summaryrefslogtreecommitdiff
path: root/scraper/s2-doi-report.py
blob: 7d142a14d9f919011b0fd4c73c5448a9f55d5299 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import re
import os
import gzip
import glob
import simplejson as json
import click
import operator
from util import *
from bs4 import BeautifulSoup
from urllib.parse import unquote
from importlib import import_module
doi = import_module('s2-fetch-doi')
raw_paper = import_module('s2-raw-papers')

DOI_DIR = 'datasets/s2/doi'

@click.command()
def doi_report():
  rows = []
  domains = {}
  institutions = {}
  # geocode_lookup = load_geocode_lookup()
  addresses = AddressBook()

  geocoded_papers = []
  unknown_papers = []
  unattributed_papers = []
  paper_count = 0
  ieee_count = 0
  springer_count = 0
  sciencedirect_count = 0
  acm_count = 0
  computerorg_count = 0
  elsevier_count = 0
  unparsed_count = 0
  for fn in glob.iglob('{}/**/*.url'.format(DOI_DIR), recursive=True):
    paper_count += 1
    url_info = read_json(fn)
    domain = url_info['domain']
    paper_id = url_info['paper_id']
    paper = load_paper(paper_id)
    if paper is None:
      raw_paper.fetch_raw_paper(paper_id, freshen=False)
      paper = load_paper(paper_id)
      if paper is None:
        print("Problem fetching raw paper {}".format(paper_id))
        continue
    if paper.data is None:
      continue
    doi_fn = fn.replace('.url', '.doi')
    address = None
    if domain in domains:
      domains[domain] += 1
    else:
      domains[domain] = 1
    affiliations = None
    paper_affiliation_count = 0

    if 'ieee.org' in domain:
      ieee_count += 1
      affiliations = load_ieee(paper, doi_fn)
    elif 'link.springer.com' in domain:
      springer_count += 1
      affiliations = load_springer(paper, doi_fn)
    elif 'sciencedirect.com' in domain:
      sciencedirect_count += 1
      affiliations = load_sciencedirect(paper, doi_fn)
    elif 'acm.org' in domain:
      acm_count += 1
      affiliations = load_acm(paper, doi_fn)
    elif 'computer.org' in domain:
      computerorg_count += 1
      affiliations = load_computerorg(paper, doi_fn)
    elif 'elsevier.com' in domain:
      elsevier_count += 1
      affiliations = load_elsevier(paper, doi_fn)
    else:
      unparsed_count += 1

    if affiliations:
      for affiliation in affiliations:
        if affiliation:
          paper_affiliation_count += 1
          if affiliation in institutions:
            institutions[affiliation] += 1
          else:
            institutions[affiliation] = 1
            address = addresses.find(affiliation)
            if not address:
              unknown_papers.append([paper.paper_id, paper.title, affiliation])
      if paper_affiliation_count == 0:
        unattributed_papers.append([paper.paper_id, paper.title])
      if address:
        geocoded_papers.append([paper.paper_id, paper.title] + address)

  domain_list = reversed(sorted(domains.items(), key=operator.itemgetter(1)))
  # for domain, count in domain_list:
    # print('{}\t{}'.format(count, domain))
  institution_list = reversed(sorted(institutions.items(), key=operator.itemgetter(1)))
  # for institution, count in institution_list:
    # print('{}\t{}'.format(count, institution))
  display_institution_list = []
  unknown_institution_list = []
  for inst in institution_list:
    addr = addresses.find(inst[0])
    if addr:
      display_institution_list.append((BoldLine(inst[0]), inst[1],))
    elif len(inst[0]) > 1:
      display_institution_list.append(inst)
      unknown_institution_list.append(inst)
  write_report('reports/doi_domains.html', title='DOI Domains', keys=None, rows=domain_list)
  write_report('reports/doi_institutions.html', title='Institutions from IEEE', keys=None, rows=display_institution_list)
  write_report('reports/doi_institutions_unknown.html', title='Unknown Institutions from DOI', keys=None, rows=unknown_institution_list)
  write_csv('reports/doi_institutions_geocoded.csv', keys=None, rows=geocoded_papers)
  write_csv('reports/doi_institutions_unknown.csv', keys=None, rows=unknown_papers)
  write_csv('reports/doi_institutions_unattributed.csv', keys=None, rows=unattributed_papers)
  print("total papers: {}".format(paper_count))
  print(".. ieee: {}".format(ieee_count))
  print(".. springer: {}".format(springer_count))
  print(".. acm: {}".format(acm_count))
  print(".. computerorg: {}".format(computerorg_count))
  print(".. sciencedirect: {}".format(sciencedirect_count))
  print(".. elsevier: {}".format(elsevier_count))
  print(".. unparsed: {}".format(unparsed_count))
  print("geocoded papers: {}".format(len(geocoded_papers)))
  print("unknown papers: {}".format(len(unknown_papers)))
  print("unattributed papers: {}".format(len(unattributed_papers)))

