summaryrefslogtreecommitdiff
path: root/site/datasets/verified/adience.csv
blob: f46d448358a0c8d2c8aa3da176c75ae5ad98f557 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
id,country,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
0,,Adience,adience,0.0,0.0,,,,main,,Age and Gender Estimation of Unfiltered Faces,2014
1,China,Adience,adience,39.993008,116.329882,SenseTime,company,c72a2ea819df9b0e8cd267eebcc6528b8741e03d,citation,https://arxiv.org/pdf/1708.09687.pdf,Quantifying Facial Age by Posterior of Age Comparisons,2017
2,China,Adience,adience,22.4162632,114.2109318,Chinese University of Hong Kong,edu,c72a2ea819df9b0e8cd267eebcc6528b8741e03d,citation,https://arxiv.org/pdf/1708.09687.pdf,Quantifying Facial Age by Posterior of Age Comparisons,2017
3,United States,Adience,adience,38.9869183,-76.9425543,"Maryland Univ., College Park, MD, USA",edu,59b6e9320a4e1de9216c6fc49b4b0309211b17e8,citation,https://pdfs.semanticscholar.org/59b6/e9320a4e1de9216c6fc49b4b0309211b17e8.pdf,Robust Representations for unconstrained Face Recognition and its Applications,2016
4,United Kingdom,Adience,adience,51.49887085,-0.17560797,Imperial College London,edu,d818568838433a6d6831adde49a58cef05e0c89f,citation,http://eprints.mdx.ac.uk/22044/1/agedb_kotsia.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017
5,China,Adience,adience,28.2290209,112.99483204,"National University of Defense Technology, China",mil,4f37f71517420c93c6841beb33ca0926354fa11d,citation,http://www.cs.newpaltz.edu/~lik/publications/Mingxing-Duan-NC-2017.pdf,A hybrid deep learning CNN-ELM for age and gender classification,2018
6,China,Adience,adience,26.88111275,112.62850666,Hunan University,edu,4f37f71517420c93c6841beb33ca0926354fa11d,citation,http://www.cs.newpaltz.edu/~lik/publications/Mingxing-Duan-NC-2017.pdf,A hybrid deep learning CNN-ELM for age and gender classification,2018
7,Italy,Adience,adience,46.0658836,11.1159894,University of Trento,edu,cb43519894258b125624dc0df655ab5357b1e42f,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017
8,China,Adience,adience,39.9041999,116.4073963,"Qihoo 360 AI Institute, Beijing, China",edu,cb43519894258b125624dc0df655ab5357b1e42f,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017
9,Singapore,Adience,adience,1.2962018,103.77689944,National University of Singapore,edu,cb43519894258b125624dc0df655ab5357b1e42f,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017
10,United States,Adience,adience,40.51865195,-74.44099801,State University of New Jersey,edu,d00e9a6339e34c613053d3b2c132fccbde547b56,citation,http://www.rci.rutgers.edu/~vmp93/Conference_pub/btas_age_2016_cameraready.pdf,A cascaded convolutional neural network for age estimation of unconstrained faces,2016
11,United States,Adience,adience,39.2899685,-76.62196103,University of Maryland,edu,d00e9a6339e34c613053d3b2c132fccbde547b56,citation,http://www.rci.rutgers.edu/~vmp93/Conference_pub/btas_age_2016_cameraready.pdf,A cascaded convolutional neural network for age estimation of unconstrained faces,2016
12,Bangladesh,Adience,adience,23.7289899,90.3982682,Institute of Information Technology,edu,6e177341d4412f9c9a639e33e6096344ef930202,citation,https://pdfs.semanticscholar.org/2e58/ec57d71b2b2a3e71086234dd7037559cc17e.pdf,A Gender Recognition System from Facial Image,2018
13,Bangladesh,Adience,adience,23.7316957,90.3965275,University of Dhaka,edu,6e177341d4412f9c9a639e33e6096344ef930202,citation,https://pdfs.semanticscholar.org/2e58/ec57d71b2b2a3e71086234dd7037559cc17e.pdf,A Gender Recognition System from Facial Image,2018
14,Canada,Adience,adience,43.7743911,-79.50481085,York University,edu,ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,citation,https://arxiv.org/pdf/1706.04277.pdf,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,2017
15,Egypt,Adience,adience,27.18794105,31.17009498,Assiut University,edu,ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,citation,https://arxiv.org/pdf/1706.04277.pdf,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,2017
16,Switzerland,Adience,adience,47.376313,8.5476699,ETH Zurich,edu,10195a163ab6348eef37213a46f60a3d87f289c5,citation,http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf,Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks,2016
17,United Kingdom,Adience,adience,51.49887085,-0.17560797,Imperial College London,edu,7f30a36a3faab044c095814d0ce17ea2b6638213,citation,https://arxiv.org/pdf/1802.04636.pdf,Modeling of facial aging and kinship: A survey,2018
18,United Kingdom,Adience,adience,51.59029705,-0.22963221,Middlesex University,edu,7f30a36a3faab044c095814d0ce17ea2b6638213,citation,https://arxiv.org/pdf/1802.04636.pdf,Modeling of facial aging and kinship: A survey,2018
19,United States,Adience,adience,40.9153196,-73.1270626,Stony Brook University,edu,25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b,citation,https://arxiv.org/pdf/1608.06557.pdf,Neural Networks with Smooth Adaptive Activation Functions for Regression,2016
20,United States,Adience,adience,35.93006535,-84.31240032,Oak Ridge National Laboratory,edu,25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b,citation,https://arxiv.org/pdf/1608.06557.pdf,Neural Networks with Smooth Adaptive Activation Functions for Regression,2016
