summaryrefslogtreecommitdiff
path: root/site/datasets/final/aflw.csv
blob: 29cfe134c89498a59346139deae7045df0658d14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
0,AFLW,aflw,0.0,0.0,,,a74251efa970b92925b89eeef50a5e37d9281ad0,main,http://lrs.icg.tugraz.at/pubs/koestinger_befit_11.pdf,"Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization",2011
1,AFLW,aflw,42.2942142,-83.71003894,University of Michigan,edu,860588fafcc80c823e66429fadd7e816721da42a,citation,https://arxiv.org/pdf/1804.04412.pdf,Unsupervised Discovery of Object Landmarks as Structural Representations,2018
2,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,433a6d6d2a3ed8a6502982dccc992f91d665b9b3,citation,http://pdfs.semanticscholar.org/433a/6d6d2a3ed8a6502982dccc992f91d665b9b3.pdf,Transferring Landmark Annotations for Cross-Dataset Face Alignment,2014
3,AFLW,aflw,40.00229045,116.32098908,Tsinghua University,edu,433a6d6d2a3ed8a6502982dccc992f91d665b9b3,citation,http://pdfs.semanticscholar.org/433a/6d6d2a3ed8a6502982dccc992f91d665b9b3.pdf,Transferring Landmark Annotations for Cross-Dataset Face Alignment,2014
4,AFLW,aflw,-27.47715625,153.02841004,Queensland University of Technology,edu,6342a4c54835c1e14159495373ab18b4233d2d9b,citation,http://pdfs.semanticscholar.org/6342/a4c54835c1e14159495373ab18b4233d2d9b.pdf,Towards Pose-robust Face Recognition on Video,2014
5,AFLW,aflw,39.993008,116.329882,SenseTime,company,38183fe28add21693729ddeaf3c8a90a2d5caea3,citation,http://arxiv.org/abs/1706.09876,Scale-Aware Face Detection,2017
6,AFLW,aflw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,2c17d36bab56083293456fe14ceff5497cc97d75,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Unconstrained_Face_Alignment_CVPR_2016_paper.pdf,Unconstrained Face Alignment via Cascaded Compositional Learning,2016
7,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,2c17d36bab56083293456fe14ceff5497cc97d75,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Unconstrained_Face_Alignment_CVPR_2016_paper.pdf,Unconstrained Face Alignment via Cascaded Compositional Learning,2016
8,AFLW,aflw,47.05821,15.46019568,Graz University of Technology,edu,4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8,citation,http://pdfs.semanticscholar.org/4ab1/0174a4f98f7e2da7cf6ccfeb9bc64c8e7da8.pdf,Efficient Metric Learning for Real-World Face Recognition,2013
9,AFLW,aflw,22.53521465,113.9315911,Shenzhen University,edu,32ecbbd76fdce249f9109594eee2d52a1cafdfc7,citation,http://pdfs.semanticscholar.org/32ec/bbd76fdce249f9109594eee2d52a1cafdfc7.pdf,Object Specific Deep Learning Feature and Its Application to Face Detection,2016
10,AFLW,aflw,52.9387428,-1.20029569,University of Nottingham,edu,32ecbbd76fdce249f9109594eee2d52a1cafdfc7,citation,http://pdfs.semanticscholar.org/32ec/bbd76fdce249f9109594eee2d52a1cafdfc7.pdf,Object Specific Deep Learning Feature and Its Application to Face Detection,2016
11,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,4e6c17966efae956133bf8f22edeffc24a0470c1,citation,http://pdfs.semanticscholar.org/4e6c/17966efae956133bf8f22edeffc24a0470c1.pdf,Face Classification: A Specialized Benchmark Study,2016
12,AFLW,aflw,22.15263985,113.56803206,Macau University of Science and Technology,edu,4e6c17966efae956133bf8f22edeffc24a0470c1,citation,http://pdfs.semanticscholar.org/4e6c/17966efae956133bf8f22edeffc24a0470c1.pdf,Face Classification: A Specialized Benchmark Study,2016
13,AFLW,aflw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,4e6c17966efae956133bf8f22edeffc24a0470c1,citation,http://pdfs.semanticscholar.org/4e6c/17966efae956133bf8f22edeffc24a0470c1.pdf,Face Classification: A Specialized Benchmark Study,2016
14,AFLW,aflw,37.4102193,-122.05965487,Carnegie Mellon University,edu,f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53,citation,https://arxiv.org/pdf/1707.05653.pdf,Faster than Real-Time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses,2017
15,AFLW,aflw,29.6328784,-82.3490133,University of Florida,edu,441bf5f7fe7d1a3939d8b200eca9b4bb619449a9,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Sundararajan_Head_Pose_Estimation_2015_CVPR_paper.pdf,Head pose estimation in the wild using approximate view manifolds,2015
16,AFLW,aflw,37.4102193,-122.05965487,Carnegie Mellon University,edu,1ca815327e62c70f4ee619a836e05183ef629567,citation,http://www.humansensing.cs.cmu.edu/sites/default/files/Xiong_Global_Supervised_Descent_2015_CVPR_paper.pdf,Global supervised descent method,2015
17,AFLW,aflw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,6495d989fe33b19d2b7755f9077d8b5bf3190151,citation,https://arxiv.org/pdf/1803.07835.pdf,Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network,2018
18,AFLW,aflw,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,ccebd3bf069f5c73ea2ccc5791976f894bc6023d,citation,https://doi.org/10.1109/ICPR.2016.7900186,Face detection based on deep convolutional neural networks exploiting incremental facial part learning,2016
19,AFLW,aflw,51.24303255,-0.59001382,University of Surrey,edu,c146aa6d56233ce700032f1cb179700778557601,citation,https://arxiv.org/pdf/1708.07199.pdf,3D Morphable Models as Spatial Transformer Networks,2017
20,AFLW,aflw,53.94540365,-1.03138878,University of York,edu,c146aa6d56233ce700032f1cb179700778557601,citation,https://arxiv.org/pdf/1708.07199.pdf,3D Morphable Models as Spatial Transformer Networks,2017
21,AFLW,aflw,51.24303255,-0.59001382,University of Surrey,edu,438e7999c937b94f0f6384dbeaa3febff6d283b6,citation,https://arxiv.org/pdf/1705.02402v2.pdf,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",2017
22,AFLW,aflw,31.4854255,120.2739581,Jiangnan University,edu,438e7999c937b94f0f6384dbeaa3febff6d283b6,citation,https://arxiv.org/pdf/1705.02402v2.pdf,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",2017
23,AFLW,aflw,37.4102193,-122.05965487,Carnegie Mellon University,edu,b1fdd4ae17d82612cefd4e78b690847b071379d3,citation,https://pdfs.semanticscholar.org/4fc5/416b6c7173d3462e5be796bda3ad8d5645a1.pdf,Supervised Descent Method,2015
