summaryrefslogtreecommitdiff
path: root/scraper/samples/s2-paper-detail.json
blob: 5273fd54945d42d4e984710715c3cf16b77c6e92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
{
  "responseType": "PAPER_DETAIL",
  "paper": {
    "id": "e4754afaa15b1b53e70743880484b8d0736990ff",
    "title": {
      "text": "300 Faces In-The-Wild Challenge: database and results",
      "fragments": []
    },
    "slug": "300-Faces-In-The-Wild-Challenge:-database-and-Sagonas-Antonakos",
    "paperAbstract": {
      "text": "Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the last few years that achieve accurate and efficient performance. However, fair comparison between these methodologies is infeasible mainly due to two issues. (a) Most existing databases, captured under both constrained and unconstrained (in-the-wild) conditions have been annotated using different mark-ups and, in most cases, the accuracy of the annotations is low. (b) Most published works report experimental results using different training/testing sets, different error metrics and, of course, landmark points with semantically different locations. In this paper, we aim to overcome the aforementioned problems by (a) proposing a semi-automatic annotation technique that was employed to re-annotate most existing facial databases under a unified protocol, and (b) presenting the 300 Faces In-The-Wild Challenge (300-W), the first facial landmark localization challenge that was organized twice, in 2013 and 2015. To the best of our knowledge, this is the first effort towards a unified annotation scheme of massive databases and a fair experimental comparison of existing facial landmark localization systems. The images and annotations of the new testing database that was used in the 300-W challenge are available from http://ibug.doc.ic.ac.uk/resources/facial-point-annotations/.",
      "fragments": []
    },
    "authors": [
      [
        {
          "name": "Christos Sagonas",
          "ids": [
            "3320415"
          ],
          "slug": "Christos-Sagonas"
        },
        {
          "text": "Christos Sagonas",
          "fragments": []
        }
      ],
      [
        {
          "name": "Epameinondas Antonakos",
          "ids": [
            "2788012"
          ],
          "slug": "Epameinondas-Antonakos"
        },
        {
          "text": "Epameinondas Antonakos",
          "fragments": []
        }
      ],
      [
        {
          "name": "Georgios Tzimiropoulos",
          "ids": [
            "2610880"
          ],
          "slug": "Georgios-Tzimiropoulos"
        },
        {
          "text": "Georgios Tzimiropoulos",
          "fragments": []
        }
      ],
      [
        {
          "name": "Stefanos P. Zafeiriou",
          "ids": [
            "1776444"
          ],
          "slug": "Stefanos-P.-Zafeiriou"
        },
        {
          "text": "Stefanos P. Zafeiriou",
          "fragments": []
        }
      ],
      [
        {
          "name": "Maja Pantic",
          "ids": [
            "1694605"
          ],
          "slug": "Maja-Pantic"
        },
        {
          "text": "Maja Pantic",
          "fragments": []
        }
      ]
    ],
    "structuredAuthors": [
      {
        "firstName": "Christos",
        "middleNames": [],
        "lastName": "Sagonas"
      },
      {
        "firstName": "Epameinondas",
        "middleNames": [],
        "lastName": "Antonakos"
      },
      {
        "firstName": "Georgios",
        "middleNames": [],
        "lastName": "Tzimiropoulos"
      },
      {
        "firstName": "Stefanos",
        "middleNames": [
          "P."
        ],
        "lastName": "Zafeiriou"
      },
      {
        "firstName": "Maja",
        "middleNames": [],
        "lastName": "Pantic"
      }
    ],
    "year": {
      "text": "2016",
      "fragments": []
    },
    "venue": {
      "text": "Image Vision Comput.",
      "fragments": []
    },
    "citationContexts": [],
    "citationStats": {
      "citedByBuckets": [
        {
          "startKey": 2015,
          "endKey": 2015,
          "count": 2,
          "estimate": {
            "min": 2.2728870038174662,
            "value": 2.7194889455650393,
            "max": 3.3020132174096997,
            "confidence": 0.9
          }
        },
        {
          "startKey": 2016,
          "endKey": 2016,
          "count": 17,
          "estimate": {
            "min": 19.319539532448463,
            "value": 23.115656037302834,
            "max": 28.067112347982448,
            "confidence": 0.9
          }
        },
        {
          "startKey": 2017,
          "endKey": 2017,
          "count": 45,
          "estimate": {
            "min": 51.139957585892994,
            "value": 61.18850127521338,
            "max": 74.29529739171824,
            "confidence": 0.9
          }
        },
        {
          "startKey": 2018,
          "endKey": 2018,
          "count": 32,
          "estimate": {
            "min": 43.63943047329535,
            "value": 52.21418775484875,
            "max": 63.39865377426623,
            "confidence": 0.9
          }
        }
      ],
      "keyCitedByBuckets": [
        {
          "startKey": 2016,
          "endKey": 2016,
          "count": 2
        },
        {
          "startKey": 2017,
          "endKey": 2017,
          "count": 6
        },
        {
          "startKey": 2018,
          "endKey": 2018,
          "count": 2
        }
      ],
      "numCitations": 103,
      "estNumCitations": {
        "min": 117.05368069659951,
        "value": 140.0536806965995,
        "max": 170.0536806965995,
        "confidence": 0.9
      },
      "numReferences": 49,
      "numKeyCitations": 11,
      "numKeyReferences": 19,
      "numViewableReferences": 49,
      "keyCitationRate": 0.10679611650485436,
      "estCitationVelocity": {
        "estimate": {
          "min": 42.65391605341533,
          "value": 47.439973828190126,
          "max": 53.68265788224421,
          "confidence": 0.9
        },
        "estCitationsByRange": [
          {
            "value": {
              "min": 19.319539532448463,
              "value": 23.115656037302834,
              "max": 28.067112347982448,
              "confidence": 0.9
            },
            "start": [
              2016,
              1,
              1
            ],
            "end": [
              2016,
              12,
              31
            ]
          },
          {
            "value": {
              "min": 51.139957585892994,
              "value": 61.18850127521338,
              "max": 74.29529739171824,
              "confidence": 0.9
            },
            "start": [
              2017,
              1,
              1
            ],
            "end": [
              2017,
              12,
              31
            ]
          },
          {
            "value": {
              "min": 48.488256081439275,
              "value": 58.01576417205417,
              "max": 70.44294863807359,
              "confidence": 0.9
            },
            "start": [
              2018,
              1,
              1
            ],
            "end": [
              2018,
              12,
              31
            ]
          }
        ]
      },
      "estCitationAcceleration": {
        "estimate": {
          "min": -0.026615969581749135,
          "value": -0.026615969581749065,
          "max": -0.026615969581749045,
          "confidence": 0.9
        },
        "estCitationsByRange": [
          {
            "value": {
              "min": 51.139957585892994,
              "value": 61.18850127521338,
              "max": 74.29529739171824,
              "confidence": 0.9
            },
            "start": [
              2017,
              1,
              1
            ],
            "end": [
              2017,
              12,
              31
            ]
          },
          {
            "value": {
              "min": 48.488256081439275,
              "value": 58.01576417205417,
              "max": 70.44294863807359,
              "confidence": 0.9
            },
            "start": [
              2018,
              1,
              1
            ],
            "end": [
              2018,
              12,
              31
            ]
          }
        ]
      }
    },
    "sources": [
      "DBLP",
      "Grobid",
      "Anansi",
      "Crawler",
      "ScienceParse",
      "SPv2"
    ],
    "journal": {
      "name": "Image Vision Comput.",
      "volume": "47",
      "pages": "3-18"
    },
    "socialLinks": [],
    "presentationUrls": [],
    "doiInfo": {
      "doi": "10.1016/j.imavis.2016.01.002",
      "doiUrl": "http://doi.org/10.1016/j.imavis.2016.01.002"
    },
    "links": [
      {
        "url": "http://doi.org/10.1016/j.imavis.2016.01.002",
        "linkType": "doi"
      }
    ],
    "primaryPaperLink": {
      "url": "http://doi.org/10.1016/j.imavis.2016.01.002",
      "linkType": "doi"
    },
    "alternatePaperLinks": [
      {
        "url": "http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf",
        "linkType": "crawler"
      },
      {
        "url": "https://doi.org/10.1016/j.imavis.2016.01.002",
        "linkType": "dblp"
      },
      {
        "url": "https://spiral.imperial.ac.uk:8443/bitstream/10044/1/32322/2/300w.pdf",
        "linkType": "anansi"
      }
    ],
    "entities": [
      {
        "id": "5332",
        "name": "Computer vision",
        "slug": "Computer-vision"
      },
      {
        "id": "55238",
        "name": "Emoticon",
        "slug": "Emoticon"
      },
      {
        "id": "539730",
        "name": "Landmark point",
        "slug": "Landmark-point"
      },
      {
        "id": "76540",
        "name": "Semiconductor industry",
        "slug": "Semiconductor-industry"
      },
      {
        "id": "468",
        "name": "Malignant Fibrous Histiocytoma",
        "slug": "Malignant-Fibrous-Histiocytoma"
      }
    ],
    "entityRelations": [],
    "blogs": [],
    "videos": [],
    "githubReferences": [],
    "faqs": [],
    "scorecardStats": [
      {
        "typeKey": "highly_influential",
        "score": 50,
        "keyCitationCount": 11
      },
      {
        "typeKey": "cited_by",
        "citationRankPercent": 99,
        "citationCount": 140,
        "score": 10
      }
    ],
    "hasPdf": false
  },
  "citingPapers": {
    "citationType": "citingPapers",
    "citations": [
      {
        "id": "6742c0a26315d7354ab6b1fa62a5fffaea06da14",
        "title": {
          "text": "What does 2 D geometric information really tell us about 3 D face shape ?",
          "fragments": []
        },
        "slug": "What-does-2-D-geometric-information-really-tell-us-Bas-Smith",
        "venue": {
          "text": "",
          "fragments": []
        },
        "year": 2017,
        "authors": [
          [
            {
              "name": "Anil Bas",
              "ids": [
                "39180407"
              ],
              "slug": "Anil-Bas"
            },
            {
              "text": "Anil Bas",
