1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
0,IJB-A,ijb_c,0.0,0.0,,,140c95e53c619eac594d70f6369f518adfea12ef,main,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_089_ext.pdf,Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A,2015
1,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,872dfdeccf99bbbed7c8f1ea08afb2d713ebe085,citation,https://arxiv.org/pdf/1703.09507.pdf,L2-constrained Softmax Loss for Discriminative Face Verification,2017
2,IJB-A,ijb_c,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,146a7ecc7e34b85276dd0275c337eff6ba6ef8c0,citation,https://arxiv.org/pdf/1611.06158v1.pdf,AFFACT: Alignment-free facial attribute classification technique,2017
3,IJB-A,ijb_c,51.7534538,-1.25400997,University of Oxford,edu,313d5eba97fe064bdc1f00b7587a4b3543ef712a,citation,https://pdfs.semanticscholar.org/cb7f/93467b0ec1afd43d995e511f5d7bf052a5af.pdf,Compact Deep Aggregation for Set Retrieval,2018
4,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,5865b6d83ba6dbbf9167f1481e9339c2ef1d1f6b,citation,https://doi.org/10.1109/ICPR.2016.7900278,Regularized metric adaptation for unconstrained face verification,2016
5,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,48a9241edda07252c1aadca09875fabcfee32871,citation,https://arxiv.org/pdf/1611.08657v5.pdf,Convolutional Experts Constrained Local Model for Facial Landmark Detection,2017
6,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,86204fc037936754813b91898377e8831396551a,citation,https://arxiv.org/pdf/1709.01442.pdf,Dense Face Alignment,2017
7,IJB-A,ijb_c,22.57423855,88.4337303,"Institute of Engineering and Management, Kolkata, India",edu,b2cb335ded99b10f37002d09753bd5a6ea522ef1,citation,https://doi.org/10.1109/ISBA.2017.7947679,Analysis of adaptability of deep features for verifying blurred and cross-resolution images,2017
8,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,b2cb335ded99b10f37002d09753bd5a6ea522ef1,citation,https://doi.org/10.1109/ISBA.2017.7947679,Analysis of adaptability of deep features for verifying blurred and cross-resolution images,2017
9,IJB-A,ijb_c,45.7835966,4.7678948,École Centrale de Lyon,edu,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017
10,IJB-A,ijb_c,48.832493,2.267474,Safran Identity and Security,company,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017
11,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,2d748f8ee023a5b1fbd50294d176981ded4ad4ee,citation,http://pdfs.semanticscholar.org/2d74/8f8ee023a5b1fbd50294d176981ded4ad4ee.pdf,Triplet Similarity Embedding for Face Verification,2016
12,IJB-A,ijb_c,38.99203005,-76.9461029,University of Maryland College Park,edu,f7824758800a7b1a386db5bd35f84c81454d017a,citation,https://arxiv.org/pdf/1702.05085.pdf,KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors,2017
13,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,02467703b6e087799e04e321bea3a4c354c5487d,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.27,Grouper: Optimizing Crowdsourced Face Annotations,2016
14,IJB-A,ijb_c,39.329053,-76.619425,Johns Hopkins University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018
15,IJB-A,ijb_c,40.47913175,-74.43168868,Rutgers University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018
16,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015
17,IJB-A,ijb_c,38.95187,-77.363259,"Noblis, Falls Church, VA, U.S.A.",company,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015
18,IJB-A,ijb_c,46.0501558,14.46907327,University of Ljubljana,edu,5226296884b3e151ce317a37f94827dbda0b9d16,citation,https://doi.org/10.1109/IWBF.2016.7449690,Deep pair-wise similarity learning for face recognition,2016