24,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,a5f35880477ae82902c620245e258cf854c09be9,citation,http://doi.org/10.1016/j.imavis.2013.12.004,Face detection by structural models,2014
25,AFLW,aflw,51.24303255,-0.59001382,University of Surrey,edu,96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,citation,https://arxiv.org/pdf/1611.05396.pdf,Dynamic Attention-Controlled Cascaded Shape Regression Exploiting Training Data Augmentation and Fuzzy-Set Sample Weighting,2017
26,AFLW,aflw,31.4854255,120.2739581,Jiangnan University,edu,96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,citation,https://arxiv.org/pdf/1611.05396.pdf,Dynamic Attention-Controlled Cascaded Shape Regression Exploiting Training Data Augmentation and Fuzzy-Set Sample Weighting,2017
27,AFLW,aflw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,d3b0839324d0091e70ce34f44c979b9366547327,citation,https://arxiv.org/pdf/1804.10743.pdf,Precise Box Score: Extract More Information from Datasets to Improve the Performance of Face Detection,2018
28,AFLW,aflw,47.5612651,7.5752961,University of Basel,edu,7caa3a74313f9a7a2dd5b4c2cd7f825d895d3794,citation,http://doi.org/10.1007/s11263-016-0967-5,Markov Chain Monte Carlo for Automated Face Image Analysis,2016
29,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015
30,AFLW,aflw,38.95187,-77.363259,"Noblis, Falls Church, VA, U.S.A.",company,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015
31,AFLW,aflw,51.7534538,-1.25400997,University of Oxford,edu,7117ed0be436c0291bc6fb6ea6db18de74e2464a,citation,https://pdfs.semanticscholar.org/7117/ed0be436c0291bc6fb6ea6db18de74e2464a.pdf,Spatial Transformations,2017
32,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,8a3c5507237957d013a0fe0f082cab7f757af6ee,citation,http://pdfs.semanticscholar.org/fcd7/1c18192928a2e0b264edd4d919ab2f8f652a.pdf,Facial Landmark Detection by Deep Multi-task Learning,2014
33,AFLW,aflw,47.05821,15.46019568,Graz University of Technology,edu,5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48,citation,http://pdfs.semanticscholar.org/5c86/72c0d2f28fd5d2d2c4b9818fcff43fb01a48.pdf,Robust Face Detection by Simple Means,2012
34,AFLW,aflw,30.642769,104.06751175,"Sichuan University, Chengdu",edu,5cbe1445d683d605b31377881ac8540e1d17adf0,citation,https://arxiv.org/pdf/1509.06161.pdf,On 3D face reconstruction via cascaded regression in shape space,2017
35,AFLW,aflw,51.24303255,-0.59001382,University of Surrey,edu,3c6cac7ecf546556d7c6050f7b693a99cc8a57b3,citation,https://pdfs.semanticscholar.org/3c6c/ac7ecf546556d7c6050f7b693a99cc8a57b3.pdf,Robust facial landmark detection in the wild,2016
36,AFLW,aflw,22.53521465,113.9315911,Shenzhen University,edu,287de191c49a3caa38ad7594093045dfba1eb420,citation,https://doi.org/10.23919/MVA.2017.7986829,Object specific deep feature and its application to face detection,2017
37,AFLW,aflw,52.9387428,-1.20029569,University of Nottingham,edu,287de191c49a3caa38ad7594093045dfba1eb420,citation,https://doi.org/10.23919/MVA.2017.7986829,Object specific deep feature and its application to face detection,2017
38,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,2f04ba0f74df046b0080ca78e56898bd4847898b,citation,http://arxiv.org/abs/1407.4023,Aggregate channel features for multi-view face detection,2014
39,AFLW,aflw,33.6431901,-117.84016494,"University of California, Irvine",edu,65126e0b1161fc8212643b8ff39c1d71d262fbc1,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ghiasi_Occlusion_Coherence_Localizing_2014_CVPR_paper.pdf,Occlusion Coherence: Localizing Occluded Faces with a Hierarchical Deformable Part Model,2014
40,AFLW,aflw,38.99203005,-76.9461029,University of Maryland College Park,edu,4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,citation,http://pdfs.semanticscholar.org/4f36/c14d1453fc9d6481b09c5a09e91d8d9ee47a.pdf,Video-Based Face Recognition Using the Intra/Extra-Personal Difference Dictionary,2014
41,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,citation,http://pdfs.semanticscholar.org/4f36/c14d1453fc9d6481b09c5a09e91d8d9ee47a.pdf,Video-Based Face Recognition Using the Intra/Extra-Personal Difference Dictionary,2014
42,AFLW,aflw,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,e4e07f5f201c6986e93ddb42dcf11a43c339ea2e,citation,https://doi.org/10.1109/BTAS.2017.8272722,Cross-pose landmark localization using multi-dropout framework,2017
43,AFLW,aflw,32.87935255,-117.23110049,"University of California, San Diego",edu,a1e07c31184d3728e009d4d1bebe21bf9fe95c8e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900056,"On looking at faces in an automobile: Issues, algorithms and evaluation on naturalistic driving dataset",2016
44,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,2017
45,AFLW,aflw,40.00229045,116.32098908,Tsinghua University,edu,329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,2017
46,AFLW,aflw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,04661729f0ff6afe4b4d6223f18d0da1d479accf,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.419,From Facial Parts Responses to Face Detection: A Deep Learning Approach,2015
47,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,04661729f0ff6afe4b4d6223f18d0da1d479accf,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.419,From Facial Parts Responses to Face Detection: A Deep Learning Approach,2015
48,AFLW,aflw,17.4454957,78.34854698,International Institute of Information Technology,edu,185263189a30986e31566394680d6d16b0089772,citation,https://pdfs.semanticscholar.org/1852/63189a30986e31566394680d6d16b0089772.pdf,Efficient Annotation of Objects for Video Analysis,2018
49,AFLW,aflw,35.77184965,-78.67408695,North Carolina State University,edu,9bd35145c48ce172b80da80130ba310811a44051,citation,https://arxiv.org/pdf/1606.00850.pdf,Face Detection with End-to-End Integration of a ConvNet and a 3D Model,2016
