1
|
{"id": "1be498d4bbc30c3bfd0029114c784bc2114d67c0", "citations": [{"id": "cdae8e9cc9d605856cf5709b2fdf61f722d450c1", "title": "Deep Learning for Biometrics : A Survey KALAIVANI SUNDARARAJAN", "year": "2018", "pdf": [], "doi": []}, {"id": "02138f475677ca1f9a5919870a78a3e4518b395a", "title": "Fusion of Domain-Specific and Trainable Features for Gender Recognition From Face Images", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8331979"]}, {"id": "03f3bde03f83c3ff4f346d761fde4ce031dd4c69", "title": "Deep Models Calibration with Bayesian Neural Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/03f3/bde03f83c3ff4f346d761fde4ce031dd4c69.pdf"], "doi": []}, {"id": "772a30f1a7a3071e5ce6ad4b0dbddc67889f5873", "title": "FDAR-Net: Joint Convolutional Neural Networks for Face Detection and Attribute Recognition", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7830820"]}, {"id": "0435a34e93b8dda459de49b499dd71dbb478dc18", "title": "VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification Using Convolutional Neural Networks", "year": "2018", "pdf": [], "doi": []}, {"id": "f77c9bf5beec7c975584e8087aae8d679664a1eb", "title": "Local Deep Neural Networks for Age and Gender Classification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.08497.pdf"], "doi": []}, {"id": "633c851ebf625ad7abdda2324e9de093cf623141", "title": "Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961727"]}, {"id": "dedbf5d18bbb995215d513abb21c8555fcd1b5f4", "title": "Contributions to Deep Learning Models", "year": "2016", "pdf": ["https://riunet.upv.es/bitstream/handle/10251/61296/MANSANET%20-%20Contributions%20to%20Deep%20Learning%20Models.pdf;jsessionid=118A8263B301DE77F2C02BDA0178D474?sequence=1", "https://riunet.upv.es/bitstream/handle/10251/61296/resumen_castellano.pdf?isAllowed=y&sequence=3", "https://riunet.upv.es/bitstream/handle/10251/61296/resumen_ingles.pdf?isAllowed=y&sequence=5", "https://riunet.upv.es/bitstream/handle/10251/61296/resumen_valenciano.pdf?isAllowed=y&sequence=4"], "doi": ["https://doi.org/10.4995/Thesis%2F10251%2F61296"]}, {"id": "341ed69a6e5d7a89ff897c72c1456f50cfb23c96", "title": "DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.04280.pdf"], "doi": []}, {"id": "8355d095d3534ef511a9af68a3b2893339e3f96b", "title": "DEX: Deep EXpectation of Apparent Age from a Single Image", "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406390"]}, {"id": "166186e551b75c9b5adcc9218f0727b73f5de899", "title": "Automatic Age and Gender Recognition in Human Face Image Dataset using Convolutional Neural Network System", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/1661/86e551b75c9b5adcc9218f0727b73f5de899.pdf"], "doi": []}, {"id": "635158d2da146e9de559d2742a2fa234e06b52db", "title": "Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns", "year": "2015", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=2830587"]}, {"id": "9ee35b278064554a1e3c2f9d8396f5a2fe5caa8e", "title": "Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578147"]}, {"id": "7b92d1e53cc87f7a4256695de590098a2f30261e", "title": "From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575487"]}, {"id": "b839bc95794dc65340b6e5fea098fa6e6ea5e430", "title": "Soft Biometrics in Online Social Networks: A Case Study on Twitter User Gender Recognition", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7912201", "http://doi.org/10.1109/WACVW.2017.8"]}, {"id": "b8b9cef0938975c5b640b7ada4e3dea6c06d64e9", "title": "Metric-Promoted Siamese Network for Gender Classification", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961849", "http://doi.ieeecomputersociety.org/10.1109/FG.2017.119", "http://doi.org/10.1109/FG.2017.119"]}, {"id": "7361b900018f22e37499443643be1ff9d20edfd6", "title": "Predictive biometrics: a review and analysis of predicting personal characteristics from biometric data", "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1049/iet-bmt.2016.0169"]}, {"id": "e8951cc76af80da43e3528fe6d984071f17f57e7", "title": "Online Cost Efficient Customer Recognition System for Retail Analytics", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7912202", "http://doi.org/10.1109/WACVW.2017.9"]}, {"id": "7cee802e083c5e1731ee50e731f23c9b12da7d36", "title": "2^B3^C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02181.pdf"], "doi": []}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": [], "doi": []}, {"id": "d9c0310203179d5328c4f1475fa4d68c5f0c7324", "title": "Face Analysis in the Wild", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8250221", "http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI-T.2017.11", "http://doi.org/10.1109/SIBGRAPI-T.2017.11"]}, {"id": "7aa4c16a8e1481629f16167dea313fe9256abb42", "title": "Multi-task learning for face identification and attribute estimation", "year": "2017", "pdf": ["http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002981.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952703", "http://doi.org/10.1109/ICASSP.2017.7952703"]}, {"id": "8879083463a471898ff9ed9403b84db277be5bf6", "title": "Regression Facial Attribute Classification via simultaneous dictionary learning", "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1016/j.patcog.2016.08.031"]}, {"id": "2c03df8b48bf3fa39054345bafabfeff15bfd11d", "title": "Deep Residual Learning for Image Recognition", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780459"]}, {"id": "d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0", "title": "Minimalistic CNN-based ensemble model for gender prediction from face images", "year": "2016", "pdf": ["http://www.eurecom.fr/en/publication/4768/download/mm-publi-4768.pdf"], "doi": ["http://doi.org/10.1016/j.patrec.2015.11.011"]}, {"id": "6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c", "title": "Ordinal Regression with Multiple Output CNN for Age Estimation", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780901"]}, {"id": "9871aa511ca7e3c61c083c327063442bc2c411bf", "title": "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks", "year": "2017", "pdf": [], "doi": ["https://doi.org/10.1109/iccv.2017.244"]}, {"id": "140c95e53c619eac594d70f6369f518adfea12ef", "title": "Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A", "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298803"]}, {"id": "ca50e441e275a3c04299bb6b59f6c098abecec1d", "title": "Face Recognition and Age Estimation Implications of Changes in Facial Features: A Critical Review Study", "year": "2018", "pdf": ["https://umexpert.um.edu.my/file/publication/00005433_161555_73291.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361072", "http://doi.org/10.1109/ACCESS.2018.2836924"]}, {"id": "d019a79c98bf094b99a103a7481e8d975e4a0685", "title": "Implementation of machine learning for gender detection using CNN on raspberry Pi platform", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398872"]}, {"id": "091f6541ffd83985405334842dc60e16d4c52a12", "title": "Real-time demographic profiling from face imagery with Fisher vectors", "year": "2018", "pdf": ["http://www.micc.unifi.it/seidenari/wp-content/papercite-data/pdf/mva18.pdf", "https://www.micc.unifi.it/wp-content/uploads/2019/01/realtime-demographic.pdf"], "doi": ["https://doi.org/10.1007/s00138-018-0991-2"]}]}
|