19,IJB-A,ijb_c,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,80be8624771104ff4838dcba9629bacfe6b3ea09,citation,http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,2014
20,IJB-A,ijb_c,1.3484104,103.68297965,Nanyang Technological University,edu,80be8624771104ff4838dcba9629bacfe6b3ea09,citation,http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,2014
21,IJB-A,ijb_c,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,80be8624771104ff4838dcba9629bacfe6b3ea09,citation,http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,2014
22,IJB-A,ijb_c,22.304572,114.17976285,Hong Kong Polytechnic University,edu,50b58becaf67e92a6d9633e0eea7d352157377c3,citation,https://pdfs.semanticscholar.org/50b5/8becaf67e92a6d9633e0eea7d352157377c3.pdf,Dependency-Aware Attention Control for Unconstrained Face Recognition with Image Sets,2018
23,IJB-A,ijb_c,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cd6aaa37fffd0b5c2320f386be322b8adaa1cc68,citation,https://arxiv.org/pdf/1804.06655.pdf,Deep Face Recognition: A Survey,2018
24,IJB-A,ijb_c,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,ac2881bdf7b57dc1672a17b221d68a438d79fce8,citation,https://arxiv.org/pdf/1806.08472.pdf,Learning a High Fidelity Pose Invariant Model for High-resolution Face Frontalization,2018
25,IJB-A,ijb_c,40.0044795,116.370238,Chinese Academy of Sciences,edu,72a7eb68f0955564e1ceafa75aeeb6b5bbb14e7e,citation,https://pdfs.semanticscholar.org/72a7/eb68f0955564e1ceafa75aeeb6b5bbb14e7e.pdf,Face Recognition with Contrastive Convolution,2018
26,IJB-A,ijb_c,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,72a7eb68f0955564e1ceafa75aeeb6b5bbb14e7e,citation,https://pdfs.semanticscholar.org/72a7/eb68f0955564e1ceafa75aeeb6b5bbb14e7e.pdf,Face Recognition with Contrastive Convolution,2018
27,IJB-A,ijb_c,42.3889785,-72.5286987,University of Massachusetts,edu,368e99f669ea5fd395b3193cd75b301a76150f9d,citation,https://arxiv.org/pdf/1506.01342.pdf,One-to-many face recognition with bilinear CNNs,2016
28,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,1e6ed6ca8209340573a5e907a6e2e546a3bf2d28,citation,http://arxiv.org/pdf/1607.01450v1.pdf,Pooling Faces: Template Based Face Recognition with Pooled Face Images,2016
29,IJB-A,ijb_c,38.88140235,121.52281098,Dalian University of Technology,edu,052f994898c79529955917f3dfc5181586282cf8,citation,https://arxiv.org/pdf/1708.02191.pdf,Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos,2017
30,IJB-A,ijb_c,32.9820799,-96.7566278,University of Texas at Dallas,edu,4e8168fbaa615009d1618a9d6552bfad809309e9,citation,http://pdfs.semanticscholar.org/4e81/68fbaa615009d1618a9d6552bfad809309e9.pdf,Deep Convolutional Neural Network Features and the Original Image,2016
31,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,4e8168fbaa615009d1618a9d6552bfad809309e9,citation,http://pdfs.semanticscholar.org/4e81/68fbaa615009d1618a9d6552bfad809309e9.pdf,Deep Convolutional Neural Network Features and the Original Image,2016
32,IJB-A,ijb_c,29.7207902,-95.34406271,University of Houston,edu,3cb2841302af1fb9656f144abc79d4f3d0b27380,citation,https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf,When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition,2017
33,IJB-A,ijb_c,24.4469025,54.3942563,Khalifa University,edu,0c1d85a197a1f5b7376652a485523e616a406273,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.169,Joint Registration and Representation Learning for Unconstrained Face Identification,2017
34,IJB-A,ijb_c,-35.23656905,149.08446994,University of Canberra,edu,0c1d85a197a1f5b7376652a485523e616a406273,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.169,Joint Registration and Representation Learning for Unconstrained Face Identification,2017