50,AFLW,aflw,39.9922379,116.30393816,Peking University,edu,9bd35145c48ce172b80da80130ba310811a44051,citation,https://arxiv.org/pdf/1606.00850.pdf,Face Detection with End-to-End Integration of a ConvNet and a 3D Model,2016
51,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,45e616093a92e5f1e61a7c6037d5f637aa8964af,citation,http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf,Fine-grained evaluation on face detection in the wild,2015
52,AFLW,aflw,32.7283683,-97.11201835,University of Texas at Arlington,edu,411dc8874fd7b3a9a4c1fd86bb5b583788027776,citation,https://pdfs.semanticscholar.org/701f/56f0eac9f88387de1f556acef78016b05d52.pdf,Direct Shape Regression Networks for End-to-End Face Alignment,2018
53,AFLW,aflw,34.1235825,108.83546,Xidian University,edu,411dc8874fd7b3a9a4c1fd86bb5b583788027776,citation,https://pdfs.semanticscholar.org/701f/56f0eac9f88387de1f556acef78016b05d52.pdf,Direct Shape Regression Networks for End-to-End Face Alignment,2018
54,AFLW,aflw,42.36782045,-71.12666653,Harvard University,edu,3cb057a24a8adba6fe964b5d461ba4e4af68af14,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6701391,Perceptual Annotation: Measuring Human Vision to Improve Computer Vision,2014
55,AFLW,aflw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,citation,http://pdfs.semanticscholar.org/cf5c/9b521c958b84bb63bea9d5cbb522845e4ba7.pdf,Towards Arbitrary-View Face Alignment by Recommendation Trees,2015
56,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,citation,http://pdfs.semanticscholar.org/cf5c/9b521c958b84bb63bea9d5cbb522845e4ba7.pdf,Towards Arbitrary-View Face Alignment by Recommendation Trees,2015
57,AFLW,aflw,39.329053,-76.619425,Johns Hopkins University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018
58,AFLW,aflw,40.47913175,-74.43168868,Rutgers University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018
59,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017
60,AFLW,aflw,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,8ee5b1c9fb0bded3578113c738060290403ed472,citation,https://infoscience.epfl.ch/record/200452/files/wacv2014-RGE.pdf,Extending explicit shape regression with mixed feature channels and pose priors,2014
61,AFLW,aflw,34.0224149,-118.28634407,University of Southern California,edu,43e99b76ca8e31765d4571d609679a689afdc99e,citation,http://arxiv.org/abs/1709.00536,Learning Dense Facial Correspondences in Unconstrained Images,2017
62,AFLW,aflw,38.88140235,121.52281098,Dalian University of Technology,edu,f074e86e003d5b7a3b6e1780d9c323598d93f3bc,citation,http://pdfs.semanticscholar.org/f074/e86e003d5b7a3b6e1780d9c323598d93f3bc.pdf,Characteristic Number: Theory and Its Application to Shape Analysis,2014
63,AFLW,aflw,38.99203005,-76.9461029,University of Maryland College Park,edu,1389ba6c3ff34cdf452ede130c738f37dca7e8cb,citation,http://pdfs.semanticscholar.org/1389/ba6c3ff34cdf452ede130c738f37dca7e8cb.pdf,A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection,2017
64,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,85674b1b6007634f362cbe9b921912b697c0a32c,citation,http://pdfs.semanticscholar.org/8567/4b1b6007634f362cbe9b921912b697c0a32c.pdf,Optimizing Facial Landmark Detection by Facial Attribute Learning,2014
65,AFLW,aflw,51.7534538,-1.25400997,University of Oxford,edu,8d9ffe9f7bf1ff3ecc320afe50a92a867a12aeb7,citation,https://arxiv.org/pdf/1809.02169.pdf,Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings,2018
66,AFLW,aflw,38.99203005,-76.9461029,University of Maryland College Park,edu,f7824758800a7b1a386db5bd35f84c81454d017a,citation,https://arxiv.org/pdf/1702.05085.pdf,KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors,2017
67,AFLW,aflw,17.4454957,78.34854698,International Institute of Information Technology,edu,156cd2a0e2c378e4c3649a1d046cd080d3338bca,citation,http://pdfs.semanticscholar.org/156c/d2a0e2c378e4c3649a1d046cd080d3338bca.pdf,Exemplar based approaches on Face Fiducial Detection and Frontalization,2017
68,AFLW,aflw,39.7275037,39.47127034,Firat University,edu,5cfbeae360398de9e20e4165485837bd42b93217,citation,http://pdfs.semanticscholar.org/5cfb/eae360398de9e20e4165485837bd42b93217.pdf,Comparison Of Hog (Histogram of Oriented Gradients) and Haar Cascade Algorithms with a Convolutional Neural Network Based Face Detection Approaches,2017
69,AFLW,aflw,29.5084174,106.57858552,Chongqing University,edu,a065080353d18809b2597246bb0b48316234c29a,citation,http://pdfs.semanticscholar.org/a065/080353d18809b2597246bb0b48316234c29a.pdf,FHEDN: A based on context modeling Feature Hierarchy Encoder-Decoder Network for face detection,2017
70,AFLW,aflw,52.22165395,21.00735776,Warsaw University of Technology,edu,f27b8b8f2059248f77258cf8595e9434cf0b0228,citation,https://arxiv.org/pdf/1706.01789.pdf,Deep Alignment Network: A Convolutional Neural Network for Robust Face Alignment,2017
71,AFLW,aflw,53.46600455,-2.23300881,University of Manchester,edu,68c1090f912b69b76437644dd16922909dd40d60,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6987312,Robust and Accurate Shape Model Matching Using Random Forest Regression-Voting,2012
72,AFLW,aflw,32.77824165,34.99565673,Open University of Israel,edu,62e913431bcef5983955e9ca160b91bb19d9de42,citation,http://pdfs.semanticscholar.org/62e9/13431bcef5983955e9ca160b91bb19d9de42.pdf,Facial Landmark Detection with Tweaked Convolutional Neural Networks,2015
73,AFLW,aflw,50.0764296,14.41802312,Czech Technical University,edu,f4ba07d2ae6c9673502daf50ee751a5e9262848f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7284810,Real-time multi-view facial landmark detector learned by the structured output SVM,2015
74,AFLW,aflw,35.6924853,139.7582533,"National Institute of Informatics, Japan",edu,f4ba07d2ae6c9673502daf50ee751a5e9262848f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7284810,Real-time multi-view facial landmark detector learned by the structured output SVM,2015
75,AFLW,aflw,40.00229045,116.32098908,Tsinghua University,edu,204f1cf56794bb23f9516b5f225a6ae00d3d30b8,citation,https://doi.org/10.1109/JSYST.2015.2418680,An AdaBoost-Based Face Detection System Using Parallel Configurable Architecture With Optimized Computation,2017
