duke_mtmc,30.778621,103.961236,XiHua University,edu,ec9c20ed6cce15e9b63ac96bb5a6d55e69661e0b,citation,https://pdfs.semanticscholar.org/ec9c/20ed6cce15e9b63ac96bb5a6d55e69661e0b.pdf,Robust Pedestrian Detection for Semi-automatic Construction of a Crowded Person Re-Identification Dataset,2018
53,United Kingdom,Duke MTMC,duke_mtmc,51.24303255,-0.59001382,University of Surrey,edu,ec9c20ed6cce15e9b63ac96bb5a6d55e69661e0b,citation,https://pdfs.semanticscholar.org/ec9c/20ed6cce15e9b63ac96bb5a6d55e69661e0b.pdf,Robust Pedestrian Detection for Semi-automatic Construction of a Crowded Person Re-Identification Dataset,2018
54,China,Duke MTMC,duke_mtmc,31.4854255,120.2739581,Jiangnan University,edu,ec9c20ed6cce15e9b63ac96bb5a6d55e69661e0b,citation,https://pdfs.semanticscholar.org/ec9c/20ed6cce15e9b63ac96bb5a6d55e69661e0b.pdf,Robust Pedestrian Detection for Semi-automatic Construction of a Crowded Person Re-Identification Dataset,2018
55,United Kingdom,Duke MTMC,duke_mtmc,51.5247272,-0.03931035,Queen Mary University of London,edu,fa3fb32fe0cd392960549b0adb7a535eb3656abd,citation,https://arxiv.org/pdf/1711.08106.pdf,The Devil is in the Middle: Exploiting Mid-level Representations for Cross-Domain Instance Matching,2017
56,United Kingdom,Duke MTMC,duke_mtmc,55.94951105,-3.19534913,University of Edinburgh,edu,fa3fb32fe0cd392960549b0adb7a535eb3656abd,citation,https://arxiv.org/pdf/1711.08106.pdf,The Devil is in the Middle: Exploiting Mid-level Representations for Cross-Domain Instance Matching,2017
57,United States,Duke MTMC,duke_mtmc,40.1019523,-88.2271615,UIUC,edu,54c28bf64debbdb21c246795182f97d4f7917b74,citation,https://arxiv.org/pdf/1811.04129.pdf,STA: Spatial-Temporal Attention for Large-Scale Video-based Person Re-Identification,2018
58,United States,Duke MTMC,duke_mtmc,22.5447154,113.9357164,Tencent,company,3b311a1ce30f9c0f3dc1d9c0cf25f13127a5e48c,citation,https://arxiv.org/pdf/1810.12193.pdf,A Coarse-to-fine Pyramidal Model for Person Re-identification via Multi-Loss Dynamic Training,2018
59,United States,Duke MTMC,duke_mtmc,37.3860784,-121.9877807,Google and Hewlett-Packard Labs,company,4d799f6e09f442bde583a50a0a9f81131ef707bb,citation,,TAR: Enabling Fine-Grained Targeted Advertising in Retail Stores,2018
60,United States,Duke MTMC,duke_mtmc,37.3860784,-121.9877807,Hewlett-Packard Labs,edu,4d799f6e09f442bde583a50a0a9f81131ef707bb,citation,,TAR: Enabling Fine-Grained Targeted Advertising in Retail Stores,2018
61,United States,Duke MTMC,duke_mtmc,39.6321923,-76.3038146,LinkedIn and Hewlett-Packard Labs,edu,4d799f6e09f442bde583a50a0a9f81131ef707bb,citation,,TAR: Enabling Fine-Grained Targeted Advertising in Retail Stores,2018
62,United States,Duke MTMC,duke_mtmc,34.0224149,-118.28634407,University of Southern California,edu,4d799f6e09f442bde583a50a0a9f81131ef707bb,citation,,TAR: Enabling Fine-Grained Targeted Advertising in Retail Stores,2018
63,Canada,Duke MTMC,duke_mtmc,49.2767454,-122.91777375,Simon Fraser University,edu,5137ca9f0a7cf4c61f2254d4a252a0c56e5dcfcc,citation,https://arxiv.org/pdf/1811.07130.pdf,Batch Feature Erasing for Person Re-identification and Beyond,2018
64,China,Duke MTMC,duke_mtmc,32.0565957,118.77408833,Nanjing University,edu,c37c3853ab428725f13906bb0ff4936ffe15d6af,citation,https://arxiv.org/pdf/1809.02874.pdf,Unsupervised Person Re-identification by Deep Learning Tracklet Association,2018
65,United Kingdom,Duke MTMC,duke_mtmc,51.5247272,-0.03931035,Queen Mary University of London,edu,c37c3853ab428725f13906bb0ff4936ffe15d6af,citation,https://arxiv.org/pdf/1809.02874.pdf,Unsupervised Person Re-identification by Deep Learning Tracklet Association,2018
66,United States,Duke MTMC,duke_mtmc,37.8687126,-122.25586815,"University of California, Berkeley",edu,a8d665fa7357f696dcfd188b91fda88da47b964e,citation,https://arxiv.org/pdf/1809.02318.pdf,Scaling Video Analytics Systems to Large Camera Deployments,2018
67,United States,Duke MTMC,duke_mtmc,47.6423318,-122.1369302,Microsoft,company,a8d665fa7357f696dcfd188b91fda88da47b964e,citation,https://arxiv.org/pdf/1809.02318.pdf,Scaling Video Analytics Systems to Large Camera Deployments,2018
68,United States,Duke MTMC,duke_mtmc,41.78468745,-87.60074933,University of Chicago,edu,a8d665fa7357f696dcfd188b91fda88da47b964e,citation,https://arxiv.org/pdf/1809.02318.pdf,Scaling Video Analytics Systems to Large Camera Deployments,2018
69,China,Duke MTMC,duke_mtmc,23.09461185,113.28788994,Sun Yat-Sen University,edu,dda0b381c162695f21b8d1149aab22188b3c2bc0,citation,https://arxiv.org/pdf/1804.02792.pdf,Occluded Person Re-Identification,2018
70,China,Duke MTMC,duke_mtmc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,33f358f1d2b54042c524d69b20e80d98dde3dacd,citation,https://arxiv.org/pdf/1811.11405.pdf,Spectral Feature Transformation for Person Re-identification,2018
71,United States,Duke MTMC,duke_mtmc,32.8734455,-117.2065636,TuSimple,edu,33f358f1d2b54042c524d69b20e80d98dde3dacd,citation,https://arxiv.org/pdf/1811.11405.pdf,Spectral Feature Transformation for Person Re-identification,2018
72,China,Duke MTMC,duke_mtmc,30.672721,104.098806,University of Electronic Science and Technology of China,edu,8ffc49aead99fdacb0b180468a36984759f2fc1e,citation,https://arxiv.org/pdf/1809.04976.pdf,Sparse Label Smoothing for Semi-supervised Person Re-Identification,2018
