1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
|
index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
0,LFW,lfw,0.0,0.0,,,7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22,main,http://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf,Labeled Faces in the Wild: A Survey,2015
1,LFW,lfw,38.5336349,-121.79077264,"University of California, Davis",edu,e94dfdc5581f6bc0338e21ad555b5f1734f8697e,citation,https://arxiv.org/pdf/1803.11556.pdf,Learning to Anonymize Faces for Privacy Preserving Action Detection,2018
2,LFW,lfw,-33.88890695,151.18943366,University of Sydney,edu,aa892fe17c06e2b18db2b12314499a741e755df7,citation,https://doi.org/10.1109/IJCNN.2017.7966089,Improved performance of face recognition using CNN with constrained triplet loss layer,2017
3,LFW,lfw,39.329053,-76.619425,Johns Hopkins University,edu,672fae3da801b2a0d2bad65afdbbbf1b2320623e,citation,https://arxiv.org/pdf/1609.07042.pdf,Pose-Selective Max Pooling for Measuring Similarity,2016
4,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,450c6a57f19f5aa45626bb08d7d5d6acdb863b4b,citation,https://arxiv.org/pdf/1805.00611.pdf,Towards Interpretable Face Recognition,2018
5,LFW,lfw,29.5084174,106.57858552,Chongqing University,edu,a90e6751ae32cb2983891ef2216293311cd6a8e9,citation,https://pdfs.semanticscholar.org/a90e/6751ae32cb2983891ef2216293311cd6a8e9.pdf,Clustering using Ensemble Clustering Technique,2018
6,LFW,lfw,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,9be696618cfcea90879747a8512f21b10cceac48,citation,https://arxiv.org/pdf/1809.02129.pdf,Structural Consistency and Controllability for Diverse Colorization,2018
7,LFW,lfw,37.373444,-121.9648727,"Futurewei Technologies Inc., Santa Clara, CA",company,d8fbd3a16d2e2e59ce0cff98b3fd586863878dc1,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952553,Face detection and recognition for home service robots with end-to-end deep neural networks,2017
8,LFW,lfw,40.47913175,-74.43168868,Rutgers University,edu,d4448f8aa320f04066cc43201d55ddd023eb712e,citation,https://pdfs.semanticscholar.org/d444/8f8aa320f04066cc43201d55ddd023eb712e.pdf,Clothing Change Aware Person Identification,0
9,LFW,lfw,33.9928298,-81.02685168,University of South Carolina,edu,d4448f8aa320f04066cc43201d55ddd023eb712e,citation,https://pdfs.semanticscholar.org/d444/8f8aa320f04066cc43201d55ddd023eb712e.pdf,Clothing Change Aware Person Identification,0
10,LFW,lfw,31.83907195,117.26420748,University of Science and Technology of China,edu,e1256ff535bf4c024dd62faeb2418d48674ddfa2,citation,https://arxiv.org/pdf/1803.11182.pdf,Towards Open-Set Identity Preserving Face Synthesis,2018
11,LFW,lfw,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017
12,LFW,lfw,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017
13,LFW,lfw,39.329053,-76.619425,Johns Hopkins University,edu,10e0e6f1ec00b20bc78a5453a00c792f1334b016,citation,http://pdfs.semanticscholar.org/672f/ae3da801b2a0d2bad65afdbbbf1b2320623e.pdf,Temporal Selective Max Pooling Towards Practical Face Recognition,2016
14,LFW,lfw,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
15,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
16,LFW,lfw,24.4469025,54.3942563,Khalifa University,edu,0c1d85a197a1f5b7376652a485523e616a406273,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.169,Joint Registration and Representation Learning for Unconstrained Face Identification,2017
17,LFW,lfw,-35.23656905,149.08446994,University of Canberra,edu,0c1d85a197a1f5b7376652a485523e616a406273,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.169,Joint Registration and Representation Learning for Unconstrained Face Identification,2017
18,LFW,lfw,22.3386304,114.2620337,Hong Kong University of Science and Technology,edu,585260468d023ffc95f0e539c3fa87254c28510b,citation,http://pdfs.semanticscholar.org/5852/60468d023ffc95f0e539c3fa87254c28510b.pdf,Cardea: Context-Aware Visual Privacy Protection from Pervasive Cameras,2016
19,LFW,lfw,55.6801502,12.572327,University of Copenhagen,edu,3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,citation,http://pdfs.semanticscholar.org/3dfd/94d3fad7e17f52a8ae815eb9cc5471172bc0.pdf,Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions,2018
20,LFW,lfw,35.9023226,14.4834189,University of Malta,edu,3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,citation,http://pdfs.semanticscholar.org/3dfd/94d3fad7e17f52a8ae815eb9cc5471172bc0.pdf,Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions,2018
21,LFW,lfw,36.00146435,120.11624057,Shandong University of Science and Technology,edu,db84c6fd771a073023f2b42e48a68eb2d9d31e4a,citation,https://pdfs.semanticscholar.org/db84/c6fd771a073023f2b42e48a68eb2d9d31e4a.pdf,A Deep Variational Autoencoder Approach for Robust Facial Symmetrization,2018
22,LFW,lfw,36.16161795,120.49355276,Ocean University of China,edu,db84c6fd771a073023f2b42e48a68eb2d9d31e4a,citation,https://pdfs.semanticscholar.org/db84/c6fd771a073023f2b42e48a68eb2d9d31e4a.pdf,A Deep Variational Autoencoder Approach for Robust Facial Symmetrization,2018
23,LFW,lfw,45.7835966,4.7678948,École Centrale de Lyon,edu,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017
24,LFW,lfw,48.832493,2.267474,Safran Identity and Security,company,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017
25,LFW,lfw,28.2290209,112.99483204,"National University of Defense Technology, China",edu,511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7,citation,https://pdfs.semanticscholar.org/511a/8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7.pdf,A Community Detection Approach to Cleaning Extremely Large Face Database,2018
26,LFW,lfw,22.304572,114.17976285,Hong Kong Polytechnic University,edu,50b58becaf67e92a6d9633e0eea7d352157377c3,citation,https://pdfs.semanticscholar.org/50b5/8becaf67e92a6d9633e0eea7d352157377c3.pdf,Dependency-Aware Attention Control for Unconstrained Face Recognition with Image Sets,2018
27,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,5865b6d83ba6dbbf9167f1481e9339c2ef1d1f6b,citation,https://doi.org/10.1109/ICPR.2016.7900278,Regularized metric adaptation for unconstrained face verification,2016
28,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,86204fc037936754813b91898377e8831396551a,citation,https://arxiv.org/pdf/1709.01442.pdf,Dense Face Alignment,2017
29,LFW,lfw,40.48256135,-3.6906079,Universidad Autonoma de Madrid,edu,24b5ea4e262e22768813e7b6581f60e4ab9a8de7,citation,https://doi.org/10.1109/TIFS.2018.2807791,"Facial Soft Biometrics for Recognition in the Wild: Recent Works, Annotation, and COTS Evaluation",2018
30,LFW,lfw,40.3905914,-74.1863851,"Nokia Bell-Labs, Madrid, Spain",company,24b5ea4e262e22768813e7b6581f60e4ab9a8de7,citation,https://doi.org/10.1109/TIFS.2018.2807791,"Facial Soft Biometrics for Recognition in the Wild: Recent Works, Annotation, and COTS Evaluation",2018
31,LFW,lfw,56.66340325,12.87929727,Halmstad University,edu,24b5ea4e262e22768813e7b6581f60e4ab9a8de7,citation,https://doi.org/10.1109/TIFS.2018.2807791,"Facial Soft Biometrics for Recognition in the Wild: Recent Works, Annotation, and COTS Evaluation",2018
32,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,def2983576001bac7d6461d78451159800938112,citation,https://arxiv.org/pdf/1705.07426.pdf,The Do’s and Don’ts for CNN-Based Face Verification,2017
33,LFW,lfw,30.19331415,120.11930822,Zhejiang University,edu,35700f9a635bd3c128ab41718b040a0c28d6361a,citation,http://pdfs.semanticscholar.org/3570/0f9a635bd3c128ab41718b040a0c28d6361a.pdf,DeepGait: A Learning Deep Convolutional Representation for View-Invariant Gait Recognition Using Joint Bayesian,2017
34,LFW,lfw,30.2931534,120.1620458,Zhejiang University of Technology,edu,35700f9a635bd3c128ab41718b040a0c28d6361a,citation,http://pdfs.semanticscholar.org/3570/0f9a635bd3c128ab41718b040a0c28d6361a.pdf,DeepGait: A Learning Deep Convolutional Representation for View-Invariant Gait Recognition Using Joint Bayesian,2017
35,LFW,lfw,43.614386,7.071125,EURECOM,edu,1648cf24c042122af2f429641ba9599a2187d605,citation,https://doi.org/10.1109/BTAS.2017.8272698,Boosting cross-age face verification via generative age normalization,2017
36,LFW,lfw,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,856cc83a3121de89d4a6d9283afbcd5d7ef7aa2b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6417014,Image-to-Set Face Recognition Using Locality Repulsion Projections and Sparse Reconstruction-Based Similarity Measure,2013
37,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,856cc83a3121de89d4a6d9283afbcd5d7ef7aa2b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6417014,Image-to-Set Face Recognition Using Locality Repulsion Projections and Sparse Reconstruction-Based Similarity Measure,2013
38,LFW,lfw,51.7534538,-1.25400997,University of Oxford,edu,30180f66d5b4b7c0367e4b43e2b55367b72d6d2a,citation,http://www.robots.ox.ac.uk/~vgg/publications/2017/Crosswhite17/crosswhite17.pdf,Template Adaptation for Face Verification and Identification,2017
39,LFW,lfw,31.83907195,117.26420748,University of Science and Technology of China,edu,3107316f243233d45e3c7e5972517d1ed4991f91,citation,http://arxiv.org/abs/1703.10155,CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training,2017
40,LFW,lfw,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,10f66f6550d74b817a3fdcef7fdeba13ccdba51c,citation,http://pdfs.semanticscholar.org/10f6/6f6550d74b817a3fdcef7fdeba13ccdba51c.pdf,Benchmarking Face Alignment,2011
41,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,19458454308a9f56b7de76bf7d8ff8eaa52b0173,citation,https://pdfs.semanticscholar.org/1945/8454308a9f56b7de76bf7d8ff8eaa52b0173.pdf,Deep Features for Recognizing Disguised Faces in the Wild,0
42,LFW,lfw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,44b827df6c433ca49bcf44f9f3ebfdc0774ee952,citation,https://doi.org/10.1109/LSP.2017.2726105,Deep Correlation Feature Learning for Face Verification in the Wild,2017
43,LFW,lfw,37.4102193,-122.05965487,Carnegie Mellon University,edu,a0b1990dd2b4cd87e4fd60912cc1552c34792770,citation,https://pdfs.semanticscholar.org/a0b1/990dd2b4cd87e4fd60912cc1552c34792770.pdf,Deep Constrained Local Models for Facial Landmark Detection,2016
44,LFW,lfw,30.284151,-97.73195598,University of Texas at Austin,edu,3c57e28a4eb463d532ea2b0b1ba4b426ead8d9a0,citation,http://pdfs.semanticscholar.org/73cc/fdedbd7d72a147925727ba1932f9488cfde3.pdf,Defeating Image Obfuscation with Deep Learning,2016
45,LFW,lfw,40.8080562,29.3561202,"Gebze Technical University, Turkey",edu,d3a3d15a32644beffaac4322b9f165ed51cfd99b,citation,https://doi.org/10.1109/SIU.2016.7496197,Eye detection by using deep learning,2016
46,LFW,lfw,40.8419836,-73.94368971,Columbia University,edu,b13bf657ca6d34d0df90e7ae739c94a7efc30dc3,citation,http://pdfs.semanticscholar.org/b13b/f657ca6d34d0df90e7ae739c94a7efc30dc3.pdf,Attribute and Simile Classifiers for Face Verification (In submission please do not distribute.),2009
47,LFW,lfw,33.776033,-84.39884086,Georgia Institute of Technology,edu,93af36da08bf99e68c9b0d36e141ed8154455ac2,citation,https://pdfs.semanticscholar.org/93af/36da08bf99e68c9b0d36e141ed8154455ac2.pdf,A Dditive M Argin S Oftmax for F Ace V Erification,2018
48,LFW,lfw,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,93af36da08bf99e68c9b0d36e141ed8154455ac2,citation,https://pdfs.semanticscholar.org/93af/36da08bf99e68c9b0d36e141ed8154455ac2.pdf,A Dditive M Argin S Oftmax for F Ace V Erification,2018
49,LFW,lfw,31.4006332,74.2137296,"COMSATS Institute of Information Technology, Lahore",edu,280bc9751593897091015aaf2cab39805768b463,citation,http://pdfs.semanticscholar.org/280b/c9751593897091015aaf2cab39805768b463.pdf,Gender Perception From Faces Using Boosted LBPH (Local Binary Patten Histograms),2013
50,LFW,lfw,55.91029135,-3.32345777,Heriot-Watt University,edu,e57ce6244ec696ff9aa42d6af7f09eed176153a8,citation,https://doi.org/10.1109/ICIP.2015.7351449,Instantaneous real-time head pose at a distance,2015
51,LFW,lfw,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,bd9e0b6a90b51cc19b65f51dacd08ce1a7ccaac5,citation,https://doi.org/10.1109/VSMM.2014.7136653,Avatar recommendation method based on facial attributes,2014
52,LFW,lfw,32.1119889,34.80459702,Tel Aviv University,edu,9821669a989a3df9d598c1b4332d17ae8e35e294,citation,http://pdfs.semanticscholar.org/9821/669a989a3df9d598c1b4332d17ae8e35e294.pdf,Minimal Correlation Classification,2012
53,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,04661729f0ff6afe4b4d6223f18d0da1d479accf,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.419,From Facial Parts Responses to Face Detection: A Deep Learning Approach,2015
54,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,04661729f0ff6afe4b4d6223f18d0da1d479accf,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.419,From Facial Parts Responses to Face Detection: A Deep Learning Approach,2015
55,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,1d5aad4f7fae6d414ffb212cec1f7ac876de48bf,citation,https://doi.org/10.1109/ICB.2015.7139112,Face retriever: Pre-filtering the gallery via deep neural net,2015
56,LFW,lfw,22.304572,114.17976285,Hong Kong Polytechnic University,edu,03babadaaa7e71d4b65203e27e8957db649155c6,citation,https://doi.org/10.1109/TIP.2017.2725578,Distance Metric Learning via Iterated Support Vector Machines,2017
57,LFW,lfw,34.250803,108.983693,Xi’an Jiaotong University,edu,03babadaaa7e71d4b65203e27e8957db649155c6,citation,https://doi.org/10.1109/TIP.2017.2725578,Distance Metric Learning via Iterated Support Vector Machines,2017
58,LFW,lfw,23.09461185,113.28788994,Sun Yat-Sen University,edu,03babadaaa7e71d4b65203e27e8957db649155c6,citation,https://doi.org/10.1109/TIP.2017.2725578,Distance Metric Learning via Iterated Support Vector Machines,2017
59,LFW,lfw,40.3494632,-74.714815,Educational Testing Service,company,03babadaaa7e71d4b65203e27e8957db649155c6,citation,https://doi.org/10.1109/TIP.2017.2725578,Distance Metric Learning via Iterated Support Vector Machines,2017
60,LFW,lfw,45.7413921,126.62552755,Harbin Institute of Technology,edu,03babadaaa7e71d4b65203e27e8957db649155c6,citation,https://doi.org/10.1109/TIP.2017.2725578,Distance Metric Learning via Iterated Support Vector Machines,2017
61,LFW,lfw,30.2931534,120.1620458,Zhejiang University of Technology,edu,20eabf10e9591443de95b726d90cda8efa7e53bb,citation,https://doi.org/10.1007/s11390-017-1740-0,Discriminative Histogram Intersection Metric Learning and Its Applications,2017
62,LFW,lfw,33.8898728,130.70856205,Waseda University,edu,20eabf10e9591443de95b726d90cda8efa7e53bb,citation,https://doi.org/10.1007/s11390-017-1740-0,Discriminative Histogram Intersection Metric Learning and Its Applications,2017
63,LFW,lfw,-27.49741805,153.01316956,University of Queensland,edu,0cdb49142f742f5edb293eb9261f8243aee36e12,citation,http://arxiv.org/abs/1303.2783,Combined Learning of Salient Local Descriptors and Distance Metrics for Image Set Face Verification,2012
64,LFW,lfw,30.481761,114.31096,Hubei University,edu,24b637c98b22cd932f74acfeecdb50533abea9ae,citation,https://doi.org/10.1109/TIP.2015.2492819,Robust Face Recognition via Minimum Error Entropy-Based Atomic Representation,2015
65,LFW,lfw,22.1240187,113.54510901,University of Macau,edu,24b637c98b22cd932f74acfeecdb50533abea9ae,citation,https://doi.org/10.1109/TIP.2015.2492819,Robust Face Recognition via Minimum Error Entropy-Based Atomic Representation,2015
66,LFW,lfw,41.8361963,-87.62655913,Illinois Institute of Technology,edu,9d66de2a59ec20ca00a618481498a5320ad38481,citation,http://www.cs.iit.edu/~xli/paper/Conf/POP-ICDCS15.pdf,POP: Privacy-Preserving Outsourced Photo Sharing and Searching for Mobile Devices,2015
67,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,9d66de2a59ec20ca00a618481498a5320ad38481,citation,http://www.cs.iit.edu/~xli/paper/Conf/POP-ICDCS15.pdf,POP: Privacy-Preserving Outsourced Photo Sharing and Searching for Mobile Devices,2015
68,LFW,lfw,32.42143805,-81.78450529,Georgia Southern University,edu,2a98b850139b911df5a336d6ebf33be7819ae122,citation,https://doi.org/10.1109/ICIP.2015.7350806,Maximum entropy regularized group collaborative representation for face recognition,2015
69,LFW,lfw,23.09461185,113.28788994,Sun Yat-Sen University,edu,2a98b850139b911df5a336d6ebf33be7819ae122,citation,https://doi.org/10.1109/ICIP.2015.7350806,Maximum entropy regularized group collaborative representation for face recognition,2015
70,LFW,lfw,37.3351908,-121.88126008,San Jose State University,edu,14b016c7a87d142f4b9a0e6dc470dcfc073af517,citation,http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=918912,Modest proposals for improving biometric recognition papers,2015
71,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,0aeb5020003e0c89219031b51bd30ff1bceea363,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.525,Sparsifying Neural Network Connections for Face Recognition,2016
72,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,0aeb5020003e0c89219031b51bd30ff1bceea363,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.525,Sparsifying Neural Network Connections for Face Recognition,2016
73,LFW,lfw,52.22165395,21.00735776,Warsaw University of Technology,edu,3ff79cf6df1937949cc9bc522041a9a39d314d83,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8406730,Adversarial examples: A survey,2018
74,LFW,lfw,40.51865195,-74.44099801,State University of New Jersey,edu,676f9eabf4cfc1fd625228c83ff72f6499c67926,citation,http://pdfs.semanticscholar.org/676f/9eabf4cfc1fd625228c83ff72f6499c67926.pdf,Face Identification and Clustering,2017
75,LFW,lfw,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,9ed4ad41cbad645e7109e146ef6df73f774cd75d,citation,http://pdfs.semanticscholar.org/a83e/175ad5b2066e207f5d2ec830ae05bac266b9.pdf,RPM: Random Points Matching for Pair wise Face-Similarity,2013
76,LFW,lfw,47.3764534,8.54770931,ETH Zürich,edu,9ed4ad41cbad645e7109e146ef6df73f774cd75d,citation,http://pdfs.semanticscholar.org/a83e/175ad5b2066e207f5d2ec830ae05bac266b9.pdf,RPM: Random Points Matching for Pair wise Face-Similarity,2013
77,LFW,lfw,42.3889785,-72.5286987,University of Massachusetts,edu,33ad23377eaead8955ed1c2b087a5e536fecf44e,citation,http://vis-www.cs.umass.edu/papers/gloc_cvpr13.pdf,Augmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling,2013
78,LFW,lfw,42.2942142,-83.71003894,University of Michigan,edu,33ad23377eaead8955ed1c2b087a5e536fecf44e,citation,http://vis-www.cs.umass.edu/papers/gloc_cvpr13.pdf,Augmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling,2013
79,LFW,lfw,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,e8aa1f207b4b0bb710f79ab47a671d5639696a56,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7362364,Exploiting symmetry in two-dimensional clustering-based discriminant analysis for face recognition,2015
80,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.435,"Two Birds, One Stone: Jointly Learning Binary Code for Large-Scale Face Image Retrieval and Attributes Prediction",2015
81,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.435,"Two Birds, One Stone: Jointly Learning Binary Code for Large-Scale Face Image Retrieval and Attributes Prediction",2015
82,LFW,lfw,42.3504253,-71.10056114,Boston University,edu,fe961cbe4be0a35becd2d722f9f364ec3c26bd34,citation,http://pdfs.semanticscholar.org/fe96/1cbe4be0a35becd2d722f9f364ec3c26bd34.pdf,"Computer-based Tracking, Analysis, and Visualization of Linguistically Significant Nonmanual Events in American Sign Language (ASL)",2014
83,LFW,lfw,40.47913175,-74.43168868,Rutgers University,edu,fe961cbe4be0a35becd2d722f9f364ec3c26bd34,citation,http://pdfs.semanticscholar.org/fe96/1cbe4be0a35becd2d722f9f364ec3c26bd34.pdf,"Computer-based Tracking, Analysis, and Visualization of Linguistically Significant Nonmanual Events in American Sign Language (ASL)",2014
84,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,b98e7a8f605c21e25ac5e32bfb1851a01f30081b,citation,http://doi.acm.org/10.1145/2393347.2396303,Deep nonlinear metric learning with independent subspace analysis for face verification,2012
85,LFW,lfw,30.572815,104.066801,University of the Chinese Academy of Sciences,edu,3d89f9b4da3d6fb1fdb33dea7592b5992069a096,citation,https://doi.org/10.1109/CISP-BMEI.2017.8302003,Face recognition based on convolution siamese networks,2017
86,LFW,lfw,25.01682835,121.53846924,National Taiwan University,edu,e51927b125640bfc47bbf1aa00c3c026748c75bd,citation,http://doi.acm.org/10.1145/2647868.2655015,Automatic Facial Image Annotation and Retrieval by Integrating Voice Label and Visual Appearance,2014
87,LFW,lfw,1.2962018,103.77689944,National University of Singapore,edu,4e8c608fc4b8198f13f8a68b9c1a0780f6f50105,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Yang_How_Related_Exemplars_2013_ICCV_paper.pdf,How Related Exemplars Help Complex Event Detection in Web Videos?,2013
88,LFW,lfw,-27.49741805,153.01316956,University of Queensland,edu,4e8c608fc4b8198f13f8a68b9c1a0780f6f50105,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Yang_How_Related_Exemplars_2013_ICCV_paper.pdf,How Related Exemplars Help Complex Event Detection in Web Videos?,2013
89,LFW,lfw,37.4102193,-122.05965487,Carnegie Mellon University,edu,4e8c608fc4b8198f13f8a68b9c1a0780f6f50105,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Yang_How_Related_Exemplars_2013_ICCV_paper.pdf,How Related Exemplars Help Complex Event Detection in Web Videos?,2013
90,LFW,lfw,37.5901411,127.0362318,Korea University,edu,ce8db0fe11e7c96d08de561506f9f8f399dabbb2,citation,https://doi.org/10.1109/ICIP.2015.7351677,Weighted sparse representation using a learned distance metric for face recognition,2015
91,LFW,lfw,1.2962018,103.77689944,National University of Singapore,edu,2836d68c86f29bb87537ea6066d508fde838ad71,citation,http://arxiv.org/pdf/1510.06503v1.pdf,Personalized Age Progression with Aging Dictionary,2015
92,LFW,lfw,32.0565957,118.77408833,Nanjing University,edu,2836d68c86f29bb87537ea6066d508fde838ad71,citation,http://arxiv.org/pdf/1510.06503v1.pdf,Personalized Age Progression with Aging Dictionary,2015
93,LFW,lfw,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,3f7cf52fb5bf7b622dce17bb9dfe747ce4a65b96,citation,https://doi.org/10.1109/TMM.2014.2315595,Person Identity Label Propagation in Stereo Videos,2014
94,LFW,lfw,41.9037626,12.5144384,Sapienza University of Rome,edu,dac34b590adddef2fc31f26e2aeb0059115d07a1,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8436078,House in the (Biometric) Cloud: A Possible Application,2018
95,LFW,lfw,41.9037626,12.5144384,Sapienza Univertsity of Rome,edu,dac34b590adddef2fc31f26e2aeb0059115d07a1,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8436078,House in the (Biometric) Cloud: A Possible Application,2018