              "fragments": []
            }
          ],
          [
            {
              "name": "William A. P. Smith",
              "ids": [
                "1687021"
              ],
              "slug": "William-A.-P.-Smith"
            },
            {
              "text": "William A. P. Smith",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "For this reason, there has been sustained interest in building feature detectors capable of accurately labelling face landmarks in uncontrolled images (Sagonas et al. 2016).",
            "fragments": [
              {
                "start": 152,
                "end": 171
              }
            ]
          },
          {
            "text": "Despite the small sample size, we find a pair of faces whose mean landmark error is 2.48% (i.e. they are within the expected accuracy of a landmark detector (Sagonas et al. 2016)) when they are viewed at 61cm and 488cm respectively (second and fourth image in the figure).",
            "fragments": [
              {
                "start": 158,
                "end": 177
              }
            ]
          },
          {
            "text": "Landmark detection on highly uncontrolled face images is now a mature research field with benchmarks (Sagonas et al. 2016) providing an indication of likely accuracy.",
            "fragments": [
              {
                "start": 102,
                "end": 121
              }
            ]
          },
          {
            "text": "they are within the expected accuracy of a landmark detector (Sagonas et al. 2016)) when they are viewed at 61cm and 488cm respectively (second and fourth image in the figure).",
            "fragments": [
              {
                "start": 61,
                "end": 82
              }
            ]
          },
          {
            "text": "Similarly, the 300 faces in the wild challenge (Sagonas et al. 2016) found that even the best methods did not obtain better than 5% accuracy for more than 50% of the landmarks.",
            "fragments": [
              {
                "start": 48,
                "end": 67
              }
            ]
          },
          {
            "text": "For example, state-of-the-art automatic face landmarking provides a mean landmark error under 4.5% of interocular distance for only 50% of images (according to the second conduct of the 300 Faces in the Wild challenge (Sagonas et al. 2016)).",
            "fragments": [
              {
                "start": 219,
                "end": 238
              }
            ]
          },
          {
            "text": "5% of interocular distance for only 50% of images (according to the second conduct of the 300 Faces in the Wild challenge (Sagonas et al. 2016)).",
            "fragments": [
              {
                "start": 122,
                "end": 143
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "014e3d0fa5248e6f4634dc237e2398160294edce",
        "title": {
          "text": "What does 2D geometric information really tell us about 3D face shape?",
          "fragments": []
        },
        "slug": "What-does-2D-geometric-information-really-tell-us-Bas-Smith",
        "venue": {
          "text": "ArXiv",
          "fragments": []
        },
        "year": 2017,
        "authors": [
          [
            {
              "name": "Anil Bas",
              "ids": [
                "39180407"
              ],
              "slug": "Anil-Bas"
            },
            {
              "text": "Anil Bas",
              "fragments": []
            }
          ],
          [
            {
              "name": "William A. P. Smith",
              "ids": [
                "1687021"
              ],
              "slug": "William-A.-P.-Smith"
            },
            {
              "text": "William A. P. Smith",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "For this reason, there has been sustained interest in building feature detectors capable of accurately labelling face landmarks in uncontrolled images (Sagonas et al. 2016).",
            "fragments": [
              {
                "start": 152,
                "end": 171
              }
            ]
          },
          {
            "text": "Despite the small sample size, we find a pair of faces whose mean landmark error is 2.48% (i.e. they are within the expected accuracy of a landmark detector (Sagonas et al. 2016)) when they are viewed at 61cm and 488cm respectively (second and fourth image in the figure).",
            "fragments": [
              {
                "start": 158,
                "end": 177
              }
            ]
          },
          {
            "text": "Landmark detection on highly uncontrolled face images is now a mature research field with benchmarks (Sagonas et al. 2016) providing an indication of likely accuracy.",
            "fragments": [
              {
                "start": 102,
                "end": 121
              }
            ]
          },
          {
            "text": "they are within the expected accuracy of a landmark detector (Sagonas et al. 2016)) when they are viewed at 61cm and 488cm respectively (second and fourth image in the figure).",
            "fragments": [
              {
                "start": 61,
                "end": 82
              }
            ]
          },
          {
            "text": "Similarly, the 300 faces in the wild challenge (Sagonas et al. 2016) found that even the best methods did not obtain better than 5% accuracy for more than 50% of the landmarks.",
            "fragments": [
              {
                "start": 48,
                "end": 67
              }
            ]
          },
          {
            "text": "For example, state-of-the-art automatic face landmarking provides a mean landmark error under 4.5% of interocular distance for only 50% of images (according to the second conduct of the 300 Faces in the Wild challenge (Sagonas et al. 2016)).",
            "fragments": [
              {
                "start": 219,
                "end": 238
              }
            ]
          },
          {
            "text": "5% of interocular distance for only 50% of images (according to the second conduct of the 300 Faces in the Wild challenge (Sagonas et al. 2016)).",
            "fragments": [
              {
                "start": 122,
                "end": 143
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "8f772d9ce324b2ef5857d6e0b2a420bc93961196",
        "title": {
          "text": "Facial Landmark Point Localization using Coarse-to-Fine Deep Recurrent Neural Network",
          "fragments": []
        },
        "slug": "Facial-Landmark-Point-Localization-using-Deep-Mahpod-Das",
        "venue": {
          "text": "ArXiv",
          "fragments": []
        },
        "year": 2018,
        "authors": [
          [
            {
              "name": "Shahar Mahpod",
              "ids": [
                "2748312"
              ],
              "slug": "Shahar-Mahpod"
            },
            {
              "text": "Shahar Mahpod",
              "fragments": []
            }
          ],
          [
            {
              "name": "Rig Das",
              "ids": [
                "3001038"
              ],
              "slug": "Rig-Das"
            },
            {
              "text": "Rig Das",
              "fragments": []
            }
          ],
          [
            {
              "name": "Emanuele Maiorana",
              "ids": [
                "1767715"
              ],
              "slug": "Emanuele-Maiorana"
            },
            {
              "text": "Emanuele Maiorana",
              "fragments": []
            }
          ],
          [
            {
              "name": "Yosi Keller",
              "ids": [
                "1926432"
              ],
              "slug": "Yosi-Keller"
            },
            {
              "text": "Yosi Keller",
              "fragments": []
            }
          ],
          [
            {
              "name": "Patrizio Campisi",
              "ids": [
                "1682433"
              ],
              "slug": "Patrizio-Campisi"
            },
            {
              "text": "Patrizio Campisi",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "In order to evaluate the performance of our proposed CFDRNN framework we perform some exhaustive experiments on the data released for the 300-W competition [23].",
            "fragments": [
              {
                "start": 156,
                "end": 160
              }
            ]
          },
          {
            "text": "300-W, MENPO 300-W private test set [23] 3.",
            "fragments": [
              {
                "start": 36,
                "end": 40
              }
            ]
          },
          {
            "text": "The authors have also tested their proposed framework’s performance against the 300-W private test set [23], which consists of 300 indoor and 300 outdoor images.",
            "fragments": [
              {
                "start": 103,
                "end": 107
              }
            ]
          },
          {
            "text": "This dataset [23] contains 135 complicated facial images with different facial expression, poses, illumination, and multiple faces in a single image.",
            "fragments": [
              {
                "start": 13,
                "end": 17
              }
            ]
          },
          {
            "text": "bug [21], [22], 300-W [23], and Menpo [19], [24] leaves a significant scope for further improvement.",
            "fragments": [
              {
                "start": 22,
                "end": 26
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "7789a5d87884f8bafec8a82085292e87d4e2866f",
        "title": {
          "text": "A Unified Tensor-based Active Appearance Face Model",
          "fragments": []
        },
        "slug": "A-Unified-Tensor-based-Active-Appearance-Face-Model-Feng-Kittler",
        "venue": {
          "text": "ArXiv",
          "fragments": []
        },
        "year": 2016,
        "authors": [
          [
            {
              "name": "Zhen-Hua Feng",
              "ids": [
                "2976854"
              ],
              "slug": "Zhen-Hua-Feng"
            },
            {
              "text": "Zhen-Hua Feng",
              "fragments": []
            }
          ],
          [
            {
              "name": "Josef Kittler",
              "ids": [
                "1748684"
              ],
              "slug": "Josef-Kittler"
            },
            {
              "text": "Josef Kittler",
              "fragments": []
            }
          ],
          [
            {
              "name": "William J. Christmas",
              "ids": [
                "1942955"
              ],
              "slug": "William-J.-Christmas"
            },
            {
              "text": "William J. Christmas",
              "fragments": []
            }
          ],
          [
