summaryrefslogtreecommitdiff
path: root/site/datasets/unknown/megaface.json
blob: 434b4759a365b8a412efb66b2883f3b3da3af423 (plain)
1
{"id": "15af83373274f4b4c5976c5f384ea0a5c124b287", "citations": [{"id": "34cd0ad0bdba5e74f06303bb58995bb54f7fcf3d", "title": "Continuously Reproducing Toolchains in Pattern Recognition and Machine Learning Experiments", "year": "2017", "pdf": [], "doi": []}, {"id": "576f4fd5f50c58c755eae73a983939bdccf8fac6", "title": "Deep Imbalanced Learning for Face Recognition and Attribute Prediction", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/576f/4fd5f50c58c755eae73a983939bdccf8fac6.pdf"], "doi": []}, {"id": "b3ce5d65848b40c8035d87c4b11236f34adfae8a", "title": "Distributed Mining of Outliers from Large Multi-Dimensional Databases", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b3ce/5d65848b40c8035d87c4b11236f34adfae8a.pdf"], "doi": []}, {"id": "da57bcc1a6c3b12eece51eded72035d21af10584", "title": "VarGNet: Variable Group Convolutional Neural Network for Efficient Embedded Computing", "year": "2019", "pdf": ["https://arxiv.org/pdf/1907.05653.pdf"], "doi": []}, {"id": "d98476b475679db68431654be5eaadaa86aee9ff", "title": "IARPA Janus Benchmark - C: Face Dataset and Protocol", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411217"]}, {"id": "d0df01d1a183d23be8fd638fdb2142280c737e80", "title": "Apprentissage automatique pour la d\u00e9tection d'anomalies dans les donn\u00e9es ouvertes : application \u00e0 la cartographie. (Satellite images analysis for anomaly detection in open geographical data)", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/d0df/01d1a183d23be8fd638fdb2142280c737e80.pdf"], "doi": []}, {"id": "c4051f726e529543bd2f2b3039f61c1ba0889301", "title": "Eye In-painting with Exemplar Generative Adversarial Networks", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578922"]}, {"id": "8b79bfc93c7001dd7bb1eea7715af47d76202827", "title": "Decorrelated Adversarial Learning for Age-Invariant Face Recognition", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/8b79/bfc93c7001dd7bb1eea7715af47d76202827.pdf"], "doi": []}, {"id": "461ceb053b119b85022cc591132de6bcdc8bdc1f", "title": "Dictionary Representation of Deep Features for Occlusion-Robust Face Recognition", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8651449"]}, {"id": "9dc915697768dd1f7c7b97e2c25c90b02241958b", "title": "CosFace: Large Margin Cosine Loss for Deep Face Recognition", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578650"]}, {"id": "5d684c197c06139319bf575e2498fe040d9ea32f", "title": "Laplace Landmark Localization", "year": "2019", "pdf": ["https://arxiv.org/pdf/1903.11633.pdf"], "doi": []}, {"id": "1ffe20eb32dbc4fa85ac7844178937bba97f4bf0", "title": "Face Clustering: Representation and Pairwise Constraints", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.05067.pdf"], "doi": []}, {"id": "8de1c724a42d204c0050fe4c4b4e81a675d7f57c", "title": "Deep Face Recognition: A Survey", "year": "2018", "pdf": ["https://talhassner.github.io/home/projects/DeepFaceSurvey/Masietal2018deepfacesurvey.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8614364", "http://doi.org/10.1109/SIBGRAPI.2018.00067"]}, {"id": "ad8e7b7349e15c4592aa2c18ce79f77671084781", "title": "Fast Face Image Synthesis With Minimal Training", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8658792"]}, {"id": "380dd0ddd5d69adc52defc095570d1c22952f5cc", "title": "Improving Smiling Detection with Race and Gender Diversity", "year": "2017", "pdf": [], "doi": []}, {"id": "65984ea40c3b17bb8965c215b61972cd660f61a7", "title": "Doppelganger Mining for Face Representation Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Smirnov_Doppelganger_Mining_for_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265436", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.226", "http://doi.org/10.1109/ICCVW.2017.226"]}, {"id": "4739b47af26137ec52bbfb582e6f37e9e9f5aba0", "title": "Hard Example Mining with Auxiliary