96,LFW,lfw,-31.95040445,115.79790037,University of Western Australia,edu,210b98394c3be96e7fd75d3eb11a391da1b3a6ca,citation,http://pdfs.semanticscholar.org/210b/98394c3be96e7fd75d3eb11a391da1b3a6ca.pdf,Spatiotemporal Derivative Pattern: A Dynamic Texture Descriptor for Video Matching,2014
97,LFW,lfw,34.8452999,48.5596212,Islamic Azad University,edu,210b98394c3be96e7fd75d3eb11a391da1b3a6ca,citation,http://pdfs.semanticscholar.org/210b/98394c3be96e7fd75d3eb11a391da1b3a6ca.pdf,Spatiotemporal Derivative Pattern: A Dynamic Texture Descriptor for Video Matching,2014
98,LFW,lfw,34.68092465,50.05341352,Tafresh University,edu,210b98394c3be96e7fd75d3eb11a391da1b3a6ca,citation,http://pdfs.semanticscholar.org/210b/98394c3be96e7fd75d3eb11a391da1b3a6ca.pdf,Spatiotemporal Derivative Pattern: A Dynamic Texture Descriptor for Video Matching,2014
99,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,125d82fee1b9fbcc616622b0977f3d06771fc152,citation,http://www.ee.cuhk.edu.hk/~xgwang/papers/luoWTcvpr12.pdf,Hierarchical face parsing via deep learning,2012
100,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,125d82fee1b9fbcc616622b0977f3d06771fc152,citation,http://www.ee.cuhk.edu.hk/~xgwang/papers/luoWTcvpr12.pdf,Hierarchical face parsing via deep learning,2012
101,LFW,lfw,57.01590275,9.97532827,Aalborg University,edu,ccfebdf7917cb50b5fcd56fb837f841a2246a149,citation,https://doi.org/10.1109/ICIP.2015.7351065,A feature subtraction method for image based kinship verification under uncontrolled environments,2015
102,LFW,lfw,43.66333345,-79.39769975,University of Toronto,edu,a538b05ebb01a40323997629e171c91aa28b8e2f,citation,http://pdfs.semanticscholar.org/a538/b05ebb01a40323997629e171c91aa28b8e2f.pdf,Rectified Linear Units Improve Restricted Boltzmann Machines,2010
103,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,4cdb6144d56098b819076a8572a664a2c2d27f72,citation,https://arxiv.org/pdf/1806.01196.pdf,Face Synthesis for Eyeglass-Robust Face Recognition,2018
104,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,4cdb6144d56098b819076a8572a664a2c2d27f72,citation,https://arxiv.org/pdf/1806.01196.pdf,Face Synthesis for Eyeglass-Robust Face Recognition,2018
105,LFW,lfw,52.9387428,-1.20029569,University of Nottingham,edu,472ba8dd4ec72b34e85e733bccebb115811fd726,citation,http://pdfs.semanticscholar.org/472b/a8dd4ec72b34e85e733bccebb115811fd726.pdf,Cosine Similarity Metric Learning for Face Verification,2010
106,LFW,lfw,23.0502042,113.39880323,South China University of Technology,edu,6880013eb0b91a2b334e0be0dced0a1a79943469,citation,https://arxiv.org/pdf/1810.11809.pdf,Discrimination-aware Channel Pruning for Deep Neural Networks,2018
107,LFW,lfw,32.7283683,-97.11201835,University of Texas at Arlington,edu,6880013eb0b91a2b334e0be0dced0a1a79943469,citation,https://arxiv.org/pdf/1810.11809.pdf,Discrimination-aware Channel Pruning for Deep Neural Networks,2018
108,LFW,lfw,21.2982795,-157.8186923,University of Hawaii,edu,86afb1e38a96f2ac00e792ef353a971fd13c8474,citation,https://doi.org/10.1109/BigData.2016.7840742,How interesting images are: An atypicality approach for social networks,2016
109,LFW,lfw,42.3626295,-71.0914481,McGovern Institute for Brain Research,edu,0b242d5123f79defd5f775d49d8a7047ad3153bc,citation,http://pdfs.semanticscholar.org/84db/c0010ae4f5206d689cf9f5bb176d18990bcd.pdf,How Important Is Weight Symmetry in Backpropagation?,2016
110,LFW,lfw,33.776033,-84.39884086,Georgia Institute of Technology,edu,e293a31260cf20996d12d14b8f29a9d4d99c4642,citation,https://arxiv.org/pdf/1703.01560.pdf,LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation,2017
111,LFW,lfw,50.89273635,-1.39464295,University of Southampton,edu,6f9824c5cb5ac08760b08e374031cbdabc953bae,citation,https://doi.org/10.1109/BTAS.2016.7791206,Unconstrained human identification using comparative facial soft biometrics,2016
112,LFW,lfw,29.6328784,-82.3490133,University of Florida,edu,21258aa3c48437a2831191b71cd069c05fb84cf7,citation,http://pdfs.semanticscholar.org/2125/8aa3c48437a2831191b71cd069c05fb84cf7.pdf,A Robust and Efficient Doubly Regularized Metric Learning Approach,2012
113,LFW,lfw,46.109237,7.08453549,IDIAP Research Institute,edu,78d645d5b426247e9c8f359694080186681f57db,citation,http://pdfs.semanticscholar.org/78d6/45d5b426247e9c8f359694080186681f57db.pdf,Gender Classification by LUT Based Boosting of Overlapping Block Patterns,2015
114,LFW,lfw,61.44964205,23.85877462,Tampere University of Technology,edu,78d645d5b426247e9c8f359694080186681f57db,citation,http://pdfs.semanticscholar.org/78d6/45d5b426247e9c8f359694080186681f57db.pdf,Gender Classification by LUT Based Boosting of Overlapping Block Patterns,2015
115,LFW,lfw,39.9586652,116.30971281,Beijing Institute of Technology,edu,2a35d20b2c0a045ea84723f328321c18be6f555c,citation,http://pdfs.semanticscholar.org/d1be/cba3c460892453939f9f3639d8beddf2a133.pdf,Boost Picking: A Universal Method on Converting Supervised Classification to Semi-supervised Classification,2016
116,LFW,lfw,29.7207902,-95.34406271,University of Houston,edu,5ef3e7a2c8d2876f3c77c5df2bbaea8a777051a7,citation,https://doi.org/10.1109/ISBA.2016.7477244,Rendering or normalization? An analysis of the 3D-aided pose-invariant face recognition,2016
117,LFW,lfw,61.44964205,23.85877462,Tampere University of Technology,edu,9be653e1bc15ef487d7f93aad02f3c9552f3ee4a,citation,https://pdfs.semanticscholar.org/9be6/53e1bc15ef487d7f93aad02f3c9552f3ee4a.pdf,Computer Vision for Head Pose Estimation: Review of a Competition,2015
118,LFW,lfw,47.6543238,-122.30800894,University of Washington,edu,96e0cfcd81cdeb8282e29ef9ec9962b125f379b0,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.527,The MegaFace Benchmark: 1 Million Faces for Recognition at Scale,2016
119,LFW,lfw,2.92749755,101.64185301,Multimedia University,edu,3d0c21d4780489bd624a74b07e28c16175df6355,citation,http://pdfs.semanticscholar.org/3d0c/21d4780489bd624a74b07e28c16175df6355.pdf,Deep or Shallow Facial Descriptors? A Case for Facial Attribute Classification and Face Retrieval,2016
120,LFW,lfw,50.7791703,6.06728733,RWTH Aachen University,edu,48906f609446afcdaacbe1d65770d7a6165a8eee,citation,https://doi.org/10.1007/s12559-017-9482-4,Storages Are Not Forever,2017
121,LFW,lfw,37.43131385,-122.16936535,Stanford University,edu,48906f609446afcdaacbe1d65770d7a6165a8eee,citation,https://doi.org/10.1007/s12559-017-9482-4,Storages Are Not Forever,2017
122,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,48906f609446afcdaacbe1d65770d7a6165a8eee,citation,https://doi.org/10.1007/s12559-017-9482-4,Storages Are Not Forever,2017
123,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,31f905d40a4ac3c16c91d5be8427762fa91277f1,citation,https://doi.org/10.1109/TIP.2017.2704661,Learning Rotation-Invariant Local Binary Descriptor,2017
124,LFW,lfw,51.0784038,-114.1287077,University of Calgary,edu,0f64e26d6dd6f1c99fe2050887fac26cafe9ed60,citation,https://doi.org/10.1109/MCI.2016.2627668,Bridging the Gap Between Forensics and Biometric-Enabled Watchlists for e-Borders,2017
125,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,2969f822b118637af29d8a3a0811ede2751897b5,citation,http://iip.ict.ac.cn/sites/default/files/publication/2013_ICCV_xwzhao_Cascaded%20Shape%20Space%20Pruning%20for%20Robust%20Facial%20Landmark%20Detection.pdf,Cascaded Shape Space Pruning for Robust Facial Landmark Detection,2013
126,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Luo_A_Deep_Sum-Product_2013_ICCV_paper.pdf,A Deep Sum-Product Architecture for Robust Facial Attributes Analysis,2013
127,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Luo_A_Deep_Sum-Product_2013_ICCV_paper.pdf,A Deep Sum-Product Architecture for Robust Facial Attributes Analysis,2013
128,LFW,lfw,30.19331415,120.11930822,Zhejiang University,edu,134f1cee8408cca648d8b4ca44b38b0a7023af71,citation,https://pdfs.semanticscholar.org/134f/1cee8408cca648d8b4ca44b38b0a7023af71.pdf,Partially Shared MultiTask Convolutional Neural Network with Local Constraint for Face Attribute Learning,0
129,LFW,lfw,43.293621,5.358066,"Aix Marseille University, France",edu,d77f18917a58e7d4598d31af4e7be2762d858370,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6289062,Detecting person presence in TV shows with linguistic and structural features,2012
130,LFW,lfw,48.754168,-3.4584586,"Orange Labs, Lannion, France",company,d77f18917a58e7d4598d31af4e7be2762d858370,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6289062,Detecting person presence in TV shows with linguistic and structural features,2012
131,LFW,lfw,39.9808333,116.34101249,Beihang University,edu,bd8f3fef958ebed5576792078f84c43999b1b207,citation,http://pdfs.semanticscholar.org/bd8f/3fef958ebed5576792078f84c43999b1b207.pdf,BUAA-iCC at ImageCLEF 2015 Scalable Concept Image Annotation Challenge,2015
132,LFW,lfw,-27.49741805,153.01316956,University of Queensland,edu,c51fbd2574e488e486483e39702a3d7754cc769b,citation,https://pdfs.semanticscholar.org/c51f/bd2574e488e486483e39702a3d7754cc769b.pdf,Face Recognition from Still Images to Video Sequences: A Local-Feature-Based Framework,2011
133,LFW,lfw,51.7534538,-1.25400997,University of Oxford,edu,b13e2e43672e66ba45d1b852a34737e4ce04226b,citation,https://pdfs.semanticscholar.org/3552/4e63c11f13fe08b2996a7bc0a9105e7c407b.pdf,Face Painting: querying art with photos,2015
134,LFW,lfw,32.0565957,118.77408833,Nanjing University,edu,65b1760d9b1541241c6c0222cc4ee9df078b593a,citation,http://pdfs.semanticscholar.org/65b1/760d9b1541241c6c0222cc4ee9df078b593a.pdf,Enhanced Pictorial Structures for Precise Eye Localization Under Uncontrolled Conditions,2009
135,LFW,lfw,40.8419836,-73.94368971,Columbia University,edu,518a3ce2a290352afea22027b64bf3950bffc65a,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5204174,Finding iconic images,2009
136,LFW,lfw,51.49887085,-0.17560797,Imperial College London,edu,c87f7ee391d6000aef2eadb49f03fc237f4d1170,citation,https://arxiv.org/pdf/1804.03547.pdf,A real-time and unsupervised face Re-Identification system for Human-Robot Interaction,2017
137,LFW,lfw,41.10427915,29.02231159,Istanbul Technical University,edu,14b87359f6874ff9b8ee234b18b418e57e75b762,citation,http://pdfs.semanticscholar.org/1b62/6c14544f249cd52ef86a4efc17f3d3834003.pdf,Face Alignment Using a Ranking Model based on Regression Trees,2012
138,LFW,lfw,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,14b87359f6874ff9b8ee234b18b418e57e75b762,citation,http://pdfs.semanticscholar.org/1b62/6c14544f249cd52ef86a4efc17f3d3834003.pdf,Face Alignment Using a Ranking Model based on Regression Trees,2012
139,LFW,lfw,32.0565957,118.77408833,Nanjing University,edu,0e2d956790d3b8ab18cee8df6c949504ee78ad42,citation,https://doi.org/10.1109/IVCNZ.2013.6727024,Scalable face image retrieval integrating multi-feature quantization and constrained reference re-ranking,2013
140,LFW,lfw,47.5612651,7.5752961,University of Basel,edu,323f9ae6bdd2a4e4dce4168f7f7e19c70585c9b5,citation,https://arxiv.org/pdf/1712.01619.pdf,Empirically Analyzing the Effect of Dataset Biases on Deep Face Recognition Systems,2017
141,LFW,lfw,47.6543238,-122.30800894,University of Washington,edu,1ce3a91214c94ed05f15343490981ec7cc810016,citation,http://grail.cs.washington.edu/photobios/paper.pdf,Exploring photobios,2011
142,LFW,lfw,33.776033,-84.39884086,Georgia Institute of Technology,edu,69eb6c91788e7c359ddd3500d01fb73433ce2e65,citation,http://pdfs.semanticscholar.org/69eb/6c91788e7c359ddd3500d01fb73433ce2e65.pdf,CAMGRAPH: Distributed Graph Processing for Camera Networks,2015
143,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,2296d79753118cfcd0fecefece301557f4cb66e2,citation,https://arxiv.org/pdf/1804.03487.pdf,Exploring Disentangled Feature Representation Beyond Face Identification,2018
144,LFW,lfw,39.993008,116.329882,SenseTime,company,2296d79753118cfcd0fecefece301557f4cb66e2,citation,https://arxiv.org/pdf/1804.03487.pdf,Exploring Disentangled Feature Representation Beyond Face Identification,2018
145,LFW,lfw,34.8452999,48.5596212,Islamic Azad University,edu,53ce84598052308b86ba79d873082853022aa7e9,citation,https://pdfs.semanticscholar.org/4f07/b70883a98a69be3b3e29de06c73e59a9ba0e.pdf,Optimized Method for Real-Time Face Recognition System Based on PCA and Multiclass Support Vector Machine,2013
146,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,a29a22878e1881d6cbf6acff2d0b209c8d3f778b,citation,http://pdfs.semanticscholar.org/a29a/22878e1881d6cbf6acff2d0b209c8d3f778b.pdf,Benchmarking Still-to-Video Face Recognition via Partial and Local Linear Discriminant Analysis on COX-S2V Dataset,2012
147,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,a29a22878e1881d6cbf6acff2d0b209c8d3f778b,citation,http://pdfs.semanticscholar.org/a29a/22878e1881d6cbf6acff2d0b209c8d3f778b.pdf,Benchmarking Still-to-Video Face Recognition via Partial and Local Linear Discriminant Analysis on COX-S2V Dataset,2012
148,LFW,lfw,38.88140235,121.52281098,Dalian University of Technology,edu,052f994898c79529955917f3dfc5181586282cf8,citation,https://arxiv.org/pdf/1708.02191.pdf,Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos,2017
149,LFW,lfw,42.3583961,-71.09567788,MIT,edu,a0061dae94d916f60a5a5373088f665a1b54f673,citation,http://pdfs.semanticscholar.org/a006/1dae94d916f60a5a5373088f665a1b54f673.pdf,Lensless computational imaging through deep learning,2017
150,LFW,lfw,51.49887085,-0.17560797,Imperial College London,edu,809ea255d144cff780300440d0f22c96e98abd53,citation,http://pdfs.semanticscholar.org/809e/a255d144cff780300440d0f22c96e98abd53.pdf,ArcFace: Additive Angular Margin Loss for Deep Face Recognition,2018
151,LFW,lfw,40.47913175,-74.43168868,Rutgers University,edu,439ca6ded75dffa5ddea203dde5e621dc4a88c3e,citation,https://doi.org/10.1109/ICPR.2016.7899906,Robust real-time performance-driven 3D face tracking,2016
152,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,439ca6ded75dffa5ddea203dde5e621dc4a88c3e,citation,https://doi.org/10.1109/ICPR.2016.7899906,Robust real-time performance-driven 3D face tracking,2016
153,LFW,lfw,45.7833244,4.8781984,University of Lyon,edu,9c59bb28054eee783a40b467c82f38021c19ff3e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7178311,Logistic similarity metric learning for face verification,2015
154,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,6043006467fb3fd1e9783928d8040ee1f1db1f3a,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539992,Face recognition with learning-based descriptor,2010
155,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,6043006467fb3fd1e9783928d8040ee1f1db1f3a,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539992,Face recognition with learning-based descriptor,2010
156,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,6043006467fb3fd1e9783928d8040ee1f1db1f3a,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539992,Face recognition with learning-based descriptor,2010
157,LFW,lfw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,9729930ab0f9cbcd07f1105bc69c540330cda50a,citation,https://doi.org/10.1109/ACCESS.2017.2749331,Compressing Fisher Vector for Robust Face Recognition,2017
158,LFW,lfw,39.65404635,-79.96475355,West Virginia University,edu,3b9b200e76a35178da940279d566bbb7dfebb787,citation,http://pdfs.semanticscholar.org/3b9b/200e76a35178da940279d566bbb7dfebb787.pdf,Learning Channel Inter-dependencies at Multiple Scales on Dense Networks for Face Recognition,2017
159,LFW,lfw,42.3383668,-71.08793524,Northeastern University,edu,feea73095b1be0cbae1ad7af8ba2c4fb6f316d35,citation,http://dl.acm.org/citation.cfm?id=3126693,Deep Face Recognition with Center Invariant Loss,2017
160,LFW,lfw,51.4584837,-2.6097752,University of Bristol,edu,54948ee407b5d32da4b2eee377cc44f20c3a7e0c,citation,https://arxiv.org/pdf/1806.06296.pdf,Right for the Right Reason: Training Agnostic Networks,2018
161,LFW,lfw,32.0565957,118.77408833,Nanjing University,edu,77869f274d4be4d4b4c438dbe7dff4baed521bd8,citation,https://doi.org/10.1109/TIP.2016.2551362,Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression,2016
162,LFW,lfw,32.1119889,34.80459702,Tel Aviv University,edu,0faee699eccb2da6cf4307ded67ba8434368257b,citation,http://pdfs.semanticscholar.org/2396/5bd9b557b04b2c81a35ee5c16951c0e420f3.pdf,TAIGMAN: MULTIPLE ONE-SHOTS FOR UTILIZING CLASS LABEL INFORMATION 1 Multiple One-Shots for Utilizing Class Label Information,2009
163,LFW,lfw,32.77824165,34.99565673,Open University of Israel,edu,0faee699eccb2da6cf4307ded67ba8434368257b,citation,http://pdfs.semanticscholar.org/2396/5bd9b557b04b2c81a35ee5c16951c0e420f3.pdf,TAIGMAN: MULTIPLE ONE-SHOTS FOR UTILIZING CLASS LABEL INFORMATION 1 Multiple One-Shots for Utilizing Class Label Information,2009
164,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,1eb9c859ff7537182a25556635954bcd11830822,citation,https://doi.org/10.1109/ICDSP.2015.7252004,Multi-features fusion based CRFs for face segmentation,2015
165,LFW,lfw,31.32235655,121.38400941,Shanghai University,edu,1eb9c859ff7537182a25556635954bcd11830822,citation,https://doi.org/10.1109/ICDSP.2015.7252004,Multi-features fusion based CRFs for face segmentation,2015
166,LFW,lfw,51.4584837,-2.6097752,University of Bristol,edu,3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3,citation,http://pdfs.semanticscholar.org/51f7/3cfcc6d671bd99b5c3c512ff9b7bb959f33b.pdf,Distance Metric Learning with Eigenvalue Optimization,2012
167,LFW,lfw,50.7369302,-3.53647672,University of Exeter,edu,3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3,citation,http://pdfs.semanticscholar.org/51f7/3cfcc6d671bd99b5c3c512ff9b7bb959f33b.pdf,Distance Metric Learning with Eigenvalue Optimization,2012
168,LFW,lfw,51.7534538,-1.25400997,University of Oxford,edu,f5aee1529b98136194ef80961ba1a6de646645fe,citation,http://pdfs.semanticscholar.org/f5ae/e1529b98136194ef80961ba1a6de646645fe.pdf,Large-scale learning of discriminative image representations,2013
169,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,abdd17e411a7bfe043f280abd4e560a04ab6e992,citation,https://arxiv.org/pdf/1803.00839.pdf,Pose-Robust Face Recognition via Deep Residual Equivariant Mapping,2018
170,LFW,lfw,39.94976005,116.33629046,Beijing Jiaotong University,edu,d40c16285d762f7a1c862b8ac05a0fdb24af1202,citation,https://doi.org/10.1109/BESC.2017.8256378,Coarse-to-fine facial landmarks localization based on convolutional feature,2017
171,LFW,lfw,38.2167565,-85.75725023,University of Louisville,edu,780c8a795baca1ba4cb4956cded877dd3d1ca313,citation,http://doi.ieeecomputersociety.org/10.1109/ISSPIT.2013.6781879,Simulation of face recognition at a distance by scaling down images,2013
172,LFW,lfw,44.8055716,-0.6051972,"Bordeaux INP, France",edu,c222f8079c246ead285894c47bdbb2dfc7741044,citation,https://doi.org/10.1109/ICIP.2015.7351631,Face de-identification with expressions preservation,2015
173,LFW,lfw,44.808375,-0.596705,"University of Bordeaux, France",edu,c222f8079c246ead285894c47bdbb2dfc7741044,citation,https://doi.org/10.1109/ICIP.2015.7351631,Face de-identification with expressions preservation,2015
174,LFW,lfw,1.2962018,103.77689944,National University of Singapore,edu,2f2aa67c5d6dbfaf218c104184a8c807e8b29286,citation,http://sesame.comp.nus.edu.sg/components/com_flexicontent/uploads/lekhaicon13.pdf,Video analytics for surveillance camera networks,2013
175,LFW,lfw,45.7413921,126.62552755,Harbin Institute of Technology,edu,982d4f1dee188f662a4b5616a045d69fc5c21b54,citation,https://doi.org/10.1109/IJCNN.2016.7727859,Learning to link human objects in videos and advertisements with clothes retrieval,2016
176,LFW,lfw,42.3383668,-71.08793524,Northeastern University,edu,982d4f1dee188f662a4b5616a045d69fc5c21b54,citation,https://doi.org/10.1109/IJCNN.2016.7727859,Learning to link human objects in videos and advertisements with clothes retrieval,2016
177,LFW,lfw,16.46007565,102.81211798,Khon Kaen University,edu,81a80b26979b40d5ebe3f5ba70b03cb9f19dd7a5,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369725,Histogram equalized deep PCA with ELM classification for expressive face recognition,2018
178,LFW,lfw,37.2520226,127.0555019,"Samsung SAIT, Korea",company,86fa086d02f424705bbea53943390f009191740a,citation,https://doi.org/10.1109/ICIP.2015.7351651,Precise eye localization with improved SDM,2015
179,LFW,lfw,39.9041999,116.4073963,"Samsung SAIT, Beijing",company,86fa086d02f424705bbea53943390f009191740a,citation,https://doi.org/10.1109/ICIP.2015.7351651,Precise eye localization with improved SDM,2015
180,LFW,lfw,39.14004,-77.218506,NIST,edu,a35ed55dc330d470be2f610f4822f5152fcac4e1,citation,https://doi.org/10.1109/ISBA.2015.7126369,Tattoo recognition technology - challenge (Tatt-C): an open tattoo database for developing tattoo recognition research,2015
181,LFW,lfw,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,3ba74755c530347f14ec8261996dd9eae896e383,citation,https://doi.org/10.1109/JSSC.2017.2767705,A Low-Power Convolutional Neural Network Face Recognition Processor and a CIS Integrated With Always-on Face Detector,2018
182,LFW,lfw,32.77824165,34.99565673,Open University of Israel,edu,7fc3442c8b4c96300ad3e860ee0310edb086de94,citation,http://pdfs.semanticscholar.org/82f3/b7cacc15e026fd3a7639091d54162f6ae064.pdf,Similarity Scores Based on Background Samples,2009
183,LFW,lfw,32.1119889,34.80459702,Tel Aviv University,edu,7fc3442c8b4c96300ad3e860ee0310edb086de94,citation,http://pdfs.semanticscholar.org/82f3/b7cacc15e026fd3a7639091d54162f6ae064.pdf,Similarity Scores Based on Background Samples,2009
184,LFW,lfw,37.43131385,-122.16936535,Stanford University,edu,42f6f5454dda99d8989f9814989efd50fe807ee8,citation,http://pdfs.semanticscholar.org/42f6/f5454dda99d8989f9814989efd50fe807ee8.pdf,Conditional generative adversarial nets for convolutional face generation,2015
185,LFW,lfw,47.6423318,-122.1369302,Microsoft,company,0aebe97a92f590bdf21cdadfddec8061c682cdb2,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2695183,Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-World Face Verification,2018
186,LFW,lfw,22.2081469,114.25964115,University of Hong Kong,edu,7ffef9f26c39377ee937d29b8990580266a7a8a5,citation,https://arxiv.org/pdf/1810.06951.pdf,Deep Metric Learning with Hierarchical Triplet Loss,2018
187,LFW,lfw,47.6543238,-122.30800894,University of Washington,edu,7862f646d640cbf9f88e5ba94a7d642e2a552ec9,citation,http://pdfs.semanticscholar.org/7862/f646d640cbf9f88e5ba94a7d642e2a552ec9.pdf,Being John Malkovich,2010
188,LFW,lfw,41.10427915,29.02231159,Istanbul Technical University,edu,754626bd5fb06fee5e10962fdfeddd495513e84b,citation,https://doi.org/10.1109/SIU.2017.7960646,Facial expression pair matching,2017
189,LFW,lfw,42.3383668,-71.08793524,Northeastern University,edu,e3c8e49ffa7beceffca3f7f276c27ae6d29b35db,citation,https://arxiv.org/pdf/1604.02182.pdf,Families in the Wild (FIW): Large-Scale Kinship Image Database and Benchmarks,2016