35,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,c75e6ce54caf17b2780b4b53f8d29086b391e839,citation,https://arxiv.org/pdf/1802.00542.pdf,"ExpNet: Landmark-Free, Deep, 3D Facial Expressions",2018
36,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,450c6a57f19f5aa45626bb08d7d5d6acdb863b4b,citation,https://arxiv.org/pdf/1805.00611.pdf,Towards Interpretable Face Recognition,2018
37,IJB-A,ijb_c,51.7534538,-1.25400997,University of Oxford,edu,30180f66d5b4b7c0367e4b43e2b55367b72d6d2a,citation,http://www.robots.ox.ac.uk/~vgg/publications/2017/Crosswhite17/crosswhite17.pdf,Template Adaptation for Face Verification and Identification,2017
38,IJB-A,ijb_c,29.7207902,-95.34406271,University of Houston,edu,8334da483f1986aea87b62028672836cb3dc6205,citation,https://arxiv.org/pdf/1805.06306.pdf,Fully Associative Patch-Based 1-to-N Matcher for Face Recognition,2018
39,IJB-A,ijb_c,-33.8809651,151.20107299,University of Technology Sydney,edu,3b64efa817fd609d525c7244a0e00f98feacc8b4,citation,http://doi.acm.org/10.1145/2845089,A Comprehensive Survey on Pose-Invariant Face Recognition,2016
40,IJB-A,ijb_c,40.9153196,-73.1270626,Stony Brook University,edu,6fbb179a4ad39790f4558dd32316b9f2818cd106,citation,http://pdfs.semanticscholar.org/6fbb/179a4ad39790f4558dd32316b9f2818cd106.pdf,Input Aggregated Network for Face Video Representation,2016
41,IJB-A,ijb_c,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,d4f1eb008eb80595bcfdac368e23ae9754e1e745,citation,https://arxiv.org/pdf/1708.02337.pdf,Unconstrained Face Detection and Open-Set Face Recognition Challenge,2017
42,IJB-A,ijb_c,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
43,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
44,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,d28d32af7ef9889ef9cb877345a90ea85e70f7f1,citation,http://doi.ieeecomputersociety.org/10.1109/FG.2017.84,Local-Global Landmark Confidences for Face Recognition,2017
45,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,d28d32af7ef9889ef9cb877345a90ea85e70f7f1,citation,http://doi.ieeecomputersociety.org/10.1109/FG.2017.84,Local-Global Landmark Confidences for Face Recognition,2017
46,IJB-A,ijb_c,51.5247272,-0.03931035,Queen Mary University of London,edu,a29566375836f37173ccaffa47dea25eb1240187,citation,https://arxiv.org/pdf/1809.09409.pdf,Vehicle Re-Identification in Context,2018
47,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,29f298dd5f806c99951cb434834bc8dcc765df18,citation,https://doi.org/10.1109/ICPR.2016.7899837,Computationally efficient template-based face recognition,2016
48,IJB-A,ijb_c,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017
49,IJB-A,ijb_c,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017
50,IJB-A,ijb_c,50.8142701,8.771435,Philipps-Universität Marburg,edu,5981c309bd0ffd849c51b1d8a2ccc481a8ec2f5c,citation,https://doi.org/10.1109/ICT.2017.7998256,SmartFace: Efficient face detection on smartphones for wireless on-demand emergency networks,2017
51,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,a2b4a6c6b32900a066d0257ae6d4526db872afe2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272466,Learning Face Image Quality From Human Assessments,2018
52,IJB-A,ijb_c,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,3dfb822e16328e0f98a47209d7ecd242e4211f82,citation,https://arxiv.org/pdf/1708.08197.pdf,Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments,2017
53,IJB-A,ijb_c,47.6423318,-122.1369302,Microsoft,company,291265db88023e92bb8c8e6390438e5da148e8f5,citation,http://pdfs.semanticscholar.org/4603/cb8e05258bb0572ae912ad20903b8f99f4b1.pdf,MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition,2016
54,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,d29eec5e047560627c16803029d2eb8a4e61da75,citation,http://pdfs.semanticscholar.org/d29e/ec5e047560627c16803029d2eb8a4e61da75.pdf,Feature Transfer Learning for Deep Face Recognition with Long-Tail Data,2018