Embeddings", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Smirnov_Hard_Example_Mining_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575283", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00013", "http://doi.org/10.1109/CVPRW.2018.00013"]}, {"id": "9d14cdbf0af4af7a7bc0a62084fe9c0ab43d6502", "title": "Towards a Fast and Accurate Face Recognition System from Deep Representations", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/9d14/cdbf0af4af7a7bc0a62084fe9c0ab43d6502.pdf"], "doi": []}, {"id": "750486b2278ba542987655eede1b4da8c10f7f2e", "title": "Softmax Dissection: Towards Understanding Intra- and Inter-clas Objective for Embedding Learning", "year": "2019", "pdf": ["https://arxiv.org/pdf/1908.01281.pdf"], "doi": []}, {"id": "5a564d108b43c6ff006a86d2fc981cd36c6c54dd", "title": "Deep Learning for Understanding Faces", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/5a56/4d108b43c6ff006a86d2fc981cd36c6c54dd.pdf"], "doi": []}, {"id": "d45fd2b4583dd218091003ab65a4d77ccec6da47", "title": "Large-Scale Bisample Learning on ID Versus Spot Face Recognition", "year": "2018", "pdf": ["http://export.arxiv.org/pdf/1806.03018", "https://arxiv.org/pdf/1806.03018.pdf"], "doi": ["https://doi.org/10.1007/s11263-019-01162-8"]}, {"id": "39b615c73810e13998df3df9d5e73aebd3e67dab", "title": "A Compact Embedding for Facial Expression Similarity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.11283.pdf"], "doi": []}, {"id": "56f1202f88cefd4aad6f97914eeae61c1f5531b7", "title": "UHDB31: A Dataset for Better Understanding Face Recognition Across Pose and Illumination Variation", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265511"]}, {"id": "8ed7d8a07ac21328d3c03ff3880e6f6f939257f6", "title": "Adversarial Learning for Age-Invariant Face Recognition", "year": "", "pdf": ["https://pdfs.semanticscholar.org/8ed7/d8a07ac21328d3c03ff3880e6f6f939257f6.pdf"], "doi": []}, {"id": "4e1a65f3c3d9cfeecab898affbe0b47a9b6c9157", "title": "DIY Human Action Dataset Generation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575353"]}, {"id": "c607572fd2594ca83f732c9790fd590da9e69eb1", "title": "Comparative Evaluation of Deep Architectures for Face Recognition in Unconstrained Environment ( FRUE )", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/c607/572fd2594ca83f732c9790fd590da9e69eb1.pdf"], "doi": []}, {"id": "18858cc936947fc96b5c06bbe3c6c2faa5614540", "title": "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", "year": "2018", "pdf": ["http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a-supp.pdf", "https://dam-prod.media.mit.edu/x/2018/02/06/Gender%20Shades%20Intersectional%20Accuracy%20Disparities.pdf"], "doi": ["http://proceedings.mlr.press/v81/buolamwini18a.html"]}, {"id": "4a6d7d222838c6bc59a32190c2f07d278f15539f", "title": "Towards optimal local binary patterns in texture and face description", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/4a6d/7d222838c6bc59a32190c2f07d278f15539f.pdf"], "doi": []}, {"id": "ddcf0cf00a50cff93c2cbdc6823aad7ab1d3634f", "title": "ID-Softmax: A Softmax-like Loss for ID Face Recognition", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/5244/4f9562ef17557de24d22716491b11bbd2802.pdf"], "doi": []}, {"id": "b612bbd751d94996a02b85829e0b2ac0511350ff", "title": "Learning Representations for Utility and Privacy : An Information-Theoretic Based Approach", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b612/bbd751d94996a02b85829e0b2ac0511350ff.pdf"], "doi": []}, {"id": "eb4be3c7711935c936cb6755e0873cb1492af71e", "title": "A Deep Face Identification Network Enhanced by Facial Attributes Prediction", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575246"]}, {"id": "3d789ce25828a9b55947927063aa87f643c2a41c", "title": "Face In Video Evaluation (FIVE) Face Recognition of Non-Cooperative Subjects", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3d78/9ce25828a9b55947927063aa87f643c2a41c.pdf"], "doi": []}, {"id": "b090bf0d5b4a780821b4f45fc216ac614493020d", "title": "A Generative Model of Worldwide Facial