summaryrefslogtreecommitdiff
path: root/scraper/reports/stats/unknown_papers.csv
blob: 2e06480450ce25e8031724dc018e6296ee1b0c97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
35519
35520
35521
35522
35523
35524
35525
35526
35527
35528
35529
35530
35531
35532
35533
35534
35535
35536
35537
35538
35539
35540
35541
35542
35543
35544
35545
35546
35547
35548
35549
35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
35572
35573
35574
35575
35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
35602
35603
35604
35605
35606
35607
35608
35609
35610
35611
35612
35613
35614
35615
35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
35632
35633
35634
35635
35636
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
35715
35716
35717
35718
35719
35720
35721
35722
35723
35724
35725
35726
35727
35728
35729
35730
35731
35732
35733
35734
35735
35736
35737
35738
35739
35740
35741
35742
35743
35744
35745
35746
35747
35748
35749
35750
35751
35752
35753
35754
35755
35756
35757
35758
35759
35760
35761
35762
35763
35764
35765
35766
35767
35768
35769
35770
35771
35772
35773
35774
35775
35776
35777
35778
35779
35780
35781
35782
35783
35784
35785
35786
35787
35788
35789
35790
35791
35792
35793
35794
35795
35796
35797
35798
35799
35800
35801
35802
35803
35804
35805
35806
35807
35808
35809
35810
35811
35812
35813
35814
35815
35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
35833
35834
35835
35836
35837
35838
35839
35840
35841
35842
35843
35844
35845
35846
35847
35848
35849
35850
35851
35852
35853
35854
35855
35856
35857
35858
35859
35860
35861
35862
35863
35864
35865
35866
35867
35868
35869
35870
35871
35872
35873
35874
35875
35876
35877
35878
35879
35880
35881
35882
35883
35884
35885
35886
35887
35888
35889
35890
35891
35892
35893
35894
35895
35896
35897
35898
35899
35900
35901
35902
35903
35904
35905
35906
35907
35908
35909
35910
35911
35912
35913
35914
35915
35916
35917
35918
35919
35920
35921
35922
35923
35924
35925
35926
35927
35928
35929
35930
35931
35932
35933
35934
35935
35936
35937
35938
35939
35940
35941
35942
35943
35944
35945
35946
35947
35948
35949
35950
35951
35952
35953
35954
35955
35956
35957
35958
35959
35960
35961
35962
35963
35964
35965
35966
35967
35968
35969
35970
35971
35972
35973
35974
35975
35976
35977
35978
35979
35980
35981
35982
35983
35984
35985
35986
35987
35988
35989
35990
35991
35992
35993
35994
35995
35996
35997
35998
35999
36000
36001
36002
36003
36004
36005
36006
36007
36008
36009
36010
36011
36012
36013
36014
36015
36016
36017
36018
36019
36020
36021
36022
36023
36024
36025
36026
36027
36028
36029
36030
36031
36032
36033
36034
36035
36036
36037
36038
36039
36040
36041
36042
36043
36044
36045
36046
36047
36048
36049
36050
36051
36052
36053
36054
36055
36056
36057
36058
36059
36060
36061
36062
36063
36064
36065
36066
36067
36068
36069
36070
36071
36072
36073
36074
36075
36076
36077
36078
36079
36080
36081
36082
36083
36084
36085
36086
36087
36088
36089
36090
36091
36092
36093
36094
36095
36096
36097
36098
36099
36100
36101
36102
36103
36104
36105
36106
36107
36108
36109
36110
36111
36112
36113
36114
36115
36116
36117
36118
36119
36120
36121
36122
36123
36124
36125
36126
36127
36128
36129
36130
36131
36132
36133
36134
36135
36136
36137
36138
36139
36140
36141
36142
36143
36144
36145
36146
36147
36148
36149
36150
36151
36152
36153
36154
36155
36156
36157
36158
36159
36160
36161
36162
36163
36164
36165
36166
36167
36168
36169
36170
36171
36172
36173
36174
36175
36176
36177
36178
36179
36180
36181
36182
36183
36184
36185
36186
36187
36188
36189
36190
36191
36192
36193
36194
36195
36196
36197
36198
36199
36200
36201
36202
36203
36204
36205
36206
36207
36208
36209
36210
36211
36212
36213
36214
36215
36216
36217
36218
36219
36220
36221
36222
36223
36224
36225
36226
36227
36228
36229
36230
36231
36232
36233
36234
36235
36236
36237
36238
36239
36240
36241
36242
36243
36244
36245
36246
36247
36248
36249
36250
36251
36252
36253
36254
36255
36256
36257
36258
36259
36260
36261
36262
36263
36264
36265
36266
36267
36268
36269
36270
36271
36272
36273
36274
36275
36276
36277
36278
36279
36280
36281
36282
36283
36284
36285
36286
36287
36288
36289
36290
36291
36292
36293
36294
36295
36296
36297
36298
36299
36300
36301
36302
36303
36304
36305
36306
36307
36308
36309
36310
36311
36312
36313
36314
36315
36316
36317
36318
36319
36320
36321
36322
36323
36324
36325
36326
36327
36328
36329
36330
36331
36332
36333
36334
36335
36336
36337
36338
36339
36340
36341
36342
36343
36344
36345
36346
36347
36348
36349
36350
36351
36352
36353
36354
36355
36356
36357
36358
36359
36360
36361
36362
36363
36364
36365
36366
36367
36368
36369
36370
36371
36372
36373
36374
36375
36376
36377
36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
36399
36400
36401
36402
36403
36404
36405
36406
36407
36408
36409
36410
36411
36412
36413
36414
36415
36416
36417
36418
36419
36420
36421
36422
36423
36424
36425
36426
36427
36428
36429
36430
36431
36432
36433
36434
36435
36436
36437
36438
36439
36440
36441
36442
36443
36444
36445
36446
36447
36448
36449
36450
36451
36452
36453
36454
36455
36456
36457
36458
36459
36460
36461
36462
36463
36464
36465
36466
36467
36468
36469
36470
36471
36472
36473
36474
36475
36476
36477
36478
36479
36480
36481
36482
36483
36484
36485
36486
36487
36488
36489
36490
36491
36492
36493
36494
36495
36496
36497
36498
36499
36500
36501
36502
36503
36504
36505
36506
36507
36508
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523
36524
36525
36526
36527
36528
36529
36530
36531
36532
36533
36534
36535
36536
36537
36538
36539
36540
36541
36542
36543
36544
36545
36546
36547
36548
36549
36550
36551
36552
36553
36554
36555
36556
36557
36558
36559
36560
36561
36562
36563
36564
36565
36566
36567
36568
36569
36570
36571
36572
36573
36574
36575
36576
36577
36578
36579
36580
36581
36582
36583
36584
36585
36586
36587
36588
36589
36590
36591
36592
36593
36594
36595
36596
36597
36598
36599
36600
36601
36602
36603
36604
36605
36606
36607
36608
36609
36610
36611
36612
36613
36614
36615
36616
36617
36618
36619
36620
36621
36622
36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
36647
36648
36649
36650
36651
36652
36653
36654
36655
36656
36657
36658
36659
36660
36661
36662
36663
36664
36665
36666
36667
36668
36669
36670
36671
36672
36673
36674
36675
36676
36677
36678
36679
36680
36681
36682
36683
36684
36685
36686
36687
36688
36689
36690
36691
36692
36693
36694
36695
36696
36697
36698
36699
36700
36701
36702
36703
36704
36705
36706
36707
36708
36709
36710
36711
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
36730
36731
36732
36733
36734
36735
36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
36751
36752
36753
36754
36755
36756
36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
36770
36771
36772
36773
36774
36775
36776
36777
36778
36779
36780
36781
36782
36783
36784
36785
36786
36787
36788
36789
36790
36791
36792
36793
36794
36795
36796
36797
36798
36799
36800
36801
36802
36803
36804
36805
36806
36807
36808
36809
36810
36811
36812
36813
36814
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
36830
36831
36832
36833
36834
36835
36836
36837
36838
36839
36840
36841
36842
36843
36844
36845
36846
36847
36848
36849
36850
36851
36852
36853
36854
36855
36856
36857
36858
36859
36860
36861
36862
36863
36864
36865
36866
36867
36868
36869
36870
36871
36872
36873
36874
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
36893
36894
36895
36896
36897
36898
36899
36900
36901
36902
36903
36904
36905
36906
36907
36908
36909
36910
36911
36912
36913
36914
36915
36916
36917
36918
36919
36920
36921
36922
36923
36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
36939
36940
36941
36942
36943
36944
36945
36946
36947
36948
36949
36950
36951
36952
36953
36954
36955
36956
36957
36958
36959
36960
36961
36962
36963
36964
36965
36966
36967
36968
36969
36970
36971
36972
36973
36974
36975
36976
36977
36978
36979
36980
36981
36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
36994
36995
36996
36997
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
37025
37026
37027
37028
37029
37030
37031
37032
37033
37034
37035
37036
37037
37038
37039
37040
37041
37042
37043
37044
37045
37046
37047
37048
37049
37050
37051
37052
37053
37054
37055
37056
37057
37058
37059
37060
37061
37062
37063
37064
37065
37066
37067
37068
37069
37070
37071
37072
37073
37074
37075
37076
37077
37078
37079
37080
37081
37082
37083
37084
37085
37086
37087
37088
37089
37090
37091
37092
37093
37094
37095
37096
37097
37098
37099
37100
37101
37102
37103
37104
37105
37106
37107
37108
37109
37110
37111
37112
37113
37114
37115
37116
37117
37118
37119
37120
37121
37122
37123
37124
37125
37126
37127
37128
37129
37130
37131
37132
37133
37134
37135
37136
37137
37138
37139
37140
37141
37142
37143
37144
37145
37146
37147
37148
37149
37150
37151
37152
37153
37154
37155
37156
37157
37158
37159
37160
37161
37162
37163
37164
37165
37166
37167
37168
37169
37170
37171
37172
37173
37174
37175
37176
37177
37178
37179
37180
37181
37182
37183
37184
37185
37186
37187
37188
37189
37190
37191
37192
37193
37194
37195
37196
37197
37198
37199
37200
37201
37202
37203
37204
37205
37206
37207
37208
37209
37210
37211
37212
37213
37214
37215
37216
37217
37218
37219
37220
37221
37222
37223
37224
37225
37226
37227
37228
37229
37230
37231
37232
37233
37234
37235
37236
37237
37238
37239
37240
37241
37242
37243
37244
37245
37246
37247
37248
37249
37250
37251
37252
37253
37254
37255
37256
37257
37258
37259
37260
37261
37262
37263
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
37278
37279
37280
37281
37282
37283
37284
37285
37286
37287
37288
37289
37290
37291
37292
37293
37294
37295
37296
37297
37298
37299
37300
37301
37302
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
37341
37342
37343
37344
37345
37346
37347
37348
37349
37350
37351
37352
37353
37354
37355
37356
37357
37358
37359
37360
37361
37362
37363
37364
37365
37366
37367
37368
37369
37370
37371
37372
37373
37374
37375
37376
37377
37378
37379
37380
37381
37382
37383
37384
37385
37386
37387
37388
37389
37390
37391
37392
37393
37394
37395
37396
37397
37398
37399
37400
37401
37402
37403
37404
37405
37406
37407
37408
37409
37410
37411
37412
37413
37414
37415
37416
37417
37418
37419
37420
37421
37422
37423
37424
37425
37426
37427
37428
37429
37430
37431
37432
37433
37434
37435
37436
37437
37438
37439
37440
37441
37442
37443
37444
37445
37446
37447
37448
37449
37450
37451
37452
37453
37454
37455
37456
37457
37458
37459
37460
37461
37462
37463
37464
37465
37466
37467
37468
37469
37470
37471
37472
37473
37474
37475
37476
37477
37478
37479
37480
37481
37482
37483
37484
37485
37486
37487
37488
37489
37490
37491
37492
37493
37494
37495
37496
37497
37498
37499
37500
37501
37502
37503
37504
37505
37506
37507
37508
37509
37510
37511
37512
37513
37514
37515
37516
37517
37518
37519
37520
37521
37522
37523
37524
37525
37526
37527
37528
37529
37530
37531
37532
37533
37534
37535
37536
37537
37538
37539
37540
37541
37542
37543
37544
37545
37546
37547
37548
37549
37550
37551
37552
37553
37554
37555
37556
37557
37558
37559
37560
37561
37562
37563
37564
37565
37566
37567
37568
37569
37570
37571
37572
37573
37574
37575
37576
37577
37578
37579
37580
37581
37582
37583
37584
37585
37586
37587
37588
37589
37590
37591
37592
37593
37594
37595
37596
37597
37598
37599
37600
37601
37602
37603
37604
37605
37606
37607
37608
37609
37610
37611
37612
37613
37614
37615
37616
37617
37618
37619
37620
37621
37622
37623
37624
37625
37626
37627
37628
37629
37630
37631
37632
37633
37634
37635
37636
37637
37638
37639
37640
37641
37642
37643
37644
37645
37646
37647
37648
37649
37650
37651
37652
37653
37654
37655
37656
37657
37658
37659
37660
37661
37662
37663
37664
37665
37666
37667
37668
37669
37670
37671
37672
37673
37674
37675
37676
37677
37678
37679
37680
37681
37682
37683
37684
37685
37686
37687
37688
37689
37690
37691
37692
37693
37694
37695
37696
37697
37698
37699
37700
37701
37702
37703
37704
37705
37706
37707
37708
37709
37710
37711
37712
37713
37714
37715
37716
37717
37718
37719
37720
37721
37722
37723
37724
37725
37726
37727
37728
37729
37730
37731
37732
37733
37734
37735
37736
37737
37738
37739
37740
37741
37742
37743
37744
37745
37746
37747
37748
37749
37750
37751
37752
37753
37754
37755
37756
37757
37758
37759
37760
37761
37762
37763
37764
37765
37766
37767
37768
37769
37770
37771
37772
37773
37774
37775
37776
37777
37778
37779
37780
37781
37782
37783
37784
37785
37786
37787
37788
37789
37790
37791
37792
37793
37794
37795
37796
37797
37798
37799
37800
37801
37802
37803
37804
37805
37806
37807
37808
37809
37810
37811
37812
37813
37814
37815
37816
37817
37818
37819
37820
37821
37822
37823
37824
37825
37826
37827
37828
37829
37830
37831
37832
37833
37834
37835
37836
37837
37838
37839
37840
37841
37842
37843
37844
37845
37846
37847
37848
37849
37850
37851
37852
37853
37854
37855
37856
37857
37858
37859
37860
37861
37862
37863
37864
37865
37866
37867
37868
37869
37870
37871
37872
37873
37874
37875
37876
37877
37878
37879
37880
37881
37882
37883
37884
37885
37886
37887
37888
37889
37890
37891
37892
37893
37894
37895
37896
37897
37898
37899
37900
37901
37902
37903
37904
37905
37906
37907
37908
37909
37910
37911
37912
37913
37914
37915
37916
37917
37918
37919
37920
37921
37922
37923
37924
37925
37926
37927
37928
37929
37930
37931
37932
37933
37934
37935
37936
37937
37938
37939
37940
37941
37942
37943
37944
37945
37946
37947
37948
37949
37950
37951
37952
37953
37954
37955
37956
37957
37958
37959
37960
37961
37962
37963
37964
37965
37966
37967
37968
37969
37970
37971
37972
37973
37974
37975
37976
37977
37978
37979
37980
37981
37982
37983
37984
37985
37986
37987
37988
37989
37990
37991
37992
37993
37994
37995
37996
37997
37998
37999
38000
38001
38002
38003
38004
38005
38006
38007
38008
38009
38010
38011
38012
38013
38014
38015
38016
38017
38018
38019
38020
38021
38022
38023
38024
38025
38026
38027
38028
38029
38030
38031
38032
38033
38034
38035
38036
38037
38038
38039
38040
38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084
38085
38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
38147
38148
38149
38150
38151
38152
38153
38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
38171
38172
38173
38174
38175
38176
38177
38178
38179
38180
38181
38182
38183
38184
38185
38186
38187
38188
38189
38190
38191
38192
38193
38194
38195
38196
38197
38198
38199
38200
38201
38202
38203
38204
38205
38206
38207
38208
38209
38210
38211
38212
38213
38214
38215
38216
38217
38218
38219
38220
38221
38222
38223
38224
38225
38226
38227
38228
38229
38230
38231
38232
38233
38234
38235
38236
38237
38238
38239
38240
38241
38242
38243
38244
38245
38246
38247
38248
38249
38250
38251
38252
38253
38254
38255
38256
38257
38258
38259
38260
38261
38262
38263
38264
38265
38266
38267
38268
38269
38270
38271
38272
38273
38274
38275
38276
38277
38278
38279
38280
38281
38282
38283
38284
38285
38286
38287
38288
38289
38290
38291
38292
38293
38294
38295
38296
38297
38298
38299
38300
38301
38302
38303
38304
38305
38306
38307
38308
38309
38310
38311
38312
38313
38314
38315
38316
38317
38318
38319
38320
38321
38322
38323
38324
38325
38326
38327
38328
38329
38330
38331
38332
38333
38334
38335
38336
38337
38338
38339
38340
38341
38342
38343
38344
38345
38346
38347
38348
38349
38350
38351
38352
38353
38354
38355
38356
38357
38358
38359
38360
38361
38362
38363
38364
38365
38366
38367
38368
38369
38370
38371
38372
38373
38374
38375
38376
38377
38378
38379
38380
38381
38382
38383
38384
38385
38386
38387
38388
38389
38390
38391
38392
38393
38394
38395
38396
38397
38398
38399
38400
38401
38402
38403
38404
38405
38406
38407
38408
38409
38410
38411
38412
38413
38414
38415
38416
38417
38418
38419
38420
38421
38422
38423
38424
38425
38426
38427
38428
38429
38430
38431
38432
38433
38434
38435
38436
38437
38438
38439
38440
38441
38442
38443
38444
38445
38446
38447
38448
38449
38450
38451
38452
38453
38454
38455
38456
38457
38458
38459
38460
38461
38462
38463
38464
38465
38466
38467
38468
38469
38470
38471
38472
38473
38474
38475
38476
38477
38478
38479
38480
38481
38482
38483
38484
38485
38486
38487
38488
38489
38490
38491
38492
38493
38494
38495
38496
38497
38498
38499
38500
38501
38502
38503
38504
38505
38506
38507
38508
38509
38510
38511
38512
38513
38514
38515
38516
38517
38518
38519
38520
38521
38522
38523
38524
38525
38526
38527
38528
38529
38530
38531
38532
38533
38534
38535
38536
38537
38538
38539
38540
38541
38542
38543
38544
38545
38546
38547
38548
38549
38550
38551
38552
38553
38554
38555
38556
38557
38558
38559
38560
38561
38562
38563
38564
38565
38566
38567
38568
38569
38570
38571
38572
38573
38574
38575
38576
38577
38578
38579
38580
38581
38582
38583
38584
38585
38586
38587
38588
38589
38590
38591
38592
38593
38594
38595
38596
38597
38598
38599
38600
38601
38602
38603
38604
38605
38606
38607
38608
38609
38610
38611
38612
38613
38614
38615
38616
38617
38618
38619
38620
38621
38622
38623
38624
38625
38626
38627
38628
38629
38630
38631
38632
38633
38634
38635
38636
38637
38638
38639
38640
38641
38642
38643
38644
38645
38646
38647
38648
38649
38650
38651
38652
38653
38654
38655
38656
38657
38658
38659
38660
38661
38662
38663
38664
38665
38666
38667
38668
38669
38670
38671
38672
38673
38674
38675
38676
38677
38678
38679
38680
38681
38682
38683
38684
38685
38686
38687
38688
38689
38690
38691
38692
38693
38694
38695
38696
38697
38698
38699
38700
38701
38702
38703
38704
38705
38706
38707
38708
38709
38710
38711
38712
38713
38714
38715
38716
38717
38718
38719
38720
38721
38722
38723
38724
38725
38726
38727
38728
38729
38730
38731
38732
38733
38734
38735
38736
38737
38738
38739
38740
38741
38742
38743
38744
38745
38746
38747
38748
38749
38750
38751
38752
38753
38754
38755
38756
38757
38758
38759
38760
38761
38762
38763
38764
38765
38766
38767
38768
38769
38770
38771
38772
38773
38774
38775
38776
38777
38778
38779
38780
38781
38782
38783
38784
38785
38786
38787
38788
38789
38790
38791
38792
38793
38794
38795
38796
38797
38798
38799
38800
38801
38802
38803
38804
38805
38806
38807
38808
38809
38810
38811
38812
38813
38814
38815
38816
38817
38818
38819
38820
38821
38822
38823
38824
38825
38826
38827
38828
38829
38830
38831
38832
38833
38834
38835
38836
38837
38838
38839
38840
38841
38842
38843
38844
38845
38846
38847
38848
38849
38850
38851
38852
38853
38854
38855
38856
38857
38858
38859
38860
38861
38862
38863
38864
38865
38866
38867
38868
38869
38870
38871
38872
38873
38874
38875
38876
38877
38878
38879
38880
38881
38882
38883
38884
38885
38886
38887
38888
38889
38890
38891
38892
38893
38894
38895
38896
38897
38898
38899
38900
38901
38902
38903
38904
38905
38906
38907
38908
38909
38910
38911
38912
38913
38914
38915
38916
38917
38918
38919
38920
38921
38922
38923
38924
38925
38926
38927
38928
38929
38930
38931
38932
38933
38934
38935
38936
38937
38938
38939
38940
38941
38942
38943
38944
38945
38946
38947
38948
38949
38950
38951
38952
38953
38954
38955
38956
38957
38958
38959
38960
38961
38962
38963
38964
38965
38966
38967
38968
38969
38970
38971
38972
38973
38974
38975
38976
38977
38978
38979
38980
38981
38982
38983
38984
38985
38986
38987
38988
38989
38990
38991
38992
38993
38994
38995
38996
38997
38998
38999
39000
39001
39002
39003
39004
39005
39006
39007
39008
39009
39010
39011
39012
39013
39014
39015
39016
39017
39018
39019
39020
39021
39022
39023
39024
39025
39026
39027
39028
39029
39030
39031
39032
39033
39034
39035
39036
39037
39038
39039
39040
39041
39042
39043
39044
39045
39046
39047
39048
39049
39050
39051
39052
39053
39054
39055
39056
39057
39058
39059
39060
39061
39062
39063
39064
39065
39066
39067
39068
39069
39070
39071
39072
39073
39074
39075
39076
39077
39078
39079
39080
39081
39082
39083
39084
39085
39086
39087
39088
39089
39090
39091
39092
39093
39094
39095
39096
39097
39098
39099
39100
39101
39102
39103
39104
39105
39106
39107
39108
39109
39110
39111
39112
39113
39114
39115
39116
39117
39118
39119
39120
39121
39122
39123
39124
39125
39126
39127
39128
39129
39130
39131
39132
39133
39134
39135
39136
39137
39138
39139
39140
39141
39142
39143
39144
39145
39146
39147
39148
39149
39150
39151
39152
39153
39154
39155
39156
39157
39158
39159
39160
39161
39162
39163
39164
39165
39166
39167
39168
39169
39170
39171
39172
39173
39174
39175
39176
39177
39178
39179
39180
39181
39182
39183
39184
39185
39186
39187
39188
39189
39190
39191
39192
39193
39194
39195
39196
39197
39198
39199
39200
39201
39202
39203
39204
39205
39206
39207
39208
39209
39210
39211
39212
39213
39214
39215
39216
39217
39218
39219
39220
39221
39222
39223
39224
39225
39226
39227
39228
39229
39230
39231
39232
39233
39234
39235
39236
39237
39238
39239
39240
39241
39242
39243
39244
39245
39246
39247
39248
39249
39250
39251
39252
39253
