1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
import os
import re
import glob
import simplejson as json
import math
import operator
import click
import subprocess
from util import *
DIR_PUBLIC_CITATIONS = "../site/datasets/citations"
DIR_FINAL_CITATIONS = "../site/datasets/final"
DIR_UNKNOWN_CITATIONS = "../site/datasets/unknown"
DIR_VERIFIED_CITATIONS = "../site/datasets/verified"
addresses = AddressBook()
paper_location_lookup = fetch_google_lookup('paper_locations', item_key='paper_id')
@click.command()
def s2_final_report():
megapixels = load_megapixels_lookup()
verified_lookup = fetch_verified_paper_lookup()
items = []
for key, item in megapixels.items():
ft_share = 'ft_share' in item['dataset'] and item['dataset']['ft_share'] == 'Y'
nyt_share = 'nyt_share' in item['dataset'] and item['dataset']['nyt_share'] == 'Y'
if ft_share or nyt_share:
if key in verified_lookup:
lookup = verified_lookup[key]
else:
lookup = {}
items.append((item, lookup,))
parallelize(process_paper, items)
# key name_short name_full purpose url
# wild indoor outdoor campus cyberspace parent
# child source usernames names year_start year_end year_published
# ongoing images videos identities img_per_person num_cameras
# faces_persons female male landmarks width height color gray
# derivative_of tags size_gb agreement
# citations_count
# subprocess.call([
# "s3cmd", "put", "-P", "--recursive",
# DIR_PUBLIC_CITATIONS + '/',
# "s3://megapixels/v1/citations/",
# ])
subprocess.call([
"s3cmd", "put", "-P", "--recursive",
DIR_VERIFIED_CITATIONS + '/',
"s3://megapixels/v1/citations/verified/",
])
def process_paper(row, verified_lookup):
aggregate_citations = {}
unknown_citations = {}
address = None
address_list = []
papers = []
# print(row['paper_ids'])
for paper_id in row['paper_ids']:
res = process_single_paper(row, paper_id, addresses, aggregate_citations, unknown_citations)
if res:
papers.append(res)
if res['address']:
address_list.append(res['address'])
process_single_paper(row, 'search', addresses, aggregate_citations, unknown_citations)
if not len(papers):
return
paper = papers[0]
# final citations - a report of all geocoded citations
with open('{}/{}.json'.format(DIR_FINAL_CITATIONS, row['key']), 'w') as f:
json.dump({
'id': paper['paper_id'],
'dataset': row['dataset'],
'paper': paper,
'addresses': address_list,
'additional_papers': papers[1:],
'citations': [aggregate_citations[key] for key in aggregate_citations.keys()],
}, f)
# unkonwn citations - a report of all non-geocoded citations
with open('{}/{}.json'.format(DIR_UNKNOWN_CITATIONS, row['key']), 'w') as f:
json.dump({
'id': papers[0]['paper_id'],
'citations': [unknown_citations[key] for key in unknown_citations.keys()],
}, f)