Appearance", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8658761"]}, {"id": "b8f22ef91a7fccbe7b04a0caf0d5d5f88e2cd230", "title": "The 2017 IARPA Face Recognition Prize Challenge (FRPC)", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/b8f2/2ef91a7fccbe7b04a0caf0d5d5f88e2cd230.pdf"], "doi": []}, {"id": "20a64c3d0d2108bc5fc7b0bbd11ad941734d5f2b", "title": "Heterogeneous Face Recognition Using Domain Specific Units", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8565895"]}, {"id": "934f69d038721540c96093cae634573b89d7d714", "title": "DeSTNet : Densely Fused Spatial Transformer Networks 1", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/934f/69d038721540c96093cae634573b89d7d714.pdf"], "doi": []}, {"id": "7d2165ee47828fac5128cd554b9be89c851463fb", "title": "Empirically Analyzing the Effect of Dataset Biases on Deep Face Recognition Systems", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575453"]}, {"id": "2e2534eb1f1af5c043a009391f0ef955aeed2044", "title": "Switchable Normalization for Learning-to-Normalize Deep Representation", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/2e25/34eb1f1af5c043a009391f0ef955aeed2044.pdf"], "doi": []}, {"id": "1e34b7505fef52b2881f4de6e78cfb90d51085a0", "title": "Trunk-Branch Ensemble Convolutional Neural Networks for Large Scale, Few-Shot Video-to-Still Face Recognition", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/1e34/b7505fef52b2881f4de6e78cfb90d51085a0.pdf"], "doi": []}, {"id": "8395cf3535a6628c3bdc9b8d0171568d551f5ff0", "title": "Entropy Non-increasing Games for the Improvement of Dataflow Programming", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.04389.pdf"], "doi": []}, {"id": "2c75658b080a9baaac20db39af86016ffa36f6f0", "title": "Seeing Voices and Hearing Faces: Cross-Modal Biometric Matching", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578977"]}, {"id": "97834ad2a0556fedbea0407a84ca8f520f0fc11f", "title": "Face-Specific Data Augmentation for Unconstrained Face Recognition", "year": "2019", "pdf": ["https://talhassner.github.io/home/projects/augmented_faces/Masietal_IJCV2019.pdf"], "doi": ["https://doi.org/10.1007/s11263-019-01178-0"]}, {"id": "a4433a97e766362c1f2ce6f013dff15a3fe9a3ac", "title": "Overcoming catastrophic forgetting with hard attention to the task", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.01423.pdf"], "doi": []}, {"id": "64a68e1a3f7e5496ade9ee376f69d3bd15c43b70", "title": "Multi-camera object tracking via deep metric learning", "year": "2018", "pdf": [], "doi": ["https://doi.org/10.1117/12.2500776"]}, {"id": "35ddd4896d9396d5dcff3f32bd79ff7cf3e82777", "title": "ShrinkTeaNet: Million-scale Lightweight Face Recognition via Shrinking Teacher-Student Networks", "year": "2019", "pdf": ["https://arxiv.org/pdf/1905.10620.pdf"], "doi": []}, {"id": "7789e2dcfa2bcd3ac55c63060509629ad77adb73", "title": "DHFML: deep heterogeneous feature metric learning for matching photograph and cartoon pairs", "year": "2018", "pdf": [], "doi": ["https://doi.org/10.1007/s13735-018-0160-4"]}, {"id": "48499deeaa1e31ac22c901d115b8b9867f89f952", "title": "Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4849/9deeaa1e31ac22c901d115b8b9867f89f952.pdf"], "doi": []}, {"id": "3c0fffd4cdbfef4ccd92d528d8b8a60ab0929827", "title": "An Empirical Study of Face Recognition under Variations", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373845", "http://doi.ieeecomputersociety.org/10.1109/FG.2018.00052", "http://doi.org/10.1109/FG.2018.00052"]}, {"id": "568435e4a2d161c68808a35250be147202867ce4", "title": "Deep Learning For Face Recognition: A Critical Analysis", "year": "2019", "pdf": ["https://arxiv.org/pdf/1907.12739.pdf"], "doi": []}, {"id": "c6cdf39c70aabf973a56db1ea009ab275f3f6ee8", "title": "Image-set, Temporal and Spatiotemporal Representations of Videos for Recognizing, Localizing and Quantifying Actions", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/c6cd/f39c70aabf973a56db1ea009ab275f3f6ee8.pdf"], "doi": []}, {"id": "3998f7d6022f67a1cf6050bccd3131911fec5a8a", "title": "Self