39254
39255
39256
39257
39258
39259
39260
39261
39262
39263
39264
39265
39266
39267
39268
39269
39270
39271
39272
39273
39274
39275
39276
39277
39278
39279
39280
39281
39282
39283
39284
39285
39286
39287
39288
39289
39290
39291
39292
39293
39294
39295
39296
39297
39298
39299
39300
39301
39302
39303
39304
39305
39306
39307
39308
39309
39310
39311
39312
39313
39314
39315
39316
39317
39318
39319
39320
39321
39322
39323
39324
39325
39326
39327
39328
39329
39330
39331
39332
39333
39334
39335
39336
39337
39338
39339
39340
39341
39342
39343
39344
39345
39346
39347
39348
39349
39350
39351
39352
39353
39354
39355
39356
39357
39358
39359
39360
39361
39362
39363
39364
39365
39366
39367
39368
39369
39370
39371
39372
39373
39374
39375
39376
39377
39378
39379
39380
39381
39382
39383
39384
39385
39386
39387
39388
39389
39390
39391
39392
39393
39394
39395
39396
39397
39398
39399
39400
39401
39402
39403
39404
39405
39406
39407
39408
39409
39410
39411
39412
39413
39414
39415
39416
39417
39418
39419
39420
39421
39422
39423
39424
39425
39426
39427
39428
39429
39430
39431
39432
39433
39434
39435
39436
39437
39438
39439
39440
39441
39442
39443
39444
39445
39446
39447
39448
39449
39450
39451
39452
39453
39454
39455
39456
39457
39458
39459
39460
39461
39462
39463
39464
39465
39466
39467
39468
39469
39470
39471
39472
39473
39474
39475
39476
39477
39478
39479
39480
39481
39482
39483
39484
39485
39486
39487
39488
39489
39490
39491
39492
39493
39494
39495
39496
39497
39498
39499
39500
39501
39502
39503
39504
39505
39506
39507
39508
39509
39510
39511
39512
39513
39514
39515
39516
39517
39518
39519
39520
39521
39522
39523
39524
39525
39526
39527
39528
39529
39530
39531
39532
39533
39534
39535
39536
39537
39538
39539
39540
39541
39542
39543
39544
39545
39546
39547
39548
39549
39550
39551
39552
39553
39554
39555
39556
39557
39558
39559
39560
39561
39562
39563
39564
39565
39566
39567
39568
39569
39570
39571
39572
39573
39574
39575
39576
39577
39578
39579
39580
39581
39582
39583
39584
39585
39586
39587
39588
39589
39590
39591
39592
39593
39594
39595
39596
39597
39598
39599
39600
39601
39602
39603
39604
39605
39606
39607
39608
39609
39610
39611
39612
39613
39614
39615
39616
39617
39618
39619
39620
39621
39622
39623
39624
39625
39626
39627
39628
39629
39630
39631
39632
39633
39634
39635
39636
39637
39638
39639
39640
39641
39642
39643
39644
39645
39646
39647
39648
39649
39650
39651
39652
39653
39654
39655
39656
39657
39658
39659
39660
39661
39662
39663
39664
39665
39666
39667
39668
39669
39670
39671
39672
39673
39674
39675
39676
39677
39678
39679
39680
39681
39682
39683
39684
39685
39686
39687
39688
39689
39690
39691
39692
39693
39694
39695
39696
39697
39698
39699
39700
39701
39702
39703
39704
39705
39706
39707
39708
39709
39710
39711
39712
39713
39714
39715
39716
39717
39718
39719
39720
39721
39722
39723
39724
39725
39726
39727
39728
39729
39730
39731
39732
39733
39734
39735
39736
39737
39738
39739
39740
39741
39742
39743
39744
39745
39746
39747
39748
39749
39750
39751
39752
39753
39754
39755
39756
39757
39758
39759
39760
39761
39762
39763
39764
39765
39766
39767
39768
39769
39770
39771
39772
39773
39774
39775
39776
39777
39778
39779
39780
39781
39782
39783
39784
39785
39786
39787
39788
39789
39790
39791
39792
39793
39794
39795
39796
39797
39798
39799
39800
39801
39802
39803
39804
39805
39806
39807
39808
39809
39810
39811
39812
39813
39814
39815
39816
39817
39818
39819
39820
39821
39822
39823
39824
39825
39826
39827
39828
39829
39830
39831
39832
39833
39834
39835
39836
39837
39838
39839
39840
39841
39842
39843
39844
39845
39846
39847
39848
39849
39850
39851
39852
39853
39854
39855
39856
39857
39858
39859
39860
39861
39862
39863
39864
39865
39866
39867
39868
39869
39870
39871
39872
39873
39874
39875
39876
39877
39878
39879
39880
39881
39882
39883
39884
39885
39886
39887
39888
39889
39890
39891
39892
39893
39894
39895
39896
39897
39898
39899
39900
39901
39902
39903
39904
39905
39906
39907
39908
39909
39910
39911
39912
39913
39914
39915
39916
39917
39918
39919
39920
39921
39922
39923
39924
39925
39926
39927
39928
39929
39930
39931
39932
39933
39934
39935
39936
39937
39938
39939
39940
39941
39942
39943
39944
39945
39946
39947
39948
39949
39950
39951
39952
39953
39954
39955
39956
39957
39958
39959
39960
39961
39962
39963
39964
39965
39966
39967
39968
39969
39970
39971
39972
39973
39974
39975
39976
39977
39978
39979
39980
39981
39982
39983
39984
39985
39986
39987
39988
39989
39990
39991
39992
39993
39994
39995
39996
39997
39998
39999
40000
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015
40016
40017
40018
40019
40020
40021
40022
40023
40024
40025
40026
40027
40028
40029
40030
40031
40032
40033
40034
40035
40036
40037
40038
40039
40040
40041
40042
40043
40044
40045
40046
40047
40048
40049
40050
40051
40052
40053
40054
40055
40056
40057
40058
40059
40060
40061
40062
40063
40064
40065
40066
40067
40068
40069
40070
40071
40072
40073
40074
40075
40076
40077
40078
40079
40080
40081
40082
40083
40084
40085
40086
40087
40088
40089
40090
40091
40092
40093
40094
40095
40096
40097
40098
40099
40100
40101
40102
40103
40104
40105
40106
40107
40108
40109
40110
40111
40112
40113
40114
40115
40116
40117
40118
40119
40120
40121
40122
40123
40124
40125
40126
40127
40128
40129
40130
40131
40132
40133
40134
40135
40136
40137
40138
40139
40140
40141
40142
40143
40144
40145
40146
40147
40148
40149
40150
40151
40152
40153
40154
40155
40156
40157
40158
40159
40160
40161
40162
40163
40164
40165
40166
40167
40168
40169
40170
40171
40172
40173
40174
40175
40176
40177
40178
40179
40180
40181
40182
40183
40184
40185
40186
40187
40188
40189
40190
40191
40192
40193
40194
40195
40196
40197
40198
40199
40200
40201
40202
40203
40204
40205
40206
40207
40208
40209
40210
40211
40212
40213
40214
40215
40216
40217
40218
40219
40220
40221
40222
40223
40224
40225
40226
40227
40228
40229
40230
40231
40232
40233
40234
40235
40236
40237
40238
40239
40240
40241
40242
40243
40244
40245
40246
40247
40248
40249
40250
40251
40252
40253
40254
40255
40256
40257
40258
40259
40260
40261
40262
40263
40264
40265
40266
40267
40268
40269
40270
40271
40272
40273
40274
40275
40276
40277
40278
40279
40280
40281
40282
40283
40284
40285
40286
40287
40288
40289
40290
40291
40292
40293
40294
40295
40296
40297
40298
40299
40300
40301
40302
40303
40304
40305
40306
40307
40308
40309
40310
40311
40312
40313
40314
40315
40316
40317
40318
40319
40320
40321
40322
40323
40324
40325
40326
40327
40328
40329
40330
40331
40332
40333
40334
40335
40336
40337
40338
40339
40340
40341
40342
40343
40344
40345
40346
40347
40348
40349
40350
40351
40352
40353
40354
40355
40356
40357
40358
40359
40360
40361
40362
40363
40364
40365
40366
40367
40368
40369
40370
40371
40372
40373
40374
40375
40376
40377
40378
40379
40380
40381
40382
40383
40384
40385
40386
40387
40388
40389
40390
40391
40392
40393
40394
40395
40396
40397
40398
40399
40400
40401
40402
40403
40404
40405
40406
40407
40408
40409
40410
40411
40412
40413
40414
40415
40416
40417
40418
40419
40420
40421
40422
40423
40424
40425
40426
40427
40428
40429
40430
40431
40432
40433
40434
40435
40436
40437
40438
40439
40440
40441
40442
40443
40444
40445
40446
40447
40448
40449
40450
40451
40452
40453
40454
40455
40456
40457
40458
40459
40460
40461
40462
40463
40464
40465
40466
40467
40468
40469
40470
40471
40472
40473
40474
40475
40476
40477
40478
40479
40480
40481
40482
40483
40484
40485
40486
40487
40488
40489
40490
40491
40492
40493
40494
40495
40496
40497
40498
40499
40500
40501
40502
40503
40504
40505
40506
40507
40508
40509
40510
40511
40512
40513
40514
40515
40516
40517
40518
40519
40520
40521
40522
40523
40524
40525
40526
40527
40528
40529
40530
40531
40532
40533
40534
40535
40536
40537
40538
40539
40540
40541
40542
40543
40544
40545
40546
40547
40548
40549
40550
40551
40552
40553
40554
40555
40556
40557
40558
40559
40560
40561
40562
40563
40564
40565
40566
40567
40568
40569
40570
40571
40572
40573
40574
40575
40576
40577
40578
40579
40580
40581
40582
40583
40584
40585
40586
40587
40588
40589
40590
40591
40592
40593
40594
40595
40596
40597
40598
40599
40600
40601
40602
40603
40604
40605
40606
40607
40608
40609
40610
40611
40612
40613
40614
40615
40616
40617
40618
40619
40620
40621
40622
40623
40624
40625
40626
40627
40628
40629
40630
40631
40632
40633
40634
40635
40636
40637
40638
40639
40640
40641
40642
40643
40644
40645
40646
40647
40648
40649
40650
40651
40652
40653
40654
40655
40656
40657
40658
40659
40660
40661
40662
40663
40664
40665
40666
40667
40668
40669
40670
40671
40672
40673
40674
40675
40676
40677
40678
40679
40680
40681
40682
40683
40684
40685
40686
40687
40688
40689
40690
40691
40692
40693
40694
40695
40696
40697
40698
40699
40700
40701
40702
40703
40704
40705
40706
40707
40708
40709
40710
40711
40712
40713
40714
40715
40716
40717
40718
40719
40720
40721
40722
40723
40724
40725
40726
40727
40728
40729
40730
40731
40732
40733
40734
40735
40736
40737
40738
40739
40740
40741
40742
40743
40744
40745
40746
40747
40748
40749
40750
40751
40752
40753
40754
40755
40756
40757
40758
40759
40760
40761
40762
40763
40764
40765
40766
40767
40768
40769
40770
40771
40772
40773
40774
40775
40776
40777
40778
40779
40780
40781
40782
40783
40784
40785
40786
40787
40788
40789
40790
40791
40792
40793
40794
40795
40796
40797
40798
40799
40800
40801
40802
40803
40804
40805
40806
40807
40808
40809
40810
40811
40812
40813
40814
40815
40816
40817
40818
40819
40820
40821
40822
40823
40824
40825
40826
40827
40828
40829
40830
40831
40832
40833
40834
40835
40836
40837
40838
40839
40840
40841
40842
40843
40844
40845
40846
40847
40848
40849
40850
40851
40852
40853
40854
40855
40856
40857
40858
40859
40860
40861
40862
40863
40864
40865
40866
40867
40868
40869
40870
40871
40872
40873
40874
40875
40876
40877
40878
40879
40880
40881
40882
40883
40884
40885
40886
40887
40888
40889
40890
40891
40892
40893
40894
40895
40896
40897
40898
40899
40900
40901
40902
40903
40904
40905
40906
40907
40908
40909
40910
40911
40912
40913
40914
40915
40916
40917
40918
40919
40920
40921
40922
40923
40924
40925
40926
40927
40928
40929
40930
40931
40932
40933
40934
40935
40936
40937
40938
40939
40940
40941
40942
40943
40944
40945
40946
40947
40948
40949
40950
40951
40952
40953
40954
40955
40956
40957
40958
40959
40960
40961
40962
40963
40964
40965
40966
40967
40968
40969
40970
40971
40972
40973
40974
40975
40976
40977
40978
40979
40980
40981
40982
40983
40984
40985
40986
40987
40988
40989
40990
40991
40992
40993
40994
40995
40996
40997
40998
40999
41000
41001
41002
41003
41004
41005
41006
41007
41008
41009
41010
41011
41012
41013
41014
41015
41016
41017
41018
41019
41020
41021
41022
41023
41024
41025
41026
41027
41028
41029
41030
41031
41032
41033
41034
41035
41036
41037
41038
41039
41040
41041
41042
41043
41044
41045
41046
41047
41048
41049
41050
41051
41052
41053
41054
41055
41056
41057
41058
41059
41060
41061
41062
41063
41064
41065
41066
41067
41068
41069
41070
41071
41072
41073
41074
41075
41076
41077
41078
41079
41080
41081
41082
41083
41084
41085
41086
41087
41088
41089
41090
41091
41092
41093
41094
41095
41096
41097
41098
41099
41100
41101
41102
41103
41104
41105
41106
41107
41108
41109
41110
41111
41112
41113
41114
41115
41116
41117
41118
41119
41120
41121
41122
41123
41124
41125
41126
41127
41128
41129
41130
41131
41132
41133
41134
41135
41136
41137
41138
41139
41140
41141
41142
41143
41144
41145
41146
41147
41148
41149
41150
41151
41152
41153
41154
41155
41156
41157
41158
41159
41160
41161
41162
41163
41164
41165
41166
41167
41168
41169
41170
41171
41172
41173
41174
41175
41176
41177
41178
41179
41180
41181
41182
41183
41184
41185
41186
41187
41188
41189
41190
41191
41192
41193
41194
41195
41196
41197
41198
41199
41200
41201
41202
41203
41204
41205
41206
41207
41208
41209
41210
41211
41212
41213
41214
41215
41216
41217
41218
41219
41220
41221
41222
41223
41224
41225
41226
41227
41228
41229
41230
41231
41232
41233
41234
41235
41236
41237
41238
41239
41240
41241
41242
41243
41244
41245
41246
41247
41248
41249
41250
41251
41252
41253
41254
41255
41256
41257
41258
41259
41260
41261
41262
41263
41264
41265
41266
41267
41268
41269
41270
41271
41272
41273
41274
41275
41276
41277
41278
41279
41280
41281
41282
41283
41284
41285
41286
41287
41288
41289
41290
41291
41292
41293
41294
41295
41296
41297
41298
41299
41300
41301
41302
41303
41304
41305
41306
41307
41308
41309
41310
41311
41312
41313
41314
41315
41316
41317
41318
41319
41320
41321
41322
41323
41324
41325
41326
41327
41328
41329
41330
41331
41332
41333
41334
41335
41336
41337
41338
41339
41340
41341
41342
41343
41344
41345
41346
41347
41348
41349
41350
41351
41352
41353
41354
41355
41356
41357
41358
41359
41360
41361
41362
41363
41364
41365
41366
41367
41368
41369
41370
41371
41372
41373
41374
41375
41376
41377
41378
41379
41380
41381
41382
41383
41384
41385
41386
41387
41388
41389
41390
41391
41392
41393
41394
41395
41396
41397
41398
41399
41400
41401
41402
41403
41404
41405
41406
41407
41408
41409
41410
41411
41412
41413
41414
41415
41416
41417
41418
41419
41420
41421
41422
41423
41424
41425
41426
41427
41428
41429
41430
41431
41432
41433
41434
41435
41436
41437
41438
41439
41440
41441
41442
41443
41444
41445
41446
41447
41448
41449
41450
41451
41452
41453
41454
41455
41456
41457
41458
41459
41460
41461
41462
41463
41464
41465
41466
41467
41468
41469
41470
41471
41472
41473
41474
41475
41476
41477
41478
41479
41480
41481
41482
41483
41484
41485
41486
41487
41488
41489
41490
41491
41492
41493
41494
41495
41496
41497
41498
41499
41500
41501
41502
41503
41504
41505
41506
41507
41508
41509
41510
41511
41512
41513
41514
41515
41516
41517
41518
41519
41520
41521
41522
41523
41524
41525
41526
41527
41528
41529
41530
41531
41532
41533
41534
41535
41536
41537
41538
41539
41540
41541
41542
41543
41544
41545
41546
41547
41548
41549
41550
41551
41552
41553
41554
41555
41556
41557
41558
41559
41560
41561
41562
41563
41564
41565
41566
41567
41568
41569
41570
41571
41572
41573
41574
41575
41576
41577
41578
41579
41580
41581
41582
41583
41584
41585
41586
41587
41588
41589
41590
41591
41592
41593
41594
41595
41596
41597
41598
41599
41600
41601
41602
41603
41604
41605
41606
41607
41608
41609
41610
41611
41612
41613
41614
41615
41616
41617
41618
41619
41620
41621
41622
41623
41624
41625
41626
41627
41628
41629
41630
41631
41632
41633
41634
41635
41636
41637
41638
41639
41640
41641
41642
41643
41644
41645
41646
41647
41648
41649
41650
41651
41652
41653
41654
41655
41656
41657
41658
41659
41660
41661
41662
41663
41664
41665
41666
41667
41668
41669
41670
41671
41672
41673
41674
41675
41676
41677
41678
41679
41680
41681
41682
41683
41684
41685
41686
41687
41688
41689
41690
41691
41692
41693
41694
41695
41696
41697
41698
41699
41700
41701
41702
41703
41704
41705
41706
41707
41708
41709
41710
41711
41712
41713
41714
41715
41716
41717
41718
41719
41720
41721
41722
41723
41724
41725
41726
41727
41728
41729
41730
41731
41732
41733
41734
41735
41736
41737
41738
41739
41740
41741
41742
41743
41744
41745
41746
41747
41748
41749
41750
41751
41752
41753
41754
41755
41756
41757
41758
41759
41760
41761
41762
41763
41764
41765
41766
41767
41768
41769
41770
41771
41772
41773
41774
41775
41776
41777
41778
41779
41780
41781
41782
41783
41784
41785
41786
41787
41788
41789
41790
41791
41792
41793
41794
41795
41796
41797
41798
41799
41800
41801
41802
41803
41804
41805
41806
41807
41808
41809
41810
41811
41812
41813
41814
41815
41816
41817
41818
41819
41820
41821
41822
41823
41824
41825
41826
41827
41828
41829
41830
41831
41832
41833
41834
41835
41836
41837
41838
41839
41840
41841
41842
41843
41844
41845
41846
41847
41848
41849
41850
41851
41852
41853
41854
41855
41856
41857
41858
41859
41860
41861
41862
41863
41864
41865
41866
41867
41868
41869
41870
41871
41872
41873
41874
41875
41876
41877
41878
41879
41880
41881
41882
41883
41884
41885
41886
41887
41888
41889
41890
41891
41892
41893
41894
41895
41896
41897
41898
41899
41900
41901
41902
41903
41904
41905
41906
41907
41908
41909
41910
41911
41912
41913
41914
41915
41916
41917
41918
41919
41920
41921
41922
41923
41924
41925
41926
41927
41928
41929
41930
41931
41932
41933
41934
41935
41936
41937
41938
41939
41940
41941
41942
41943
41944
41945
41946
41947
41948
41949
41950
41951
41952
41953
41954
41955
41956
41957
41958
41959
41960
41961
41962
41963
41964
41965
41966
41967
41968
41969
41970
41971
41972
41973
41974
41975
41976
41977
41978
41979
41980
41981
41982
41983
41984
41985
41986
41987
41988
41989
41990
41991
41992
41993
41994
41995
41996
41997
41998
41999
42000
42001
42002
42003
42004
42005
42006
42007
42008
42009
42010
42011
42012
42013
42014
42015
42016
42017
42018
42019
42020
42021
42022
42023
42024
42025
42026
42027
42028
42029
42030
42031
42032
42033
42034
42035
42036
42037
42038
42039
42040
42041
42042
42043
42044
42045
42046
42047
42048
42049
42050
42051
42052
42053
42054
42055
42056
42057
42058
42059
42060
42061
42062
42063
42064
42065
42066
42067
42068
42069
42070
42071
42072
42073
42074
42075
42076
42077
42078
42079
42080
42081
42082
42083
42084
42085
42086
42087
42088
42089
42090
42091
42092
42093
42094
42095
42096
42097
42098
42099
42100
42101
42102
42103
42104
42105
42106
42107
42108
42109
42110
42111
42112
42113
42114
42115
42116
42117
42118
42119
42120
42121
42122
42123
42124
42125
42126
42127
42128
42129
42130
42131
42132
42133
42134
42135
42136
42137
42138
42139
42140
42141
42142
42143
42144
42145
42146
42147
42148
42149
42150
42151
42152
42153
42154
42155
42156
42157
42158
42159
42160
42161
42162
42163
42164
42165
42166
42167
42168
42169
42170
42171
42172
42173
42174
42175
42176
42177
42178
42179
42180
42181
42182
42183
42184
42185
42186
42187
42188
42189
42190
42191
42192
42193
42194
42195
42196
42197
42198
42199
42200
42201
42202
42203
42204
42205
42206
42207
42208
42209
42210
42211
42212
42213
42214
42215
42216
42217
42218
42219
42220
42221
42222
42223
42224
42225
42226
42227
42228
42229
42230
42231
42232
42233
42234
42235
42236
42237
42238
42239
42240
42241
42242
42243
42244
42245
42246
42247
42248
42249
42250
42251
42252
42253
42254
42255
42256
42257
42258
42259
42260
42261
42262
42263
42264
42265
42266
42267
42268
42269
42270
42271
42272
42273
42274
42275
42276
42277
42278
42279
42280
42281
42282
42283
42284
42285
42286
42287
42288
42289
42290
42291
42292
42293
42294
42295
42296
42297
42298
42299
42300
42301
42302
42303
42304
42305
42306
42307
42308
42309
42310
42311
42312
42313
42314
42315
42316
42317
42318
42319
42320
42321
42322
42323
42324
42325
42326
42327
42328
42329
42330
42331
42332
42333
42334
42335
42336
42337
42338
42339
42340
42341
42342
42343
42344
42345
42346
42347
42348
42349
42350
42351
42352
42353
42354
42355
42356
42357
42358
42359
42360
42361
42362
42363
42364
42365
42366
42367
42368
42369
42370
42371
42372
42373
42374
42375
42376
42377
42378
42379
42380
42381
42382
42383
42384
42385
42386
42387
42388
42389
42390
42391
42392
42393
42394
42395
42396
42397
42398
42399
42400
42401
42402
42403
42404
42405
42406
42407
42408
42409
42410
42411
42412
42413
42414
42415
42416
42417
42418
42419
42420
42421
42422
42423
42424
42425
42426
42427
42428
42429
42430
42431
42432
42433
42434
42435
42436
42437
42438
42439
42440
42441
42442
42443
42444
42445
42446
42447
42448
42449
42450
42451
42452
42453
42454
42455
42456
42457
42458
42459
42460
42461
42462
42463
42464
42465
42466
42467
42468
42469
42470
42471
42472
42473
42474
42475
42476
42477
42478
42479
42480
42481
42482
42483
42484
42485
42486
42487
42488
42489
42490
42491
42492
42493
42494
42495
42496
42497
42498
42499
42500
42501
42502
42503
42504
42505
42506
42507
42508
42509
42510
42511
42512
42513
42514
42515
42516
42517
42518
42519
42520
42521
42522
42523
42524
42525
42526
42527
42528
42529
42530
42531
42532
42533
42534
42535
42536
42537
42538
42539
42540
42541
42542
42543
42544
42545
42546
42547
42548
42549
42550
42551
42552
42553
42554
42555
42556
42557
42558
42559
42560
42561
42562
42563
42564
42565
42566
42567
42568
42569
42570
42571
42572
42573
42574
42575
42576
42577
42578
42579
42580
42581
42582
42583
42584
42585
42586
42587
42588
42589
42590
42591
42592
42593
42594
42595
42596
42597
42598
42599
42600
42601
42602
42603
42604
42605
42606
42607
42608
42609
42610
42611
42612
42613
42614
42615
42616
42617
42618
42619
42620
42621
42622
42623
42624
42625
42626
42627
42628
42629
42630
42631
42632
42633
42634
42635
42636
42637
42638
42639
42640
42641
42642
42643
42644
42645
42646
42647
42648
42649
42650
42651
42652
42653
42654
42655
42656
42657
42658
42659
42660
42661
42662
42663
42664
42665
42666
42667
42668
42669
42670
42671
42672
42673
42674
42675
42676
42677
42678
42679
42680
42681
42682
42683
42684
42685
42686
42687
42688
42689
42690
42691
42692