190,LFW,lfw,55.94951105,-3.19534913,University of Edinburgh,edu,b306bd9b485c6a6c1e4550beb1910ed9b6585359,citation,https://pdfs.semanticscholar.org/b306/bd9b485c6a6c1e4550beb1910ed9b6585359.pdf,Learning generative models of mid-level structure in natural images,2012
191,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,aed6af12148b43e4a24ee6e2bc3604ca59bd99a5,citation,https://doi.org/10.1109/TIP.2017.2717505,Discriminative Deep Metric Learning for Face and Kinship Verification,2017
192,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,aed6af12148b43e4a24ee6e2bc3604ca59bd99a5,citation,https://doi.org/10.1109/TIP.2017.2717505,Discriminative Deep Metric Learning for Face and Kinship Verification,2017
193,LFW,lfw,43.7743911,-79.50481085,York University,edu,ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,citation,https://arxiv.org/pdf/1706.04277.pdf,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,2017
194,LFW,lfw,27.18794105,31.17009498,Assiut University,edu,ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,citation,https://arxiv.org/pdf/1706.04277.pdf,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,2017
195,LFW,lfw,51.5231607,-0.1282037,University College London,edu,467b602a67cfd7c347fe7ce74c02b38c4bb1f332,citation,http://pdfs.semanticscholar.org/467b/602a67cfd7c347fe7ce74c02b38c4bb1f332.pdf,Large Margin Local Metric Learning,2014
196,LFW,lfw,32.0565957,118.77408833,Nanjing University,edu,9887ab220254859ffc7354d5189083a87c9bca6e,citation,http://pdfs.semanticscholar.org/9887/ab220254859ffc7354d5189083a87c9bca6e.pdf,Generic Image Classification Approaches Excel on Face Recognition,2013
197,LFW,lfw,-34.9189226,138.60423668,University of Adelaide,edu,9887ab220254859ffc7354d5189083a87c9bca6e,citation,http://pdfs.semanticscholar.org/9887/ab220254859ffc7354d5189083a87c9bca6e.pdf,Generic Image Classification Approaches Excel on Face Recognition,2013
198,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,0034e37a0faf0f71395245b266aacbf5412f190a,citation,https://doi.org/10.1109/TMM.2014.2355134,Face Distortion Recovery Based on Online Learning Database for Conversational Video,2014
199,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,0034e37a0faf0f71395245b266aacbf5412f190a,citation,https://doi.org/10.1109/TMM.2014.2355134,Face Distortion Recovery Based on Online Learning Database for Conversational Video,2014
200,LFW,lfw,31.28473925,121.49694909,Tongji University,edu,fe0cf8eaa5a5f59225197ef1bb8613e603cd96d4,citation,https://pdfs.semanticscholar.org/4e20/8cfff33327863b5aeef0bf9b327798a5610c.pdf,Improved Face Verification with Simple Weighted Feature Combination,2017
201,LFW,lfw,39.65404635,-79.96475355,West Virginia University,edu,e20e2db743e8db1ff61279f4fda32bf8cf381f8e,citation,https://arxiv.org/pdf/1801.01486.pdf,Deep Cross Polarimetric Thermal-to-Visible Face Recognition,2018
202,LFW,lfw,32.198055,119.46326791,Jiangsu University of Science and Technology,edu,9b4d2cd2e5edbf5c8efddbdcce1db9a02a853534,citation,https://doi.org/10.1016/j.neucom.2016.02.063,Exponential Discriminant Locality Preserving Projection for face recognition,2016
203,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,7783095a565094ae5b3dccf082d504ddd7255a5c,citation,http://dl.acm.org/citation.cfm?id=2502258,"""Wow! you are so beautiful today!""",2013
204,LFW,lfw,1.2962018,103.77689944,National University of Singapore,edu,7783095a565094ae5b3dccf082d504ddd7255a5c,citation,http://dl.acm.org/citation.cfm?id=2502258,"""Wow! you are so beautiful today!""",2013
205,LFW,lfw,22.3386304,114.2620337,Hong Kong University of Science and Technology,edu,fff31548617f208cd5ae5c32917afd48abc4ff6a,citation,http://doi.acm.org/10.1145/3139295.3139309,Mobile situated analytics of ego-centric network data,2017
206,LFW,lfw,37.21872455,-80.42542519,Virginia Polytechnic Institute and State University,edu,0de1450369cb57e77ef61cd334c3192226e2b4c2,citation,https://doi.org/10.1109/BTAS.2017.8272747,"In defense of low-level structural features and SVMs for facial attribute classification: Application to detection of eye state, Mouth State, and eyeglasses in the wild",2017
207,LFW,lfw,34.8452999,48.5596212,Islamic Azad University,edu,15cf7bdc36ec901596c56d04c934596cf7b43115,citation,http://pdfs.semanticscholar.org/15cf/7bdc36ec901596c56d04c934596cf7b43115.pdf,Face Extraction from Image based on K-Means Clustering Algorithms,2017
208,LFW,lfw,29.5084174,106.57858552,Chongqing University,edu,3a49507c46a2b8c6411809c81ac47b2b1d2282c3,citation,http://doi.org/10.1007/s11042-017-5319-0,Exploring joint encoding of multi-direction local binary patterns for image classification,2017
209,LFW,lfw,45.504384,-73.6128829,Polytechnique Montreal,edu,b81cae2927598253da37954fb36a2549c5405cdb,citation,http://pdfs.semanticscholar.org/d892/753827950a227179b691e6df85820ab7c417.pdf,Experiments on Visual Information Extraction with the Faces of Wikipedia,2014
210,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,58d76380d194248b3bb291b8c7c5137a0a376897,citation,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,2018
211,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,58d76380d194248b3bb291b8c7c5137a0a376897,citation,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,2018
212,LFW,lfw,39.9808333,116.34101249,Beihang University,edu,5dd57b7e0e82a33420c054da7ea3f435d49e910e,citation,https://doi.org/10.1007/s10851-014-0493-4,Matching and Perturbation Theories for Affine-Invariant Shapes Using QR Factorization with Column Pivoting,2014
213,LFW,lfw,30.527151,114.400762,China University of Geosciences,edu,110919f803740912e02bb7e1424373d325f558a9,citation,http://doi.acm.org/10.1145/3123266.3123421,Statistical Inference of Gaussian-Laplace Distribution for Person Verification,2017
214,LFW,lfw,35.6924853,139.7582533,"National Institute of Informatics, Japan",edu,110919f803740912e02bb7e1424373d325f558a9,citation,http://doi.acm.org/10.1145/3123266.3123421,Statistical Inference of Gaussian-Laplace Distribution for Person Verification,2017
215,LFW,lfw,30.60903415,114.3514284,Wuhan University of Technology,edu,110919f803740912e02bb7e1424373d325f558a9,citation,http://doi.acm.org/10.1145/3123266.3123421,Statistical Inference of Gaussian-Laplace Distribution for Person Verification,2017
216,LFW,lfw,42.4505507,-76.4783513,Cornell University,edu,537328af75f50d49696972a6c34bca97c14bc762,citation,https://arxiv.org/pdf/1805.04049.pdf,Exploiting Unintended Feature Leakage in Collaborative Learning,2018
217,LFW,lfw,43.47061295,-80.54724732,University of Waterloo,edu,9825c4dddeb2ed7eaab668b55403aa2c38bc3320,citation,https://arxiv.org/pdf/1807.09532.pdf,Aerial Imagery for Roof Segmentation: A Large-Scale Dataset towards Automatic Mapping of Buildings,2018
218,LFW,lfw,35.9020448,139.93622009,University of Tokyo,edu,9825c4dddeb2ed7eaab668b55403aa2c38bc3320,citation,https://arxiv.org/pdf/1807.09532.pdf,Aerial Imagery for Roof Segmentation: A Large-Scale Dataset towards Automatic Mapping of Buildings,2018
219,LFW,lfw,39.65404635,-79.96475355,West Virginia University,edu,7a65fc9e78eff3ab6062707deaadde024d2fad40,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Zhu_A_Study_on_ICCV_2015_paper.pdf,A Study on Apparent Age Estimation,2015
220,LFW,lfw,29.5357046,106.60482474,Chongqing University of Posts and Telecommunications,edu,0750c796467b6ef60b0caff5fb199337d54d431e,citation,https://doi.org/10.1109/ICMLC.2016.7873015,Face detection method based on histogram of sparse code in tree deformable model,2016
221,LFW,lfw,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,0750c796467b6ef60b0caff5fb199337d54d431e,citation,https://doi.org/10.1109/ICMLC.2016.7873015,Face detection method based on histogram of sparse code in tree deformable model,2016
222,LFW,lfw,48.8225067,2.2687541,"Morpho, SAFRAN Group, France",company,e66a6ae542907d6a0ebc45da60a62d3eecf17839,citation,https://doi.org/10.1109/EUVIP.2014.7018366,3D-aided face recognition from videos,2014
223,LFW,lfw,45.7833244,4.8781984,University of Lyon,edu,e66a6ae542907d6a0ebc45da60a62d3eecf17839,citation,https://doi.org/10.1109/EUVIP.2014.7018366,3D-aided face recognition from videos,2014
224,LFW,lfw,28.2290209,112.99483204,"National University of Defense Technology, China",edu,ae425a2654a1064c2eda29b08a492c8d5aab27a2,citation,https://doi.org/10.23919/MVA.2017.7986845,An incremental face recognition system based on deep learning,2017
225,LFW,lfw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,39c10888a470b92b917788c57a6fd154c97b421c,citation,https://doi.org/10.1109/VCIP.2017.8305036,Joint multi-feature fusion and attribute relationships for facial attribute prediction,2017
226,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,d04d5692461d208dd5f079b98082eda887b62323,citation,http://www.cbsr.ia.ac.cn/users/zlei/papers/ICB2015/ZLEI-ICB-15.pdf,Subspace learning with frequency regularizer: Its application to face recognition,2015
227,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,e908ce44fa94bb7ecf2a8b70cb5ec0b1a00b311a,citation,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019548,Topology preserving graph matching for partial face recognition,2017
228,LFW,lfw,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,84574aa43a98ad8a29470977e7b091f5a5ec2366,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7301321,Latent max-margin metric learning for comparing video face tubes,2015
229,LFW,lfw,48.831533,2.28066283,"Technicolor, France",edu,84574aa43a98ad8a29470977e7b091f5a5ec2366,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7301321,Latent max-margin metric learning for comparing video face tubes,2015
230,LFW,lfw,51.24303255,-0.59001382,University of Surrey,edu,9103148dd87e6ff9fba28509f3b265e1873166c9,citation,http://pdfs.semanticscholar.org/9103/148dd87e6ff9fba28509f3b265e1873166c9.pdf,Face Analysis using 3D Morphable Models,2015
231,LFW,lfw,32.77824165,34.99565673,Open University of Israel,edu,32c20afb5c91ed7cdbafb76408c3a62b38dd9160,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Hassner_Viewing_Real-World_Faces_2013_ICCV_paper.pdf,Viewing Real-World Faces in 3D,2013
232,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,f5eb0cf9c57716618fab8e24e841f9536057a28a,citation,https://arxiv.org/pdf/1803.02988.pdf,Rethinking Feature Distribution for Loss Functions in Image Classification,2018
233,LFW,lfw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,b8bcf9c773da1c5ee76db4bf750c9ff5d159f1a0,citation,http://doi.acm.org/10.1145/2911996.2911999,Homemade TS-Net for Automatic Face Recognition,2016
234,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,24e82eaf3257e761d6ca0ffcc2cbca30dfca82e9,citation,https://doi.org/10.1109/GlobalSIP.2016.7906030,An analysis of the robustness of deep face recognition networks to noisy training labels,2016
235,LFW,lfw,39.65404635,-79.96475355,West Virginia University,edu,24e82eaf3257e761d6ca0ffcc2cbca30dfca82e9,citation,https://doi.org/10.1109/GlobalSIP.2016.7906030,An analysis of the robustness of deep face recognition networks to noisy training labels,2016
236,LFW,lfw,24.6004712,118.0816574,Huaqiao University,edu,4b9b30066a05bdeb0e05025402668499ebf99a6b,citation,https://doi.org/10.1109/ISPACS.2012.6473448,Real-time face detection using Gentle AdaBoost algorithm and nesting cascade structure,2012
237,LFW,lfw,43.6158131,7.06838,INRIA Méditerranée,edu,23e824d1dfc33f3780dd18076284f07bd99f1c43,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7947686,Spoofing faces using makeup: An investigative study,2017
238,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,23e824d1dfc33f3780dd18076284f07bd99f1c43,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7947686,Spoofing faces using makeup: An investigative study,2017
239,LFW,lfw,32.7283683,-97.11201835,University of Texas at Arlington,edu,612075999e82596f3b42a80e6996712cc52880a3,citation,http://doi.ieeecomputersociety.org/10.1109/AVSS.2017.8078554,CNNs with cross-correlation matching for face recognition in video surveillance using a single training sample per person,2017
240,LFW,lfw,55.70229715,37.53179777,Lomonosov Moscow State University,edu,6bfb0f8dd1a2c0b44347f09006dc991b8a08559c,citation,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553724.pdf,Multiview discriminative learning for age-invariant face recognition,2013
241,LFW,lfw,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,6bfb0f8dd1a2c0b44347f09006dc991b8a08559c,citation,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553724.pdf,Multiview discriminative learning for age-invariant face recognition,2013
242,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,6bfb0f8dd1a2c0b44347f09006dc991b8a08559c,citation,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553724.pdf,Multiview discriminative learning for age-invariant face recognition,2013
243,LFW,lfw,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,6bfb0f8dd1a2c0b44347f09006dc991b8a08559c,citation,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553724.pdf,Multiview discriminative learning for age-invariant face recognition,2013
244,LFW,lfw,-35.2776999,149.118527,Australian National University,edu,c58b7466f2855ffdcff1bebfad6b6a027b8c5ee1,citation,http://pdfs.semanticscholar.org/d6f1/42f5ddcb027e7b346eb20703abbf5cc4e883.pdf,Ultra-Resolving Face Images by Discriminative Generative Networks,2016
245,LFW,lfw,52.2380139,6.8566761,University of Twente,edu,d8288322f32ee4501cef5a9b667e5bb79ebd7018,citation,https://doi.org/10.1016/j.patcog.2011.12.018,Facing scalability: Naming faces in an online social network,2012
246,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0,citation,https://arxiv.org/pdf/1707.03986.pdf,Merge or Not? Learning to Group Faces via Imitation Learning,2018
247,LFW,lfw,41.21002475,-73.80407056,IBM Thomas J. Watson Research Center,company,eb87151fd2796ff5b4bbcf1906d41d53ac6c5595,citation,https://doi.org/10.1109/ICPR.2016.7899719,Enhanced face detection using body part detections for wearable cameras,2016
248,LFW,lfw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,edb5813a32ce1167feb263ca2803d0ae934d902c,citation,https://arxiv.org/pdf/1807.08571.pdf,Invisible Steganography via Generative Adversarial Networks,2018
249,LFW,lfw,38.99203005,-76.9461029,University of Maryland College Park,edu,7ca7255c2e0c86e4adddbbff2ce74f36b1dc522d,citation,https://pdfs.semanticscholar.org/7ca7/255c2e0c86e4adddbbff2ce74f36b1dc522d.pdf,Stereo Matching for Unconstrained Face Recognition Ph . D . Proposal,2009
250,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,7ca7255c2e0c86e4adddbbff2ce74f36b1dc522d,citation,https://pdfs.semanticscholar.org/7ca7/255c2e0c86e4adddbbff2ce74f36b1dc522d.pdf,Stereo Matching for Unconstrained Face Recognition Ph . D . Proposal,2009
251,LFW,lfw,37.8687126,-122.25586815,"University of California, Berkeley",edu,53bfe2ab770e74d064303f3bd2867e5bf7b86379,citation,https://pdfs.semanticscholar.org/d989/c3064d49bf8e63587ada4ed2bdb0d32b120a.pdf,Learning to Synthesize and Manipulate Natural Images,2017
252,LFW,lfw,40.4319722,-86.92389368,Purdue University,edu,1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1d,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247878,Online robust image alignment via iterative convex optimization,2012
253,LFW,lfw,32.0565957,118.77408833,Nanjing University,edu,1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1d,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247878,Online robust image alignment via iterative convex optimization,2012
254,LFW,lfw,39.95472495,-75.15346905,Temple University,edu,1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1d,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247878,Online robust image alignment via iterative convex optimization,2012
255,LFW,lfw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,3dfb822e16328e0f98a47209d7ecd242e4211f82,citation,https://arxiv.org/pdf/1708.08197.pdf,Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments,2017
256,LFW,lfw,61.44964205,23.85877462,Tampere University of Technology,edu,27dafedccd7b049e87efed72cabaa32ec00fdd45,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_074.pdf,Unsupervised visual alignment with similarity graphs,2015
257,LFW,lfw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,e9c008d31da38d9eef67a28d2c77cb7daec941fb,citation,https://arxiv.org/pdf/1708.03769.pdf,Noisy Softmax: Improving the Generalization Ability of DCNN via Postponing the Early Softmax Saturation,2017
258,LFW,lfw,23.09461185,113.28788994,Sun Yat-Sen University,edu,39f525f3a0475e6bbfbe781ae3a74aca5b401125,citation,http://pdfs.semanticscholar.org/39f5/25f3a0475e6bbfbe781ae3a74aca5b401125.pdf,Deep Joint Face Hallucination and Recognition,2016
259,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,88cd4209db62a34d9cba0b9cbe9d45d1e57d21e5,citation,https://pdfs.semanticscholar.org/88cd/4209db62a34d9cba0b9cbe9d45d1e57d21e5.pdf,Runtime Neural Pruning,2017
260,LFW,lfw,-34.9181706,-56.1665725,"Universidad de la República, Uruguay",edu,3b75681f0162752865d85befd8b15e7d954ebfe6,citation,https://doi.org/10.1109/CLEI.2014.6965097,Evaluation of a face recognition system performance's variation on a citizen passports database,2014
261,LFW,lfw,45.5039761,-73.5749687,McGill University,edu,ed9d11e995baeec17c5d2847ec1a8d5449254525,citation,https://pdfs.semanticscholar.org/ed9d/11e995baeec17c5d2847ec1a8d5449254525.pdf,Efficient Gender Classification Using a Deep LDA-Pruned Net,2017
262,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,21d1315761131ea6b3e2afe7a745b606341616fd,citation,https://pdfs.semanticscholar.org/21d1/315761131ea6b3e2afe7a745b606341616fd.pdf,Generative Adversarial Network with Spatial Attention for Face Attribute Editing,2018
263,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,21d1315761131ea6b3e2afe7a745b606341616fd,citation,https://pdfs.semanticscholar.org/21d1/315761131ea6b3e2afe7a745b606341616fd.pdf,Generative Adversarial Network with Spatial Attention for Face Attribute Editing,2018
264,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,13a994d489c15d440c1238fc1ac37dad06dd928c,citation,http://pdfs.semanticscholar.org/13a9/94d489c15d440c1238fc1ac37dad06dd928c.pdf,Learning Discriminant Face Descriptor for Face Recognition,2012
265,LFW,lfw,33.776033,-84.39884086,Georgia Institute of Technology,edu,96f0e7416994035c91f4e0dfa40fd45090debfc5,citation,https://arxiv.org/pdf/1803.01260.pdf,Unsupervised Learning of Face Representations,2018
266,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,0141cb33c822e87e93b0c1bad0a09db49b3ad470,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298876,Unconstrained 3D face reconstruction,2015
267,LFW,lfw,37.52914535,45.04886077,Urmia University,edu,d2f2b10a8f29165d815e652f8d44955a12d057e6,citation,http://doi.org/10.1007/s10044-015-0475-1,Multiscale binarised statistical image features for symmetric face matching using multiple descriptor fusion based on class-specific LDA,2015
268,LFW,lfw,32.77824165,34.99565673,Open University of Israel,edu,582edc19f2b1ab2ac6883426f147196c8306685a,citation,http://pdfs.semanticscholar.org/be6c/db7b181e73f546d43cf2ab6bc7181d7d619b.pdf,Do We Really Need to Collect Millions of Faces for Effective Face Recognition?,2016
269,LFW,lfw,30.19331415,120.11930822,Zhejiang University,edu,2d3c17ced03e4b6c4b014490fe3d40c62d02e914,citation,http://pdfs.semanticscholar.org/2d3c/17ced03e4b6c4b014490fe3d40c62d02e914.pdf,Video-driven state-aware facial animation,2012
270,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015
271,LFW,lfw,38.95187,-77.363259,"Noblis, Falls Church, VA, U.S.A.",company,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015
272,LFW,lfw,31.28473925,121.49694909,Tongji University,edu,78f08685d44b6c6f82983d9b0f9c6ac2f7203a5e,citation,https://pdfs.semanticscholar.org/78f0/8685d44b6c6f82983d9b0f9c6ac2f7203a5e.pdf,An Adaptive Ensemble Approach to Ambient Intelligence Assisted People Search,2018
273,LFW,lfw,39.9041999,116.4073963,Chinese Academy of Science,edu,c4d0d09115a0df856cdb389fbccb20f62b07b14e,citation,https://doi.org/10.1109/ICIP.2012.6466925,Environment coupled metrics learning for unconstrained face verification,2012
274,LFW,lfw,39.8720489,32.75395155,Bilkent University,edu,955e2a39f51c0b6f967199942d77625009e580f9,citation,http://pdfs.semanticscholar.org/955e/2a39f51c0b6f967199942d77625009e580f9.pdf,Naming Faces on the Web,2010
275,LFW,lfw,45.7413921,126.62552755,Harbin Institute of Technology,edu,fdd19fee07f2404952e629cc7f7ffaac14febe01,citation,https://doi.org/10.1109/CISP-BMEI.2016.7852754,Face recognition based on dictionary learning with the locality constraints of atoms,2016
276,LFW,lfw,23.131707,113.371643,Guangdong Polytechnic Normal University,edu,fdd19fee07f2404952e629cc7f7ffaac14febe01,citation,https://doi.org/10.1109/CISP-BMEI.2016.7852754,Face recognition based on dictionary learning with the locality constraints of atoms,2016
277,LFW,lfw,42.3889785,-72.5286987,University of Massachusetts,edu,e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07fa,citation,https://pdfs.semanticscholar.org/e39a/66a6d1c5e753f8e6c33cd5d335f9bc9c07fa.pdf,Weakly Supervised Learning for Unconstrained Face Processing,2014
278,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,051f03bc25ec633592aa2ff5db1d416b705eac6c,citation,http://www.cse.msu.edu/biometrics/Publications/Face/LiaoJain_PartialFR_AlignmentFreeApproach_ICJB11.pdf,Partial face recognition: An alignment free approach,2011
279,LFW,lfw,31.846918,117.29053367,Hefei University of Technology,edu,f6e6b4d0b7c16112dcb71ff502033a2187b1ec9b,citation,https://doi.org/10.1109/TMM.2015.2476657,Understanding Blooming Human Groups in Social Networks,2015
280,LFW,lfw,29.58333105,-98.61944505,University of Texas at San Antonio,edu,f6e6b4d0b7c16112dcb71ff502033a2187b1ec9b,citation,https://doi.org/10.1109/TMM.2015.2476657,Understanding Blooming Human Groups in Social Networks,2015
281,LFW,lfw,1.2962018,103.77689944,National University of Singapore,edu,f6e6b4d0b7c16112dcb71ff502033a2187b1ec9b,citation,https://doi.org/10.1109/TMM.2015.2476657,Understanding Blooming Human Groups in Social Networks,2015
282,LFW,lfw,39.9808333,116.34101249,Beihang University,edu,a961f1234e963a7945fed70197015678149b37d8,citation,http://dl.acm.org/citation.cfm?id=3206068,Facial Expression Synthesis by U-Net Conditional Generative Adversarial Networks,2018
283,LFW,lfw,34.2152538,117.1398541,China University of Mining and Technology,edu,660c99ac408b535bb0468ab3708d0d1d5db30180,citation,http://doi.org/10.1007/s11042-015-3083-6,An improved redundant dictionary based on sparse representation for face recognition,2015