73,Germany,Duke MTMC,duke_mtmc,50.7791703,6.06728733,RWTH Aachen University,edu,10b36c003542545f1e2d73e8897e022c0c260c32,citation,https://arxiv.org/pdf/1705.04608.pdf,Towards a Principled Integration of Multi-camera Re-identification and Tracking Through Optimal Bayes Filters,2017
74,United Kingdom,Duke MTMC,duke_mtmc,51.7534538,-1.25400997,University of Oxford,edu,94ed6dc44842368b457851b43023c23fd78d5390,citation,https://arxiv.org/pdf/1806.01794.pdf,"Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects",2018
75,China,Duke MTMC,duke_mtmc,39.9041999,116.4073963,"Beijing, China",edu,280976bbb41d2948a5c0208f86605977397181cd,citation,https://arxiv.org/pdf/1811.08073.pdf,Factorized Distillation: Training Holistic Person Re-identification Model by Distilling an Ensemble of Partial ReID Models,2018
76,China,Duke MTMC,duke_mtmc,40.00229045,116.32098908,Tsinghua University,edu,280976bbb41d2948a5c0208f86605977397181cd,citation,https://arxiv.org/pdf/1811.08073.pdf,Factorized Distillation: Training Holistic Person Re-identification Model by Distilling an Ensemble of Partial ReID Models,2018
77,China,Duke MTMC,duke_mtmc,39.9922379,116.30393816,Peking University,edu,014e249422b6bd6ff32b3f7d385b5a0e8c4c9fcf,citation,https://arxiv.org/pdf/1810.05866.pdf,Attention driven person re-identification,2019
78,Singapore,Duke MTMC,duke_mtmc,1.3484104,103.68297965,Nanyang Technological University,edu,014e249422b6bd6ff32b3f7d385b5a0e8c4c9fcf,citation,https://arxiv.org/pdf/1810.05866.pdf,Attention driven person re-identification,2019
79,China,Duke MTMC,duke_mtmc,39.9808333,116.34101249,Beihang University,edu,e9d549989926f36abfa5dc7348ae3d79a567bf30,citation,,Orientation-Guided Similarity Learning for Person Re-identification,2018
80,China,Duke MTMC,duke_mtmc,23.09461185,113.28788994,Sun Yat-Sen University,edu,95bdd45fed0392418e0e5d3e51d34714917e3c87,citation,https://arxiv.org/pdf/1812.03282.pdf,Spatial-Temporal Person Re-identification,2019
81,China,Duke MTMC,duke_mtmc,31.30104395,121.50045497,Fudan University,edu,00e3957212517a252258baef833833921dd308d4,citation,,Adaptively Weighted Multi-task Deep Network for Person Attribute Classification,2017
82,United Kingdom,Duke MTMC,duke_mtmc,51.5247272,-0.03931035,Queen Mary University of London,edu,705073015bb8ae97212532a30488c05d50894bec,citation,https://arxiv.org/pdf/1803.09786.pdf,Transferable Joint Attribute-Identity Deep Learning for Unsupervised Person Re-identification,2018
83,United States,Duke MTMC,duke_mtmc,35.9990522,-78.9290629,Duke University,edu,9e644b1e33dd9367be167eb9d832174004840400,citation,https://users.cs.duke.edu/~tomasi/papers/ristani/ristaniTCAS16.pdf,Tracking Social Groups Within and Across Cameras,2017
84,Italy,Duke MTMC,duke_mtmc,44.6451046,10.9279268,University of Modena,edu,9e644b1e33dd9367be167eb9d832174004840400,citation,https://users.cs.duke.edu/~tomasi/papers/ristani/ristaniTCAS16.pdf,Tracking Social Groups Within and Across Cameras,2017
85,United States,Duke MTMC,duke_mtmc,35.9990522,-78.9290629,Duke University,edu,27a2fad58dd8727e280f97036e0d2bc55ef5424c,citation,https://arxiv.org/pdf/1609.01775.pdf,"Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking",2016
86,Switzerland,Duke MTMC,duke_mtmc,46.5190557,6.5667576,EPFL,edu,4e4e3ddb55607e127a4abdef45d92adf1ff78de2,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Maksai_Non-Markovian_Globally_Consistent_ICCV_2017_paper.pdf,Non-Markovian Globally Consistent Multi-object Tracking,2017
87,Switzerland,Duke MTMC,duke_mtmc,46.109237,7.08453549,IDIAP Research Institute,edu,4e4e3ddb55607e127a4abdef45d92adf1ff78de2,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Maksai_Non-Markovian_Globally_Consistent_ICCV_2017_paper.pdf,Non-Markovian Globally Consistent Multi-object Tracking,2017
88,United States,Duke MTMC,duke_mtmc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,4e4e3ddb55607e127a4abdef45d92adf1ff78de2,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Maksai_Non-Markovian_Globally_Consistent_ICCV_2017_paper.pdf,Non-Markovian Globally Consistent Multi-object Tracking,2017
89,United Kingdom,Duke MTMC,duke_mtmc,51.5247272,-0.03931035,Queen Mary University of London,edu,fc26fc2340a863d6da0b427cd924fb4cb101051b,citation,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w37/Chen_Person_Re-Identification_by_ICCV_2017_paper.pdf,Person Re-identification by Deep Learning Multi-scale Representations,2017
90,United Kingdom,Duke MTMC,duke_mtmc,55.378051,-3.435973,"Vision Semantics Ltd, UK",edu,fc26fc2340a863d6da0b427cd924fb4cb101051b,citation,http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w37/Chen_Person_Re-Identification_by_ICCV_2017_paper.pdf,Person Re-identification by Deep Learning Multi-scale Representations,2017
91,Canada,Duke MTMC,duke_mtmc,43.4983503,-80.5478382,"Senstar Corporation, Waterloo, Canada",company,8e42568c2b3feaafd1e442e1e861ec50a4ac144f,citation,https://arxiv.org/pdf/1805.06086.pdf,An Evaluation of Deep CNN Baselines for Scene-Independent Person Re-identification,2018
92,Italy,Duke MTMC,duke_mtmc,45.4377672,12.321807,University Iuav of Venice,edu,eddb1a126eafecad2cead01c6c3bb4b88120d78a,citation,https://arxiv.org/pdf/1802.02181.pdf,Applications of a Graph Theoretic Based Clustering Framework in Computer Vision and Pattern Recognition,2018
