summaryrefslogtreecommitdiff
path: root/scraper/s2-final-report.py
blob: 8d42a52b46451f54dc53ae30848e25aa15d0ec78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import re
import glob
import simplejson as json
import math
import operator
import click
import subprocess
from util import *

DIR_PUBLIC_CITATIONS = "../site/datasets/citations"
DIR_FINAL_CITATIONS = "../site/datasets/final"
DIR_UNKNOWN_CITATIONS = "../site/datasets/unknown"
DIR_VERIFIED_CITATIONS = "../site/datasets/verified"

addresses = AddressBook()
paper_location_lookup = fetch_google_lookup('paper_locations', item_key='paper_id')

@click.command()
def s2_final_report():
  megapixels = load_megapixels_lookup()
  verified_lookup = fetch_verified_paper_lookup()
  items = []
  for key, item in megapixels.items():
    ft_share = 'ft_share' in item['dataset'] and item['dataset']['ft_share'] == 'Y'
    nyt_share = 'nyt_share' in item['dataset'] and item['dataset']['nyt_share'] == 'Y'
    if ft_share or nyt_share:
      if key in verified_lookup:
        lookup = verified_lookup[key]
      else:
        lookup = {}
      items.append((item, lookup,))
  parallelize(process_paper, items)
  # key name_short  name_full purpose url
  # wild  indoor  outdoor campus  cyberspace    parent
  # child source  usernames names year_start  year_end  year_published
  # ongoing images  videos  identities  img_per_person  num_cameras
  # faces_persons female  male  landmarks width height  color gray
  # derivative_of tags  size_gb agreement
  # citations_count
  # subprocess.call([
  #   "s3cmd", "put", "-P", "--recursive",
  #   DIR_PUBLIC_CITATIONS + '/',
  #   "s3://megapixels/v1/citations/",
  # ])
  subprocess.call([
    "s3cmd", "put", "-P", "--recursive",
    DIR_VERIFIED_CITATIONS + '/',
    "s3://megapixels/v1/citations/verified/",
  ])

def process_paper(row, verified_lookup):
  aggregate_citations = {}
  unknown_citations = {}
  address = None
  address_list = []
  papers = []
  # print(row['paper_ids'])
  for paper_id in row['paper_ids']:
    res = process_single_paper(row, paper_id, addresses, aggregate_citations, unknown_citations)
    if res:
      papers.append(res)
      if res['address']:
        address_list.append(res['address'])
  process_single_paper(row, 'search', addresses, aggregate_citations, unknown_citations)
  if not len(papers):
    return
  paper = papers[0]

  # final citations - a report of all geocoded citations
  with open('{}/{}.json'.format(DIR_FINAL_CITATIONS, row['key']), 'w') as f:
    json.dump({
      'id': paper['paper_id'],
      'dataset': row['dataset'],
      'paper': paper,
      'addresses': address_list,
      'additional_papers': papers[1:],
      'citations': [aggregate_citations[key] for key in aggregate_citations.keys()],
    }, f)

  # unkonwn citations - a report of all non-geocoded citations
  with open('{}/{}.json'.format(DIR_UNKNOWN_CITATIONS, row['key']), 'w') as f:
    json.dump({
      'id': papers[0]['paper_id'],
      'citations': [unknown_citations[key] for key in unknown_citations.keys()],
    }, f)

  # "public" citations - initial citation reports digested by the geocoding frontend -bad name i know
  # this might not need to get built...
  with open('{}/{}.json'.format(DIR_PUBLIC_CITATIONS, row['key']), 'w') as f:
    json.dump({
      'id': paper['paper_id'],
      'paper': {
        'key': row['key'],
        'name': row['name'],
        'title': paper['title'],
        'year': paper['year'],
        'addresses': address_list,
      },
      'citations': [aggregate_citations[key] for key in aggregate_citations.keys()],
    }, f)

  # verified citations - the final public reports 
  with open('{}/{}.json'.format(DIR_VERIFIED_CITATIONS, row['key']), 'w') as f:
    json.dump({
      'id': paper['paper_id'],
      'paper': {
        'key': row['key'],
        'name': row['name'],
        'title': paper['title'],
        'year': paper['year'],
        'addresses': address_list,
      },
      'citations': [aggregate_citations[key] for key in verified_lookup.keys() if key in aggregate_citations],
    }, f)

def process_single_paper(row, paper_id, addresses, aggregate_citations, unknown_citations):
  res = {
    'paper_id': '',
    'key': '',
    'title': '',
    # 'journal': '',
    'year': '',
    'pdf': '',
    'address': '',
    # 'citation_count': 0,
    # 'citations_geocoded': 0,
    # 'citations_unknown': 0,
    # 'citations_empty': 0,
    # 'citations_pdf': 0,
    # 'citations_doi': 0,
  }