76,AFLW,aflw,30.44235995,-84.29747867,Florida State University,edu,1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,citation,http://pdfs.semanticscholar.org/6433/c412149382418ccd8aa966aa92973af41671.pdf,Face Detection with a 3D Model,2014
77,AFLW,aflw,39.00041165,-77.10327775,National Institutes of Health,edu,1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,citation,http://pdfs.semanticscholar.org/6433/c412149382418ccd8aa966aa92973af41671.pdf,Face Detection with a 3D Model,2014
78,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,37ce1d3a6415d6fc1760964e2a04174c24208173,citation,http://www.cse.msu.edu/~liuxm/publication/Jourabloo_Liu_ICCV2015.pdf,Pose-Invariant 3D Face Alignment,2015
79,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,ec8ec2dfd73cf3667f33595fef84c95c42125945,citation,https://arxiv.org/pdf/1707.06286.pdf,Pose-Invariant Face Alignment with a Single CNN,2017
80,AFLW,aflw,43.07982815,-89.43066425,University of Wisconsin Madison,edu,2e091b311ac48c18aaedbb5117e94213f1dbb529,citation,http://pdfs.semanticscholar.org/b1a1/a049f1d78f6e3d072236237c467292ccd537.pdf,Collaborative Facial Landmark Localization for Transferring Annotations Across Datasets,2014
81,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,b53485dbdd2dc5e4f3c7cff26bd8707964bb0503,citation,http://doi.org/10.1007/s11263-017-1012-z,Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting,2017
82,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,abdd17e411a7bfe043f280abd4e560a04ab6e992,citation,https://arxiv.org/pdf/1803.00839.pdf,Pose-Robust Face Recognition via Deep Residual Equivariant Mapping,2018
83,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,085ceda1c65caf11762b3452f87660703f914782,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Jourabloo_Large-Pose_Face_Alignment_CVPR_2016_paper.pdf,Large-Pose Face Alignment via CNN-Based Dense 3D Model Fitting,2016
84,AFLW,aflw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,fcd3d557863e71dd5ce8bcf918adbe22ec59e62f,citation,http://doi.acm.org/10.1145/2502081.2502148,Facial landmark localization based on hierarchical pose regression with cascaded random ferns,2013
85,AFLW,aflw,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,c00df53bd46f78ae925c5768d46080159d4ef87d,citation,https://arxiv.org/pdf/1707.08105.pdf,Learning Bag-of-Features Pooling for Deep Convolutional Neural Networks,2017
86,AFLW,aflw,31.4854255,120.2739581,Jiangnan University,edu,d22dd4a6752a5ffa40aebd260ff63d2c2a9e1da1,citation,https://arxiv.org/pdf/1811.05295.pdf,Pose Invariant 3D Face Reconstruction,2018
87,AFLW,aflw,28.59899755,-81.19712501,University of Central Florida,edu,c4fb2de4a5dc28710d9880aece321acf68338fde,citation,https://arxiv.org/pdf/1801.09092.pdf,Interactive Generative Adversarial Networks for Facial Expression Generation in Dyadic Interactions,2018
88,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,c94b3a05f6f41d015d524169972ae8fd52871b67,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Yan_The_Fastest_Deformable_2014_CVPR_paper.pdf,The Fastest Deformable Part Model for Object Detection,2014
89,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,2a171f8d14b6b8735001a11c217af9587d095848,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.414,Learning Social Relation Traits from Face Images,2015
90,AFLW,aflw,23.09461185,113.28788994,Sun Yat-Sen University,edu,4c078c2919c7bdc26ca2238fa1a79e0331898b56,citation,http://pdfs.semanticscholar.org/4c07/8c2919c7bdc26ca2238fa1a79e0331898b56.pdf,Unconstrained Facial Landmark Localization with Backbone-Branches Fully-Convolutional Networks,2015
91,AFLW,aflw,52.9387428,-1.20029569,University of Nottingham,edu,721e5ba3383b05a78ef1dfe85bf38efa7e2d611d,citation,http://pdfs.semanticscholar.org/74f1/9d0986c9d39aabb359abaa2a87a248a48deb.pdf,"BULAT, TZIMIROPOULOS: CONVOLUTIONAL AGGREGATION OF LOCAL EVIDENCE 1 Convolutional aggregation of local evidence for large pose face alignment",2016
92,AFLW,aflw,47.5612651,7.5752961,University of Basel,edu,0c20fd90d867fe1be2459223a3cb1a69fa3d44bf,citation,http://pdfs.semanticscholar.org/0c20/fd90d867fe1be2459223a3cb1a69fa3d44bf.pdf,A Monte Carlo Strategy to Integrate Detection and Model-Based Face Analysis,2013
93,AFLW,aflw,39.9041999,116.4073963,"Beijing FaceAll Co., Beijing, China",edu,c7cd490e43ee4ff81e8f86f790063695369c2830,citation,https://doi.org/10.1109/VCIP.2016.7805472,Use fast R-CNN and cascade structure for face detection,2016
94,AFLW,aflw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,c7cd490e43ee4ff81e8f86f790063695369c2830,citation,https://doi.org/10.1109/VCIP.2016.7805472,Use fast R-CNN and cascade structure for face detection,2016
95,AFLW,aflw,47.05821,15.46019568,Graz University of Technology,edu,96a9ca7a8366ae0efe6b58a515d15b44776faf6e,citation,https://arxiv.org/pdf/1609.00129.pdf,Grid Loss: Detecting Occluded Faces,2016
96,AFLW,aflw,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,3b73f8a2b39751efb7d7b396bf825af2aaadee24,citation,https://arxiv.org/pdf/1712.01066.pdf,Connecting Pixels to Privacy and Utility: Automatic Redaction of Private Information in Images,2017
97,AFLW,aflw,47.5612651,7.5752961,University of Basel,edu,043efe5f465704ced8d71a067d2b9d5aa5b59c29,citation,https://pdfs.semanticscholar.org/000a/c6b0865c79bcf0d6f7f069b3abfe229e1462.pdf,Occlusion-aware 3D Morphable Face Models,2016
98,AFLW,aflw,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,ede5982980aa76deae8f9dc5143a724299d67742,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8081396,Lightweight two-stream convolutional face detection,2017
99,AFLW,aflw,51.7534538,-1.25400997,University of Oxford,edu,a3d0ebb50d49116289fb176d28ea98a92badada6,citation,https://pdfs.semanticscholar.org/a3d0/ebb50d49116289fb176d28ea98a92badada6.pdf,Unsupervised Learning of Object Landmarks through Conditional Image Generation,2018