93,China,Duke MTMC,duke_mtmc,40.00229045,116.32098908,Tsinghua University,edu,fc068f7f8a3b2921ec4f3246e9b6c6015165df9a,citation,https://arxiv.org/pdf/1711.09349.pdf,Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline),2018
94,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,fc068f7f8a3b2921ec4f3246e9b6c6015165df9a,citation,https://arxiv.org/pdf/1711.09349.pdf,Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline),2018
95,United States,Duke MTMC,duke_mtmc,29.58333105,-98.61944505,University of Texas at San Antonio,edu,fc068f7f8a3b2921ec4f3246e9b6c6015165df9a,citation,https://arxiv.org/pdf/1711.09349.pdf,Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline),2018
96,United States,Duke MTMC,duke_mtmc,43.0008093,-78.7889697,University at Buffalo,edu,fdd1bde7066c7e9c7515f330546e0b3a8de8a4a6,citation,https://arxiv.org/pdf/1811.06582.pdf,CAN: Composite Appearance Network and a Novel Evaluation Metric for Person Tracking,2018
97,United States,Duke MTMC,duke_mtmc,43.0008093,-78.7889697,University at Buffalo,edu,3144c9b3bedb6e3895dcd36998bcb0903271841d,citation,https://arxiv.org/pdf/1811.06582.pdf,CAN: Composite Appearance Network and a Novel Evaluation Metric for Person Tracking,2018
98,China,Duke MTMC,duke_mtmc,29.1416432,119.7889248,"Alibaba Group, Zhejiang, People’s Republic of China",edu,f4e65ab81a0f4ffa50d0c9bc308d7365e012cc75,citation,https://arxiv.org/pdf/1812.05785.pdf,Deep Active Learning for Video-based Person Re-identification,2018
99,China,Duke MTMC,duke_mtmc,30.19331415,120.11930822,Zhejiang University,edu,f4e65ab81a0f4ffa50d0c9bc308d7365e012cc75,citation,https://arxiv.org/pdf/1812.05785.pdf,Deep Active Learning for Video-based Person Re-identification,2018
100,China,Duke MTMC,duke_mtmc,38.88140235,121.52281098,Dalian University of Technology,edu,5be74c6fa7f890ea530e427685dadf0d0a371fc1,citation,https://arxiv.org/pdf/1804.11027.pdf,Deep Co-attention based Comparators For Relative Representation Learning in Person Re-identification,2018
101,Australia,Duke MTMC,duke_mtmc,-27.49741805,153.01316956,University of Queensland,edu,5be74c6fa7f890ea530e427685dadf0d0a371fc1,citation,https://arxiv.org/pdf/1804.11027.pdf,Deep Co-attention based Comparators For Relative Representation Learning in Person Re-identification,2018
102,Australia,Duke MTMC,duke_mtmc,-33.88890695,151.18943366,University of Sydney,edu,5be74c6fa7f890ea530e427685dadf0d0a371fc1,citation,https://arxiv.org/pdf/1804.11027.pdf,Deep Co-attention based Comparators For Relative Representation Learning in Person Re-identification,2018
103,Switzerland,Duke MTMC,duke_mtmc,46.5184121,6.5684654,École Polytechnique Fédérale de Lausanne,edu,0f3eb3719b6f6f544b766e0bfeb8f962c9bd59f4,citation,https://arxiv.org/pdf/1811.10984.pdf,Eliminating Exposure Bias and Loss-Evaluation Mismatch in Multiple Object Tracking,2018
104,Italy,Duke MTMC,duke_mtmc,45.434532,12.326197,"DAIS, Università Ca’ Foscari, Venice, Italy",edu,6dce5866ebc46355a35b8667c1e04a4790c2289b,citation,https://pdfs.semanticscholar.org/6dce/5866ebc46355a35b8667c1e04a4790c2289b.pdf,Extensions of dominant sets and their applications in computer vision,2018
105,United States,Duke MTMC,duke_mtmc,42.3383668,-71.08793524,Northeastern University,edu,8abe89ab85250fd7a8117da32bc339a71c67dc21,citation,https://arxiv.org/pdf/1709.07065.pdf,Multi-camera Multi-Object Tracking,2017
106,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,b856c0eb039effce7da9ff45c3f5987f18928bef,citation,https://arxiv.org/pdf/1707.00408.pdf,Pedestrian Alignment Network for Large-scale Person Re-identification,2017
107,Germany,Duke MTMC,duke_mtmc,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,bab66082d01b393e6b9e841e5e06782a6c61ec88,citation,https://arxiv.org/pdf/1803.08709.pdf,Pose-Driven Deep Models for Person Re-Identification,2018
108,China,Duke MTMC,duke_mtmc,31.30104395,121.50045497,Fudan University,edu,e6d8f332ae26e9983d5b42af4466ff95b55f2341,citation,https://arxiv.org/pdf/1712.02225.pdf,Pose-Normalized Image Generation for Person Re-identification,2018
109,Japan,Duke MTMC,duke_mtmc,34.7321121,135.7328585,Nara Institute of Science and Technology,edu,e6d8f332ae26e9983d5b42af4466ff95b55f2341,citation,https://arxiv.org/pdf/1712.02225.pdf,Pose-Normalized Image Generation for Person Re-identification,2018
110,United Kingdom,Duke MTMC,duke_mtmc,51.5247272,-0.03931035,Queen Mary University of London,edu,e6d8f332ae26e9983d5b42af4466ff95b55f2341,citation,https://arxiv.org/pdf/1712.02225.pdf,Pose-Normalized Image Generation for Person Re-identification,2018
111,China,Duke MTMC,duke_mtmc,22.8376,108.289839,Guangxi University,edu,4a91be40e6b382c3ddf3385ac44062b2399336a8,citation,https://arxiv.org/pdf/1809.09970.pdf,Random Occlusion-recovery for Person Re-identification,2018
112,China,Duke MTMC,duke_mtmc,31.28473925,121.49694909,Tongji University,edu,4a91be40e6b382c3ddf3385ac44062b2399336a8,citation,https://arxiv.org/pdf/1809.09970.pdf,Random Occlusion-recovery for Person Re-identification,2018
113,France,Duke MTMC,duke_mtmc,45.2173989,5.7921349,"Naver Labs Europe, Meylan, France",edu,4d8347a69e77cc02c1e1aba3a8b6646eac1a0b3d,citation,https://arxiv.org/pdf/1801.05339.pdf,Re-ID done right: towards good practices for person re-identification.,2018
