summaryrefslogtreecommitdiff
path: root/site/datasets/unknown/adience.json
blob: 570bc9ba43217ded2ac5e962c963da9fcb294dd4 (plain)
1
{"id": "1be498d4bbc30c3bfd0029114c784bc2114d67c0", "citations": [{"id": "efb56e7488148d52d3b8a2dae9f8880b273f4226", "title": "Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.07718.pdf"], "doi": []}, {"id": "cdae8e9cc9d605856cf5709b2fdf61f722d450c1", "title": "Deep Learning for Biometrics : A Survey KALAIVANI SUNDARARAJAN", "year": "2018", "pdf": [], "doi": []}, {"id": "f4003cbbff3b3d008aa64c76fed163c10d9c68bd", "title": "Compass local binary patterns for gender recognition of facial photographs and sketches", "year": "2016", "pdf": [], "doi": ["http://doi.org/10.1016/j.neucom.2016.08.055"]}, {"id": "d7fd3dedb6b260702ed5e4b9175127815286e8da", "title": "Knowledge sharing: From atomic to parametrised context and shallow to deep models", "year": "2017", "pdf": [], "doi": []}, {"id": "02138f475677ca1f9a5919870a78a3e4518b395a", "title": "Fusion of Domain-Specific and Trainable Features for Gender Recognition From Face Images", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8331979"]}, {"id": "3e19d36e41a8040df26929f19535e25dcda40d2b", "title": "Analysis of Human Age Estimation Process", "year": "2015", "pdf": ["https://www.ijarcce.com/upload/2015/march-15/IJARCCE%2028.pdf"], "doi": ["https://doi.org/10.17148/IJARCCE.2015.4328"]}, {"id": "cc45fb67772898c36519de565c9bd0d1d11f1435", "title": "Evaluating Automated Facial Age Estimation Techniques for Digital Forensics", "year": "2018", "pdf": ["https://forensicsandsecurity.com/papers/EvaluatingFacialAgeEstimation.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424644", "http://doi.org/10.1109/SPW.2018.00028"]}, {"id": "ac2e3a889fc46ca72f9a2cdedbdd6f3d4e9e2627", "title": "Age detection from a single image using multitask neural networks : An overview and design proposal", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/ac2e/3a889fc46ca72f9a2cdedbdd6f3d4e9e2627.pdf"], "doi": []}, {"id": "ec0104286c96707f57df26b4f0a4f49b774c486b", "title": "An Ensemble CNN2ELM for Age Estimation", "year": "2018", "pdf": ["http://www.cs.newpaltz.edu/~lik/publications/Mingxing-Duan-IEEE-TIFS-2018.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8082561", "http://doi.org/10.1109/TIFS.2017.2766583"]}, {"id": "03f3bde03f83c3ff4f346d761fde4ce031dd4c69", "title": "Deep Models Calibration with Bayesian Neural Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/03f3/bde03f83c3ff4f346d761fde4ce031dd4c69.pdf"], "doi": []}, {"id": "0a325d70cc381b136a8f4e471b406cda6d27668c", "title": "A flexible hierarchical approach for facial age estimation based on multiple features", "year": "2016", "pdf": ["https://www.etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-innovation/Publications/Publications-2016/F1b-PR2016.pdf"], "doi": ["http://doi.org/10.1016/j.patcog.2015.12.003"]}, {"id": "9939498315777b40bed9150d8940fc1ac340e8ba", "title": "ChaLearn Looking at People and Faces of the World: Face AnalysisWorkshop and Challenge 2016", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Escalera_ChaLearn_Looking_at_CVPR_2016_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789583", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.93", "http://doi.org/10.1109/CVPRW.2016.93"]}, {"id": "1277b1b8b609a18b94e4907d76a117c9783a5373", "title": "VirtualIdentity: Privacy preserving user profiling", "year": "2016", "pdf": ["https://arxiv.org/pdf/1808.10151.pdf"], "doi": []}, {"id": "772a30f1a7a3071e5ce6ad4b0dbddc67889f5873", "title": "FDAR-Net: Joint Convolutional Neural Networks for Face Detection and Attribute Recognition", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7830820"]}, {"id": "2b60fe300735ea7c63f91c1121e89ba66040b833", "title": "A study on face recognition techniques with age and gender classification", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8229960"]}, {"id": "99f43e5f8f4348c04e97590ec173d61d2be1882d", "title": "Small Sample Deep Learning for Newborn Gestational Age Estimation", "year": "2017", "pdf": ["http://eprints.nottingham.ac.uk/40828/1/automatic-gestational-age.