284,LFW,lfw,1.2988926,103.7873107,"A*STAR, Singapore",edu,c444c4dab97dd6d6696f56c1cacda051dde60448,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.37,Multiview Face Detection and Registration Requiring Minimal Manual Intervention,2013
285,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,c444c4dab97dd6d6696f56c1cacda051dde60448,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.37,Multiview Face Detection and Registration Requiring Minimal Manual Intervention,2013
286,LFW,lfw,28.3656193,75.5834953,"Central Electronics Research Institute, Pilani, India",edu,1aeef2ab062c27e0dbba481047e818d4c471ca57,citation,https://doi.org/10.1109/ICACCI.2015.7275860,Analyzing impact of image scaling algorithms on viola-jones face detection framework,2015
287,LFW,lfw,34.0224149,-118.28634407,University of Southern California,edu,d6ae7941dcec920d5726d50d1b1cdfe4dde34d35,citation,http://dl.acm.org/citation.cfm?id=31310887,Avatar digitization from a single image for real-time rendering,2017
288,LFW,lfw,28.54632595,77.27325504,Indian Institute of Technology Delhi,edu,fba95853ca3135cc52a4b2bc67089041c2a9408c,citation,https://pdfs.semanticscholar.org/fba9/5853ca3135cc52a4b2bc67089041c2a9408c.pdf,Disguised Faces in the Wild,2018
289,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,fba95853ca3135cc52a4b2bc67089041c2a9408c,citation,https://pdfs.semanticscholar.org/fba9/5853ca3135cc52a4b2bc67089041c2a9408c.pdf,Disguised Faces in the Wild,2018
290,LFW,lfw,44.808375,-0.596705,University of Bordeaux,edu,4512b87d68458d9ba0956c0f74b60371b6c69df4,citation,https://doi.org/10.1109/TIP.2017.2708504,SuperPatchMatch: An Algorithm for Robust Correspondences Using Superpixel Patches,2017
291,LFW,lfw,38.99203005,-76.9461029,University of Maryland College Park,edu,38a9ca2c49a77b540be52377784b9f734e0417e4,citation,http://homepages.dcc.ufmg.br/~william/papers/paper_2011_IJCB_Faces.pdf,Face verification using large feature sets and one shot similarity,2011
292,LFW,lfw,-27.5953995,-48.6154218,University of Campinas,edu,38a9ca2c49a77b540be52377784b9f734e0417e4,citation,http://homepages.dcc.ufmg.br/~william/papers/paper_2011_IJCB_Faces.pdf,Face verification using large feature sets and one shot similarity,2011
293,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,38a9ca2c49a77b540be52377784b9f734e0417e4,citation,http://homepages.dcc.ufmg.br/~william/papers/paper_2011_IJCB_Faces.pdf,Face verification using large feature sets and one shot similarity,2011
294,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,ac2881bdf7b57dc1672a17b221d68a438d79fce8,citation,https://arxiv.org/pdf/1806.08472.pdf,Learning a High Fidelity Pose Invariant Model for High-resolution Face Frontalization,2018
295,LFW,lfw,46.0501558,14.46907327,University of Ljubljana,edu,69adbfa7b0b886caac15ebe53b89adce390598a3,citation,https://arxiv.org/pdf/1805.10938.pdf,Face hallucination using cascaded super-resolution and identity priors,2018
296,LFW,lfw,41.70456775,-86.23822026,University of Notre Dame,edu,69adbfa7b0b886caac15ebe53b89adce390598a3,citation,https://arxiv.org/pdf/1805.10938.pdf,Face hallucination using cascaded super-resolution and identity priors,2018
297,LFW,lfw,-33.8840504,151.1992254,University of Technology,edu,8686b15802529ff8aea50995ef14079681788110,citation,https://doi.org/10.1109/TNNLS.2014.2376936,Deformed Graph Laplacian for Semisupervised Learning,2015
298,LFW,lfw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,8686b15802529ff8aea50995ef14079681788110,citation,https://doi.org/10.1109/TNNLS.2014.2376936,Deformed Graph Laplacian for Semisupervised Learning,2015
299,LFW,lfw,35.9020448,139.93622009,University of Tokyo,edu,9f131b4e036208f2402182a1af2a59e3c5d7dd44,citation,http://dl.acm.org/citation.cfm?id=3206038,Face Retrieval Framework Relying on User's Visual Memory,2018
300,LFW,lfw,33.8898728,130.70856205,Waseda University,edu,9f131b4e036208f2402182a1af2a59e3c5d7dd44,citation,http://dl.acm.org/citation.cfm?id=3206038,Face Retrieval Framework Relying on User's Visual Memory,2018
301,LFW,lfw,47.6543238,-122.30800894,University of Washington,edu,09ce14b84af2dc2f76ae1cf227356fa0ba337d07,citation,http://grail.cs.washington.edu/3dfaces/paper.pdf,Face reconstruction in the wild,2011
302,LFW,lfw,13.0222347,77.56718325,Indian Institute of Science Bangalore,edu,d79365336115661b0e8dbbcd4b2aa1f504b91af6,citation,https://arxiv.org/pdf/1603.01801.pdf,Variational methods for conditional multimodal deep learning,2017
303,LFW,lfw,31.30104395,121.50045497,Fudan University,edu,7df4f96138a4e23492ea96cf921794fc5287ba72,citation,https://arxiv.org/pdf/1707.08705.pdf,A Jointly Learned Deep Architecture for Facial Attribute Analysis and Face Detection in the Wild,2017
304,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4,citation,http://arxiv.org/pdf/1411.7766v2.pdf,Deep Learning Face Attributes in the Wild,2015
305,LFW,lfw,23.143197,113.34009651,South China Normal University,edu,dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,citation,http://doi.org/10.1007/s11042-017-4646-5,Age classification with deep learning face representation,2017
306,LFW,lfw,23.0502042,113.39880323,South China University of Technology,edu,dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,citation,http://doi.org/10.1007/s11042-017-4646-5,Age classification with deep learning face representation,2017
307,LFW,lfw,32.0565957,118.77408833,Nanjing University,edu,bbcb4920b312da201bf4d2359383fb4ee3b17ed9,citation,http://pdfs.semanticscholar.org/bbcb/4920b312da201bf4d2359383fb4ee3b17ed9.pdf,Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression,2016
308,LFW,lfw,32.0575279,118.78682252,Southeast University,edu,feb6e267923868bff6e2108603d00fdfd65251ca,citation,http://pdfs.semanticscholar.org/feb6/e267923868bff6e2108603d00fdfd65251ca.pdf,Unsupervised Discovery of Visual Face Categories,2013
309,LFW,lfw,24.7246403,46.62335012,King Saud University,edu,feb6e267923868bff6e2108603d00fdfd65251ca,citation,http://pdfs.semanticscholar.org/feb6/e267923868bff6e2108603d00fdfd65251ca.pdf,Unsupervised Discovery of Visual Face Categories,2013
310,LFW,lfw,39.5469449,-119.81346566,University of Nevada,edu,feb6e267923868bff6e2108603d00fdfd65251ca,citation,http://pdfs.semanticscholar.org/feb6/e267923868bff6e2108603d00fdfd65251ca.pdf,Unsupervised Discovery of Visual Face Categories,2013
311,LFW,lfw,42.36782045,-71.12666653,Harvard University,edu,8f6263e4d3775757e804796e104631c7a2bb8679,citation,http://pdfs.semanticscholar.org/8f62/63e4d3775757e804796e104631c7a2bb8679.pdf,Characterizing Visual Representations within Convolutional Neural Networks: Toward a Quantitative Approach,2016
312,LFW,lfw,53.406179,-2.96670819,University of Liverpool,edu,2ab034e1f54c37bfc8ae93f7320160748310dc73,citation,https://arxiv.org/pdf/1805.07242.pdf,Siamese Capsule Networks,2018
313,LFW,lfw,44.4962318,11.354157,University of Bologna,edu,1d1a7ef193b958f9074f4f236060a5f5e7642fc1,citation,http://pdfs.semanticscholar.org/db40/804914afbb7f8279ca9a4f52e0ade695f19e.pdf,Ensemble of Patterns of Oriented Edge Magnitudes Descriptors For Face Recognition,2013
314,LFW,lfw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,36486944b4feeb88c0499fecd253c5a53034a23f,citation,https://doi.org/10.1109/CISP-BMEI.2017.8301986,Deep feature selection and projection for cross-age face retrieval,2017
315,LFW,lfw,49.443232,1.099971,"IRSEEM Rouen, France",edu,e7436b8e68bb7139b823a7572af3decd96241e78,citation,https://doi.org/10.1109/ROBIO.2011.6181560,A new approach for face detection with omnidirectional sensors,2011
316,LFW,lfw,49.3849757,1.0683257,"University of Rouen, France",edu,e7436b8e68bb7139b823a7572af3decd96241e78,citation,https://doi.org/10.1109/ROBIO.2011.6181560,A new approach for face detection with omnidirectional sensors,2011
317,LFW,lfw,48.8476037,2.2639934,"Université Paris-Saclay, France",edu,96e318f8ff91ba0b10348d4de4cb7c2142eb8ba9,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364450,State-of-the-art face recognition performance using publicly available software and datasets,2018
318,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,e8523c4ac9d7aa21f3eb4062e09f2a3bc1eedcf7,citation,https://arxiv.org/pdf/1701.07174.pdf,Toward End-to-End Face Recognition Through Alignment Learning,2017
319,LFW,lfw,47.6543238,-122.30800894,University of Washington,edu,405526dfc79de98f5bf3c97bf4aa9a287700f15d,citation,http://pdfs.semanticscholar.org/8a6c/57fcd99a77982ec754e0b97fd67519ccb60c.pdf,MegaFace: A Million Faces for Recognition at Scale,2015
320,LFW,lfw,42.4505507,-76.4783513,Cornell University,edu,053b263b4a4ccc6f9097ad28ebf39c2957254dfb,citation,http://pdfs.semanticscholar.org/7a49/4b4489408ec3adea15817978ecd2e733f5fe.pdf,Cost-Effective HITs for Relative Similarity Comparisons,2014
321,LFW,lfw,32.87935255,-117.23110049,"University of California, San Diego",edu,053b263b4a4ccc6f9097ad28ebf39c2957254dfb,citation,http://pdfs.semanticscholar.org/7a49/4b4489408ec3adea15817978ecd2e733f5fe.pdf,Cost-Effective HITs for Relative Similarity Comparisons,2014
322,LFW,lfw,37.4102193,-122.05965487,Carnegie Mellon University,edu,82e66c4832386cafcec16b92ac88088ffd1a1bc9,citation,http://pdfs.semanticscholar.org/82e6/6c4832386cafcec16b92ac88088ffd1a1bc9.pdf,OpenFace: A general-purpose face recognition library with mobile applications,2016
323,LFW,lfw,52.4004837,16.95158083,Poznan University of Technology,edu,82e66c4832386cafcec16b92ac88088ffd1a1bc9,citation,http://pdfs.semanticscholar.org/82e6/6c4832386cafcec16b92ac88088ffd1a1bc9.pdf,OpenFace: A general-purpose face recognition library with mobile applications,2016
324,LFW,lfw,50.89273635,-1.39464295,University of Southampton,edu,8bbbdff11e88327816cad3c565f4ab1bb3ee20db,citation,http://doi.ieeecomputersociety.org/10.1109/FG.2017.31,Automatic Semantic Face Recognition,2017
325,LFW,lfw,42.9336278,-78.88394479,SUNY Buffalo,edu,2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d,citation,https://doi.org/10.1109/CVPRW.2011.5981801,Genealogical face recognition based on UB KinFace database,2011
326,LFW,lfw,25.0410728,121.6147562,Institute of Information Science,edu,5f57a1a3a1e5364792b35e8f5f259f92ad561c1f,citation,http://pdfs.semanticscholar.org/5f57/a1a3a1e5364792b35e8f5f259f92ad561c1f.pdf,Implicit Sparse Code Hashing,2015
327,LFW,lfw,22.304572,114.17976285,Hong Kong Polytechnic University,edu,1677d29a108a1c0f27a6a630e74856e7bddcb70d,citation,http://pdfs.semanticscholar.org/1677/d29a108a1c0f27a6a630e74856e7bddcb70d.pdf,Efficient Misalignment-Robust Representation for Real-Time Face Recognition,2012
328,LFW,lfw,38.88140235,121.52281098,Dalian University of Technology,edu,5f4219118556d2c627137827a617cf4e26242a6e,citation,https://doi.org/10.1109/TMM.2017.2751143,Explicit Shape Regression With Characteristic Number for Facial Landmark Localization,2018
329,LFW,lfw,51.49887085,-0.17560797,Imperial College London,edu,84e6669b47670f9f4f49c0085311dce0e178b685,citation,http://pdfs.semanticscholar.org/84e6/669b47670f9f4f49c0085311dce0e178b685.pdf,Face frontalization for Alignment and Recognition,2015
330,LFW,lfw,52.2380139,6.8566761,University of Twente,edu,84e6669b47670f9f4f49c0085311dce0e178b685,citation,http://pdfs.semanticscholar.org/84e6/669b47670f9f4f49c0085311dce0e178b685.pdf,Face frontalization for Alignment and Recognition,2015
331,LFW,lfw,30.19331415,120.11930822,Zhejiang University,edu,5213549200bccec57232fc3ff788ddf1043af7b3,citation,http://doi.acm.org/10.1145/2601097.2601204,Displaced dynamic expression regression for real-time facial tracking and animation,2014
332,LFW,lfw,40.0433204,116.3418109,Beijing Institute of Science and Technology Information,edu,5039834df68600a24e7e8eefb6ba44a5124e67fc,citation,https://doi.org/10.1109/ICIP.2013.6738761,Modular hierarchical feature learning with deep neural networks for face verification,2013
333,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,5039834df68600a24e7e8eefb6ba44a5124e67fc,citation,https://doi.org/10.1109/ICIP.2013.6738761,Modular hierarchical feature learning with deep neural networks for face verification,2013
334,LFW,lfw,23.09461185,113.28788994,Sun Yat-Sen University,edu,44f48a4b1ef94a9104d063e53bf88a69ff0f55f3,citation,http://pdfs.semanticscholar.org/44f4/8a4b1ef94a9104d063e53bf88a69ff0f55f3.pdf,Automatically Building Face Datasets of New Domains from Weakly Labeled Data with Pretrained Models,2016
335,LFW,lfw,41.40657415,2.1945341,Universitat Oberta de Catalunya,edu,6584c3c877400e1689a11ef70133daa86a238602,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8039231,Supervised Committee of Convolutional Neural Networks in Automated Facial Expression Analysis,2018
336,LFW,lfw,51.24303255,-0.59001382,University of Surrey,edu,5763b09ebca9a756b4adebf74d6d7de27e80e298,citation,https://doi.org/10.1109/BTAS.2013.6712738,Picture-specific cohort score normalization for face pair matching,2013
337,LFW,lfw,39.7487516,30.47653071,Eskisehir Osmangazi University,edu,13bda03fc8984d5943ed8d02e49a779d27c84114,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6248047,Efficient object detection using cascades of nearest convex model classifiers,2012
338,LFW,lfw,40.742252,-74.0270949,Stevens Institute of Technology,edu,1e1d7cbbef67e9e042a3a0a9a1bcefcc4a9adacf,citation,http://personal.stevens.edu/~hli18//data/papers/CVPR2016_CameraReady.pdf,A Multi-level Contextual Model for Person Recognition in Photo Albums,2016
339,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,47190d213caef85e8b9dd0d271dbadc29ed0a953,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018
340,LFW,lfw,32.87935255,-117.23110049,"University of California, San Diego",edu,47190d213caef85e8b9dd0d271dbadc29ed0a953,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018
341,LFW,lfw,51.0784038,-114.1287077,University of Calgary,edu,e66b4aa85524f493dafde8c75176ac0afad5b79c,citation,https://doi.org/10.1109/SSCI.2017.8285219,Watchlist risk assessment using multiparametric cost and relative entropy,2017
342,LFW,lfw,37.5953979,127.0630499,Hankuk University of Foreign Studies,edu,8af411697e73f6cfe691fe502d4bfb42510b4835,citation,http://pdfs.semanticscholar.org/8af4/11697e73f6cfe691fe502d4bfb42510b4835.pdf,Dynamic Local Ternary Pattern for Face Recognition and Verification,2013
343,LFW,lfw,23.7289899,90.3982682,Institute of Information Technology,edu,8af411697e73f6cfe691fe502d4bfb42510b4835,citation,http://pdfs.semanticscholar.org/8af4/11697e73f6cfe691fe502d4bfb42510b4835.pdf,Dynamic Local Ternary Pattern for Face Recognition and Verification,2013
344,LFW,lfw,23.7316957,90.3965275,University of Dhaka,edu,8af411697e73f6cfe691fe502d4bfb42510b4835,citation,http://pdfs.semanticscholar.org/8af4/11697e73f6cfe691fe502d4bfb42510b4835.pdf,Dynamic Local Ternary Pattern for Face Recognition and Verification,2013
345,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,1d3dd9aba79a53390317ec1e0b7cd742cba43132,citation,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,A maximum entropy feature descriptor for age invariant face recognition,2015
346,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,1d3dd9aba79a53390317ec1e0b7cd742cba43132,citation,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,A maximum entropy feature descriptor for age invariant face recognition,2015
347,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,1d3dd9aba79a53390317ec1e0b7cd742cba43132,citation,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,A maximum entropy feature descriptor for age invariant face recognition,2015
348,LFW,lfw,32.0565957,118.77408833,Nanjing University,edu,539f55c0e2501c1d86791c8b54b225d9b3187b9c,citation,https://doi.org/10.1109/TIP.2017.2738560,Low-Rank Latent Pattern Approximation With Applications to Robust Image Classification,2017
349,LFW,lfw,36.3173432,50.0367286,Azad University,edu,82ccd62f70e669ec770daf11d9611cab0a13047e,citation,http://www.csse.uwa.edu.au/~ajmal/papers/Farshid_DICTA2013.pdf,Sparse Variation Pattern for Texture Classification,2013
350,LFW,lfw,34.68092465,50.05341352,Tafresh University,edu,82ccd62f70e669ec770daf11d9611cab0a13047e,citation,http://www.csse.uwa.edu.au/~ajmal/papers/Farshid_DICTA2013.pdf,Sparse Variation Pattern for Texture Classification,2013
351,LFW,lfw,-31.95040445,115.79790037,University of Western Australia,edu,82ccd62f70e669ec770daf11d9611cab0a13047e,citation,http://www.csse.uwa.edu.au/~ajmal/papers/Farshid_DICTA2013.pdf,Sparse Variation Pattern for Texture Classification,2013
352,LFW,lfw,56.3411984,-2.7930938,University of St Andrews,edu,1b5875dbebc76fec87e72cee7a5263d325a77376,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.528,Learnt Quasi-Transitive Similarity for Retrieval from Large Collections of Faces,2016
353,LFW,lfw,24.4399419,118.09301781,Xiamen University,edu,5632ba72b2652df3b648b2ee698233e76a4eee65,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8346387,Reconstruction of 3D facial image using a single 2D image,2018
354,LFW,lfw,-33.3578899,151.37834708,University of Newcastle,edu,5632ba72b2652df3b648b2ee698233e76a4eee65,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8346387,Reconstruction of 3D facial image using a single 2D image,2018
355,LFW,lfw,33.5609504,73.07125966,Foundation University Rawalpindi Campus,edu,7c42371bae54050dbbf7ded1e7a9b4109a23a482,citation,http://pdfs.semanticscholar.org/7c42/371bae54050dbbf7ded1e7a9b4109a23a482.pdf,Optimized features selection using hybrid PSO-GA for multi-view gender classification,2015
356,LFW,lfw,31.4466149,74.2679762,University of Central Punjab,edu,7c42371bae54050dbbf7ded1e7a9b4109a23a482,citation,http://pdfs.semanticscholar.org/7c42/371bae54050dbbf7ded1e7a9b4109a23a482.pdf,Optimized features selection using hybrid PSO-GA for multi-view gender classification,2015
357,LFW,lfw,26.39793625,50.19807924,University of Dammam,edu,7c42371bae54050dbbf7ded1e7a9b4109a23a482,citation,http://pdfs.semanticscholar.org/7c42/371bae54050dbbf7ded1e7a9b4109a23a482.pdf,Optimized features selection using hybrid PSO-GA for multi-view gender classification,2015
358,LFW,lfw,48.14955455,11.56775314,Technical University Munich,edu,d23ec100432d860b12308941f8539af82a28843f,citation,https://arxiv.org/pdf/1810.10901.pdf,Adversarial Semantic Scene Completion from a Single Depth Image,2018
359,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,43fe03ec1acb6ea9d05d2b22eeddb2631bd30437,citation,https://doi.org/10.1109/ICIP.2017.8296394,Weakly supervised multiscale-inception learning for web-scale face recognition,2017
360,LFW,lfw,46.109237,7.08453549,IDIAP Research Institute,edu,93971a49ef6cc88a139420349a1dfd85fb5d3f5c,citation,http://pdfs.semanticscholar.org/9397/1a49ef6cc88a139420349a1dfd85fb5d3f5c.pdf,Scalable Probabilistic Models: Applied to Face Identification in the Wild,2014
361,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,bf8a520533f401347e2f55da17383a3e567ef6d8,citation,http://pdfs.semanticscholar.org/bf8a/520533f401347e2f55da17383a3e567ef6d8.pdf,Bounded-Distortion Metric Learning,2015
362,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,bf8a520533f401347e2f55da17383a3e567ef6d8,citation,http://pdfs.semanticscholar.org/bf8a/520533f401347e2f55da17383a3e567ef6d8.pdf,Bounded-Distortion Metric Learning,2015
363,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,bf8a520533f401347e2f55da17383a3e567ef6d8,citation,http://pdfs.semanticscholar.org/bf8a/520533f401347e2f55da17383a3e567ef6d8.pdf,Bounded-Distortion Metric Learning,2015
364,LFW,lfw,13.01119095,74.79498825,"National Institute of Technology, Karnataka",edu,e9e40e588f8e6510fa5537e0c9e083ceed5d07ad,citation,http://pdfs.semanticscholar.org/e9e4/0e588f8e6510fa5537e0c9e083ceed5d07ad.pdf,Fast Face Detection Using Graphics Processor,2011
365,LFW,lfw,37.4102193,-122.05965487,Carnegie Mellon University,edu,192235f5a9e4c9d6a28ec0d333e36f294b32f764,citation,http://www.andrew.cmu.edu/user/sjayasur/iccv.pdf,Reconfiguring the Imaging Pipeline for Computer Vision,2017
366,LFW,lfw,42.4505507,-76.4783513,Cornell University,edu,192235f5a9e4c9d6a28ec0d333e36f294b32f764,citation,http://www.andrew.cmu.edu/user/sjayasur/iccv.pdf,Reconfiguring the Imaging Pipeline for Computer Vision,2017
367,LFW,lfw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cd6aaa37fffd0b5c2320f386be322b8adaa1cc68,citation,https://arxiv.org/pdf/1804.06655.pdf,Deep Face Recognition: A Survey,2018
368,LFW,lfw,-33.8809651,151.20107299,University of Technology Sydney,edu,e4e3faa47bb567491eaeaebb2213bf0e1db989e1,citation,http://pdfs.semanticscholar.org/e4e3/faa47bb567491eaeaebb2213bf0e1db989e1.pdf,Empirical Risk Minimization for Metric Learning Using Privileged Information,2016
369,LFW,lfw,31.846918,117.29053367,Hefei University of Technology,edu,e4e3faa47bb567491eaeaebb2213bf0e1db989e1,citation,http://pdfs.semanticscholar.org/e4e3/faa47bb567491eaeaebb2213bf0e1db989e1.pdf,Empirical Risk Minimization for Metric Learning Using Privileged Information,2016
370,LFW,lfw,23.1353836,113.29470496,Guangdong University of Technology,edu,4b02387c2db968a70b69d98da3c443f139099e91,citation,http://pdfs.semanticscholar.org/4b02/387c2db968a70b69d98da3c443f139099e91.pdf,Detecting facial landmarks in the video based on a hybrid framework,2016
371,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,f7c50d2be9fba0e4527fd9fbe3095e9d9a94fdd3,citation,http://pdfs.semanticscholar.org/f7c5/0d2be9fba0e4527fd9fbe3095e9d9a94fdd3.pdf,Large Margin Multi-metric Learning for Face and Kinship Verification in the Wild,2014
372,LFW,lfw,40.8419836,-73.94368971,Columbia University,edu,217de4ff802d4904d3f90d2e24a29371307942fe,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2013.128,"POOF: Part-Based One-vs.-One Features for Fine-Grained Categorization, Face Verification, and Attribute Estimation",2013
373,LFW,lfw,40.47913175,-74.43168868,Rutgers University,edu,e3b324101157daede3b4d16bdc9c2388e849c7d4,citation,https://pdfs.semanticscholar.org/e3b3/24101157daede3b4d16bdc9c2388e849c7d4.pdf,"Robust Real-Time 3 D Face Tracking from RGBD Videos under Extreme Pose , Depth , and Expression Variations",2017
374,LFW,lfw,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,8ee5b1c9fb0bded3578113c738060290403ed472,citation,https://infoscience.epfl.ch/record/200452/files/wacv2014-RGE.pdf,Extending explicit shape regression with mixed feature channels and pose priors,2014
375,LFW,lfw,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,0c59071ddd33849bd431165bc2d21bbe165a81e0,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Oh_Person_Recognition_in_ICCV_2015_paper.pdf,Person Recognition in Personal Photo Collections,2015
376,LFW,lfw,36.20304395,117.05842113,Tianjin University,edu,4223917177405eaa6bdedca061eb28f7b440ed8e,citation,http://pdfs.semanticscholar.org/4223/917177405eaa6bdedca061eb28f7b440ed8e.pdf,B-spline Shape from Motion & Shading: An Automatic Free-form Surface Modeling for Face Reconstruction,2016
