1
|
{"id": "70c59dc3470ae867016f6ab0e008ac8ba03774a1", "citations": [{"id": "d041c8cb05a5555046f6e62a4efbb964fb560c31", "title": "Generating faces for affect analysis", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.05027.pdf"], "doi": []}, {"id": "13e3a68dd49b2098c2cad2acc799953abdcaa3ee", "title": "Learning Discriminative Aggregation Network for Video-Based Face Recognition and Person Re-identification", "year": "2018", "pdf": [], "doi": ["https://doi.org/10.1007/s11263-018-1135-x"]}, {"id": "37922bcfd75d50b7a500fbf61174ed3151fddfce", "title": "Efficient Statistical Face Recognition Using Trigonometric Series and CNN Features", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545308"]}, {"id": "173657da03e3249f4e47457d360ab83b3cefbe63", "title": "HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf"], "doi": []}, {"id": "b612bbd751d94996a02b85829e0b2ac0511350ff", "title": "Learning Representations for Utility and Privacy : An Information-Theoretic Based Approach", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b612/bbd751d94996a02b85829e0b2ac0511350ff.pdf"], "doi": []}, {"id": "b7ec41005ce4384e76e3be854ecccd564d2f89fb", "title": "Granular Computing and Sequential Analysis of Deep Embeddings in Fast Still-to-Video Face Recognition", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8441009", "http://doi.org/10.1109/SACI.2018.8441009", "https://doi.org/10.1109/SACI.2018.8441009"]}, {"id": "5ec94635977929ccd1e2a8b6a0138868e6ac0543", "title": "The iNaturalist Species Classification and Detection Dataset", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8579012"]}, {"id": "0095f7ea55fc04feb5fbd532e8c07fa281faffd7", "title": "Enabling Deep Learning on IoT Edge: Approaches and Evaluation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8567692"]}, {"id": "fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb", "title": "3D-Aided Dual-Agent GANs for Unconstrained Face Recognition.", "year": "2018", "pdf": [], "doi": ["https://www.ncbi.nlm.nih.gov/pubmed/30040629", "http://doi.org/10.1109/TPAMI.2018.2858819"]}, {"id": "a2344004f0e1409c0c9473d071a5cfd74bff0a5d", "title": "Learnable PINs: Cross-modal Embeddings for Person Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00833.pdf"], "doi": []}, {"id": "9b666e20f570387214926eee542965f3fbe3cfce", "title": "Side Information for Face Completion: a Robust PCA Approach", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.07580.pdf"], "doi": []}, {"id": "cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce", "title": "Git Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08512.pdf"], "doi": []}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": [], "doi": []}, {"id": "8de1c724a42d204c0050fe4c4b4e81a675d7f57c", "title": "Deep Face Recognition: A Survey", "year": "2018", "pdf": ["https://talhassner.github.io/home/projects/DeepFaceSurvey/Masietal2018deepfacesurvey.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8614364", "http://doi.org/10.1109/SIBGRAPI.2018.00067"]}, {"id": "1dd3faf5488751c9de10977528ab96be24616138", "title": "Detecting Anomalous Faces with 'No Peeking' Autoencoders", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.05798.pdf"], "doi": []}, {"id": "03e60b7ea55f3bd30ccd50394723c63ce9b8d14c", "title": "The Impact of Preprocessing on Deep Representations for Iris Recognition on Unconstrained Environments", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8614341"]}, {"id": "17c0d99171efc957b88c31a465c59485ab033234", "title": "To learn image super-resolution, use a GAN to learn how to do image degradation first", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.11458.pdf"], "doi": []}]}
|