Residual Attention Network for Deep Face Recognition", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8698884"]}, {"id": "fef0adf785aa6b91d23f0a61a32deece48a7f156", "title": "On the Capacity of Face Representation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.10433.pdf"], "doi": []}, {"id": "9ba4a5e0b7bf6e26563d294f1f3de44d95b7f682", "title": "To Frontalize or Not to Frontalize: Do We Really Need Elaborate Pre-processing to Improve Face Recognition?", "year": "2018", "pdf": ["http://docs.wixstatic.com/ugd/445e27_b7f15ceb15d34e45836f98d9eeba9a78.pdf", "https://arxiv.org/pdf/1610.04823v1.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8354113", "http://arxiv.org/abs/1610.04823", "http://doi.ieeecomputersociety.org/10.1109/WACV.2018.00009", "http://doi.org/10.1109/WACV.2018.00009"]}, {"id": "c924137ca87e8b4e1557465405744f8b639b16fc", "title": "Seeding Deep Learning using Wireless Localization", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.10242.pdf"], "doi": []}, {"id": "4da4642ac4c1fcfbecd622dad485307b8d30ed2b", "title": "Deep representation for partially occluded face verification", "year": "2018", "pdf": ["https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-018-0379-2"], "doi": ["https://doi.org/10.1186/s13640-018-0379-2"]}, {"id": "fb67b0625e2374d2c32e447fb682c22784c5a8b5", "title": "Wearable Technologies for Law Enforcement: Multifunctional Vest System Options", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/fb67/b0625e2374d2c32e447fb682c22784c5a8b5.pdf"], "doi": []}, {"id": "4e6ac0f8dfa5592458e100bc0bb5bac69f7912c1", "title": "Robust RGB-D Face Recognition Using Attribute-Aware Loss", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/de47/c456f5e8d0d663c204afca443c6412740fee.pdf"], "doi": []}, {"id": "e3d76f1920c5bf4a60129516abb4a2d8683e48ae", "title": "I Know That Person: Generative Full Body and Face De-identification of People in Images", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w16/papers/Kalafatic_I_Know_That_CVPR_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014907", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.173", "http://doi.org/10.1109/CVPRW.2017.173"]}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": [], "doi": []}, {"id": "15af83373274f4b4c5976c5f384ea0a5c124b287", "title": "Level Playing Field for Million Scale Face Recognition", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099846"]}, {"id": "c9c56f8bb89948d15a9564b146e7bdff7b17a1c2", "title": "Modeling Grasp Motor Imagery", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/c9c5/6f8bb89948d15a9564b146e7bdff7b17a1c2.pdf"], "doi": []}, {"id": "cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce", "title": "Git Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08512.pdf"], "doi": []}, {"id": "3417d1521552330aee30e0d9a6aec481ba904b17", "title": "An Investigation of High-Throughput Biometric Systems: Results of the 2018 Department of Homeland Security Biometric Technology Rally", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8698547"]}, {"id": "559b12257d56725fbef5790e2dfdec8751919ef1", "title": "Synthesizing Normalized Faces from Facial Identity Features", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099844"]}, {"id": "4d3fbeb69ee1207d47b182dd88bdd82791f1c17d", "title": "Performance Comparison of Face Detection and Recognition Algorithms", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/4d3f/beb69ee1207d47b182dd88bdd82791f1c17d.pdf"], "doi": []}, {"id": "3f4a0bb3f031cbe7b0043243116e779c1e75d493", "title": "FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age", "year": "2019", "pdf": ["https://arxiv.org/pdf/1908.04913.pdf"], "doi": []}, {"id": "db0880947452943a038e8d4c348107ef631d26a9", "title": "Learning from Longitudinal Face Demonstration\u2014Where Tractable Deep Modeling Meets Inverse Reinforcement