21,Canada,Adience,adience,49.2767454,-122.91777375,Simon Fraser University,edu,880b4be9afc4d5ef75b5d77f51eadb557acbf251,citation,http://www.cs.umanitoba.ca/~ywang/papers/mmsp18.pdf,Privacy-Preserving Age Estimation for Content Rating,2018
22,Canada,Adience,adience,49.8091536,-97.13304179,University of Manitoba,edu,880b4be9afc4d5ef75b5d77f51eadb557acbf251,citation,http://www.cs.umanitoba.ca/~ywang/papers/mmsp18.pdf,Privacy-Preserving Age Estimation for Content Rating,2018
23,United States,Adience,adience,32.9820799,-96.7566278,University of Texas at Dallas,edu,e49d124a3d7eba42b0e3e79c1dd7537e6611602d,citation,https://arxiv.org/pdf/1803.05719.pdf,"SAF- BAGE: Salient Approach for Facial Soft-Biometric Classification - Age, Gender, and Facial Expression",2018
24,India,Adience,adience,23.0378743,72.55180046,Ahmedabad University,edu,e49d124a3d7eba42b0e3e79c1dd7537e6611602d,citation,https://arxiv.org/pdf/1803.05719.pdf,"SAF- BAGE: Salient Approach for Facial Soft-Biometric Classification - Age, Gender, and Facial Expression",2018
25,United States,Adience,adience,40.9153196,-73.1270626,Stony Brook University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,https://arxiv.org/pdf/1611.05916.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016
26,United States,Adience,adience,42.36782045,-71.12666653,Harvard University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,https://arxiv.org/pdf/1611.05916.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016
27,United States,Adience,adience,39.2899685,-76.62196103,University of Maryland,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Ranjan_Unconstrained_Age_Estimation_ICCV_2015_paper.pdf,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015
28,United States,Adience,adience,40.47913175,-74.43168868,Rutgers University,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Ranjan_Unconstrained_Age_Estimation_ICCV_2015_paper.pdf,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015
29,Finland,Adience,adience,65.0592157,25.46632601,University of Oulu,edu,1fe121925668743762ce9f6e157081e087171f4c,citation,http://www.ee.oulu.fi/~jkannala/publications/cvprw2015.pdf,Unsupervised learning of overcomplete face descriptors,2015
30,United States,Adience,adience,39.65404635,-79.96475355,West Virginia University,edu,7a65fc9e78eff3ab6062707deaadde024d2fad40,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Zhu_A_Study_on_ICCV_2015_paper.pdf,A Study on Apparent Age Estimation,2015
31,Italy,Adience,adience,45.47567215,9.23336232,Università degli Studi di Milano,edu,717ffde99c0d6b58675d44b4c66acedce0ca86e8,citation,https://air.unimi.it/retrieve/handle/2434/527428/913482/cisda17.pdf,Age estimation based on face images and pre-trained convolutional neural networks,2017
32,United States,Adience,adience,34.0224149,-118.28634407,University of Southern California,edu,eb6ee56e085ebf473da990d032a4249437a3e462,citation,http://www-scf.usc.edu/~chuntinh/doc/Age_Gender_Classification_APSIPA_2017.pdf,Age/gender classification with whole-component convolutional neural networks (WC-CNN),2017
33,United States,Adience,adience,47.00646895,-120.5367304,Central Washington University,edu,9d6e60d49e92361f8f558013065dfa67043dd337,citation,https://pdfs.semanticscholar.org/9d6e/60d49e92361f8f558013065dfa67043dd337.pdf,Applications of Computational Geometry and Computer Vision,2016
34,United States,Adience,adience,41.1664858,-73.1920564,University of Bridgeport,edu,0cece7b8989352e16a2fab8c0a0b1911c286906a,citation,https://pdfs.semanticscholar.org/0cec/e7b8989352e16a2fab8c0a0b1911c286906a.pdf,AUTOMATIC AGE ESTIMATION FROM REAL-WORLD AND WILD FACE IMAGES BY USING DEEP NEURAL NETWORKS,2017
35,United States,Adience,adience,47.00646895,-120.5367304,Central Washington University,edu,56c2fb2438f32529aec604e6fc3b06a595ddbfcc,citation,https://pdfs.semanticscholar.org/60dc/35a42ac758c5372c44f3791c951374658609.pdf,Comparison of Recent Machine Learning Techniques for Gender Recognition from Facial Images,2016
36,United States,Adience,adience,37.43131385,-122.16936535,Stanford University,edu,16d6737b50f969247339a6860da2109a8664198a,citation,https://pdfs.semanticscholar.org/16d6/737b50f969247339a6860da2109a8664198a.pdf,Convolutional Neural Networks for Age and Gender Classification,2016
37,United States,Adience,adience,42.357757,-83.06286711,Wayne State University,edu,4f1249369127cc2e2894f6b2f1052d399794919a,citation,http://www.cs.wayne.edu/~mdong/tmm18.pdf,Deep Age Estimation: From Classification to Ranking,2018
38,United States,Adience,adience,41.1664858,-73.1920564,University of Bridgeport,edu,ac9a331327cceda4e23f9873f387c9fd161fad76,citation,https://arxiv.org/pdf/1709.01664.pdf,Deep Convolutional Neural Network for Age Estimation based on VGG-Face Model,2017
39,Netherlands,Adience,adience,53.21967825,6.56251482,University of Groningen,edu,4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac,citation,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_SSCI_2015/data/7560a188.pdf,Deep Convolutional Neural Networks and Support Vector Machines for Gender Recognition,2015