55,IJB-A,ijb_c,36.20304395,117.05842113,Tianjin University,edu,5180df9d5eb26283fb737f491623395304d57497,citation,https://arxiv.org/pdf/1804.10899.pdf,Scalable Angular Discriminative Deep Metric Learning for Face Recognition,2018
56,IJB-A,ijb_c,22.42031295,114.20788644,Chinese University of Hong Kong,edu,abdd17e411a7bfe043f280abd4e560a04ab6e992,citation,https://arxiv.org/pdf/1803.00839.pdf,Pose-Robust Face Recognition via Deep Residual Equivariant Mapping,2018
57,IJB-A,ijb_c,28.5456282,77.2731505,"IIIT Delhi, India",edu,3cf1f89d73ca4b25399c237ed3e664a55cd273a2,citation,https://arxiv.org/pdf/1710.02914.pdf,Face Sketch Matching via Coupled Deep Transform Learning,2017
58,IJB-A,ijb_c,-27.49741805,153.01316956,University of Queensland,edu,f27fd2a1bc229c773238f1912db94991b8bf389a,citation,https://doi.org/10.1109/IVCNZ.2016.7804414,How do you develop a face detector for the unconstrained environment?,2016
59,IJB-A,ijb_c,39.86742125,32.73519072,Hacettepe University,edu,9865fe20df8fe11717d92b5ea63469f59cf1635a,citation,https://arxiv.org/pdf/1805.07566.pdf,Wildest Faces: Face Detection and Recognition in Violent Settings,2018
60,IJB-A,ijb_c,39.87549675,32.78553506,Middle East Technical University,edu,9865fe20df8fe11717d92b5ea63469f59cf1635a,citation,https://arxiv.org/pdf/1805.07566.pdf,Wildest Faces: Face Detection and Recognition in Violent Settings,2018
61,IJB-A,ijb_c,28.2290209,112.99483204,"National University of Defense Technology, China",edu,c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d,citation,https://pdfs.semanticscholar.org/aae7/a5182e59f44b7bb49f61999181ce011f800b.pdf,Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis,2017
62,IJB-A,ijb_c,1.2962018,103.77689944,National University of Singapore,edu,c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d,citation,https://pdfs.semanticscholar.org/aae7/a5182e59f44b7bb49f61999181ce011f800b.pdf,Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis,2017
63,IJB-A,ijb_c,17.4454957,78.34854698,International Institute of Information Technology,edu,f5eb411217f729ad7ae84bfd4aeb3dedb850206a,citation,https://pdfs.semanticscholar.org/f5eb/411217f729ad7ae84bfd4aeb3dedb850206a.pdf,Tackling Low Resolution for Better Scene Understanding,2018
64,IJB-A,ijb_c,40.51865195,-74.44099801,State University of New Jersey,edu,96e731e82b817c95d4ce48b9e6b08d2394937cf8,citation,http://arxiv.org/pdf/1508.01722v2.pdf,Unconstrained face verification using deep CNN features,2016
65,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,96e731e82b817c95d4ce48b9e6b08d2394937cf8,citation,http://arxiv.org/pdf/1508.01722v2.pdf,Unconstrained face verification using deep CNN features,2016
66,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,870433ba89d8cab1656e57ac78f1c26f4998edfb,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.163,Regressing Robust and Discriminative 3D Morphable Models with a Very Deep Neural Network,2017
67,IJB-A,ijb_c,55.6801502,12.572327,University of Copenhagen,edu,3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,citation,http://pdfs.semanticscholar.org/3dfd/94d3fad7e17f52a8ae815eb9cc5471172bc0.pdf,Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions,2018
68,IJB-A,ijb_c,35.9023226,14.4834189,University of Malta,edu,3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,citation,http://pdfs.semanticscholar.org/3dfd/94d3fad7e17f52a8ae815eb9cc5471172bc0.pdf,Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions,2018
69,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,6341274aca0c2977c3e1575378f4f2126aa9b050,citation,http://arxiv.org/pdf/1609.03536v1.pdf,A multi-scale cascade fully convolutional network face detector,2016