42693
42694
42695
42696
42697
42698
42699
42700
42701
42702
42703
42704
42705
42706
42707
42708
42709
42710
42711
42712
42713
42714
42715
42716
42717
42718
42719
42720
42721
42722
42723
42724
42725
42726
42727
42728
42729
42730
42731
42732
42733
42734
42735
42736
42737
42738
42739
42740
42741
42742
42743
42744
42745
42746
42747
42748
42749
42750
42751
42752
42753
42754
42755
42756
42757
42758
42759
42760
42761
42762
42763
42764
42765
42766
42767
42768
42769
42770
42771
42772
42773
42774
42775
42776
42777
42778
42779
42780
42781
42782
42783
42784
42785
42786
42787
42788
42789
42790
42791
42792
42793
42794
42795
42796
42797
42798
42799
42800
42801
42802
42803
42804
42805
42806
42807
42808
42809
42810
42811
42812
42813
42814
42815
42816
42817
42818
42819
42820
42821
42822
42823
42824
42825
42826
42827
42828
42829
42830
42831
42832
42833
42834
42835
42836
42837
42838
42839
42840
42841
42842
42843
42844
42845
42846
42847
42848
42849
42850
42851
42852
42853
42854
42855
42856
42857
42858
42859
42860
42861
42862
42863
42864
42865
42866
42867
42868
42869
42870
42871
42872
42873
42874
42875
42876
42877
42878
42879
42880
42881
42882
42883
42884
42885
42886
42887
42888
42889
42890
42891
42892
42893
42894
42895
42896
42897
42898
42899
42900
42901
42902
42903
42904
42905
42906
42907
42908
42909
42910
42911
42912
42913
42914
42915
42916
42917
42918
42919
42920
42921
42922
42923
42924
42925
42926
42927
42928
42929
42930
42931
42932
42933
42934
42935
42936
42937
42938
42939
42940
42941
42942
42943
42944
42945
42946
42947
42948
42949
42950
42951
42952
42953
42954
42955
42956
42957
42958
42959
42960
42961
42962
42963
42964
42965
42966
42967
42968
42969
42970
42971
42972
42973
42974
42975
42976
42977
42978
42979
42980
42981
42982
42983
42984
42985
42986
42987
42988
42989
42990
42991
42992
42993
42994
42995
42996
42997
42998
42999
43000
43001
43002
43003
43004
43005
43006
43007
43008
43009
43010
43011
43012
43013
43014
43015
43016
43017
43018
43019
43020
43021
43022
43023
43024
43025
43026
43027
43028
43029
43030
43031
43032
43033
43034
43035
43036
43037
43038
43039
43040
43041
43042
43043
43044
43045
43046
43047
43048
43049
43050
43051
43052
43053
43054
43055
43056
43057
43058
43059
43060
43061
43062
43063
43064
43065
43066
43067
43068
43069
43070
43071
43072
43073
43074
43075
43076
43077
43078
43079
43080
43081
43082
43083
43084
43085
43086
43087
43088
43089
43090
43091
43092
43093
43094
43095
43096
43097
43098
43099
43100
43101
43102
43103
43104
43105
43106
43107
43108
43109
43110
43111
43112
43113
43114
43115
43116
43117
43118
43119
43120
43121
43122
43123
43124
43125
43126
43127
43128
43129
43130
43131
43132
43133
43134
43135
43136
43137
43138
43139
43140
43141
43142
43143
43144
43145
43146
43147
43148
43149
43150
43151
43152
43153
43154
43155
43156
43157
43158
43159
43160
43161
43162
43163
43164
43165
43166
43167
43168
43169
43170
43171
43172
43173
43174
43175
43176
43177
43178
43179
43180
43181
43182
43183
43184
43185
43186
43187
43188
43189
43190
43191
43192
43193
43194
43195
43196
43197
43198
43199
43200
43201
43202
43203
43204
43205
43206
43207
43208
43209
43210
43211
43212
43213
43214
43215
43216
43217
43218
43219
43220
43221
43222
43223
43224
43225
43226
43227
43228
43229
43230
43231
43232
43233
43234
43235
43236
43237
43238
43239
43240
43241
43242
43243
43244
43245
43246
43247
43248
43249
43250
43251
43252
43253
43254
43255
43256
43257
43258
43259
43260
43261
43262
43263
43264
43265
43266
43267
43268
43269
43270
43271
43272
43273
43274
43275
43276
43277
43278
43279
43280
43281
43282
43283
43284
43285
43286
43287
43288
43289
43290
43291
43292
43293
43294
43295
43296
43297
43298
43299
43300
43301
43302
43303
43304
43305
43306
43307
43308
43309
43310
43311
43312
43313
43314
43315
43316
43317
43318
43319
43320
43321
43322
43323
43324
43325
43326
43327
43328
43329
43330
43331
43332
43333
43334
43335
43336
43337
43338
43339
43340
43341
43342
43343
43344
43345
43346
43347
43348
43349
43350
43351
43352
43353
43354
43355
43356
43357
43358
43359
43360
43361
43362
43363
43364
43365
43366
43367
43368
43369
43370
43371
43372
43373
43374
43375
43376
43377
43378
43379
43380
43381
43382
43383
43384
43385
43386
43387
43388
43389
43390
43391
43392
43393
43394
43395
43396
43397
43398
43399
43400
43401
43402
43403
43404
43405
43406
43407
43408
43409
43410
43411
43412
43413
43414
43415
43416
43417
43418
43419
43420
43421
43422
43423
43424
43425
43426
43427
43428
43429
43430
43431
43432
43433
43434
43435
43436
43437
43438
43439
43440
43441
43442
43443
43444
43445
43446
43447
43448
43449
43450
43451
43452
43453
43454
43455
43456
43457
43458
43459
43460
43461
43462
43463
43464
43465
43466
43467
43468
43469
43470
43471
43472
43473
43474
43475
43476
43477
43478
43479
43480
43481
43482
43483
43484
43485
43486
43487
43488
43489
43490
43491
43492
43493
43494
43495
43496
43497
43498
43499
43500
43501
43502
43503
43504
43505
43506
43507
43508
43509
43510
43511
43512
43513
43514
43515
43516
43517
43518
43519
43520
43521
43522
43523
43524
43525
43526
43527
43528
43529
43530
43531
43532
43533
43534
43535
43536
43537
43538
43539
43540
43541
43542
43543
43544
43545
43546
43547
43548
43549
43550
43551
43552
43553
43554
43555
43556
43557
43558
43559
43560
43561
43562
43563
43564
43565
43566
43567
43568
43569
43570
43571
43572
43573
43574
43575
43576
43577
43578
43579
43580
43581
43582
43583
43584
43585
43586
43587
43588
43589
43590
43591
43592
43593
43594
43595
43596
43597
43598
43599
43600
43601
43602
43603
43604
43605
43606
43607
43608
43609
43610
43611
43612
43613
43614
43615
43616
43617
43618
43619
43620
43621
43622
43623
43624
43625
43626
43627
43628
43629
43630
43631
43632
43633
43634
43635
43636
43637
43638
43639
43640
43641
43642
43643
43644
43645
43646
43647
43648
43649
43650
43651
43652
43653
43654
43655
43656
43657
43658
43659
43660
43661
43662
43663
43664
43665
43666
43667
43668
43669
43670
43671
43672
43673
43674
43675
43676
43677
43678
43679
43680
43681
43682
43683
43684
43685
43686
43687
43688
43689
43690
43691
43692
43693
43694
43695
43696
43697
43698
43699
43700
43701
43702
43703
43704
43705
43706
43707
43708
43709
43710
43711
43712
43713
43714
43715
43716
43717
43718
43719
43720
43721
43722
43723
43724
43725
43726
43727
43728
43729
43730
43731
43732
43733
43734
43735
43736
43737
43738
43739
43740
43741
43742
43743
43744
43745
43746
43747
43748
43749
43750
43751
43752
43753
43754
43755
43756
43757
43758
43759
43760
43761
43762
43763
43764
43765
43766
43767
43768
43769
43770
43771
43772
43773
43774
43775
43776
43777
43778
43779
43780
43781
43782
43783
43784
43785
43786
43787
43788
43789
43790
43791
43792
43793
43794
43795
43796
43797
43798
43799
43800
43801
43802
43803
43804
43805
43806
43807
43808
43809
43810
43811
43812
43813
43814
43815
43816
43817
43818
43819
43820
43821
43822
43823
43824
43825
43826
43827
43828
43829
43830
43831
43832
43833
43834
43835
43836
43837
43838
43839
43840
43841
43842
43843
43844
43845
43846
43847
43848
43849
43850
43851
43852
43853
43854
43855
43856
43857
43858
43859
43860
43861
43862
43863
43864
43865
43866
43867
43868
43869
43870
43871
43872
43873
43874
43875
43876
43877
43878
43879
43880
43881
43882
43883
43884
43885
43886
43887
43888
43889
43890
43891
43892
43893
43894
43895
43896
43897
43898
43899
43900
43901
43902
43903
43904
43905
43906
43907
43908
43909
43910
43911
43912
43913
43914
43915
43916
43917
43918
43919
43920
43921
43922
43923
43924
43925
43926
43927
43928
43929
43930
43931
43932
43933
43934
43935
43936
43937
43938
43939
43940
43941
43942
43943
43944
43945
43946
43947
43948
43949
43950
43951
43952
43953
43954
43955
43956
43957
43958
43959
43960
43961
43962
43963
43964
43965
43966
43967
43968
43969
43970
43971
43972
43973
43974
43975
43976
43977
43978
43979
43980
43981
43982
43983
43984
43985
43986
43987
43988
43989
43990
43991
43992
43993
43994
43995
43996
43997
43998
43999
44000
44001
44002
44003
44004
44005
44006
44007
44008
44009
44010
44011
44012
44013
44014
44015
44016
44017
44018
44019
44020
44021
44022
44023
44024
44025
44026
44027
44028
44029
44030
44031
44032
44033
44034
44035
44036
44037
44038
44039
44040
44041
44042
44043
44044
44045
44046
44047
44048
44049
44050
44051
44052
44053
44054
44055
44056
44057
44058
44059
44060
44061
44062
44063
44064
44065
44066
44067
44068
44069
44070
44071
44072
44073
44074
44075
44076
44077
44078
44079
44080
44081
44082
44083
44084
44085
44086
44087
44088
44089
44090
44091
44092
44093
44094
44095
44096
44097
44098
44099
44100
44101
44102
44103
44104
44105
44106
44107
44108
44109
44110
44111
44112
44113
44114
44115
44116
44117
44118
44119
44120
44121
44122
44123
44124
44125
44126
44127
44128
44129
44130
44131
44132
44133
44134
44135
44136
44137
44138
44139
44140
44141
44142
44143
44144
44145
44146
44147
44148
44149
44150
44151
44152
44153
44154
44155
44156
44157
44158
44159
44160
44161
44162
44163
44164
44165
44166
44167
44168
44169
44170
44171
44172
44173
44174
44175
44176
44177
44178
44179
44180
44181
44182
44183
44184
44185
44186
44187
44188
44189
44190
44191
44192
44193
44194
44195
44196
44197
44198
44199
44200
44201
44202
44203
44204
44205
44206
44207
44208
44209
44210
44211
44212
44213
44214
44215
44216
44217
44218
44219
44220
44221
44222
44223
44224
44225
44226
44227
44228
44229
44230
44231
44232
44233
44234
44235
44236
44237
44238
44239
44240
44241
44242
44243
44244
44245
44246
44247
44248
44249
44250
44251
44252
44253
44254
44255
44256
44257
44258
44259
44260
44261
44262
44263
44264
44265
44266
44267
44268
44269
44270
44271
44272
44273
44274
44275
44276
44277
44278
44279
44280
44281
44282
44283
44284
44285
44286
44287
44288
44289
44290
44291
44292
44293
44294
44295
44296
44297
44298
44299
44300
44301
44302
44303
44304
44305
44306
44307
44308
44309
44310
44311
44312
44313
44314
44315
44316
44317
44318
44319
44320
44321
44322
44323
44324
44325
44326
44327
44328
44329
44330
44331
44332
44333
44334
44335
44336
44337
44338
44339
44340
44341
44342
44343
44344
44345
44346
44347
44348
44349
44350
44351
44352
44353
44354
44355
44356
44357
44358
44359
44360
44361
44362
44363
44364
44365
44366
44367
44368
44369
44370
44371
44372
44373
44374
44375
44376
44377
44378
44379
44380
44381
44382
44383
44384
44385
44386
44387
44388
44389
44390
44391
44392
44393
44394
44395
44396
44397
44398
44399
44400
44401
44402
44403
44404
44405
44406
44407
44408
44409
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
44450
44451
44452
44453
44454
44455
44456
44457
44458
44459
44460
44461
44462
44463
44464
44465
44466
44467
44468
44469
44470
44471
44472
44473
44474
44475
44476
44477
44478
44479
44480
44481
44482
44483
44484
44485
44486
44487
44488
44489
44490
44491
44492
44493
44494
44495
44496
44497
44498
44499
44500
44501
44502
44503
44504
44505
44506
44507
44508
44509
44510
44511
44512
44513
44514
44515
44516
44517
44518
44519
44520
44521
44522
44523
44524
44525
44526
44527
44528
44529
44530
44531
44532
44533
44534
44535
44536
44537
44538
44539
44540
44541
44542
44543
44544
44545
44546
44547
44548
44549
44550
44551
44552
44553
44554
44555
44556
44557
44558
44559
44560
44561
44562
44563
44564
44565
44566
44567
44568
44569
44570
44571
44572
44573
44574
44575
44576
44577
44578
44579
44580
44581
44582
44583
44584
44585
44586
44587
44588
44589
44590
44591
44592
44593
44594
44595
44596
44597
44598
44599
44600
44601
44602
44603
44604
44605
44606
44607
44608
44609
44610
44611
44612
44613
44614
44615
44616
44617
44618
44619
44620
44621
44622
44623
44624
44625
44626
44627
44628
44629
44630
44631
44632
44633
44634
44635
44636
44637
44638
44639
44640
44641
44642
44643
44644
44645
44646
44647
44648
44649
44650
44651
44652
44653
44654
44655
44656
44657
44658
44659
44660
44661
44662
44663
44664
44665
44666
44667
44668
44669
44670
44671
44672
44673
44674
44675
44676
44677
44678
44679
44680
44681
44682
44683
44684
44685
44686
44687
44688
44689
44690
44691
44692
44693
44694
44695
44696
44697
44698
44699
44700
44701
44702
44703
44704
44705
44706
44707
44708
44709
44710
44711
44712
44713
44714
44715
44716
44717
44718
44719
44720
44721
44722
44723
44724
44725
44726
44727
44728
44729
44730
44731
44732
44733
44734
44735
44736
44737
44738
44739
44740
44741
44742
44743
44744
44745
44746
44747
44748
44749
44750
44751
44752
44753
44754
44755
44756
44757
44758
44759
44760
44761
44762
44763
44764
44765
44766
44767
44768
44769
44770
44771
44772
44773
44774
44775
44776
44777
44778
44779
44780
44781
44782
44783
44784
44785
44786
44787
44788
44789
44790
44791
44792
44793
44794
44795
44796
44797
44798
44799
44800
44801
44802
44803
44804
44805
44806
44807
44808
44809
44810
44811
44812
44813
44814
44815
44816
44817
44818
44819
44820
44821
44822
44823
44824
44825
44826
44827
44828
44829
44830
44831
44832
44833
44834
44835
44836
44837
44838
44839
44840
44841
44842
44843
44844
44845
44846
44847
44848
44849
44850
44851
44852
44853
44854
44855
44856
44857
44858
44859
44860
44861
44862
44863
44864
44865
44866
44867
44868
44869
44870
44871
44872
44873
44874
44875
44876
44877
44878
44879
44880
44881
44882
44883
44884
44885
44886
44887
44888
44889
44890
44891
44892
44893
44894
44895
44896
44897
44898
44899
44900
44901
44902
44903
44904
44905
44906
44907
44908
44909
44910
44911
44912
44913
44914
44915
44916
44917
44918
44919
44920
44921
44922
44923
44924
44925
44926
44927
44928
44929
44930
44931
44932
44933
44934
44935
44936
44937
44938
44939
44940
44941
44942
44943
44944
44945
44946
44947
44948
44949
44950
44951
44952
44953
44954
44955
44956
44957
44958
44959
44960
44961
44962
44963
44964
44965
44966
44967
44968
44969
44970
44971
44972
44973
44974
44975
44976
44977
44978
44979
44980
44981
44982
44983
44984
44985
44986
44987
44988
44989
44990
44991
44992
44993
44994
44995
44996
44997
44998
44999
45000
45001
45002
45003
45004
45005
45006
45007
45008
45009
45010
45011
45012
45013
45014
45015
45016
45017
45018
45019
45020
45021
45022
45023
45024
45025
45026
45027
45028
45029
45030
45031
45032
45033
45034
45035
45036
45037
45038
45039
45040
45041
45042
45043
45044
45045
45046
45047
45048
45049
45050
45051
45052
45053
45054
45055
45056
45057
45058
45059
45060
45061
45062
45063
45064
45065
45066
45067
45068
45069
45070
45071
45072
45073
45074
45075
45076
45077
45078
45079
45080
45081
45082
45083
45084
45085
45086
45087
45088
45089
45090
45091
45092
45093
45094
45095
45096
45097
45098
45099
45100
45101
45102
45103
45104
45105
45106
45107
45108
45109
45110
45111
45112
45113
45114
45115
45116
45117
45118
45119
45120
45121
45122
45123
45124
45125
45126
45127
45128
45129
45130
45131
45132
45133
45134
45135
45136
45137
45138
45139
45140
45141
45142
45143
45144
45145
45146
45147
45148
45149
45150
45151
45152
45153
45154
45155
45156
45157
45158
45159
45160
45161
45162
45163
45164
45165
45166
45167
45168
45169
45170
45171
45172
45173
45174
45175
45176
45177
45178
45179
45180
45181
45182
45183
45184
45185
45186
45187
45188
45189
45190
45191
45192
45193
45194
45195
45196
45197
45198
45199
45200
45201
45202
45203
45204
45205
45206
45207
45208
45209
45210
45211
45212
45213
45214
45215
45216
45217
45218
45219
45220
45221
45222
45223
45224
45225
45226
45227
45228
45229
45230
45231
45232
45233
45234
45235
45236
45237
45238
45239
45240
45241
45242
45243
45244
45245
45246
45247
45248
45249
45250
45251
45252
45253
45254
45255
45256
45257
45258
45259
45260
45261
45262
45263
45264
45265
45266
45267
45268
45269
45270
45271
45272
45273
45274
45275
45276
45277
45278
45279
45280
45281
45282
45283
45284
45285
45286
45287
45288
45289
45290
45291
45292
45293
45294
45295
45296
45297
45298
45299
45300
45301
45302
45303
45304
45305
45306
45307
45308
45309
45310
45311
45312
45313
45314
45315
45316
45317
45318
45319
45320
45321
45322
45323
45324
45325
45326
45327
45328
45329
45330
45331
45332
45333
45334
45335
45336
45337
45338
45339
45340
45341
45342
45343
45344
45345
45346
45347
45348
45349
45350
45351
45352
45353
45354
45355
45356
45357
45358
45359
45360
45361
45362
45363
45364
45365
45366
45367
45368
45369
45370
45371
45372
45373
45374
45375
45376
45377
45378
45379
45380
45381
45382
45383
45384
45385
45386
45387
45388
45389
45390
45391
45392
45393
45394
45395
45396
45397
45398
45399
45400
45401
45402
45403
45404
45405
45406
45407
45408
45409
45410
45411
45412
45413
45414
45415
45416
45417
45418
45419
45420
45421
45422
45423
45424
45425
45426
45427
45428
45429
45430
45431
45432
45433
45434
45435
45436
45437
45438
45439
45440
45441
45442
45443
45444
45445
45446
45447
45448
45449
45450
45451
45452
45453
45454
45455
45456
45457
45458
45459
45460
45461
45462
45463
45464
45465
45466
45467
45468
45469
45470
45471
45472
45473
45474
45475
45476
45477
45478
45479
45480
45481
45482
45483
45484
45485
45486
45487
45488
45489
45490
45491
45492
45493
45494
45495
45496
45497
45498
45499
45500
45501
45502
45503
45504
45505
45506
45507
45508
45509
45510
45511
45512
45513
45514
45515
45516
45517
45518
45519
45520
45521
45522
45523
45524
45525
45526
45527
45528
45529
45530
45531
45532
45533
45534
45535
45536
45537
45538
45539
45540
45541
45542
45543
45544
45545
45546
45547
45548
45549
45550
45551
45552
45553
45554
45555
45556
45557
45558
45559
45560
45561
45562
45563
45564
45565
45566
45567
45568
45569
45570
45571
45572
45573
45574
45575
45576
45577
45578
45579
45580
45581
45582
45583
45584
45585
45586
45587
45588
45589
45590
45591
45592
45593
45594
45595
45596
45597
45598
45599
45600
45601
45602
45603
45604
45605
45606
45607
45608
45609
45610
45611
45612
45613
45614
45615
45616
45617
45618
45619
45620
45621
45622
45623
45624
45625
45626
45627
45628
45629
45630
45631
45632
45633
45634
45635
45636
45637
45638
45639
45640
45641
45642
45643
45644
45645
45646
45647
45648
45649
45650
45651
45652
45653
45654
45655
45656
45657
45658
45659
45660
45661
45662
45663
45664
45665
45666
45667
45668
45669
45670
45671
45672
45673
45674
45675
45676
45677
45678
45679
45680
45681
45682
45683
45684
45685
45686
45687
45688
45689
45690
45691
45692
45693
45694
45695
45696
45697
45698
45699
45700
45701
45702
45703
45704
45705
45706
45707
45708
45709
45710
45711
45712
45713
45714
45715
45716
45717
45718
45719
45720
45721
45722
45723
45724
45725
45726
45727
45728
45729
45730
45731
45732
45733
45734
45735
45736
45737
45738
45739
45740
45741
45742
45743
45744
45745
45746
45747
45748
45749
45750
45751
45752
45753
45754
45755
45756
45757
45758
45759
45760
45761
45762
45763
45764
45765
45766
45767
45768
45769
45770
45771
45772
45773
45774
45775
45776
45777
45778
45779
45780
45781
45782
45783
45784
45785
45786
45787
45788
45789
45790
45791
45792
45793
45794
45795
45796
45797
45798
45799
45800
45801
45802
45803
45804
45805
45806
45807
45808
45809
45810
45811
45812
45813
45814
45815
45816
45817
45818
45819
45820
45821
45822
45823
45824
45825
45826
45827
45828
45829
45830
45831
45832
45833
45834
45835
45836
45837
45838
45839
45840
45841
45842
45843
45844
45845
45846
45847
45848
45849
45850
45851
45852
45853
45854
45855
45856
45857
45858
45859
45860
45861
45862
45863
45864
45865
45866
45867
45868
45869
45870
45871
45872
45873
45874
45875
45876
45877
45878
45879
45880
45881
45882
45883
45884
45885
45886
45887
45888
45889
45890
45891
45892
45893
45894
45895
45896
45897
45898
45899
45900
45901
45902
45903
45904
45905
45906
45907
45908
45909
45910
45911
45912
45913
45914
45915
45916
45917
45918
45919
45920
45921
45922
45923
45924
45925
45926
45927
45928
45929
45930
45931
45932
45933
45934
45935
45936
45937
45938
45939
45940
45941
45942
45943
45944
45945
45946
45947
45948
45949
45950
45951
45952
45953
45954
45955
45956
45957
45958
45959
45960
45961
45962
45963
45964
45965
45966
45967
45968
45969
45970
45971
45972
45973
45974
45975
45976
45977
45978
45979
45980
45981
45982
45983
45984
45985
45986
45987
45988
45989
45990
45991
45992
45993
45994
45995
45996
45997
45998
45999
46000
46001
46002
46003
46004
46005
46006
46007
46008
46009
46010
46011
46012
46013
46014
46015
46016
46017
46018
46019
46020
46021
46022
46023
46024
46025
46026
46027
46028
46029
46030
46031
46032
46033
46034
46035
46036
46037
46038
46039
46040
46041
46042
46043
46044
46045
46046
46047
46048
46049
46050
46051
46052
46053
46054
46055
46056
46057
46058
46059
46060
46061
46062
46063
46064
46065
46066
46067
46068
46069
46070
46071
46072
46073
46074
46075
46076
46077
46078
46079
46080
46081
46082
46083
46084
46085
46086
46087
46088
46089
46090
46091
46092
46093
46094
46095
46096
46097
46098
46099
46100
46101
46102
46103
46104
46105
46106
46107
46108
46109
46110
46111
46112
46113
46114
46115
46116
46117
46118
46119
46120
46121
46122
46123
46124
46125
46126
46127
46128
46129
46130
46131
46132
46133
46134
46135
46136
46137
46138
46139
46140
46141
46142
46143
46144
46145
46146
46147
46148
46149
46150
46151
46152
46153
46154
46155
46156