40,United Kingdom,Adience,adience,51.5217668,-0.13019072,University of London,edu,31ea88f29e7f01a9801648d808f90862e066f9ea,citation,https://arxiv.org/pdf/1605.06391.pdf,Deep Multi-task Representation Learning: A Tensor Factorisation Approach,2016
41,Netherlands,Adience,adience,53.21967825,6.56251482,University of Groningen,edu,361c9ba853c7d69058ddc0f32cdbe94fbc2166d5,citation,https://pdfs.semanticscholar.org/361c/9ba853c7d69058ddc0f32cdbe94fbc2166d5.pdf,Deep Reinforcement Learning of Video Games,2017
42,South Korea,Adience,adience,37.26728,126.9841151,Seoul National University,edu,282503fa0285240ef42b5b4c74ae0590fe169211,citation,https://arxiv.org/pdf/1801.07848.pdf,Feeding Hand-Crafted Features for Enhancing the Performance of Convolutional Neural Networks,2018
43,Italy,Adience,adience,45.518383,9.213452,University of Milano-Bicocca,edu,305346d01298edeb5c6dc8b55679e8f60ba97efb,citation,https://pdfs.semanticscholar.org/3053/46d01298edeb5c6dc8b55679e8f60ba97efb.pdf,Fine-Grained Face Annotation Using Deep Multi-Task CNN,2018
44,Canada,Adience,adience,45.5039761,-73.5749687,McGill University,edu,a760d33a21d2ab338f59d32ac7f96023bbfaa248,citation,https://arxiv.org/pdf/1803.08134.pdf,Fisher Pruning of Deep Nets for Facial Trait Classification,2018
45,Taiwan,Adience,adience,25.0410728,121.6147562,Institute of Information Science,edu,0951f42abbf649bb564a21d4ff5dddf9a5ea54d9,citation,https://arxiv.org/pdf/1806.02023.pdf,Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications,2018
46,China,Adience,adience,25.055125,102.696888,Yunnan Normal University,edu,99c57ec53f2598d63c010f791adbca386b276919,citation,https://pdfs.semanticscholar.org/99c5/7ec53f2598d63c010f791adbca386b276919.pdf,Landmark-Guided Local Deep Neural Networks for Age and Gender Classification,2018
47,South Korea,Adience,adience,37.5600406,126.9369248,Yonsei University,edu,ba0d9e1e8bc798656429fe7121afee672dddb380,citation,https://arxiv.org/pdf/1809.01990.pdf,Multi-Expert Gender Classification on Age Group by Integrating Deep Neural Networks,2018
48,Canada,Adience,adience,45.42580475,-75.68740118,University of Ottawa,edu,16820ccfb626dcdc893cc7735784aed9f63cbb70,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W12/papers/Azarmehr_Real-Time_Embedded_Age_2015_CVPR_paper.pdf,Real-time embedded age and gender classification in unconstrained video,2015
49,United States,Adience,adience,40.9153196,-73.1270626,Stony Brook University,edu,1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc,citation,https://pdfs.semanticscholar.org/1190/cba0cae3c8bb81bf80d6a0a83ae8c41240bc.pdf,Squared Earth Mover ’ s Distance Loss for Training Deep Neural Networks on Ordered-Classes,2017
50,Singapore,Adience,adience,1.340216,103.965089,Singapore University of Technology and Design,edu,00823e6c0b6f1cf22897b8d0b2596743723ec51c,citation,https://arxiv.org/pdf/1708.07689.pdf,Understanding and Comparing Deep Neural Networks for Age and Gender Classification,2017
51,United States,Adience,adience,42.357757,-83.06286711,Wayne State University,edu,28d99dc2d673d62118658f8375b414e5192eac6f,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Chen_Using_Ranking-CNN_for_CVPR_2017_paper.pdf,Using Ranking-CNN for Age Estimation,2017
52,Israel,Adience,adience,32.77824165,34.99565673,Open University of Israel,edu,2cbb4a2f8fd2ddac86f8804fd7ffacd830a66b58,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Levi_Age_and_Gender_2015_CVPR_paper.pdf,Age and gender classification using convolutional neural networks,2015
53,Australia,Adience,adience,-35.2776999,149.118527,Australian National University,edu,ac2e3a889fc46ca72f9a2cdedbdd6f3d4e9e2627,citation,https://pdfs.semanticscholar.org/ac2e/3a889fc46ca72f9a2cdedbdd6f3d4e9e2627.pdf,Age detection from a single image using multitask neural networks : An overview and design proposal,2016
54,Australia,Adience,adience,-35.2776999,149.118527,CSIRO,edu,ac2e3a889fc46ca72f9a2cdedbdd6f3d4e9e2627,citation,https://pdfs.semanticscholar.org/ac2e/3a889fc46ca72f9a2cdedbdd6f3d4e9e2627.pdf,Age detection from a single image using multitask neural networks : An overview and design proposal,2016
55,Australia,Adience,adience,-35.2776999,149.118527,"Data61, CSIRO, Canberra, Australia",edu,ac2e3a889fc46ca72f9a2cdedbdd6f3d4e9e2627,citation,https://pdfs.semanticscholar.org/ac2e/3a889fc46ca72f9a2cdedbdd6f3d4e9e2627.pdf,Age detection from a single image using multitask neural networks : An overview and design proposal,2016
56,China,Adience,adience,38.8760446,115.4973873,North China Electric Power University,edu,50ff21e595e0ebe51ae808a2da3b7940549f4035,citation,https://arxiv.org/pdf/1710.02985.pdf,Age Group and Gender Estimation in the Wild With Deep RoR Architecture,2017
57,United States,Adience,adience,38.9403808,-92.3277375,University of Missouri Columbia,edu,50ff21e595e0ebe51ae808a2da3b7940549f4035,citation,https://arxiv.org/pdf/1710.02985.pdf,Age Group and Gender Estimation in the Wild With Deep RoR Architecture,2017
58,China,Adience,adience,26.88111275,112.62850666,Hunan University,edu,ec0104286c96707f57df26b4f0a4f49b774c486b,citation,http://www.cs.newpaltz.edu/~lik/publications/Mingxing-Duan-IEEE-TIFS-2018.pdf,An Ensemble CNN2ELM for Age Estimation,2018