Learning", "year": "2017", "pdf": ["http://arxiv.org/pdf/1711.10520", "https://arxiv.org/pdf/1711.10520.pdf", "https://export.arxiv.org/pdf/1711.10520"], "doi": ["https://doi.org/10.1007/s11263-019-01165-5"]}, {"id": "722b8cdb7d786283c6d6512729622561e3072d68", "title": "Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237665"]}, {"id": "d31328b12eef33e7722b8e5505d0f9d9abe2ffd9", "title": "Deep Unsupervised Domain Adaptation for Face Recognition", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373866", "http://doi.ieeecomputersociety.org/10.1109/FG.2018.00073", "http://doi.org/10.1109/FG.2018.00073"]}, {"id": "1d4f087217b816691254ef0d4377094ce16eea95", "title": "Adversarially Learned Representations for Information Obfuscation and Inference", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/7778/6c525fce29a84bf4cfcd5e7f901ddc04847a.pdf"], "doi": []}, {"id": "bcd883ef8faa9a81f5c14da97669df1dd2e8f1b8", "title": "Local directional relation pattern for unconstrained and robust face retrieval", "year": "2017", "pdf": ["http://arxiv.org/pdf/1709.09518", "http://arxiv-export-lb.library.cornell.edu/pdf/1709.09518", "https://arxiv.org/pdf/1709.09518.pdf"], "doi": ["https://doi.org/10.1007/s11042-019-07908-3"]}, {"id": "d2eb1079552fb736e3ba5e494543e67620832c52", "title": "DeSTNet: Densely Fused Spatial Transformer Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.04050.pdf"], "doi": []}, {"id": "04922595cee2ce50030674a7179ecd871e5df1d2", "title": "Effective indexing for face recognition", "year": "2016", "pdf": [], "doi": ["https://doi.org/10.1117/12.2238096"]}, {"id": "173657da03e3249f4e47457d360ab83b3cefbe63", "title": "HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf"], "doi": []}, {"id": "8a9ca15aebadad4b7cfa18c5af91c431d6045b86", "title": "cvpaper.challenge in 2016: Futuristic Computer Vision through 1, 600 Papers Survey", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.06436.pdf"], "doi": []}, {"id": "a2344004f0e1409c0c9473d071a5cfd74bff0a5d", "title": "Learnable PINs: Cross-modal Embeddings for Person Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00833.pdf"], "doi": []}, {"id": "829770e9eff6ae7f9a2412b63e438e19767c564c", "title": "Computer Vision", "year": "2014", "pdf": ["http://www.cl.cam.ac.uk/teaching/0809/CompVision/CompVisNotes.pdf", "http://www.cl.cam.ac.uk/teaching/1617/CompVision/ConsolidatedSlides.pdf", "http://www.cl.cam.ac.uk/teaching/2004/CompVision/notes.pdf", "http://www.mmp.rwth-aachen.de/teaching/advanced-machine-learning/winter-12-13/lectures/ml2_12-part01-intro.pdf", "http://www.mmp.rwth-aachen.de/teaching/advanced-machine-learning/winter-12-13/lectures/ml2_12-part02-linear_regression.pdf", "http://www.mmp.rwth-aachen.de/teaching/advanced-machine-learning/winter-12-13/lectures/ml2_12-part07-approximate_inference.pdf", "http://www.mmp.rwth-aachen.de/teaching/advanced-machine-learning/winter-12-13/lectures/ml2_12-part15-latent_factor_models.pdf", "http://www.mmp.rwth-aachen.de/teaching/advanced-machine-learning/winter-12-13/lectures/ml2_12-part16-beta_processes-6on1.pdf", "http://www.mmp.rwth-aachen.de/teaching/advanced-machine-learning/winter-12-13/lectures/ml2_12-part17-beta_processes2-6on1.pdf", "http://www.mmp.rwth-aachen.de/teaching/advanced-machine-learning/winter-12-13/lectures/ml2_12-part18-support_vector_machines.pdf", "http://www.mmp.rwth-aachen.de/teaching/advanced-machine-learning/winter-12-13/lectures/ml2_12-part20-structured-output-learning-6on1.pdf", "http://www.mmp.rwth-aachen.de/teaching/advanced-machine-learning/winter-12-13/lectures/ml2_12-part21-structured-output-learning2.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-12-13/lectures/cv12-part01-intro.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-12-13/lectures/cv12-part03-image-processing2-6on1.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-12-13/lectures/cv12-part03-image-processing2.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-12-13/lectures/cv12-part05-segmentation1-6on1.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-12-13/lectures/cv12-part12-local-features3.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-12-13/lectures/cv12-part13-categorization2-6on1.