46157
46158
46159
46160
46161
46162
46163
46164
46165
46166
46167
46168
46169
46170
46171
46172
46173
46174
46175
46176
46177
46178
46179
46180
46181
46182
46183
46184
46185
46186
46187
46188
46189
46190
46191
46192
46193
46194
46195
46196
46197
46198
46199
46200
46201
46202
46203
46204
46205
46206
46207
46208
46209
46210
46211
46212
46213
46214
46215
46216
46217
46218
46219
46220
46221
46222
46223
46224
46225
46226
46227
46228
46229
46230
46231
46232
46233
46234
46235
46236
46237
46238
46239
46240
46241
46242
46243
46244
46245
46246
46247
46248
46249
46250
46251
46252
46253
46254
46255
46256
46257
46258
46259
46260
46261
46262
46263
46264
46265
46266
46267
46268
46269
46270
46271
46272
46273
46274
46275
46276
46277
46278
46279
46280
46281
46282
46283
46284
46285
46286
46287
46288
46289
46290
46291
46292
46293
46294
46295
46296
46297
46298
46299
46300
46301
46302
46303
46304
46305
46306
46307
46308
46309
46310
46311
46312
46313
46314
46315
46316
46317
46318
46319
46320
46321
46322
46323
46324
46325
46326
46327
46328
46329
46330
46331
46332
46333
46334
46335
46336
46337
46338
46339
46340
46341
46342
46343
46344
46345
46346
46347
46348
46349
46350
46351
46352
46353
46354
46355
46356
46357
46358
46359
46360
46361
46362
46363
46364
46365
46366
46367
46368
46369
46370
46371
46372
46373
46374
46375
46376
46377
46378
46379
46380
46381
46382
46383
46384
46385
46386
46387
46388
46389
46390
46391
46392
46393
46394
46395
46396
46397
46398
46399
46400
46401
46402
46403
46404
46405
46406
46407
46408
46409
46410
46411
46412
46413
46414
46415
46416
46417
46418
46419
46420
46421
46422
46423
46424
46425
46426
46427
46428
46429
46430
46431
46432
46433
46434
46435
46436
46437
46438
46439
46440
46441
46442
46443
46444
46445
46446
46447
46448
46449
46450
46451
46452
46453
46454
46455
46456
46457
46458
46459
46460
46461
46462
46463
46464
46465
46466
46467
46468
46469
46470
46471
46472
46473
46474
46475
46476
46477
46478
46479
46480
46481
46482
46483
46484
46485
46486
46487
46488
46489
46490
46491
46492
46493
46494
46495
46496
46497
46498
46499
46500
46501
46502
46503
46504
46505
46506
46507
46508
46509
46510
46511
46512
46513
46514
46515
46516
46517
46518
46519
46520
46521
46522
46523
46524
46525
46526
46527
46528
46529
46530
46531
46532
46533
46534
46535
46536
46537
46538
46539
46540
46541
46542
46543
46544
46545
46546
46547
46548
46549
46550
46551
46552
46553
46554
46555
46556
46557
46558
46559
46560
46561
46562
46563
46564
46565
46566
46567
46568
46569
46570
46571
46572
46573
46574
46575
46576
46577
46578
46579
46580
46581
46582
46583
46584
46585
46586
46587
46588
46589
46590
46591
46592
46593
46594
46595
46596
46597
46598
46599
46600
46601
46602
46603
46604
46605
46606
46607
46608
46609
46610
46611
46612
46613
46614
46615
46616
46617
46618
46619
46620
46621
46622
46623
46624
46625
46626
46627
46628
46629
46630
46631
46632
46633
46634
46635
46636
46637
46638
46639
46640
46641
46642
46643
46644
46645
46646
46647
46648
46649
46650
46651
46652
46653
46654
46655
46656
46657
46658
46659
46660
46661
46662
46663
46664
46665
46666
46667
46668
46669
46670
46671
46672
46673
46674
46675
46676
46677
46678
46679
46680
46681
46682
46683
46684
46685
46686
46687
46688
46689
46690
46691
46692
46693
46694
46695
46696
46697
46698
46699
46700
46701
46702
46703
46704
46705
46706
46707
46708
46709
46710
46711
46712
46713
46714
46715
46716
46717
46718
46719
46720
46721
46722
46723
46724
46725
46726
46727
46728
46729
46730
46731
46732
46733
46734
46735
46736
46737
46738
46739
46740
46741
46742
46743
46744
46745
46746
46747
46748
46749
46750
46751
46752
46753
46754
46755
46756
46757
46758
46759
46760
46761
46762
46763
46764
46765
46766
46767
46768
46769
46770
46771
46772
46773
46774
46775
46776
46777
46778
46779
46780
46781
46782
46783
46784
46785
46786
46787
46788
46789
46790
46791
46792
46793
46794
46795
46796
46797
46798
46799
46800
46801
46802
46803
46804
46805
46806
46807
46808
46809
46810
46811
46812
46813
46814
46815
46816
46817
46818
46819
46820
46821
46822
46823
46824
46825
46826
46827
46828
46829
46830
46831
46832
46833
46834
46835
46836
46837
46838
46839
46840
46841
46842
46843
46844
46845
46846
46847
46848
46849
46850
46851
46852
46853
46854
46855
46856
46857
46858
46859
46860
46861
46862
46863
46864
46865
46866
46867
46868
46869
46870
46871
46872
46873
46874
46875
46876
46877
46878
46879
46880
46881
46882
46883
46884
46885
46886
46887
46888
46889
46890
46891
46892
46893
46894
46895
46896
46897
46898
46899
46900
46901
46902
46903
46904
46905
46906
46907
46908
46909
46910
46911
46912
46913
46914
46915
46916
46917
46918
46919
46920
46921
46922
46923
46924
46925
46926
46927
46928
46929
46930
46931
46932
46933
46934
46935
46936
46937
46938
46939
46940
46941
46942
46943
46944
46945
46946
46947
46948
46949
46950
46951
46952
46953
46954
46955
46956
46957
46958
46959
46960
46961
46962
46963
46964
46965
46966
46967
46968
46969
46970
46971
46972
46973
46974
46975
46976
46977
46978
46979
46980
46981
46982
46983
46984
46985
46986
46987
46988
46989
46990
46991
46992
46993
46994
46995
46996
46997
46998
46999
47000
47001
47002
47003
47004
47005
47006
47007
47008
47009
47010
47011
47012
47013
47014
47015
47016
47017
47018
47019
47020
47021
47022
47023
47024
47025
47026
47027
47028
47029
47030
47031
47032
47033
47034
47035
47036
47037
47038
47039
47040
47041
47042
47043
47044
47045
47046
47047
47048
47049
47050
47051
47052
47053
47054
47055
47056
47057
47058
47059
47060
47061
47062
47063
47064
47065
47066
47067
47068
47069
47070
47071
47072
47073
47074
47075
47076
47077
47078
47079
47080
47081
47082
47083
47084
47085
47086
47087
47088
47089
47090
47091
47092
47093
47094
47095
47096
47097
47098
47099
47100
47101
47102
47103
47104
47105
47106
47107
47108
47109
47110
47111
47112
47113
47114
47115
47116
47117
47118
47119
47120
47121
47122
47123
47124
47125
47126
47127
47128
47129
47130
47131
47132
47133
47134
47135
47136
47137
47138
47139
47140
47141
47142
47143
47144
47145
47146
47147
47148
47149
47150
47151
47152
47153
47154
47155
47156
47157
47158
47159
47160
47161
47162
47163
47164
47165
47166
47167
47168
47169
47170
47171
47172
47173
47174
47175
47176
47177
47178
47179
47180
47181
47182
47183
47184
47185
47186
47187
47188
47189
47190
47191
47192
47193
47194
47195
47196
47197
47198
47199
47200
47201
47202
47203
47204
47205
47206
47207
47208
47209
47210
47211
47212
47213
47214
47215
47216
47217
47218
47219
47220
47221
47222
47223
47224
47225
47226
47227
47228
47229
47230
47231
47232
47233
47234
47235
47236
47237
47238
47239
47240
47241
47242
47243
47244
47245
47246
47247
47248
47249
47250
47251
47252
47253
47254
47255
47256
47257
47258
47259
47260
47261
47262
47263
47264
47265
47266
47267
47268
47269
47270
47271
47272
47273
47274
47275
47276
47277
47278
47279
47280
47281
47282
47283
47284
47285
47286
47287
47288
47289
47290
47291
47292
47293
47294
47295
47296
47297
47298
47299
47300
47301
47302
47303
47304
47305
47306
47307
47308
47309
47310
47311
47312
47313
47314
47315
47316
47317
47318
47319
47320
47321
47322
47323
47324
47325
47326
47327
47328
47329
47330
47331
47332
47333
47334
47335
47336
47337
47338
47339
47340
47341
47342
47343
47344
47345
47346
47347
47348
47349
47350
47351
47352
47353
47354
47355
47356
47357
47358
47359
47360
47361
47362
47363
47364
47365
47366
47367
47368
47369
47370
47371
47372
47373
47374
47375
47376
47377
47378
47379
47380
47381
47382
47383
47384
47385
47386
47387
47388
47389
47390
47391
47392
47393
47394
47395
47396
47397
47398
47399
47400
47401
47402
47403
47404
47405
47406
47407
47408
47409
47410
47411
47412
47413
47414
47415
47416
47417
47418
47419
47420
47421
47422
47423
47424
47425
47426
47427
47428
47429
47430
47431
47432
47433
47434
47435
47436
47437
47438
47439
47440
47441
47442
47443
47444
47445
47446
47447
47448
47449
47450
47451
47452
47453
47454
47455
47456
47457
47458
47459
47460
47461
47462
47463
47464
47465
47466
47467
47468
47469
47470
47471
47472
47473
47474
47475
47476
47477
47478
47479
47480
47481
47482
47483
47484
47485
47486
47487
47488
47489
47490
47491
47492
47493
47494
47495
47496
47497
47498
47499
47500
47501
47502
47503
47504
47505
47506
47507
47508
47509
47510
47511
47512
47513
47514
47515
47516
47517
47518
47519
47520
47521
47522
47523
47524
47525
47526
47527
47528
47529
47530
47531
47532
47533
47534
47535
47536
47537
47538
47539
47540
47541
47542
47543
47544
47545
47546
47547
47548
47549
47550
47551
47552
47553
47554
47555
47556
47557
47558
47559
47560
47561
47562
47563
47564
47565
47566
47567
47568
47569
47570
47571
47572
47573
47574
47575
47576
47577
47578
47579
47580
47581
47582
47583
47584
47585
47586
47587
47588
47589
47590
47591
47592
47593
47594
47595
47596
47597
47598
47599
47600
47601
47602
47603
47604
47605
47606
47607
47608
47609
47610
47611
47612
47613
47614
47615
47616
47617
47618
47619
47620
47621
47622
47623
47624
47625
47626
47627
47628
47629
47630
47631
47632
47633
47634
47635
47636
47637
47638
47639
47640
47641
47642
47643
47644
47645
47646
47647
47648
47649
47650
47651
47652
47653
47654
47655
47656
47657
47658
47659
47660
47661
47662
47663
47664
47665
47666
47667
47668
47669
47670
47671
47672
47673
47674
47675
47676
47677
47678
47679
47680
47681
47682
47683
47684
47685
47686
47687
47688
47689
47690
47691
47692
47693
47694
47695
47696
47697
47698
47699
47700
47701
47702
47703
47704
47705
47706
47707
47708
47709
47710
47711
47712
47713
47714
47715
47716
47717
47718
47719
47720
47721
47722
47723
47724
47725
47726
47727
47728
47729
47730
47731
47732
47733
47734
47735
47736
47737
47738
47739
47740
47741
47742
47743
47744
47745
47746
47747
47748
47749
47750
47751
47752
47753
47754
47755
47756
47757
47758
47759
47760
47761
47762
47763
47764
47765
47766
47767
47768
47769
47770
47771
47772
47773
47774
47775
47776
47777
47778
47779
47780
47781
47782
47783
47784
47785
47786
47787
47788
47789
47790
47791
47792
47793
47794
47795
47796
47797
47798
47799
47800
47801
47802
47803
47804
47805
47806
47807
47808
47809
47810
47811
47812
47813
47814
47815
47816
47817
47818
47819
47820
47821
47822
47823
47824
47825
47826
47827
47828
47829
47830
47831
47832
47833
47834
47835
47836
47837
47838
47839
47840
47841
47842
47843
47844
47845
47846
47847
47848
47849
47850
47851
47852
47853
47854
47855
47856
47857
47858
47859
47860
47861
47862
47863
47864
47865
47866
47867
47868
47869
47870
47871
47872
47873
47874
47875
47876
47877
47878
47879
47880
47881
47882
47883
47884
47885
47886
47887
47888
47889
47890
47891
47892
47893
47894
47895
47896
47897
47898
47899
47900
47901
47902
47903
47904
47905
47906
47907
47908
47909
47910
47911
47912
47913
47914
47915
47916
47917
47918
47919
47920
47921
47922
47923
47924
47925
47926
47927
47928
47929
47930
47931
47932
47933
47934
47935
47936
47937
47938
47939
47940
47941
47942
47943
47944
47945
47946
47947
47948
47949
47950
47951
47952
47953
47954
47955
47956
47957
47958
47959
47960
47961
47962
47963
47964
47965
47966
47967
47968
47969
47970
47971
47972
47973
47974
47975
47976
47977
47978
47979
47980
47981
47982
47983
47984
47985
47986
47987
47988
47989
47990
47991
47992
47993
47994
47995
47996
47997
47998
47999
48000
48001
48002
48003
48004
48005
48006
48007
48008
48009
48010
48011
48012
48013
48014
48015
48016
48017
48018
48019
48020
48021
48022
48023
48024
48025
48026
48027
48028
48029
48030
48031
48032
48033
48034
48035
48036
48037
48038
48039
48040
48041
48042
48043
48044
48045
48046
48047
48048
48049
48050
48051
48052
48053
48054
48055
48056
48057
48058
48059
48060
48061
48062
48063
48064
48065
48066
48067
48068
48069
48070
48071
48072
48073
48074
48075
48076
48077
48078
48079
48080
48081
48082
48083
48084
48085
48086
48087
48088
48089
48090
48091
48092
48093
48094
48095
48096
48097
48098
48099
48100
48101
48102
48103
48104
48105
48106
48107
48108
48109
48110
48111
48112
48113
48114
48115
48116
48117
48118
48119
48120
48121
48122
48123
48124
48125
48126
48127
48128
48129
48130
48131
48132
48133
48134
48135
48136
48137
48138
48139
48140
48141
48142
48143
48144
48145
48146
48147
48148
48149
48150
48151
48152
48153
48154
48155
48156
48157
48158
48159
48160
48161
48162
48163
48164
48165
48166
48167
48168
48169
48170
48171
48172
48173
48174
48175
48176
48177
48178
48179
48180
48181
48182
48183
48184
48185
48186
48187
48188
48189
48190
48191
48192
48193
48194
48195
48196
48197
48198
48199
48200
48201
48202
48203
48204
48205
48206
48207
48208
48209
48210
48211
48212
48213
48214
48215
48216
48217
48218
48219
48220
48221
48222
48223
48224
48225
48226
48227
48228
48229
48230
48231
48232
48233
48234
48235
48236
48237
48238
48239
48240
48241
48242
48243
48244
48245
48246
48247
48248
48249
48250
48251
48252
48253
48254
48255
48256
48257
48258
48259
48260
48261
48262
48263
48264
48265
48266
48267
48268
48269
48270
48271
48272
48273
48274
48275
48276
48277
48278
48279
48280
48281
48282
48283
48284
48285
48286
48287
48288
48289
48290
48291
48292
48293
48294
48295
48296
48297
48298
48299
48300
48301
48302
48303
48304
48305
48306
48307
48308
48309
48310
48311
48312
48313
48314
48315
48316
48317
48318
48319
48320
48321
48322
48323
48324
48325
48326
48327
48328
48329
48330
48331
48332
48333
48334
48335
48336
48337
48338
48339
48340
48341
48342
48343
48344
48345
48346
48347
48348
48349
48350
48351
48352
48353
48354
48355
48356
48357
48358
48359
48360
48361
48362
48363
48364
48365
48366
48367
48368
48369
48370
48371
48372
48373
48374
48375
48376
48377
48378
48379
48380
48381
48382
48383
48384
48385
48386
48387
48388
48389
48390
48391
48392
48393
48394
48395
48396
48397
48398
48399
48400
48401
48402
48403
48404
48405
48406
48407
48408
48409
48410
48411
48412
48413
48414
48415
48416
48417
48418
48419
48420
48421
48422
48423
48424
48425
48426
48427
48428
48429
48430
48431
48432
48433
48434
48435
48436
48437
48438
48439
48440
48441
48442
48443
48444
48445
48446
48447
48448
48449
48450
48451
48452
48453
48454
48455
48456
48457
48458
48459
48460
48461
48462
48463
48464
48465
48466
48467
48468
48469
48470
48471
48472
48473
48474
48475
48476
48477
48478
48479
48480
48481
48482
48483
48484
48485
48486
48487
48488
48489
48490
48491
48492
48493
48494
48495
48496
48497
48498
48499
48500
48501
48502
48503
48504
48505
48506
48507
48508
48509
48510
48511
48512
48513
48514
48515
48516
48517
48518
48519
48520
48521
48522
48523
48524
48525
48526
48527
48528
48529
48530
48531
48532
48533
48534
48535
48536
48537
48538
48539
48540
48541
48542
48543
48544
48545
48546
48547
48548
48549
48550
48551
48552
48553
48554
48555
48556
48557
48558
48559
48560
48561
48562
48563
48564
48565
48566
48567
48568
48569
48570
48571
48572
48573
48574
48575
48576
48577
48578
48579
48580
48581
48582
48583
48584
48585
48586
48587
48588
48589
48590
48591
48592
48593
48594
48595
48596
48597
48598
48599
48600
48601
48602
48603
48604
48605
48606
48607
48608
48609
48610
48611
48612
48613
48614
48615
48616
48617
48618
48619
48620
48621
48622
48623
48624
48625
48626
48627
48628
48629
48630
48631
48632
48633
48634
48635
48636
48637
48638
48639
48640
48641
48642
48643
48644
48645
48646
48647
48648
48649
48650
48651
48652
48653
48654
48655
48656
48657
48658
48659
48660
48661
48662
48663
48664
48665
48666
48667
48668
48669
48670
48671
48672
48673
48674
48675
48676
48677
48678
48679
48680
48681
48682
48683
48684
48685
48686
48687
48688
48689
48690
48691
48692
48693
48694
48695
48696
48697
48698
48699
48700
48701
48702
48703
48704
48705
48706
48707
48708
48709
48710
48711
48712
48713
48714
48715
48716
48717
48718
48719
48720
48721
48722
48723
48724
48725
48726
48727
48728
48729
48730
48731
48732
48733
48734
48735
48736
48737
48738
48739
48740
48741
48742
48743
48744
48745
48746
48747
48748
48749
48750
48751
48752
48753
48754
48755
48756
48757
48758
48759
48760
48761
48762
48763
48764
48765
48766
48767
48768
48769
48770
48771
48772
48773
48774
48775
48776
48777
48778
48779
48780
48781
48782
48783
48784
48785
48786
48787
48788
48789
48790
48791
48792
48793
48794
48795
48796
48797
48798
48799
48800
48801
48802
48803
48804
48805
48806
48807
48808
48809
48810
48811
48812
48813
48814
48815
48816
48817
48818
48819
48820
48821
48822
48823
48824
48825
48826
48827
48828
48829
48830
48831
48832
48833
48834
48835
48836
48837
48838
48839
48840
48841
48842
48843
48844
48845
48846
48847
48848
48849
48850
48851
48852
48853
48854
48855
48856
48857
48858
48859
48860
48861
48862
48863
48864
48865
48866
48867
48868
48869
48870
48871
48872
48873
48874
48875
48876
48877
48878
48879
48880
48881
48882
48883
48884
48885
48886
48887
48888
48889
48890
48891
48892
48893
48894
48895
48896
48897
48898
48899
48900
48901
48902
48903
48904
48905
48906
48907
48908
48909
48910
48911
48912
48913
48914
48915
48916
48917
48918
48919
48920
48921
48922
48923
48924
48925
48926
48927
48928
48929
48930
48931
48932
48933
48934
48935
48936
48937
48938
48939
48940
48941
48942
48943
48944
48945
48946
48947
48948
48949
48950
48951
48952
48953
48954
48955
48956
48957
48958
48959
48960
48961
48962
48963
48964
48965
48966
48967
48968
48969
48970
48971
48972
48973
48974
48975
48976
48977
48978
48979
48980
48981
48982
48983
48984
48985
48986
48987
48988
48989
48990
48991
48992
48993
48994
48995
48996
48997
48998
48999
49000
49001
49002
49003
49004
49005
49006
49007
49008
49009
49010
49011
49012
49013
49014
49015
49016
49017
49018
49019
49020
49021
49022
49023
49024
49025
49026
49027
49028
49029
49030
49031
49032
49033
49034
49035
49036
49037
49038
49039
49040
49041
49042
49043
49044
49045
49046
49047
49048
49049
49050
49051
49052
49053
49054
49055
49056
49057
49058
49059
49060
49061
49062
49063
49064
49065
49066
49067
49068
49069
49070
49071
49072
49073
49074
49075
49076
49077
49078
49079
49080
49081
49082
49083
49084
49085
49086
49087
49088
49089
49090
49091
49092
49093
49094
49095
49096
49097
49098
49099
49100
49101
49102
49103
49104
49105
49106
49107
49108
49109
49110
49111
49112
49113
49114
49115
49116
49117
49118
49119
49120
49121
49122
49123
49124
49125
49126
49127
49128
49129
49130
49131
49132
49133
49134
49135
49136
49137
49138
49139
49140
49141
49142
49143
49144
49145
49146
49147
49148
49149
49150
49151
49152
49153
49154
49155
49156
49157
49158
49159
49160
49161
49162
49163
49164
49165
49166
49167
49168
49169
49170
49171
49172
49173
49174
49175
49176
49177
49178
49179
49180
49181
49182
49183
49184
49185
49186
49187
49188
49189
49190
49191
49192
49193
49194
49195
49196
49197
49198
49199
49200
49201
49202
49203
49204
49205
49206
49207
49208
49209
49210
49211
49212
49213
49214
49215
49216
49217
49218
49219
49220
49221
49222
49223
49224
49225
49226
49227
49228
49229
49230
49231
49232
49233
49234
49235
49236
49237
49238
49239
49240
49241
49242
49243
49244
49245
49246
49247
49248
49249
49250
49251
49252
49253
49254
49255
49256
49257
49258
49259
49260
49261
49262
49263
49264
49265
49266
49267
49268
49269
49270
49271
49272
49273
49274
49275
49276
49277
49278
49279
49280
49281
49282
49283
49284
49285
49286
49287
49288
49289
49290
49291
49292
49293
49294
49295
49296
49297
49298
49299
49300
49301
49302
49303
49304
49305
49306
49307
49308
49309
49310
49311
49312
49313
49314
49315
49316
49317
49318
49319
49320
49321
49322
49323
49324
49325
49326
49327
49328
49329
49330
49331
49332
49333
49334
49335
49336
49337
49338
49339
49340
49341
49342
49343
49344
49345
49346
49347
49348
49349
49350
49351
49352
49353
49354
49355
49356
49357
49358
49359
49360
49361
49362
49363
49364
49365
49366
49367
49368
49369
49370
49371
49372
49373
49374
49375
49376
49377
49378
49379
49380
49381
49382
49383
49384
49385
49386
49387
49388
49389
49390
49391
49392
49393
49394
49395
49396
49397
49398
49399
49400
49401
49402
49403
49404
49405
49406
49407
49408
49409
49410
49411
49412
49413
49414
49415
49416
49417
49418
49419
49420
49421
49422
49423
49424
49425
49426
49427
49428
49429
49430
49431
49432
49433
49434
49435
49436
49437
49438
49439
49440
49441
49442
49443
49444
49445
49446
49447
49448
49449
49450
49451
49452
49453
49454
49455
49456
49457
49458
49459
49460
49461
49462
49463
49464
49465
49466
49467
49468
49469
49470
49471
49472
49473
49474
49475
49476
49477
49478
49479
49480
49481
49482
49483
49484
49485
49486
49487
49488
49489
49490
49491
49492
49493
49494
49495
49496
49497
49498
49499
49500
49501
49502
49503
49504
49505
49506
49507
49508
49509
49510
49511
49512
49513
49514
49515
49516
49517
49518
49519
49520
49521
49522
49523
49524
49525
49526
49527
49528
49529
49530
49531
49532
49533
49534
49535
49536
49537
49538
49539
49540
49541
49542
49543
49544
49545
49546
49547
49548
49549
49550
49551
49552
49553
49554
49555
49556
49557
49558
49559
49560
49561
49562
49563
49564
49565
49566
49567
49568
49569
49570
49571
49572
49573
49574
49575
49576
49577
49578
49579
49580
49581
49582
49583
49584
49585
49586
49587
49588
49589
49590