59,China,Adience,adience,28.2290209,112.99483204,"National University of Defense Technology, China",mil,ec0104286c96707f57df26b4f0a4f49b774c486b,citation,http://www.cs.newpaltz.edu/~lik/publications/Mingxing-Duan-IEEE-TIFS-2018.pdf,An Ensemble CNN2ELM for Age Estimation,2018
60,United States,Adience,adience,42.6480516,-73.749576,State University of New York,edu,ec0104286c96707f57df26b4f0a4f49b774c486b,citation,http://www.cs.newpaltz.edu/~lik/publications/Mingxing-Duan-IEEE-TIFS-2018.pdf,An Ensemble CNN2ELM for Age Estimation,2018
61,United States,Adience,adience,37.3706254,-121.9671894,NVIDIA,company,81e628a23e434762b1208045919af48dceb6c4d2,citation,https://arxiv.org/pdf/1807.07320.pdf,Attend and Rectify: A Gated Attention Mechanism for Fine-Grained Recovery,2018
62,Spain,Adience,adience,41.5019255,2.1048538,"UAB, Barcelona, Spain",edu,81e628a23e434762b1208045919af48dceb6c4d2,citation,https://arxiv.org/pdf/1807.07320.pdf,Attend and Rectify: A Gated Attention Mechanism for Fine-Grained Recovery,2018
63,Brazil,Adience,adience,-27.5953995,-48.6154218,University of Campinas,edu,bc749f0e81eafe9e32d56336750782f45d82609d,citation,https://pdfs.semanticscholar.org/bc74/9f0e81eafe9e32d56336750782f45d82609d.pdf,Combination of Texture and Geometric Features for Age Estimation in Face Images,2018
64,China,Adience,adience,22.4162632,114.2109318,Chinese University of Hong Kong,edu,29db16efc3b378c50511f743e5197a4c0b9e902f,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Kuang_Deeply_Learned_Rich_ICCV_2015_paper.pdf,Deeply Learned Rich Coding for Cross-Dataset Facial Age Estimation,2015
65,China,Adience,adience,39.993008,116.329882,SenseTime,company,29db16efc3b378c50511f743e5197a4c0b9e902f,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Kuang_Deeply_Learned_Rich_ICCV_2015_paper.pdf,Deeply Learned Rich Coding for Cross-Dataset Facial Age Estimation,2015
66,Israel,Adience,adience,32.77824165,34.99565673,Open University of Israel,edu,0dccc881cb9b474186a01fd60eb3a3e061fa6546,citation,https://arxiv.org/pdf/1411.7964.pdf,Effective face frontalization in unconstrained images,2015
67,Russia,Adience,adience,56.3244285,44.0286291,Nizhny Novgorod State Linguistic University,edu,efb56e7488148d52d3b8a2dae9f8880b273f4226,citation,https://arxiv.org/pdf/1807.07718.pdf,"Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN",2018
68,Russia,Adience,adience,55.694797,37.564332,"Samsung-PDMI Joint AI Center, Steklov Institute of Mathematics",company,efb56e7488148d52d3b8a2dae9f8880b273f4226,citation,https://arxiv.org/pdf/1807.07718.pdf,"Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN",2018
69,Ireland,Adience,adience,53.308244,-6.2241652,University College Dublin,edu,cc45fb67772898c36519de565c9bd0d1d11f1435,citation,https://forensicsandsecurity.com/papers/EvaluatingFacialAgeEstimation.pdf,Evaluating Automated Facial Age Estimation Techniques for Digital Forensics,2018
70,China,Adience,adience,37.8956594,114.9042208,"Hebei, China",edu,fca6df7d36f449d48a8d1e48a78c860d52e3baf8,citation,https://arxiv.org/pdf/1805.10445.pdf,Fine-Grained Age Estimation in the wild with Attention LSTM Networks,2018
71,China,Adience,adience,38.8760446,115.4973873,North China Electric Power University,edu,fca6df7d36f449d48a8d1e48a78c860d52e3baf8,citation,https://arxiv.org/pdf/1805.10445.pdf,Fine-Grained Age Estimation in the wild with Attention LSTM Networks,2018
72,United States,Adience,adience,38.9403808,-92.3277375,University of Missouri-Columbia,edu,fca6df7d36f449d48a8d1e48a78c860d52e3baf8,citation,https://arxiv.org/pdf/1805.10445.pdf,Fine-Grained Age Estimation in the wild with Attention LSTM Networks,2018
73,India,Adience,adience,28.5456282,77.2731505,"IIIT Delhi, India",edu,af6e351d58dba0962d6eb1baf4c9a776eb73533f,citation,https://arxiv.org/pdf/1612.07454.pdf,How to Train Your Deep Neural Network with Dictionary Learning,2016
74,Turkey,Adience,adience,41.10427915,29.02231159,Istanbul Technical University,edu,9755554b13103df634f9b1ef50a147dd02eab02f,citation,https://arxiv.org/pdf/1610.00134.pdf,How Transferable Are CNN-Based Features for Age and Gender Classification?,2016
75,United States,Adience,adience,42.3619407,-71.0904378,MIT CSAIL,edu,9755554b13103df634f9b1ef50a147dd02eab02f,citation,https://arxiv.org/pdf/1610.00134.pdf,How Transferable Are CNN-Based Features for Age and Gender Classification?,2016
76,Turkey,Adience,adience,38.029533,32.506051,"Mevlana Universitesi, Konya, Turkey",edu,eb4151eebd0b7451ca990b242cef8357bfa9db92,citation,https://pdfs.semanticscholar.org/eb41/51eebd0b7451ca990b242cef8357bfa9db92.pdf,Human Gender Prediction on Facial Images Taken by Mobile Phone using Convolutional Neural Networks,2018
77,United Kingdom,Adience,adience,53.405936,-2.9655722,Liverpool University,edu,c95d8b9bddd76b8c83c8745747e8a33feedf3941,citation,https://arxiv.org/pdf/1805.02901.pdf,Image Ordinal Classification and Understanding: Grid Dropout with Masking Label,2018
78,China,Adience,adience,28.874513,105.431827,"Sichuan Police College, Luzhou, China",gov,c95d8b9bddd76b8c83c8745747e8a33feedf3941,citation,https://arxiv.org/pdf/1805.02901.pdf,Image Ordinal Classification and Understanding: Grid Dropout with Masking Label,2018