            {
              "name": "Xiaojun Wu",
              "ids": [
                "50171811"
              ],
              "slug": "Xiaojun-Wu"
            },
            {
              "text": "Xiaojun Wu",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "W face dataset (Sagonas et al., 2016).",
            "fragments": [
              {
                "start": 16,
                "end": 36
              }
            ]
          },
          {
            "text": "The 300-W dataset has been widely used for benchmarking a facial landmark detection algorithm (Sagonas et al., 2016).",
            "fragments": [
              {
                "start": 94,
                "end": 116
              }
            ]
          },
          {
            "text": "Then we demonstrate the capacity of the proposed UT-AAM to synthesise a large number of virtual faces and examine how these synthesised faces can improve the training of a facial landmark detector, using the 300-W face dataset (Sagonas et al., 2016).",
            "fragments": [
              {
                "start": 227,
                "end": 249
              }
            ]
          },
          {
            "text": "W dataset has been widely used for benchmarking a facial landmark detection algorithm (Sagonas et al., 2016).",
            "fragments": [
              {
                "start": 87,
                "end": 107
              }
            ]
          },
          {
            "text": "7 A comparison of the cumulative error distribution curves of SDM and CCR, as well as a set of state-of-the-art methods from Baltrusaitis, Hasan, Jaiswal, Miborrow, Yan and Zhou (Sagonas et al., 2016), on the 300-W face dataset: (a) results on the 300 outdoor face images; (b) results on the 300 indoor faces.",
            "fragments": [
              {
                "start": 178,
                "end": 200
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "0f21a39fa4c0a19c4a5b4733579e393cb1d04f71",
        "title": {
          "text": "Evaluation of optimization components of a 3D to 2D landmark fitting algorithm for head pose estimation",
          "fragments": []
        },
        "slug": "Evaluation-of-optimization-components-of-a-3D-to-2D-Haan",
        "venue": {
          "text": "",
          "fragments": []
        },
        "year": 2018,
        "authors": [
          [
            {
              "name": "Tim de Haan",
              "ids": [],
              "slug": "Tim-de-Haan"
            },
            {
              "text": "Tim de Haan",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "Landmark Localization: Landmark localization has been extensively researched [1], [17], [18], which has led to the development of Dlib [7], a machine learning toolkit that has its usage in many complex applications, such as image processing.",
            "fragments": [
              {
                "start": 77,
                "end": 80
              }
            ]
          },
          {
            "text": "This thesis uses the new 300-W dataset [1, 17, 18], this set consists of 600 photographs that can be used to project the 3DMM onto the landmarks detected by dlib.",
            "fragments": [
              {
                "start": 39,
                "end": 50
              }
            ]
          },
          {
            "text": "histogram of oriented gradients combined with a linear classifier [7], trained on the iBUG 300-W dataset from [1], the landmark detection is an implementation of [19].",
            "fragments": [
              {
                "start": 110,
                "end": 113
              }
            ]
          },
          {
            "text": "Table 8 shows how Dlib compares with other landmarks detection algorithms, which are the winners of the two contests that were organized by [1].",
            "fragments": [
              {
                "start": 140,
                "end": 143
              }
            ]
          },
          {
            "text": "Additionally, the Oracle curve is added, which is the minimum error that can be achieved [1].",
            "fragments": [
              {
                "start": 89,
                "end": 92
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "1885acea0d24e7b953485f78ec57b2f04e946eaf",
        "title": {
          "text": "Combining Local and Global Features for 3D Face Tracking",
          "fragments": []
        },
        "slug": "Combining-Local-and-Global-Features-for-3D-Face-Xiong-Li",
        "venue": {
          "text": "2017 IEEE International Conference on Computer Vision Workshops (ICCVW)",
          "fragments": []
        },
        "year": 2017,
        "authors": [
          [
            {
              "name": "Pengfei Xiong",
              "ids": [
                "40448951"
              ],
              "slug": "Pengfei-Xiong"
            },
            {
              "text": "Pengfei Xiong",
              "fragments": []
            }
          ],
          [
            {
              "name": "Guoqing Li",
              "ids": [
                "1775836"
              ],
              "slug": "Guoqing-Li"
            },
            {
              "text": "Guoqing Li",
              "fragments": []
            }
          ],
          [
            {
              "name": "Yuhang Sun",
              "ids": [
                "48186289"
              ],
              "slug": "Yuhang-Sun"
            },
            {
              "text": "Yuhang Sun",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "In the past few decades, extensive studies [39, 40, 31, 11, 26, 41, 33, 43] have been proposed and singnificant improvements have been achieved, especially since a comprehensice benchmark [32] was made public, and deep convolution neural networks [33, 43] were applied in face shape regression.",
            "fragments": [
              {
                "start": 188,
                "end": 192
              }
            ]
          },
          {
            "text": "Images from AFLW [28], FDDB[22], 300W, 300W-Test [32] are collected and fitted with 3D facial morphable model [4] to generate 84 3D point annotations.",
            "fragments": [
              {
                "start": 49,
                "end": 53
              }
            ]
          },
          {
            "text": "300W-LP: 300W-LP(300W across Large Poses) [45] contains 61225 samples (1786 from IBUG, 5207 from AFW, and 16556 from LFPW) sysnthetical generated from 300-W [32].",
            "fragments": [
              {
                "start": 157,
                "end": 161
              }
            ]
          },
          {
            "text": "[45] sysnthetically generated a series of datasets based on 300W [32], which gradually become the benchmark of 3D shape regression methods.",
            "fragments": [
              {
                "start": 65,
                "end": 69
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "0a34fe39e9938ae8c813a81ae6d2d3a325600e5c",
        "title": {
          "text": "FacePoseNet: Making a Case for Landmark-Free Face Alignment",
          "fragments": []
        },
        "slug": "FacePoseNet:-Making-a-Case-for-Landmark-Free-Face-Chang-Tran",
        "venue": {
          "text": "2017 IEEE International Conference on Computer Vision Workshops (ICCVW)",
          "fragments": []
        },
        "year": 2017,
        "authors": [
          [
            {
              "name": "Feng-Ju Chang",
              "ids": [
                "1752756"
              ],
              "slug": "Feng-Ju-Chang"
            },
            {
              "text": "Feng-Ju Chang",
              "fragments": []
            }
          ],
          [
            {
              "name": "Anh Tuan Tran",
              "ids": [
                "46634688"
              ],
              "slug": "Anh-Tuan-Tran"
            },
            {
              "text": "Anh Tuan Tran",
              "fragments": []
            }
          ],
          [
            {
              "name": "Tal Hassner",
              "ids": [
                "1756099"
              ],
              "slug": "Tal-Hassner"
            },
            {
              "text": "Tal Hassner",
              "fragments": []
            }
          ],
          [
            {
              "name": "Iacopo Masi",
              "ids": [
                "11269472"
              ],
              "slug": "Iacopo-Masi"
            },
            {
              "text": "Iacopo Masi",
              "fragments": []
            }
          ],
          [
            {
              "name": "Ramakant Nevatia",
              "ids": [
                "1694832"
              ],
              "slug": "Ramakant-Nevatia"
            },
            {
              "text": "Ramakant Nevatia",
              "fragments": []
            }
          ],
          [
            {
              "name": "Gérard G. Medioni",
              "ids": [
                "3463966"
              ],
              "slug": "Gérard-G.-Medioni"
            },
            {
              "text": "Gérard G. Medioni",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "Facial landmark detection is big business, as reflected by the numerous citation to relevant papers, the many facial landmark detection benchmarks [5, 23, 26, 40, 53], and popular international events dedicated to this problem.",
            "fragments": [
              {
                "start": 147,
                "end": 166
              }
            ]
          },
          {
            "text": "We evaluate performance on the 300W data set [40], the most challenging benchmark of its kind [45], using 68 landmarks.",
            "fragments": [
              {
                "start": 45,
                "end": 49
              }
            ]
          },
          {
            "text": "Landmarks detected in 300W [40] images by projecting an unmodified 3D face shape,",
            "fragments": [
              {
                "start": 27,
                "end": 31
              }
            ]
          },
          {
            "text": "Finally, (3), we test our FPN extensively and report that better landmark detection accuracy on the widely used 300W benchmark [40] does not imply better alignment and recognition on the highly challenging IJB-A [22] and IJB-B benchmarks [44].",
            "fragments": [
              {
                "start": 127,
                "end": 131
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "cf736f596bf881ca97ec4b29776baaa493b9d50e",
        "title": {
          "text": "Low Dimensional Deep Features for facial landmark alignment",
          "fragments": []
        },
        "slug": "Low-Dimensional-Deep-Features-for-facial-landmark-Jalan-Mynepalli",
        "venue": {
          "text": "2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
          "fragments": []
        },
        "year": 2017,
        "authors": [
          [
            {
              "name": "Ankit Jalan",
              "ids": [