377,LFW,lfw,2.92749755,101.64185301,Multimedia University,edu,90ad0daa279c3e30b360f9fe9371293d68f4cebf,citation,http://pdfs.semanticscholar.org/90ad/0daa279c3e30b360f9fe9371293d68f4cebf.pdf,Spatio-temporal Framework and Algorithms for Video-based Face Recognition,2015
378,LFW,lfw,23.09461185,113.28788994,Sun Yat-Sen University,edu,c675534be881e59a78a5986b8fb4e649ddd2abbe,citation,https://doi.org/10.1109/ICIP.2017.8296548,Face recognition by landmark pooling-based CNN with concentrate loss,2017
379,LFW,lfw,50.7338124,7.1022465,Rheinische-Friedrich-Wilhelms University,edu,561ae67de137e75e9642ab3512d3749b34484310,citation,http://pdfs.semanticscholar.org/561a/e67de137e75e9642ab3512d3749b34484310.pdf,DeepGestalt - Identifying Rare Genetic Syndromes Using Deep Learning,2018
380,LFW,lfw,32.1119889,34.80459702,Tel Aviv University,edu,561ae67de137e75e9642ab3512d3749b34484310,citation,http://pdfs.semanticscholar.org/561a/e67de137e75e9642ab3512d3749b34484310.pdf,DeepGestalt - Identifying Rare Genetic Syndromes Using Deep Learning,2018
381,LFW,lfw,32.87935255,-117.23110049,"University of California, San Diego",edu,561ae67de137e75e9642ab3512d3749b34484310,citation,http://pdfs.semanticscholar.org/561a/e67de137e75e9642ab3512d3749b34484310.pdf,DeepGestalt - Identifying Rare Genetic Syndromes Using Deep Learning,2018
382,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bc,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Lu_Simultaneous_Local_Binary_ICCV_2015_paper.pdf,Simultaneous Local Binary Feature Learning and Encoding for Face Recognition,2015
383,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bc,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Lu_Simultaneous_Local_Binary_ICCV_2015_paper.pdf,Simultaneous Local Binary Feature Learning and Encoding for Face Recognition,2015
384,LFW,lfw,37.4102193,-122.05965487,Carnegie Mellon University,edu,2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4,citation,https://arxiv.org/pdf/1803.00130.pdf,Ring loss: Convex Feature Normalization for Face Recognition,2018
385,LFW,lfw,37.4102193,-122.05965487,Carnegie Mellon University,edu,b1fdd4ae17d82612cefd4e78b690847b071379d3,citation,https://pdfs.semanticscholar.org/4fc5/416b6c7173d3462e5be796bda3ad8d5645a1.pdf,Supervised Descent Method,2015
386,LFW,lfw,51.49887085,-0.17560797,Imperial College London,edu,1921795408345751791b44b379f51b7dd54ebfa2,citation,https://arxiv.org/pdf/1807.07872.pdf,From Face Recognition to Models of Identity: A Bayesian Approach to Learning About Unknown Identities from Unsupervised Data,2018
387,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,f05ad40246656a977cf321c8299158435e3f3b61,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Lu_Face_Recognition_Using_2013_ICCV_paper.pdf,Face Recognition Using Face Patch Networks,2013
388,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,5134353bd01c4ea36bd007c460e8972b1541d0ad,citation,https://pdfs.semanticscholar.org/5134/353bd01c4ea36bd007c460e8972b1541d0ad.pdf,Face Recognition with Multi-Resolution Spectral Feature Images,2013
389,LFW,lfw,31.76909325,117.17795091,Anhui University,edu,5134353bd01c4ea36bd007c460e8972b1541d0ad,citation,https://pdfs.semanticscholar.org/5134/353bd01c4ea36bd007c460e8972b1541d0ad.pdf,Face Recognition with Multi-Resolution Spectral Feature Images,2013
390,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,29db046dd1f8100b279c3f5f5c5ef19bdbf5af9a,citation,https://arxiv.org/pdf/1706.04717.pdf,Recent Progress of Face Image Synthesis,2017
391,LFW,lfw,38.88140235,121.52281098,Dalian University of Technology,edu,940e5c45511b63f609568dce2ad61437c5e39683,citation,https://doi.org/10.1109/TIP.2015.2390976,Fiducial Facial Point Extraction Using a Novel Projective Invariant,2015
392,LFW,lfw,42.36782045,-71.12666653,Harvard University,edu,785eeac2e236a85a45b4e0356c0745279c31e089,citation,https://doi.org/10.1109/TIFS.2014.2359543,Learning Person-Specific Representations From Faces in the Wild,2014
393,LFW,lfw,-22.8137765,-47.0640004,State University of Campinas,edu,785eeac2e236a85a45b4e0356c0745279c31e089,citation,https://doi.org/10.1109/TIFS.2014.2359543,Learning Person-Specific Representations From Faces in the Wild,2014
394,LFW,lfw,52.17638955,0.14308882,University of Cambridge,edu,9901f473aeea177a55e58bac8fd4f1b086e575a4,citation,https://arxiv.org/pdf/1509.04954.pdf,Human and sheep facial landmarks localisation by triplet interpolated features,2016
395,LFW,lfw,25.4299114,81.7711827,"IIIT Allahabad, India",edu,e1449be4951ba7519945cd1ad50656c3516113da,citation,https://doi.org/10.1109/TCSVT.2016.2603535,Local Gradient Hexa Pattern: A Descriptor for Face Recognition and Retrieval,2018
396,LFW,lfw,41.1664858,-73.1920564,University of Bridgeport,edu,f92ade569cbe54344ffd3bb25efd366dcd8ad659,citation,https://arxiv.org/pdf/1704.01464.pdf,Effect of Super Resolution on High Dimensional Features for Unsupervised Face Recognition in the Wild,2017
397,LFW,lfw,25.2873992,110.3324277,Guilin University of Electronic Technology Guangxi Guilin,edu,9989ad33b64accea8042e386ff3f1216386ba7f1,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393320,Facial feature extraction method based on shallow and deep fusion CNN,2017
398,LFW,lfw,53.21967825,6.56251482,University of Groningen,edu,8efda5708bbcf658d4f567e3866e3549fe045bbb,citation,http://pdfs.semanticscholar.org/8efd/a5708bbcf658d4f567e3866e3549fe045bbb.pdf,Pre-trained Deep Convolutional Neural Networks for Face Recognition,2018
399,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,3b092733f428b12f1f920638f868ed1e8663fe57,citation,http://www.math.jhu.edu/~data/RamaPapers/PerformanceBounds.pdf,On the size of Convolutional Neural Networks and generalization performance,2016
400,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,55966926e7c28b1eee1c7eb7a0b11b10605a1af0,citation,http://pdfs.semanticscholar.org/baa8/bdeb5aa545af5b5f43efaf9dda08490da0bc.pdf,Surpassing Human-Level Face Verification Performance on LFW with GaussianFace,2015
401,LFW,lfw,65.0592157,25.46632601,University of Oulu,edu,e6d6203fa911429d76f026e2ec2de260ec520432,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899663,Siamese network features for image matching,2016
402,LFW,lfw,60.18558755,24.8242733,Aalto University,edu,e6d6203fa911429d76f026e2ec2de260ec520432,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899663,Siamese network features for image matching,2016
403,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4d3c4c3fe8742821242368e87cd72da0bd7d3783,citation,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTiccv13.pdf,Hybrid Deep Learning for Face Verification,2013
404,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,4d3c4c3fe8742821242368e87cd72da0bd7d3783,citation,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTiccv13.pdf,Hybrid Deep Learning for Face Verification,2013
405,LFW,lfw,51.49887085,-0.17560797,Imperial College London,edu,9af9a88c60d9e4b53e759823c439fc590a4b5bc5,citation,https://arxiv.org/pdf/1708.00277.pdf,Learning Deep Convolutional Embeddings for Face Representation Using Joint Sample- and Set-Based Supervision,2017
406,LFW,lfw,46.109237,7.08453549,IDIAP Research Institute,edu,939123cf21dc9189a03671484c734091b240183e,citation,http://publications.idiap.ch/downloads/papers/2015/Erdogmus_MMSP_2015.pdf,Within- and cross- database evaluations for face gender classification via befit protocols,2014
407,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,061e29eae705f318eee703b9e17dc0989547ba0c,citation,http://pdfs.semanticscholar.org/061e/29eae705f318eee703b9e17dc0989547ba0c.pdf,Enhancing Expression Recognition in the Wild with Unlabeled Reference Data,2012
408,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,435642641312364e45f4989fac0901b205c49d53,citation,http://pdfs.semanticscholar.org/4356/42641312364e45f4989fac0901b205c49d53.pdf,Face Model Compression by Distilling Knowledge from Neurons,2016
409,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,435642641312364e45f4989fac0901b205c49d53,citation,http://pdfs.semanticscholar.org/4356/42641312364e45f4989fac0901b205c49d53.pdf,Face Model Compression by Distilling Knowledge from Neurons,2016
410,LFW,lfw,23.09461185,113.28788994,Sun Yat-Sen University,edu,80d42f74ee9bf03f3790c8d0f5a307deffe0b3b7,citation,https://doi.org/10.1109/TNNLS.2016.2522431,Learning Kernel Extended Dictionary for Face Recognition,2017
411,LFW,lfw,36.3693473,120.673818,Shandong University,edu,edbddf8c176d6e914f0babe64ad56c051597d415,citation,https://doi.org/10.1109/TMM.2016.2644866,Predicting Image Memorability Through Adaptive Transfer Learning From External Sources,2017
412,LFW,lfw,36.20304395,117.05842113,Tianjin University,edu,edbddf8c176d6e914f0babe64ad56c051597d415,citation,https://doi.org/10.1109/TMM.2016.2644866,Predicting Image Memorability Through Adaptive Transfer Learning From External Sources,2017
413,LFW,lfw,42.3583961,-71.09567788,MIT,edu,18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaae,citation,http://pdfs.semanticscholar.org/18c6/c92c39c8a5a2bb8b5673f339d3c26b8dcaae.pdf,Learning invariant representations and applications to face verification,2013
414,LFW,lfw,42.3626295,-71.0914481,McGovern Institute for Brain Research,edu,18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaae,citation,http://pdfs.semanticscholar.org/18c6/c92c39c8a5a2bb8b5673f339d3c26b8dcaae.pdf,Learning invariant representations and applications to face verification,2013
415,LFW,lfw,50.0764296,14.41802312,Czech Technical University,edu,37c8514df89337f34421dc27b86d0eb45b660a5e,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Uricar_Facial_Landmark_Tracking_ICCV_2015_paper.pdf,Facial Landmark Tracking by Tree-Based Deformable Part Model Based Detector,2015
416,LFW,lfw,39.86948105,-84.87956905,Indiana University,edu,f3a59d85b7458394e3c043d8277aa1ffe3cdac91,citation,https://arxiv.org/pdf/1802.09900.pdf,Query-Free Attacks on Industry-Grade Face Recognition Systems under Resource Constraints,2018
417,LFW,lfw,17.4454957,78.34854698,International Institute of Information Technology,edu,96e1ccfe96566e3c96d7b86e134fa698c01f2289,citation,https://arxiv.org/pdf/1712.00321.pdf,Semi-adversarial Networks: Convolutional Autoencoders for Imparting Privacy to Face Images,2018
418,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,96e1ccfe96566e3c96d7b86e134fa698c01f2289,citation,https://arxiv.org/pdf/1712.00321.pdf,Semi-adversarial Networks: Convolutional Autoencoders for Imparting Privacy to Face Images,2018
419,LFW,lfw,5.4409448,10.07120561,University of Dschang,edu,d78fbd11f12cbc194e8ede761d292dc2c02d38a2,citation,http://pdfs.semanticscholar.org/d78f/bd11f12cbc194e8ede761d292dc2c02d38a2.pdf,Enhancing Gray Scale Images for Face Detection under Unstable Lighting Condition,2017
420,LFW,lfw,26.88111275,112.62850666,Hunan University,edu,86d0127e1fd04c3d8ea78401c838af621647dc95,citation,https://arxiv.org/pdf/1804.02810.pdf,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,2018
421,LFW,lfw,28.2290209,112.99483204,"National University of Defense Technology, China",edu,86d0127e1fd04c3d8ea78401c838af621647dc95,citation,https://arxiv.org/pdf/1804.02810.pdf,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,2018
422,LFW,lfw,29.58333105,-98.61944505,University of Texas at San Antonio,edu,86d0127e1fd04c3d8ea78401c838af621647dc95,citation,https://arxiv.org/pdf/1804.02810.pdf,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,2018
423,LFW,lfw,43.47061295,-80.54724732,University of Waterloo,edu,103a7c3eba36792886ae8005f6492332e6b05bad,citation,https://arxiv.org/pdf/1809.06218.pdf,Facial Recognition with Encoded Local Projections,2018
424,LFW,lfw,47.6423318,-122.1369302,Microsoft,company,291265db88023e92bb8c8e6390438e5da148e8f5,citation,http://pdfs.semanticscholar.org/4603/cb8e05258bb0572ae912ad20903b8f99f4b1.pdf,MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition,2016
425,LFW,lfw,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,35d42f4e7a1d898bc8e2d052c38e1106f3e80188,citation,https://doi.org/10.1109/BTAS.2015.7358765,Human and algorithm performance on the PaSC face Recognition Challenge,2015
426,LFW,lfw,32.9820799,-96.7566278,University of Texas at Dallas,edu,35d42f4e7a1d898bc8e2d052c38e1106f3e80188,citation,https://doi.org/10.1109/BTAS.2015.7358765,Human and algorithm performance on the PaSC face Recognition Challenge,2015
427,LFW,lfw,51.49887085,-0.17560797,Imperial College London,edu,06d7ef72fae1be206070b9119fb6b61ce4699587,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zafeiriou_On_One-Shot_Similarity_2013_ICCV_paper.pdf,On One-Shot Similarity Kernels: Explicit Feature Maps and Properties,2013
428,LFW,lfw,51.59029705,-0.22963221,Middlesex University,edu,06d7ef72fae1be206070b9119fb6b61ce4699587,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zafeiriou_On_One-Shot_Similarity_2013_ICCV_paper.pdf,On One-Shot Similarity Kernels: Explicit Feature Maps and Properties,2013
429,LFW,lfw,38.2899482,21.7886469,University of Patras,edu,06d7ef72fae1be206070b9119fb6b61ce4699587,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zafeiriou_On_One-Shot_Similarity_2013_ICCV_paper.pdf,On One-Shot Similarity Kernels: Explicit Feature Maps and Properties,2013
430,LFW,lfw,1.2962018,103.77689944,National University of Singapore,edu,c17c7b201cfd0bcd75441afeaa734544c6ca3416,citation,https://doi.org/10.1109/TCSVT.2016.2587389,Layerwise Class-Aware Convolutional Neural Network,2017
431,LFW,lfw,32.0575279,118.78682252,Southeast University,edu,c17c7b201cfd0bcd75441afeaa734544c6ca3416,citation,https://doi.org/10.1109/TCSVT.2016.2587389,Layerwise Class-Aware Convolutional Neural Network,2017
432,LFW,lfw,29.7207902,-95.34406271,University of Houston,edu,e6da1fcd2a8cda0c69b3d94812caa7d844903007,citation,http://dl.acm.org/citation.cfm?id=3137154,"Sonicdoor: scaling person identification with ultrasonic sensors by novel modeling of shape, behavior and walking patterns",2017
433,LFW,lfw,23.09461185,113.28788994,Sun Yat-Sen University,edu,cd74d606e76ecddee75279679d9770cdc0b49861,citation,https://doi.org/10.1109/TIP.2014.2365725,Transfer Learning of Structured Representation for Face Recognition,2014
434,LFW,lfw,23.7289899,90.3982682,Institute of Information Technology,edu,2e58ec57d71b2b2a3e71086234dd7037559cc17e,citation,https://pdfs.semanticscholar.org/2e58/ec57d71b2b2a3e71086234dd7037559cc17e.pdf,A Gender Recognition System from Facial Image,2018
435,LFW,lfw,23.7316957,90.3965275,University of Dhaka,edu,2e58ec57d71b2b2a3e71086234dd7037559cc17e,citation,https://pdfs.semanticscholar.org/2e58/ec57d71b2b2a3e71086234dd7037559cc17e.pdf,A Gender Recognition System from Facial Image,2018
436,LFW,lfw,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,8f99f7ccb85af6d4b9e015a9b215c529126e7844,citation,https://doi.org/10.1109/ROMAN.2017.8172359,Face image-based age and gender estimation with consideration of ethnic difference,2017
437,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,4b605e6a9362485bfe69950432fa1f896e7d19bf,citation,http://biometrics.cse.msu.edu/Publications/Face/BlantonAllenMillerKalkaJain_CVPRWB2016_HID.pdf,A Comparison of Human and Automated Face Verification Accuracy on Unconstrained Image Sets,2016
438,LFW,lfw,22.34000115,114.16970291,City University of Hong Kong,edu,2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,citation,http://yugangjiang.info/publication/JCST-nameface.pdf,"Name-Face Association in Web Videos: A Large-Scale Dataset, Baselines, and Open Issues",2014
439,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,citation,http://yugangjiang.info/publication/JCST-nameface.pdf,"Name-Face Association in Web Videos: A Large-Scale Dataset, Baselines, and Open Issues",2014
440,LFW,lfw,31.30104395,121.50045497,Fudan University,edu,2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,citation,http://yugangjiang.info/publication/JCST-nameface.pdf,"Name-Face Association in Web Videos: A Large-Scale Dataset, Baselines, and Open Issues",2014
441,LFW,lfw,29.7207902,-95.34406271,University of Houston,edu,9ff931ca721d50e470e1a38e583c7b18b6cdc2cc,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7407637,An Overview and Empirical Comparison of Distance Metric Learning Methods,2017
442,LFW,lfw,40.48256135,-3.6906079,Universidad Autonoma de Madrid,edu,578117ff493d691166fefc52fd61bad70d8752a9,citation,https://doi.org/10.1109/CCST.2016.7815707,Dealing with occlusions in face recognition by region-based fusion,2016
443,LFW,lfw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,3cea3aba77649d718991d0cb30135887267c11e8,citation,https://arxiv.org/pdf/1809.00594.pdf,Adversarial Attack Type I: Generating False Positives,2018
444,LFW,lfw,38.99203005,-76.9461029,University of Maryland College Park,edu,053931267af79a89791479b18d1b9cde3edcb415,citation,https://pdfs.semanticscholar.org/0539/31267af79a89791479b18d1b9cde3edcb415.pdf,Attributes for Improved Attributes: A Multi-Task Network Utilizing Implicit and Explicit Relationships for Facial Attribute Classification,2017
445,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,053931267af79a89791479b18d1b9cde3edcb415,citation,https://pdfs.semanticscholar.org/0539/31267af79a89791479b18d1b9cde3edcb415.pdf,Attributes for Improved Attributes: A Multi-Task Network Utilizing Implicit and Explicit Relationships for Facial Attribute Classification,2017
446,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,02467703b6e087799e04e321bea3a4c354c5487d,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.27,Grouper: Optimizing Crowdsourced Face Annotations,2016
447,LFW,lfw,46.0501558,14.46907327,University of Ljubljana,edu,afe9cfba90d4b1dbd7db1cf60faf91f24d12b286,citation,http://pdfs.semanticscholar.org/afe9/cfba90d4b1dbd7db1cf60faf91f24d12b286.pdf,Principal Directions of Synthetic Exact Filters for Robust Real-Time Eye Localization,2011
448,LFW,lfw,53.21967825,6.56251482,University of Groningen,edu,4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac,citation,https://doi.org/10.1109/SSCI.2015.37,Deep Convolutional Neural Networks and Support Vector Machines for Gender Recognition,2015
449,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,0ce3a786aed896d128f5efdf78733cc675970854,citation,http://pdfs.semanticscholar.org/3689/2b6bb4848a9c21158b8eded7f14a6654dd7e.pdf,Learning the Face Prior for Bayesian Face Recognition,2014
450,LFW,lfw,37.3936717,-122.0807262,Facebook,company,628a3f027b7646f398c68a680add48c7969ab1d9,citation,https://pdfs.semanticscholar.org/628a/3f027b7646f398c68a680add48c7969ab1d9.pdf,Plan for Final Year Project : HKU-Face : A Large Scale Dataset for Deep Face Recognition,2017
451,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,9fc993aeb0a007ccfaca369a9a8c0ccf7697261d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7936534,Context-Aware Local Binary Feature Learning for Face Recognition,2018
452,LFW,lfw,43.7776426,11.259765,University of Florence,edu,746c0205fdf191a737df7af000eaec9409ede73f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423119,Investigating Nuisances in DCNN-Based Face Recognition,2018
453,LFW,lfw,53.8338371,10.7035939,Institute of Systems and Robotics,edu,3802c97f925cb03bac91d9db13d8b777dfd29dcc,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.232,Non-parametric Bayesian Constrained Local Models,2014
454,LFW,lfw,43.7776426,11.259765,University of Florence,edu,71ca8b6e84c17b3e68f980bfb8cddc837100f8bf,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899774,Effective 3D based frontalization for unconstrained face recognition,2016
455,LFW,lfw,37.5901411,127.0362318,Korea University,edu,5957936195c10521dadc9b90ca9b159eb1fc4871,citation,https://doi.org/10.1109/TCE.2016.7838098,LBP-ferns-based feature extraction for robust facial recognition,2016
456,LFW,lfw,25.37461295,51.48980354,Qatar University,edu,d0d75a7116a76ccd98a3aeb6f6fff10ba91de1c1,citation,https://doi.org/10.1109/TIP.2015.2502144,Constrained Metric Learning by Permutation Inducing Isometries,2016
457,LFW,lfw,-31.95040445,115.79790037,University of Western Australia,edu,d0d75a7116a76ccd98a3aeb6f6fff10ba91de1c1,citation,https://doi.org/10.1109/TIP.2015.2502144,Constrained Metric Learning by Permutation Inducing Isometries,2016
458,LFW,lfw,-35.2776999,149.118527,Australian National University,edu,79db191ca1268dc88271abef3179c4fe4ee92aed,citation,https://pdfs.semanticscholar.org/79db/191ca1268dc88271abef3179c4fe4ee92aed.pdf,Facial Expression Based Automatic Album Creation,2010
459,LFW,lfw,-35.23656905,149.08446994,University of Canberra,edu,79db191ca1268dc88271abef3179c4fe4ee92aed,citation,https://pdfs.semanticscholar.org/79db/191ca1268dc88271abef3179c4fe4ee92aed.pdf,Facial Expression Based Automatic Album Creation,2010
460,LFW,lfw,-33.8809651,151.20107299,University of Technology Sydney,edu,3983370efe7a7521bde255017171724d845b3383,citation,https://arxiv.org/pdf/1810.01152.pdf,Learning Discriminators as Energy Networks in Adversarial Learning,2018
461,LFW,lfw,41.6659,-91.57310307,University of Iowa,edu,3983370efe7a7521bde255017171724d845b3383,citation,https://arxiv.org/pdf/1810.01152.pdf,Learning Discriminators as Energy Networks in Adversarial Learning,2018
462,LFW,lfw,40.7423025,-74.17928172,New Jersey Institute of Technology,edu,faf19885431cb39360158982c3a1127f6090a1f6,citation,https://doi.org/10.1109/BTAS.2015.7358768,Inheritable Fisher vector feature for kinship verification,2015
463,LFW,lfw,51.4584837,-2.6097752,University of Bristol,edu,c4f3185f010027a0a97fcb9753d74eb27a9cfd3e,citation,http://doi.org/10.1016/j.patrec.2015.02.006,Learning to classify gender from four million images,2015
464,LFW,lfw,12.81608485,74.92449278,Mangalore University,edu,b68452e28951bf8db5f1193eca3a8fd9e2d0d7ef,citation,https://doi.org/10.1109/ICACCI.2015.7275752,Approximate radial gradient transform based face recognition,2015
465,LFW,lfw,42.3583961,-71.09567788,MIT,edu,5e0e516226413ea1e973f1a24e2fdedde98e7ec0,citation,http://pdfs.semanticscholar.org/74ce/97da57ec848db660ee69dec709f226c74f43.pdf,The Invariance Hypothesis and the Ventral Stream,2013
466,LFW,lfw,53.21967825,6.56251482,University of Groningen,edu,d8896861126b7fd5d2ceb6fed8505a6dff83414f,citation,http://pdfs.semanticscholar.org/d889/6861126b7fd5d2ceb6fed8505a6dff83414f.pdf,In-plane Rotational Alignment of Faces by Eye and Eye-pair Detection,2015
467,LFW,lfw,39.9808333,116.34101249,Beihang University,edu,70d2ab1af0edd5c0a30d576a5d4aa397c4f92d3e,citation,http://doi.org/10.1007/s11042-018-5608-2,Elastic preserving projections based on L1-norm maximization,2018
468,LFW,lfw,38.99203005,-76.9461029,University of Maryland College Park,edu,b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,citation,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf,"HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition",2016