70,IJB-A,ijb_c,41.70456775,-86.23822026,University of Notre Dame,edu,17479e015a2dcf15d40190e06419a135b66da4e0,citation,https://arxiv.org/pdf/1610.08119.pdf,Predicting First Impressions With Deep Learning,2017
71,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,a0b1990dd2b4cd87e4fd60912cc1552c34792770,citation,https://pdfs.semanticscholar.org/a0b1/990dd2b4cd87e4fd60912cc1552c34792770.pdf,Deep Constrained Local Models for Facial Landmark Detection,2016
72,IJB-A,ijb_c,30.642769,104.06751175,"Sichuan University, Chengdu",edu,772474b5b0c90629f4d9c223fd9c1ef45e1b1e66,citation,https://doi.org/10.1109/BTAS.2017.8272716,Multi-dim: A multi-dimensional face database towards the application of 3D technology in real-world scenarios,2017
73,IJB-A,ijb_c,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,4b3f425274b0c2297d136f8833a31866db2f2aec,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.85,Toward Open-Set Face Recognition,2017
74,IJB-A,ijb_c,56.46255985,84.95565495,Tomsk Polytechnic University,edu,17ded725602b4329b1c494bfa41527482bf83a6f,citation,http://pdfs.semanticscholar.org/cb10/434a5d68ffbe9ed0498771192564ecae8894.pdf,Compact Convolutional Neural Network Cascade for Face Detection,2015
75,IJB-A,ijb_c,37.3351908,-121.88126008,San Jose State University,edu,14b016c7a87d142f4b9a0e6dc470dcfc073af517,citation,http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=918912,Modest proposals for improving biometric recognition papers,2015
76,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017
77,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,def2983576001bac7d6461d78451159800938112,citation,https://arxiv.org/pdf/1705.07426.pdf,The Do’s and Don’ts for CNN-Based Face Verification,2017
78,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,4b605e6a9362485bfe69950432fa1f896e7d19bf,citation,http://biometrics.cse.msu.edu/Publications/Face/BlantonAllenMillerKalkaJain_CVPRWB2016_HID.pdf,A Comparison of Human and Automated Face Verification Accuracy on Unconstrained Image Sets,2016
79,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,8d3e95c31c93548b8c71dbeee2e9f7180067a888,citation,https://doi.org/10.1109/ICPR.2016.7899841,Template regularized sparse coding for face verification,2016
80,IJB-A,ijb_c,42.8271556,-73.8780481,GE Global Research,company,8d3e95c31c93548b8c71dbeee2e9f7180067a888,citation,https://doi.org/10.1109/ICPR.2016.7899841,Template regularized sparse coding for face verification,2016
81,IJB-A,ijb_c,25.0410728,121.6147562,Institute of Information Science,edu,337dd4aaca2c5f9b5d2de8e0e2401b5a8feb9958,citation,https://arxiv.org/pdf/1810.11160.pdf,Data-specific Adaptive Threshold for Face Recognition and Authentication,2018
82,IJB-A,ijb_c,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,0aeb5020003e0c89219031b51bd30ff1bceea363,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.525,Sparsifying Neural Network Connections for Face Recognition,2016
83,IJB-A,ijb_c,22.42031295,114.20788644,Chinese University of Hong Kong,edu,0aeb5020003e0c89219031b51bd30ff1bceea363,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.525,Sparsifying Neural Network Connections for Face Recognition,2016
84,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,99daa2839213f904e279aec7cef26c1dfb768c43,citation,https://arxiv.org/pdf/1805.02283.pdf,DocFace: Matching ID Document Photos to Selfies,2018
85,IJB-A,ijb_c,43.7776426,11.259765,University of Florence,edu,71ca8b6e84c17b3e68f980bfb8cddc837100f8bf,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899774,Effective 3D based frontalization for unconstrained face recognition,2016
86,IJB-A,ijb_c,51.49887085,-0.17560797,Imperial College London,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018