  if paper_id == 'search':
    dataset = row['key']
    fn = 'datasets/s2/search_papers/{}.json'.format(dataset)
    if not os.path.exists(fn):
      return
    print('>> {} {}'.format(data['paperId'], 'search results'))
    with open(fn, 'r') as f:
      citations = json.load(f)
      data = { 'citations': [ { 'paperId': paperId } for paperId in citations ] }
  else:
    fn = file_path('papers', paper_id, 'paper.json')
    with open(fn, 'r') as f:
      data = json.load(f)
    print('>> {} {}'.format(data['paperId'], row['key']))
    paper = load_paper(data['paperId'])
    if paper is None:
      print("Paper missing! {}".format(data['paperId']))
      return
  
    res['key'] = row['key']
    res['name'] = row['name']
    res['paper_id'] = paper.paper_id
    res['title'] = paper.title
    # res['journal'] = paper.journal
    res['year'] = paper.year
    res['pdf'] = paper.pdf_links()
    res['doi'] = paper.doi_links()
    # res['authors'] = ', '.join(paper.authors)
    # res['citations'] = []

    paper_institutions = load_institutions(paper.paper_id, paper_location_lookup)
    paper_address = None
    for inst in sorted(paper_institutions, key=operator.itemgetter(1)):
      #print(inst[1])
      institution = inst[1]
      if paper_address is None:
        paper_address = addresses.findObject(institution)

    if paper_address:
      # print(paper_address)
      res['address'] = paper_address

  for cite in data['citations']:
    citationId = cite['paperId']
    if citationId in aggregate_citations:
      continue
    elif citationId in unknown_citations:
      continue
    seen_here = {}
    citation = load_paper(citationId)
    has_pdf = os.path.exists(file_path('pdf', citationId, 'paper.txt'))
    has_doi = os.path.exists(file_path('doi', citationId, 'paper.doi'))
    # if has_pdf:
    #   pdf_count += 1
    # if has_doi:
    #   doi_count += 1
    if citation is None or citation.data is None:
      print("Citation missing! {}".format(citationId))
      continue
    institutions = load_institutions(citationId, paper_location_lookup)
    geocoded_addresses = []
    geocoded_institutions = []
    institution = ''
    address = None
    for inst in sorted(institutions, key=operator.itemgetter(1)):
      # address_count += 1
      institution = inst[1]
      next_address = addresses.findObject(institution)
      if next_address and next_address['name'] not in seen_here:
        seen_here[next_address['name']] = True
        address = next_address
        geocoded_addresses.append(next_address)
    if not address:
      if has_pdf:
        headings, found_abstract = read_headings(file_path('pdf', citationId, 'paper.txt'), citation)
        heading_string = '\n'.join(headings[0:20])
        found_addresses = []
        if len(headings):
          for heading in headings:
            possible_address = heading.lower().strip()
            if possible_address:
              next_address = addresses.findObject(possible_address)
              if next_address and next_address['name'] not in seen_here:
                seen_here[next_address['name']] = True
                address = next_address
                geocoded_addresses.append(next_address)
    if address:
      aggregate_citations[citationId] = {
        'id': citationId,
        'title': citation.title,
        'addresses': geocoded_addresses,
        'year': citation.year,
        'pdf': citation.pdf_links(),
        'doi': citation.doi_links(),
      }
    else:
      unknown_citations[citationId] = {
        'id': citationId,
        'title': citation.title,
        'year': citation.year,
        'pdf': citation.pdf_links(),
        'doi': citation.doi_links(),
      }
  return res

def load_megapixels_lookup():
  keys, rows = fetch_google_sheet('citation_lookup')
  dataset_lookup = fetch_google_lookup('datasets')
  lookup = {}
  for row in rows:
    rec = {}
    for index, key in enumerate(keys):
      rec[key] = row[index]
    if rec['paper_id'] == "" or (rec['verified'] != 1 and rec['verified'] != '1'):
      continue
    paper_key = rec['key']
    if paper_key not in lookup:
      rec['paper_ids'] = []
      lookup[paper_key] = rec
    lookup[paper_key]['paper_ids'].append(rec['paper_id'])
    if paper_key in dataset_lookup:
      lookup[paper_key]['dataset'] = dataset_lookup[paper_key]
    else:
      print("not in datasets lookup:", paper_key)
      lookup[paper_key]['dataset'] = {}
  return lookup

if __name__ == '__main__':
  s2_final_report()