1
|
{"id": "1be498d4bbc30c3bfd0029114c784bc2114d67c0", "dataset": {"key": "adience", "name_short": "Adience", "using": "N", "ft_share": "1", "subset_of": "", "superset_of": "", "name_full": "Adience Benchmark", "url": "http://www.openu.ac.il/home/hassner/Adience/data.html", "added_on": "", "faces": "", "pdf_paper": "Y", "comments": "Adience3D build up on this one", "": "", "relevance": ""}, "statistics": {"key": "adience", "name": "Adience", "berit": "Y", "charlie": "", "adam": "", "priority": "N", "wild": "Y", "indoor": "", "outdoor": "", "cyberspace": "Y", "names": "", "downloaded": "Y", "year_start": "", "year_end": "", "year_published": "2014", "ongoing": "", "images": "26,580 ", "videos": "", "faces_unique": "2,284 ", "total_faces": "", "img_per_person": "", "num_cameras": "", "faces_persons": "", "female": "", "male": "", "landmarks": "", "width": "", "height": "", "color": "", "gray": "", "derivative_of": "", "tags": "fr, age, gender", "source": "flickr", "purpose_short": "maybe only 19,370 images. age, gender", "size_gb": "1.34", "agreement": "N", "agree_requied": "", "agreement_signed": "", "comment": "", "comment 2": "", "comment 3": "", "": ""}, "paper": {"paper_id": "1be498d4bbc30c3bfd0029114c784bc2114d67c0", "key": "adience", "title": "Age and Gender Estimation of Unfiltered Faces", "year": "2014", "pdf": ["http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf"], "address": "", "name": "Adience", "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6906255", "http://doi.org/10.1109/TIFS.2014.2359646"]}, "address": null, "additional_papers": [], "citations": [{"id": "f726738954e7055bb3615fa7e8f59f136d3e0bdc", "title": "Are you eligible? Predicting adulthood from face images via class specific mean autoencoder", "addresses": [{"address": "IIIT Delhi, India", "lat": "28.54562820", "lng": "77.27315050", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.07385.pdf"]}, {"id": "16d6737b50f969247339a6860da2109a8664198a", "title": "Convolutional Neural Networks for Age and Gender Classification", "addresses": [{"address": "Stanford University", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu"}], "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/16d6/737b50f969247339a6860da2109a8664198a.pdf"]}, {"id": "2149d49c84a83848d6051867290d9c8bfcef0edb", "title": "Label-Sensitive Deep Metric Learning for Facial Age Estimation", "addresses": [{"address": "Tsinghua University", "lat": "40.00229045", "lng": "116.32098908", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "31ea88f29e7f01a9801648d808f90862e066f9ea", "title": "Deep Multi-task Representation Learning: A Tensor Factorisation Approach", "addresses": [{"address": "University of London", "lat": "51.52176680", "lng": "-0.13019072", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1605.06391.pdf"]}, {"id": "d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d", "title": "Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation", "addresses": [{"address": "Chinese Academy of Sciences", "lat": "40.00447950", "lng": "116.37023800", "type": "edu"}, {"address": "University of Chinese Academy of Sciences", "lat": "39.90828040", "lng": "116.24585270", "type": "edu"}], "year": "", "pdf": ["https://pdfs.semanticscholar.org/d492/dbfaa42b4f8b8a74786d7343b3be6a3e9a1d.pdf"]}, {"id": "29f298dd5f806c99951cb434834bc8dcc765df18", "title": "Computationally efficient template-based face recognition", "addresses": [{"address": "University of Southern California", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu"}], "year": "2016", "pdf": ["https://5443dcab-a-62cb3a1a-s-sites.googlegroups.com/site/tuftsyuewu/07899837.pdf?attachauth=ANoY7cqfUhcvdFXMZgmlp5F8vpsgnxBsprKKckxy_aZoISF-hkIFI9fOfhgG4xZaMrCeWwTD5mMdnQ2hBZzxR-8V81R3mF4OfAFLYtwdzfrf-KZK0jmORMVmLD_J8Z9xHoxj2DB6UDiAYoDwXFNg06yeoySgY6iT4Pjc_KCaDToyeyrLijivRbrfFOyvuzxfUXyo9lVg9FY0e5H3mdW1NFllFKgxpOFV9Q%3D%3D&attredirects=0"]}, {"id": "ed9d11e995baeec17c5d2847ec1a8d5449254525", "title": "Efficient Gender Classification Using a Deep LDA-Pruned Net", "addresses": [{"address": "McGill