                "18090725"
              ],
              "slug": "Ankit-Jalan"
            },
            {
              "text": "Ankit Jalan",
              "fragments": []
            }
          ],
          [
            {
              "name": "Siva Chaitanya Mynepalli",
              "ids": [
                "18091255"
              ],
              "slug": "Siva-Chaitanya-Mynepalli"
            },
            {
              "text": "Siva Chaitanya Mynepalli",
              "fragments": []
            }
          ],
          [
            {
              "name": "Viswanath Veera",
              "ids": [
                "18178676"
              ],
              "slug": "Viswanath-Veera"
            },
            {
              "text": "Viswanath Veera",
              "fragments": []
            }
          ],
          [
            {
              "name": "Shankar M. Venkatesan",
              "ids": [
                "3210146"
              ],
              "slug": "Shankar-M.-Venkatesan"
            },
            {
              "text": "Shankar M. Venkatesan",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "300-W dataset [28, 31]: This dataset is created from",
            "fragments": [
              {
                "start": 14,
                "end": 22
              }
            ]
          },
          {
            "text": "Experimental analysis has demonstrated that LDFFA outperforms other state-of-the-art algorithms on Helen, LFPW benchmark datasets while giving comparable performance on subsets of 300-W database [26, 27, 28, 31] with 68 fiducial landmarks.",
            "fragments": [
              {
                "start": 195,
                "end": 211
              }
            ]
          },
          {
            "text": "We follow the method of [31] where the average L2 distance of the estimated landmark position from the ground truth is normalized by the standard definition of inter-ocular distance (douter,) to give the error (Eqn.",
            "fragments": [
              {
                "start": 24,
                "end": 28
              }
            ]
          },
          {
            "text": "The bounding boxes for 300-W images were provided by [28, 31] using their in-house face detector.",
            "fragments": [
              {
                "start": 53,
                "end": 61
              }
            ]
          },
          {
            "text": "3 (b & c) illustrate the Normalized Mean Error using definition from [31].",
            "fragments": [
              {
                "start": 69,
                "end": 73
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2",
        "title": {
          "text": "Robust FEC-CNN: A High Accuracy Facial Landmark Detection System",
          "fragments": []
        },
        "slug": "Robust-FEC-CNN:-A-High-Accuracy-Facial-Landmark-He-Zhang",
        "venue": {
          "text": "2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)",
          "fragments": []
        },
        "year": 2017,
        "authors": [
          [
            {
              "name": "Zhenliang He",
              "ids": [
                "3469114"
              ],
              "slug": "Zhenliang-He"
            },
            {
              "text": "Zhenliang He",
              "fragments": []
            }
          ],
          [
            {
              "name": "Jie Zhang",
              "ids": [
                "49050482"
              ],
              "slug": "Jie-Zhang"
            },
            {
              "text": "Jie Zhang",
              "fragments": []
            }
          ],
          [
            {
              "name": "Meina Kan",
              "ids": [
                "1693589"
              ],
              "slug": "Meina-Kan"
            },
            {
              "text": "Meina Kan",
              "fragments": []
            }
          ],
          [
            {
              "name": "Shiguang Shan",
              "ids": [
                "1685914"
              ],
              "slug": "Shiguang-Shan"
            },
            {
              "text": "Shiguang Shan",
              "fragments": []
            }
          ],
          [
            {
              "name": "Xilin Chen",
              "ids": [
                "1710220"
              ],
              "slug": "Xilin-Chen"
            },
            {
              "text": "Xilin Chen",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "Impressive works [5, 4, 6, 3, 23, 14, 20, 27, 21, 22, 9] and benchmarks [11, 29, 2, 16, 17, 10, 26] were proposed to tackle this task in the the past few decades.",
            "fragments": [
              {
                "start": 72,
                "end": 99
              }
            ]
          },
          {
            "text": "LFPW, HELEN, AFW, 300W Competition and Menpo 68 point subset are used as training set while IBUG is used as testing set.",
            "fragments": [
              {
                "start": 23,
                "end": 34
              }
            ]
          },
          {
            "text": "We employ 300W [16, 18], 300W Competition [16, 17] and Menpo dataset [26] for evaluating RFC.",
            "fragments": [
              {
                "start": 15,
                "end": 23
              }
            ]
          },
          {
            "text": "The 300W Competition dataset consists of indoor and outdoor subset.",
            "fragments": [
              {
                "start": 9,
                "end": 20
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "4ac3cd8b6c50f7a26f27eefc64855134932b39be",
        "title": {
          "text": "Robust Facial Landmark Detection via a Fully-Convolutional Local-Global Context Network",
          "fragments": []
        },
        "slug": "Robust-Facial-Landmark-Detection-via-a-Local-Global-Merget-Rock",
        "venue": {
          "text": "",
          "fragments": []
        },
        "authors": [
          [
            {
              "name": "Daniel Merget",
              "ids": [
                "3044182"
              ],
              "slug": "Daniel-Merget"
            },
            {
              "text": "Daniel Merget",
              "fragments": []
            }
          ],
          [
            {
              "name": "Matthias Rock",
              "ids": [
                "28096417"
              ],
              "slug": "Matthias-Rock"
            },
            {
              "text": "Matthias Rock",
              "fragments": []
            }
          ],
          [
            {
              "name": "Gerhard Rigoll",
              "ids": [
                "46343645"
              ],
              "slug": "Gerhard-Rigoll"
            },
            {
              "text": "Gerhard Rigoll",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "Some qualitative results on the 300-W challenge data set [28] are presented in Figure 5.",
            "fragments": [
              {
                "start": 57,
                "end": 61
              }
            ]
          },
          {
            "text": "Figure 4 illustrates the results for inter-ocular distance (IOD) normalized mean absolute error (MAE) on the 300-W benchmark [28] and on a cross-data set test with Menpo [41].",
            "fragments": [
              {
                "start": 125,
                "end": 129
              }
            ]
          },
          {
            "text": "The overall prediction performance on 300-W [28] was worse using cross entropy.",
            "fragments": [
              {
                "start": 44,
                "end": 48
              }
            ]
          },
          {
            "text": "Our approach beats the state of the art on 300-W [28] and on a cross-data set test with Menpo [41].",
            "fragments": [
              {
                "start": 49,
                "end": 53
              }
            ]
          },
          {
            "text": "From left to right: 300-W [28], iBUG [29], LFPW [5] + HELEN [20], Menpo frontal train set [41].",
            "fragments": [
              {
                "start": 26,
                "end": 30
              }
            ]
          },
          {
            "text": "• We demonstrate the effectiveness of our approach by improving upon the state of the art on 300-W [28] and a cross-data set test on Menpo [41].",
            "fragments": [
              {
                "start": 99,
                "end": 103
              }
            ]
          }
        ],
        "isKey": true
      }
    ],
    "requestedPageSize": 10,
    "pageNumber": 1,
    "totalPages": 11,
    "sort": "is-influential"
  },
  "citedPapers": {
    "citationType": "citedPapers",
    "citations": [
      {
        "id": "0a6d344112b5af7d1abbd712f83c0d70105211d0",
        "title": {
          "text": "Constrained Local Neural Fields for Robust Facial Landmark Detection in the Wild",
          "fragments": []
        },
        "slug": "Constrained-Local-Neural-Fields-for-Robust-Facial-Baltrusaitis-Robinson",
        "venue": {
          "text": "2013 IEEE International Conference on Computer Vision Workshops",
          "fragments": []
        },
        "year": 2013,
        "authors": [
          [
            {
              "name": "Tadas Baltrusaitis",
              "ids": [
                "1756344"
              ],
              "slug": "Tadas-Baltrusaitis"
            },
            {
              "text": "Tadas Baltrusaitis",
              "fragments": []
            }
          ],
          [
            {
              "name": "Peter Robinson",
              "ids": [
                "39626495"
              ],
              "slug": "Peter-Robinson"
            },
            {
              "text": "Peter Robinson",
              "fragments": []
            }
          ],
          [
            {
              "name": "Louis-Philippe Morency",
              "ids": [
                "49933077"
              ],
              "slug": "Louis-Philippe-Morency"
            },
            {
              "text": "Louis-Philippe Morency",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "[40] propose a probabilistic patch expert technique that learns non-linear and spatial relationships between the pixels and the probability of a landmark being aligned.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[40]",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[40] T.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[40] 0.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "1a8ccc23ed73db64748e31c61c69fe23c48a2bb1",
        "title": {
          "text": "Extensive Facial Landmark Localization with Coarse-to-Fine Convolutional Network Cascade",
          "fragments": []
        },
        "slug": "Extensive-Facial-Landmark-Localization-with-Network-Zhou-Fan",
        "venue": {
          "text": "2013 IEEE International Conference on Computer Vision Workshops",
          "fragments": []
        },
        "year": 2013,
        "authors": [