87,IJB-A,ijb_c,51.24303255,-0.59001382,University of Surrey,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018
88,IJB-A,ijb_c,37.3936717,-122.0807262,Facebook,company,628a3f027b7646f398c68a680add48c7969ab1d9,citation,https://pdfs.semanticscholar.org/628a/3f027b7646f398c68a680add48c7969ab1d9.pdf,Plan for Final Year Project : HKU-Face : A Large Scale Dataset for Deep Face Recognition,2017
89,IJB-A,ijb_c,40.2773077,-7.5095801,University of Beira Interior,edu,61262450d4d814865a4f9a84299c24daa493f66e,citation,http://doi.org/10.1007/s10462-016-9474-x,Biometric recognition in surveillance scenarios: a survey,2016
90,IJB-A,ijb_c,-31.95040445,115.79790037,University of Western Australia,edu,626913b8fcbbaee8932997d6c4a78fe1ce646127,citation,https://arxiv.org/pdf/1711.05942.pdf,Learning from Millions of 3D Scans for Large-scale 3D Face Recognition,2017
91,IJB-A,ijb_c,35.9023226,14.4834189,University of Malta,edu,4efd58102ff46b7435c9ec6d4fc3dd21d93b15b4,citation,https://doi.org/10.1109/TIFS.2017.2788002,"Matching Software-Generated Sketches to Face Photographs With a Very Deep CNN, Morphed Faces, and Transfer Learning",2018
92,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,b6f758be954d34817d4ebaa22b30c63a4b8ddb35,citation,http://arxiv.org/abs/1703.04835,A Proximity-Aware Hierarchical Clustering of Faces,2017
93,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,citation,https://arxiv.org/pdf/1708.07517.pdf,FacePoseNet: Making a Case for Landmark-Free Face Alignment,2017
94,IJB-A,ijb_c,40.2773077,-7.5095801,University of Beira Interior,edu,84ae55603bffda40c225fe93029d39f04793e01f,citation,https://doi.org/10.1109/ICB.2016.7550066,ICB-RW 2016: International challenge on biometric recognition in the wild,2016
95,IJB-A,ijb_c,41.70456775,-86.23822026,University of Notre Dame,edu,73ea06787925157df519a15ee01cc3dc1982a7e0,citation,https://arxiv.org/pdf/1811.01474.pdf,Fast Face Image Synthesis with Minimal Training,2018
96,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,c6382de52636705be5898017f2f8ed7c70d7ae96,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089,Unconstrained face detection: State of the art baseline and challenges,2015
97,IJB-A,ijb_c,38.95187,-77.363259,"Noblis, Falls Church, VA, U.S.A.",company,c6382de52636705be5898017f2f8ed7c70d7ae96,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089,Unconstrained face detection: State of the art baseline and challenges,2015
98,IJB-A,ijb_c,40.47913175,-74.43168868,Rutgers University,edu,eee06d68497be8bf3a8aba4fde42a13aa090b301,citation,https://arxiv.org/pdf/1806.11191.pdf,CR-GAN: Learning Complete Representations for Multi-view Generation,2018
99,IJB-A,ijb_c,35.3103441,-80.73261617,University of North Carolina at Charlotte,edu,eee06d68497be8bf3a8aba4fde42a13aa090b301,citation,https://arxiv.org/pdf/1806.11191.pdf,CR-GAN: Learning Complete Representations for Multi-view Generation,2018
100,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,a3201e955d6607d383332f3a12a7befa08c5a18c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900276,VLAD encoded Deep Convolutional features for unconstrained face verification,2016
101,IJB-A,ijb_c,40.47913175,-74.43168868,Rutgers University,edu,a3201e955d6607d383332f3a12a7befa08c5a18c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900276,VLAD encoded Deep Convolutional features for unconstrained face verification,2016
102,IJB-A,ijb_c,22.42031295,114.20788644,Chinese University of Hong Kong,edu,52d7eb0fbc3522434c13cc247549f74bb9609c5d,citation,https://arxiv.org/pdf/1511.06523.pdf,WIDER FACE: A Face Detection Benchmark,2016