University", "lat": "45.50397610", "lng": "-73.57496870", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/ed9d/11e995baeec17c5d2847ec1a8d5449254525.pdf"]}, {"id": "07a1e6d26028b28185b7a3eee86752c240a24261", "title": "MODE: automated neural network model debugging via state differential analysis and input selection", "addresses": [{"address": "Purdue University", "lat": "40.43197220", "lng": "-86.92389368", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "10126b467391e153d36f1a496ef5618097775ad1", "title": "An Active Age Estimation of Facial image using Anthropometric Model and Fast ICA", "addresses": [{"address": "Bangalore Institute of Technology", "lat": "12.95512590", "lng": "77.57419850", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/1012/6b467391e153d36f1a496ef5618097775ad1.pdf"]}, {"id": "0ba402af3b8682e2aa89f76bd823ddffdf89fa0a", "title": "Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks", "addresses": [{"address": "Stony Brook University", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu"}, {"address": "Harvard University", "lat": "42.36782045", "lng": "-71.12666653", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.05916.pdf"]}, {"id": "56f86bef26209c85f2ef66ec23b6803d12ca6cd6", "title": "Pyramidal RoR for image classification", "addresses": [{"address": "North China Electric Power University", "lat": "38.87604460", "lng": "115.49738730", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.00307.pdf"]}, {"id": "51f626540860ad75b68206025a45466a6d087aa6", "title": "Cluster convolutional neural networks for facial age estimation", "addresses": [{"address": "Tsinghua University", "lat": "40.00229045", "lng": "116.32098908", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "407bb798ab153bf6156ba2956f8cf93256b6910a", "title": "Fisher Pruning of Deep Nets for Facial Trait Classification", "addresses": [{"address": "McGill University", "lat": "45.50397610", "lng": "-73.57496870", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.08134.pdf"]}, {"id": "81fc86e86980a32c47410f0ba7b17665048141ec", "title": "Segment-based Methods for Facial Attribute Detection from Partial Faces", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.03546.pdf"]}, {"id": "dc2f16f967eac710cb9b7553093e9c977e5b761d", "title": "Learning a lightweight deep convolutional network for joint age and gender recognition", "addresses": [{"address": "Hong Kong Polytechnic University", "lat": "22.30457200", "lng": "114.17976285", "type": "edu"}, {"address": "Sun Yat-Sen University", "lat": "23.09461185", "lng": "113.28788994", "type": "edu"}], "year": "2016", "pdf": []}, {"id": "7a65fc9e78eff3ab6062707deaadde024d2fad40", "title": "A Study on Apparent Age Estimation", "addresses": [{"address": "West Virginia University", "lat": "39.65404635", "lng": "-79.96475355", "type": "edu"}], "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Zhu_A_Study_on_ICCV_2015_paper.pdf"]}, {"id": "28d99dc2d673d62118658f8375b414e5192eac6f", "title": "Using Ranking-CNN for Age Estimation", "addresses": [{"address": "Wayne State University", "lat": "42.35775700", "lng": "-83.06286711", "type": "edu"}], "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Chen_Using_Ranking-CNN_for_CVPR_2017_paper.pdf", "http://www.cs.wayne.edu/~mdong/cvpr17.pdf"]}, {"id": "0951f42abbf649bb564a21d4ff5dddf9a5ea54d9", "title": "Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications", "addresses": [{"address": "Institute of Information Science", "lat": "25.04107280", "lng": "121.61475620", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.02023.pdf"]}, {"id": "eb6ee56e085ebf473da990d032a4249437a3e462", "title": "Age/gender classification with whole-component convolutional neural networks (WC-CNN)", "addresses": [{"address": "University of Southern California", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu"}], "year": "2017", "pdf": ["http://www-scf.usc.edu/~chuntinh/doc/Age_Gender_Classification_APSIPA_2017.pdf"]}, {"id": "0a34fe39e9938ae8c813a81ae6d2d3a325600e5c", "title": "FacePoseNet: Making a Case for Landmark-Free Face Alignment", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.07517.pdf"]}, {"id": "65d705bbcc10f42683503b3599327c816265d951", "title": "Articulated Motion and Deformable