79,China,Adience,adience,30.672721,104.098806,University of Electronic Science and Technology of China,edu,c95d8b9bddd76b8c83c8745747e8a33feedf3941,citation,https://arxiv.org/pdf/1805.02901.pdf,Image Ordinal Classification and Understanding: Grid Dropout with Masking Label,2018
80,India,Adience,adience,19.1334302,72.9132679,"Indian Institute of Technology Bombay, Mumbai, India",edu,bb33376961f6663df848ae9bf055c9afd9182443,citation,https://arxiv.org/pdf/1901.01151.pdf,Learning From Less Data: A Unified Data Subset Selection and Active Learning Framework for Computer Vision,2019
81,United States,Adience,adience,47.6423318,-122.1369302,Microsoft,company,bb33376961f6663df848ae9bf055c9afd9182443,citation,https://arxiv.org/pdf/1901.01151.pdf,Learning From Less Data: A Unified Data Subset Selection and Active Learning Framework for Computer Vision,2019
82,United States,Adience,adience,42.3889785,-72.5286987,University of Massachusetts,edu,bb33376961f6663df848ae9bf055c9afd9182443,citation,https://arxiv.org/pdf/1901.01151.pdf,Learning From Less Data: A Unified Data Subset Selection and Active Learning Framework for Computer Vision,2019
83,India,Adience,adience,19.1334302,72.9132679,"Indian Institute of Technology Bombay, Mumbai, India",edu,d278e020be85a1ccd90aa366b70c43884dd3f798,citation,https://arxiv.org/pdf/1805.11191.pdf,Learning From Less Data: Diversified Subset Selection and Active Learning in Image Classification Tasks,2018
84,Germany,Adience,adience,53.1013476,8.8611632,"Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Robotics Innovation Center, 28359 Bremen, Germany",edu,0cfca73806f443188632266513bac6aaf6923fa8,citation,https://arxiv.org/pdf/1805.04756.pdf,Predictive Uncertainty in Large Scale Classification using Dropout - Stochastic Gradient Hamiltonian Monte Carlo,2018
85,Chile,Adience,adience,-33.4411279,-70.6407933,Universidad Catolica de Chile,edu,0cfca73806f443188632266513bac6aaf6923fa8,citation,https://arxiv.org/pdf/1805.04756.pdf,Predictive Uncertainty in Large Scale Classification using Dropout - Stochastic Gradient Hamiltonian Monte Carlo,2018
86,Italy,Adience,adience,43.7776426,11.259765,University of Florence,edu,e5563a0d6a2312c614834dc784b5cc7594362bff,citation,https://pdfs.semanticscholar.org/e556/3a0d6a2312c614834dc784b5cc7594362bff.pdf,Real-Time Demographic Profiling from Face Imagery with Fisher Vectors,2018
87,India,Adience,adience,20.1438995,85.6762033,Indian Institute of Technology Bhubaneswar,edu,b46d49cb7aade5ab7be51bd7a0ce3aa6f7c6b9ed,citation,https://arxiv.org/pdf/1712.01661.pdf,Recognizing Gender from Human Facial Regions using Genetic Algorithm,2018
88,India,Adience,adience,29.8542626,77.8880002,"Indian institute of Technology Roorkee, India",edu,b46d49cb7aade5ab7be51bd7a0ce3aa6f7c6b9ed,citation,https://arxiv.org/pdf/1712.01661.pdf,Recognizing Gender from Human Facial Regions using Genetic Algorithm,2018
89,India,Adience,adience,22.714846,88.4161884,"Institute of Engineering & Management, Kolkata",edu,b46d49cb7aade5ab7be51bd7a0ce3aa6f7c6b9ed,citation,https://arxiv.org/pdf/1712.01661.pdf,Recognizing Gender from Human Facial Regions using Genetic Algorithm,2018
90,United Kingdom,Adience,adience,51.49887085,-0.17560797,Imperial College London,edu,7173871866fc7e555e9123d1d7133d20577054e8,citation,https://arxiv.org/pdf/1807.08108.pdf,Simultaneous Adversarial Training - Learn from Others Mistakes,2018
91,India,Adience,adience,28.5456282,77.2731505,"IIIT Delhi, India",edu,5e39deb4bff7b887c8f3a44dfe1352fbcde8a0bd,citation,https://arxiv.org/pdf/1810.06221.pdf,Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!,2018
92,India,Adience,adience,30.7649646,76.7750066,"Infosys Ltd., Chandigarh, India",company,5e39deb4bff7b887c8f3a44dfe1352fbcde8a0bd,citation,https://arxiv.org/pdf/1810.06221.pdf,Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!,2018
93,United States,Adience,adience,30.6108365,-96.352128,Texas A&M University,edu,5e39deb4bff7b887c8f3a44dfe1352fbcde8a0bd,citation,https://arxiv.org/pdf/1810.06221.pdf,Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!,2018
94,China,Adience,adience,45.7413921,126.62552755,Harbin Institute of Technology,edu,c5fff7adc5084d69390918daf09e832ec191144b,citation,,Deep learning application based on embedded GPU,2017
95,China,Adience,adience,26.085573,119.372442,Fujian University of Technology,edu,c5fff7adc5084d69390918daf09e832ec191144b,citation,,Deep learning application based on embedded GPU,2017
96,China,Adience,adience,25.28164,110.337304,Guilin University of Electronic Technology,edu,c5fff7adc5084d69390918daf09e832ec191144b,citation,,Deep learning application based on embedded GPU,2017
97,United States,Adience,adience,32.8536333,-117.2035286,Kyung Hee University,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017
98,Saudi Arabia,Adience,adience,24.7246403,46.62335012,King Saud University,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017
99,Bangladesh,Adience,adience,23.7289899,90.3982682,Institute of Information Technology,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017