103,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,19458454308a9f56b7de76bf7d8ff8eaa52b0173,citation,https://pdfs.semanticscholar.org/1945/8454308a9f56b7de76bf7d8ff8eaa52b0173.pdf,Deep Features for Recognizing Disguised Faces in the Wild,0
104,IJB-A,ijb_c,43.7776426,11.259765,University of Florence,edu,746c0205fdf191a737df7af000eaec9409ede73f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423119,Investigating Nuisances in DCNN-Based Face Recognition,2018
105,IJB-A,ijb_c,47.5612651,7.5752961,University of Basel,edu,0081e2188c8f34fcea3e23c49fb3e17883b33551,citation,http://pdfs.semanticscholar.org/0081/e2188c8f34fcea3e23c49fb3e17883b33551.pdf,Training Deep Face Recognition Systems with Synthetic Data,2018
106,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4,citation,https://arxiv.org/pdf/1803.00130.pdf,Ring loss: Convex Feature Normalization for Face Recognition,2018
107,IJB-A,ijb_c,28.2290209,112.99483204,"National University of Defense Technology, China",edu,5f771fed91c8e4b666489ba2384d0705bcf75030,citation,https://arxiv.org/pdf/1804.03287.pdf,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,2018
108,IJB-A,ijb_c,1.2962018,103.77689944,National University of Singapore,edu,5f771fed91c8e4b666489ba2384d0705bcf75030,citation,https://arxiv.org/pdf/1804.03287.pdf,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,2018
109,IJB-A,ijb_c,42.3889785,-72.5286987,University of Massachusetts,edu,2241eda10b76efd84f3c05bdd836619b4a3df97e,citation,http://arxiv.org/pdf/1506.01342v5.pdf,One-to-many face recognition with bilinear CNNs,2016
110,IJB-A,ijb_c,22.42031295,114.20788644,Chinese University of Hong Kong,edu,58d76380d194248b3bb291b8c7c5137a0a376897,citation,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,2018
111,IJB-A,ijb_c,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,58d76380d194248b3bb291b8c7c5137a0a376897,citation,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,2018
112,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,7fb5006b6522436ece5bedf509e79bdb7b79c9a7,citation,https://pdfs.semanticscholar.org/7fb5/006b6522436ece5bedf509e79bdb7b79c9a7.pdf,Multi-Task Convolutional Neural Network for Face Recognition,2017
113,IJB-A,ijb_c,-27.49741805,153.01316956,University of Queensland,edu,28646c6220848db46c6944967298d89a6559c700,citation,https://pdfs.semanticscholar.org/2864/6c6220848db46c6944967298d89a6559c700.pdf,It takes two to tango : Cascading off-the-shelf face detectors,2018
114,IJB-A,ijb_c,51.7534538,-1.25400997,University of Oxford,edu,5812d8239d691e99d4108396f8c26ec0619767a6,citation,https://arxiv.org/pdf/1810.09951.pdf,GhostVLAD for set-based face recognition,2018
115,IJB-A,ijb_c,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,e4c3587392d477b7594086c6f28a00a826abf004,citation,https://doi.org/10.1109/ICIP.2017.8296998,Face recognition by facial attribute assisted network,2017
116,IJB-A,ijb_c,1.3484104,103.68297965,Nanyang Technological University,edu,47190d213caef85e8b9dd0d271dbadc29ed0a953,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018
117,IJB-A,ijb_c,32.87935255,-117.23110049,"University of California, San Diego",edu,47190d213caef85e8b9dd0d271dbadc29ed0a953,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018
118,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,ce6d60b69eb95477596535227958109e07c61e1e,citation,http://www.rci.rutgers.edu/~vmp93/Conference_pub/BTAS_2015_FVFF_JunCheng_Chen.pdf,Unconstrained face verification using fisher vectors computed from frontalized faces,2015
119,IJB-A,ijb_c,29.7207902,-95.34406271,University of Houston,edu,38d8ff137ff753f04689e6b76119a44588e143f3,citation,http://pdfs.semanticscholar.org/38d8/ff137ff753f04689e6b76119a44588e143f3.pdf,When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition,2017