114,China,Duke MTMC,duke_mtmc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,0e36bf238d2db6c970ade0b5f68811ed6debc4e8,citation,https://arxiv.org/pdf/1810.07399.pdf,Recognizing Partial Biometric Patterns,2018
115,United States,Duke MTMC,duke_mtmc,42.4505507,-76.4783513,Cornell University,edu,6d76eefecdcaa130a000d1d6c93cf57166ebd18e,citation,https://arxiv.org/pdf/1805.08805.pdf,Resource Aware Person Re-identification Across Multiple Resolutions,2018
116,China,Duke MTMC,duke_mtmc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,6d76eefecdcaa130a000d1d6c93cf57166ebd18e,citation,https://arxiv.org/pdf/1805.08805.pdf,Resource Aware Person Re-identification Across Multiple Resolutions,2018
117,China,Duke MTMC,duke_mtmc,40.00229045,116.32098908,Tsinghua University,edu,6d76eefecdcaa130a000d1d6c93cf57166ebd18e,citation,https://arxiv.org/pdf/1805.08805.pdf,Resource Aware Person Re-identification Across Multiple Resolutions,2018
118,China,Duke MTMC,duke_mtmc,31.846918,117.29053367,Hefei University of Technology,edu,42dc432f58adfaa7bf6af07e5faf9e75fea29122,citation,https://arxiv.org/pdf/1811.08115.pdf,Sequence-based Person Attribute Recognition with Joint CTC-Attention Model,2018
119,China,Duke MTMC,duke_mtmc,22.5447154,113.9357164,"Tencent, Shanghai, China",company,42dc432f58adfaa7bf6af07e5faf9e75fea29122,citation,https://arxiv.org/pdf/1811.08115.pdf,Sequence-based Person Attribute Recognition with Joint CTC-Attention Model,2018
120,United States,Duke MTMC,duke_mtmc,47.6423318,-122.1369302,Microsoft,company,8a77025bde5479a1366bb93c6f2366b5a6293720,citation,https://arxiv.org/pdf/1805.02336.pdf,Sharp Attention Network via Adaptive Sampling for Person Re-identification,2018
121,United States,Duke MTMC,duke_mtmc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,8a77025bde5479a1366bb93c6f2366b5a6293720,citation,https://arxiv.org/pdf/1805.02336.pdf,Sharp Attention Network via Adaptive Sampling for Person Re-identification,2018
122,China,Duke MTMC,duke_mtmc,30.19331415,120.11930822,Zhejiang University,edu,8a77025bde5479a1366bb93c6f2366b5a6293720,citation,https://arxiv.org/pdf/1805.02336.pdf,Sharp Attention Network via Adaptive Sampling for Person Re-identification,2018
123,Australia,Duke MTMC,duke_mtmc,-35.2776999,149.118527,Australian National University,edu,304196021200067a838c06002d9e96d6a12a1e46,citation,https://arxiv.org/pdf/1811.10551.pdf,Similarity-preserving Image-image Domain Adaptation for Person Re-identification,2018
124,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,304196021200067a838c06002d9e96d6a12a1e46,citation,https://arxiv.org/pdf/1811.10551.pdf,Similarity-preserving Image-image Domain Adaptation for Person Re-identification,2018
125,China,Duke MTMC,duke_mtmc,28.2290209,112.99483204,"National University of Defense Technology, China",mil,e90816e1a0e14ea1e7039e0b2782260999aef786,citation,https://arxiv.org/pdf/1809.03137.pdf,Tracking by Animation: Unsupervised Learning of Multi-Object Attentive Trackers,2018
126,United Kingdom,Duke MTMC,duke_mtmc,51.5231607,-0.1282037,University College London,edu,e90816e1a0e14ea1e7039e0b2782260999aef786,citation,https://arxiv.org/pdf/1809.03137.pdf,Tracking by Animation: Unsupervised Learning of Multi-Object Attentive Trackers,2018
127,United States,Duke MTMC,duke_mtmc,37.2283843,-80.4234167,Virginia Tech,edu,e278218ba1ff1b85d06680e99b08e817d0962dab,citation,https://arxiv.org/pdf/1710.02139.pdf,Tracking Persons-of-Interest via Unsupervised Representation Adaptation,2017
128,China,Duke MTMC,duke_mtmc,34.250803,108.983693,Xi’an Jiaotong University,edu,e278218ba1ff1b85d06680e99b08e817d0962dab,citation,https://arxiv.org/pdf/1710.02139.pdf,Tracking Persons-of-Interest via Unsupervised Representation Adaptation,2017
129,China,Duke MTMC,duke_mtmc,30.508964,114.410577,"Huazhong Univ. of Science and Technology, China",edu,42656cf2b75dccc7f8f224f7a86c2ea4de1ae671,citation,https://arxiv.org/pdf/1807.11334.pdf,Unsupervised Domain Adaptive Re-Identification: Theory and Practice,2018
130,China,Duke MTMC,duke_mtmc,23.09461185,113.28788994,Sun Yat-Sen University,edu,788ab52d4f7fedb4b79347bb81822c4f3c430d80,citation,https://arxiv.org/pdf/1901.10177.pdf,Unsupervised Person Re-identification by Deep Asymmetric Metric Embedding,2018
131,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,31da1da2d4e7254dd8f2a4578d887c57e0678438,citation,https://arxiv.org/pdf/1705.10444.pdf,Unsupervised Person Re-identification: Clustering and Fine-tuning,2018
132,United Kingdom,Duke MTMC,duke_mtmc,54.6141723,-5.9002151,Queen's University Belfast,edu,1e146982a7b088e7a3790d2683484944c3b9dcf7,citation,https://pdfs.semanticscholar.org/1e14/6982a7b088e7a3790d2683484944c3b9dcf7.pdf,Video Person Re-Identification for Wide Area Tracking based on Recurrent Neural Networks,2017
133,Germany,Duke MTMC,duke_mtmc,49.01546,8.4257999,Fraunhofer,company,978716708762dab46e91059e170d43551be74732,citation,,A Pose-Sensitive Embedding for Person Re-identification with Expanded Cross Neighborhood Re-ranking,2018
134,Germany,Duke MTMC,duke_mtmc,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,978716708762dab46e91059e170d43551be74732,citation,,A Pose-Sensitive Embedding for Person Re-identification with Expanded Cross Neighborhood Re-ranking,2018