100,Turkey,Adience,adience,38.6747649,39.1866925,"Firat Üniversitesi Elaziğ, Türkiye",edu,ecfb93de88394a244896bfe6ee7bf39fb250b820,citation,,Gender recognition from face images with deep learning,2017
101,Turkey,Adience,adience,38.6812759,39.196083,"Enerji Sistemleri Müh. Bölümü Teknoloji Fakültesi, Firat Üniversitesi Elaziğ, Türkiye",edu,ecfb93de88394a244896bfe6ee7bf39fb250b820,citation,,Gender recognition from face images with deep learning,2017
102,Turkey,Adience,adience,38.6774755,39.2030121,"Enformatik Bölümü Firat Üniversitesi Elaziğ, Türkiye",edu,ecfb93de88394a244896bfe6ee7bf39fb250b820,citation,,Gender recognition from face images with deep learning,2017
103,Canada,Adience,adience,49.2593879,-122.9151893,"AltumView Systems Inc., Burnaby, BC, Canada",company,b44f03b5fa8c6275238c2d13345652e6ff7e6ea9,citation,,Lapped convolutional neural networks for embedded systems,2017
104,Korea,Adience,adience,37.2830003,127.04548469,Ajou University,edu,24286ef164f0e12c3e9590ec7f636871ba253026,citation,,Age and gender classification using wide convolutional neural network and Gabor filter,2018
105,South Korea,Adience,adience,37.26728,126.9841151,Seoul National University,edu,24286ef164f0e12c3e9590ec7f636871ba253026,citation,,Age and gender classification using wide convolutional neural network and Gabor filter,2018
106,China,Adience,adience,23.143197,113.34009651,South China Normal University,edu,dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,citation,,Age classification with deep learning face representation,2017
107,China,Adience,adience,23.0502042,113.39880323,South China University of Technology,edu,dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,citation,,Age classification with deep learning face representation,2017
108,China,Adience,adience,30.724051,104.026606,Sichuan Film and Television University,edu,9215d36c501d6ee57d74c1eeb1475efd800d92d3,citation,,An optimization framework of video advertising: using deep learning algorithm based on global image information,2018
109,China,Adience,adience,30.578908,104.27712,Sichuan Tourism University,edu,9215d36c501d6ee57d74c1eeb1475efd800d92d3,citation,,An optimization framework of video advertising: using deep learning algorithm based on global image information,2018
110,Romania,Adience,adience,46.7677955,23.5912762,Babes Bolyai University,edu,7aa32e0639e0750e9eee3ce16e51e9f94241ae88,citation,,Automatic gender recognition for “in the wild” facial images using convolutional neural networks,2017
111,Romania,Adience,adience,46.7723581,23.5852075,Technical University,edu,7aa32e0639e0750e9eee3ce16e51e9f94241ae88,citation,,Automatic gender recognition for “in the wild” facial images using convolutional neural networks,2017
112,United States,Adience,adience,38.926761,-92.29193783,University of Missouri,edu,0e71d712f771196189b01f0088cc3497d174493b,citation,,Fine-Grained Age Group Classification in the wild,2018
113,China,Adience,adience,38.8760446,115.4973873,North China Electric Power University,edu,0e71d712f771196189b01f0088cc3497d174493b,citation,,Fine-Grained Age Group Classification in the wild,2018
114,China,Adience,adience,22.304572,114.17976285,Hong Kong Polytechnic University,edu,dc2f16f967eac710cb9b7553093e9c977e5b761d,citation,,Learning a lightweight deep convolutional network for joint age and gender recognition,2016
115,China,Adience,adience,23.09461185,113.28788994,Sun Yat-Sen University,edu,dc2f16f967eac710cb9b7553093e9c977e5b761d,citation,,Learning a lightweight deep convolutional network for joint age and gender recognition,2016
116,South Korea,Adience,adience,36.3721427,127.36039,KAIST,edu,92d051d4680eb41eb172d23cb8c93eed7677af56,citation,,Adversarial Spatial Frequency Domain Critic Learning for Age and Gender Classification,2018
117,Thailand,Adience,adience,14.0785,100.6140362,"Asian Institute of Technology (AIT), Pathum Thani 12120, Thailand",edu,984edce0b961418d81203ec477b9bfa5a8197ba3,citation,,Customer and target individual face analysis for retail analytics,2018
118,China,Adience,adience,39.98177,116.330086,National Laboratory of Pattern Recognition,edu,d80159bbe1d576d147ca9adbc9339a05fe3bab28,citation,,"Demographic Analysis from Biometric Data: Achievements, Challenges, and New Frontiers",2018
119,South Korea,Adience,adience,36.383765,127.36694,"Electronics and Telecommunications Research Institute, Daejeon, South Korea",edu,771e27c4b53f58622e6f03788b5102e5e70b1e49,citation,,Facial Attribute Recognition by Recurrent Learning With Visual Fixation,2018
120,China,Adience,adience,28.874513,105.431827,"Sichuan Police College, Luzhou, China",gov,7587a09d924cab41822a07cd1a988068b74baabb,citation,,Image scoring: Patch based CNN model for small or medium dataset,2017
121,Brazil,Adience,adience,-22.8148374,-47.0647708,University of Campinas (UNICAMP),edu,b161d261fabb507803a9e5834571d56a3b87d147,citation,http://www.smc2017.org/SMC2017_Papers/media/files/1077.pdf,Gender recognition from face images using a geometric descriptor,2017
122,China,Adience,adience,40.00229045,116.32098908,Tsinghua University,edu,2149d49c84a83848d6051867290d9c8bfcef0edb,citation,,Label-Sensitive Deep Metric Learning for Facial Age Estimation,2018