          [
            {
              "name": "Erjin Zhou",
              "ids": [
                "1848243"
              ],
              "slug": "Erjin-Zhou"
            },
            {
              "text": "Erjin Zhou",
              "fragments": []
            }
          ],
          [
            {
              "name": "Haoqiang Fan",
              "ids": [
                "1934546"
              ],
              "slug": "Haoqiang-Fan"
            },
            {
              "text": "Haoqiang Fan",
              "fragments": []
            }
          ],
          [
            {
              "name": "Zhimin Cao",
              "ids": [
                "2695115"
              ],
              "slug": "Zhimin-Cao"
            },
            {
              "text": "Zhimin Cao",
              "fragments": []
            }
          ],
          [
            {
              "name": "Yuning Jiang",
              "ids": [
                "1691963"
              ],
              "slug": "Yuning-Jiang"
            },
            {
              "text": "Yuning Jiang",
              "fragments": []
            }
          ],
          [
            {
              "name": "Qi Yin",
              "ids": [
                "2274228"
              ],
              "slug": "Qi-Yin"
            },
            {
              "text": "Qi Yin",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "[47] 0% 2.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[47] 0.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[47] propose a four-level convolutional network cascade, where each level is trained to locally refine the outputs of the previous network levels.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[47]",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[47] (convolutional network framework), can continually achieve better results with continuous rise in the amount of training data.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[47] E.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[47] from Megvii company.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[47]) and second (J.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "1c1a98df3d0d5e2034ea723994bdc85af45934db",
        "title": {
          "text": "Guided Unsupervised Learning of Mode Specific Models for Facial Point Detection in the Wild",
          "fragments": []
        },
        "slug": "Guided-Unsupervised-Learning-of-Mode-Specific-for-Jaiswal-Almaev",
        "venue": {
          "text": "2013 IEEE International Conference on Computer Vision Workshops",
          "fragments": []
        },
        "year": 2013,
        "authors": [
          [
            {
              "name": "Shashank Jaiswal",
              "ids": [
                "2736086"
              ],
              "slug": "Shashank-Jaiswal"
            },
            {
              "text": "Shashank Jaiswal",
              "fragments": []
            }
          ],
          [
            {
              "name": "Timur R. Almaev",
              "ids": [
                "2449665"
              ],
              "slug": "Timur-R.-Almaev"
            },
            {
              "text": "Timur R. Almaev",
              "fragments": []
            }
          ],
          [
            {
              "name": "Michel F. Valstar",
              "ids": [
                "1795528"
              ],
              "slug": "Michel-F.-Valstar"
            },
            {
              "text": "Michel F. Valstar",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "[41]",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[41] 0.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[41] S.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[41] use Local Evidence Aggregated Regression [42], in which local patches provide evidence of the location of the target facial point using Support Vector Regressors.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "321c8ba38db118d8b02c0ba209be709e6792a2c7",
        "title": {
          "text": "Learn to Combine Multiple Hypotheses for Accurate Face Alignment",
          "fragments": []
        },
        "slug": "Learn-to-Combine-Multiple-Hypotheses-for-Accurate-Yan-Lei",
        "venue": {
          "text": "2013 IEEE International Conference on Computer Vision Workshops",
          "fragments": []
        },
        "year": 2013,
        "authors": [
          [
            {
              "name": "Junjie Yan",
              "ids": [
                "48270105"
              ],
              "slug": "Junjie-Yan"
            },
            {
              "text": "Junjie Yan",
              "fragments": []
            }
          ],
          [
            {
              "name": "Zhen Lei",
              "ids": [
                "1718623"
              ],
              "slug": "Zhen-Lei"
            },
            {
              "text": "Zhen Lei",
              "fragments": []
            }
          ],
          [
            {
              "name": "Dong Yi",
              "ids": [
                "1716143"
              ],
              "slug": "Dong-Yi"
            },
            {
              "text": "Dong Yi",
              "fragments": []
            }
          ],
          [
            {
              "name": "Stan Z. Li",
              "ids": [
                "34679741"
              ],
              "slug": "Stan-Z.-Li"
            },
            {
              "text": "Stan Z. Li",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "[46]",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[46], Zhou et al.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[46] J.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[46] from The National Laboratory of Pattern Recognition at the Institute of Automation of the Chinese Academy of Sciences, and (b) Zhou et al.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[46] (cascade regression framework) and",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[46] 0.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[46] employ a cascade regression framework, where a series of regressors are utilized to progressively refine the shape initialized by the face detector.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "4f77a37753c03886ca9c9349723ec3bbfe4ee967",
        "title": {
          "text": "Localizing Facial Keypoints with Global Descriptor Search, Neighbour Alignment and Locally Linear Models",
          "fragments": []
        },
        "slug": "Localizing-Facial-Keypoints-with-Global-Descriptor-Hasan-Pal",
        "venue": {
          "text": "2013 IEEE International Conference on Computer Vision Workshops",
          "fragments": []
        },
        "year": 2013,
        "authors": [
          [
            {
              "name": "Md. Kamrul Hasan",
              "ids": [
                "2811524"
              ],
              "slug": "Md.-Kamrul-Hasan"
            },
            {
              "text": "Md. Kamrul Hasan",
              "fragments": []
            }
          ],
          [
            {
              "name": "Christopher Joseph Pal",
              "ids": [
                "1972076"
              ],
              "slug": "Christopher-Joseph-Pal"
            },
            {
              "text": "Christopher Joseph Pal",
              "fragments": []
            }
          ],
          [
            {
              "name": "Sharon Moalem",
              "ids": [
                "9422894"
              ],
              "slug": "Sharon-Moalem"
            },
            {
              "text": "Sharon Moalem",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "[43] M.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[43]",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[43] first apply a nearest neighbour search using global descriptors and, then, aim to align local neighbours by dynamically fitting a locally linear model to the global keypoint configurations of the returned neighbours.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[43] 0.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "36e8ef2e5d52a78dddf0002e03918b101dcdb326",
        "title": {
          "text": "Multiview Active Shape Models with SIFT Descriptors for the 300-W Face Landmark Challenge",
          "fragments": []
        },
        "slug": "Multiview-Active-Shape-Models-with-SIFT-Descriptors-Milborrow-Bishop",
        "venue": {
          "text": "2013 IEEE International Conference on Computer Vision Workshops",
          "fragments": []
        },
        "year": 2013,
        "authors": [
          [
            {
              "name": "Stephen Milborrow",
              "ids": [
                "2822258"
              ],
              "slug": "Stephen-Milborrow"
            },
            {
              "text": "Stephen Milborrow",
              "fragments": []
            }
          ],
          [
            {
              "name": "Tom E. Bishop",
              "ids": [
                "1823550"
              ],
              "slug": "Tom-E.-Bishop"
            },
            {
              "text": "Tom E. Bishop",
              "fragments": []
            }
          ],
          [
            {
              "name": "Fred Nicolls",
              "ids": [
                "2537623"
              ],
              "slug": "Fred-Nicolls"
            },
            {
              "text": "Fred Nicolls",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "[44] 0.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[44] S.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[44] approach the problem with Active Shape Models (ASMs) that incorporate a modified version of SIFT descriptors [45].",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "[44]",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "title": {
          "text": "Face detection",
          "fragments": []
        },
        "slug": "Face-detection-Zhu-Ramanan",
        "venue": {
          "text": "pose estimation, and landmark localization in the wild, in: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE",
          "fragments": []
        },
        "year": 2012,
        "authors": [
          [
            {
              "name": "X. Zhu",
              "ids": [],
              "slug": "X.-Zhu"
            },
            {
              "text": "X. Zhu",
              "fragments": []
            }
          ],
          [
            {
              "name": "D. Ramanan",
              "ids": [],
              "slug": "D.-Ramanan"
            },
            {
              "text": "D. Ramanan",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "The most notable databases of this category are LFPW [28], HELEN [29], AFW [17], AFLW [30] and IBUG [31] (all used for facial landmark points localization).",
            "fragments": [
              {
                "start": 75,
                "end": 79
              }
            ]
          },
          {
            "text": "Note that we employ DPMs [17] to estimate the initial landmarks locations for the first iteration of the above procedure.",