135,Taiwan,Duke MTMC,duke_mtmc,25.01682835,121.53846924,National Taiwan University,edu,d9216cc2a3c03659cb2392b7cc8509feb7829579,citation,,Adaptation and Re-identification Network: An Unsupervised Deep Transfer Learning Approach to Person Re-identification,2018
136,China,Duke MTMC,duke_mtmc,39.979203,116.33287,"CRIPAC & NLPR, CASIA",edu,1bfe59be5b42d6b7257da4b35a408239c01ab79d,citation,,Adversarially Occluded Samples for Person Re-identification,2018
137,China,Duke MTMC,duke_mtmc,40.0044795,116.370238,Chinese Academy of Sciences,edu,1bfe59be5b42d6b7257da4b35a408239c01ab79d,citation,,Adversarially Occluded Samples for Person Re-identification,2018
138,China,Duke MTMC,duke_mtmc,22.543096,114.057865,"SenseNets Corporation, Shenzhen, China",company,14ce502bc19b225466126b256511f9c05cadcb6e,citation,,Attention-Aware Compositional Network for Person Re-identification,2018
139,China,Duke MTMC,duke_mtmc,39.993008,116.329882,SenseTime,company,14ce502bc19b225466126b256511f9c05cadcb6e,citation,,Attention-Aware Compositional Network for Person Re-identification,2018
140,Australia,Duke MTMC,duke_mtmc,-33.88890695,151.18943366,University of Sydney,edu,14ce502bc19b225466126b256511f9c05cadcb6e,citation,,Attention-Aware Compositional Network for Person Re-identification,2018
141,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,1822ca8db58b0382b0c64f310840f0f875ea02c0,citation,,Camera Style Adaptation for Person Re-identification,2018
142,China,Duke MTMC,duke_mtmc,24.4399419,118.09301781,Xiamen University,edu,1822ca8db58b0382b0c64f310840f0f875ea02c0,citation,,Camera Style Adaptation for Person Re-identification,2018
143,China,Duke MTMC,duke_mtmc,36.16161795,120.49355276,Ocean University of China,edu,38259235a1c7b2c68ca09f3bc0930987ae99cf00,citation,,Deep Feature Ranking for Person Re-Identification,2019
144,South Korea,Duke MTMC,duke_mtmc,35.84658875,127.1350133,Chonbuk National University,edu,c635564fe2f7d91b578bd6959904982aaa61234d,citation,,Deep Multi-Task Network for Learning Person Identity and Attributes,2018
145,China,Duke MTMC,duke_mtmc,22.4162632,114.2109318,Chinese University of Hong Kong,edu,947954cafdefd471b75da8c3bb4c21b9e6d57838,citation,,End-to-End Deep Kronecker-Product Matching for Person Re-identification,2018
146,China,Duke MTMC,duke_mtmc,39.993008,116.329882,SenseTime,company,947954cafdefd471b75da8c3bb4c21b9e6d57838,citation,,End-to-End Deep Kronecker-Product Matching for Person Re-identification,2018
147,China,Duke MTMC,duke_mtmc,23.0502042,113.39880323,South China University of Technology,edu,cb68c60ac046a0ec1c7f67487f14b999037313e1,citation,,Exploit the Unknown Gradually: One-Shot Video-Based Person Re-identification by Stepwise Learning,2018
148,Australia,Duke MTMC,duke_mtmc,-33.88890695,151.18943366,University of Sydney,edu,cb68c60ac046a0ec1c7f67487f14b999037313e1,citation,,Exploit the Unknown Gradually: One-Shot Video-Based Person Re-identification by Stepwise Learning,2018
149,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,cb68c60ac046a0ec1c7f67487f14b999037313e1,citation,,Exploit the Unknown Gradually: One-Shot Video-Based Person Re-identification by Stepwise Learning,2018
150,United States,Duke MTMC,duke_mtmc,35.9990522,-78.9290629,Duke University,edu,c0f01b8174a632448c20eb5472cd9d5b2c595e39,citation,,Features for Multi-target Multi-camera Tracking and Re-identification,2018
151,China,Duke MTMC,duke_mtmc,22.4162632,114.2109318,Chinese University of Hong Kong,edu,308a13fd1d2847d98930a8e5542f773a9651a0ae,citation,,Group Consistent Similarity Learning via Deep CRF for Person Re-identification,2018
152,Italy,Duke MTMC,duke_mtmc,46.0658836,11.1159894,University of Trento,edu,308a13fd1d2847d98930a8e5542f773a9651a0ae,citation,,Group Consistent Similarity Learning via Deep CRF for Person Re-identification,2018
153,China,Duke MTMC,duke_mtmc,34.250803,108.983693,Xi’an Jiaotong University,edu,308a13fd1d2847d98930a8e5542f773a9651a0ae,citation,,Group Consistent Similarity Learning via Deep CRF for Person Re-identification,2018
154,Turkey,Duke MTMC,duke_mtmc,41.10427915,29.02231159,Istanbul Technical University,edu,7ba225a614d77efd9bdf66bf74c80dd2da09229a,citation,,Human Semantic Parsing for Person Re-identification,2018
155,United States,Duke MTMC,duke_mtmc,28.59899755,-81.19712501,University of Central Florida,edu,7ba225a614d77efd9bdf66bf74c80dd2da09229a,citation,,Human Semantic Parsing for Person Re-identification,2018
156,Australia,Duke MTMC,duke_mtmc,-32.00686365,115.89691775,Curtin University,edu,292286c0024d6625fe606fb5b8a0df54ea3ffe91,citation,,Identity Adaptation for Person Re-Identification,2018
157,United Kingdom,Duke MTMC,duke_mtmc,54.00975365,-2.78757491,Lancaster University,edu,292286c0024d6625fe606fb5b8a0df54ea3ffe91,citation,,Identity Adaptation for Person Re-Identification,2018
158,Australia,Duke MTMC,duke_mtmc,-31.95040445,115.79790037,University of Western Australia,edu,292286c0024d6625fe606fb5b8a0df54ea3ffe91,citation,,Identity Adaptation for Person Re-Identification,2018
159,China,Duke MTMC,duke_mtmc,40.0044795,116.370238,Chinese Academy of Sciences,edu,6cde93a5288e84671a7bee98cf6c94037f42da42,citation,,Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification,2018