49591
49592
49593
49594
49595
49596
49597
49598
49599
49600
49601
49602
49603
49604
49605
49606
49607
49608
49609
49610
49611
49612
49613
49614
49615
49616
49617
49618
49619
49620
49621
49622
49623
49624
49625
49626
49627
49628
49629
49630
49631
49632
49633
49634
49635
49636
49637
49638
49639
49640
49641
49642
49643
49644
49645
49646
49647
49648
49649
49650
49651
49652
49653
49654
49655
49656
49657
49658
49659
49660
49661
49662
49663
49664
49665
49666
49667
49668
49669
49670
49671
49672
49673
49674
49675
49676
49677
49678
49679
49680
49681
49682
49683
49684
49685
49686
49687
49688
49689
49690
49691
49692
49693
49694
49695
49696
49697
49698
49699
49700
49701
49702
49703
49704
49705
49706
49707
49708
49709
49710
49711
49712
49713
49714
49715
49716
49717
49718
49719
49720
49721
49722
49723
49724
49725
49726
49727
49728
49729
49730
49731
49732
49733
49734
49735
49736
49737
49738
49739
49740
49741
49742
49743
49744
49745
49746
49747
49748
49749
49750
49751
49752
49753
49754
49755
49756
49757
49758
49759
49760
49761
49762
49763
49764
49765
49766
49767
49768
49769
49770
49771
49772
49773
49774
49775
49776
49777
49778
49779
49780
49781
49782
49783
49784
49785
49786
49787
49788
49789
49790
49791
49792
49793
49794
49795
49796
49797
49798
49799
49800
49801
49802
49803
49804
49805
49806
49807
49808
49809
49810
49811
49812
49813
49814
49815
49816
49817
49818
49819
49820
49821
49822
49823
49824
49825
49826
49827
49828
49829
49830
49831
49832
49833
49834
49835
49836
49837
49838
49839
49840
49841
49842
49843
49844
49845
49846
49847
49848
49849
49850
49851
49852
49853
49854
49855
49856
49857
49858
49859
49860
49861
49862
49863
49864
49865
49866
49867
49868
49869
49870
49871
49872
49873
49874
49875
49876
49877
49878
49879
49880
49881
49882
49883
49884
49885
49886
49887
49888
49889
49890
49891
49892
49893
49894
49895
49896
49897
49898
49899
49900
49901
49902
49903
49904
49905
49906
49907
49908
49909
49910
49911
49912
49913
49914
49915
49916
49917
49918
49919
49920
49921
49922
49923
49924
49925
49926
49927
49928
49929
49930
49931
49932
49933
49934
49935
49936
49937
49938
49939
49940
49941
49942
49943
49944
49945
49946
49947
49948
49949
49950
49951
49952
49953
49954
49955
49956
49957
49958
49959
49960
49961
49962
49963
49964
49965
49966
49967
49968
49969
49970
49971
49972
49973
49974
49975
49976
49977
49978
49979
49980
49981
49982
49983
49984
49985
49986
49987
49988
49989
49990
49991
49992
49993
49994
49995
49996
49997
49998
49999
50000
50001
50002
50003
50004
50005
50006
50007
50008
50009
50010
50011
50012
50013
50014
50015
50016
50017
50018
50019
50020
50021
50022
50023
50024
50025
50026
50027
50028
50029
50030
50031
50032
50033
50034
50035
50036
50037
50038
50039
50040
50041
50042
50043
50044
50045
50046
50047
50048
50049
50050
50051
50052
50053
50054
50055
50056
50057
50058
50059
50060
50061
50062
50063
50064
50065
50066
50067
50068
50069
50070
50071
50072
50073
50074
50075
50076
50077
50078
50079
50080
50081
50082
50083
50084
50085
50086
50087
50088
50089
50090
50091
50092
50093
50094
50095
50096
50097
50098
50099
50100
50101
50102
50103
50104
50105
50106
50107
50108
50109
50110
50111
50112
50113
50114
50115
50116
50117
50118
50119
50120
50121
50122
50123
50124
50125
50126
50127
50128
50129
50130
50131
50132
50133
50134
50135
50136
50137
50138
50139
50140
50141
50142
50143
50144
50145
50146
50147
50148
50149
50150
50151
50152
50153
50154
50155
50156
50157
50158
50159
50160
50161
50162
50163
50164
50165
50166
50167
50168
50169
50170
50171
50172
50173
50174
50175
50176
50177
50178
50179
50180
50181
50182
50183
50184
50185
50186
50187
50188
50189
50190
50191
50192
50193
50194
50195
50196
50197
50198
50199
50200
50201
50202
50203
50204
50205
50206
50207
50208
50209
50210
50211
50212
50213
50214
50215
50216
50217
50218
50219
50220
50221
50222
50223
50224
50225
50226
50227
50228
50229
50230
50231
50232
50233
50234
50235
50236
50237
50238
50239
50240
50241
50242
50243
50244
50245
50246
50247
50248
50249
50250
50251
50252
50253
50254
50255
50256
50257
50258
50259
50260
50261
50262
50263
50264
50265
50266
50267
50268
50269
50270
50271
50272
50273
50274
50275
50276
50277
50278
50279
50280
50281
50282
50283
50284
50285
50286
50287
50288
50289
50290
50291
50292
50293
50294
50295
50296
50297
50298
50299
50300
50301
50302
50303
50304
50305
50306
50307
50308
50309
50310
50311
50312
50313
50314
50315
50316
50317
50318
50319
50320
50321
50322
50323
50324
50325
50326
50327
50328
50329
50330
50331
50332
50333
50334
50335
50336
50337
50338
50339
50340
50341
50342
50343
50344
50345
50346
50347
50348
50349
50350
50351
50352
50353
50354
50355
50356
50357
50358
50359
50360
50361
50362
50363
50364
50365
50366
50367
50368
50369
50370
50371
50372
50373
50374
50375
50376
50377
50378
50379
50380
50381
50382
50383
50384
50385
50386
50387
50388
50389
50390
50391
50392
50393
50394
50395
50396
50397
50398
50399
50400
50401
50402
50403
50404
50405
50406
50407
50408
50409
50410
50411
50412
50413
50414
50415
50416
50417
50418
50419
50420
50421
50422
50423
50424
50425
50426
50427
50428
50429
50430
50431
50432
50433
50434
50435
50436
50437
50438
50439
50440
50441
50442
50443
50444
50445
50446
50447
50448
50449
50450
50451
50452
50453
50454
50455
50456
50457
50458
50459
50460
50461
50462
50463
50464
50465
50466
50467
50468
50469
50470
50471
50472
50473
50474
50475
50476
50477
50478
50479
50480
50481
50482
50483
50484
50485
50486
50487
50488
50489
50490
50491
50492
50493
50494
50495
50496
50497
50498
50499
50500
50501
50502
50503
50504
50505
50506
50507
50508
50509
50510
50511
50512
50513
50514
50515
50516
50517
50518
50519
50520
50521
50522
50523
50524
50525
50526
50527
50528
50529
50530
50531
50532
50533
50534
50535
50536
50537
50538
50539
50540
50541
50542
50543
50544
50545
50546
50547
50548
50549
50550
50551
50552
50553
50554
50555
50556
50557
50558
50559
50560
50561
50562
50563
50564
50565
50566
50567
50568
50569
50570
50571
50572
50573
50574
50575
50576
50577
50578
50579
50580
50581
50582
50583
50584
50585
50586
50587
50588
50589
50590
50591
50592
50593
50594
50595
50596
50597
50598
50599
50600
50601
50602
50603
50604
50605
50606
50607
50608
50609
50610
50611
50612
50613
50614
50615
50616
50617
50618
50619
50620
50621
50622
50623
50624
50625
50626
50627
50628
50629
50630
50631
50632
50633
50634
50635
50636
50637
50638
50639
50640
50641
50642
50643
50644
50645
50646
50647
50648
50649
50650
50651
50652
50653
50654
50655
50656
50657
50658
50659
50660
50661
50662
50663
50664
50665
50666
50667
50668
50669
50670
50671
50672
50673
50674
50675
50676
50677
50678
50679
50680
50681
50682
50683
50684
50685
50686
50687
50688
50689
50690
50691
50692
50693
50694
50695
50696
50697
50698
50699
50700
50701
50702
50703
50704
50705
50706
50707
50708
50709
50710
50711
50712
50713
50714
50715
50716
50717
50718
50719
50720
50721
50722
50723
50724
50725
50726
50727
50728
50729
50730
50731
50732
50733
50734
50735
50736
50737
50738
50739
50740
50741
50742
50743
50744
50745
50746
50747
50748
50749
50750
50751
50752
50753
50754
50755
50756
50757
50758
50759
50760
50761
50762
50763
50764
50765
50766
50767
50768
50769
50770
50771
50772
50773
50774
50775
50776
50777
50778
50779
50780
50781
50782
50783
50784
50785
50786
50787
50788
50789
50790
50791
50792
50793
50794
50795
50796
50797
50798
50799
50800
50801
50802
50803
50804
50805
50806
50807
50808
50809
50810
50811
50812
50813
50814
50815
50816
50817
50818
50819
50820
50821
50822
50823
50824
50825
50826
50827
50828
50829
50830
50831
50832
50833
50834
50835
50836
50837
50838
50839
50840
50841
50842
50843
50844
50845
50846
50847
50848
50849
50850
50851
50852
50853
50854
50855
50856
50857
50858
50859
50860
50861
50862
50863
50864
50865
50866
50867
50868
50869
50870
50871
50872
50873
50874
50875
50876
50877
50878
50879
50880
50881
50882
50883
50884
50885
50886
50887
50888
50889
50890
50891
50892
50893
50894
50895
50896
50897
50898
50899
50900
50901
50902
50903
50904
50905
50906
50907
50908
50909
50910
50911
50912
50913
50914
50915
50916
50917
50918
50919
50920
50921
50922
50923
50924
50925
50926
50927
50928
50929
50930
50931
50932
50933
50934
50935
50936
50937
50938
50939
50940
50941
50942
50943
50944
50945
50946
50947
50948
50949
50950
50951
50952
50953
50954
50955
50956
50957
50958
50959
50960
50961
50962
50963
50964
50965
50966
50967
50968
50969
50970
50971
50972
50973
50974
50975
50976
50977
50978
50979
50980
50981
50982
50983
50984
50985
50986
50987
50988
50989
50990
50991
50992
50993
50994
50995
50996
50997
50998
50999
51000
51001
51002
51003
51004
51005
51006
51007
51008
51009
51010
51011
51012
51013
51014
51015
51016
51017
51018
51019
51020
51021
51022
51023
51024
51025
51026
51027
51028
51029
51030
51031
51032
51033
51034
51035
51036
51037
51038
51039
51040
51041
51042
51043
51044
51045
51046
51047
51048
51049
51050
51051
51052
51053
51054
51055
51056
51057
51058
51059
51060
51061
51062
51063
51064
51065
51066
51067
51068
51069
51070
51071
51072
51073
51074
51075
51076
51077
51078
51079
51080
51081
51082
51083
51084
51085
51086
51087
51088
51089
51090
51091
51092
51093
51094
51095
51096
51097
51098
51099
51100
51101
51102
51103
51104
51105
51106
51107
51108
51109
51110
51111
51112
51113
51114
51115
51116
51117
51118
51119
51120
51121
51122
51123
51124
51125
51126
51127
51128
51129
51130
51131
51132
51133
51134
51135
51136
51137
51138
51139
51140
51141
51142
51143
51144
51145
51146
51147
51148
51149
51150
51151
51152
51153
51154
51155
51156
51157
51158
51159
51160
51161
51162
51163
51164
51165
51166
51167
51168
51169
51170
51171
51172
51173
51174
51175
51176
51177
51178
51179
51180
51181
51182
51183
51184
51185
51186
51187
51188
51189
51190
51191
51192
51193
51194
51195
51196
51197
51198
51199
51200
51201
51202
51203
51204
51205
51206
51207
51208
51209
51210
51211
51212
51213
51214
51215
51216
51217
51218
51219
51220
51221
51222
51223
51224
51225
51226
51227
51228
51229
51230
51231
51232
51233
51234
51235
51236
51237
51238
51239
51240
51241
51242
51243
51244
51245
51246
51247
51248
51249
51250
51251
51252
51253
51254
51255
51256
51257
51258
51259
51260
51261
51262
51263
51264
51265
51266
51267
51268
51269
51270
51271
51272
51273
51274
51275
51276
51277
51278
51279
51280
51281
51282
51283
51284
51285
51286
51287
51288
51289
51290
51291
51292
51293
51294
51295
51296
51297
51298
51299
51300
51301
51302
51303
51304
51305
51306
51307
51308
51309
51310
51311
51312
51313
51314
51315
51316
51317
51318
51319
51320
51321
51322
51323
51324
51325
51326
51327
51328
51329
51330
51331
51332
51333
51334
51335
51336
51337
51338
51339
51340
51341
51342
51343
51344
51345
51346
51347
51348
51349
51350
51351
51352
51353
51354
51355
51356
51357
51358
51359
51360
51361
51362
51363
51364
51365
51366
51367
51368
51369
51370
51371
51372
51373
51374
51375
51376
51377
51378
51379
51380
51381
51382
51383
51384
51385
51386
51387
51388
51389
51390
51391
51392
51393
51394
51395
51396
51397
51398
51399
51400
51401
51402
51403
51404
51405
51406
51407
51408
51409
51410
51411
51412
51413
51414
51415
51416
51417
51418
51419
51420
51421
51422
51423
51424
51425
51426
51427
51428
51429
51430
51431
51432
51433
51434
51435
51436
51437
51438
51439
51440
51441
51442
51443
51444
51445
51446
51447
51448
51449
51450
51451
51452
51453
51454
51455
51456
51457
51458
51459
51460
51461
51462
51463
51464
51465
51466
51467
51468
51469
51470
51471
51472
51473
51474
51475
51476
51477
51478
51479
51480
51481
51482
51483
51484
51485
51486
51487
51488
51489
51490
51491
51492
51493
51494
51495
51496
51497
51498
51499
51500
51501
51502
51503
51504
51505
51506
51507
51508
51509
51510
51511
51512
51513
51514
51515
51516
51517
51518
51519
51520
51521
51522
51523
51524
51525
51526
51527
51528
51529
51530
51531
51532
51533
51534
51535
51536
51537
51538
51539
51540
51541
51542
51543
51544
51545
51546
51547
51548
51549
51550
51551
51552
51553
51554
51555
51556
51557
51558
51559
51560
51561
51562
51563
51564
51565
51566
51567
51568
51569
51570
51571
51572
51573
51574
51575
51576
51577
51578
51579
51580
51581
51582
51583
51584
51585
51586
51587
51588
51589
51590
51591
51592
51593
51594
51595
51596
51597
51598
51599
51600
51601
51602
51603
51604
51605
51606
51607
51608
51609
51610
51611
51612
51613
51614
51615
51616
51617
51618
51619
51620
51621
51622
51623
51624
51625
51626
51627
51628
51629
51630
51631
51632
51633
51634
51635
51636
51637
51638
51639
51640
51641
51642
51643
51644
51645
51646
51647
51648
51649
51650
51651
51652
51653
51654
51655
51656
51657
51658
51659
51660
51661
51662
51663
51664
51665
51666
51667
51668
51669
51670
51671
51672
51673
51674
51675
51676
51677
51678
51679
51680
51681
51682
51683
51684
51685
51686
51687
51688
51689
51690
51691
51692
51693
51694
51695
51696
51697
51698
51699
51700
51701
51702
51703
51704
51705
51706
51707
51708
51709
51710
51711
51712
51713
51714
51715
51716
51717
51718
51719
51720
51721
51722
51723
51724
51725
51726
51727
51728
51729
51730
51731
51732
51733
51734
51735
51736
51737
51738
51739
51740
51741
51742
51743
51744
51745
51746
51747
51748
51749
51750
51751
51752
51753
51754
51755
51756
51757
51758
51759
51760
51761
51762
51763
51764
51765
51766
51767
51768
51769
51770
51771
51772
51773
51774
51775
51776
51777
51778
51779
51780
51781
51782
51783
51784
51785
51786
51787
51788
51789
51790
51791
51792
51793
51794
51795
51796
51797
51798
51799
51800
51801
51802
51803
51804
51805
51806
51807
51808
51809
51810
51811
51812
51813
51814
51815
51816
51817
51818
51819
51820
51821
51822
51823
51824
51825
51826
51827
51828
51829
51830
51831
51832
51833
51834
51835
51836
51837
51838
51839
51840
51841
51842
51843
51844
51845
51846
51847
51848
51849
51850
51851
51852
51853
51854
51855
51856
51857
51858
51859
51860
51861
51862
51863
51864
51865
51866
51867
51868
51869
51870
51871
51872
51873
51874
51875
51876
51877
51878
51879
51880
51881
51882
51883
51884
51885
51886
51887
51888
51889
51890
51891
51892
51893
51894
51895
51896
51897
51898
51899
51900
51901
51902
51903
51904
51905
51906
51907
51908
51909
51910
51911
51912
51913
51914
51915
51916
51917
51918
51919
51920
51921
51922
51923
51924
51925
51926
51927
51928
51929
51930
51931
51932
51933
51934
51935
51936
51937
51938
51939
51940
51941
51942
51943
51944
51945
51946
51947
51948
51949
51950
51951
51952
51953
51954
51955
51956
51957
51958
51959
51960
51961
51962
51963
51964
51965
51966
51967
51968
51969
51970
51971
51972
51973
51974
51975
51976
51977
51978
51979
51980
51981
51982
51983
51984
51985
51986
51987
51988
51989
51990
51991
51992
51993
51994
51995
51996
51997
51998
51999
52000
52001
52002
52003
52004
52005
52006
52007
52008
52009
52010
52011
52012
52013
52014
52015
52016
52017
52018
52019
52020
52021
52022
52023
52024
52025
52026
52027
52028
52029
52030
52031
52032
52033
52034
52035
52036
52037
52038
52039
52040
52041
52042
52043
52044
52045
52046
52047
52048
52049
52050
52051
52052
52053
52054
52055
52056
52057
52058
52059
52060
52061
52062
52063
52064
52065
52066
52067
52068
52069
52070
52071
52072
52073
52074
52075
52076
52077
52078
52079
52080
52081
52082
52083
52084
52085
52086
52087
52088
52089
52090
52091
52092
52093
52094
52095
52096
52097
52098
52099
52100
52101
52102
52103
52104
52105
52106
52107
52108
52109
52110
52111
52112
52113
52114
52115
52116
52117
52118
52119
52120
52121
52122
52123
52124
52125
52126
52127
52128
52129
52130
52131
52132
52133
52134
52135
52136
52137
52138
52139
52140
52141
52142
52143
52144
52145
52146
52147
52148
52149
52150
52151
52152
52153
52154
52155
52156
52157
52158
52159
52160
52161
52162
52163
52164
52165
52166
52167
52168
52169
52170
52171
52172
52173
52174
52175
52176
52177
52178
52179
52180
52181
52182
52183
52184
52185
52186
52187
52188
52189
52190
52191
52192
52193
52194
52195
52196
52197
52198
52199
52200
52201
52202
52203
52204
52205
52206
52207
52208
52209
52210
52211
52212
52213
52214
52215
52216
52217
52218
52219
52220
52221
52222
52223
52224
52225
52226
52227
52228
52229
52230
52231
52232
52233
52234
52235
52236
52237
52238
52239
52240
52241
52242
52243
52244
52245
52246
52247
52248
52249
52250
52251
52252
52253
52254
52255
52256
52257
52258
52259
52260
52261
52262
52263
52264
52265
52266
52267
52268
52269
52270
52271
52272
52273
52274
52275
52276
52277
52278
52279
52280
52281
52282
52283
52284
52285
52286
52287
52288
52289
52290
52291
52292
52293
52294
52295
52296
52297
52298
52299
52300
52301
52302
52303
52304
52305
52306
52307
52308
52309
52310
52311
52312
52313
52314
52315
52316
52317
52318
52319
52320
52321
52322
52323
52324
52325
52326
52327
52328
52329
52330
52331
52332
52333
52334
52335
52336
52337
52338
52339
52340
52341
52342
52343
52344
52345
52346
52347
52348
52349
52350
52351
52352
52353
52354
52355
52356
52357
52358
52359
52360
52361
52362
52363
52364
52365
52366
52367
52368
52369
52370
52371
52372
52373
52374
52375
52376
52377
52378
52379
52380
52381
52382
52383
52384
52385
52386
52387
52388
52389
52390
52391
52392
52393
52394
52395
52396
52397
52398
52399
52400
52401
52402
52403
52404
52405
52406
52407
52408
52409
52410
52411
52412
52413
52414
52415
52416
52417
52418
52419
52420
52421
52422
52423
52424
52425
52426
52427
52428
52429
52430
52431
52432
52433
52434
52435
52436
52437
52438
52439
52440
52441
52442
52443
52444
52445
52446
52447
52448
52449
52450
52451
52452
52453
52454
52455
52456
52457
52458
52459
52460
52461
52462
52463
52464
52465
52466
52467
52468
52469
52470
52471
52472
52473
52474
52475
52476
52477
52478
52479
52480
52481
52482
52483
52484
52485
52486
52487
52488
52489
52490
52491
52492
52493
52494
52495
52496
52497
52498
52499
52500
52501
52502
52503
52504
52505
52506
52507
52508
52509
52510
52511
52512
52513
52514
52515
52516
52517
52518
52519
52520
52521
52522
52523
52524
52525
52526
52527
52528
52529
52530
52531
52532
52533
52534
52535
52536
52537
52538
52539
52540
52541
52542
52543
52544
52545
52546
52547
52548
52549
52550
52551
52552
52553
52554
52555
52556
52557
52558
52559
52560
52561
52562
52563
52564
52565
52566
52567
52568
52569
52570
52571
52572
52573
52574
52575
52576
52577
52578
52579
52580
52581
52582
52583
52584
52585
52586
52587
52588
52589
52590
52591
52592
52593
52594
52595
52596
52597
52598
52599
52600
52601
52602
52603
52604
52605
52606
52607
52608
52609
52610
52611
52612
52613
52614
52615
52616
52617
52618
52619
52620
52621
52622
52623
52624
52625
52626
52627
52628
52629
52630
52631
52632
52633
52634
52635
52636
52637
52638
52639
52640
52641
52642
52643
52644
52645
52646
52647
52648
52649
52650
52651
52652
52653
52654
52655
52656
52657
52658
52659
52660
52661
52662
52663
52664
52665
52666
52667
52668
52669
52670
52671
52672
52673
52674
52675
52676
52677
52678
52679
52680
52681
52682
52683
52684
52685
52686
52687
52688
52689
52690
52691
52692
52693
52694
52695
52696
52697
52698
52699
52700
52701
52702
52703
52704
52705
52706
52707
52708
52709
52710
52711
52712
52713
52714
52715
52716
52717
52718
52719
52720
52721
52722
52723
52724
52725
52726
52727
52728
52729
52730
52731
52732
52733
52734
52735
52736
52737
52738
52739
52740
52741
52742
52743
52744
52745
52746
52747
52748
52749
52750
52751
52752
52753
52754
52755
52756
52757
52758
52759
52760
52761
52762
52763
52764
52765
52766
52767
52768
52769
52770
52771
52772
52773
52774
52775
52776
52777
52778
52779
52780
52781
52782
52783
52784
52785
52786
52787
52788
52789
52790
52791
52792
52793
52794
52795
52796
52797
52798
52799
52800
52801
52802
52803
52804
52805
52806
52807
52808
52809
52810
52811
52812
52813
52814
52815
52816
52817
52818
52819
52820
52821
52822
52823
52824
52825
52826
52827
52828
52829
52830
52831
52832
52833
52834
52835
52836
52837
52838
52839
52840
52841
52842
52843
52844
52845
52846
52847
52848
52849
52850
52851
52852
52853
52854
52855
52856
52857
52858
52859
52860
52861
52862
52863
52864
52865
52866
52867
52868
52869
52870
52871
52872
52873
52874
52875
52876
52877
52878
52879
52880
52881
52882
52883
52884
52885
52886
52887
52888
52889
52890
52891
52892
52893
52894
52895
52896
52897
52898
52899
52900
52901
52902
52903
52904
52905
52906
52907
52908
52909
52910
52911
52912
52913
52914
52915
52916
52917
52918
52919
52920
52921
52922
52923
52924
52925
52926
52927
52928
52929
52930
52931
52932
52933
52934
52935
52936
52937
52938
52939
52940
52941
52942
52943
52944
52945
52946
52947
52948
52949
52950
52951
52952
52953
52954
52955
52956
52957
52958
52959
52960
52961
52962
52963
52964
52965
52966
52967
52968
52969
52970
52971
52972
52973
52974
52975
52976
52977
52978
52979
52980
52981
52982
52983
52984
52985
52986
52987
52988
52989
52990
52991
52992
52993
52994
52995
52996
52997
52998
52999
53000
53001
53002
53003
53004
53005
53006
53007
53008
53009
53010
53011
53012
53013
53014
53015
53016
53017
53018
53019
53020
53021
53022
53023