Objects", "addresses": [{"address": "University of Surrey", "lat": "51.24303255", "lng": "-0.59001382", "type": "edu"}], "year": "2014", "pdf": ["http://www.cbsr.ia.ac.cn/users/jwan/papers/PR2018_AMDO.pdf"]}, {"id": "7587a09d924cab41822a07cd1a988068b74baabb", "title": "Image scoring: Patch based CNN model for small or medium dataset", "addresses": [{"address": "Sichuan Police College, Luzhou, China", "lat": "28.87451300", "lng": "105.43182700", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "d00e9a6339e34c613053d3b2c132fccbde547b56", "title": "A cascaded convolutional neural network for age estimation of unconstrained faces", "addresses": [{"address": "State University of New Jersey", "lat": "40.51865195", "lng": "-74.44099801", "type": "edu"}, {"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2016", "pdf": ["http://www.rci.rutgers.edu/~vmp93/Conference_pub/btas_age_2016_cameraready.pdf"]}, {"id": "9d4692e243e25eb465a0480376beb60a5d2f0f13", "title": "Positional Ternary Pattern (PTP): An edge based image descriptor for human age recognition", "addresses": [{"address": "Kyung Hee University", "lat": "32.85363330", "lng": "-117.20352860", "type": "edu"}], "year": "2016", "pdf": []}, {"id": "00823e6c0b6f1cf22897b8d0b2596743723ec51c", "title": "Understanding and Comparing Deep Neural Networks for Age and Gender Classification", "addresses": [{"address": "Singapore University of Technology and Design", "lat": "1.34021600", "lng": "103.96508900", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.07689.pdf"]}, {"id": "a713a01971e73d0c3118d0409dc7699a24f521d6", "title": "Age estimation based on face images and pre-trained convolutional neural networks", "addresses": [{"address": "Universit\u00e0 degli Studi di Milano", "lat": "45.47567215", "lng": "9.23336232", "type": "edu"}], "year": "2017", "pdf": ["https://air.unimi.it/retrieve/handle/2434/527428/913482/cisda17.pdf"]}, {"id": "c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c", "title": "Age and gender estimation using deep residual learning network", "addresses": [{"address": "Ajou University", "lat": "37.28300030", "lng": "127.04548469", "type": "edu"}, {"address": "Korea Electronics Technology Institute", "lat": "37.40391700", "lng": "127.15978600", "type": "edu"}, {"address": "Seoul National University", "lat": "37.26728000", "lng": "126.98411510", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "975978ee6a32383d6f4f026b944099e7739e5890", "title": "Privacy-Preserving Age Estimation for Content Rating", "addresses": [{"address": "University of Manitoba", "lat": "49.80915360", "lng": "-97.13304179", "type": "edu"}, {"address": "Simon Fraser University", "lat": "49.27674540", "lng": "-122.91777375", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/9759/78ee6a32383d6f4f026b944099e7739e5890.pdf"]}, {"id": "58df849378fbcfb6b1a8ebddfbe4caa450226b9d", "title": "Head pose estimation using learned discretization", "addresses": [{"address": "College of Computing, Georgia Tech", "lat": "33.77743490", "lng": "-84.39732080", "type": "edu"}, {"address": "Temple University", "lat": "39.95472495", "lng": "-75.15346905", "type": "edu"}, {"address": "Elon University", "lat": "36.10179560", "lng": "-79.50173300", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "2e58ec57d71b2b2a3e71086234dd7037559cc17e", "title": "A Gender Recognition System from Facial Image", "addresses": [{"address": "Institute of Information Technology", "lat": "23.72898990", "lng": "90.39826820", "type": "edu"}, {"address": "University of Dhaka", "lat": "23.73169570", "lng": "90.39652750", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2e58/ec57d71b2b2a3e71086234dd7037559cc17e.pdf"]}, {"id": "bd572e9cbec095bcf5700cb7cd73d1cdc2fe02f4", "title": "Deep Learning for Computer Vision: A Brief Review", "addresses": [{"address": "National Technical University of Athens", "lat": "37.98782705", "lng": "23.73179733", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ca01/1427853d34ce4ec9ccafde8a70c9eacc3e21.pdf"]}, {"id": "56c2fb2438f32529aec604e6fc3b06a595ddbfcc", "title": "Comparison of Recent Machine Learning Techniques for Gender Recognition from Facial