160,Singapore,Duke MTMC,duke_mtmc,1.340216,103.965089,Singapore University of Technology and Design,edu,6cde93a5288e84671a7bee98cf6c94037f42da42,citation,,Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification,2018
161,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,6cde93a5288e84671a7bee98cf6c94037f42da42,citation,,Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification,2018
162,China,Duke MTMC,duke_mtmc,39.0607286,117.1256421,Tianjin Normal University,edu,67289bd3b7c9406429c6012eb7292305e50dff0b,citation,,Integration Convolutional Neural Network for Person Re-Identification in Camera Networks,2018
163,China,Duke MTMC,duke_mtmc,32.05765485,118.7550004,HoHai University,edu,fedb656c45aa332cfc373b413f3000b6228eee08,citation,,Joint Learning of Body and Part Representation for Person Re-Identification,2018
164,China,Duke MTMC,duke_mtmc,33.5491006,119.035706,"Huaiyin Institute of Technology, Huaian, China",edu,fedb656c45aa332cfc373b413f3000b6228eee08,citation,,Joint Learning of Body and Part Representation for Person Re-Identification,2018
165,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,fedb656c45aa332cfc373b413f3000b6228eee08,citation,,Joint Learning of Body and Part Representation for Person Re-Identification,2018
166,China,Duke MTMC,duke_mtmc,23.09461185,113.28788994,Sun Yat-Sen University,edu,b37538f9364252eec4182bdbb80ef1e4614c3acd,citation,,Learning a Semantically Discriminative Joint Space for Attribute Based Person Re-identification,2017
167,United Kingdom,Duke MTMC,duke_mtmc,51.5247272,-0.03931035,Queen Mary University of London,edu,004acfec16c36649408c561faa102dd9de76f085,citation,,Multi-level Factorisation Net for Person Re-identification,2018
168,United Kingdom,Duke MTMC,duke_mtmc,55.94951105,-3.19534913,University of Edinburgh,edu,004acfec16c36649408c561faa102dd9de76f085,citation,,Multi-level Factorisation Net for Person Re-identification,2018
169,China,Duke MTMC,duke_mtmc,39.0607286,117.1256421,Tianjin Normal University,edu,a80d8506fa28334c947989ca153b70aafc63ac7f,citation,,Pedestrian Retrieval via Part-Based Gradation Regularization in Sensor Networks,2018
170,United States,Duke MTMC,duke_mtmc,35.9990522,-78.9290629,Duke University,edu,96e77135e745385e87fdd0f7ced951bf1fe9a756,citation,,People Tracking and Re-Identification from Multiple Cameras,2018
171,China,Duke MTMC,duke_mtmc,30.274084,120.15507,Alibaba,company,90c18409b7a3be2cd6da599d02accba4c769e94e,citation,,Person Re-identification with Cascaded Pairwise Convolutions,2018
172,China,Duke MTMC,duke_mtmc,31.83907195,117.26420748,University of Science and Technology of China,edu,90c18409b7a3be2cd6da599d02accba4c769e94e,citation,,Person Re-identification with Cascaded Pairwise Convolutions,2018
173,China,Duke MTMC,duke_mtmc,30.5360485,114.3643219,"Wuhan Univeristy, Wuhan, China",edu,90c18409b7a3be2cd6da599d02accba4c769e94e,citation,,Person Re-identification with Cascaded Pairwise Convolutions,2018
174,China,Duke MTMC,duke_mtmc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,df4ed9983f7114ca4f0ab71f1476c0bf7521e317,citation,,Pose Transferrable Person Re-identification,2018
175,United States,Duke MTMC,duke_mtmc,40.4441619,-79.94272826,Carnegie Mellon University,edu,e307c6635472d3d1e512af6e20f2e56c95937bb7,citation,,Semi-Supervised Bayesian Attribute Learning for Person Re-Identification,2018
176,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,e307c6635472d3d1e512af6e20f2e56c95937bb7,citation,,Semi-Supervised Bayesian Attribute Learning for Person Re-Identification,2018
177,China,Duke MTMC,duke_mtmc,31.83907195,117.26420748,University of Science and Technology of China,edu,5b309f6d98c503efb679eda51bd898543fb746f9,citation,https://arxiv.org/pdf/1809.05864.pdf,In Defense of the Classification Loss for Person Re-Identification,2018
178,United States,Duke MTMC,duke_mtmc,42.3614256,-71.0812092,Microsoft Research Asia,company,5b309f6d98c503efb679eda51bd898543fb746f9,citation,https://arxiv.org/pdf/1809.05864.pdf,In Defense of the Classification Loss for Person Re-Identification,2018
179,United States,Duke MTMC,duke_mtmc,39.2899685,-76.62196103,University of Maryland,edu,fe3f8826f615cc5ada33b01777b9f9dc93e0023c,citation,https://arxiv.org/pdf/1901.07702.pdf,Exploring Uncertainty in Conditional Multi-Modal Retrieval Systems,2019
180,China,Duke MTMC,duke_mtmc,24.4399419,118.09301781,Xiamen University,edu,d95ce873ed42b7c7facaa4c1e9c72b57b4e279f6,citation,https://pdfs.semanticscholar.org/d95c/e873ed42b7c7facaa4c1e9c72b57b4e279f6.pdf,Generalizing a Person Retrieval Model Hetero- and Homogeneously,2018
181,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,d95ce873ed42b7c7facaa4c1e9c72b57b4e279f6,citation,https://pdfs.semanticscholar.org/d95c/e873ed42b7c7facaa4c1e9c72b57b4e279f6.pdf,Generalizing a Person Retrieval Model Hetero- and Homogeneously,2018
182,Australia,Duke MTMC,duke_mtmc,-35.2776999,149.118527,Australian National University,edu,d95ce873ed42b7c7facaa4c1e9c72b57b4e279f6,citation,https://pdfs.semanticscholar.org/d95c/e873ed42b7c7facaa4c1e9c72b57b4e279f6.pdf,Generalizing a Person Retrieval Model Hetero- and Homogeneously,2018
183,China,Duke MTMC,duke_mtmc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,927ec8dde9eb0e3bc5bf0b1a0ae57f9cf745fd9c,citation,https://arxiv.org/pdf/1804.01438.pdf,Learning Discriminative Features with Multiple Granularities for Person Re-Identification,2018