53024
53025
53026
53027
53028
53029
53030
53031
53032
53033
53034
53035
53036
53037
53038
53039
53040
53041
53042
53043
53044
53045
53046
53047
53048
53049
53050
53051
53052
53053
53054
53055
53056
53057
53058
53059
53060
53061
53062
53063
53064
53065
53066
53067
53068
53069
53070
53071
53072
53073
53074
53075
53076
53077
53078
53079
53080
53081
53082
53083
53084
53085
53086
53087
53088
53089
53090
53091
53092
53093
53094
53095
53096
53097
53098
53099
53100
53101
53102
53103
53104
53105
53106
53107
53108
53109
53110
53111
53112
53113
53114
53115
53116
53117
53118
53119
53120
53121
53122
53123
53124
53125
53126
53127
53128
53129
53130
53131
53132
53133
53134
53135
53136
53137
53138
53139
53140
53141
53142
53143
53144
53145
53146
53147
53148
53149
53150
53151
53152
53153
53154
53155
53156
53157
53158
53159
53160
53161
53162
53163
53164
53165
53166
53167
53168
53169
53170
53171
53172
53173
53174
53175
53176
53177
53178
53179
53180
53181
53182
53183
53184
53185
53186
53187
53188
53189
53190
53191
53192
53193
53194
53195
53196
53197
53198
53199
53200
53201
53202
53203
53204
53205
53206
53207
53208
53209
53210
53211
53212
53213
53214
53215
53216
53217
53218
53219
53220
53221
53222
53223
53224
53225
53226
53227
53228
53229
53230
53231
53232
53233
53234
53235
53236
53237
53238
53239
53240
53241
53242
53243
53244
53245
53246
53247
53248
53249
53250
53251
53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263
53264
53265
53266
53267
53268
53269
53270
53271
53272
53273
53274
53275
53276
53277
53278
53279
53280
53281
53282
53283
53284
53285
53286
53287
53288
53289
53290
53291
53292
53293
53294
53295
53296
53297
53298
53299
53300
53301
53302
53303
53304
53305
53306
53307
53308
53309
53310
53311
53312
53313
53314
53315
53316
53317
53318
53319
53320
53321
53322
53323
53324
53325
53326
53327
53328
53329
53330
53331
53332
53333
53334
53335
53336
53337
53338
53339
53340
53341
53342
53343
53344
53345
53346
53347
53348
53349
53350
53351
53352
53353
53354
53355
53356
53357
53358
53359
53360
53361
53362
53363
53364
53365
53366
53367
53368
53369
53370
53371
53372
53373
53374
53375
53376
53377
53378
53379
53380
53381
53382
53383
53384
53385
53386
53387
53388
53389
53390
53391
53392
53393
53394
53395
53396
53397
53398
53399
53400
53401
53402
53403
53404
53405
53406
53407
53408
53409
53410
53411
53412
53413
53414
53415
53416
53417
53418
53419
53420
53421
53422
53423
53424
53425
53426
53427
53428
53429
53430
53431
53432
53433
53434
53435
53436
53437
53438
53439
53440
53441
53442
53443
53444
53445
53446
53447
53448
53449
53450
53451
53452
53453
53454
53455
53456
53457
53458
53459
53460
53461
53462
53463
53464
53465
53466
53467
53468
53469
53470
53471
53472
53473
53474
53475
53476
53477
53478
53479
53480
53481
53482
53483
53484
53485
53486
53487
53488
53489
53490
53491
53492
53493
53494
53495
53496
53497
53498
53499
53500
53501
53502
53503
53504
53505
53506
53507
53508
53509
53510
53511
53512
53513
53514
53515
53516
53517
53518
53519
53520
53521
53522
53523
53524
53525
53526
53527
53528
53529
53530
53531
53532
53533
53534
53535
53536
53537
53538
53539
53540
53541
53542
53543
53544
53545
53546
53547
53548
53549
53550
53551
53552
53553
53554
53555
53556
53557
53558
53559
53560
53561
53562
53563
53564
53565
53566
53567
53568
53569
53570
53571
53572
53573
53574
53575
53576
53577
53578
53579
53580
53581
53582
53583
53584
53585
53586
53587
53588
53589
53590
53591
53592
53593
53594
53595
53596
53597
53598
53599
53600
53601
53602
53603
53604
53605
53606
53607
53608
53609
53610
53611
53612
53613
53614
53615
53616
53617
53618
53619
53620
53621
53622
53623
53624
53625
53626
53627
53628
53629
53630
53631
53632
53633
53634
53635
53636
53637
53638
53639
53640
53641
53642
53643
53644
53645
53646
53647
53648
53649
53650
53651
53652
53653
53654
53655
53656
53657
53658
53659
53660
53661
53662
53663
53664
53665
53666
53667
53668
53669
53670
53671
53672
53673
53674
53675
53676
53677
53678
53679
53680
53681
53682
53683
53684
53685
53686
53687
53688
53689
53690
53691
53692
53693
53694
53695
53696
53697
53698
53699
53700
53701
53702
53703
53704
53705
53706
53707
53708
53709
53710
53711
53712
53713
53714
53715
53716
53717
53718
53719
53720
53721
53722
53723
53724
53725
53726
53727
53728
53729
53730
53731
53732
53733
53734
53735
53736
53737
53738
53739
53740
53741
53742
53743
53744
53745
53746
53747
53748
53749
53750
53751
53752
53753
53754
53755
53756
53757
53758
53759
53760
53761
53762
53763
53764
53765
53766
53767
53768
53769
53770
53771
53772
53773
53774
53775
53776
53777
53778
53779
53780
53781
53782
53783
53784
53785
53786
53787
53788
53789
53790
53791
53792
53793
53794
53795
53796
53797
53798
53799
53800
53801
53802
53803
53804
53805
53806
53807
53808
53809
53810
53811
53812
53813
53814
53815
53816
53817
53818
53819
53820
53821
53822
53823
53824
53825
53826
53827
53828
53829
53830
53831
53832
53833
53834
53835
53836
53837
53838
53839
53840
53841
53842
53843
53844
53845
53846
53847
53848
53849
53850
53851
53852
53853
53854
53855
53856
53857
53858
53859
53860
53861
53862
53863
53864
53865
53866
53867
53868
53869
53870
53871
53872
53873
53874
53875
53876
53877
53878
53879
53880
53881
53882
53883
53884
53885
53886
53887
53888
53889
53890
53891
53892
53893
53894
53895
53896
53897
53898
53899
53900
53901
53902
53903
53904
53905
53906
53907
53908
53909
53910
53911
53912
53913
53914
53915
53916
53917
53918
53919
53920
53921
53922
53923
53924
53925
53926
53927
53928
53929
53930
53931
53932
53933
53934
53935
53936
53937
53938
53939
53940
53941
53942
53943
53944
53945
53946
53947
53948
53949
53950
53951
53952
53953
53954
53955
53956
53957
53958
53959
53960
53961
53962
53963
53964
53965
53966
53967
53968
53969
53970
53971
53972
53973
53974
53975
53976
53977
53978
53979
53980
53981
53982
53983
53984
53985
53986
53987
53988
53989
53990
53991
53992
53993
53994
53995
53996
53997
53998
53999
54000
54001
54002
54003
54004
54005
54006
54007
54008
54009
54010
54011
54012
54013
54014
54015
54016
54017
54018
54019
54020
54021
54022
54023
54024
54025
54026
54027
54028
54029
54030
54031
54032
54033
54034
54035
54036
54037
54038
54039
54040
54041
54042
54043
54044
54045
54046
54047
54048
54049
54050
54051
54052
54053
54054
54055
54056
54057
54058
54059
54060
54061
54062
54063
54064
54065
54066
54067
54068
54069
54070
54071
54072
54073
54074
54075
54076
54077
54078
54079
54080
54081
54082
54083
54084
54085
54086
54087
54088
54089
54090
54091
54092
54093
54094
54095
54096
54097
54098
54099
54100
54101
54102
54103
54104
54105
54106
54107
54108
54109
54110
54111
54112
54113
54114
54115
54116
54117
54118
54119
54120
54121
54122
54123
54124
54125
54126
54127
54128
54129
54130
54131
54132
54133
54134
54135
54136
54137
54138
54139
54140
54141
54142
54143
54144
54145
54146
54147
54148
54149
54150
54151
54152
54153
54154
54155
54156
54157
54158
54159
54160
54161
54162
54163
54164
54165
54166
54167
54168
54169
54170
54171
54172
54173
54174
54175
54176
54177
54178
54179
54180
54181
54182
54183
54184
54185
54186
54187
54188
54189
54190
54191
54192
54193
54194
54195
54196
54197
54198
54199
54200
54201
54202
54203
54204
54205
54206
54207
54208
54209
54210
54211
54212
54213
54214
54215
54216
54217
54218
54219
54220
54221
54222
54223
54224
54225
54226
54227
54228
54229
54230
54231
54232
54233
54234
54235
54236
54237
54238
54239
54240
54241
54242
54243
54244
54245
54246
54247
54248
54249
54250
54251
54252
54253
54254
54255
54256
54257
54258
54259
54260
54261
54262
54263
54264
54265
54266
54267
54268
54269
54270
54271
54272
54273
54274
54275
54276
54277
54278
54279
54280
54281
54282
54283
54284
54285
54286
54287
54288
54289
54290
54291
54292
54293
54294
54295
54296
54297
54298
54299
54300
54301
54302
54303
54304
54305
54306
54307
54308
54309
54310
54311
54312
54313
54314
54315
54316
54317
54318
54319
54320
54321
54322
54323
54324
54325
54326
54327
54328
54329
54330
54331
54332
54333
54334
54335
54336
54337
54338
54339
54340
54341
54342
54343
54344
54345
54346
54347
54348
54349
54350
54351
54352
54353
54354
54355
54356
54357
54358
54359
54360
54361
54362
54363
54364
54365
54366
54367
54368
54369
54370
54371
54372
54373
54374
54375
54376
54377
54378
54379
54380
54381
54382
54383
54384
54385
54386
54387
54388
54389
54390
54391
54392
54393
54394
54395
54396
54397
54398
54399
54400
54401
54402
54403
54404
54405
54406
54407
54408
54409
54410
54411
54412
54413
54414
54415
54416
54417
54418
54419
54420
54421
54422
54423
54424
54425
54426
54427
54428
54429
54430
54431
54432
54433
54434
54435
54436
54437
54438
54439
54440
54441
54442
54443
54444
54445
54446
54447
54448
54449
54450
54451
54452
54453
54454
54455
54456
54457
54458
54459
54460
54461
54462
54463
54464
54465
54466
54467
54468
54469
54470
54471
54472
54473
54474
54475
54476
54477
54478
54479
54480
54481
54482
54483
54484
54485
54486
54487
54488
54489
54490
54491
54492
54493
54494
54495
54496
54497
54498
54499
54500
54501
54502
54503
54504
54505
54506
54507
54508
54509
54510
54511
54512
54513
54514
54515
54516
54517
54518
54519
54520
54521
54522
54523
54524
54525
54526
54527
54528
54529
54530
54531
54532
54533
54534
54535
54536
54537
54538
54539
54540
54541
54542
54543
54544
54545
54546
54547
54548
54549
54550
54551
54552
54553
54554
54555
54556
54557
54558
54559
54560
54561
54562
54563
54564
54565
54566
54567
54568
54569
54570
54571
54572
54573
54574
54575
54576
54577
54578
54579
54580
54581
54582
54583
54584
54585
54586
54587
54588
54589
54590
54591
54592
54593
54594
54595
54596
54597
54598
54599
54600
54601
54602
54603
54604
54605
54606
54607
54608
54609
54610
54611
54612
54613
54614
54615
54616
54617
54618
54619
54620
54621
54622
54623
54624
54625
54626
54627
54628
54629
54630
54631
54632
54633
54634
54635
54636
54637
54638
54639
54640
54641
54642
54643
54644
54645
54646
54647
54648
54649
54650
54651
54652
54653
54654
54655
54656
54657
54658
54659
54660
54661
54662
54663
54664
54665
54666
54667
54668
54669
54670
54671
54672
54673
54674
54675
54676
54677
54678
54679
54680
54681
54682
54683
54684
54685
54686
54687
54688
54689
54690
54691
54692
54693
54694
54695
54696
54697
54698
54699
54700
54701
54702
54703
54704
54705
54706
54707
54708
54709
54710
54711
54712
54713
54714
54715
54716
54717
54718
54719
54720
54721
54722
54723
54724
54725
54726
54727
54728
54729
54730
54731
54732
54733
54734
54735
54736
54737
54738
54739
54740
54741
54742
54743
54744
54745
54746
54747
54748
54749
54750
54751
54752
54753
54754
54755
54756
54757
54758
54759
54760
54761
54762
54763
54764
54765
54766
54767
54768
54769
54770
54771
54772
54773
54774
54775
54776
54777
54778
54779
54780
54781
54782
54783
54784
54785
54786
54787
54788
54789
54790
54791
54792
54793
54794
54795
54796
54797
54798
54799
54800
54801
54802
54803
54804
54805
54806
54807
54808
54809
54810
54811
54812
54813
54814
54815
54816
54817
54818
54819
54820
54821
54822
54823
54824
54825
54826
54827
54828
54829
54830
54831
54832
54833
54834
54835
54836
54837
54838
54839
54840
54841
54842
54843
54844
54845
54846
54847
54848
54849
54850
54851
54852
54853
54854
54855
54856
54857
54858
54859
54860
54861
54862
54863
54864
54865
54866
54867
54868
54869
54870
54871
54872
54873
54874
54875
54876
54877
54878
54879
54880
54881
54882
54883
54884
54885
54886
54887
54888
54889
54890
54891
54892
54893
54894
54895
54896
54897
54898
54899
54900
54901
54902
54903
54904
54905
54906
54907
54908
54909
54910
54911
54912
54913
54914
54915
54916
54917
54918
54919
54920
54921
54922
54923
54924
54925
54926
54927
54928
54929
54930
54931
54932
54933
54934
54935
54936
54937
54938
54939
54940
54941
54942
54943
54944
54945
54946
54947
54948
54949
54950
54951
54952
54953
54954
54955
54956
54957
54958
54959
54960
54961
54962
54963
54964
54965
54966
54967
54968
54969
54970
54971
54972
54973
54974
54975
54976
54977
54978
54979
54980
54981
54982
54983
54984
54985
54986
54987
54988
54989
54990
54991
54992
54993
54994
54995
54996
54997
54998
54999
55000
55001
55002
55003
55004
55005
55006
55007
55008
55009
55010
55011
55012
55013
55014
55015
55016
55017
55018
55019
55020
55021
55022
55023
55024
55025
55026
55027
55028
55029
55030
55031
55032
55033
55034
55035
55036
55037
55038
55039
55040
55041
55042
55043
55044
55045
55046
55047
55048
55049
55050
55051
55052
55053
55054
55055
55056
55057
55058
55059
55060
55061
55062
55063
55064
55065
55066
55067
55068
55069
55070
55071
55072
55073
55074
55075
55076
55077
55078
55079
55080
55081
55082
55083
55084
55085
55086
55087
55088
55089
55090
55091
55092
55093
55094
55095
55096
55097
55098
55099
55100
55101
55102
55103
55104
55105
55106
55107
55108
55109
55110
55111
55112
55113
55114
55115
55116
55117
55118
55119
55120
55121
55122
55123
55124
55125
55126
55127
55128
55129
55130
55131
55132
55133
55134
55135
55136
55137
55138
55139
55140
55141
55142
55143
55144
55145
55146
55147
55148
55149
55150
55151
55152
55153
55154
55155
55156
55157
55158
55159
55160
55161
55162
55163
55164
55165
55166
55167
55168
55169
55170
55171
55172
55173
55174
55175
55176
55177
55178
55179
55180
55181
55182
55183
55184
55185
55186
55187
55188
55189
55190
55191
55192
55193
55194
55195
55196
55197
55198
55199
55200
55201
55202
55203
55204
55205
55206
55207
55208
55209
55210
55211
55212
55213
55214
55215
55216
55217
55218
55219
55220
55221
55222
55223
55224
55225
55226
55227
55228
55229
55230
55231
55232
55233
55234
55235
55236
55237
55238
55239
55240
55241
55242
55243
55244
55245
55246
55247
55248
55249
55250
55251
55252
55253
55254
55255
55256
55257
55258
55259
55260
55261
55262
55263
55264
55265
55266
55267
55268
55269
55270
55271
55272
55273
55274
55275
55276
55277
55278
55279
55280
55281
55282
55283
55284
55285
55286
55287
55288
55289
55290
55291
55292
55293
55294
55295
55296
55297
55298
55299
55300
55301
55302
55303
55304
55305
55306
55307
55308
55309
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
55400
55401
55402
55403
55404
55405
55406
55407
55408
55409
55410
55411
55412
55413
55414
55415
55416
55417
55418
55419
55420
55421
55422
55423
55424
55425
55426
55427
55428
55429
55430
55431
55432
55433
55434
55435
55436
55437
55438
55439
55440
55441
55442
55443
55444
55445
55446
55447
55448
55449
55450
55451
55452
55453
55454
55455
55456
55457
55458
55459
55460
55461
55462
55463
55464
55465
55466
55467
55468
55469
55470
55471
55472
55473
55474
55475
55476
55477
55478
55479
55480
55481
55482
55483
55484
55485
55486
55487
55488
55489
55490
55491
55492
55493
55494
55495
55496
55497
55498
55499
55500
55501
55502
55503
55504
55505
55506
55507
55508
55509
55510
55511
55512
55513
55514
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555
55556
55557
55558
55559
55560
55561
55562
55563
55564
55565
55566
55567
55568
55569
55570
55571
55572
55573
55574
55575
55576
55577
55578
55579
55580
55581
55582
55583
55584
55585
55586
55587
55588
55589
55590
55591
55592
55593
55594
55595
55596
55597
55598
55599
55600
55601
55602
55603
55604
55605
55606
55607
55608
55609
55610
55611
55612
55613
55614
55615
55616
55617
55618
55619
55620
55621
55622
55623
55624
55625
55626
55627
55628
55629
55630
55631
55632
55633
55634
55635
55636
55637
55638
55639
55640
55641
55642
55643
55644
55645
55646
55647
55648
55649
55650
55651
55652
55653
55654
55655
55656
55657
55658
55659
55660
55661
55662
55663
55664
55665
55666
55667
55668
55669
55670
55671
55672
55673
55674
55675
55676
55677
55678
55679
55680
55681
55682
55683
55684
55685
55686
55687
55688
55689
55690
55691
55692
55693
55694
55695
55696
55697
55698
55699
55700
55701
55702
55703
55704
55705
55706
55707
55708
55709
55710
55711
55712
55713
55714
55715
55716
55717
55718
55719
55720
55721
55722
55723
55724
55725
55726
55727
55728
55729
55730
55731
55732
55733
55734
55735
55736
55737
55738
55739
55740
55741
55742
55743
55744
55745
55746
55747
55748
55749
55750
55751
55752
55753
55754
55755
55756
55757
55758
55759
55760
55761
55762
55763
55764
55765
55766
55767
55768
55769
55770
55771
55772
55773
55774
55775
55776
55777
55778
55779
55780
55781
55782
55783
55784
55785
55786
55787
55788
55789
55790
55791
55792
55793
55794
55795
55796
55797
55798
55799
55800
55801
55802
55803
55804
55805
55806
55807
55808
55809
55810
55811
55812
55813
55814
55815
55816
55817
55818
55819
55820
55821
55822
55823
55824
55825
55826
55827
55828
55829
55830
55831
55832
55833
55834
55835
55836
55837
55838
55839
55840
55841
55842
55843
55844
55845
55846
55847
55848
55849
55850
55851
55852
55853
55854
55855
55856
55857
55858
55859
55860
55861
55862
55863
55864
55865
55866
55867
55868
55869
55870
55871
55872
55873
55874
55875
55876
55877
55878
55879
55880
55881
55882
55883
55884
55885
55886
55887
55888
55889
55890
55891
55892
55893
55894
55895
55896
55897
55898
55899
55900
55901
55902
55903
55904
55905
55906
55907
55908
55909
55910
55911
55912
55913
55914
55915
55916
55917
55918
55919
55920
55921
55922
55923
55924
55925
55926
55927
55928
55929
55930
55931
55932
55933
55934
55935
55936
55937
55938
55939
55940
55941
55942
55943
55944
55945
55946
55947
55948
55949
55950
55951
55952
55953
55954
55955
55956
55957
55958
55959
55960
55961
55962
55963
55964
55965
55966
55967
55968
55969
55970
55971
55972
55973
55974
55975
55976
55977
55978
55979
55980
55981
55982
55983
55984
55985
55986
55987
55988
55989
55990
55991
55992
55993
55994
55995
55996
55997
55998
55999
56000
56001
56002
56003
56004
56005
56006
56007
56008
56009
56010
56011
56012
56013
56014
56015
56016
56017
56018
56019
56020
56021
56022
56023
56024
56025
56026
56027
56028
56029
56030
56031
56032
56033
56034
56035
56036
56037
56038
56039
56040
56041
56042
56043
56044
56045
56046
56047
56048
56049
56050
56051
56052
56053
56054
56055
56056
56057
56058
56059
56060
56061
56062
56063
56064
56065
56066
56067
56068
56069
56070
56071
56072
56073
56074
56075
56076
56077
56078
56079
56080
56081
56082
56083
56084
56085
56086
56087
56088
56089
56090
56091
56092
56093
56094
56095
56096
56097
56098
56099
56100
56101
56102
56103
56104
56105
56106
56107
56108
56109
56110
56111
56112
56113
56114
56115
56116
56117
56118
56119
56120
56121
56122
56123
56124
56125
56126
56127
56128
56129
56130
56131
56132
56133
56134
56135
56136
56137
56138
56139
56140
56141
56142
56143
56144
56145
56146
56147
56148
56149
56150
56151
56152
56153
56154
56155
56156
56157
56158
56159
56160
56161
56162
56163
56164
56165
56166
56167
56168
56169
56170
56171
56172
56173
56174
56175
56176
56177
56178
56179
56180
56181
56182
56183
56184
56185
56186
56187
56188
56189
56190
56191
56192
56193
56194
56195
56196
56197
56198
56199
56200
56201
56202
56203
56204
56205
56206
56207
56208
56209
56210
56211
56212
56213
56214
56215
56216
56217
56218
56219
56220
56221
56222
56223
56224
56225
56226
56227
56228
56229
56230
56231
56232
56233
56234
56235
56236
56237
56238
56239
56240
56241
56242
56243
56244
56245
56246
56247
56248
56249
56250
56251
56252
56253
56254
56255
56256
56257
56258
56259
56260
56261
56262
56263
56264
56265
56266
56267
56268
56269
56270
56271
56272
56273
56274
56275
56276
56277
56278
56279
56280
56281
56282
56283
56284
56285
56286
56287
56288
56289
56290
56291
56292
56293
56294
56295
56296
56297
56298
56299
56300
56301
56302
56303
56304
56305
56306
56307
56308
56309
56310
56311
56312
56313
56314
56315
56316
56317
56318
56319
56320
56321
56322
56323
56324
56325
56326
56327
56328
56329
56330
56331
56332
56333
56334
56335
56336
56337
56338
56339
56340
56341
56342
56343
56344
56345
56346
56347
56348
56349
56350
56351
56352
56353
56354
56355
56356
56357
56358
56359
56360
56361
56362
56363
56364
56365
56366
56367
56368
56369
56370
56371
56372
56373
56374
56375
56376
56377
56378
56379
56380
56381
56382
56383
56384
56385
56386
56387
56388
56389
56390
56391
56392
56393
56394
56395
56396
56397
56398
56399
56400
56401
56402
56403
56404
56405
56406
56407
56408
56409
56410
56411
56412
56413
56414
56415
56416
56417
56418
56419
56420
56421
56422
56423
56424
56425
56426
56427
56428
56429
56430
56431
56432
56433
56434
56435
56436
56437
56438
56439
56440
56441
56442
56443
56444
56445
56446
56447
56448
56449
56450
56451
56452
56453
56454
56455
56456
56457
56458
56459
56460
56461
56462
56463
56464
56465
56466
56467
56468
56469
56470
56471
56472
56473
56474
56475
56476
56477
56478
56479
56480
56481
56482
56483
56484
56485
56486
56487
56488
56489
56490
56491
56492
56493
56494
56495
56496
56497
56498
56499
56500
56501
56502
56503
56504
56505
56506
56507
56508
56509
56510
56511
56512
56513
56514
56515
56516
56517
56518
56519
56520
56521
56522
56523
56524
56525
56526
56527
56528
56529
56530
56531
56532
56533
56534
56535
56536
56537
56538
56539
56540
56541
56542
56543
56544
56545
56546
56547
56548
56549
56550
56551
56552
56553
56554
56555
56556
56557
56558
56559
56560
56561
56562
56563
56564
56565
56566
56567
56568
56569
56570
56571