469,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,citation,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf,"HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition",2016
470,LFW,lfw,35.9042272,-78.85565763,"IBM Research, North Carolina",company,148eb413bede35487198ce7851997bf8721ea2d6,citation,http://pdfs.semanticscholar.org/148e/b413bede35487198ce7851997bf8721ea2d6.pdf,People Search in Surveillance Videos,2009
471,LFW,lfw,38.8964679,-104.8050594,University of Colorado at Colorado Springs,edu,e3e2c106ccbd668fb9fca851498c662add257036,citation,http://www.vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-et-al-Ensembles.pdf,"Appearance, context and co-occurrence ensembles for identity recognition in personal photo collections",2013
472,LFW,lfw,42.3383668,-71.08793524,Northeastern University,edu,d22b378fb4ef241d8d210202893518d08e0bb213,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Zhang_Random_Faces_Guided_2013_ICCV_paper.pdf,Random Faces Guided Sparse Many-to-One Encoder for Pose-Invariant Face Recognition,2013
473,LFW,lfw,1.2962018,103.77689944,National University of Singapore,edu,dbb9601a1d2febcce4c07dd2b819243d81abb2c2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361884,Landmark Free Face Attribute Prediction,2018
474,LFW,lfw,1.27486,103.797787,"SAP Innovation Center Network, Singapore",company,dbb9601a1d2febcce4c07dd2b819243d81abb2c2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361884,Landmark Free Face Attribute Prediction,2018
475,LFW,lfw,37.4092265,-122.0236615,"Baidu Research, USA",company,8633732d9f787f8497c2696309c7d70176995c15,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298967,Multi-objective convolutional learning for face labeling,2015
476,LFW,lfw,37.36566745,-120.42158888,"University of California, Merced",edu,8633732d9f787f8497c2696309c7d70176995c15,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298967,Multi-objective convolutional learning for face labeling,2015
477,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,7fb5006b6522436ece5bedf509e79bdb7b79c9a7,citation,https://pdfs.semanticscholar.org/7fb5/006b6522436ece5bedf509e79bdb7b79c9a7.pdf,Multi-Task Convolutional Neural Network for Face Recognition,2017
478,LFW,lfw,42.3889785,-72.5286987,University of Massachusetts,edu,368e99f669ea5fd395b3193cd75b301a76150f9d,citation,https://arxiv.org/pdf/1506.01342.pdf,One-to-many face recognition with bilinear CNNs,2016
479,LFW,lfw,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,c18a03568d4b512a0d8380cbb1fbf6bd56d11f05,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8430403,A Wearable IoT with Complex Artificial Perception Embedding for Alzheimer Patients,2018
480,LFW,lfw,32.1119889,34.80459702,Tel Aviv University,edu,a6b5ffb5b406abfda2509cae66cdcf56b4bb3837,citation,http://pdfs.semanticscholar.org/bce2/02717ce134b317b39f0a18151659d643875b.pdf,One Shot Similarity Metric Learning for Action Recognition,2011
481,LFW,lfw,52.02453775,-0.70927481,Open University,edu,a6b5ffb5b406abfda2509cae66cdcf56b4bb3837,citation,http://pdfs.semanticscholar.org/bce2/02717ce134b317b39f0a18151659d643875b.pdf,One Shot Similarity Metric Learning for Action Recognition,2011
482,LFW,lfw,31.9078499,34.81334092,Weizmann Institute of Science,edu,a6b5ffb5b406abfda2509cae66cdcf56b4bb3837,citation,http://pdfs.semanticscholar.org/bce2/02717ce134b317b39f0a18151659d643875b.pdf,One Shot Similarity Metric Learning for Action Recognition,2011
483,LFW,lfw,38.99203005,-76.9461029,University of Maryland College Park,edu,4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,citation,http://pdfs.semanticscholar.org/4f36/c14d1453fc9d6481b09c5a09e91d8d9ee47a.pdf,Video-Based Face Recognition Using the Intra/Extra-Personal Difference Dictionary,2014
484,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,citation,http://pdfs.semanticscholar.org/4f36/c14d1453fc9d6481b09c5a09e91d8d9ee47a.pdf,Video-Based Face Recognition Using the Intra/Extra-Personal Difference Dictionary,2014
485,LFW,lfw,42.0958077,-75.91455689,Binghamton University,edu,c07ab025d9e3c885ad5386e6f000543efe091c4b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302601,Preserving Model Privacy for Machine Learning in Distributed Systems,2018
486,LFW,lfw,29.6328784,-82.3490133,University of Florida,edu,c07ab025d9e3c885ad5386e6f000543efe091c4b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302601,Preserving Model Privacy for Machine Learning in Distributed Systems,2018
487,LFW,lfw,39.9922379,116.30393816,Peking University,edu,5798055e11e25c404b1b0027bc9331bcc6e00555,citation,http://doi.acm.org/10.1145/2393347.2396357,PDSS: patch-descriptor-similarity space for effective face verification,2012
488,LFW,lfw,51.49887085,-0.17560797,Imperial College London,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018
489,LFW,lfw,51.24303255,-0.59001382,University of Surrey,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018
490,LFW,lfw,42.3889785,-72.5286987,University of Massachusetts,edu,c98983592777952d1751103b4d397d3ace00852d,citation,https://pdfs.semanticscholar.org/c989/83592777952d1751103b4d397d3ace00852d.pdf,Face Synthesis from Facial Identity Features,2017
491,LFW,lfw,22.304572,114.17976285,Hong Kong Polytechnic University,edu,48174c414cfce7f1d71c4401d2b3d49ba91c5338,citation,http://pdfs.semanticscholar.org/4817/4c414cfce7f1d71c4401d2b3d49ba91c5338.pdf,Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes,2015
492,LFW,lfw,40.47913175,-74.43168868,Rutgers University,edu,48174c414cfce7f1d71c4401d2b3d49ba91c5338,citation,http://pdfs.semanticscholar.org/4817/4c414cfce7f1d71c4401d2b3d49ba91c5338.pdf,Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes,2015
493,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,48174c414cfce7f1d71c4401d2b3d49ba91c5338,citation,http://pdfs.semanticscholar.org/4817/4c414cfce7f1d71c4401d2b3d49ba91c5338.pdf,Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes,2015
494,LFW,lfw,35.9542493,-83.9307395,University of Tennessee,edu,c2e03efd8c5217188ab685e73cc2e52c54835d1a,citation,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477585,Deep tree-structured face: A unified representation for multi-task facial biometrics,2016
495,LFW,lfw,39.94976005,116.33629046,Beijing Jiaotong University,edu,21959bc56a160ebd450606867dce1462a913afab,citation,http://doi.org/10.1007/s11042-018-6071-9,Face recognition based on manifold constrained joint sparse sensing with K-SVD,2018
496,LFW,lfw,-32.00686365,115.89691775,Curtin University,edu,21959bc56a160ebd450606867dce1462a913afab,citation,http://doi.org/10.1007/s11042-018-6071-9,Face recognition based on manifold constrained joint sparse sensing with K-SVD,2018
497,LFW,lfw,31.32235655,121.38400941,Shanghai University,edu,21959bc56a160ebd450606867dce1462a913afab,citation,http://doi.org/10.1007/s11042-018-6071-9,Face recognition based on manifold constrained joint sparse sensing with K-SVD,2018
498,LFW,lfw,31.2284923,121.40211389,East China Normal University,edu,06518858bd99cddf9bc9200fac5311fc29ac33b4,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392777,Sparse Low-Rank Component-Based Representation for Face Recognition With Low-Quality Images,2019
499,LFW,lfw,31.28473925,121.49694909,Tongji University,edu,06518858bd99cddf9bc9200fac5311fc29ac33b4,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392777,Sparse Low-Rank Component-Based Representation for Face Recognition With Low-Quality Images,2019
500,LFW,lfw,39.87391435,116.47722285,Beijing University of Technology,edu,f1d6da83dcf71eda45a56a86c5ae13e7f45a8536,citation,https://doi.org/10.1109/ACCESS.2017.2737544,A Secure Face-Verification Scheme Based on Homomorphic Encryption and Deep Neural Networks,2017
501,LFW,lfw,25.0410728,121.6147562,Institute of Information Science,edu,337dd4aaca2c5f9b5d2de8e0e2401b5a8feb9958,citation,https://arxiv.org/pdf/1810.11160.pdf,Data-specific Adaptive Threshold for Face Recognition and Authentication,2018
502,LFW,lfw,37.4102193,-122.05965487,Carnegie Mellon University,edu,4d16337cc0431cd43043dfef839ce5f0717c3483,citation,http://pdfs.semanticscholar.org/4d16/337cc0431cd43043dfef839ce5f0717c3483.pdf,A Scalable and Privacy-Aware IoT Service for Live Video Analytics,2017
503,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,1d696a1beb42515ab16f3a9f6f72584a41492a03,citation,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTcvpr15.pdf,"Deeply learned face representations are sparse, selective, and robust",2015
504,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,1d696a1beb42515ab16f3a9f6f72584a41492a03,citation,http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTcvpr15.pdf,"Deeply learned face representations are sparse, selective, and robust",2015
505,LFW,lfw,53.8925662,-122.81471592,University of Northern British Columbia,edu,683ec608442617d11200cfbcd816e86ce9ec0899,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.342,Dual Linear Regression Based Classification for Face Cluster Recognition,2014
506,LFW,lfw,45.42580475,-75.68740118,University of Ottawa,edu,65293ecf6a4c5ab037a2afb4a9a1def95e194e5f,citation,http://pdfs.semanticscholar.org/6529/3ecf6a4c5ab037a2afb4a9a1def95e194e5f.pdf,"Face , Age and Gender Recognition using Local Descriptors",2014
507,LFW,lfw,28.54632595,77.27325504,Indian Institute of Technology Delhi,edu,25d514d26ecbc147becf4117512523412e1f060b,citation,https://doi.org/10.1109/ICB.2015.7139083,Annotated crowd video face database,2015
508,LFW,lfw,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,e40cb4369c6402ae53c81ce52b73df3ef89f578b,citation,http://doi.org/10.1016/j.image.2015.01.009,Facial image clustering in stereoscopic videos using double spectral analysis,2015
509,LFW,lfw,42.3889785,-72.5286987,University of Massachusetts,edu,2d3482dcff69c7417c7b933f22de606a0e8e42d4,citation,http://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf,Labeled Faces in the Wild : Updates and New Reporting Procedures,2014
510,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,4ea4116f57c5d5033569690871ba294dc3649ea5,citation,http://pdfs.semanticscholar.org/4ea4/116f57c5d5033569690871ba294dc3649ea5.pdf,Multi-View Face Alignment Using 3D Shape Model for View Estimation,2009
511,LFW,lfw,51.49887085,-0.17560797,Imperial College London,edu,7cffcb4f24343a924a8317d560202ba9ed26cd0b,citation,https://arxiv.org/pdf/1708.06997.pdf,The unconstrained ear recognition challenge,2017
512,LFW,lfw,34.8452999,48.5596212,Islamic Azad University,edu,7cffcb4f24343a924a8317d560202ba9ed26cd0b,citation,https://arxiv.org/pdf/1708.06997.pdf,The unconstrained ear recognition challenge,2017
513,LFW,lfw,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,7cffcb4f24343a924a8317d560202ba9ed26cd0b,citation,https://arxiv.org/pdf/1708.06997.pdf,The unconstrained ear recognition challenge,2017
514,LFW,lfw,46.0501558,14.46907327,University of Ljubljana,edu,7cffcb4f24343a924a8317d560202ba9ed26cd0b,citation,https://arxiv.org/pdf/1708.06997.pdf,The unconstrained ear recognition challenge,2017
515,LFW,lfw,17.4454957,78.34854698,International Institute of Information Technology,edu,185263189a30986e31566394680d6d16b0089772,citation,https://pdfs.semanticscholar.org/1852/63189a30986e31566394680d6d16b0089772.pdf,Efficient Annotation of Objects for Video Analysis,2018
516,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,5da827fe558fb2e1124dcc84ef08311241761726,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139096,Attribute preserved face de-identification,2015
517,LFW,lfw,24.4399419,118.09301781,Xiamen University,edu,1de23d7fe718d9fab0159f58f422099e44ad3f0a,citation,http://doi.org/10.1007/s11063-016-9558-2,Locality Preserving Collaborative Representation for Face Recognition,2016
518,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e,citation,https://pdfs.semanticscholar.org/4f7b/92bd678772552b3c3edfc9a7c5c4a8c60a8e.pdf,Deep Density Clustering of Unconstrained Faces,0
519,LFW,lfw,35.97320905,-78.89755054,North Carolina Central University,edu,5bb53fb36a47b355e9a6962257dd465cd7ad6827,citation,http://pdfs.semanticscholar.org/5bb5/3fb36a47b355e9a6962257dd465cd7ad6827.pdf,Mask-off: Synthesizing Face Images in the Presence of Head-mounted Displays,2016
520,LFW,lfw,38.0333742,-84.5017758,University of Kentucky,edu,5bb53fb36a47b355e9a6962257dd465cd7ad6827,citation,http://pdfs.semanticscholar.org/5bb5/3fb36a47b355e9a6962257dd465cd7ad6827.pdf,Mask-off: Synthesizing Face Images in the Presence of Head-mounted Displays,2016
521,LFW,lfw,40.4319722,-86.92389368,Purdue University,edu,b18858ad6ec88d8b443dffd3e944e653178bc28b,citation,http://pdfs.semanticscholar.org/b188/58ad6ec88d8b443dffd3e944e653178bc28b.pdf,Trojaning Attack on Neural Networks,2017
522,LFW,lfw,1.2962018,103.77689944,National University of Singapore,edu,ee7093e91466b81d13f4d6933bcee48e4ee63a16,citation,http://pdfs.semanticscholar.org/ee70/93e91466b81d13f4d6933bcee48e4ee63a16.pdf,Discovering Person Identity via Large-Scale Observations,2014
523,LFW,lfw,47.6423318,-122.1369302,Microsoft,company,687e17db5043661f8921fb86f215e9ca2264d4d2,citation,http://www.ece.northwestern.edu/~ganghua/publication/ICCV09a.pdf,A robust elastic and partial matching metric for face recognition,2009
524,LFW,lfw,45.1929245,5.7661983,"GIPSA-Lab, Grenoble, France",edu,fffe5ab3351deab81f7562d06764551422dbd9c4,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163114,Fully automated facial picture evaluation using high level attributes,2015
525,LFW,lfw,31.846918,117.29053367,Hefei University of Technology,edu,1ba9d12f24ac04f0309e8ff9b0162c6e18d97dc3,citation,http://doi.acm.org/10.1145/2964284.2984061,Robust Face Recognition with Deep Multi-View Representation Learning,2016
526,LFW,lfw,1.2962018,103.77689944,National University of Singapore,edu,1ba9d12f24ac04f0309e8ff9b0162c6e18d97dc3,citation,http://doi.acm.org/10.1145/2964284.2984061,Robust Face Recognition with Deep Multi-View Representation Learning,2016
527,LFW,lfw,32.77824165,34.99565673,Open University of Israel,edu,870433ba89d8cab1656e57ac78f1c26f4998edfb,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.163,Regressing Robust and Discriminative 3D Morphable Models with a Very Deep Neural Network,2017
528,LFW,lfw,30.284151,-97.73195598,University of Texas at Austin,edu,e3a6e5a573619a97bd6662b652ea7d088ec0b352,citation,https://arxiv.org/pdf/1804.00112.pdf,Compare and Contrast: Learning Prominent Visual Differences,2018
529,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,60737db62fb5fab742371709485e4b2ddf64b7b2,citation,http://doi.acm.org/10.1145/3132847.3132891,Crowdsourced Selection on Multi-Attribute Data,2017
530,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,288964068cd87d97a98b8bc927d6e0d2349458a2,citation,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,Mean-Variance Loss for Deep Age Estimation from a Face,0
531,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,288964068cd87d97a98b8bc927d6e0d2349458a2,citation,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,Mean-Variance Loss for Deep Age Estimation from a Face,0
532,LFW,lfw,-27.47715625,153.02841004,Queensland University of Technology,edu,59d45281707b85a33d6f50c6ac6b148eedd71a25,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Cheng_Rank_Minimization_across_2013_ICCV_paper.pdf,Rank Minimization across Appearance and Shape for AAM Ensemble Fitting,2013
533,LFW,lfw,40.34829285,-74.66308325,Princeton University,edu,818ecc8c8d4dc398b01a852df90cb8d972530fa5,citation,https://arxiv.org/pdf/1806.06098.pdf,Unsupervised Training for 3D Morphable Model Regression,2018
534,LFW,lfw,42.3619407,-71.0904378,MIT CSAIL,edu,818ecc8c8d4dc398b01a852df90cb8d972530fa5,citation,https://arxiv.org/pdf/1806.06098.pdf,Unsupervised Training for 3D Morphable Model Regression,2018
535,LFW,lfw,31.83907195,117.26420748,University of Science and Technology of China,edu,d99b5ee3e2d7e3a016fbc5fd417304e15efbd1f8,citation,http://doi.org/10.1007/s11063-017-9578-6,A Novel Two-stage Learning Pipeline for Deep Neural Networks,2017
536,LFW,lfw,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,4b3f425274b0c2297d136f8833a31866db2f2aec,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.85,Toward Open-Set Face Recognition,2017
537,LFW,lfw,46.0501558,14.46907327,University of Ljubljana,edu,12003a7d65c4f98fb57587fd0e764b44d0d10125,citation,http://doi.ieeecomputersociety.org/10.1109/FG.2015.7284835,Face recognition in the wild with the Probabilistic Gabor-Fisher Classifier,2015
538,LFW,lfw,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,7a09e8f65bd85d4c79f0ae90d4e2685869a9894f,citation,https://doi.org/10.1109/TMM.2016.2551698,Face and Hair Region Labeling Using Semi-Supervised Spectral Clustering-Based Multiple Segmentations,2016
539,LFW,lfw,36.399184,127.394656,Korea Institute of Oriental Medicine,edu,7a09e8f65bd85d4c79f0ae90d4e2685869a9894f,citation,https://doi.org/10.1109/TMM.2016.2551698,Face and Hair Region Labeling Using Semi-Supervised Spectral Clustering-Based Multiple Segmentations,2016
540,LFW,lfw,41.21002475,-73.80407056,IBM Thomas J. Watson Research Center,company,2bcd9b2b78eb353ea57cf50387083900eae5384a,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995329,Image ranking and retrieval based on multi-attribute queries,2011
541,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,2bcd9b2b78eb353ea57cf50387083900eae5384a,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995329,Image ranking and retrieval based on multi-attribute queries,2011
542,LFW,lfw,36.383765,127.36694,"Electronics and Telecommunications Research Institute, Daejeon, Korea",edu,77c5437107f8138d48cb7e10b2b286fa51473678,citation,https://doi.org/10.1109/URAI.2016.7734005,A pseudo ensemble convolutional neural networks,2016
543,LFW,lfw,36.3851395,127.3683413,"University of Science and Technology, Korea",edu,77c5437107f8138d48cb7e10b2b286fa51473678,citation,https://doi.org/10.1109/URAI.2016.7734005,A pseudo ensemble convolutional neural networks,2016
544,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,872dfdeccf99bbbed7c8f1ea08afb2d713ebe085,citation,https://arxiv.org/pdf/1703.09507.pdf,L2-constrained Softmax Loss for Discriminative Face Verification,2017
545,LFW,lfw,23.09461185,113.28788994,Sun Yat-Sen University,edu,57ca530e9acb63487e8591cb6efb89473aa1e5b4,citation,https://doi.org/10.1109/TIP.2014.2356292,Multilayer Surface Albedo for Face Recognition With Reference Images in Bad Lighting Conditions,2014
546,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,a8748a79e8d37e395354ba7a8b3038468cb37e1f,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.47,Seeing the Forest from the Trees: A Holistic Approach to Near-Infrared Heterogeneous Face Recognition,2016
547,LFW,lfw,39.65404635,-79.96475355,West Virginia University,edu,a8748a79e8d37e395354ba7a8b3038468cb37e1f,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.47,Seeing the Forest from the Trees: A Holistic Approach to Near-Infrared Heterogeneous Face Recognition,2016
548,LFW,lfw,47.6543238,-122.30800894,University of Washington,edu,be28ed1be084385f5d389db25fd7f56cd2d7f7bf,citation,https://arxiv.org/pdf/1706.03864.pdf,Exploring computation-communication tradeoffs in camera systems,2017
549,LFW,lfw,42.3583961,-71.09567788,MIT,edu,0e652a99761d2664f28f8931fee5b1d6b78c2a82,citation,http://pdfs.semanticscholar.org/0e65/2a99761d2664f28f8931fee5b1d6b78c2a82.pdf,Making a Science of Model Search,2012
550,LFW,lfw,53.8338371,10.7035939,Institute of Systems and Robotics,edu,6604fd47f92ce66dd0c669dd66b347b80e17ebc9,citation,https://pdfs.semanticscholar.org/6604/fd47f92ce66dd0c669dd66b347b80e17ebc9.pdf,Simultaneous Cascaded Regression,2018
551,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,46e72046a9bb2d4982d60bcf5c63dbc622717f0f,citation,https://arxiv.org/pdf/1605.02424.pdf,Learning Discriminative Features with Class Encoder,2016
552,LFW,lfw,37.52914535,45.04886077,Urmia University,edu,2a92bda6dbd5cce5894f7d370d798c07fa8783f4,citation,https://doi.org/10.1109/TIFS.2014.2359587,Class-Specific Kernel Fusion of Multiple Descriptors for Face Verification Using Multiscale Binarised Statistical Image Features,2014
553,LFW,lfw,51.24303255,-0.59001382,University of Surrey,edu,2a92bda6dbd5cce5894f7d370d798c07fa8783f4,citation,https://doi.org/10.1109/TIFS.2014.2359587,Class-Specific Kernel Fusion of Multiple Descriptors for Face Verification Using Multiscale Binarised Statistical Image Features,2014
554,LFW,lfw,22.3386304,114.2620337,Hong Kong University of Science and Technology,edu,52bf00df3b970e017e4e2f8079202460f1c0e1bd,citation,http://pdfs.semanticscholar.org/52bf/00df3b970e017e4e2f8079202460f1c0e1bd.pdf,Learning High-level Prior with Convolutional Neural Networks for Semantic Segmentation,2015
555,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,52bf00df3b970e017e4e2f8079202460f1c0e1bd,citation,http://pdfs.semanticscholar.org/52bf/00df3b970e017e4e2f8079202460f1c0e1bd.pdf,Learning High-level Prior with Convolutional Neural Networks for Semantic Segmentation,2015
556,LFW,lfw,31.83907195,117.26420748,University of Science and Technology of China,edu,52bf00df3b970e017e4e2f8079202460f1c0e1bd,citation,http://pdfs.semanticscholar.org/52bf/00df3b970e017e4e2f8079202460f1c0e1bd.pdf,Learning High-level Prior with Convolutional Neural Networks for Semantic Segmentation,2015
557,LFW,lfw,47.5612651,7.5752961,University of Basel,edu,0081e2188c8f34fcea3e23c49fb3e17883b33551,citation,http://pdfs.semanticscholar.org/0081/e2188c8f34fcea3e23c49fb3e17883b33551.pdf,Training Deep Face Recognition Systems with Synthetic Data,2018
558,LFW,lfw,30.642769,104.06751175,"Sichuan University, Chengdu",edu,2201f187a7483982c2e8e2585ad9907c5e66671d,citation,https://pdfs.semanticscholar.org/1cad/9aa5095733b56e998ad0cd396e89c2bc9928.pdf,Joint Face Alignment and 3D Face Reconstruction,2016
559,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,2201f187a7483982c2e8e2585ad9907c5e66671d,citation,https://pdfs.semanticscholar.org/1cad/9aa5095733b56e998ad0cd396e89c2bc9928.pdf,Joint Face Alignment and 3D Face Reconstruction,2016
560,LFW,lfw,23.0502042,113.39880323,South China University of Technology,edu,4bd3de97b256b96556d19a5db71dda519934fd53,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.529,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,2016
561,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4bd3de97b256b96556d19a5db71dda519934fd53,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.529,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,2016
562,LFW,lfw,37.4102193,-122.05965487,Carnegie Mellon University,edu,831d661d657d97a07894da8639a048c430c5536d,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.19,Weakly Supervised Facial Analysis with Dense Hyper-Column Features,2016