# "public" citations - initial citation reports digested by the geocoding frontend -bad name i know
# this might not need to get built...
with open('{}/{}.json'.format(DIR_PUBLIC_CITATIONS, row['key']), 'w') as f:
json.dump({
'id': paper['paper_id'],
'paper': {
'key': row['key'],
'name': row['name'],
'title': paper['title'],
'year': paper['year'],
'addresses': address_list,
},
'citations': [aggregate_citations[key] for key in aggregate_citations.keys()],
}, f)
# verified citations - the final public reports
with open('{}/{}.json'.format(DIR_VERIFIED_CITATIONS, row['key']), 'w') as f:
json.dump({
'id': paper['paper_id'],
'paper': {
'key': row['key'],
'name': row['name'],
'title': paper['title'],
'year': paper['year'],
'addresses': address_list,
},
'citations': [aggregate_citations[key] for key in verified_lookup.keys() if key in aggregate_citations],
}, f)
def process_single_paper(row, paper_id, addresses, aggregate_citations, unknown_citations):
res = {
'paper_id': '',
'key': '',
'title': '',
# 'journal': '',
'year': '',
'pdf': '',
'address': '',
# 'citation_count': 0,
# 'citations_geocoded': 0,
# 'citations_unknown': 0,
# 'citations_empty': 0,
# 'citations_pdf': 0,
# 'citations_doi': 0,
}
if paper_id == 'search':
dataset = row['key']
fn = 'datasets/s2/search_papers/{}.json'.format(dataset)
if not os.path.exists(fn):
return
with open(fn, 'r') as f:
citations = json.load(f)
data = { 'citations': [ { 'paperId': paperId } for paperId in citations ] }
else:
fn = file_path('papers', paper_id, 'paper.json')
with open(fn, 'r') as f:
data = json.load(f)
print('>> {} {}'.format(data['paperId'], row['key']))
paper = load_paper(data['paperId'])
if paper is None:
print("Paper missing! {}".format(data['paperId']))
return
res['key'] = row['key']
res['name'] = row['name']
res['paper_id'] = paper.paper_id
res['title'] = paper.title
# res['journal'] = paper.journal
res['year'] = paper.year
res['pdf'] = paper.pdf_links()
res['doi'] = paper.doi_links()
# res['authors'] = ', '.join(paper.authors)
# res['citations'] = []
paper_institutions = load_institutions(paper.paper_id, paper_location_lookup)
paper_address = None
for inst in sorted(paper_institutions, key=operator.itemgetter(1)):
#print(inst[1])
institution = inst[1]
if paper_address is None:
paper_address = addresses.findObject(institution)
if paper_address:
# print(paper_address)
res['address'] = paper_address
for cite in data['citations']:
citationId = cite['paperId']
if citationId in aggregate_citations:
continue
elif citationId in unknown_citations:
continue
seen_here = {}
citation = load_paper(citationId)
has_pdf = os.path.exists(file_path('pdf', citationId, 'paper.txt'))
has_doi = os.path.exists(file_path('doi', citationId, 'paper.doi'))
# if has_pdf:
# pdf_count += 1
# if has_doi:
# doi_count += 1
if citation is None or citation.data is None:
print("Citation missing! {}".format(citationId))
continue
institutions = load_institutions(citationId, paper_location_lookup)
geocoded_addresses = []
geocoded_institutions = []
institution = ''
address = None
for inst in sorted(institutions, key=operator.itemgetter(1)):
# address_count += 1
institution = inst[1]
next_address = addresses.findObject(institution)
if next_address and next_address['name'] not in seen_here:
seen_here[next_address['name']] = True
address = next_address
geocoded_addresses.append(next_address)
if not address:
if has_pdf:
headings, found_abstract = read_headings(file_path('pdf', citationId, 'paper.txt'), citation)
heading_string = '\n'.join(headings[0:20])
found_addresses = []
if len(headings):
for heading in headings:
possible_address = heading.lower().strip()
if possible_address:
next_address = addresses.findObject(possible_address)
if next_address and next_address['name'] not in seen_here:
seen_here[next_address['name']] = True
address = next_address
geocoded_addresses.append(next_address)
if address:
aggregate_citations[citationId] = {
'id': citationId,
'title': citation.title,
'addresses': geocoded_addresses,
'year': citation.year,
'pdf': citation.pdf_links(),
'doi': citation.doi_links(),
}
else:
unknown_citations[citationId] = {
'id': citationId,
'title': citation.title,
'year': citation.year,
'pdf': citation.pdf_links(),
'doi': citation.doi_links(),
}
return res
def load_megapixels_lookup():
keys, rows = fetch_google_sheet('citation_lookup')
dataset_lookup = fetch_google_lookup('datasets')
lookup = {}
for row in rows:
rec = {}
for index, key in enumerate(keys):
rec[key] = row[index]
if rec['paper_id'] == "" or (rec['verified'] != 1 and rec['verified'] != '1'):
continue
paper_key = rec['key']
if paper_key not in lookup:
rec['paper_ids'] = []
lookup[paper_key] = rec
lookup[paper_key]['paper_ids'].append(rec['paper_id'])
if paper_key in dataset_lookup:
lookup[paper_key]['dataset'] = dataset_lookup[paper_key]
else:
print("not in datasets lookup:", paper_key)
lookup[paper_key]['dataset'] = {}
return lookup
if __name__ == '__main__':
s2_final_report()
|