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961726", "http://doi.ieeecomputersociety.org/10.1109/FG.2017.19", "http://doi.org/10.1109/FG.2017.19"]}, {"id": "42a5dc91852c8c14ed5f4c3b451c9dc98348bc02", "title": "A Data Augmentation Methodology to Improve Age Estimation Using Convolutional Neural Networks", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7813020", "http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2016.021", "http://doi.org/10.1109/SIBGRAPI.2016.021"]}, {"id": "0435a34e93b8dda459de49b499dd71dbb478dc18", "title": "VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification Using Convolutional Neural Networks", "year": "2018", "pdf": [], "doi": []}, {"id": "5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70c", "title": "Multiple Facial Attributes Estimation Based on Weighted Heterogeneous Learning", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/5fb5/d9389e2a2a4302c81bcfc068a4c8d4efe70c.pdf"], "doi": []}, {"id": "9e1b0f50417867317a8cb8fe35c6b2617ad9641e", "title": "Diversity in Faces", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.10436.pdf"], "doi": []}, {"id": "841c99e887eb262e397fdf5b0490a2ae6c82d6b5", "title": "Feature extraction for facial age estimation: A survey", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7566541"]}, {"id": "f77c9bf5beec7c975584e8087aae8d679664a1eb", "title": "Local Deep Neural Networks for Age and Gender Classification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.08497.pdf"], "doi": []}, {"id": "eb4151eebd0b7451ca990b242cef8357bfa9db92", "title": "Human Gender Prediction on Facial Images Taken by Mobile Phone using Convolutional Neural Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/eb41/51eebd0b7451ca990b242cef8357bfa9db92.pdf"], "doi": []}, {"id": "305346d01298edeb5c6dc8b55679e8f60ba97efb", "title": "Fine-Grained Face Annotation Using Deep Multi-Task CNN", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3053/46d01298edeb5c6dc8b55679e8f60ba97efb.pdf"], "doi": []}, {"id": "633c851ebf625ad7abdda2324e9de093cf623141", "title": "Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961727"]}, {"id": "29db16efc3b378c50511f743e5197a4c0b9e902f", "title": "Deeply Learned Rich Coding for Cross-Dataset Facial Age Estimation", "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Kuang_Deeply_Learned_Rich_ICCV_2015_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406401", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.52", "http://doi.org/10.1109/ICCVW.2015.52"]}, {"id": "dedbf5d18bbb995215d513abb21c8555fcd1b5f4", "title": "Contributions to Deep Learning Models", "year": "2016", "pdf": ["https://riunet.upv.es/bitstream/handle/10251/61296/MANSANET%20-%20Contributions%20to%20Deep%20Learning%20Models.pdf;jsessionid=118A8263B301DE77F2C02BDA0178D474?sequence=1", "https://riunet.upv.es/bitstream/handle/10251/61296/resumen_castellano.pdf?isAllowed=y&sequence=3", "https://riunet.upv.es/bitstream/handle/10251/61296/resumen_ingles.pdf?isAllowed=y&sequence=5", "https://riunet.upv.es/bitstream/handle/10251/61296/resumen_valenciano.pdf?isAllowed=y&sequence=4"], "doi": ["https://doi.org/10.4995/Thesis%2F10251%2F61296"]}, {"id": "bb33376961f6663df848ae9bf055c9afd9182443", "title": "Learning From Less Data: A Unified Data Subset Selection and Active Learning Framework for Computer Vision", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.01151.pdf"], "doi": []}, {"id": "5c09d905f6d4f861624821bf9dfe2aae29137e9c", "title": "Women Also Snowboard: Overcoming Bias in Captioning Models", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.00517.pdf"], "doi": []}, {"id": "d4d1ac1cfb2ca703c4db8cc9a1c7c7531fa940f9", "title": "Gender estimation based on supervised HOG, Action Units and unsupervised CNN feature extraction", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7956439"]}, {"id": "be0a0e563445119b82d664d370e646e53e69a4c5", "title": "Age and gender classification from speech and face images by jointly fine-tuned deep neural networks", "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1016/j.eswa.2017.05.037"]}, {"id": "cfdc632adcb799dba14af6a8339ca761725abf0a", "title": "Probabilistic Formulations of Regression with Mixed