184,China,Duke MTMC,duke_mtmc,31.83907195,117.26420748,University of Science and Technology of China,edu,04ca65f1454f1014ef5af5bfafb7aee576ee1be6,citation,https://arxiv.org/pdf/1812.08967.pdf,Densely Semantically Aligned Person Re-Identification,2018
185,United States,Duke MTMC,duke_mtmc,42.3614256,-71.0812092,Microsoft Research Asia,company,04ca65f1454f1014ef5af5bfafb7aee576ee1be6,citation,https://arxiv.org/pdf/1812.08967.pdf,Densely Semantically Aligned Person Re-Identification,2018
186,China,Duke MTMC,duke_mtmc,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,7daa2c0f76fd3bfc7feadf313d6ac7504d4ecd20,citation,https://arxiv.org/pdf/1803.09937.pdf,Dual Attention Matching Network for Context-Aware Feature Sequence Based Person Re-identification,2018
187,Singapore,Duke MTMC,duke_mtmc,1.3484104,103.68297965,Nanyang Technological University,edu,7daa2c0f76fd3bfc7feadf313d6ac7504d4ecd20,citation,https://arxiv.org/pdf/1803.09937.pdf,Dual Attention Matching Network for Context-Aware Feature Sequence Based Person Re-identification,2018
188,China,Duke MTMC,duke_mtmc,32.0565957,118.77408833,Nanjing University,edu,08b28a8f2699501d46d87956cbaa37255000daa3,citation,https://arxiv.org/pdf/1804.03864.pdf,MaskReID: A Mask Based Deep Ranking Neural Network for Person Re-identification,2018
189,Australia,Duke MTMC,duke_mtmc,-34.40505545,150.87834655,University of Wollongong,edu,08b28a8f2699501d46d87956cbaa37255000daa3,citation,https://arxiv.org/pdf/1804.03864.pdf,MaskReID: A Mask Based Deep Ranking Neural Network for Person Re-identification,2018
190,United Kingdom,Duke MTMC,duke_mtmc,51.5247272,-0.03931035,Queen Mary University of London,edu,baf5ab5e8972e9366951b7e66951e05e2a4b3e36,citation,https://arxiv.org/pdf/1802.08122.pdf,Harmonious Attention Network for Person Re-identification,2018
191,United Kingdom,Duke MTMC,duke_mtmc,52.3793131,-1.5604252,University of Warwick,edu,124d60fae338b1f87455d1fc4ede5fcfd806da1a,citation,https://arxiv.org/pdf/1807.01440.pdf,Multi-task Mid-level Feature Alignment Network for Unsupervised Cross-Dataset Person Re-Identification,2018
192,Singapore,Duke MTMC,duke_mtmc,1.3484104,103.68297965,Nanyang Technological University,edu,124d60fae338b1f87455d1fc4ede5fcfd806da1a,citation,https://arxiv.org/pdf/1807.01440.pdf,Multi-task Mid-level Feature Alignment Network for Unsupervised Cross-Dataset Person Re-Identification,2018
193,Australia,Duke MTMC,duke_mtmc,-35.0636071,147.3552234,Charles Sturt University,edu,124d60fae338b1f87455d1fc4ede5fcfd806da1a,citation,https://arxiv.org/pdf/1807.01440.pdf,Multi-task Mid-level Feature Alignment Network for Unsupervised Cross-Dataset Person Re-Identification,2018
194,China,Duke MTMC,duke_mtmc,34.1235825,108.83546,Xidian University,edu,55355b0317f6e0c5218887441de71f05da4b42f6,citation,https://arxiv.org/pdf/1811.12150.pdf,Parameter-Free Spatial Attention Network for Person Re-Identification,2018
195,Germany,Duke MTMC,duke_mtmc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,55355b0317f6e0c5218887441de71f05da4b42f6,citation,https://arxiv.org/pdf/1811.12150.pdf,Parameter-Free Spatial Attention Network for Person Re-Identification,2018
196,China,Duke MTMC,duke_mtmc,31.2284923,121.40211389,East China Normal University,edu,e1af55ad7bb26e5e1acde3ec6c5c43cffe884b04,citation,https://pdfs.semanticscholar.org/e1af/55ad7bb26e5e1acde3ec6c5c43cffe884b04.pdf,Person Re-identification by Mid-level Attribute and Part-based Identity Learning,2018
197,Brazil,Duke MTMC,duke_mtmc,-27.5953995,-48.6154218,University of Campinas,edu,b986a535e45751cef684a30631a74476e911a749,citation,https://arxiv.org/pdf/1807.05618.pdf,Improved Person Re-Identification Based on Saliency and Semantic Parsing with Deep Neural Network Models,2018
198,South Korea,Duke MTMC,duke_mtmc,37.26728,126.9841151,Seoul National University,edu,315df9b7dd354ae78ddf1049fb428b086eee632c,citation,https://arxiv.org/pdf/1804.07094.pdf,Part-Aligned Bilinear Representations for Person Re-identification,2018
199,Germany,Duke MTMC,duke_mtmc,48.7468939,9.0805141,Max Planck Institute for Intelligent Systems,edu,315df9b7dd354ae78ddf1049fb428b086eee632c,citation,https://arxiv.org/pdf/1804.07094.pdf,Part-Aligned Bilinear Representations for Person Re-identification,2018
200,United States,Duke MTMC,duke_mtmc,47.6423318,-122.1369302,Microsoft,company,315df9b7dd354ae78ddf1049fb428b086eee632c,citation,https://arxiv.org/pdf/1804.07094.pdf,Part-Aligned Bilinear Representations for Person Re-identification,2018
201,United States,Duke MTMC,duke_mtmc,40.1019523,-88.2271615,UIUC,edu,cc78e3f1e531342f639e4a1fc8107a7a778ae1cf,citation,https://arxiv.org/pdf/1811.10144.pdf,One Shot Domain Adaptation for Person Re-Identification,2018
202,China,Duke MTMC,duke_mtmc,22.053565,113.39913285,Jilin University,edu,4abf902cefca527f707e4f76dd4e14fcd5d47361,citation,https://arxiv.org/pdf/1811.11510.pdf,Identity Preserving Generative Adversarial Network for Cross-Domain Person Re-identification,2018
203,China,Duke MTMC,duke_mtmc,32.0565957,118.77408833,Nanjing University,edu,088e7b24bd1cf6e5922ae6c80d37439e05fadce9,citation,https://arxiv.org/pdf/1711.07155.pdf,Let Features Decide for Themselves: Feature Mask Network for Person Re-identification,2017