123,United States,Adience,adience,40.4319722,-86.92389368,Purdue University,edu,07a1e6d26028b28185b7a3eee86752c240a24261,citation,,MODE: automated neural network model debugging via state differential analysis and input selection,2018
124,Germany,Adience,adience,-35.4354218,-71.6199998,"Geospatial Laboratory, Universidad Católica del Maule, Talca, Chile",edu,3a05415356bd574cad1a9f1be21214e428bbc81b,citation,,Multinomial Naive Bayes for real-time gender recognition,2016
125,Cyprus,Adience,adience,34.67567405,33.04577648,Cyprus University of Technology,edu,9f3c9e41f46df9c94d714b1f080dafad6b4de1de,citation,,On the detection of images containing child-pornographic material,2017
126,United States,Adience,adience,32.8536333,-117.2035286,Kyung Hee University,edu,9d4692e243e25eb465a0480376beb60a5d2f0f13,citation,,Positional Ternary Pattern (PTP): An edge based image descriptor for human age recognition,2016
127,Italy,Adience,adience,43.7192522,10.4239948,"Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy",edu,17de5a9ce09f4834629cd76b8526071a956c9c6d,citation,,Smart Parental Advisory: A Usage Control and Deep Learning-Based Framework for Dynamic Parental Control on Smart TV,2017
128,Vietnam,Adience,adience,20.8368539,106.6942087,Vietnam Maritime University,edu,d38b32d91d56b01c77ef4dd7d625ce5217c6950b,citation,,Unconstrained gender classification by multi-resolution LPQ and SIFT,2016
129,Poland,Adience,adience,50.0657033,19.91895867,AGH University of Science and Technology,edu,cca476114c48871d05537abb303061de5ab010d6,citation,,A compact deep convolutional neural network architecture for video based age and gender estimation,2016
130,Singapore,Adience,adience,1.3483099,103.6831347,"NTU, Singapore",edu,8a917903b0a1d47f24bc7776ab0bd00aa8ec88f3,citation,,A Constrained Deep Neural Network for Ordinal Regression,2018
131,Spain,Adience,adience,41.5008957,2.111553,Autonomous University of Barcelona,edu,c9c2de3628be7e249722b12911bebad84b567ce6,citation,,Age and gender recognition in the wild with deep attention,2017
132,China,Adience,adience,38.8637191,115.5148326,"Hebei Information Engineering School, Baoding, China",edu,ea227e47b8a1e8f55983c34a17a81e5d3fa11cfd,citation,,Age group classification in the wild with deep RoR architecture,2017
133,China,Adience,adience,38.8760446,115.4973873,North China Electric Power University,edu,ea227e47b8a1e8f55983c34a17a81e5d3fa11cfd,citation,,Age group classification in the wild with deep RoR architecture,2017
134,United States,Adience,adience,38.9403808,-92.3277375,University of Missouri Columbia,edu,ea227e47b8a1e8f55983c34a17a81e5d3fa11cfd,citation,,Age group classification in the wild with deep RoR architecture,2017
135,India,Adience,adience,29.8542626,77.8880002,"Indian institute of Technology Roorkee, India",edu,f4003cbbff3b3d008aa64c76fed163c10d9c68bd,citation,,Compass local binary patterns for gender recognition of facial photographs and sketches,2016
136,Malaysia,Adience,adience,3.12267405,101.65356103,"University of Malaya, Kuala Lumpur",edu,d4d1ac1cfb2ca703c4db8cc9a1c7c7531fa940f9,citation,,"Gender estimation based on supervised HOG, Action Units and unsupervised CNN feature extraction",2017
137,United Kingdom,Adience,adience,51.5247272,-0.03931035,Queen Mary University of London,edu,d7fd3dedb6b260702ed5e4b9175127815286e8da,citation,,Knowledge sharing: From atomic to parametrised context and shallow to deep models,2017
138,Taiwan,Adience,adience,25.0421852,121.6145477,"Academia Sinica, Taipei, Taiwan",edu,aa6f7c3daed31d331ef626758e990cbc04632852,citation,,Merging Deep Neural Networks for Mobile Devices,2018
139,China,Adience,adience,22.4162632,114.2109318,Chinese University of Hong Kong,edu,aaa2b45153051e23d5a35ccf9af8ecabc0fe24cd,citation,https://pdfs.semanticscholar.org/aaa2/b45153051e23d5a35ccf9af8ecabc0fe24cd.pdf,1 How Good can Human Predict Facial Age ?,2017
140,China,Adience,adience,39.993008,116.329882,SenseTime,company,aaa2b45153051e23d5a35ccf9af8ecabc0fe24cd,citation,https://pdfs.semanticscholar.org/aaa2/b45153051e23d5a35ccf9af8ecabc0fe24cd.pdf,1 How Good can Human Predict Facial Age ?,2017
141,China,Adience,adience,39.993008,116.329882,SenseTime,company,8fee9b8c44626c4ac6b96ef183394bc4f36dc95f,citation,https://arxiv.org/pdf/1708.09687.pdf,Quantifying Facial Age by Posterior of Age Comparisons,2017
142,China,Adience,adience,22.4162632,114.2109318,Chinese University of Hong Kong,edu,8fee9b8c44626c4ac6b96ef183394bc4f36dc95f,citation,https://arxiv.org/pdf/1708.09687.pdf,Quantifying Facial Age by Posterior of Age Comparisons,2017
143,United States,Adience,adience,40.9153196,-73.1270626,Stony Brook University,edu,14e9158daf17985ccbb15c9cd31cf457e5551990,citation,https://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf,ConvNets with Smooth Adaptive Activation Functions for Regression,2017
144,United States,Adience,adience,35.93006535,-84.31240032,Oak Ridge National Laboratory,edu,14e9158daf17985ccbb15c9cd31cf457e5551990,citation,https://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf,ConvNets with Smooth Adaptive Activation Functions for Regression,2017