Guidance", "year": "2016", "pdf": ["https://arxiv.org/pdf/1804.01575.pdf"], "doi": []}, {"id": "341ed69a6e5d7a89ff897c72c1456f50cfb23c96", "title": "DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.04280.pdf"], "doi": []}, {"id": "8355d095d3534ef511a9af68a3b2893339e3f96b", "title": "DEX: Deep EXpectation of Apparent Age from a Single Image", "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406390"]}, {"id": "166186e551b75c9b5adcc9218f0727b73f5de899", "title": "Automatic Age and Gender Recognition in Human Face Image Dataset using Convolutional Neural Network System", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/1661/86e551b75c9b5adcc9218f0727b73f5de899.pdf"], "doi": []}, {"id": "e295c1aa47422eb35123053038e62e9aa50a2e3a", "title": "ChaLearn Looking at People 2015: Apparent Age and Cultural Event Recognition Datasets and Results", "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Escalera_ChaLearn_Looking_at_ICCV_2015_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406389", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.40", "http://doi.org/10.1109/ICCVW.2015.40"]}, {"id": "635158d2da146e9de559d2742a2fa234e06b52db", "title": "Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns", "year": "2015", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=2830587"]}, {"id": "ea227e47b8a1e8f55983c34a17a81e5d3fa11cfd", "title": "Age group classification in the wild with deep RoR architecture", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296549", "http://doi.org/10.1109/ICIP.2017.8296549"]}, {"id": "78ed6983cbd4175019dd9f7f1bef0a5b409dbca5", "title": "NDDR-CNN: Layer-wise Feature Fusing in Multi-Task CNN by Neural Discriminative Dimensionality Reduction", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.08297.pdf"], "doi": []}, {"id": "3be8477ef3596f089c74a800a5e5ded500ad67e0", "title": "Grouped Multi-Task CNN for Facial Attribute Recognition", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545352"]}, {"id": "cca476114c48871d05537abb303061de5ab010d6", "title": "A compact deep convolutional neural network architecture for video based age and gender estimation", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7733330", "http://doi.org/10.15439/2016F472"]}, {"id": "50ff21e595e0ebe51ae808a2da3b7940549f4035", "title": "Age Group and Gender Estimation in the Wild With Deep RoR Architecture", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.02985.pdf"], "doi": []}, {"id": "fca6df7d36f449d48a8d1e48a78c860d52e3baf8", "title": "Fine-Grained Age Estimation in the wild with Attention LSTM Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.10445.pdf"], "doi": []}, {"id": "0cfca73806f443188632266513bac6aaf6923fa8", "title": "Predictive Uncertainty in Large Scale Classification using Dropout - Stochastic Gradient Hamiltonian Monte Carlo", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.04756.pdf"], "doi": []}, {"id": "7173871866fc7e555e9123d1d7133d20577054e8", "title": "Simultaneous Adversarial Training - Learn from Others Mistakes", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08108.pdf"], "doi": []}, {"id": "2cbb4a2f8fd2ddac86f8804fd7ffacd830a66b58", "title": "Age and gender classification using convolutional neural networks", "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Levi_Age_and_Gender_2015_CVPR_paper.pdf", "http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7301352", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2015.7301352", "http://doi.org/10.1109/CVPRW.2015.7301352"]}, {"id": "e8b56ed34ece9b1739fff0df6af3b65390c468d3", "title": "Human injected by Botox age estimation based on active shape models, speed up robust features, and support vector machine", "year": "2016", "pdf": [], "doi": ["http://doi.org/10.1134/S1054661816030184"]}, {"id": "625a8ec3e6cfc5fee0962acf09023b6bb9752ed5", "title": "Video Age Estimation with Multiple Stacked CNN Models", "year": "2017", "pdf": ["https://pos.sissa.it/299/021/pdf"], "doi": ["https://doi.org/10.22323/1.299.0021"]}, {"id": "e5563a0d6a2312c614834dc784b5cc7594362bff", "title": "Real-Time Demographic Profiling from Face Imagery with Fisher