summaryrefslogtreecommitdiff
path: root/site/datasets/unknown/msceleb.json
blob: 7040bfc1bf17ada76304dbf2f5436d1c5b410651 (plain)
1
{"id": "291265db88023e92bb8c8e6390438e5da148e8f5", "citations": [{"id": "3dc522a6576c3475e4a166377cbbf4ba389c041f", "title": "The iNaturalist Challenge 2017 Dataset.", "year": "2017", "pdf": [], "doi": []}, {"id": "cb2470aade8e5630dcad5e479ab220db94ecbf91", "title": "Exploring Facial Differences in European Countries Boundary by Fine-Tuned Neural Networks", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397018", "http://doi.ieeecomputersociety.org/10.1109/MIPR.2018.00062", "http://doi.org/10.1109/MIPR.2018.00062"]}, {"id": "a35483c9becc95faa16bf70a8c6355566a205091", "title": "FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578190"]}, {"id": "173657da03e3249f4e47457d360ab83b3cefbe63", "title": "HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf"], "doi": []}, {"id": "3933e323653ff27e68c3458d245b47e3e37f52fd", "title": "Evaluation of a 3 D-aided Pose Invariant 2 D Face Recognition System", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3933/e323653ff27e68c3458d245b47e3e37f52fd.pdf"], "doi": []}, {"id": "5121f42de7cb9e41f93646e087df82b573b23311", "title": "Classifying Online Dating Profiles on Tinder using FaceNet Facial Embeddings", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04347.pdf"], "doi": []}, {"id": "65984ea40c3b17bb8965c215b61972cd660f61a7", "title": "Doppelganger Mining for Face Representation Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Smirnov_Doppelganger_Mining_for_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265436", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.226", "http://doi.org/10.1109/ICCVW.2017.226"]}, {"id": "1d2639042b72191c04f0b7928313b8dc2bd4184f", "title": "Morphing Detection Using a General- Purpose Face Recognition System", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8553375"]}, {"id": "fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb", "title": "3D-Aided Dual-Agent GANs for Unconstrained Face Recognition.", "year": "2018", "pdf": [], "doi": ["https://www.ncbi.nlm.nih.gov/pubmed/30040629", "http://doi.org/10.1109/TPAMI.2018.2858819"]}, {"id": "f47518fcd69cdbb43dc88fe5259f4f4c61921313", "title": "A Compact Embedding for Facial Expression Similarity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.11283.pdf"], "doi": []}, {"id": "4209783b0cab1f22341f0600eed4512155b1dee6", "title": "Accurate and Efficient Similarity Search for Large Scale Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00365.pdf"], "doi": []}, {"id": "95df57cf3e15d75a8526b4fd3212d39538d31100", "title": "Towards Pose Invariant Face Recognition in the Wild", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578333"]}, {"id": "9329523dc0bd4e2896d5f63cf2440f21b7a16f16", "title": "Do They All Look the Same? Deciphering Chinese, Japanese and Koreans by Fine-Grained Deep Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1610.01854.pdf"], "doi": []}, {"id": "2b2acf2de016f0fb3538ceaaf3a9ba869b466089", "title": "Finding your Lookalike: Measuring Face Similarity Rather than Face Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.05252.pdf"], "doi": []}, {"id": "8de1c724a42d204c0050fe4c4b4e81a675d7f57c", "title": "Deep Face Recognition: A Survey", "year": "2018", "pdf": ["https://talhassner.github.io/home/projects/DeepFaceSurvey/Masietal2018deepfacesurvey.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8614364", "http://doi.org/10.1109/SIBGRAPI.2018.00067"]}, {"id": "779904cb019c9d622b90948c99aded91cab9524a", "title": "Facial-based Intrusion Detection System with Deep Learning in Embedded Devices", "year": "2018", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=3290598"]}, {"id": "b4f58d7fc87a9c276965e604fbe83592bae7f4e5", "title": "ROC-GAN: ROBUST CONDITIONAL GAN", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b4f5/8d7fc87a9c276965e604fbe83592bae7f4e5.pdf"], "doi": []}, {"id": "352a620f0b96a7e76b9195a7038d5eec257fd994", "title": "Kinship Classification through Latent Adaptive Subspace", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373823", "http://doi.ieeecomputersociety.org/10.1109/FG.2018.00030", "http://doi.org/10.1109/FG.2018.00030"]}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": [], "doi": []}, {"id": "48499deeaa1e31ac22c901d115b8b9867f89f952", "title": "Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4849/9deeaa1e31ac22c901d115b8b9867f89f952.pdf"], "doi": []}, {"id": "4a56d3240a924240c2392c0d5dea8715f6715277", "title": "Under review as a conference paper at ICLR 2019 Sampled Latents D iscrim inator G enerator Real Images Real or Fake ? Generated Images Contrastive Loss Pull Push", "year": "", "pdf": ["https://pdfs.semanticscholar.org/4a56/d3240a924240c2392c0d5dea8715f6715277.pdf"], "doi": []}, {"id": "eb526174fa071345ff7b1fad1fad240cd943a6d7", "title": "Deeply vulnerable: a study of the robustness of face recognition to presentation attacks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/eb52/6174fa071345ff7b1fad1fad240cd943a6d7.pdf"], "doi": []}, {"id": "1fc249ec69b3e23856b42a4e591c59ac60d77118", "title": "Evaluation of a 3D-aided pose invariant 2D face recognition system", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272729", "http://doi.org/10.1109/BTAS.2017.8272729"]}, {"id": "4739b47af26137ec52bbfb582e6f37e9e9f5aba0", "title": "Hard Example Mining with Auxiliary Embeddings", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Smirnov_Hard_Example_Mining_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575283", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00013", "http://doi.org/10.1109/CVPRW.2018.00013"]}, {"id": "c1482491f553726a8349337351692627a04d5dbe", "title": "When Follow is Just One Click Away: Understanding Twitter Follow Behavior in the 2016 U.S. Presidential Election", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.00048.pdf"], "doi": []}, {"id": "5ec94635977929ccd1e2a8b6a0138868e6ac0543", "title": "The iNaturalist Species Classification and Detection Dataset", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8579012"]}, {"id": "cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce", "title": "Git Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08512.pdf"], "doi": []}, {"id": "10384cbe0ed2c44c4d0059745d8bf1509be75941", "title": "iQIYI-VID: A Large Dataset for Multi-modal Person Identification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.07548.pdf"], "doi": []}, {"id": "6d91da37627c05150cb40cac323ca12a91965759", "title": "Gender Politics in the 2016 U.S. Presidential Election: A Computer Vision Approach", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.02806.pdf"], "doi": []}, {"id": "ad01c5761c89fdf523565cc0dec77b9a6ec8e694", "title": "Global and Local Consistent Wavelet-domain Age Synthesis", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07764.pdf"], "doi": []}, {"id": "5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9", "title": "Scalable Object Detection for Stylized Objects", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09822.pdf"], "doi": []}, {"id": "8509abbde2f4b42dc26a45cafddcccb2d370712f", "title": "A way to improve precision of face recognition in SIPP without retrain of the deep neural network model", "year": "2017", "pdf": [], "doi": []}, {"id": "69adf2f122ff18848ff85e8de3ee3b2bc495838e", "title": "Arbitrary Facial Attribute Editing: Only Change What You Want", "year": "2017", "pdf": [], "doi": []}, {"id": "dd8084b2878ca95d8f14bae73e1072922f0cc5da", "title": "Model Distillation with Knowledge Transfer in Face Classification, Alignment and Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.02929.pdf"], "doi": []}, {"id": "e3d76f1920c5bf4a60129516abb4a2d8683e48ae", "title": "I Know That Person: Generative Full Body and Face De-identification of People in Images", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w16/papers/Kalafatic_I_Know_That_CVPR_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014907", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.173", "http://doi.org/10.1109/CVPRW.2017.173"]}, {"id": "3cb2841302af1fb9656f144abc79d4f3d0b27380", "title": "When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf"], "doi": []}, {"id": "436d80cc1b52365ed7b2477c0b385b6fbbb51d3b", "title": "Probabilistic Knowledge Transfer for Deep Representation Learning", "year": "2018", "pdf": [], "doi": []}, {"id": "3e3227c8e9f44593d2499f4d1302575c77977b2e", "title": "Facial Expression Recognition Using a Large Out-of-Context Dataset", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8347112", "http://doi.ieeecomputersociety.org/10.1109/WACVW.2018.00012", "http://doi.org/10.1109/WACVW.2018.00012"]}, {"id": "7b7d29d7e312785827a4d2231b71b4e35096a01c", "title": "MS-Celeb-1M: Challenge of Recognizing One Million Celebrities in the Real World", "year": "2016", "pdf": [], "doi": ["https://doi.org/10.2352/ISSN.2470-1173.2016.11.IMAWM-463"]}, {"id": "15af83373274f4b4c5976c5f384ea0a5c124b287", "title": "Level Playing Field for Million Scale Face Recognition", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099846"]}, {"id": "2c03df8b48bf3fa39054345bafabfeff15bfd11d", "title": "Deep Residual Learning for Image Recognition", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780459"]}, {"id": "0bfee28960fe3318600e3540ef8cdc6cbe9eeed3", "title": "Squeeze-and-Excitation Networks", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578843"]}, {"id": "d98476b475679db68431654be5eaadaa86aee9ff", "title": "IARPA Janus Benchmark - C: Face Dataset and Protocol", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411217"]}, {"id": "e89cf011bb543137b961807924e0b765d536aa98", "title": "iQIYI-VID: A Large Dataset for Multi-modal Person Identification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.07548.pdf"], "doi": []}, {"id": "4da4642ac4c1fcfbecd622dad485307b8d30ed2b", "title": "Deep representation for partially occluded face verification", "year": "2018", "pdf": ["https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-018-0379-2"], "doi": ["https://doi.org/10.1186/s13640-018-0379-2"]}, {"id": "20a64c3d0d2108bc5fc7b0bbd11ad941734d5f2b", "title": "Heterogeneous Face Recognition Using Domain Specific Units", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8565895"]}, {"id": "faa27bfb44f775975f40900457df73587164f4fe", "title": "UMDFaces: An annotated face dataset for training deep networks", "year": "2017", "pdf": [], "doi": ["https://doi.org/10.1109/btas.2017.8272731"]}]}