563,LFW,lfw,40.51865195,-74.44099801,State University of New Jersey,edu,0d746111135c2e7f91443869003d05cde3044beb,citation,https://doi.org/10.1109/ICIP.2016.7532908,Partial face detection for continuous authentication,2016
564,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,0d746111135c2e7f91443869003d05cde3044beb,citation,https://doi.org/10.1109/ICIP.2016.7532908,Partial face detection for continuous authentication,2016
565,LFW,lfw,47.6423318,-122.1369302,Microsoft,company,3bd10f7603c4f5a4737c5613722124787d0dd818,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7415949,An Efficient Joint Formulation for Bayesian Face Verification,2017
566,LFW,lfw,32.1119889,34.80459702,Tel Aviv University,edu,63a6c256ec2cf2e0e0c9a43a085f5bc94af84265,citation,https://doi.org/10.1109/ICPR.2016.7899662,Complexity of multiverse networks and their multilayer generalization,2016
567,LFW,lfw,40.5709358,-105.08655256,Colorado State University,edu,38a2661b6b995a3c4d69e7d5160b7596f89ce0e6,citation,http://www.cs.colostate.edu/~draper/papers/zhang_ijcb14.pdf,Randomized Intraclass-Distance Minimizing Binary Codes for face recognition,2014
568,LFW,lfw,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,38a2661b6b995a3c4d69e7d5160b7596f89ce0e6,citation,http://www.cs.colostate.edu/~draper/papers/zhang_ijcb14.pdf,Randomized Intraclass-Distance Minimizing Binary Codes for face recognition,2014
569,LFW,lfw,29.5084174,106.57858552,Chongqing University,edu,aa1129780cc496918085cd0603a774345c353c54,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7779010,Evolutionary Cost-Sensitive Discriminative Learning With Application to Vision and Olfaction,2017
570,LFW,lfw,22.304572,114.17976285,Hong Kong Polytechnic University,edu,aa1129780cc496918085cd0603a774345c353c54,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7779010,Evolutionary Cost-Sensitive Discriminative Learning With Application to Vision and Olfaction,2017
571,LFW,lfw,51.49887085,-0.17560797,Imperial College London,edu,0de91641f37b0a81a892e4c914b46d05d33fd36e,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/raps.pdf,RAPS: Robust and Efficient Automatic Construction of Person-Specific Deformable Models,2014
572,LFW,lfw,52.2380139,6.8566761,University of Twente,edu,0de91641f37b0a81a892e4c914b46d05d33fd36e,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/raps.pdf,RAPS: Robust and Efficient Automatic Construction of Person-Specific Deformable Models,2014
573,LFW,lfw,43.07982815,-89.43066425,University of Wisconsin Madison,edu,2e091b311ac48c18aaedbb5117e94213f1dbb529,citation,http://pdfs.semanticscholar.org/b1a1/a049f1d78f6e3d072236237c467292ccd537.pdf,Collaborative Facial Landmark Localization for Transferring Annotations Across Datasets,2014
574,LFW,lfw,42.37289,-72.518814,Amherst College,edu,00075519a794ea546b2ca3ca105e2f65e2f5f471,citation,http://pdfs.semanticscholar.org/0007/5519a794ea546b2ca3ca105e2f65e2f5f471.pdf,"Generating a Large, Freely-Available Dataset for Face-Related Algorithms",2010
575,LFW,lfw,41.70456775,-86.23822026,University of Notre Dame,edu,d6791b98353aa113d79f6fb96335aa6c7ea3b759,citation,https://doi.org/10.1109/TNNLS.2017.2648122,Collaborative Random Faces-Guided Encoders for Pose-Invariant Face Representation Learning,2018
576,LFW,lfw,41.62772475,-71.00724501,University of Massachusetts Dartmouth,edu,d6791b98353aa113d79f6fb96335aa6c7ea3b759,citation,https://doi.org/10.1109/TNNLS.2017.2648122,Collaborative Random Faces-Guided Encoders for Pose-Invariant Face Representation Learning,2018
577,LFW,lfw,42.3383668,-71.08793524,Northeastern University,edu,d6791b98353aa113d79f6fb96335aa6c7ea3b759,citation,https://doi.org/10.1109/TNNLS.2017.2648122,Collaborative Random Faces-Guided Encoders for Pose-Invariant Face Representation Learning,2018
578,LFW,lfw,47.5612651,7.5752961,University of Basel,edu,7caa3a74313f9a7a2dd5b4c2cd7f825d895d3794,citation,http://doi.org/10.1007/s11263-016-0967-5,Markov Chain Monte Carlo for Automated Face Image Analysis,2016
579,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,1860b8f63ce501bd0dfa9e6f2debc080e88d9baa,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7894195,Local Large-Margin Multi-Metric Learning for Face and Kinship Verification,2018
580,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,1860b8f63ce501bd0dfa9e6f2debc080e88d9baa,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7894195,Local Large-Margin Multi-Metric Learning for Face and Kinship Verification,2018
581,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,7a131fafa7058fb75fdca32d0529bc7cb50429bd,citation,https://arxiv.org/pdf/1704.04086.pdf,Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis,2017
582,LFW,lfw,38.0333742,-84.5017758,University of Kentucky,edu,2cd7821fcf5fae53a185624f7eeda007434ae037,citation,http://cs.uky.edu/~jacobs/papers/islam2014faces.pdf,Exploring the geo-dependence of human face appearance,2014
583,LFW,lfw,40.72925325,-73.99625394,New York University,edu,270acff7916589a6cc9ca915b0012ffcb75d4899,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8425659,On the Applications of Robust PCA in Image and Video Processing,2018
584,LFW,lfw,52.3793131,-1.5604252,University of Warwick,edu,270acff7916589a6cc9ca915b0012ffcb75d4899,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8425659,On the Applications of Robust PCA in Image and Video Processing,2018
585,LFW,lfw,39.9922379,116.30393816,Peking University,edu,270acff7916589a6cc9ca915b0012ffcb75d4899,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8425659,On the Applications of Robust PCA in Image and Video Processing,2018
586,LFW,lfw,37.4102193,-122.05965487,Carnegie Mellon University,edu,270acff7916589a6cc9ca915b0012ffcb75d4899,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8425659,On the Applications of Robust PCA in Image and Video Processing,2018
587,LFW,lfw,22.304572,114.17976285,Hong Kong Polytechnic University,edu,588bed36b3cc9e2f26c39b5d99d6687f36ae1177,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771389,Sparsely Encoded Local Descriptor for face recognition,2011
588,LFW,lfw,39.9041999,116.4073963,Chinese Academy of Science,edu,588bed36b3cc9e2f26c39b5d99d6687f36ae1177,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771389,Sparsely Encoded Local Descriptor for face recognition,2011
589,LFW,lfw,42.4505507,-76.4783513,Cornell University,edu,8bdf6f03bde08c424c214188b35be8b2dec7cdea,citation,https://arxiv.org/pdf/1805.04049.pdf,Inference Attacks Against Collaborative Learning,2018
590,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,09b43b59879d59493df2a93c216746f2cf50f4ac,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_036_ext.pdf,Deep Transfer Metric Learning,2015
591,LFW,lfw,-27.47715625,153.02841004,Queensland University of Technology,edu,6342a4c54835c1e14159495373ab18b4233d2d9b,citation,http://pdfs.semanticscholar.org/6342/a4c54835c1e14159495373ab18b4233d2d9b.pdf,Towards Pose-robust Face Recognition on Video,2014
592,LFW,lfw,34.13710185,-118.12527487,California Institute of Technology,edu,34108098e1a378bc15a5824812bdf2229b938678,citation,http://pdfs.semanticscholar.org/3410/8098e1a378bc15a5824812bdf2229b938678.pdf,Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling,2014
593,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,1fd6004345245daf101c98935387e6ef651cbb55,citation,http://pdfs.semanticscholar.org/1fd6/004345245daf101c98935387e6ef651cbb55.pdf,Learning Symmetry Features for Face Detection Based on Sparse Group Lasso,2013
594,LFW,lfw,65.0592157,25.46632601,University of Oulu,edu,5dc52c64991c655a12936867594326cf6352eb8e,citation,https://pdfs.semanticscholar.org/5dc5/2c64991c655a12936867594326cf6352eb8e.pdf,Constructing Local Binary Pattern Statistics by Soft Voting,2013
595,LFW,lfw,42.2942142,-83.71003894,University of Michigan,edu,2c424f21607ff6c92e640bfe3da9ff105c08fac4,citation,https://pdfs.semanticscholar.org/3f25/e17eb717e5894e0404ea634451332f85d287.pdf,Learning Structured Output Representation using Deep Conditional Generative Models,2015
596,LFW,lfw,34.13710185,-118.12527487,California Institute of Technology,edu,241d2c517dbc0e22d7b8698e06ace67de5f26fdf,citation,http://pdfs.semanticscholar.org/bfc3/546fa119443fdcbac3a5723647c2ba0007ac.pdf,"Online, Real-Time Tracking Using a Category-to-Individual Detector",2014
597,LFW,lfw,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,13901473a12061f080b9d54219f16db7d406e769,citation,https://doi.org/10.1109/TIP.2012.2222895,High-Order Local Spatial Context Modeling by Spatialized Random Forest,2013
598,LFW,lfw,29.58333105,-98.61944505,University of Texas at San Antonio,edu,13901473a12061f080b9d54219f16db7d406e769,citation,https://doi.org/10.1109/TIP.2012.2222895,High-Order Local Spatial Context Modeling by Spatialized Random Forest,2013
599,LFW,lfw,1.2962018,103.77689944,National University of Singapore,edu,13901473a12061f080b9d54219f16db7d406e769,citation,https://doi.org/10.1109/TIP.2012.2222895,High-Order Local Spatial Context Modeling by Spatialized Random Forest,2013
600,LFW,lfw,31.846918,117.29053367,Hefei University of Technology,edu,13901473a12061f080b9d54219f16db7d406e769,citation,https://doi.org/10.1109/TIP.2012.2222895,High-Order Local Spatial Context Modeling by Spatialized Random Forest,2013
601,LFW,lfw,42.3583961,-71.09567788,MIT,edu,3f5e8f884e71310d7d5571bd98e5a049b8175075,citation,https://pdfs.semanticscholar.org/3f5e/8f884e71310d7d5571bd98e5a049b8175075.pdf,Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures,2013
602,LFW,lfw,37.4102193,-122.05965487,Carnegie Mellon University,edu,adaed4e92c93eb005198e41f87cf079e46050b5a,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Pal_Discriminative_Invariant_Kernel_CVPR_2016_paper.pdf,Discriminative Invariant Kernel Features: A Bells-and-Whistles-Free Approach to Unsupervised Face Recognition and Pose Estimation,2016
603,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,a2b4a6c6b32900a066d0257ae6d4526db872afe2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272466,Learning Face Image Quality From Human Assessments,2018
604,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,99facca6fc50cc30f13b7b6dd49ace24bc94f702,citation,https://arxiv.org/pdf/1609.03892.pdf,VIPLFaceNet: an open source deep face recognition SDK,2016
605,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,99facca6fc50cc30f13b7b6dd49ace24bc94f702,citation,https://arxiv.org/pdf/1609.03892.pdf,VIPLFaceNet: an open source deep face recognition SDK,2016
606,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,d0dd1364411a130448517ba532728d5c2fe78ed9,citation,https://doi.org/10.1109/ISCAS.2016.7527183,On-line machine learning accelerator on digital RRAM-crossbar,2016
607,LFW,lfw,40.742252,-74.0270949,Stevens Institute of Technology,edu,8c66378df977606d332fc3b0047989e890a6ac76,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_078_ext.pdf,Hierarchical-PEP model for real-world face recognition,2015
608,LFW,lfw,52.4107358,-4.05295501,Aberystwyth University,edu,9264b390aa00521f9bd01095ba0ba4b42bf84d7e,citation,http://pdfs.semanticscholar.org/9264/b390aa00521f9bd01095ba0ba4b42bf84d7e.pdf,Displacement Template with Divide-&-Conquer Algorithm for Significantly Improving Descriptor Based Face Recognition Approaches,2012
609,LFW,lfw,53.8925662,-122.81471592,University of Northern British Columbia,edu,9264b390aa00521f9bd01095ba0ba4b42bf84d7e,citation,http://pdfs.semanticscholar.org/9264/b390aa00521f9bd01095ba0ba4b42bf84d7e.pdf,Displacement Template with Divide-&-Conquer Algorithm for Significantly Improving Descriptor Based Face Recognition Approaches,2012
610,LFW,lfw,36.20304395,117.05842113,Tianjin University,edu,353b6c1f431feac6edde12b2dde7e6e702455abd,citation,http://pdfs.semanticscholar.org/8835/c80f8ad8ebd05771a9bce5a8637efbc4c8e3.pdf,Multi-scale Patch Based Collaborative Representation for Face Recognition with Margin Distribution Optimization,2012
611,LFW,lfw,22.304572,114.17976285,Hong Kong Polytechnic University,edu,353b6c1f431feac6edde12b2dde7e6e702455abd,citation,http://pdfs.semanticscholar.org/8835/c80f8ad8ebd05771a9bce5a8637efbc4c8e3.pdf,Multi-scale Patch Based Collaborative Representation for Face Recognition with Margin Distribution Optimization,2012
612,LFW,lfw,39.2899685,-76.62196103,University of Maryland,edu,4377b03bbee1f2cf99950019a8d4111f8de9c34a,citation,http://www.umiacs.umd.edu/~morariu/publications/LiSelectiveEncoderICCV15.pdf,Selective Encoding for Recognizing Unreliably Localized Faces,2015
613,LFW,lfw,40.5709358,-105.08655256,Colorado State University,edu,120bcc9879d953de7b2ecfbcd301f72f3a96fb87,citation,http://www.cs.colostate.edu/~vision/pasc/docs/fg2015videoEvalPreprint.pdf,Report on the FG 2015 Video Person Recognition Evaluation,2015
614,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,120bcc9879d953de7b2ecfbcd301f72f3a96fb87,citation,http://www.cs.colostate.edu/~vision/pasc/docs/fg2015videoEvalPreprint.pdf,Report on the FG 2015 Video Person Recognition Evaluation,2015
615,LFW,lfw,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,120bcc9879d953de7b2ecfbcd301f72f3a96fb87,citation,http://www.cs.colostate.edu/~vision/pasc/docs/fg2015videoEvalPreprint.pdf,Report on the FG 2015 Video Person Recognition Evaluation,2015
616,LFW,lfw,40.742252,-74.0270949,Stevens Institute of Technology,edu,120bcc9879d953de7b2ecfbcd301f72f3a96fb87,citation,http://www.cs.colostate.edu/~vision/pasc/docs/fg2015videoEvalPreprint.pdf,Report on the FG 2015 Video Person Recognition Evaluation,2015
617,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,120bcc9879d953de7b2ecfbcd301f72f3a96fb87,citation,http://www.cs.colostate.edu/~vision/pasc/docs/fg2015videoEvalPreprint.pdf,Report on the FG 2015 Video Person Recognition Evaluation,2015
618,LFW,lfw,46.0501558,14.46907327,University of Ljubljana,edu,120bcc9879d953de7b2ecfbcd301f72f3a96fb87,citation,http://www.cs.colostate.edu/~vision/pasc/docs/fg2015videoEvalPreprint.pdf,Report on the FG 2015 Video Person Recognition Evaluation,2015
619,LFW,lfw,41.70456775,-86.23822026,University of Notre Dame,edu,120bcc9879d953de7b2ecfbcd301f72f3a96fb87,citation,http://www.cs.colostate.edu/~vision/pasc/docs/fg2015videoEvalPreprint.pdf,Report on the FG 2015 Video Person Recognition Evaluation,2015
620,LFW,lfw,51.24303255,-0.59001382,University of Surrey,edu,120bcc9879d953de7b2ecfbcd301f72f3a96fb87,citation,http://www.cs.colostate.edu/~vision/pasc/docs/fg2015videoEvalPreprint.pdf,Report on the FG 2015 Video Person Recognition Evaluation,2015
621,LFW,lfw,-33.8809651,151.20107299,University of Technology Sydney,edu,120bcc9879d953de7b2ecfbcd301f72f3a96fb87,citation,http://www.cs.colostate.edu/~vision/pasc/docs/fg2015videoEvalPreprint.pdf,Report on the FG 2015 Video Person Recognition Evaluation,2015
622,LFW,lfw,42.3383668,-71.08793524,Northeastern University,edu,e00d4e4ba25fff3583b180db078ef962bf7d6824,citation,http://pdfs.semanticscholar.org/e00d/4e4ba25fff3583b180db078ef962bf7d6824.pdf,Face Verification with Multi-Task and Multi-Scale Features Fusion,2017
623,LFW,lfw,32.77824165,34.99565673,Open University of Israel,edu,5bde1718253ec28a753a892b0ba82d8e553b6bf3,citation,http://pdfs.semanticscholar.org/5bde/1718253ec28a753a892b0ba82d8e553b6bf3.pdf,Variational Relevance Vector Machine for Tabular Data,2010
624,LFW,lfw,55.70229715,37.53179777,Lomonosov Moscow State University,edu,5bde1718253ec28a753a892b0ba82d8e553b6bf3,citation,http://pdfs.semanticscholar.org/5bde/1718253ec28a753a892b0ba82d8e553b6bf3.pdf,Variational Relevance Vector Machine for Tabular Data,2010
625,LFW,lfw,32.1119889,34.80459702,Tel Aviv University,edu,5bde1718253ec28a753a892b0ba82d8e553b6bf3,citation,http://pdfs.semanticscholar.org/5bde/1718253ec28a753a892b0ba82d8e553b6bf3.pdf,Variational Relevance Vector Machine for Tabular Data,2010
626,LFW,lfw,34.68092465,50.05341352,Tafresh University,edu,4349f17ec319ac8b25c14c2ec8c35f374b958066,citation,https://doi.org/10.1109/THMS.2017.2681425,Dynamic Texture Comparison Using Derivative Sparse Representation: Application to Video-Based Face Recognition,2017
627,LFW,lfw,-33.8809651,151.20107299,University of Technology Sydney,edu,4349f17ec319ac8b25c14c2ec8c35f374b958066,citation,https://doi.org/10.1109/THMS.2017.2681425,Dynamic Texture Comparison Using Derivative Sparse Representation: Application to Video-Based Face Recognition,2017
628,LFW,lfw,-31.95040445,115.79790037,University of Western Australia,edu,4349f17ec319ac8b25c14c2ec8c35f374b958066,citation,https://doi.org/10.1109/THMS.2017.2681425,Dynamic Texture Comparison Using Derivative Sparse Representation: Application to Video-Based Face Recognition,2017
629,LFW,lfw,-27.5533975,153.05336234,Griffith University,edu,4349f17ec319ac8b25c14c2ec8c35f374b958066,citation,https://doi.org/10.1109/THMS.2017.2681425,Dynamic Texture Comparison Using Derivative Sparse Representation: Application to Video-Based Face Recognition,2017
630,LFW,lfw,28.54632595,77.27325504,Indian Institute of Technology Delhi,edu,b859d1fc1a7ad756815490527319d458fa9af3d2,citation,https://arxiv.org/pdf/1803.11405.pdf,Learning Structure and Strength of CNN Filters for Small Sample Size Training,2018
631,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,122f52fadd4854cf6c9287013520eced3c91e71a,citation,https://doi.org/10.1109/TIP.2016.2515987,Robust Point Set Matching for Partial Face Recognition,2016
632,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,122f52fadd4854cf6c9287013520eced3c91e71a,citation,https://doi.org/10.1109/TIP.2016.2515987,Robust Point Set Matching for Partial Face Recognition,2016
633,LFW,lfw,32.05765485,118.7550004,HoHai University,edu,771505abd38641454757de75fe751d41e87f89a4,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401561,Learning structured sparse representation for single sample face recognition,2018
634,LFW,lfw,32.0565957,118.77408833,Nanjing University,edu,771505abd38641454757de75fe751d41e87f89a4,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401561,Learning structured sparse representation for single sample face recognition,2018
635,LFW,lfw,31.9747463,120.90779264,Nantong University,edu,771505abd38641454757de75fe751d41e87f89a4,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401561,Learning structured sparse representation for single sample face recognition,2018
636,LFW,lfw,30.2931534,120.1620458,Zhejiang University of Technology,edu,ac48ecbc7c3c1a7eab08820845d47d6ce197707c,citation,https://doi.org/10.1109/TIP.2017.2681841,Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning,2017
637,LFW,lfw,42.4505507,-76.4783513,Cornell University,edu,09f58353e48780c707cf24a0074e4d353da18934,citation,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/BestrowdenBishtKlontzJain_CrowdsourcingHumanPeformance_IJCB2014.pdf,Unconstrained face recognition: Establishing baseline human performance via crowdsourcing,2014
638,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,09f58353e48780c707cf24a0074e4d353da18934,citation,http://www.cse.msu.edu/rgroups/biometrics/Publications/Face/BestrowdenBishtKlontzJain_CrowdsourcingHumanPeformance_IJCB2014.pdf,Unconstrained face recognition: Establishing baseline human performance via crowdsourcing,2014
639,LFW,lfw,25.0410728,121.6147562,Institute of Information Science,edu,0106a2f6251dc9ffc90709c6f0d9b54c1e82326b,citation,http://www.iis.sinica.edu.tw/papers/song/14922-A.pdf,Applying scattering operators for face recognition: A comparative study,2012
640,LFW,lfw,25.01682835,121.53846924,National Taiwan University,edu,0106a2f6251dc9ffc90709c6f0d9b54c1e82326b,citation,http://www.iis.sinica.edu.tw/papers/song/14922-A.pdf,Applying scattering operators for face recognition: A comparative study,2012
641,LFW,lfw,35.0274996,135.78154513,University of Caen,edu,0ad8149318912b5449085187eb3521786a37bc78,citation,http://arxiv.org/abs/1604.02975,CP-mtML: Coupled Projection Multi-Task Metric Learning for Large Scale Face Retrieval,2016
642,LFW,lfw,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,bc27434e376db89fe0e6ef2d2fabc100d2575ec6,citation,https://arxiv.org/pdf/1607.08438.pdf,Faceless Person Recognition; Privacy Implications in Social Media,2016
643,LFW,lfw,31.2284923,121.40211389,East China Normal University,edu,83295bce2340cb87901499cff492ae6ff3365475,citation,https://arxiv.org/pdf/1808.01558.pdf,Deep Multi-Center Learning for Face Alignment,2018
644,LFW,lfw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,83295bce2340cb87901499cff492ae6ff3365475,citation,https://arxiv.org/pdf/1808.01558.pdf,Deep Multi-Center Learning for Face Alignment,2018
645,LFW,lfw,45.7413921,126.62552755,Harbin Institute of Technology,edu,5c4f9260762a450892856b189df240f25b5ed333,citation,https://doi.org/10.1109/TIP.2017.2651396,Discriminative Elastic-Net Regularized Linear Regression,2017
646,LFW,lfw,22.53521465,113.9315911,Shenzhen University,edu,5c4f9260762a450892856b189df240f25b5ed333,citation,https://doi.org/10.1109/TIP.2017.2651396,Discriminative Elastic-Net Regularized Linear Regression,2017
647,LFW,lfw,52.6221571,1.2409136,University of East Anglia,edu,5c4f9260762a450892856b189df240f25b5ed333,citation,https://doi.org/10.1109/TIP.2017.2651396,Discriminative Elastic-Net Regularized Linear Regression,2017
648,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,57ebeff9273dea933e2a75c306849baf43081a8c,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Sun_Deep_Convolutional_Network_2013_CVPR_paper.pdf,Deep Convolutional Network Cascade for Facial Point Detection,2013
649,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,57ebeff9273dea933e2a75c306849baf43081a8c,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Sun_Deep_Convolutional_Network_2013_CVPR_paper.pdf,Deep Convolutional Network Cascade for Facial Point Detection,2013
650,LFW,lfw,32.77824165,34.99565673,Open University of Israel,edu,9ce97efc1d520dadaa0d114192ca789f23442727,citation,http://doi.acm.org/10.1145/2597627,Teaching Computer Vision: Bringing Research Benchmarks to the Classroom,2014
651,LFW,lfw,42.9336278,-78.88394479,SUNY Buffalo,edu,4793f11fbca4a7dba898b9fff68f70d868e2497c,citation,http://pdfs.semanticscholar.org/4793/f11fbca4a7dba898b9fff68f70d868e2497c.pdf,Kinship Verification through Transfer Learning,2011
652,LFW,lfw,-33.88890695,151.18943366,University of Sydney,edu,08d55271589f989d90a7edce3345f78f2468a7e0,citation,https://arxiv.org/pdf/1704.03373v1.pdf,Quality Aware Network for Set to Set Recognition,2017
653,LFW,lfw,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,3c18fb8ff0f5003fefa8e9dc9bebaf88908d255c,citation,https://doi.org/10.1109/ICIP.2014.7025145,Is block matching an alternative tool to LBP for face recognition?,2014
654,LFW,lfw,1.340216,103.965089,Singapore University of Technology and Design,edu,651cafb2620ab60a0e4f550c080231f20ae6d26e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6360717,4D unconstrained real-time face recognition using a commodity depth camera,2012