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-12-13/lectures/cv12-part14-reconstruction1.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-13-14/lectures/cv13-part05-structure-extraction.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-13-14/lectures/cv13-part15-local-features4.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-14-15/lectures/cv14-part03-image-processing2-6on1.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-14-15/lectures/cv14-part14-local-features3.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-14-15/lectures/cv14-part17-reconstruction1-6on1.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-14-15/lectures/cv14-part17-reconstruction1.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision/winter-14-15/lectures/cv14-part22-repetition.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision_2/lectures/cv2_14-part08-kalman-filter-6on1.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_computer_vision_2/lectures/cv2_14-part12-multiobject-tracking3-6on1.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_machine_learning/summer-2012/lectures/ml12-part15-graphical_models5.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_machine_learning/summer-2015/lectures-1/ml15-part13-graphical_models1-6on1.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_machine_learning/summer-2015/lectures-1/ml15-part15-graphical_models3.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_machine_learning/summer-2015/lectures-1/ml15-part18-repetition.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_machine_learning/winter-13-14/lectures/ml13-part02-pde1.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_machine_learning/winter-13-14/lectures/ml13-part09-nonlinear_svms.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_machine_learning/winter-13-14/lectures/ml13-part13-model_selection.pdf", "http://www.mmp.rwth-aachen.de/teaching/lecture_machine_learning/winter-13-14/lectures/ml13-part20-graphical_models5.pdf", "http://www.vision.rwth-aachen.de/media/course/SS/2014/computer-vision-2/cv2_14-part08-kalman-filter-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/SS/2014/computer-vision-2/cv2_14-part12-multiobject-tracking3-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/SS/2015/machine-learning/ml15-part13-graphical_models1-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/SS/2015/machine-learning/ml15-part15-graphical_models3.pdf", "http://www.vision.rwth-aachen.de/media/course/SS/2015/machine-learning/ml15-part18-repetition.pdf", "http://www.vision.rwth-aachen.de/media/course/SS/2016/machine-learning/ml16-part02-pde1.pdf", "http://www.vision.rwth-aachen.de/media/course/SS/2016/machine-learning/ml16-part05-linear_discriminants-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/SS/2016/machine-learning/ml16-part12-randomized_trees-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/SS/2016/machine-learning/ml16-part15-graphical_models1.pdf", "http://www.vision.rwth-aachen.de/media/course/SS/2016/machine-learning/ml16-part18-graphical_models4.pdf", "http://www.vision.rwth-aachen.de/media/course/SS/2019/computer-vision/cv19-part02-image-processing.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2012/advanced-machine-learning/ml2_12-part01-intro.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2012/advanced-machine-learning/ml2_12-part02-linear_regression.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2012/advanced-machine-learning/ml2_12-part07-approximate_inference.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2012/advanced-machine-learning/ml2_12-part15-latent_factor_models.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2012/advanced-machine-learning/ml2_12-part18-support_vector_machines.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2012/advanced-machine-learning/ml2_12-part21-structured-output-learning2.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2014/computer-vision/cv14-part03-image-processing2-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2014/computer-vision/cv14-part14-local-features3.