100,AFLW,aflw,55.94951105,-3.19534913,University of Edinburgh,edu,a3d0ebb50d49116289fb176d28ea98a92badada6,citation,https://pdfs.semanticscholar.org/a3d0/ebb50d49116289fb176d28ea98a92badada6.pdf,Unsupervised Learning of Object Landmarks through Conditional Image Generation,2018
101,AFLW,aflw,51.24303255,-0.59001382,University of Surrey,edu,ed07856461da6c7afa4f1782b5b607b45eebe9f6,citation,https://pdfs.semanticscholar.org/ed07/856461da6c7afa4f1782b5b607b45eebe9f6.pdf,D Morphable Models as Spatial Transformer Networks,2017
102,AFLW,aflw,53.94540365,-1.03138878,University of York,edu,ed07856461da6c7afa4f1782b5b607b45eebe9f6,citation,https://pdfs.semanticscholar.org/ed07/856461da6c7afa4f1782b5b607b45eebe9f6.pdf,D Morphable Models as Spatial Transformer Networks,2017
103,AFLW,aflw,37.4173931,-121.9475721,"ARM, Inc.",company,0974677f59e78649a40f0a1d85735410d21b906a,citation,https://doi.org/10.1109/ASPDAC.2017.7858282,A real-time 17-scale object detection accelerator with adaptive 2000-stage classification in 65nm CMOS,2017
104,AFLW,aflw,30.19331415,120.11930822,Zhejiang University,edu,0974677f59e78649a40f0a1d85735410d21b906a,citation,https://doi.org/10.1109/ASPDAC.2017.7858282,A real-time 17-scale object detection accelerator with adaptive 2000-stage classification in 65nm CMOS,2017
105,AFLW,aflw,33.30715065,-111.67653157,Arizona State University,edu,0974677f59e78649a40f0a1d85735410d21b906a,citation,https://doi.org/10.1109/ASPDAC.2017.7858282,A real-time 17-scale object detection accelerator with adaptive 2000-stage classification in 65nm CMOS,2017
106,AFLW,aflw,23.04436505,113.36668458,Guangzhou University,edu,293d69d042fe9bc4fea256c61915978ddaf7cc92,citation,https://doi.org/10.1007/978-981-10-7302-1_6,Face Recognition by Coarse-to-Fine Landmark Regression with Application to ATM Surveillance,2017
107,AFLW,aflw,23.09461185,113.28788994,Sun Yat-Sen University,edu,293d69d042fe9bc4fea256c61915978ddaf7cc92,citation,https://doi.org/10.1007/978-981-10-7302-1_6,Face Recognition by Coarse-to-Fine Landmark Regression with Application to ATM Surveillance,2017
108,AFLW,aflw,51.24303255,-0.59001382,University of Surrey,edu,56e25056153a15eae2a6b10c109f812d2b753cee,citation,https://arxiv.org/pdf/1711.06753.pdf,Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks,2017
109,AFLW,aflw,31.4854255,120.2739581,Jiangnan University,edu,56e25056153a15eae2a6b10c109f812d2b753cee,citation,https://arxiv.org/pdf/1711.06753.pdf,Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks,2017
110,AFLW,aflw,-33.8809651,151.20107299,University of Technology Sydney,edu,ebc2a3e8a510c625353637e8e8f07bd34410228f,citation,https://doi.org/10.1109/TIP.2015.2502485,Dual Sparse Constrained Cascade Regression for Robust Face Alignment,2016
111,AFLW,aflw,38.99203005,-76.9461029,University of Maryland College Park,edu,b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,citation,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf,"HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition",2016
112,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,citation,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf,"HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition",2016
113,AFLW,aflw,47.5612651,7.5752961,University of Basel,edu,5789f8420d8f15e7772580ec373112f864627c4b,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.417,Efficient Global Illumination for Morphable Models,2017
114,AFLW,aflw,51.4293086,-0.2684044,Kingston University,edu,01125e3c68edb420b8d884ff53fb38d9fbe4f2b8,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Jackson_Large_Pose_3D_ICCV_2017_paper.pdf,Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression,2017
115,AFLW,aflw,52.9387428,-1.20029569,University of Nottingham,edu,01125e3c68edb420b8d884ff53fb38d9fbe4f2b8,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Jackson_Large_Pose_3D_ICCV_2017_paper.pdf,Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression,2017
116,AFLW,aflw,39.9808333,116.34101249,Beihang University,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018
117,AFLW,aflw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018
118,AFLW,aflw,32.7283683,-97.11201835,University of Texas at Arlington,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018
119,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,52d7eb0fbc3522434c13cc247549f74bb9609c5d,citation,https://arxiv.org/pdf/1511.06523.pdf,WIDER FACE: A Face Detection Benchmark,2016
120,AFLW,aflw,32.0565957,118.77408833,Nanjing University,edu,b8978a5251b6e341a1171e4fd9177aec1432dd3a,citation,https://doi.org/10.1016/j.image.2016.04.004,FaceHunter: A multi-task convolutional neural network based face detector,2016
121,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,citation,https://arxiv.org/pdf/1511.07212.pdf,Face Alignment in Full Pose Range: A 3D Total Solution,2017
122,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,citation,https://arxiv.org/pdf/1511.07212.pdf,Face Alignment in Full Pose Range: A 3D Total Solution,2017
123,AFLW,aflw,51.6091578,-3.97934429,Swansea University,edu,d115c4a66d765fef596b0b171febca334cea15b5,citation,http://pdfs.semanticscholar.org/d115/c4a66d765fef596b0b171febca334cea15b5.pdf,Combining Stacked Denoising Autoencoders and Random Forests for Face Detection,2016
124,AFLW,aflw,38.88140235,121.52281098,Dalian University of Technology,edu,19705579b8e7d955092ef54a22f95f557a455338,citation,https://doi.org/10.1109/ICIP.2014.7025277,Fiducial facial point extraction with cross ratio,2014
125,AFLW,aflw,51.7534538,-1.25400997,University of Oxford,edu,79eb06c8acce1feef4a8654287d9cf5081e19600,citation,https://arxiv.org/pdf/1808.06882.pdf,Self-supervised learning of a facial attribute embedding from video,2018
126,AFLW,aflw,37.4102193,-122.05965487,Carnegie Mellon University,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016
127,AFLW,aflw,34.0224149,-118.28634407,University of Southern California,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016