Images", "addresses": [{"address": "Central Washington University", "lat": "47.00646895", "lng": "-120.53673040", "type": "edu"}], "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/60dc/35a42ac758c5372c44f3791c951374658609.pdf"]}, {"id": "c75e6ce54caf17b2780b4b53f8d29086b391e839", "title": "ExpNet: Landmark-Free, Deep, 3D Facial Expressions", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.00542.pdf"]}, {"id": "47cd161546c59ab1e05f8841b82e985f72e5ddcb", "title": "Gender classification in live videos", "addresses": [{"address": "University of Science and Technology of China", "lat": "31.83907195", "lng": "117.26420748", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "1862f2df2e278505c9ca970f9c5a25ea3aeb9686", "title": "Merging Deep Neural Networks for Mobile Devices", "addresses": [{"address": "Institute of Information Science", "lat": "25.04107280", "lng": "121.61475620", "type": "edu"}], "year": "", "pdf": ["https://pdfs.semanticscholar.org/1862/f2df2e278505c9ca970f9c5a25ea3aeb9686.pdf"]}, {"id": "16820ccfb626dcdc893cc7735784aed9f63cbb70", "title": "Real-time embedded age and gender classification in unconstrained video", "addresses": [{"address": "University of Ottawa", "lat": "45.42580475", "lng": "-75.68740118", "type": "edu"}], "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W12/papers/Azarmehr_Real-Time_Embedded_Age_2015_CVPR_paper.pdf", "https://ruor.uottawa.ca/bitstream/10393/32463/1/Azarmehr_Ramin_2015_thesis.pdf"]}, {"id": "282503fa0285240ef42b5b4c74ae0590fe169211", "title": "Feeding Hand-Crafted Features for Enhancing the Performance of Convolutional Neural Networks", "addresses": [{"address": "Seoul National University", "lat": "37.26728000", "lng": "126.98411510", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.07848.pdf"]}, {"id": "854b1f0581f5d3340f15eb79452363cbf38c04c8", "title": "Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation", "addresses": [{"address": "Kyung Hee University", "lat": "32.85363330", "lng": "-117.20352860", "type": "edu"}, {"address": "King Saud University", "lat": "24.72464030", "lng": "46.62335012", "type": "edu"}, {"address": "Institute of Information Technology", "lat": "23.72898990", "lng": "90.39826820", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "361c9ba853c7d69058ddc0f32cdbe94fbc2166d5", "title": "Deep Reinforcement Learning of Video Games", "addresses": [{"address": "University of Groningen", "lat": "53.21967825", "lng": "6.56251482", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/361c/9ba853c7d69058ddc0f32cdbe94fbc2166d5.pdf"]}, {"id": "ac9a331327cceda4e23f9873f387c9fd161fad76", "title": "Deep Convolutional Neural Network for Age Estimation based on VGG-Face Model", "addresses": [{"address": "University of Bridgeport", "lat": "41.16648580", "lng": "-73.19205640", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.01664.pdf"]}, {"id": "4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac", "title": "Deep Convolutional Neural Networks and Support Vector Machines for Gender Recognition", "addresses": [{"address": "University of Groningen", "lat": "53.21967825", "lng": "6.56251482", "type": "edu"}], "year": "2015", "pdf": ["http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_SSCI_2015/data/7560a188.pdf", "http://www.ai.rug.nl/~mwiering/GROUP/ARTICLES/CNN_Gender_Recognition.pdf"]}, {"id": "6193c833ad25ac27abbde1a31c1cabe56ce1515b", "title": "Trojaning Attack on Neural Networks", "addresses": [{"address": "Purdue University", "lat": "40.43197220", "lng": "-86.92389368", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/5f25/7ca18a92c3595db3bda3224927ec494003a5.pdf"]}, {"id": "b18858ad6ec88d8b443dffd3e944e653178bc28b", "title": "2017 Trojaning Attack on Neural Networks", "addresses": [{"address": "Purdue University", "lat": "40.43197220", "lng": "-86.92389368", "type": "edu"}, {"address": "Nanjing University", "lat": "32.05659570", "lng": "118.77408833", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b188/58ad6ec88d8b443dffd3e944e653178bc28b.pdf"]}, {"id": "25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b", "title": "Neural Networks with Smooth Adaptive Activation Functions for