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2014/computer-vision/cv14-part17-reconstruction1-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2014/computer-vision/cv14-part22-repetition.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2015/advanced-machine-learning/ml2_15-part01-intro.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2015/advanced-machine-learning/ml2_15-part02-linear_regression.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2015/advanced-machine-learning/ml2_15-part12-neural-networks-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2015/advanced-machine-learning/ml2_15-part16-cnns2-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2015/computer-vision/cv15-part10-categorization2-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2015/computer-vision/cv15-part22-repetition-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2016/advanced-machine-learning/ml2_16-part08-linear-discriminants-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2016/advanced-machine-learning/ml2_16-part12-optimization2-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2016/advanced-machine-learning/ml2_16-part16-word-embeddings.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2016/advanced-machine-learning/ml2_16-part21-repetition.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2016/computer-vision/cv16-part03-image-processing2.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2016/computer-vision/cv16-part07-segmentation2-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2016/computer-vision/cv16-part09-categorization2-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2016/computer-vision/cv16-part21-reconstruction4-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2017/machine-learning/ml17-part17-cnns3-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2018/machine-learning/ml18-part06-linear_discriminants2-6on1.pdf", "http://www.vision.rwth-aachen.de/media/course/WS/2018/machine-learning/ml18-part07-linear_svms.pdf", "https://www.cl.cam.ac.uk/teaching/1516/CompVision/slides2016.pdf", "https://www.cl.cam.ac.uk/teaching/1819/CompVision/CompVisLectureNotes2019.pdf", "https://www.vision.rwth-aachen.de/media/course/WS/2014/computer-vision/cv14-part17-reconstruction1.pdf", "https://www.vision.rwth-aachen.de/media/course/WS/2017/machine-learning/ml17-part06-linear_discriminants2-6on1.pdf", "https://www.vision.rwth-aachen.de/media/course/WS/2017/machine-learning/ml17-part08-nonlinear_svms-6on1.pdf", "https://www.vision.rwth-aachen.de/media/course/WS/2017/machine-learning/ml17-part10-adaboost.pdf"], "doi": ["https://doi.org/10.1007/978-0-387-31439-6_100073", "http://www.mmp.rwth-aachen.de/teaching/lecture_machine_learning/winter-13-14/lectures/ml13-part12-randomized_trees-6on1.ppt"]}, {"id": "e4a7e92be7865cebe78ad3ebb46c80789c92d473", "title": "Not-So-CLEVR: learning same-different relations strains feedforward neural networks.", "year": "2018", "pdf": ["https://royalsocietypublishing.org/doi/pdf/10.1098/rsfs.2018.0011", "http://serre-lab.clps.brown.edu/wp-content/uploads/2018/06/not_so_clevr_RoyalSoc.pdf", "http://serre-lab.clps.brown.edu/wp-content/uploads/2019/07/RSFS20180011.pdf"], "doi": ["https://doi.org/10.1098/rsfs.2018.0011", "https://www.ncbi.nlm.nih.gov/pubmed/29951191"]}, {"id": "b882e95f0bbf0f253d1e22afa3090ea3f82456e5", "title": "Face and Body Biometrics in the Wild: Advances in the Visible Spectrum and Beyond", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/b882/e95f0bbf0f253d1e22afa3090ea3f82456e5.pdf"], "doi": []}, {"id": "2c03df8b48bf3fa39054345bafabfeff15bfd11d", "title": "Deep Residual Learning for Image Recognition", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780459"]}, {"id": "1a6a5a33aa27e44b80b51d0bbc26734a7fc2cccf", "title": "Overview of research on facial ageing using the FG-NET ageing database", "year": "2016", "pdf": [], "doi": ["http://doi.org/10.1049/iet-bmt.2014.0053"]}]}