128,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.255,Robust FEC-CNN: A High Accuracy Facial Landmark Detection System,2017
129,AFLW,aflw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.255,Robust FEC-CNN: A High Accuracy Facial Landmark Detection System,2017
130,AFLW,aflw,40.00229045,116.32098908,Tsinghua University,edu,3fb26f3abcf0d287243646426cd5ddeee33624d4,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.376,Joint Training of Cascaded CNN for Face Detection,2016
131,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,055cd8173536031e189628c879a2acad6cf2a5d0,citation,https://doi.org/10.1109/BTAS.2017.8272740,Fast multi-view face alignment via multi-task auto-encoders,2017
132,AFLW,aflw,31.9078499,34.81334092,Weizmann Institute of Science,edu,d4c2d26523f577e2d72fc80109e2540c887255c8,citation,http://pdfs.semanticscholar.org/d4c2/d26523f577e2d72fc80109e2540c887255c8.pdf,Face-space Action Recognition by Face-Object Interactions,2016
133,AFLW,aflw,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,3251f40ed1113d592c61d2017e67beca66e678bb,citation,https://doi.org/10.1007/978-3-319-65172-9_17,Improving Face Pose Estimation Using Long-Term Temporal Averaging for Stochastic Optimization,2017
134,AFLW,aflw,56.46255985,84.95565495,Tomsk Polytechnic University,edu,17ded725602b4329b1c494bfa41527482bf83a6f,citation,http://pdfs.semanticscholar.org/cb10/434a5d68ffbe9ed0498771192564ecae8894.pdf,Compact Convolutional Neural Network Cascade for Face Detection,2015
135,AFLW,aflw,40.47913175,-74.43168868,Rutgers University,edu,c8ca6a2dc41516c16ea0747e9b3b7b1db788dbdd,citation,https://arxiv.org/pdf/1609.02825.pdf,Track Facial Points in Unconstrained Videos,2016
136,AFLW,aflw,30.44235995,-84.29747867,Florida State University,edu,42ea8a96eea023361721f0ea34264d3d0fc49ebd,citation,https://arxiv.org/pdf/1608.04695.pdf,Parameterized Principal Component Analysis,2018
137,AFLW,aflw,-27.49741805,153.01316956,University of Queensland,edu,de79437f74e8e3b266afc664decf4e6e4bdf34d7,citation,https://doi.org/10.1109/IVCNZ.2016.7804415,To face or not to face: Towards reducing false positive of face detection,2016
138,AFLW,aflw,42.0551164,-87.67581113,Northwestern University,edu,7c953868cd51f596300c8231192d57c9c514ae17,citation,http://courses.cs.washington.edu/courses/cse590v/13au/CVPR13_FaceDetection.pdf,Detecting and Aligning Faces by Image Retrieval,2013
139,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,19a9f658ea14701502d169dc086651b1d9b2a8ea,citation,http://www.cbsr.ia.ac.cn/users/zlei/papers/JJYan-FG2013.pdf,Structural models for face detection,2013
140,AFLW,aflw,-27.47715625,153.02841004,Queensland University of Technology,edu,be632b206f1cd38eab0c01c5f2004d1e8fc72880,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6607601,Gradual training of cascaded shape regression for facial landmark localization and pose estimation,2013
141,AFLW,aflw,33.6431901,-117.84016494,"University of California, Irvine",edu,0e986f51fe45b00633de9fd0c94d082d2be51406,citation,http://vision.ics.uci.edu/papers/ZhuR_CVPR_2012/ZhuR_CVPR_2012.pdf,"Face detection, pose estimation, and landmark localization in the wild",2012
142,AFLW,aflw,39.9586652,116.30971281,Beijing Institute of Technology,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017
143,AFLW,aflw,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017
144,AFLW,aflw,1.2962018,103.77689944,National University of Singapore,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017
145,AFLW,aflw,41.21002475,-73.80407056,IBM Thomas J. Watson Research Center,company,eb87151fd2796ff5b4bbcf1906d41d53ac6c5595,citation,https://doi.org/10.1109/ICPR.2016.7899719,Enhanced face detection using body part detections for wearable cameras,2016
146,AFLW,aflw,29.5357046,106.60482474,Chongqing University of Posts and Telecommunications,edu,35d272877b178aa97c678e3fcbb619ff512af4c2,citation,https://doi.org/10.1109/SMC.2017.8122743,A multi-scale fusion convolutional neural network for face detection,2017
147,AFLW,aflw,52.7663577,-1.2292461,Loughborough University,edu,9e8f95503bebdfb623d4e5b51347f72677d89d99,citation,https://pdfs.semanticscholar.org/9e8f/95503bebdfb623d4e5b51347f72677d89d99.pdf,Multi-dimensional local binary pattern texture descriptors and their application for medical image analysis,2014
148,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,492f41e800c52614c5519f830e72561db205e86c,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Lv_A_Deep_Regression_CVPR_2017_paper.pdf,A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection,2017
149,AFLW,aflw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,492f41e800c52614c5519f830e72561db205e86c,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Lv_A_Deep_Regression_CVPR_2017_paper.pdf,A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection,2017
150,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,c6382de52636705be5898017f2f8ed7c70d7ae96,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089,Unconstrained face detection: State of the art baseline and challenges,2015
151,AFLW,aflw,38.95187,-77.363259,"Noblis, Falls Church, VA, U.S.A.",company,c6382de52636705be5898017f2f8ed7c70d7ae96,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089,Unconstrained face detection: State of the art baseline and challenges,2015
152,AFLW,aflw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,b11bb6bd63ee6f246d278dd4edccfbe470263803,citation,http://pdfs.semanticscholar.org/b11b/b6bd63ee6f246d278dd4edccfbe470263803.pdf,Joint Voxel and Coordinate Regression for Accurate 3D Facial Landmark Localization,2018
153,AFLW,aflw,22.53521465,113.9315911,Shenzhen University,edu,66dcd855a6772d2731b45cfdd75f084327b055c2,citation,http://pdfs.semanticscholar.org/66dc/d855a6772d2731b45cfdd75f084327b055c2.pdf,Quality Classified Image Analysis with Application to Face Detection and Recognition,2018
154,AFLW,aflw,38.5336349,-121.79077264,"University of California, Davis",edu,fdf8e293a7618f560e76bd83e3c40a0788104547,citation,https://arxiv.org/pdf/1704.04023.pdf,Interspecies Knowledge Transfer for Facial Keypoint Detection,2017