Vectors", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/e556/3a0d6a2312c614834dc784b5cc7594362bff.pdf"], "doi": []}, {"id": "9ee35b278064554a1e3c2f9d8396f5a2fe5caa8e", "title": "Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578147"]}, {"id": "d818568838433a6d6831adde49a58cef05e0c89f", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "year": "2017", "pdf": ["http://eprints.mdx.ac.uk/22044/1/agedb_kotsia.pdf", "http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf", "https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014984", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.250", "http://doi.org/10.1109/CVPRW.2017.250"]}, {"id": "cf1dc9e3b7ef7f80318a14a1667139a69f404f6f", "title": "Automatic age and gender classification using supervised appearance model", "year": "2016", "pdf": ["https://bradscholars.brad.ac.uk/bitstream/handle/10454/8760/Ugail_Journal_of_Electronic_Imaging.pdf;jsessionid=E55C0CC685CC06835220302A31D9329E?sequence=1", "https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging/volume-25/issue-06/061605/Automatic-age-and-gender-classification-using-supervised-appearance-model/10.1117/1.JEI.25.6.061605.pdf"], "doi": ["https://doi.org/10.1117/1.JEI.25.6.061605"]}, {"id": "aa6f7c3daed31d331ef626758e990cbc04632852", "title": "Merging Deep Neural Networks for Mobile Devices", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575382"]}, {"id": "d278e020be85a1ccd90aa366b70c43884dd3f798", "title": "Learning From Less Data: Diversified Subset Selection and Active Learning in Image Classification Tasks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.11191.pdf"], "doi": []}, {"id": "8a917903b0a1d47f24bc7776ab0bd00aa8ec88f3", "title": "A Constrained Deep Neural Network for Ordinal Regression", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578191"]}, {"id": "7b92d1e53cc87f7a4256695de590098a2f30261e", "title": "From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575487"]}, {"id": "0dccc881cb9b474186a01fd60eb3a3e061fa6546", "title": "Effective face frontalization in unconstrained images", "year": "2015", "pdf": ["https://arxiv.org/pdf/1411.7964.pdf"], "doi": []}, {"id": "b839bc95794dc65340b6e5fea098fa6e6ea5e430", "title": "Soft Biometrics in Online Social Networks: A Case Study on Twitter User Gender Recognition", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7912201", "http://doi.org/10.1109/WACVW.2017.8"]}, {"id": "59b6e9320a4e1de9216c6fc49b4b0309211b17e8", "title": "Robust Representations for unconstrained Face Recognition and its Applications", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/59b6/e9320a4e1de9216c6fc49b4b0309211b17e8.pdf"], "doi": []}, {"id": "81e628a23e434762b1208045919af48dceb6c4d2", "title": "Attend and Rectify: A Gated Attention Mechanism for Fine-Grained Recovery", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.07320.pdf"], "doi": []}, {"id": "c8adbe00b5661ab9b3726d01c6842c0d72c8d997", "title": "Deep Architectures for Face Attributes", "year": "2016", "pdf": ["https://arxiv.org/pdf/1609.09018.pdf"], "doi": []}, {"id": "b8b9cef0938975c5b640b7ada4e3dea6c06d64e9", "title": "Metric-Promoted Siamese Network for Gender Classification", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961849", "http://doi.ieeecomputersociety.org/10.1109/FG.2017.119", "http://doi.org/10.1109/FG.2017.119"]}, {"id": "af6e351d58dba0962d6eb1baf4c9a776eb73533f", "title": "How to Train Your Deep Neural Network with Dictionary Learning", "year": "2016", "pdf": ["https://arxiv.org/pdf/1612.07454.pdf"], "doi": []}, {"id": "9755554b13103df634f9b1ef50a147dd02eab02f", "title": "How Transferable Are CNN-Based Features for Age and Gender Classification?", "year": "2016", "pdf": ["https://arxiv.org/pdf/1610.00134.pdf"], "doi": []}, {"id": "6d684358fa1b7a761cf38b31e6d0601bb69c87aa", "title": "A Review on the Suitability of Machine Learning Approaches to Facial Age Estimation", "year": "2015", "pdf": ["http://mecs-press.org/ijmecs/ijmecs-v7-n12/IJMECS-V7-N12-3.pdf"], "doi": ["https://doi.org/10.5815/ijmecs.2015.12.03"]}, {"id": "7361b900018f22e37499443643be1ff9d20edfd6", "title": "Predictive biometrics: a review and analysis of predicting personal characteristics from biometric data", "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1049/iet-bmt.2016.0169"]}, {"id": "12e4545d07e1793df87520f384b37a015815d2f7", "title": "Age