Regression", "addresses": [{"address": "Stony Brook University", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu"}, {"address": "Oak Ridge National Laboratory", "lat": "35.93006535", "lng": "-84.31240032", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1608.06557.pdf"]}, {"id": "1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc", "title": "Squared Earth Mover \u2019 s Distance Loss for Training Deep Neural Networks on Ordered-Classes", "addresses": [{"address": "Stony Brook University", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/1190/cba0cae3c8bb81bf80d6a0a83ae8c41240bc.pdf"]}, {"id": "14e9158daf17985ccbb15c9cd31cf457e5551990", "title": "ConvNets with Smooth Adaptive Activation Functions for Regression", "addresses": [{"address": "Stony Brook University", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu"}, {"address": "Oak Ridge National Laboratory", "lat": "35.93006535", "lng": "-84.31240032", "type": "edu"}, {"address": "Stony Brook University Hospital", "lat": "40.90826665", "lng": "-73.11520891", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf"]}, {"id": "13719bbb4bb8bbe0cbcdad009243a926d93be433", "title": "Deep LDA-Pruned Nets for Efficient Facial Gender Classification", "addresses": [{"address": "McGill University", "lat": "45.50397610", "lng": "-73.57496870", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.06305.pdf"]}, {"id": "fd53be2e0a9f33080a9db4b5a5e416e24ae8e198", "title": "Apparent Age Estimation Using Ensemble of Deep Learning Models", "addresses": [{"address": "Istanbul Technical University", "lat": "41.10427915", "lng": "29.02231159", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.02909.pdf"]}, {"id": "017e94ad51c9be864b98c9b75582753ce6ee134f", "title": "Rapid one-shot acquisition of dynamic VR avatars", "addresses": [{"address": "Disney Research, Zurich", "lat": "47.38046850", "lng": "8.54303550", "type": "edu"}, {"address": "Disney Research, UK", "lat": "34.15797420", "lng": "-118.28947290", "type": "company"}, {"address": "Walt Disney Imagineering", "lat": "34.16191740", "lng": "-118.28837020", "type": "company"}], "year": "2017", "pdf": ["https://graphics.ethz.ch/~jebazin/papers/VR_2017_resized.pdf"]}, {"id": "b44f03b5fa8c6275238c2d13345652e6ff7e6ea9", "title": "Lapped convolutional neural networks for embedded systems", "addresses": [{"address": "AltumView Systems Inc., Burnaby, BC, Canada", "lat": "49.25938790", "lng": "-122.91518930", "type": "company"}], "year": "2017", "pdf": []}, {"id": "24286ef164f0e12c3e9590ec7f636871ba253026", "title": "Age and gender classification using wide convolutional neural network and Gabor filter", "addresses": [{"address": "Ajou University", "lat": "37.28300030", "lng": "127.04548469", "type": "edu"}, {"address": "Seoul National University", "lat": "37.26728000", "lng": "126.98411510", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "96e0cfcd81cdeb8282e29ef9ec9962b125f379b0", "title": "The MegaFace Benchmark: 1 Million Faces for Recognition at Scale", "addresses": [{"address": "University of Washington", "lat": "47.65432380", "lng": "-122.30800894", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1512.00596.pdf"]}, {"id": "1fe121925668743762ce9f6e157081e087171f4c", "title": "Unsupervised learning of overcomplete face descriptors", "addresses": [{"address": "University of Oulu", "lat": "65.05921570", "lng": "25.46632601", "type": "edu"}], "year": "2015", "pdf": ["http://www.ee.oulu.fi/~jkannala/publications/cvprw2015.pdf", "https://users.aalto.fi/~kannalj1/publications/cvprw2015.pdf", "https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Ylioinas_Unsupervised_Learning_of_2015_CVPR_paper.pdf"]}, {"id": "c5eba789aeb41904aa1b03fad1dc7cea5d0cd3b6", "title": "Age and gender classification using local appearance descriptors from facial components", "addresses": [{"address": "Advanced Technologies Application Center, Havana, Cuba", "lat": "23.08862140", "lng": "-82.44819440", "type": "edu"}, {"address": "University of Sassari", "lat": "40.72401760", "lng": "8.55789470", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "cb27b45329d61f5f95ed213798d4b2a615e76be2", "title": "Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion", "addresses": [{"address": "Korea