            "fragments": [
              {
                "start": 25,
                "end": 29
              }
            ]
          },
          {
            "text": "These databases can be separated in two major categories: (a) those captured under controlled conditions, e.g. Multi-PIE [24], XM2VTS [25], FRGCV2 [26], AR [27], and those captured under totally unconstrained conditions (in-the-wild), e.g. LFPW [28], HELEN [29], AFW [17], AFLW [30], IBUG [31].",
            "fragments": [
              {
                "start": 263,
                "end": 266
              }
            ]
          },
          {
            "text": "Furthermore, we computed the bounding boxes of all the aforementioned databases by using our in-house face detector, the one that is also employed in [16], which is a variant of [17].",
            "fragments": [
              {
                "start": 178,
                "end": 182
              }
            ]
          },
          {
            "text": "W), the first facial landmark localization challenge, that was\n1The annotations of XM2VTS, FRGC-V2, LFPW, HELEN, AFW and IBUG are publicly available from http://ibug.doc.ic.ac.uk/resources/facial-point-annotations/.",
            "fragments": [
              {
                "start": 113,
                "end": 116
              }
            ]
          },
          {
            "text": "LFPW, AFW, HELEN, XM2VTS and FRGC-V2 were provided for training, along with the corrected annotations produced with the semi-automatic annotation tool (Sec 3).",
            "fragments": [
              {
                "start": 6,
                "end": 9
              }
            ]
          },
          {
            "text": ", and outperform discriminative methodologies, such as CLMs [15], DPMs [17] and SDM [18].",
            "fragments": [
              {
                "start": 71,
                "end": 75
              }
            ]
          },
          {
            "text": "For each subject, there are available images for 15 different poses, 19 illumination conditions and 6\n5\nAC C\nEP\nTE\nD M\nAN U\nSC R\nIP T\n(a) MultiPIE/IBUG (b) XM2VTS (c) FRGC-V2 (d) AR\n(e) LFPW (f) HELEN (g) AFW (h) AFLW\nFigure 1: Landmarks configurations of existing databases.",
            "fragments": [
              {
                "start": 205,
                "end": 208
              }
            ]
          },
          {
            "text": "Multi-PIE [24], XM2VTS [25], FRGC-V2 [26], AR [27], LFPW [28], HELEN [29] and AFW [17].",
            "fragments": [
              {
                "start": 82,
                "end": 86
              }
            ]
          },
          {
            "text": "We employed the proposed tool to re-annotate all the widely used databases, i.e. Multi-PIE [24], XM2VTS [25], FRGC-V2 [26], AR [27], LFPW [28], HELEN [29] and AFW [17].",
            "fragments": [
              {
                "start": 159,
                "end": 162
              }
            ]
          },
          {
            "text": "The discriminative techniques can be further divided to those that use discriminative response map functions, such as Active Shape Models (ASMs) [13], Constrained Local Models (CLMs) [14, 15, 16] and Deformable Part Models (DPMs) [17], those that learn a cascade of regression functions, such as Supervised Descent Method (SDM) [18] and others [19, 20, 21], and, finally, those that employ random forests [22, 23].",
            "fragments": [
              {
                "start": 230,
                "end": 234
              }
            ]
          },
          {
            "text": "The accuracy of the fitting results was measured by the point-to-point RMS error between each fitted shape and the ground truth annotations, normalized by the face’s interoccular distance, as proposed in [17].",
            "fragments": [
              {
                "start": 204,
                "end": 208
              }
            ]
          },
          {
            "text": "HELEN, AFW, IBUG: The rest of in-the-wild databases were annotated\n11\nAC C\nEP TE\nD M\nAN U\nSC R\nIP T\n(a) Multi-PIE (b) XM2VTS\n(c) FRGC-V2 (d) LFPW\n(e) HELEN (f) AFW\nFigure 3: Examples of the annotated images.",
            "fragments": [
              {
                "start": 7,
                "end": 10
              }
            ]
          },
          {
            "text": "In both conducts, the training set consisted of the XM2VTS, FRGC-V2, LFPW, HELEN, AFW and IBUG databases that were annotated using the proposed semi-automatic procedure.",
            "fragments": [
              {
                "start": 82,
                "end": 85
              }
            ]
          },
          {
            "text": "LFPW [28], HELEN [29], AFW [17], AFLW [30], IBUG [31].",
            "fragments": [
              {
                "start": 27,
                "end": 31
              }
            ]
          },
          {
            "text": "AFW: The Annotated Faces in-the-wild (AFW) [17] database consists of 250 images with 468 faces, that is, more than one faces are annotated in each image.",
            "fragments": [
              {
                "start": 43,
                "end": 47
              }
            ]
          },
          {
            "text": "AR: The AR Face Database [27] contains over 4000 images corresponding to\n6\nAC C\nEP TE\nD M\nAN U\nSC\nR\nIP T\nDatabase conditions # faces # subjects # points pose\nMulti-PIE controlled ∼ 750000 337 68 [−45◦, 45◦] XM2VTS 2360 295 68 0◦ FRGC-V2 4950 466 5 0◦ AR ∼ 4000 126 22 0◦ LFPW\nin-the-wild\n1035\n−\n35\n[−45◦, 45◦] HELEN 2330 194 AFW 468 6 AFLW 25993 21 IBUG 135 68\nTable 1: Overview of the characteristics of existing facial databases.",
            "fragments": [
              {
                "start": 310,
                "end": 313
              }
            ]
          },
          {
            "text": "For example, DPMs [17] tend to return bounding boxes that only include facial texture and not any of the subject’s hair, as usually done by the Viola-Jones detector [48].",
            "fragments": [
              {
                "start": 18,
                "end": 22
              }
            ]
          },
          {
            "text": "The authors were encouraged, but not restricted, to use LFPW, AFW, HELEN, IBUG, FRGC-V2 and XM2VTS databases with the provided annotations.",
            "fragments": [
              {
                "start": 62,
                "end": 65
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "id": "a74251efa970b92925b89eeef50a5e37d9281ad0",
        "title": {
          "text": "Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization",
          "fragments": []
        },
        "slug": "Annotated-Facial-Landmarks-in-the-Wild:-A-database-Köstinger-Wohlhart",
        "venue": {
          "text": "2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)",
          "fragments": []
        },
        "year": 2011,
        "authors": [
          [
            {
              "name": "Martin Köstinger",
              "ids": [
                "1993853"
              ],
              "slug": "Martin-Köstinger"
            },
            {
              "text": "Martin Köstinger",
              "fragments": []
            }
          ],
          [
            {
              "name": "Paul Wohlhart",
              "ids": [
                "3202367"
              ],
              "slug": "Paul-Wohlhart"
            },
            {
              "text": "Paul Wohlhart",
              "fragments": []
            }
          ],
          [
            {
              "name": "Peter M. Roth",
              "ids": [
                "1791182"
              ],
              "slug": "Peter-M.-Roth"
            },
            {
              "text": "Peter M. Roth",
              "fragments": []
            }
          ],
          [
            {
              "name": "Horst Bischof",
              "ids": [
                "3628150"
              ],
              "slug": "Horst-Bischof"
            },
            {
              "text": "Horst Bischof",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "The most notable databases of this category are LFPW [28], HELEN [29], AFW [17], AFLW [30] and IBUG [31] (all used for facial landmark points localization).",
            "fragments": [
              {
                "start": 86,
                "end": 90
              }
            ]
          },
          {
            "text": "These databases can be separated in two major categories: (a) those captured under controlled conditions, e.g. Multi-PIE [24], XM2VTS [25], FRGCV2 [26], AR [27], and those captured under totally unconstrained conditions (in-the-wild), e.g. LFPW [28], HELEN [29], AFW [17], AFLW [30], IBUG [31].",
            "fragments": [
              {
                "start": 273,
                "end": 277
              }
            ]
          },
          {
            "text": "AFLW: The Annotated Facial Landmarks in theWild (AFLW) [30] database consists of 25993 images gathered from Flickr, exhibiting a large variety in appearance (e.g., pose, expression, ethnicity, age, gender) as well as general imaging and environmental conditions.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "For each subject, there are available images for 15 different poses, 19 illumination conditions and 6\n5\nAC C\nEP\nTE\nD M\nAN U\nSC R\nIP T\n(a) MultiPIE/IBUG (b) XM2VTS (c) FRGC-V2 (d) AR\n(e) LFPW (f) HELEN (g) AFW (h) AFLW\nFigure 1: Landmarks configurations of existing databases.",
            "fragments": [
              {
                "start": 213,
                "end": 217
              }
            ]
          },
          {
            "text": "AFLW: The Annotated Facial Landmarks in theWild (AFLW) [30] database consists of 25993 images gathered from Flickr, exhibiting a large variety in appearance (e.",
            "fragments": [
              {
                "start": 55,
                "end": 59
              }
            ]
          },
          {
            "text": "[30] M.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "LFPW [28], HELEN [29], AFW [17], AFLW [30], IBUG [31].",
            "fragments": [
              {
                "start": 38,
                "end": 42
              }
            ]
          },
          {
            "text": "AR: The AR Face Database [27] contains over 4000 images corresponding to\n6\nAC C\nEP TE\nD M\nAN U\nSC\nR\nIP T\nDatabase conditions # faces # subjects # points pose\nMulti-PIE controlled ∼ 750000 337 68 [−45◦, 45◦] XM2VTS 2360 295 68 0◦ FRGC-V2 4950 466 5 0◦ AR ∼ 4000 126 22 0◦ LFPW\nin-the-wild\n1035\n−\n35\n[−45◦, 45◦] HELEN 2330 194 AFW 468 6 AFLW 25993 21 IBUG 135 68\nTable 1: Overview of the characteristics of existing facial databases.",
            "fragments": [
              {
                "start": 320,
                "end": 324
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "title": {