def load_ieee(paper, fn):
  with open(fn, 'r') as f:
    try:
      data = f.read().split('global.document.metadata=')[1].split('</script>')[0].strip()[:-1]
      data = json.loads(data)
      write_json(fn.replace('paper.doi', 'ieee.json'), data)
      # print(data)
    except:
      #print('ieee: could not read data')
      return None
    if 'authors' in data:
      affiliations = [ author['affiliation'] for author in data['authors'] if 'affiliation' in author ]
      institutions = [ [ paper.paper_id, author['affiliation'], author['affiliation'] ] for author in data['authors'] if 'affiliation' in author ]
      # print(affiliations)
      write_json('{}/{}'.format(paper_path(paper.paper_id), 'institutions.json'), { 'institutions': institutions })
      return affiliations
    return None

def load_springer(paper, fn):
  # print('springer: {}'.format(paper.paper_id))
  with open(fn, 'r') as f:
    try:
      soup = BeautifulSoup(f.read(), 'html.parser')
    except:
      # print('springer: could not read data')
      return None
    items = soup.find_all(class_='affiliation__item')
    affiliations = [ ', '.join(item.strings) for item in items ]
    institutions = [ [ paper.paper_id, affiliation ] for affiliation in affiliations ]
    write_json('{}/{}'.format(paper_path(paper.paper_id), 'institutions.json'), { 'institutions': institutions })
    return affiliations

def load_sciencedirect(paper, fn):
  # print('sciencedirect: {}'.format(paper.paper_id))
  with open(fn, 'r') as f:
    try:
      soup = BeautifulSoup(f.read(), 'html.parser')
    except:
      # print('sciencedirect: could not read data')
      return None

    items = soup.find_all("script", type='application/json', limit=1)
    if len(items) == 0:
      return None

    try:
      data = json.loads(items[0].string)
      write_json(fn.replace('paper.doi', 'sciencedirect.json'), data)
      # print(data)
    except:
      # print('sciencedirect: json error')
      return None

    affiliations = [value['$$'][0]['_'] for value in data['authors']['affiliations'].values()]
      
    institutions = [ [ paper.paper_id, affiliation ] for affiliation in affiliations ]
    write_json('{}/{}'.format(paper_path(paper.paper_id), 'institutions.json'), { 'institutions': institutions })
    return affiliations

def load_acm(paper, fn):
  # print('acm: {}'.format(paper.paper_id))
  with open(fn, 'r') as f:
    try:
      soup = BeautifulSoup(f.read(), 'html.parser')
    except:
      #print('acm: could not read data')
      return None
    items = soup.find_all("a", title='Institutional Profile Page')
    affiliations = [ item.string for item in items ]
    # print(affiliations)
    institutions = [ [ paper.paper_id, affiliation ] for affiliation in affiliations ]
    write_json('{}/{}'.format(paper_path(paper.paper_id), 'institutions.json'), { 'institutions': institutions })
    return affiliations

def load_computerorg(paper, fn):
  # print('computerorg: {}'.format(paper.paper_id))
  # if not os.path.exists(doi.old_doi_fn(fn)):
  pass
  # with open(fn, 'r') as f:
  #   try:
  #     soup = BeautifulSoup(f.read(), 'html.parser')
  #   except:
  #     print('computerorg: could not read data')
  #     return None
  #   items = soup.find_all("a", title='Institutional Profile Page')
  #   affiliations = [ item.string for item in items ]
  #   print(affiliations)
  #   institutions = [ [ paper.paper_id, affiliation ] for affiliation in affiliations ]
  #   write_json('{}/{}'.format(paper_path(paper.paper_id), 'institutions.json'), { 'institutions': institutions })
  #   return affiliations

def load_elsevier(paper, fn):
  #print('elsevier: {}'.format(paper.paper_id))
  if not os.path.exists(doi.old_doi_fn(paper.paper_id)):
    with open(fn, 'r') as f:
      try:
        soup = BeautifulSoup(f.read(), 'html.parser')
      except:
        #print('elsevier: could not read data')
        return None
    item = soup.find_all("input", attrs={"name": 'redirectURL'})[0]
    #new_url = unquote(item['value'])
    #if new_url:
    #  print(new_url)
    #  doi.fetch_doi(paper.paper_id, new_url, replace=True)
    #else:
    #  print("missing redirect url: {}".format(paper.paper_id))
  # print('elsevier: {}'.format(paper.paper_id))
  # with open(fn, 'r') as f:
  #   try:
  #     soup = BeautifulSoup(f.read(), 'html.parser')
  #   except:
  #     print('elsevier: could not read data')
  #     return None
  #   items = soup.find_all("a", title='Institutional Profile Page')
  #   affiliations = [ item.string for item in items ]
  #   # print(affiliations)
  #   institutions = [ [ paper.paper_id, affiliation ] for affiliation in affiliations ]
  #   write_json('{}/{}'.format(paper_path(paper.paper_id), 'institutions.json'), { 'institutions': institutions })
  #   return affiliations

def find_authors(authors, line):
  for a in authors:
    if a[2] in line:
      return a
  return None

def paper_path(paper_id):
  return '{}/{}/{}'.format(DOI_DIR, paper_id[0:2], paper_id)

if __name__ == '__main__':
  doi_report()