Advanced Institute of Science and Technology", "lat": "36.36971910", "lng": "127.36253700", "type": "edu"}, {"address": "Samsung SAIT, Korea", "lat": "37.25202260", "lng": "127.05550190", "type": "company"}], "year": "2018", "pdf": []}, {"id": "d80a3d1f3a438e02a6685e66ee908446766fefa9", "title": "Quantifying Facial Age by Posterior of Age Comparisons", "addresses": [{"address": "SenseTime", "lat": "39.99300800", "lng": "116.32988200", "type": "company"}, {"address": "Chinese University of Hong Kong", "lat": "22.42031295", "lng": "114.20788644", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.09687.pdf"]}, {"id": "4f1249369127cc2e2894f6b2f1052d399794919a", "title": "Deep Age Estimation: From Classification to Ranking", "addresses": [{"address": "Wayne State University", "lat": "42.35775700", "lng": "-83.06286711", "type": "edu"}], "year": "2018", "pdf": ["http://www.cs.wayne.edu/~mdong/tmm18.pdf"]}, {"id": "4522a7268facecf05769e90cae6555ac70c05cc8", "title": "Auxiliary Demographic Information Assisted Age Estimation With Cascaded Structure", "addresses": [{"address": "Chinese Academy of Sciences", "lat": "40.00447950", "lng": "116.37023800", "type": "edu"}, {"address": "West Virginia University", "lat": "39.65404635", "lng": "-79.96475355", "type": "edu"}], "year": "2018", "pdf": ["http://www.cbsr.ia.ac.cn/users/jwan/papers/TCYB2017_age.pdf"]}, {"id": "d0471d5907d6557cf081edf4c7c2296c3c221a38", "title": "A Constrained Deep Neural Network for Ordinal Regression", "addresses": [{"address": "Nanyang Technological University", "lat": "1.34841040", "lng": "103.68297965", "type": "edu"}], "year": "", "pdf": ["https://pdfs.semanticscholar.org/d047/1d5907d6557cf081edf4c7c2296c3c221a38.pdf"]}, {"id": "500fbe18afd44312738cab91b4689c12b4e0eeee", "title": "ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition", "addresses": [{"address": "University of Barcelona", "lat": "41.38689130", "lng": "2.16352385", "type": "edu"}, {"address": "Universitat Oberta de Catalunya", "lat": "41.40657415", "lng": "2.19453410", "type": "edu"}, {"address": "University of Venezia", "lat": "45.43127420", "lng": "12.32653770", "type": "edu"}], "year": "2015", "pdf": ["http://sergioescalera.com/wp-content/uploads/2015/07/IJCNN-ChaLearn-LAP-2015-competitions-paper.pdf", "http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf"]}, {"id": "31f1e711fcf82c855f27396f181bf5e565a2f58d", "title": "Unconstrained Age Estimation with Deep Convolutional Neural Networks", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}, {"address": "Rutgers University", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu"}], "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Ranjan_Unconstrained_Age_Estimation_ICCV_2015_paper.pdf", "http://www.rci.rutgers.edu/~vmp93/Conference_pub/Age_iccv2015.pdf"]}, {"id": "62e913431bcef5983955e9ca160b91bb19d9de42", "title": "Facial Landmark Detection with Tweaked Convolutional Neural Networks", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1511.04031.pdf"]}, {"id": "9f3c9e41f46df9c94d714b1f080dafad6b4de1de", "title": "On the detection of images containing child-pornographic material", "addresses": [{"address": "Cyprus University of Technology", "lat": "34.67567405", "lng": "33.04577648", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "54bb25a213944b08298e4e2de54f2ddea890954a", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "addresses": [{"address": "Imperial College London", "lat": "51.49887085", "lng": "-0.17560797", "type": "edu"}, {"address": "Middlesex University", "lat": "51.59029705", "lng": "-0.22963221", "type": "edu"}], "year": "2017", "pdf": ["http://eprints.mdx.ac.uk/22044/1/agedb_kotsia.pdf", "http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf", "https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"]}, {"id": "fde41dc4ec6ac6474194b99e05b43dd6a6c4f06f", "title": "Multi-Expert Gender Classification on Age Group by Integrating Deep Neural Networks", "addresses": [{"address": "Yonsei University", "lat": "37.56004060", "lng": "126.93692480", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.01990.pdf"]}, {"id": "c5fff7adc5084d69390918daf09e832ec191144b", "title": "Deep