145,United States,Adience,adience,40.90826665,-73.11520891,Stony Brook University Hospital,edu,14e9158daf17985ccbb15c9cd31cf457e5551990,citation,https://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf,ConvNets with Smooth Adaptive Activation Functions for Regression,2017
146,India,Adience,adience,28.5456282,77.2731505,"IIIT Delhi, India",edu,c43d3ad956118ea1d26d39903097e2db86eae822,citation,https://arxiv.org/pdf/1904.01219.pdf,Deep Learning for Face Recognition: Pride or Prejudiced?,2019
147,Ireland,Adience,adience,53.27639715,-9.05829961,National University of Ireland Galway,edu,e08038b14165536c52ffe950d90d0f43be9c8f15,citation,https://arxiv.org/pdf/1703.08383.pdf,Smart Augmentation Learning an Optimal Data Augmentation Strategy,2017
148,Taiwan,Adience,adience,25.0410728,121.6147562,Institute of Information Science,edu,39539b7fcf1c637b04de84b23dc9c85a8b2f9f40,citation,https://arxiv.org/pdf/1805.04980.pdf,Unifying and Merging Well-trained Deep Neural Networks for Inference Stage,2018
149,Taiwan,Adience,adience,25.021321,121.5360683,MOST Joint Research Center for AI Technology and All Vista Healthcare,company,39539b7fcf1c637b04de84b23dc9c85a8b2f9f40,citation,https://arxiv.org/pdf/1805.04980.pdf,Unifying and Merging Well-trained Deep Neural Networks for Inference Stage,2018
150,India,Adience,adience,28.5449756,77.1926284,"IIT Delhi, India",edu,0dc61f199539cd15f847b688740be49b39e3d520,citation,https://pdfs.semanticscholar.org/0dc6/1f199539cd15f847b688740be49b39e3d520.pdf,Age Group Determination from Face Using Texture Classification based on Probabilistic Non-Extensive Entropy,2017
151,Spain,Adience,adience,41.5008957,2.111553,Autonomous University of Barcelona,edu,d7f6eaa5caa0d187cd1fe51d5bc27343921e7539,citation,https://arxiv.org/pdf/1807.07320.pdf,Attend and Rectify: A Gated Attention Mechanism for Fine-Grained Recovery,2018
152,Singapore,Adience,adience,1.2962018,103.77689944,National University of Singapore,edu,3b50a85ba29f0f7eb49fb275be86e6c2b4f8fa4b,citation,https://pdfs.semanticscholar.org/3b50/a85ba29f0f7eb49fb275be86e6c2b4f8fa4b.pdf,Image ordinal classification with deep multi-view learning,2018
153,China,Adience,adience,28.874513,105.431827,"Sichuan Police College, Luzhou, China",gov,3b50a85ba29f0f7eb49fb275be86e6c2b4f8fa4b,citation,https://pdfs.semanticscholar.org/3b50/a85ba29f0f7eb49fb275be86e6c2b4f8fa4b.pdf,Image ordinal classification with deep multi-view learning,2018
154,China,Adience,adience,30.788537,103.888902,"UESTC, Chengdu, China",edu,3b50a85ba29f0f7eb49fb275be86e6c2b4f8fa4b,citation,https://pdfs.semanticscholar.org/3b50/a85ba29f0f7eb49fb275be86e6c2b4f8fa4b.pdf,Image ordinal classification with deep multi-view learning,2018
155,United States,Adience,adience,32.8536333,-117.2035286,Kyung Hee University,edu,73b83ef7ee5f929be51a91096b57c098008f384e,citation,https://pdfs.semanticscholar.org/73b8/3ef7ee5f929be51a91096b57c098008f384e.pdf,Mining Wrinkle-Patterns with Local EdgePrototypic Pattern (LEPP) Descriptor for the Recognition of Human Age-groups,2018
156,India,Adience,adience,10.9365094,76.9562405,"Sri Krishna College of Engineering and Technology, Coimbatore, India",edu,ece46e3a126953f639149fc233bddcd44d8afad1,citation,https://pdfs.semanticscholar.org/ece4/6e3a126953f639149fc233bddcd44d8afad1.pdf,Semantic-Based Facial Image-Retrieval System with Aid of Adaptive Particle Swarm Optimization and Squared Euclidian Distance,2015
157,Canada,Adience,adience,45.5010087,-73.6157778,University of Montreal,edu,3540625bc996601a9d04c4027169b7fcad1b9eae,citation,https://pdfs.semanticscholar.org/3540/625bc996601a9d04c4027169b7fcad1b9eae.pdf,TECHNIQUES IN ORDINAL CLASSIFICATION AND IMAGE-TO-IMAGE TRANSLATION,2018
158,Canada,Adience,adience,45.5307147,-73.6135931,"Institute for Learning, Algorithms Montreal, Canada",edu,e8d0eb3c3bf64b38ec04e982745147428459e2d2,citation,https://arxiv.org/pdf/1705.05278.pdf,Unimodal Probability Distributions for Deep Ordinal Classification,2017
159,China,Adience,adience,45.7413921,126.62552755,Harbin Institute of Technology,edu,09e353946fb6adf1621f33041853c58aecfd183b,citation,,Deep convolutional neural networks-based age and gender classification with facial images,2017
160,China,Adience,adience,26.085573,119.372442,Fujian University of Technology,edu,09e353946fb6adf1621f33041853c58aecfd183b,citation,,Deep convolutional neural networks-based age and gender classification with facial images,2017
161,China,Adience,adience,25.28164,110.337304,Guilin University of Electronic Technology,edu,09e353946fb6adf1621f33041853c58aecfd183b,citation,,Deep convolutional neural networks-based age and gender classification with facial images,2017
162,Israel,Adience,adience,32.77824165,34.99565673,Open University of Israel,edu,1be498d4bbc30c3bfd0029114c784bc2114d67c0,citation,,Age and Gender Estimation of Unfiltered Faces,2014
163,South Korea,Adience,adience,37.5509442,126.9410023,Sogang University,edu,0deea943ac4dc1be822c02f97d0c6c97e201ba8d,citation,,Age category estimation using matching convolutional neural network,2018
164,Taiwan,Adience,adience,25.0411727,121.6146518,"Insititute of Information Science, Academia Sinica, Taipei, Taiwan",edu,3d0444be5be1d19d93e91519e48e314b3035e4cf,citation,,Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications,2018