          "text": "Fddb: A benchmark for face detection in unconstrained settings",
          "fragments": []
        },
        "slug": "Fddb:-A-benchmark-for-face-detection-in-settings-Jain-Learned-Miller",
        "venue": {
          "text": "Tech. Rep. UM-CS-2010-009, University of Massachusetts, Amherst",
          "fragments": []
        },
        "year": 2010,
        "authors": [
          [
            {
              "name": "V. Jain",
              "ids": [],
              "slug": "V.-Jain"
            },
            {
              "text": "V. Jain",
              "fragments": []
            }
          ],
          [
            {
              "name": "E. Learned-Miller",
              "ids": [],
              "slug": "E.-Learned-Miller"
            },
            {
              "text": "E. Learned-Miller",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "Consequently, in order to facilitate the participants and make the competition less dependent to a face\n20\ndetector’s performance, we suggested them to use one of the face detection methods that took part in the Face Detection Data Set and Benchmark (FDDB) [49].",
            "fragments": [
              {
                "start": 250,
                "end": 254
              }
            ]
          },
          {
            "text": "[49] V.",
            "fragments": [
              {
                "start": 0,
                "end": 4
              }
            ]
          },
          {
            "text": "detector’s performance, we suggested them to use one of the face detection methods that took part in the Face Detection Data Set and Benchmark (FDDB) [49].",
            "fragments": [
              {
                "start": 150,
                "end": 154
              }
            ]
          },
          {
            "text": "The results presented in the Face Detection Data Set and Benchmark (FDDB) [49] show that current stateof-the-art techniques achieve very good true positive rates.",
            "fragments": [
              {
                "start": 74,
                "end": 78
              }
            ]
          }
        ],
        "isKey": true
      },
      {
        "title": {
          "text": "Multi-pie",
          "fragments": []
        },
        "slug": "Multi-pie-Gross-Matthews",
        "venue": {
          "text": "Image and Vision Computing 28 (5)",
          "fragments": []
        },
        "year": 2010,
        "authors": [
          [
            {
              "name": "R. Gross",
              "ids": [],
              "slug": "R.-Gross"
            },
            {
              "text": "R. Gross",
              "fragments": []
            }
          ],
          [
            {
              "name": "I. Matthews",
              "ids": [],
              "slug": "I.-Matthews"
            },
            {
              "text": "I. Matthews",
              "fragments": []
            }
          ],
          [
            {
              "name": "J. Cohn",
              "ids": [],
              "slug": "J.-Cohn"
            },
            {
              "text": "J. Cohn",
              "fragments": []
            }
          ],
          [
            {
              "name": "T. Kanade",
              "ids": [],
              "slug": "T.-Kanade"
            },
            {
              "text": "T. Kanade",
              "fragments": []
            }
          ],
          [
            {
              "name": "S. Baker",
              "ids": [],
              "slug": "S.-Baker"
            },
            {
              "text": "S. Baker",
              "fragments": []
            }
          ]
        ],
        "citationContexts": [
          {
            "text": "The most popular such databases are Multi-PIE [24] (used for face recognition, expressions recognition, landmark points localization), FRGC-V2 [26] (used for face recognition), XM2VTS [25] and AR [27] (both used for face recognition and landmark points localization).",
            "fragments": [
              {
                "start": 46,
                "end": 50
              }
            ]
          },
          {
            "text": "The provided facial landmark annotations are produced by employing the annotation scheme of Multi-PIE (Fig.",
            "fragments": [
              {
                "start": 92,
                "end": 101
              }
            ]
          },
          {
            "text": "These databases can be separated in two major categories: (a) those captured under controlled conditions, e.g. Multi-PIE [24], XM2VTS [25], FRGCV2 [26], AR [27], and those captured under totally unconstrained conditions (in-the-wild), e.g. LFPW [28], HELEN [29], AFW [17], AFLW [30], IBUG [31].",
            "fragments": [
              {
                "start": 111,
                "end": 120
              }
            ]
          },
          {
            "text": "Note that in the case of Multi-PIE, even though the original and generated annotations have the same configuration, the generated ones are more accurate.\nusing a common procedure.",
            "fragments": [
              {
                "start": 25,
                "end": 34
              }
            ]
          },
          {
            "text": "The advantages of the generated annotations1 are twofold: (1) They all have the same landmarks configuration, i.e. the one employed in Multi-PIE (Fig.",
            "fragments": [
              {
                "start": 135,
                "end": 144
              }
            ]
          },
          {
            "text": "16: Fit the person-specific AOM to the image i. 17: end for 18: end for 19: end if 20: Check and manually correct, if necessary, the generated annotations of Q.\nMulti-PIE: The available Multi-PIE annotations cover only the neutral expression with pose [−45◦, 45◦] and multiple non-neutral expressions with pose 0◦.",
            "fragments": [
              {
                "start": 161,
                "end": 170
              }
            ]
          },
          {
            "text": "Facial databases under controlled conditions Multi-PIE: The CMU Multi Pose Illumination, and Expression (MultiPIE) Database [24] contains around 750000 images of 337 subjects captured under laboratory conditions in four different sessions.",
            "fragments": [
              {
                "start": 124,
                "end": 128
              }
            ]
          },
          {
            "text": "Multi-PIE [24], XM2VTS [25], FRGC-V2 [26], AR [27], LFPW [28], HELEN [29] and AFW [17].",
            "fragments": [
              {
                "start": 10,
                "end": 14
              }
            ]
          },
          {
            "text": "We employed the proposed tool to re-annotate all the widely used databases, i.e. Multi-PIE [24], XM2VTS [25], FRGC-V2 [26], AR [27], LFPW [28], HELEN [29] and AFW [17].",
            "fragments": [
              {
                "start": 81,
                "end": 90
              }
            ]
          },
          {
            "text": "For example, in Multi-PIE, the annotations for subjects with expressions “disgust” at 0◦ and “neutral” at 15◦ are provided and we want to produce the annotations for subjects with expression “disgust” at 15◦.",
            "fragments": [
              {
                "start": 16,
                "end": 25
              }
            ]
          },
          {
            "text": "The images of each such pose cluster were semi-automatically annotated using images from Multi-PIE with the same pose.",
            "fragments": [
              {
                "start": 89,
                "end": 98
              }
            ]
          },
          {
            "text": "However, the accuracy of the annotations in some cases is limited and the locations of the provided points do not correspond to ones of Multi-PIE.",
            "fragments": [
              {
                "start": 136,
                "end": 145
              }
            ]
          },
          {
            "text": "Multi-PIE: The CMU Multi Pose Illumination, and Expression (MultiPIE) Database [24] contains around 750000 images of 337 subjects captured under laboratory conditions in four different sessions.",
            "fragments": [
              {
                "start": 0,
                "end": 9
              }
            ]
          },
          {
            "text": "XM2VTS: The images of XM2VTS’s first session were semi-automatically annotated by setting V to be the subjects of Multi-PIE with neutral expression and [−15◦, 15◦] poses.",
            "fragments": [
              {
                "start": 113,
                "end": 122
              }
            ]
          },
          {
            "text": "HELEN, AFW, IBUG: The rest of in-the-wild databases were annotated\n11\nAC C\nEP TE\nD M\nAN U\nSC R\nIP T\n(a) Multi-PIE (b) XM2VTS\n(c) FRGC-V2 (d) LFPW\n(e) HELEN (f) AFW\nFigure 3: Examples of the annotated images.",
            "fragments": [
              {
                "start": 104,
                "end": 113
              }
            ]
          },
          {
            "text": "This subset was annotated by employing images from Multi-PIE with six expressions and [−15◦, 15◦] poses as V .",
            "fragments": [
              {
                "start": 51,
                "end": 60
              }
            ]
          },
          {
            "text": "Multi-PIE [24], XM2VTS [25], FRGCV2 [26], AR [27], and those captured under totally unconstrained conditions (in-the-wild), e.",
            "fragments": [
              {
                "start": 10,
                "end": 14
              }
            ]
          },
          {
            "text": "In case Q has multiple images per subject (e.g. Multi-PIE, XM2VTS, FRGC-V2, AR), the above method can be extended to further improve the generated annotations.",
            "fragments": [
              {
                "start": 48,
                "end": 57
              }
            ]
          },
          {
            "text": "To this end, we selected such images of N = 80 different subjects with frontal pose from the Multi-PIE database.",
            "fragments": [
              {
                "start": 93,
                "end": 102
              }
            ]
          },
          {
            "text": "AR: The AR Face Database [27] contains over 4000 images corresponding to\n6\nAC C\nEP TE\nD M\nAN U\nSC\nR\nIP T\nDatabase conditions # faces # subjects # points pose\nMulti-PIE controlled ∼ 750000 337 68 [−45◦, 45◦] XM2VTS 2360 295 68 0◦ FRGC-V2 4950 466 5 0◦ AR ∼ 4000 126 22 0◦ LFPW\nin-the-wild\n1035\n−\n35\n[−45◦, 45◦] HELEN 2330 194 AFW 468 6 AFLW 25993 21 IBUG 135 68\nTable 1: Overview of the characteristics of existing facial databases.",
            "fragments": [
              {
                "start": 158,
                "end": 167
              }
            ]
          }
        ],
        "isKey": true
      }
    ],
    "requestedPageSize": 10,