learning application based on embedded GPU", "addresses": [{"address": "Harbin Institute of Technology", "lat": "45.74139210", "lng": "126.62552755", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935", "title": "Age classification with deep learning face representation", "addresses": [{"address": "South China Normal University", "lat": "23.14319700", "lng": "113.34009651", "type": "edu"}, {"address": "South China University of Technology", "lat": "23.05020420", "lng": "113.39880323", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "bc6a7390135bf127b93b90a21b1fdebbfb56ad30", "title": "Bimodal Vein Data Mining via Cross-Selected-Domain Knowledge Transfer", "addresses": [{"address": "China University of Mining and Technology", "lat": "34.21525380", "lng": "117.13985410", "type": "edu"}, {"address": "East China Normal University", "lat": "31.22849230", "lng": "121.40211389", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "337dd4aaca2c5f9b5d2de8e0e2401b5a8feb9958", "title": "Data-specific Adaptive Threshold for Face Recognition and Authentication", "addresses": [{"address": "Institute of Information Science", "lat": "25.04107280", "lng": "121.61475620", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.11160.pdf"]}, {"id": "1aeef2ab062c27e0dbba481047e818d4c471ca57", "title": "Analyzing impact of image scaling algorithms on viola-jones face detection framework", "addresses": [{"address": "Central Electronics Research Institute, Pilani, India", "lat": "28.36561930", "lng": "75.58349530", "type": "edu"}], "year": "2015", "pdf": []}, {"id": "2911e7f0fb6803851b0eddf8067a6fc06e8eadd6", "title": "Joint Fine-Tuning in Deep Neural Networks for Facial Expression Recognition", "addresses": [{"address": "Korea Advanced Institute of Science and Technology", "lat": "36.36971910", "lng": "127.36253700", "type": "edu"}], "year": "2015", "pdf": ["http://openaccess.thecvf.com/content_iccv_2015/papers/Jung_Joint_Fine-Tuning_in_ICCV_2015_paper.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Jung_Joint_Fine-Tuning_in_ICCV_2015_paper.pdf", "https://www.cse.iitk.ac.in/users/vkverma/Final_report_GP12.pdf"]}, {"id": "026e4ee480475e63ae68570d73388f8dfd4b4cde", "title": "Evaluating gender portrayal in Bangladeshi TV", "addresses": [{"address": "Eastern University", "lat": "40.05056720", "lng": "-75.37109326", "type": "edu"}, {"address": "Dhaka University", "lat": "23.73179150", "lng": "90.38056250", "type": "edu"}, {"address": "MIT", "lat": "42.35839610", "lng": "-71.09567788", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09728.pdf"]}, {"id": "b161d261fabb507803a9e5834571d56a3b87d147", "title": "Gender recognition from face images using a geometric descriptor", "addresses": [{"address": "University of Campinas (UNICAMP)", "lat": "-22.81483740", "lng": "-47.06477080", "type": "edu"}], "year": "2017", "pdf": ["http://www.smc2017.org/SMC2017_Papers/media/files/1077.pdf"]}, {"id": "1b248ed8e7c9514648cd598960fadf9ab17e7fe8", "title": "From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation", "addresses": [{"address": "University of Tartu", "lat": "58.38131405", "lng": "26.72078081", "type": "edu"}, {"address": "University of Barcelona", "lat": "41.38689130", "lng": "2.16352385", "type": "edu"}], "year": "", "pdf": ["https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf"]}, {"id": "b910590a0eb191d03e1aedb3d55c905129e92e6b", "title": "Robust gender classification on unconstrained face images", "addresses": [{"address": "Anhui University", "lat": "31.76909325", "lng": "117.17795091", "type": "edu"}, {"address": "Chinese Academy of Sciences", "lat": "40.00447950", "lng": "116.37023800", "type": "edu"}], "year": "2015", "pdf": []}, {"id": "ffe4bb47ec15f768e1744bdf530d5796ba56cfc1", "title": "AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces", "addresses": [{"address": "York University", "lat": "43.77439110", "lng": "-79.50481085", "type": "edu"}, {"address": "Assiut University", "lat": "27.18794105", "lng": "31.17009498", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.04277.pdf"]}]}
|