56572
56573
56574
56575
56576
56577
56578
56579
56580
56581
56582
56583
56584
56585
56586
56587
56588
56589
56590
56591
56592
56593
56594
56595
56596
56597
56598
56599
56600
56601
56602
56603
56604
56605
56606
56607
56608
56609
56610
56611
56612
56613
56614
56615
56616
56617
56618
56619
56620
56621
56622
56623
56624
56625
56626
56627
56628
56629
56630
56631
56632
56633
56634
56635
56636
56637
56638
56639
56640
56641
56642
56643
56644
56645
56646
56647
56648
56649
56650
56651
56652
56653
56654
56655
56656
56657
56658
56659
56660
56661
56662
56663
56664
56665
56666
56667
56668
56669
56670
56671
56672
56673
56674
56675
56676
56677
56678
56679
56680
56681
56682
56683
56684
56685
56686
56687
56688
56689
56690
56691
56692
56693
56694
56695
56696
56697
56698
56699
56700
56701
56702
56703
56704
56705
56706
56707
56708
56709
56710
56711
56712
56713
56714
56715
56716
56717
56718
56719
56720
56721
56722
56723
56724
56725
56726
56727
56728
56729
56730
56731
56732
56733
56734
56735
56736
56737
56738
56739
56740
56741
56742
56743
56744
56745
56746
56747
56748
56749
56750
56751
56752
56753
56754
56755
56756
56757
56758
56759
56760
56761
56762
56763
56764
56765
56766
56767
56768
56769
56770
56771
56772
56773
56774
56775
56776
56777
56778
56779
56780
56781
56782
56783
56784
56785
56786
56787
56788
56789
56790
56791
56792
56793
56794
56795
56796
56797
56798
56799
56800
56801
56802
56803
56804
56805
56806
56807
56808
56809
56810
56811
56812
56813
56814
56815
56816
56817
56818
56819
56820
56821
56822
56823
56824
56825
56826
56827
56828
56829
56830
56831
56832
56833
56834
56835
56836
56837
56838
56839
56840
56841
56842
56843
56844
56845
56846
56847
56848
56849
56850
56851
56852
56853
56854
56855
56856
56857
56858
56859
56860
56861
56862
56863
56864
56865
56866
56867
56868
56869
56870
56871
56872
56873
56874
56875
56876
56877
56878
56879
56880
56881
56882
56883
56884
56885
56886
56887
56888
56889
56890
56891
56892
56893
56894
56895
56896
56897
56898
56899
56900
56901
56902
56903
56904
56905
56906
56907
56908
56909
56910
56911
56912
56913
56914
56915
56916
56917
56918
56919
56920
56921
56922
56923
56924
56925
56926
56927
56928
56929
56930
56931
56932
56933
56934
56935
56936
56937
56938
56939
56940
56941
56942
56943
56944
56945
56946
56947
56948
56949
56950
56951
56952
56953
56954
56955
56956
56957
56958
56959
56960
56961
56962
56963
56964
56965
56966
56967
56968
56969
56970
56971
56972
56973
56974
56975
56976
56977
56978
56979
56980
56981
56982
56983
56984
56985
56986
56987
56988
56989
56990
56991
56992
56993
56994
56995
56996
56997
56998
56999
57000
57001
57002
57003
57004
57005
57006
57007
57008
57009
57010
57011
57012
57013
57014
57015
57016
57017
57018
57019
57020
57021
57022
57023
57024
57025
57026
57027
57028
57029
57030
57031
57032
57033
57034
57035
57036
57037
57038
57039
57040
57041
57042
57043
57044
57045
57046
57047
57048
57049
57050
57051
57052
57053
57054
57055
57056
57057
57058
57059
57060
57061
57062
57063
57064
57065
57066
57067
57068
57069
57070
57071
57072
57073
57074
57075
57076
57077
57078
57079
57080
57081
57082
57083
57084
57085
57086
57087
57088
57089
57090
57091
57092
57093
57094
57095
57096
57097
57098
57099
57100
57101
57102
57103
57104
57105
57106
57107
57108
57109
57110
57111
57112
57113
57114
57115
57116
57117
57118
57119
57120
57121
57122
57123
57124
57125
57126
57127
57128
57129
57130
57131
57132
57133
57134
57135
57136
57137
57138
57139
57140
57141
57142
57143
57144
57145
57146
57147
57148
57149
57150
57151
57152
57153
57154
57155
57156
57157
57158
57159
57160
57161
57162
57163
57164
57165
57166
57167
57168
57169
57170
57171
57172
57173
57174
57175
57176
57177
57178
57179
57180
57181
57182
57183
57184
57185
57186
57187
57188
57189
57190
57191
57192
57193
57194
57195
57196
57197
57198
57199
57200
57201
57202
57203
57204
57205
57206
57207
57208
57209
57210
57211
57212
57213
57214
57215
57216
57217
57218
57219
57220
57221
57222
57223
57224
57225
57226
57227
57228
57229
57230
57231
57232
57233
57234
57235
57236
57237
57238
57239
57240
57241
57242
57243
57244
57245
57246
57247
57248
57249
57250
57251
57252
57253
57254
57255
57256
57257
57258
57259
57260
57261
57262
57263
57264
57265
57266
57267
57268
57269
57270
57271
57272
57273
57274
57275
57276
57277
57278
57279
57280
57281
57282
57283
57284
57285
57286
57287
57288
57289
57290
57291
57292
57293
57294
57295
57296
57297
57298
57299
57300
57301
57302
57303
57304
57305
57306
57307
57308
57309
57310
57311
57312
57313
57314
57315
57316
57317
57318
57319
57320
57321
57322
57323
57324
57325
57326
57327
57328
57329
57330
57331
57332
57333
57334
57335
57336
57337
57338
57339
57340
57341
57342
57343
57344
57345
57346
57347
57348
57349
57350
57351
57352
57353
57354
57355
57356
57357
57358
57359
57360
57361
57362
57363
57364
57365
57366
57367
57368
57369
57370
57371
57372
57373
57374
57375
57376
57377
57378
57379
57380
57381
57382
57383
57384
57385
57386
57387
57388
57389
57390
57391
57392
57393
57394
57395
57396
57397
57398
57399
57400
57401
57402
57403
57404
57405
57406
57407
57408
57409
57410
57411
57412
57413
57414
57415
57416
57417
57418
57419
57420
57421
57422
57423
57424
57425
57426
57427
57428
57429
57430
57431
57432
57433
57434
57435
57436
57437
57438
57439
57440
57441
57442
57443
57444
57445
57446
57447
57448
57449
57450
57451
57452
57453
57454
57455
57456
57457
57458
57459
57460
57461
57462
57463
57464
57465
57466
57467
57468
57469
57470
57471
57472
57473
57474
57475
57476
57477
57478
57479
57480
57481
57482
57483
57484
57485
57486
57487
57488
57489
57490
57491
57492
57493
57494
57495
57496
57497
57498
57499
57500
57501
57502
57503
57504
57505
57506
57507
57508
57509
57510
57511
57512
57513
57514
57515
57516
57517
57518
57519
57520
57521
57522
57523
57524
57525
57526
57527
57528
57529
57530
57531
57532
57533
57534
57535
57536
57537
57538
57539
57540
57541
57542
57543
57544
57545
57546
57547
57548
57549
57550
57551
57552
57553
57554
57555
57556
57557
57558
57559
57560
57561
57562
57563
57564
57565
57566
57567
57568
57569
57570
57571
57572
57573
57574
57575
57576
57577
57578
57579
57580
57581
57582
57583
57584
57585
57586
57587
57588
57589
57590
57591
57592
57593
57594
57595
57596
57597
57598
57599
57600
57601
57602
57603
57604
57605
57606
57607
57608
57609
57610
57611
57612
57613
57614
57615
57616
57617
57618
57619
57620
57621
57622
57623
57624
57625
57626
57627
57628
57629
57630
57631
57632
57633
57634
57635
57636
57637
57638
57639
57640
57641
57642
57643
57644
57645
57646
57647
57648
57649
57650
57651
57652
57653
57654
57655
57656
57657
57658
57659
57660
57661
57662
57663
57664
57665
57666
57667
57668
57669
57670
57671
57672
57673
57674
57675
57676
57677
57678
57679
57680
57681
57682
57683
57684
57685
57686
57687
57688
57689
57690
57691
57692
57693
57694
57695
57696
57697
57698
57699
57700
57701
57702
57703
57704
57705
57706
57707
57708
57709
57710
57711
57712
57713
57714
57715
57716
57717
57718
57719
57720
57721
57722
57723
57724
57725
57726
57727
57728
57729
57730
57731
57732
57733
57734
57735
57736
57737
57738
57739
57740
57741
57742
57743
57744
57745
57746
57747
57748
57749
57750
57751
57752
57753
57754
57755
57756
57757
57758
57759
57760
57761
57762
57763
57764
57765
57766
57767
57768
57769
57770
57771
57772
57773
57774
57775
57776
57777
57778
57779
57780
57781
57782
57783
57784
57785
57786
57787
57788
57789
57790
57791
57792
57793
57794
57795
57796
57797
57798
57799
57800
57801
57802
57803
57804
57805
57806
57807
57808
57809
57810
57811
57812
57813
57814
57815
57816
57817
57818
57819
57820
57821
57822
57823
57824
57825
57826
57827
57828
57829
57830
57831
57832
57833
57834
57835
57836
57837
57838
57839
57840
57841
57842
57843
57844
57845
57846
57847
57848
57849
57850
57851
57852
57853
57854
57855
57856
57857
57858
57859
57860
57861
57862
57863
57864
57865
57866
57867
57868
57869
57870
57871
57872
57873
57874
57875
57876
57877
57878
57879
57880
57881
57882
57883
57884
57885
57886
57887
57888
57889
57890
57891
57892
57893
57894
57895
57896
57897
57898
57899
57900
57901
57902
57903
57904
57905
57906
57907
57908
57909
57910
57911
57912
57913
57914
57915
57916
57917
57918
57919
57920
57921
57922
57923
57924
57925
57926
57927
57928
57929
57930
57931
57932
57933
57934
57935
57936
57937
57938
57939
57940
57941
57942
57943
57944
57945
57946
57947
57948
57949
57950
57951
57952
57953
57954
57955
57956
57957
57958
57959
57960
57961
57962
57963
57964
57965
57966
57967
57968
57969
57970
57971
57972
57973
57974
57975
57976
57977
57978
57979
57980
57981
57982
57983
57984
57985
57986
57987
57988
57989
57990
57991
57992
57993
57994
57995
57996
57997
57998
57999
58000
58001
58002
58003
58004
58005
58006
58007
58008
58009
58010
58011
58012
58013
58014
58015
58016
58017
58018
58019
58020
58021
58022
58023
58024
58025
58026
58027
58028
58029
58030
58031
58032
58033
58034
58035
58036
58037
58038
58039
58040
58041
58042
58043
58044
58045
58046
58047
58048
58049
58050
58051
58052
58053
58054
58055
58056
58057
58058
58059
58060
58061
58062
58063
58064
58065
58066
58067
58068
58069
58070
58071
58072
58073
58074
58075
58076
58077
58078
58079
58080
58081
58082
58083
58084
58085
58086
58087
58088
58089
58090
58091
58092
58093
58094
58095
58096
58097
58098
58099
58100
58101
58102
58103
58104
58105
58106
58107
58108
58109
58110
58111
58112
58113
58114
58115
58116
58117
58118
58119
58120
58121
58122
58123
58124
58125
58126
58127
58128
58129
58130
58131
58132
58133
58134
58135
58136
58137
58138
58139
58140
58141
58142
58143
58144
58145
58146
58147
58148
58149
58150
58151
58152
58153
58154
58155
58156
58157
58158
58159
58160
58161
58162
58163
58164
58165
58166
58167
58168
58169
58170
58171
58172
58173
58174
58175
58176
58177
58178
58179
58180
58181
58182
58183
58184
58185
58186
58187
58188
58189
58190
58191
58192
58193
58194
58195
58196
58197
58198
58199
58200
58201
58202
58203
58204
58205
58206
58207
58208
58209
58210
58211
58212
58213
58214
58215
58216
58217
58218
58219
58220
58221
58222
58223
58224
58225
58226
58227
58228
58229
58230
58231
58232
58233
58234
58235
58236
58237
58238
58239
58240
58241
58242
58243
58244
58245
58246
58247
58248
58249
58250
58251
58252
58253
58254
58255
58256
58257
58258
58259
58260
58261
58262
58263
58264
58265
58266
58267
58268
58269
58270
58271
58272
58273
58274
58275
58276
58277
58278
58279
58280
58281
58282
58283
58284
58285
58286
58287
58288
58289
58290
58291
58292
58293
58294
58295
58296
58297
58298
58299
58300
58301
58302
58303
58304
58305
58306
58307
58308
58309
58310
58311
58312
58313
58314
58315
58316
58317
58318
58319
58320
58321
58322
58323
58324
58325
58326
58327
58328
58329
58330
58331
58332
58333
58334
58335
58336
58337
58338
58339
58340
58341
58342
58343
58344
58345
58346
58347
58348
58349
58350
58351
58352
58353
58354
58355
58356
58357
58358
58359
58360
58361
58362
58363
58364
58365
58366
58367
58368
58369
58370
58371
58372
58373
58374
58375
58376
58377
58378
58379
58380
58381
58382
58383
58384
58385
58386
58387
58388
58389
58390
58391
58392
58393
58394
58395
58396
58397
58398
58399
58400
58401
58402
58403
58404
58405
58406
58407
58408
58409
58410
58411
58412
58413
58414
58415
58416
58417
58418
58419
58420
58421
58422
58423
58424
58425
58426
58427
58428
58429
58430
58431
58432
58433
58434
58435
58436
58437
58438
58439
58440
58441
58442
58443
58444
58445
58446
58447
58448
58449
58450
58451
58452
58453
58454
58455
58456
58457
58458
58459
58460
58461
58462
58463
58464
58465
58466
58467
58468
58469
58470
58471
58472
58473
58474
58475
58476
58477
58478
58479
58480
58481
58482
58483
58484
58485
58486
58487
58488
58489
58490
58491
58492
58493
58494
58495
58496
58497
58498
58499
58500
58501
58502
58503
58504
58505
58506
58507
58508
58509
58510
58511
58512
58513
58514
58515
58516
58517
58518
58519
58520
58521
58522
58523
58524
58525
58526
58527
58528
58529
58530
58531
58532
58533
58534
58535
58536
58537
58538
58539
58540
58541
58542
58543
58544
58545
58546
58547
58548
58549
58550
58551
58552
58553
58554
58555
58556
58557
58558
58559
58560
58561
58562
58563
58564
58565
58566
58567
58568
58569
58570
58571
58572
58573
58574
58575
58576
58577
58578
58579
58580
58581
58582
58583
58584
58585
58586
58587
58588
58589
58590
58591
58592
58593
58594
58595
58596
58597
58598
58599
58600
58601
58602
58603
58604
58605
58606
58607
58608
58609
58610
58611
58612
58613
58614
58615
58616
58617
58618
58619
58620
58621
58622
58623
58624
58625
58626
58627
58628
58629
58630
58631
58632
58633
58634
58635
58636
58637
58638
58639
58640
58641
58642
58643
58644
58645
58646
58647
58648
58649
58650
58651
58652
58653
58654
58655
58656
58657
58658
58659
58660
58661
58662
58663
58664
58665
58666
58667
58668
58669
58670
58671
58672
58673
58674
58675
58676
58677
58678
58679
58680
58681
58682
58683
58684
58685
58686
58687
58688
58689
58690
58691
58692
58693
58694
58695
58696
58697
58698
58699
58700
58701
58702
58703
58704
58705
58706
58707
58708
58709
58710
58711
58712
58713
58714
58715
58716
58717
58718
58719
58720
58721
58722
58723
58724
58725
58726
58727
58728
58729
58730
58731
58732
58733
58734
58735
58736
58737
58738
58739
58740
58741
58742
58743
58744
58745
58746
58747
58748
58749
58750
58751
58752
58753
58754
58755
58756
58757
58758
58759
58760
58761
58762
58763
58764
58765
58766
58767
58768
58769
58770
58771
58772
58773
58774
58775
58776
58777
58778
58779
58780
58781
58782
58783
58784
58785
58786
58787
58788
58789
58790
58791
58792
58793
58794
58795
58796
58797
58798
58799
58800
58801
58802
58803
58804
58805
58806
58807
58808
58809
58810
58811
58812
58813
58814
58815
58816
58817
58818
58819
58820
58821
58822
58823
58824
58825
58826
58827
58828
58829
58830
58831
58832
58833
58834
58835
58836
58837
58838
58839
58840
58841
58842
58843
58844
58845
58846
58847
58848
58849
58850
58851
58852
58853
58854
58855
58856
58857
58858
58859
58860
58861
58862
58863
58864
58865
58866
58867
58868
58869
58870
58871
58872
58873
58874
58875
58876
58877
58878
58879
58880
58881
58882
58883
58884
58885
58886
58887
58888
58889
58890
58891
58892
58893
58894
58895
58896
58897
58898
58899
58900
58901
58902
58903
58904
58905
58906
58907
58908
58909
58910
58911
58912
58913
58914
58915
58916
58917
58918
58919
58920
58921
58922
58923
58924
58925
58926
58927
58928
58929
58930
58931
58932
58933
58934
58935
58936
58937
58938
58939
58940
58941
58942
58943
58944
58945
58946
58947
58948
58949
58950
58951
58952
58953
58954
58955
58956
58957
58958
58959
58960
58961
58962
58963
58964
58965
58966
58967
58968
58969
58970
58971
58972
58973
58974
58975
58976
58977
58978
58979
58980
58981
58982
58983
58984
58985
58986
58987
58988
58989
58990
58991
58992
58993
58994
58995
58996
58997
58998
58999
59000
59001
59002
59003
59004
59005
59006
59007
59008
59009
59010
59011
59012
59013
59014
59015
59016
59017
59018
59019
59020
59021
59022
59023
59024
59025
59026
59027
59028
59029
59030
59031
59032
59033
59034
59035
59036
59037
59038
59039
59040
59041
59042
59043
59044
59045
59046
59047
59048
59049
59050
59051
59052
59053
59054
59055
59056
59057
59058
59059
59060
59061
59062
59063
59064
59065
59066
59067
59068
59069
59070
59071
59072
59073
59074
59075
59076
59077
59078
59079
59080
59081
59082
59083
59084
59085
59086
59087
59088
59089
59090
59091
59092
59093
59094
59095
59096
59097
59098
59099
59100
59101
59102
59103
59104
59105
59106
59107
59108
59109
59110
59111
59112
59113
59114
59115
59116
59117
59118
59119
59120
59121
59122
59123
59124
59125
59126
59127
59128
59129
59130
59131
59132
59133
59134
59135
59136
59137
59138
59139
59140
59141
59142
59143
59144
59145
59146
59147
59148
59149
59150
59151
59152
59153
59154
59155
59156
59157
59158
59159
59160
59161
59162
59163
59164
59165
59166
59167
59168
59169
59170
59171
59172
59173
59174
59175
59176
59177
59178
59179
59180
59181
59182
59183
59184
59185
59186
59187
59188
59189
59190
59191
59192
59193
59194
59195
59196
59197
59198
59199
59200
59201
59202
59203
59204
59205
59206
59207
59208
59209
59210
59211
59212
59213
59214
59215
59216
59217
59218
59219
59220
59221
59222
59223
59224
59225
59226
59227
59228
59229
59230
59231
59232
59233
59234
59235
59236
59237
59238
59239
59240
59241
59242
59243
59244
59245
59246
59247
59248
59249
59250
59251
59252
59253
59254
59255
59256
59257
59258
59259
59260
59261
59262
59263
59264
59265
59266
59267
59268
59269
59270
59271
59272
59273
59274
59275
59276
59277
59278
59279
59280
59281
59282
59283
59284
59285
59286
59287
59288
59289
59290
59291
59292
59293
59294
59295
59296
59297
59298
59299
59300
59301
59302
59303
59304
59305
59306
59307
59308
59309
59310
59311
59312
59313
59314
59315
59316
59317
59318
59319
59320
59321
59322
59323
59324
59325
59326
59327
59328
59329
59330
59331
59332
59333
59334
59335
59336
59337
59338
59339
59340
59341
59342
59343
59344
59345
59346
59347
59348
59349
59350
59351
59352
59353
59354
59355
59356
59357
59358
59359
59360
59361
59362
59363
59364
59365
59366
59367
59368
59369
59370
59371
59372
59373
59374
59375
59376
59377
59378
59379
59380
59381
59382
59383
59384
59385
59386
59387
59388
59389
59390
59391
59392
59393
59394
59395
59396
59397
59398
59399
59400
59401
59402
59403
59404
59405
59406
59407
59408
59409
59410
59411
59412
59413
59414
59415
59416
59417
59418
59419
59420
59421
59422
59423
59424
59425
59426
59427
59428
59429
59430
59431
59432
59433
59434
59435
59436
59437
59438
59439
59440
59441
59442
59443
59444
59445
59446
59447
59448
59449
59450
59451
59452
59453
59454
59455
59456
59457
59458
59459
59460
59461
59462
59463
59464
59465
59466
59467
59468
59469
59470
59471
59472
59473
59474
59475
59476
59477
59478
59479
59480
59481
59482
59483
59484
59485
59486
59487
59488
59489
59490
59491
59492
59493
59494
59495
59496
59497
59498
59499
59500
59501
59502
59503
59504
59505
59506
59507
59508
59509
59510
59511
59512
59513
59514
59515
59516
59517
59518
59519
59520
59521
59522
59523
59524
59525
59526
59527
59528
59529
59530
59531
59532
59533
59534
59535
59536
59537
59538
59539
59540
59541
59542
59543
59544
59545
59546
59547
59548
59549
59550
59551
59552
59553
59554
59555
59556
59557
59558
59559
59560
59561
59562
59563
59564
59565
59566
59567
59568
59569
59570
59571
59572
59573
59574
59575
59576
59577
59578
59579
59580
59581
59582
59583
59584
59585
59586
59587
59588
59589
59590
59591
59592
59593
59594
59595
59596
59597
59598
59599
59600
59601
59602
59603
59604
59605
59606
59607
59608
59609
59610
59611
59612
59613
59614
59615
59616
59617
59618
59619
59620
59621
59622
59623
59624
59625
59626
59627
59628
59629
59630
59631
59632
59633
59634
59635
59636
59637
59638
59639
59640
59641
59642
59643
59644
59645
59646
59647
59648
59649
59650
59651
59652
59653
59654
59655
59656
59657
59658
59659
59660
59661
59662
59663
59664
59665
59666
59667
59668
59669
59670
59671
59672
59673
59674
59675
59676
59677
59678
59679
59680
59681
59682
59683
59684
59685
59686
59687
59688
59689
59690
59691
59692
59693
59694
59695
59696
59697
59698
59699
59700
59701
59702
59703
59704
59705
59706
59707
59708
59709
59710
59711
59712
59713
59714
59715
59716
59717
59718
59719
59720
59721
59722
59723
59724
59725
59726
59727
59728
59729
59730
59731
59732
59733
59734
59735
59736
59737
59738
59739
59740
59741
59742
59743
59744
59745
59746
59747
59748
59749
59750
59751
59752
59753
59754
59755
59756
59757
59758
59759
59760
59761
59762
59763
59764
59765
59766
59767
59768
59769
59770
59771
59772
59773
59774
59775
59776
59777
59778
59779
59780
59781
59782
59783
59784
59785
59786
59787
59788
59789
59790
59791
59792
59793
59794
59795
59796
59797
59798
59799
59800
59801
59802
59803
59804
59805
59806
59807
59808
59809
59810
59811
59812
59813
59814
59815
59816
59817
59818
59819
59820
59821
59822
59823
59824
59825
59826
59827
59828
59829
59830
59831
59832
59833
59834
59835
59836
59837
59838
59839
59840
59841
59842
59843
59844
59845
59846
59847
59848
59849
59850
59851
59852
59853
59854
59855
59856
59857
59858
59859
59860
59861
59862
59863
59864
59865
59866
59867
59868
59869
59870
59871
59872
59873
59874
59875
59876
59877
59878
59879
59880
59881
59882
59883
59884
59885
59886
59887
59888
59889
59890
59891
59892
59893
59894
59895
59896
59897
59898
59899
59900
59901
59902
59903
59904
59905
59906
59907
59908
59909
59910
59911
59912
59913
59914
59915
59916
59917
59918
59919
59920
59921
59922
59923
59924
59925
59926
59927
59928
59929
59930
59931
59932
59933
59934
59935
59936
59937
59938
59939
59940
59941
59942
59943
59944
59945
59946
59947
59948
59949
59950
59951
59952
59953
59954
59955
59956
59957
59958
59959
59960
59961
59962
59963
59964
59965
59966
59967
59968
59969
59970
59971
59972
59973
59974
59975
59976
59977
59978
59979
59980
59981
59982
59983
59984
59985
59986
59987
59988
59989
59990
59991
59992
59993
59994
59995
59996
59997
59998
59999
60000
60001
60002
60003
60004