120,IJB-A,ijb_c,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,9627f28ea5f4c389350572b15968386d7ce3fe49,citation,https://arxiv.org/pdf/1802.07447.pdf,Load Balanced GANs for Multi-view Face Image Synthesis,2018
121,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,4e7ed13e541b8ed868480375785005d33530e06d,citation,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477555,Face recognition using deep multi-pose representations,2016
122,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,582edc19f2b1ab2ac6883426f147196c8306685a,citation,http://pdfs.semanticscholar.org/be6c/db7b181e73f546d43cf2ab6bc7181d7d619b.pdf,Do We Really Need to Collect Millions of Faces for Effective Face Recognition?,2016
123,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016
124,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016
125,IJB-A,ijb_c,39.65404635,-79.96475355,West Virginia University,edu,3b9b200e76a35178da940279d566bbb7dfebb787,citation,http://pdfs.semanticscholar.org/3b9b/200e76a35178da940279d566bbb7dfebb787.pdf,Learning Channel Inter-dependencies at Multiple Scales on Dense Networks for Face Recognition,2017
126,IJB-A,ijb_c,-27.49741805,153.01316956,University of Queensland,edu,de79437f74e8e3b266afc664decf4e6e4bdf34d7,citation,https://doi.org/10.1109/IVCNZ.2016.7804415,To face or not to face: Towards reducing false positive of face detection,2016
127,IJB-A,ijb_c,46.0501558,14.46907327,University of Ljubljana,edu,368d59cf1733af511ed8abbcbeb4fb47afd4da1c,citation,http://pdfs.semanticscholar.org/368d/59cf1733af511ed8abbcbeb4fb47afd4da1c.pdf,To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition,2016
128,IJB-A,ijb_c,41.70456775,-86.23822026,University of Notre Dame,edu,368d59cf1733af511ed8abbcbeb4fb47afd4da1c,citation,http://pdfs.semanticscholar.org/368d/59cf1733af511ed8abbcbeb4fb47afd4da1c.pdf,To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition,2016
129,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,62e913431bcef5983955e9ca160b91bb19d9de42,citation,http://pdfs.semanticscholar.org/62e9/13431bcef5983955e9ca160b91bb19d9de42.pdf,Facial Landmark Detection with Tweaked Convolutional Neural Networks,2015
130,IJB-A,ijb_c,29.5084174,106.57858552,Chongqing University,edu,acd4280453b995cb071c33f7c9db5760432f4279,citation,https://doi.org/10.1007/s00138-018-0907-1,Deep transformation learning for face recognition in the unconstrained scene,2018
131,IJB-A,ijb_c,38.99203005,-76.9461029,University of Maryland College Park,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016
132,IJB-A,ijb_c,40.47913175,-74.43168868,Rutgers University,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016
133,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016
134,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,37619564574856c6184005830deda4310d3ca580,citation,https://doi.org/10.1109/BTAS.2015.7358755,A deep pyramid Deformable Part Model for face detection,2015
135,IJB-A,ijb_c,51.7534538,-1.25400997,University of Oxford,edu,eb027969f9310e0ae941e2adee2d42cdf07d938c,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018
136,IJB-A,ijb_c,42.3889785,-72.5286987,University of Massachusetts,edu,3c97c32ff575989ef2869f86d89c63005fc11ba9,citation,http://people.cs.umass.edu/~hzjiang/pubs/face_det_fg_2017.pdf,Face Detection with the Faster R-CNN,2017
137,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e,citation,https://pdfs.semanticscholar.org/4f7b/92bd678772552b3c3edfc9a7c5c4a8c60a8e.pdf,Deep Density Clustering of Unconstrained Faces,0
138,IJB-A,ijb_c,1.2962018,103.77689944,National University of Singapore,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018
139,IJB-A,ijb_c,40.0044795,116.370238,Chinese Academy of Sciences,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018
|