655,LFW,lfw,53.21967825,6.56251482,University of Groningen,edu,651cafb2620ab60a0e4f550c080231f20ae6d26e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6360717,4D unconstrained real-time face recognition using a commodity depth camera,2012
656,LFW,lfw,50.0764296,14.41802312,Czech Technical University,edu,56e25358ebfaf8a8b3c7c33ed007e24f026065d0,citation,https://doi.org/10.1007/s10994-015-5541-9,V-shaped interval insensitive loss for ordinal classification,2015
657,LFW,lfw,32.0565957,118.77408833,Nanjing University,edu,ce37e11f4046a4b766b0e3228870ae4f26dddd67,citation,http://pdfs.semanticscholar.org/ce37/e11f4046a4b766b0e3228870ae4f26dddd67.pdf,Learning One-Shot Exemplar SVM from the Web for Face Verification,2014
658,LFW,lfw,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,ab0d227b63b702ba80f70fd053175cd1b2fd28cc,citation,https://pdfs.semanticscholar.org/0eed/cda8981740ae2c34ad5809dbdfcd817f2518.pdf,Boosting Pseudo Census Transform Features for Face Alignment,2011
659,LFW,lfw,40.8419836,-73.94368971,Columbia University,edu,4c170a0dcc8de75587dae21ca508dab2f9343974,citation,http://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf,FaceTracer: A Search Engine for Large Collections of Images with Faces,2008
660,LFW,lfw,40.4319722,-86.92389368,Purdue University,edu,65f0b05052c3145a58c2653821e5429ca62555ce,citation,https://arxiv.org/pdf/1810.11580.pdf,Attacks Meet Interpretability: Attribute-steered Detection of Adversarial Samples,2018
661,LFW,lfw,37.3936717,-122.0807262,Facebook,company,edfce091688bc88389dd4877950bd58e00ff1253,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553700,A talking profile to distinguish identical twins,2013
662,LFW,lfw,1.2962018,103.77689944,National University of Singapore,edu,edfce091688bc88389dd4877950bd58e00ff1253,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553700,A talking profile to distinguish identical twins,2013
663,LFW,lfw,51.5247272,-0.03931035,Queen Mary University of London,edu,1e3068886b138304ec5a7296702879cc8788143d,citation,http://doi.org/10.1007/s11263-013-0630-3,Active Rare Class Discovery and Classification Using Dirichlet Processes,2013
664,LFW,lfw,32.77824165,34.99565673,Open University of Israel,edu,566a39d753c494f57b4464d6bde61bf3593f7ceb,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2013.43,A Critical Review of Action Recognition Benchmarks,2013
665,LFW,lfw,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,16fadde3e68bba301f9829b3f99157191106bd0f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4562953,Utility data annotation with Amazon Mechanical Turk,2008
666,LFW,lfw,42.4505507,-76.4783513,Cornell University,edu,bd379f8e08f88729a9214260e05967f4ca66cd65,citation,https://arxiv.org/pdf/1711.06148.pdf,Learning Compositional Visual Concepts with Mutual Consistency,2017
667,LFW,lfw,37.8687126,-122.25586815,"University of California, Berkeley",edu,2ff9ffedfc59422a8c7dac418a02d1415eec92f1,citation,http://pdfs.semanticscholar.org/6e3b/778ad384101f792284b42844518f620143aa.pdf,Face Verification Using Boosted Cross-Image Features,2013
668,LFW,lfw,28.59899755,-81.19712501,University of Central Florida,edu,2ff9ffedfc59422a8c7dac418a02d1415eec92f1,citation,http://pdfs.semanticscholar.org/6e3b/778ad384101f792284b42844518f620143aa.pdf,Face Verification Using Boosted Cross-Image Features,2013
669,LFW,lfw,42.718568,-84.47791571,Michigan State University,edu,e22adcd2a6a7544f017ec875ce8f89d5c59e09c8,citation,https://arxiv.org/pdf/1807.11936.pdf,Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers,2018
670,LFW,lfw,38.6480445,-90.3099667,Washington University,edu,22e678d3e915218a7c09af0d1602e73080658bb7,citation,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2009_WS/data/papers/04/13.pdf,Adventures in archiving and using three years of webcam images,2009
671,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,c3c463a9ee464bb610423b7203300a83a166b500,citation,https://doi.org/10.1109/ICIP.2014.7025069,Transform-invariant dictionary learning for face recognition,2014
672,LFW,lfw,33.776033,-84.39884086,Georgia Institute of Technology,edu,b75eecc879da38138bf3ace9195ae1613fb6e3cc,citation,https://doi.org/10.1007/s10278-015-9808-2,Improvement in Detection of Wrong-Patient Errors When Radiologists Include Patient Photographs in Their Interpretation of Portable Chest Radiographs,2015
673,LFW,lfw,-27.49741805,153.01316956,University of Queensland,edu,2af19b5ff2ca428fa42ef4b85ddbb576b5d9a5cc,citation,http://pdfs.semanticscholar.org/2af1/9b5ff2ca428fa42ef4b85ddbb576b5d9a5cc.pdf,Multi-Region Probabilistic Histograms for Robust and Scalable Identity Inference,2009
674,LFW,lfw,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,919bdc161485615d5ee571b1585c1eb0539822c8,citation,http://ieeexplore.ieee.org/document/6460332/,A ranking model for face alignment with Pseudo Census Transform,2012
675,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,a3a2f3803bf403262b56ce88d130af15e984fff0,citation,http://pdfs.semanticscholar.org/e538/e1f6557d2920b449249606f909b665fbb924.pdf,Building a Compact Relevant Sample Coverage for Relevance Feedback in Content-Based Image Retrieval,2008
676,LFW,lfw,24.96841805,121.19139696,National Central University,edu,a192845a7695bdb372cccf008e6590a14ed82761,citation,https://doi.org/10.1109/TIP.2014.2321495,A Novel Local Pattern Descriptor—Local Vector Pattern in High-Order Derivative Space for Face Recognition,2014
677,LFW,lfw,22.1240187,113.54510901,University of Macau,edu,8db9188e5137e167bffb3ee974732c1fe5f7a7dc,citation,https://doi.org/10.1109/TIP.2016.2612885,Tree-Structured Nuclear Norm Approximation With Applications to Robust Face Recognition,2016
678,LFW,lfw,32.0565957,118.77408833,Nanjing University,edu,8db9188e5137e167bffb3ee974732c1fe5f7a7dc,citation,https://doi.org/10.1109/TIP.2016.2612885,Tree-Structured Nuclear Norm Approximation With Applications to Robust Face Recognition,2016
679,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,21e158bcda4e10da88ee8da3799a6144b60d791f,citation,https://pdfs.semanticscholar.org/21e1/58bcda4e10da88ee8da3799a6144b60d791f.pdf,Population Matching Discrepancy and Applications in Deep Learning,2017
680,LFW,lfw,37.43131385,-122.16936535,Stanford University,edu,2b7ef95822a4d577021df16607bf7b4a4514eb4b,citation,http://pdfs.semanticscholar.org/b596/9178f843bfaecd0026d04c41e79bcb9edab5.pdf,Emergence of Object-Selective Features in Unsupervised Feature Learning,2012
681,LFW,lfw,41.3868913,2.16352385,University of Barcelona,edu,3fe4109ded039ac9d58eb9f5baa5327af30ad8b6,citation,http://www.cvc.uab.cat/~ahernandez/files/CVPR2010STGRABCUT.pdf,Spatio-Temporal GrabCut human segmentation for face and pose recovery,2010
682,LFW,lfw,1.3484104,103.68297965,Nanyang Technological University,edu,28be652db01273289499bc6e56379ca0237506c0,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_018_ext.pdf,FaLRR: A fast low rank representation solver,2015
683,LFW,lfw,50.8142701,8.771435,Philipps-Universität Marburg,edu,5981c309bd0ffd849c51b1d8a2ccc481a8ec2f5c,citation,https://doi.org/10.1109/ICT.2017.7998256,SmartFace: Efficient face detection on smartphones for wireless on-demand emergency networks,2017
684,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,1a40c2a2d17c52c8b9d20648647d0886e30a60fa,citation,https://doi.org/10.1109/ICPR.2016.7900283,Hybrid hypergraph construction for facial expression recognition,2016
685,LFW,lfw,24.8186587,67.0316585,Shaheed Zulfikar Ali Bhutto Institute of Science and Technology,edu,70580ed8bc482cad66e059e838e4a779081d1648,citation,http://pdfs.semanticscholar.org/7058/0ed8bc482cad66e059e838e4a779081d1648.pdf,Gender Classification using Multi-Level Wavelets on Real World Face Images,2013
686,LFW,lfw,37.4102193,-122.05965487,Carnegie Mellon University,edu,9fc04a13eef99851136eadff52e98eb9caac919d,citation,http://pdfs.semanticscholar.org/9fc0/4a13eef99851136eadff52e98eb9caac919d.pdf,Rethinking the Camera Pipeline for Computer Vision,2017
687,LFW,lfw,42.4505507,-76.4783513,Cornell University,edu,9fc04a13eef99851136eadff52e98eb9caac919d,citation,http://pdfs.semanticscholar.org/9fc0/4a13eef99851136eadff52e98eb9caac919d.pdf,Rethinking the Camera Pipeline for Computer Vision,2017
688,LFW,lfw,40.51865195,-74.44099801,State University of New Jersey,edu,0ca66283f4fb7dbc682f789fcf6d6732006befd5,citation,http://pdfs.semanticscholar.org/0ca6/6283f4fb7dbc682f789fcf6d6732006befd5.pdf,Active Dictionary Learning for Image Representation,2015
689,LFW,lfw,65.0592157,25.46632601,University of Oulu,edu,761304bbd259a9e419a2518193e1ff1face9fd2d,citation,https://doi.org/10.1007/978-3-642-33885-4_57,Robust and Computationally Efficient Face Detection Using Gaussian Derivative Features of Higher Orders,2012
690,LFW,lfw,13.0222347,77.56718325,Indian Institute of Science Bangalore,edu,f5af3c28b290dc797c499283e2d0662570f9ed02,citation,https://pdfs.semanticscholar.org/f5af/3c28b290dc797c499283e2d0662570f9ed02.pdf,GenLR-Net : Deep framework for very low resolution face and object recognition with generalization to unseen categories,2018
691,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,a0d6390dd28d802152f207940c7716fe5fae8760,citation,http://pdfs.semanticscholar.org/a0d6/390dd28d802152f207940c7716fe5fae8760.pdf,Bayesian Face Revisited: A Joint Formulation,2012
692,LFW,lfw,31.83907195,117.26420748,University of Science and Technology of China,edu,a0d6390dd28d802152f207940c7716fe5fae8760,citation,http://pdfs.semanticscholar.org/a0d6/390dd28d802152f207940c7716fe5fae8760.pdf,Bayesian Face Revisited: A Joint Formulation,2012
693,LFW,lfw,45.7833244,4.8781984,University of Lyon,edu,54ba18952fe36c9be9f2ab11faecd43d123b389b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163085,Triangular similarity metric learning for face verification,2015
694,LFW,lfw,-27.5953995,-48.6154218,University of Campinas,edu,a2bd81be79edfa8dcfde79173b0a895682d62329,citation,http://pdfs.semanticscholar.org/a2bd/81be79edfa8dcfde79173b0a895682d62329.pdf,Multi-Objective Vehicle Routing Problem Applied to Large Scale Post Office Deliveries,2017
695,LFW,lfw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4cfd770ccecae1c0b4248bc800d7fd35c817bbbd,citation,https://pdfs.semanticscholar.org/8774/e206564df3bf9050f8c2be6b434cc2469c5b.pdf,A Discriminative Feature Learning Approach for Deep Face Recognition,2016
696,LFW,lfw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,4cfd770ccecae1c0b4248bc800d7fd35c817bbbd,citation,https://pdfs.semanticscholar.org/8774/e206564df3bf9050f8c2be6b434cc2469c5b.pdf,A Discriminative Feature Learning Approach for Deep Face Recognition,2016
697,LFW,lfw,43.08250655,-77.67121663,Rochester Institute of Technology,edu,69b2a7533e38c2c8c9a0891a728abb423ad2c7e7,citation,https://doi.org/10.1016/j.imavis.2013.03.003,Manifold based sparse representation for facial understanding in natural images,2013
698,LFW,lfw,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,0df0d1adea39a5bef318b74faa37de7f3e00b452,citation,https://scalable.mpi-inf.mpg.de/files/2015/09/zhang_CVPR15.pdf,Appearance-based gaze estimation in the wild,2015
699,LFW,lfw,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,633101e794d7b80f55f466fd2941ea24595e10e6,citation,https://pdfs.semanticscholar.org/6331/01e794d7b80f55f466fd2941ea24595e10e6.pdf,Face Attribute Prediction with classification CNN,2016
700,LFW,lfw,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,089b5e8eb549723020b908e8eb19479ba39812f5,citation,http://www.face-recognition-challenge.com/RobustnessOfDCNN-preprint.pdf,A Cross Benchmark Assessment of a Deep Convolutional Neural Network for Face Recognition,2017
701,LFW,lfw,-27.49741805,153.01316956,University of Queensland,edu,f27fd2a1bc229c773238f1912db94991b8bf389a,citation,https://doi.org/10.1109/IVCNZ.2016.7804414,How do you develop a face detector for the unconstrained environment?,2016
702,LFW,lfw,40.47913175,-74.43168868,Rutgers University,edu,afdf9a3464c3b015f040982750f6b41c048706f5,citation,https://arxiv.org/pdf/1608.05477.pdf,A Recurrent Encoder-Decoder Network for Sequential Face Alignment,2016
703,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,a52a69bf304d49fba6eac6a73c5169834c77042d,citation,https://doi.org/10.1109/LSP.2017.2789251,Margin Loss: Making Faces More Separable,2018
704,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,bc910ca355277359130da841a589a36446616262,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Huang_Conditional_High-Order_Boltzmann_ICCV_2015_paper.pdf,Conditional High-Order Boltzmann Machine: A Supervised Learning Model for Relation Learning,2015
705,LFW,lfw,40.00229045,116.32098908,Tsinghua University,edu,93eb3963bc20e28af26c53ef3bce1e76b15e3209,citation,https://doi.org/10.1109/ICIP.2017.8296992,Occlusion robust face recognition based on mask learning,2017
706,LFW,lfw,51.49887085,-0.17560797,Imperial College London,edu,a06b6d30e2b31dc600f622ab15afe5e2929581a7,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/2209.pdf,Robust Joint and Individual Variance Explained,2017
707,LFW,lfw,51.59029705,-0.22963221,Middlesex University,edu,a06b6d30e2b31dc600f622ab15afe5e2929581a7,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/2209.pdf,Robust Joint and Individual Variance Explained,2017
708,LFW,lfw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,565f7c767e6b150ebda491e04e6b1de759fda2d4,citation,https://doi.org/10.1016/j.patcog.2016.11.023,"Fine-grained face verification: FGLFW database, baselines, and human-DCMN partnership",2017
709,LFW,lfw,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,16b9d258547f1eccdb32111c9f45e2e4bbee79af,citation,https://arxiv.org/pdf/1704.06369.pdf,NormFace: L2 Hypersphere Embedding for Face Verification,2017
710,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,a73405038fdc0d8bf986539ef755a80ebd341e97,citation,https://doi.org/10.1109/TIP.2017.2698918,Conditional High-Order Boltzmann Machines for Supervised Relation Learning,2017
711,LFW,lfw,-32.00686365,115.89691775,Curtin University,edu,e9a5a38e7da3f0aa5d21499149536199f2e0e1f7,citation,https://pdfs.semanticscholar.org/e9a5/a38e7da3f0aa5d21499149536199f2e0e1f7.pdf,A Bayesian Scene-Prior-Based Deep Network Model for Face Verification,2018
712,LFW,lfw,65.0592157,25.46632601,University of Oulu,edu,1fe121925668743762ce9f6e157081e087171f4c,citation,https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Ylioinas_Unsupervised_Learning_of_2015_CVPR_paper.pdf,Unsupervised learning of overcomplete face descriptors,2015
713,LFW,lfw,-35.23656905,149.08446994,University of Canberra,edu,6f2b36cadf3dd1648b709e9b4f4c19ffa1939ed1,citation,https://arxiv.org/pdf/1901.07590.pdf,Striking the Right Balance with Uncertainty,2019
714,LFW,lfw,-35.2776999,149.118527,Australian National University,edu,84c7d3b1d407e0d435a08574a3f82ecacf7841b6,citation,https://arxiv.org/pdf/1901.07711.pdf,Max-margin Class Imbalanced Learning with Gaussian Affinity,2019
715,LFW,lfw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,0be418e63d111e3b94813875f75909e4dc27d13a,citation,https://doi.org/10.1109/ICB.2016.7550057,Fine-grained LFW database,2016
716,LFW,lfw,-27.49741805,153.01316956,University of Queensland,edu,3c563542db664321aa77a9567c1601f425500f94,citation,https://arxiv.org/pdf/1712.02514.pdf,TV-GAN: Generative Adversarial Network Based Thermal to Visible Face Recognition,2018
717,LFW,lfw,36.20304395,117.05842113,Tianjin University,edu,1bf570bd40b3adced1e47dbcceffe50573f81845,citation,https://arxiv.org/pdf/1803.02504.pdf,Exponential Discriminative Metric Embedding in Deep Learning,2018
718,LFW,lfw,25.01682835,121.53846924,National Taiwan University,edu,81884e1de00e59f24bc20254584d73a1a1806933,citation,https://arxiv.org/pdf/1811.02328.pdf,Super-Identity Convolutional Neural Network for Face Hallucination,2018
719,LFW,lfw,39.993008,116.329882,SenseTime,company,81884e1de00e59f24bc20254584d73a1a1806933,citation,https://arxiv.org/pdf/1811.02328.pdf,Super-Identity Convolutional Neural Network for Face Hallucination,2018
720,LFW,lfw,30.284151,-97.73195598,University of Texas at Austin,edu,81884e1de00e59f24bc20254584d73a1a1806933,citation,https://arxiv.org/pdf/1811.02328.pdf,Super-Identity Convolutional Neural Network for Face Hallucination,2018
721,LFW,lfw,32.77824165,34.99565673,Open University of Israel,edu,1e6ed6ca8209340573a5e907a6e2e546a3bf2d28,citation,http://arxiv.org/pdf/1607.01450v1.pdf,Pooling Faces: Template Based Face Recognition with Pooled Face Images,2016
722,LFW,lfw,37.5600406,126.9369248,Yonsei University,edu,06c956d4aac65752672ce4bd5a379f10a7fd6148,citation,https://doi.org/10.1109/LSP.2017.2749763,Stacking PCANet +: An Overly Simplified ConvNets Baseline for Face Recognition,2017
723,LFW,lfw,52.2380139,6.8566761,University of Twente,edu,740e095a65524d569244947f6eea3aefa3cca526,citation,http://pdfs.semanticscholar.org/740e/095a65524d569244947f6eea3aefa3cca526.pdf,Towards Human-like Performance Face Detection: A Convolutional Neural Network Approach,2016
724,LFW,lfw,32.1119889,34.80459702,Tel Aviv University,edu,2f16baddac6af536451b3216b02d3480fc361ef4,citation,http://cs.nyu.edu/~fergus/teaching/vision/10_facerec.pdf,Web-scale training for face identification,2015
725,LFW,lfw,42.4505507,-76.4783513,Cornell University,edu,32d8e555441c47fc27249940991f80502cb70bd5,citation,https://arxiv.org/pdf/1709.07886v1.pdf,Machine Learning Models that Remember Too Much,2017
726,LFW,lfw,32.1119889,34.80459702,Tel Aviv University,edu,7859667ed6c05a467dfc8a322ecd0f5e2337db56,citation,http://pdfs.semanticscholar.org/7859/667ed6c05a467dfc8a322ecd0f5e2337db56.pdf,Web-Scale Transfer Learning for Unconstrained 1:N Face Identification,2015
727,LFW,lfw,29.58333105,-98.61944505,University of Texas at San Antonio,edu,7788fa76f1488b1597ee2bebc462f628e659f61e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8063888,A Privacy-Aware Architecture at the Edge for Autonomous Real-Time Identity Reidentification in Crowds,2018
728,LFW,lfw,40.8419836,-73.94368971,Columbia University,edu,f467eb5e7f9d49ab318401f961109882c00f2720,citation,http://www.nsl.cs.columbia.edu/papers/2015/faceoff.ccs15.pdf,Face/Off: Preventing Privacy Leakage From Photos in Social Networks,2015
729,LFW,lfw,40.2773077,-7.5095801,University of Beira Interior,edu,84ae55603bffda40c225fe93029d39f04793e01f,citation,https://doi.org/10.1109/ICB.2016.7550066,ICB-RW 2016: International challenge on biometric recognition in the wild,2016
730,LFW,lfw,-33.8809651,151.20107299,University of Technology Sydney,edu,3b64efa817fd609d525c7244a0e00f98feacc8b4,citation,http://doi.acm.org/10.1145/2845089,A Comprehensive Survey on Pose-Invariant Face Recognition,2016
731,LFW,lfw,32.0575279,118.78682252,Southeast University,edu,b2e308649c7a502456a8e3c95ac7fbe6f8216e51,citation,http://pdfs.semanticscholar.org/b2e3/08649c7a502456a8e3c95ac7fbe6f8216e51.pdf,Recurrent Regression for Face Recognition,2016
732,LFW,lfw,3.12267405,101.65356103,University of Malaya,edu,5e48958c1c9ab9ccb5c9e1a62b81532700d38d83,citation,https://arxiv.org/pdf/1702.03410.pdf,ArtGAN: Artwork synthesis with conditional categorical GANs,2017
733,LFW,lfw,39.47787665,-0.34257711,Universitat de València,edu,5922e26c9eaaee92d1d70eae36275bb226ecdb2e,citation,http://pdfs.semanticscholar.org/5922/e26c9eaaee92d1d70eae36275bb226ecdb2e.pdf,Boosting Classification Based Similarity Learning by using Standard Distances,2015
734,LFW,lfw,42.4505507,-76.4783513,Cornell University,edu,345cc31c85e19cea9f8b8521be6a37937efd41c2,citation,https://arxiv.org/pdf/1511.06421.pdf,Deep Manifold Traversal: Changing Labels with Convolutional Features,2015
735,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,72a7eb68f0955564e1ceafa75aeeb6b5bbb14e7e,citation,https://pdfs.semanticscholar.org/72a7/eb68f0955564e1ceafa75aeeb6b5bbb14e7e.pdf,Face Recognition with Contrastive Convolution,2018
736,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,72a7eb68f0955564e1ceafa75aeeb6b5bbb14e7e,citation,https://pdfs.semanticscholar.org/72a7/eb68f0955564e1ceafa75aeeb6b5bbb14e7e.pdf,Face Recognition with Contrastive Convolution,2018
737,LFW,lfw,31.83907195,117.26420748,University of Science and Technology of China,edu,47cd161546c59ab1e05f8841b82e985f72e5ddcb,citation,https://doi.org/10.1109/ICIP.2017.8296552,Gender classification in live videos,2017
738,LFW,lfw,37.4102193,-122.05965487,Carnegie Mellon University,edu,bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,citation,https://arxiv.org/pdf/1704.08063.pdf,SphereFace: Deep Hypersphere Embedding for Face Recognition,2017
739,LFW,lfw,33.776033,-84.39884086,Georgia Institute of Technology,edu,bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,citation,https://arxiv.org/pdf/1704.08063.pdf,SphereFace: Deep Hypersphere Embedding for Face Recognition,2017
740,LFW,lfw,23.09461185,113.28788994,Sun Yat-Sen University,edu,bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,citation,https://arxiv.org/pdf/1704.08063.pdf,SphereFace: Deep Hypersphere Embedding for Face Recognition,2017
741,LFW,lfw,42.2942142,-83.71003894,University of Michigan,edu,9ace71283834d4dd72509db6f1b859536f801d1c,citation,https://arxiv.org/pdf/1701.00299.pdf,Dynamic Deep Neural Networks: Optimizing Accuracy-Efficiency Trade-Offs by Selective Execution,2018
742,LFW,lfw,22.2081469,114.25964115,University of Hong Kong,edu,e1630014a5ae3d2fb7ff6618f1470a567f4d90f5,citation,https://arxiv.org/pdf/1602.04364.pdf,"Look, Listen and Learn - A Multimodal LSTM for Speaker Identification",2016
743,LFW,lfw,24.18005755,120.64836072,Feng Chia University,edu,344a5802999dddd0a6d1c4d511910af2eb922231,citation,http://pdfs.semanticscholar.org/f0ba/552418698d1b881c6f9f02e2c84f969e66f3.pdf,DroneFace: An Open Dataset for Drone Research,2017
744,LFW,lfw,40.0044795,116.370238,Chinese Academy of Sciences,edu,600f164c81dbaa0327e7bd659fd9eb7f511f9e9a,citation,https://doi.org/10.1109/BTAS.2014.6996301,A benchmark study of large-scale unconstrained face recognition,2014
745,LFW,lfw,36.20304395,117.05842113,Tianjin University,edu,5180df9d5eb26283fb737f491623395304d57497,citation,https://arxiv.org/pdf/1804.10899.pdf,Scalable Angular Discriminative Deep Metric Learning for Face Recognition,2018
746,LFW,lfw,32.0565957,118.77408833,Nanjing University,edu,55089f9bc858ae7e9addf30502ac11be4347c05a,citation,https://pdfs.semanticscholar.org/5508/9f9bc858ae7e9addf30502ac11be4347c05a.pdf,A Privacy-Preserving Deep Learning Approach for Face Recognition with Edge Computing,2018
747,LFW,lfw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,37af037923d0d7a4480a9c1f2e7d002f122bfebb,citation,https://arxiv.org/pdf/1706.04717.pdf,Recent Progress of Face Image Synthesis,2017
|