155,AFLW,aflw,30.19331415,120.11930822,Zhejiang University,edu,fdf8e293a7618f560e76bd83e3c40a0788104547,citation,https://arxiv.org/pdf/1704.04023.pdf,Interspecies Knowledge Transfer for Facial Keypoint Detection,2017
156,AFLW,aflw,51.49887085,-0.17560797,Imperial College London,edu,38cbb500823057613494bacd0078aa0e57b30af8,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.252,Deep Face Deblurring,2017
157,AFLW,aflw,22.2081469,114.25964115,University of Hong Kong,edu,fb87045600da73b07f0757f345a937b1c8097463,citation,https://pdfs.semanticscholar.org/5c54/2fef80a35a4f930e5c82040b52c58e96ce87.pdf,Reflective Regression of 2D-3D Face Shape Across Large Pose,2016
158,AFLW,aflw,52.2380139,6.8566761,University of Twente,edu,71b07c537a9e188b850192131bfe31ef206a39a0,citation,http://pdfs.semanticscholar.org/71b0/7c537a9e188b850192131bfe31ef206a39a0.pdf,300 Faces In-The-Wild Challenge: database and results,2016
159,AFLW,aflw,35.6924853,139.7582533,"National Institute of Informatics, Japan",edu,4dd71a097e6b3cd379d8c802460667ee0cbc8463,citation,http://www.dgcv.nii.ac.jp/Publications/Papers/2015/BWILD2015.pdf,Real-time multi-view facial landmark detector learned by the structured output SVM,2015
160,AFLW,aflw,33.856111,-5.574391,Moulay Ismail University,edu,1fd7a17a6c630a122c1a3d1c0668d14c0c375de0,citation,https://doi.org/10.1109/CIST.2016.7805097,"Facial landmark localization: Past, present and future",2016
161,AFLW,aflw,38.88140235,121.52281098,Dalian University of Technology,edu,940e5c45511b63f609568dce2ad61437c5e39683,citation,https://doi.org/10.1109/TIP.2015.2390976,Fiducial Facial Point Extraction Using a Novel Projective Invariant,2015
162,AFLW,aflw,37.4102193,-122.05965487,Carnegie Mellon University,edu,6dbdb07ce2991db0f64c785ad31196dfd4dae721,citation,https://arxiv.org/pdf/1802.09058.pdf,Seeing Small Faces from Robust Anchor's Perspective,2018
163,AFLW,aflw,30.04287695,31.23664139,American University in Cairo,edu,1a12eec3ceb1c81cde4ae6e8f27aac08b36317d4,citation,https://arxiv.org/pdf/1706.09498.pdf,Real-time Distracted Driver Posture Classification,2017
164,AFLW,aflw,51.6091578,-3.97934429,Swansea University,edu,cc70fb1ab585378c79a2ab94776723e597afe379,citation,https://doi.org/10.1109/ICIP.2017.8297067,Detect face in the wild using CNN cascade with feature aggregation at multi-resolution,2017
165,AFLW,aflw,51.49887085,-0.17560797,Imperial College London,edu,59d8fa6fd91cdb72cd0fa74c04016d79ef5a752b,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Zafeiriou_The_Menpo_Facial_CVPR_2017_paper.pdf,The Menpo Facial Landmark Localisation Challenge: A Step Towards the Solution,2017
166,AFLW,aflw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,2f61d91033a06dd904ff9d1765d57e5b4d7f57a6,citation,https://doi.org/10.1109/ICIP.2016.7532953,FCFD: Teach the machine to accomplish face detection step by step,2016
167,AFLW,aflw,40.47913175,-74.43168868,Rutgers University,edu,04ff69aa20da4eeccdabbe127e3641b8e6502ec0,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Sequential_Face_Alignment_CVPR_2016_paper.pdf,Sequential Face Alignment via Person-Specific Modeling in the Wild,2016
168,AFLW,aflw,32.7283683,-97.11201835,University of Texas at Arlington,edu,04ff69aa20da4eeccdabbe127e3641b8e6502ec0,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Sequential_Face_Alignment_CVPR_2016_paper.pdf,Sequential Face Alignment via Person-Specific Modeling in the Wild,2016
169,AFLW,aflw,31.2284923,121.40211389,East China Normal University,edu,83295bce2340cb87901499cff492ae6ff3365475,citation,https://arxiv.org/pdf/1808.01558.pdf,Deep Multi-Center Learning for Face Alignment,2018
170,AFLW,aflw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,83295bce2340cb87901499cff492ae6ff3365475,citation,https://arxiv.org/pdf/1808.01558.pdf,Deep Multi-Center Learning for Face Alignment,2018
171,AFLW,aflw,46.0658836,11.1159894,University of Trento,edu,f201baf618574108bcee50e9a8b65f5174d832ee,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8031057,Viewpoint-Consistent 3D Face Alignment,2018
172,AFLW,aflw,13.65450525,100.49423171,Robotics Institute,edu,f201baf618574108bcee50e9a8b65f5174d832ee,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8031057,Viewpoint-Consistent 3D Face Alignment,2018
173,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,4c6233765b5f83333f6c675d3389bbbf503805e3,citation,https://perceptual.mpi-inf.mpg.de/files/2015/03/Yan_Vis13.pdf,Real-time high performance deformable model for face detection in the wild,2013
174,AFLW,aflw,40.51865195,-74.44099801,State University of New Jersey,edu,02820c1491b10a1ff486fed32c269e4077c36551,citation,https://arxiv.org/pdf/1610.07930v1.pdf,Active user authentication for smartphones: A challenge data set and benchmark results,2016
175,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,02820c1491b10a1ff486fed32c269e4077c36551,citation,https://arxiv.org/pdf/1610.07930v1.pdf,Active user authentication for smartphones: A challenge data set and benchmark results,2016
176,AFLW,aflw,33.776033,-84.39884086,Georgia Institute of Technology,edu,e659221538d256b2c3e0724deff749eda903fc7d,citation,https://arxiv.org/pdf/1710.00925.pdf,Fine-Grained Head Pose Estimation Without Keypoints,2017
177,AFLW,aflw,49.20172,16.6033168,Brno University of Technology,edu,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018
178,AFLW,aflw,48.5670466,13.4517835,University of Passau,edu,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018
179,AFLW,aflw,50.7171497,7.12825184,"Deutsche Welle, Bonn, Germany",edu,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018
180,AFLW,aflw,44.6531692,10.8586228,"Expert Systems, Modena, Italy",company,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018
181,AFLW,aflw,53.27639715,-9.05829961,National University of Ireland Galway,edu,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018