    "pageNumber": 1,
    "totalPages": 5,
    "sort": "is-influential"
  },
  "figureExtractions": {
    "figures": [
      {
        "name": "1",
        "figureType": "figure",
        "caption": "Figure 1: Landmarks configurations of existing databases. Note they all have different number of landmark points with semantically different locations.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/7-Figure1-1.png",
        "width": 449,
        "height": 449
      },
      {
        "name": "1",
        "figureType": "table",
        "caption": "Table 1: Overview of the characteristics of existing facial databases.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/8-Table1-1.png",
        "width": 439,
        "height": 439
      },
      {
        "name": "2",
        "figureType": "figure",
        "caption": "Figure 2: Flowchart of the proposed tool. Given a set of landmarked images V with various poses and expressions, we aim to annotate a set of non-annotated images Q (1) with the same subjects and different poses and expressions, or (2) with different subjects but similar pose and expressions.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/11-Figure2-1.png",
        "width": 449,
        "height": 449
      },
      {
        "name": "2",
        "figureType": "table",
        "caption": "Table 2: Overview of the characteristics of the 300-W database.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/16-Table2-1.png",
        "width": 445,
        "height": 445
      },
      {
        "name": "3",
        "figureType": "figure",
        "caption": "Figure 3: Examples of the annotated images. For each database, the image on the left has the original annotations and the one on the right shows the annotations generated by the proposed tool. Note that in the case of Multi-PIE, even though the original and generated annotations have the same configuration, the generated ones are more accurate.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/13-Figure3-1.png",
        "width": 445,
        "height": 445
      },
      {
        "name": "3",
        "figureType": "table",
        "caption": "Table 3: Median absolute deviation of the fitting results of the first conduct of 300-W challenge in 2013, reported for both 68 and 51 points.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/19-Table3-1.png",
        "width": 422,
        "height": 422
      },
      {
        "name": "4",
        "figureType": "figure",
        "caption": "Figure 4: The cardinality of W and V per iteration.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/14-Figure4-1.png",
        "width": 321,
        "height": 321
      },
      {
        "name": "4",
        "figureType": "table",
        "caption": "Table 4: Overview of the characteristics of the cropped images of the 300-W database.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/20-Table4-1.png",
        "width": 448,
        "height": 448
      },
      {
        "name": "5",
        "figureType": "figure",
        "caption": "Figure 5: Each ellipse denotes the variance of each landmark point with regards to three expert human annotators. The colours of the points rank them with respect to their standard deviation normalized by the face size.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/15-Figure5-1.png",
        "width": 413,
        "height": 413
      },
      {
        "name": "5",
        "figureType": "table",
        "caption": "Table 5: Second conduct of the 300-W challenge. 2nd column: Number of images for which an estimation of the landmarks was returned. 3rd and 4th columns: The mean absolute deviation of the fitting results for both 68 and 51 points. 5th column: Mean computational cost per method.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/23-Table5-1.png",
        "width": 449,
        "height": 449
      },
      {
        "name": "6",
        "figureType": "figure",
        "caption": "Figure 6: The 51-points mark-up is a subset of the 68-points one after removing the 17 points of the face’s boundary. The interoccular distance is defined between the outer points of the eyes.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/17-Figure6-1.png",
        "width": 231,
        "height": 231
      },
      {
        "name": "6",
        "figureType": "table",
        "caption": "Table 6: Percentage of images with fitting error less than the specified values for the winners of the first (Yan et al. [46], Zhou et al. [47]) and second (J. Deng, H. Fan) 300-W challenges, and Oracle. The error is based on 68 points using both indoor and oudoor images.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/27-Table6-1.png",
        "width": 445,
        "height": 445
      },
      {
        "name": "7",
        "figureType": "figure",
        "caption": "Figure 7: Fitting results of the first conduct of the 300-W challenge in 2013. The plots show the Cumulative Error Distribution (CED) curves with respect to the landmarks (68 and 51 points) and the condtions (indoor, outdoor or both).",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/18-Figure7-1.png",
        "width": 477,
        "height": 477
      },
      {
        "name": "8",
        "figureType": "figure",
        "caption": "Figure 8: Indicative examples of the way the images were cropped for the second conduct of the 300-W challenge.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/21-Figure8-1.png",
        "width": 449,
        "height": 449
      },
      {
        "name": "9",
        "figureType": "figure",
        "caption": "Figure 9: Fitting results of the second conduct of the 300-W challenge in 2015. The plots show the Cumulative Error Distribution (CED) curves with respect to the landmarks (68 and 51 points) and the condtions (indoor, outdoor or both).",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/22-Figure9-1.png",
        "width": 477,
        "height": 477
      },
      {
        "name": "10",
        "figureType": "figure",
        "caption": "Figure 10: Fitting examples of the first conduct of the 300-W challenge in 2013. Each row shows the fitted landmarks for each participating method.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/24-Figure10-1.png",
        "width": 449,
        "height": 449
      },
      {
        "name": "11",
        "figureType": "figure",
        "caption": "Figure 11: Fitting examples of the second conduct of the 300-W challenge in 2015. Each row shows the fitted landmarks for each participating method.",
        "uri": "https://ai2-s2-public.s3.amazonaws.com/figures/2017-08-08/e4754afaa15b1b53e70743880484b8d0736990ff/26-Figure11-1.png",
        "width": 455,
        "height": 455
      }
    ]
  },
  "presentations": [
    {
      "contentType": "PRESENTATION",
      "id": "df1e22c9a92e6c506c228ef23049ab3b8c908e80",
      "title": "Face detection, pose estimation, and landmark localization in the wild",
      "authors": [
        "Xiangxin Zhu",
        "Deva Ramanan"
      ],
      "published": 1412121600,
      "url": "https://pdfs.semanticscholar.org/presentation/df1e/22c9a92e6c506c228ef23049ab3b8c908e80.pdf"
    },
    {
      "contentType": "PRESENTATION",
      "id": "b4d2151e29fb12dbe5d164b430273de65103d39b",
      "title": "Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization",
      "authors": [
        "Martin Köstinger",
        "Paul Wohlhart",
        "Peter M. Roth",
        "Horst Bischof"
      ],
      "published": 1412121600,
      "url": "https://pdfs.semanticscholar.org/presentation/b4d2/151e29fb12dbe5d164b430273de65103d39b.pdf"
    },
    {
      "contentType": "PRESENTATION",
      "id": "d5c22cb54bd23f17289c31abb84baaf0cd439540",
      "title": "Face Recognition by Humans: Nineteen Results All Computer Vision Researchers Should Know About",
      "authors": [
        "Pawan Sinha",
        "Benjamin J. Balas",
        "Yuri Ostrovsky",
        "Richard Russell"
      ],
      "published": 1412121600,
      "url": "https://pdfs.semanticscholar.org/presentation/d5c2/2cb54bd23f17289c31abb84baaf0cd439540.pdf"
    },
    {
      "contentType": "PRESENTATION",
      "id": "8e1f99812078e91a0d5722eaf54f20c6fc65df4c",
      "title": "Challenges of the Open Source Component Marketplace in the Industry",
      "authors": [
        "Claudia P. Ayala",
        "Øyvind Hauge",
        "Reidar Conradi",
        "Xavier Franch",
        "Jingyue Li",
        "Ketil Sandanger Velle"
      ],
      "published": 1412121600,
      "url": "https://pdfs.semanticscholar.org/presentation/8e1f/99812078e91a0d5722eaf54f20c6fc65df4c.pdf"
    },
    {
      "contentType": "PRESENTATION",
      "id": "47bae254f82bdf4b66ea493afebf5a12c7291db2",
      "title": "Pervasive computing: vision and challenges",
      "authors": [
        "Mahadev Satyanarayanan"
      ],
      "published": 1412121600,
      "url": "https://pdfs.semanticscholar.org/presentation/47ba/e254f82bdf4b66ea493afebf5a12c7291db2.pdf"
    },
    {
      "contentType": "PRESENTATION",
      "id": "cf9f048a00f14ec5348a1dfe76a2e23b51e0b26a",
      "title": "Challenges and opportunities in enterprise-wide optimization in the pharmaceutical industry",
      "authors": [
        "José Miguel Laínez",
        "E. Schaefer",
        "Gintaras V. Reklaitis"
      ],
      "published": 1511903839.603717,
      "url": "https://pdfs.semanticscholar.org/presentation/cf9f/048a00f14ec5348a1dfe76a2e23b51e0b26a.pdf"
    },
    {
      "contentType": "PRESENTATION",
      "id": "cf0e634e608cf1d5574266d8c0110b75b3e615fd",
      "title": "Industry 4.0 - Challenges in Anti-Counterfeiting",
      "authors": [
        "Christian Thiel",
        "Christoph Thiel"
      ],
      "published": 1511948094.409062,
      "url": "https://pdfs.semanticscholar.org/presentation/cf0e/634e608cf1d5574266d8c0110b75b3e615fd.pdf"
    },
    {
      "contentType": "PRESENTATION",
      "id": "6b9267cc7b4277e4abdefb52157bc69d318412c9",
      "title": "Energy demand forecasting: industry practices and challenges",
      "authors": [
        "Mathieu Sinn"
      ],
      "published": 1447968149.539,
      "url": "https://pdfs.semanticscholar.org/presentation/6b92/67cc7b4277e4abdefb52157bc69d318412c9.pdf"
    },
    {
      "contentType": "PRESENTATION",
      "id": "09e47a1b9abcce753ce124eab586d1cb03abdde4",
      "title": "Hardware Acceleration Technologies in Computer Algebra : Challenges and Impact",
      "authors": [
        "Sardar Anisul Haque"
      ],
      "published": 1427429814,
      "url": "https://pdfs.semanticscholar.org/presentation/09e4/7a1b9abcce753ce124eab586d1cb03abdde4.pdf"
    },
    {
      "contentType": "PRESENTATION",
      "id": "6442a7dc149de6763b0959d924ec5a3dbe09ec1f",
      "title": "New results on the coarseness of bicolored point sets",
      "authors": [
        "José Miguel Díaz-Báñez",
        "Ruy Fabila Monroy",
        "Pablo Pérez-Lantero",
        "Inmaculada Ventura"
      ],
      "published": 1385693873,
      "url": "https://pdfs.semanticscholar.org/presentation/6442/a7dc149de6763b0959d924ec5a3dbe09ec1f.pdf"
    }
  ],
  "featuredContent": []
}