invariant face recognition: a survey on facial aging databases, techniques and effect of aging", "year": "2018", "pdf": [], "doi": ["http://doi.org/10.1007/s10462-018-9661-z"]}, {"id": "775c15a5dfca426d53c634668e58dd5d3314ea89", "title": "Image Quality-aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/775c/15a5dfca426d53c634668e58dd5d3314ea89.pdf"], "doi": []}, {"id": "c95d8b9bddd76b8c83c8745747e8a33feedf3941", "title": "Image Ordinal Classification and Understanding: Grid Dropout with Masking Label", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.02901.pdf"], "doi": []}, {"id": "60cd4ba089d0b078cdac0db311099493b55624d8", "title": "Local Deep Neural Networks for gender recognition", "year": "2016", "pdf": ["https://riunet.upv.es/bitstream/handle/10251/84826/main_plain.pdf?isAllowed=y&sequence=3"], "doi": ["http://doi.org/10.1016/j.patrec.2015.11.015"]}, {"id": "321db1059032b828b223ca30f3304257f0c41e4c", "title": "Comparative evaluation of age classification from facial images", "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7275951", "http://doi.org/10.1109/ICACCI.2015.7275951"]}, {"id": "e8951cc76af80da43e3528fe6d984071f17f57e7", "title": "Online Cost Efficient Customer Recognition System for Retail Analytics", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7912202", "http://doi.org/10.1109/WACVW.2017.9"]}, {"id": "bc749f0e81eafe9e32d56336750782f45d82609d", "title": "Combination of Texture and Geometric Features for Age Estimation in Face Images", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/bc74/9f0e81eafe9e32d56336750782f45d82609d.pdf"], "doi": []}, {"id": "00a38ebce124879738b04ffc1536018e75399193", "title": "Convolutional neural network for age classification from smart-phone based ocular images", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272766", "http://doi.org/10.1109/BTAS.2017.8272766"]}, {"id": "99c57ec53f2598d63c010f791adbca386b276919", "title": "Landmark-Guided Local Deep Neural Networks for Age and Gender Classification", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/99c5/7ec53f2598d63c010f791adbca386b276919.pdf"], "doi": []}, {"id": "7cee802e083c5e1731ee50e731f23c9b12da7d36", "title": "2^B3^C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02181.pdf"], "doi": []}, {"id": "c7c21e78bdadd1d2d98c43f0be3230e59f008b27", "title": "Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.00906.pdf"], "doi": []}, {"id": "35f074047838d1590591a93477d4d7eef4dd52d8", "title": "Multiple Network Fusion with Low-Rank Representation for Image-Based Age Estimation", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/35f0/74047838d1590591a93477d4d7eef4dd52d8.pdf"], "doi": []}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": [], "doi": []}, {"id": "5e39deb4bff7b887c8f3a44dfe1352fbcde8a0bd", "title": "Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.06221.pdf"], "doi": []}, {"id": "d9c0310203179d5328c4f1475fa4d68c5f0c7324", "title": "Face Analysis in the Wild", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8250221", "http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI-T.2017.11", "http://doi.org/10.1109/SIBGRAPI-T.2017.11"]}, {"id": "7aa4c16a8e1481629f16167dea313fe9256abb42", "title": "Multi-task learning for face identification and attribute estimation", "year": "2017", "pdf": ["http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002981.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952703", "http://doi.org/10.1109/ICASSP.2017.7952703"]}, {"id": "c9c2de3628be7e249722b12911bebad84b567ce6", "title": "Age and gender recognition in the wild with deep attention", "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1016/j.patcog.2017.06.028"]}, {"id": "b46d49cb7aade5ab7be51bd7a0ce3aa6f7c6b9ed", "title": "Recognizing Gender from Human Facial Regions using Genetic Algorithm", "year": "2018", "pdf": ["https://arxiv.org/pdf/1712.01661.pdf"], "doi": []}, {"id": "8879083463a471898ff9ed9403b84db277be5bf6", "title": "Regression Facial Attribute Classification via simultaneous dictionary learning", "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1016/j.patcog.2016.08.031"]}]}