204,China,Duke MTMC,duke_mtmc,22.4162632,114.2109318,Chinese University of Hong Kong,edu,4f8e06ac894e9cc1eb1617a293e43448930c7d4f,citation,https://arxiv.org/pdf/1810.02936.pdf,FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identification,2018
205,China,Duke MTMC,duke_mtmc,39.993008,116.329882,SenseTime,company,4f8e06ac894e9cc1eb1617a293e43448930c7d4f,citation,https://arxiv.org/pdf/1810.02936.pdf,FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identification,2018
206,United States,Duke MTMC,duke_mtmc,39.3299013,-76.6205177,Johns Hopkins University,edu,4f8e06ac894e9cc1eb1617a293e43448930c7d4f,citation,https://arxiv.org/pdf/1810.02936.pdf,FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identification,2018
207,China,Duke MTMC,duke_mtmc,31.83907195,117.26420748,University of Science and Technology of China,edu,4f8e06ac894e9cc1eb1617a293e43448930c7d4f,citation,https://arxiv.org/pdf/1810.02936.pdf,FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identification,2018
208,China,Duke MTMC,duke_mtmc,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,c753521ba6fb06c12369d6fff814bb704c682ef5,citation,https://pdfs.semanticscholar.org/c753/521ba6fb06c12369d6fff814bb704c682ef5.pdf,Mancs: A Multi-task Attentional Network with Curriculum Sampling for Person Re-Identification,2018
209,Canada,Duke MTMC,duke_mtmc,46.7817463,-71.2747424,Université Laval,edu,a743127b44397b7a017a65a7ad52d0d7ccb4db93,citation,https://arxiv.org/pdf/1804.10094.pdf,Domain Adaptation Through Synthesis for Unsupervised Person Re-identification,2018
210,Australia,Duke MTMC,duke_mtmc,-35.2776999,149.118527,Australian National University,edu,12d62f1360587fdecee728e6c509acc378f38dc9,citation,https://arxiv.org/pdf/1805.06118.pdf,Feature Affinity based Pseudo Labeling for Semi-supervised Person Re-identification,2018
211,China,Duke MTMC,duke_mtmc,32.20541,118.726956,Nanjing University of Information Science & Technology,edu,12d62f1360587fdecee728e6c509acc378f38dc9,citation,https://arxiv.org/pdf/1805.06118.pdf,Feature Affinity based Pseudo Labeling for Semi-supervised Person Re-identification,2018
212,Australia,Duke MTMC,duke_mtmc,-33.8809651,151.20107299,University of Technology Sydney,edu,12d62f1360587fdecee728e6c509acc378f38dc9,citation,https://arxiv.org/pdf/1805.06118.pdf,Feature Affinity based Pseudo Labeling for Semi-supervised Person Re-identification,2018
213,China,Duke MTMC,duke_mtmc,40.0044795,116.370238,Chinese Academy of Sciences,edu,14b3a7aa61c15fd9cab0a4d8bc2a205a89fb572e,citation,https://arxiv.org/pdf/1807.11206.pdf,Hard-Aware Point-to-Set Deep Metric for Person Re-identification,2018
214,China,Duke MTMC,duke_mtmc,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,14b3a7aa61c15fd9cab0a4d8bc2a205a89fb572e,citation,https://arxiv.org/pdf/1807.11206.pdf,Hard-Aware Point-to-Set Deep Metric for Person Re-identification,2018
215,China,Duke MTMC,duke_mtmc,22.304572,114.17976285,Hong Kong Polytechnic University,edu,fea0895326b663bf72be89151a751362db8ae881,citation,https://arxiv.org/pdf/1804.08866.pdf,Homocentric Hypersphere Feature Embedding for Person Re-identification,2018
216,China,Duke MTMC,duke_mtmc,30.209484,120.220912,"Hikvision Digital Technology Co., Ltd.",company,ed3991046e6dfba0c5cebdbbe914cc3aa06d0235,citation,https://arxiv.org/pdf/1812.06576.pdf,Learning Incremental Triplet Margin for Person Re-identification,2019
217,China,Duke MTMC,duke_mtmc,24.4399419,118.09301781,Xiamen University,edu,e746447afc4898713a0bcf2bb560286eb4d20019,citation,https://arxiv.org/pdf/1811.02074.pdf,Leveraging Virtual and Real Person for Unsupervised Person Re-identification,2018
218,Italy,Duke MTMC,duke_mtmc,45.434532,12.326197,"DAIS, Università Ca’ Foscari, Venice, Italy",edu,bee609ea6e71aba9b449731242efdb136d556222,citation,https://arxiv.org/pdf/1706.06196.pdf,Multi-Target Tracking in Multiple Non-Overlapping Cameras using Constrained Dominant Sets,2017
219,Italy,Duke MTMC,duke_mtmc,45.4377672,12.321807,University Iuav of Venice,edu,bee609ea6e71aba9b449731242efdb136d556222,citation,https://arxiv.org/pdf/1706.06196.pdf,Multi-Target Tracking in Multiple Non-Overlapping Cameras using Constrained Dominant Sets,2017
220,India,Duke MTMC,duke_mtmc,13.0222347,77.56718325,Indian Institute of Science Bangalore,edu,317f5a56519df95884cce81cfba180ee3adaf5a5,citation,https://arxiv.org/pdf/1807.07295.pdf,Operator-In-The-Loop Deep Sequential Multi-camera Feature Fusion for Person Re-identification,2018
221,China,Duke MTMC,duke_mtmc,31.2284923,121.40211389,East China Normal University,edu,0353fe24ecd237f4d9ae4dbc277a6a67a69ce8ed,citation,https://pdfs.semanticscholar.org/0353/fe24ecd237f4d9ae4dbc277a6a67a69ce8ed.pdf,Discriminative Feature Representation for Person Re-identification by Batch-contrastive Loss,2018
222,China,Duke MTMC,duke_mtmc,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,fd2bc4833c19a60d3646368952dcf35dbda007f3,citation,,Improving Person Re-Identification by Adaptive Hard Sample Mining,2018
223,China,Duke MTMC,duke_mtmc,30.60903415,114.3514284,Wuhan University of Technology,edu,fd2bc4833c19a60d3646368952dcf35dbda007f3,citation,,Improving Person Re-Identification by Adaptive Hard Sample Mining,2018
|