182,AFLW,aflw,40.4402995,-3.7870076,"Paradigma Digital, Madrid, Spain",company,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018
183,AFLW,aflw,53.3498053,-6.2603097,"Siren Solutions, Dublin, Ireland",company,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018
184,AFLW,aflw,39.86742125,32.73519072,Hacettepe University,edu,9865fe20df8fe11717d92b5ea63469f59cf1635a,citation,https://arxiv.org/pdf/1805.07566.pdf,Wildest Faces: Face Detection and Recognition in Violent Settings,2018
185,AFLW,aflw,39.87549675,32.78553506,Middle East Technical University,edu,9865fe20df8fe11717d92b5ea63469f59cf1635a,citation,https://arxiv.org/pdf/1805.07566.pdf,Wildest Faces: Face Detection and Recognition in Violent Settings,2018
186,AFLW,aflw,47.3764534,8.54770931,ETH Zürich,edu,961a5d5750f18e91e28a767b3cb234a77aac8305,citation,http://pdfs.semanticscholar.org/961a/5d5750f18e91e28a767b3cb234a77aac8305.pdf,Face Detection without Bells and Whistles,2014
187,AFLW,aflw,40.51865195,-74.44099801,State University of New Jersey,edu,0d746111135c2e7f91443869003d05cde3044beb,citation,https://doi.org/10.1109/ICIP.2016.7532908,Partial face detection for continuous authentication,2016
188,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,0d746111135c2e7f91443869003d05cde3044beb,citation,https://doi.org/10.1109/ICIP.2016.7532908,Partial face detection for continuous authentication,2016
189,AFLW,aflw,34.0224149,-118.28634407,University of Southern California,edu,eb6ee56e085ebf473da990d032a4249437a3e462,citation,http://www-scf.usc.edu/~chuntinh/doc/Age_Gender_Classification_APSIPA_2017.pdf,Age/gender classification with whole-component convolutional neural networks (WC-CNN),2017
190,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,2a4153655ad1169d482e22c468d67f3bc2c49f12,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Face_Alignment_Across_CVPR_2016_paper.pdf,Face Alignment Across Large Poses: A 3D Solution,2016
191,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,2a4153655ad1169d482e22c468d67f3bc2c49f12,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Face_Alignment_Across_CVPR_2016_paper.pdf,Face Alignment Across Large Poses: A 3D Solution,2016
192,AFLW,aflw,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,ca8f23d9b9a40016eaf0467a3df46720ac718e1d,citation,https://doi.org/10.1109/ICASSP.2015.7178214,Face detection using Local Hybrid Patterns,2015
193,AFLW,aflw,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
194,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
195,AFLW,aflw,-33.8809651,151.20107299,University of Technology Sydney,edu,bbf28f39e5038813afd74cf1bc78d55fcbe630f1,citation,https://arxiv.org/pdf/1803.04108.pdf,Style Aggregated Network for Facial Landmark Detection,2018
196,AFLW,aflw,-33.95828745,18.45997349,University of Cape Town,edu,36e8ef2e5d52a78dddf0002e03918b101dcdb326,citation,http://www.milbo.org/stasm-files/multiview-active-shape-models-with-sift-for-300w.pdf,Multiview Active Shape Models with SIFT Descriptors for the 300-W Face Landmark Challenge,2013
197,AFLW,aflw,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,1b794b944fd462a2742b6c2f8021fecc663004c9,citation,http://arxiv.org/abs/1709.05732,A Hierarchical Probabilistic Model for Facial Feature Detection,2014
198,AFLW,aflw,40.47913175,-74.43168868,Rutgers University,edu,afdf9a3464c3b015f040982750f6b41c048706f5,citation,https://arxiv.org/pdf/1608.05477.pdf,A Recurrent Encoder-Decoder Network for Sequential Face Alignment,2016
199,AFLW,aflw,50.3755269,-4.13937687,Plymouth University,edu,239958d6778643101ab631ec354ea1bc4d33e7e0,citation,http://doi.org/10.1016/j.patcog.2017.06.009,Head pose estimation in the wild using Convolutional Neural Networks and adaptive gradient methods,2017
200,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,40c8cffd5aac68f59324733416b6b2959cb668fd,citation,http://arxiv.org/abs/1701.08341,Pooling Facial Segments to Face: The Shallow and Deep Ends,2017
201,AFLW,aflw,-27.49741805,153.01316956,University of Queensland,edu,28646c6220848db46c6944967298d89a6559c700,citation,https://pdfs.semanticscholar.org/2864/6c6220848db46c6944967298d89a6559c700.pdf,It takes two to tango : Cascading off-the-shelf face detectors,2018
202,AFLW,aflw,37.4102193,-122.05965487,Carnegie Mellon University,edu,48a9241edda07252c1aadca09875fabcfee32871,citation,https://arxiv.org/pdf/1611.08657v5.pdf,Convolutional Experts Constrained Local Model for Facial Landmark Detection,2017
203,AFLW,aflw,52.2380139,6.8566761,University of Twente,edu,044d9a8c61383312cdafbcc44b9d00d650b21c70,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,2013
204,AFLW,aflw,51.49887085,-0.17560797,Imperial College London,edu,044d9a8c61383312cdafbcc44b9d00d650b21c70,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,2013
205,AFLW,aflw,53.22853665,-0.54873472,University of Lincoln,edu,044d9a8c61383312cdafbcc44b9d00d650b21c70,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,2013
206,AFLW,aflw,52.9387428,-1.20029569,University of Nottingham,edu,4cd0da974af9356027a31b8485a34a24b57b8b90,citation,https://arxiv.org/pdf/1703.00862v2.pdf,Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources,2017
207,AFLW,aflw,41.70456775,-86.23822026,University of Notre Dame,edu,17479e015a2dcf15d40190e06419a135b66da4e0,citation,https://arxiv.org/pdf/1610.08119.pdf,Predicting First Impressions With Deep Learning,2017
208,AFLW,aflw,30.274084,120.15507,Alibaba,company,89497854eada7e32f06aa8f3c0ceedc0e91ecfef,citation,https://doi.org/10.1109/TIP.2017.2784571,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,2018
209,AFLW,aflw,30.19331415,120.11930822,Zhejiang University,edu,89497854eada7e32f06aa8f3c0ceedc0e91ecfef,citation,https://doi.org/10.1109/TIP.2017.2784571,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,2018
210,AFLW,aflw,32.77824165,34.99565673,Open University of Israel,edu,0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,citation,https://arxiv.org/pdf/1708.07517.pdf,FacePoseNet: Making a Case for Landmark-Free Face Alignment,2017