60005
60006
60007
60008
60009
60010
60011
60012
60013
60014
60015
60016
60017
60018
60019
60020
60021
60022
60023
60024
60025
60026
60027
60028
60029
60030
60031
60032
60033
60034
60035
60036
60037
60038
60039
60040
60041
60042
60043
60044
60045
60046
60047
60048
60049
60050
60051
60052
60053
60054
60055
60056
60057
60058
60059
60060
60061
60062
60063
60064
60065
60066
60067
60068
60069
60070
60071
60072
60073
60074
60075
60076
60077
60078
60079
60080
60081
60082
60083
60084
60085
60086
60087
60088
60089
60090
60091
60092
60093
60094
60095
60096
60097
60098
60099
60100
60101
60102
60103
60104
60105
60106
60107
60108
60109
60110
60111
60112
60113
60114
60115
60116
60117
60118
60119
60120
60121
60122
60123
60124
60125
60126
60127
60128
60129
60130
60131
60132
60133
60134
60135
60136
60137
60138
60139
60140
60141
60142
60143
60144
60145
60146
60147
60148
60149
60150
60151
60152
60153
60154
60155
60156
60157
60158
60159
60160
60161
60162
60163
60164
60165
60166
60167
60168
60169
60170
60171
60172
60173
60174
60175
60176
60177
60178
60179
60180
60181
60182
60183
60184
60185
60186
60187
60188
60189
60190
60191
60192
60193
60194
60195
60196
60197
60198
60199
60200
60201
60202
60203
60204
60205
60206
60207
60208
60209
60210
60211
60212
60213
60214
60215
60216
60217
60218
60219
60220
60221
60222
60223
60224
60225
60226
60227
60228
60229
60230
60231
60232
60233
60234
60235
60236
60237
60238
60239
60240
60241
60242
60243
60244
60245
60246
60247
60248
60249
60250
60251
60252
60253
60254
60255
60256
60257
60258
60259
60260
60261
60262
60263
60264
60265
60266
60267
60268
60269
60270
60271
60272
60273
60274
60275
60276
60277
60278
60279
60280
60281
60282
60283
60284
60285
60286
60287
60288
60289
60290
60291
60292
60293
60294
60295
60296
60297
60298
60299
60300
60301
60302
60303
60304
60305
60306
60307
60308
60309
60310
60311
60312
60313
60314
60315
60316
60317
60318
60319
60320
60321
60322
60323
60324
60325
60326
60327
60328
60329
60330
60331
60332
60333
60334
60335
60336
60337
60338
60339
60340
60341
60342
60343
60344
60345
60346
60347
60348
60349
60350
60351
60352
60353
60354
60355
60356
60357
60358
60359
60360
60361
60362
60363
60364
60365
60366
60367
60368
60369
60370
60371
60372
60373
60374
60375
60376
60377
60378
60379
60380
60381
60382
60383
60384
60385
60386
60387
60388
60389
60390
60391
60392
60393
60394
60395
60396
60397
60398
60399
60400
60401
60402
60403
60404
60405
60406
60407
60408
60409
60410
60411
60412
60413
60414
60415
60416
60417
60418
60419
60420
60421
60422
60423
60424
60425
60426
60427
60428
60429
60430
60431
60432
60433
60434
60435
60436
60437
60438
60439
60440
60441
60442
60443
60444
60445
60446
60447
60448
60449
60450
60451
60452
60453
60454
60455
60456
60457
60458
60459
60460
60461
60462
60463
60464
60465
60466
60467
60468
60469
60470
60471
60472
60473
60474
60475
60476
60477
60478
60479
60480
60481
60482
60483
60484
60485
60486
60487
60488
60489
60490
60491
60492
60493
60494
60495
60496
60497
60498
60499
60500
60501
60502
60503
60504
60505
60506
60507
60508
60509
60510
60511
60512
60513
60514
60515
60516
60517
60518
60519
60520
60521
60522
60523
60524
60525
60526
60527
60528
60529
60530
60531
60532
60533
60534
60535
60536
60537
60538
60539
60540
60541
60542
60543
60544
60545
60546
60547
60548
60549
60550
60551
60552
60553
60554
60555
60556
60557
60558
60559
60560
60561
60562
60563
60564
60565
60566
60567
60568
60569
60570
60571
60572
60573
60574
60575
60576
60577
60578
60579
60580
60581
60582
60583
60584
60585
60586
60587
60588
60589
60590
60591
60592
60593
60594
60595
60596
60597
60598
60599
60600
60601
60602
60603
60604
60605
60606
60607
60608
60609
60610
60611
60612
60613
60614
60615
60616
60617
60618
60619
60620
60621
60622
60623
60624
60625
60626
60627
60628
60629
60630
60631
60632
60633
60634
60635
60636
60637
60638
60639
60640
60641
60642
60643
60644
60645
60646
60647
60648
60649
60650
60651
60652
60653
60654
60655
60656
60657
60658
60659
60660
60661
60662
60663
60664
60665
60666
60667
60668
60669
60670
60671
60672
60673
60674
60675
60676
60677
60678
60679
60680
60681
60682
60683
60684
60685
60686
60687
60688
60689
60690
60691
60692
60693
60694
60695
60696
60697
60698
60699
60700
60701
60702
60703
60704
60705
60706
60707
60708
60709
60710
60711
60712
60713
60714
60715
60716
60717
60718
60719
60720
60721
60722
60723
60724
60725
60726
60727
60728
60729
60730
60731
60732
60733
60734
60735
60736
60737
60738
60739
60740
60741
60742
60743
60744
60745
60746
60747
60748
60749
60750
60751
60752
60753
60754
60755
60756
60757
60758
60759
60760
60761
60762
60763
60764
60765
60766
60767
60768
60769
60770
60771
60772
60773
60774
60775
60776
60777
60778
60779
60780
60781
60782
60783
60784
60785
60786
60787
60788
60789
60790
60791
60792
60793
60794
60795
60796
60797
60798
60799
60800
60801
60802
60803
60804
60805
60806
60807
60808
60809
60810
60811
60812
60813
60814
60815
60816
60817
60818
60819
60820
60821
60822
60823
60824
60825
60826
60827
60828
60829
60830
60831
60832
60833
60834
60835
60836
60837
60838
60839
60840
60841
60842
60843
60844
60845
60846
60847
60848
60849
60850
60851
60852
60853
60854
60855
60856
60857
60858
60859
60860
60861
60862
60863
60864
60865
60866
60867
60868
60869
60870
60871
60872
60873
60874
60875
60876
60877
60878
60879
60880
60881
60882
60883
60884
60885
60886
60887
60888
60889
60890
60891
60892
60893
60894
60895
60896
60897
60898
60899
60900
60901
60902
60903
60904
60905
60906
60907
60908
60909
60910
60911
60912
60913
60914
60915
60916
60917
60918
60919
60920
60921
60922
60923
60924
60925
60926
60927
60928
60929
60930
60931
60932
60933
60934
60935
60936
60937
60938
60939
60940
60941
60942
60943
60944
60945
60946
60947
60948
60949
60950
60951
60952
60953
60954
60955
60956
60957
60958
60959
60960
60961
60962
60963
60964
60965
60966
60967
60968
60969
60970
60971
60972
60973
60974
60975
60976
60977
60978
60979
60980
60981
60982
60983
60984
60985
60986
60987
60988
60989
60990
60991
60992
60993
60994
60995
60996
60997
60998
60999
61000
61001
61002
61003
61004
61005
61006
61007
61008
61009
61010
61011
61012
61013
61014
61015
61016
61017
61018
61019
61020
61021
61022
61023
61024
61025
61026
61027
61028
61029
61030
61031
61032
61033
61034
61035
61036
61037
61038
61039
61040
61041
61042
61043
61044
61045
61046
61047
61048
61049
61050
61051
61052
61053
61054
61055
61056
61057
61058
61059
61060
61061
61062
61063
61064
61065
61066
61067
61068
61069
61070
61071
61072
61073
61074
61075
61076
61077
61078
61079
61080
61081
61082
61083
61084
61085
61086
61087
61088
61089
61090
61091
61092
61093
61094
61095
61096
61097
61098
61099
61100
61101
61102
61103
61104
61105
61106
61107
61108
61109
61110
6163381244823241373f6741a282f2c4a868b59c,Multimodal biometrics for identity documents (MBioID).,"Multimodal Biometrics for Identity
Documents 1
State-of-the-Art
Research Report
PFS 341-08.05
(Version 2.0)
Damien Dessimoz
Prof. Christophe Champod
Jonas Richiardi
Dr. Andrzej Drygajlo
{damien.dessimoz,
{jonas.richiardi,
June 2006
This project was sponsored by the Foundation Banque Cantonale Vaudoise."
610e0bee525a6573932e077f091505f54a5c4ede,"The Wisdom of MaSSeS: Majority, Subjectivity, and Semantic Similarity in the Evaluation of VQA","Majority, Subjectivity, and Semantic Similarity in the Evaluation of VQA
The Wisdom of MaSSeS:
Shailza Jolly∗
SAP SE, Berlin
TU Kaiserslautern
Sandro Pezzelle∗
SAP SE, Berlin
CIMeC - University of Trento
Tassilo Klein
SAP SE, Berlin
Andreas Dengel
DFKI, Kaiserslautern
CS Department, TU Kaiserslautern
Moin Nabi
SAP SE, Berlin"
61c4969c78cff37357ac794af5ac8e439751b39f,Midrange Geometric Interactions for Semantic Segmentation,"Int J Comput Vis
DOI 10.1007/s11263-015-0828-7
Midrange Geometric Interactions for Semantic Segmentation
Constraints for Continuous Multi-label Optimization
Julia Diebold1 · Claudia Nieuwenhuis2 · Daniel Cremers1
Received: 1 June 2014 / Accepted: 15 May 2015
© Springer Science+Business Media New York 2015"
610a4451423ad7f82916c736cd8adb86a5a64c59,A Survey on Search Based Face Annotation Using Weakly Labelled Facial Images,"Volume 4, Issue 11, November 2014                                  ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
A Survey on Search Based Face Annotation Using Weakly
Labelled Facial Images
Shital A. Shinde*, Prof. Archana Chaugule
Department of Computer Engg, DYPIET Pimpri,
Savitri Bai Phule Pune University, Maharashtra India"
61366c2eed49519e3adef44e8b7146db1fcc2113,Convex NMF on Non-Convex Massiv Data,"Convex NMF on Non-Convex Massiv Data
Kristian Kersting1 and Mirwaes Wahabzada1 and Christian Thurau2 and Christian Bauckhage2
Knowledge Discovery Department, 2Vision and Social Media Group
Fraunhofer IAIS, Schloss Birlinghoven, 53754 Sankt Augustin, Germany"
617c4e23fc7ca51d98dacb28779214b3e79e9720,Open-Ended Visual Question-Answering,"Open-Ended Visual
Question-Answering
Escola T`ecnica Superior d’Enginyeria de Telecomunicaci´o de Barcelona
Submitted to the Faculty of the
A Degree Thesis
In partial fulfilment
of the requirements for the degree in
SCIENCE AND TELECOMMUNICATION TECHNOLOGIES
ENGINEERING
Author:
Advisors: Xavier Gir´o i Nieto, Santiago Pascual de la Puente
Issey Masuda Mora
Universitat Polit`ecnica de Catalunya (UPC)
June 2016"
61e97d8440627bdc9772b3b2083c65f44a51107d,Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine,"R E V I E W S
Oxytocin and vasopressin in the
human brain: social neuropeptides
for translational medicine
Andreas Meyer‑Lindenberg*, Gregor Domes‡, Peter Kirsch* and Markus Heinrichs‡"
618c13f1e13cc5346ed5c069a77acaa720b6a1a8,Learning More Universal Representations for Transfer-Learning,"SUBMISSION TO PAMI, SEPTEMBER 2018
Learning More Universal Representations
for Transfer-Learning
Youssef Tamaazousti, Hervé Le Borgne, Céline Hudelot, Mohamed-El-Amine Seddik
nd Mohamed Tamaazousti"
619eaaa60f0194d456591983a6f26b04cd9e9a52,"Munafo, M. (2017). Impaired Recognition of Basic Emotions from Facial Expressions in Young People with Autism Spectrum Disorder: Assessing the Importance of Expression","Griffiths, S. L., Jarrold, C., Penton-Voak, I., Woods, A., Skinner, A., &
Munafo, M. (2017). Impaired Recognition of Basic Emotions from Facial
Expressions in Young People with Autism Spectrum Disorder: Assessing the
Importance of Expression Intensity. Journal of Autism and Developmental
Disorders. DOI: 10.1007/s10803-017-3091-7
Publisher's PDF, also known as Version of record
Link to published version (if available):
0.1007/s10803-017-3091-7
Link to publication record in Explore Bristol Research
PDF-document
This is the final published version of the article (version of record). It first appeared online via Springer at
http://link.springer.com/article/10.1007%2Fs10803-017-3091-7. Please refer to any applicable terms of use of
the publisher.
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms"
61f4e08b938986ea80f711c73cadbc84e1811181,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
61764c068ad7d2ec988e6ec315d6ed2ed7489c2e,PhD Forum: Dynamic Camera Positioning and Reconfiguration for Multi Camera Networks,"Dynamic Camera Positioning and
Reconfiguration for Multi Camera
Networks
Krishna Reddy Konda
Advisor: Dr Nicola Conci
February 2015"
610c341985633b2d31368f8642519953c39ff7e8,Computational Load Balancing on the Edge in Absence of Cloud and Fog,"Computational Load Balancing on the Edge in Absence of Cloud
nd Fog
Citation for published version:
Sthapit, S, Thompson, J, Robertson, NM & Hopgood, J 2018, 'Computational Load Balancing on the Edge
in Absence of Cloud and Fog' IEEE Transactions on Mobile Computing. DOI: 10.1109/TMC.2018.2863301
Digital Object Identifier (DOI):
0.1109/TMC.2018.2863301
Link:
Link to publication record in Edinburgh Research Explorer
Document Version:
Peer reviewed version
Published In:
IEEE Transactions on Mobile Computing
General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
nd / or other copyright owners and it is a condition of accessing these publications that users recognise and
bide by the legal requirements associated with these rights.
Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
ontent complies with UK legislation. If you believe that the public display of this file breaches copyright please"
6180bc0816b1776ca4b32ced8ea45c3c9ce56b47,Fast Randomized Algorithms for Convex Optimization and Statistical Estimation,"Fast Randomized Algorithms for Convex Optimization and
Statistical Estimation
Mert Pilanci
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2016-147
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-147.html
August 14, 2016"
61f04606528ecf4a42b49e8ac2add2e9f92c0def,Deep Deformation Network for Object Landmark Localization,"Deep Deformation Network for Object Landmark
Localization
Xiang Yu, Feng Zhou and Manmohan Chandraker
NEC Laboratories America, Department of Media Analytics"
61c4b35443b152679c923d5db6c26daaec304172,Fast and stable human detection using multiple classifiers based on subtraction stereo with HOG features,"Fast and Stable Human Detection Using Multiple Classifiers
Based on Subtraction Stereo with HOG Features
Makoto Arie, Alessandro Moro, Yuma Hoshikawa, Toru Ubukata, Kenji Terabayashi, Kazunori Umeda"
6106028c73d22570a01212814e1e4f4edb4abed6,Counting moving people in crowds using motion statistics of feature-points,"Multimed Tools Appl
DOI 10.1007/s11042-013-1367-2
Counting moving people in crowds using motion
statistics of feature-points
Mahdi Hashemzadeh· Gang Pan· Min Yao
© Springer Science+Business Media New York 2013"
617a6935643615f09ef2b479609baa0d5f87cd67,To Be Taken At Face Value? Computerised Identification,"Information and Communications Technology Law
To Be Taken At Face Value?
Computerised Identification
Michael Bromby
Joseph Bell Centre for Forensic Statistics and Legal Reasoning
Glasgow Caledonian University and University of Edinburgh
Scientific  evidence  such  as  fingerprints,  blood,  hair  and  DNA  samples  are  often
presented  during  legal  proceedings.    Without  such  evidence,  a  description  provided  by
the  victim  or  any  eyewitnesses  is  often  the  only  means  to    identify  a  suspect.    With  the
dvent  of  closed  circuit  television  (CCTV),  many  crimes  are  now  recorded  by
ameras  in  the  public  or  private  domain,  leading  to  a  new  form  of  forensic
identification  –  facial  biometrics.  Decisions  on  how  to  view  and  interpret  biometric
evidence  are  important  for  both  prosecution  and  defence,  not  least  for  the  judge  and
jury  who  must  decide  the  case.    A  jury  may  accept  eyewitnesses  as  reliable  sources  of
evidence  more  readily
False
eyewitness  accounts  appear  reliable  when  confidently  presented  to  a  mock  jury.    The
decision-making  process  of  the  judge  and  jury  may  be  seriously  flawed  if  an
eyewitness  has  made  a  genuine  mistake.    Using  computerised  recognition,  the  judicial
decision  of  whether  to  accept  an  alibi  or  whether  to  accept  the  eyewitness  account"
614a7c42aae8946c7ad4c36b53290860f6256441,Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks,"Joint Face Detection and Alignment using
Multi-task Cascaded Convolutional Networks
Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, Senior Member, IEEE, and Yu Qiao, Senior Member, IEEE"
617b719e6c31cdfe7c5c485a755435b95f0c4991,Visual Classification of Images by Learning Geometric Appearances Through Boosting,"Visual Classification of Images by Learning
Geometric Appearances through Boosting
Martin Antenreiter, Christian Savu-Krohn, and Peter Auer
Chair of Information Technology (CiT)
University of Leoben, Austria"
6155d504d59c52dc3a6b8ad6aeae8bf249afd5ac,Analysis of Feature Fusion Based on HIK SVM and Its Application for Pedestrian Detection,Hindawi Publishing Corporation
61c07d7387dcbfb8fa697f15316e3b265d78a2fa,Multi-modal Approach for Affective Computing,"Multi-modal Approach for Affective Computing
Siddharth1,2, Tzyy-Ping Jung2 and Terrence J. Sejnowski2"
619f9c1552f8f4f7c5927a7369c79e34d6294083,A Volumetric / Iconic Frequency DomainRepresentation,"AVolumetric/IconicFrequencyDomain
RepresentationforObjects
withapplicationfor
PoseInvariantFaceRecognition
AppearedinIEEETrans.onPatternAnalysisandMachineIntelligence
Vol.,No.,May		,pp.	-.
JezekielBen-ArieandDibyenduNandy
DepartmentofElectricalEngineeringandComputerScience
TheUniversityofIllinoisatChicago
ContactAddress:
Dr.JezekielBen-Arie
TheUniversityofIllinoisatChicago
DepartmentofElectricalEngineeringandComputerScience(M/C)
SouthMorganStreetChicago,IL-
Phone:()		-
Fax:()		-
ThisworkwassupportedbytheNationalScienceFoundationunderGrantNo.IRI-		
ndGrantNo.IRI-		."
61b0cfd75f5bce59cf79abb7b602e404fa5584e7,Person Re-Identification by Semantic Region Representation and Topology Constraint,"IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
Person Re-Identification by Semantic Region
Representation and Topology Constraint
Jianjun Lei, Senior Member, IEEE, Lijie Niu, Huazhu Fu, Senior Member, IEEE, Bo Peng,
Qingming Huang, Fellow, IEEE, and Chunping Hou"
614f4f8fe47e7c0bcf64aa0ad39dc371e4b4ab7b,promoting access to White Rose research papers,"promoting access to White Rose research papers
Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/
This is an author produced version of a paper published in Journal of Autism
nd Developmental Disorders.
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/10325
Published paper
Freeth, M., Chapman, P., Ropar, D., Mitchell, P. (2010) Do gaze cues in complex
scenes capture and direct the attention of high functioning adolescents with ASD?
evidence from eye-tracking, Journal of Autism and Developmental Disorders (In
Press)
http://dx.doi.org/10.1007/s10803-009-0893-2
White Rose Research Online"
617253f275f14490c61dc9d8cb23ceb9c9d4ba35,A coarse-to-fine curvature analysis-based rotation invariant 3D face landmarking,"A coarse-to-fine curvature analysis-based rotation invariant 3D face
landmarking
Przemyslaw Szeptycki, Mohsen Ardabilian and Liming Chen"
61f0cb2e3fdc6a5d0719184e51d2dc483a945ac1,Bilinear Attention Networks,"Bilinear Attention Networks
Jin-Hwa Kim1∗, Jaehyun Jun2, Byoung-Tak Zhang2,3
SK T-Brain, 2Seoul National University, 3Surromind Robotics"
61b17f719bab899dd50bcc3be9d55673255fe102,Detecting Sarcasm in Multimodal Social Platforms,"Detecting Sarcasm in Multimodal Social Platforms
Rossano Schifanella
University of Turin
Corso Svizzera 185
0149, Turin, Italy
Paloma de Juan
Yahoo
29 West 43rd Street
New York, NY 10036
Joel Tetreault
Yahoo
29 West 43rd Street
New York, NY 10036
Liangliang Cao
Yahoo
29 West 43rd Street
New York, NY 10036
inc.com"
61bab86023de164bca3e35fc22944a7262970e1d,Child Facial Expression Detection,"CHILD FACIAL EXPRESSION
DETECTION
Eden Benhamou
Deborah Wolhandler
Supervisors:
Alon Zvirin
Michal Zivan
Spring 2018"
61dfebbb02dad16b56cd9e6c54b5da3ab41caf1c,Exploiting Local Class Information in Extreme Learning Machine,"Iosifidis, A., Tefas, A., & Pitas, I. (2014). Exploiting Local Class Information
in Extreme Learning Machine. Paper presented at International Joint
Conference on Computational Intelligence (IJCCI), Rome, Italy.
Peer reviewed version
Link to publication record in Explore Bristol Research
PDF-document
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms"
611f9faa6f3aeff3ccd674d779d52c4f9245376c,Multiresolution Models for Object Detection,"Multiresolution models for object detection
Dennis Park, Deva Ramanan, and Charless Fowlkes
UC Irvine, Irvine CA 92697, USA,"
0d1a87dad1e4538cc7bd3c923767c8bf1a9b779f,The Riemannian Geometry of Deep Generative Models,"The Riemannian Geometry of Deep Generative Models
Hang Shao
University of Utah
Salt Lake City, UT
Abhishek Kumar
IBM Research AI
Yorktown Heights, NY
P. Thomas Fletcher
University of Utah
Salt Lake City, UT"
0db787317ba0d63ec8f9918905e7db181a489026,Automatic Eye Localization in Color Images,"Automatic Eye Localization in Color Images
José Gilvan Rodrigues Maia1, Fernando de Carvalho Gomes1, Osvaldo de Souza2
Departamento de Computação – Universidade Federal do Ceará (UFC)
Depto de Engenharia de Teleinformática – Universidade Federal do Ceará (UFC)
60455-760 – Fortaleza – CE – Brasil
{gilvan,"
0d88ab0250748410a1bc990b67ab2efb370ade5d,Error handling in multimodal biometric systems using reliability measures,"Author(s) :
ERROR HANDLING IN MULTIMODAL BIOMETRIC SYSTEMS USING
RELIABILITY MEASURES  (ThuPmOR6)
(EPFL, Switzerland)
(EPFL, Switzerland)
(EPFL, Switzerland)
(EPFL, Switzerland)
Krzysztof Kryszczuk
Jonas Richiardi
Plamen Prodanov
Andrzej Drygajlo"
0d82013cbe9f65ddb34e5d99eab730fce4f0effe,A system based on sequence learning for event detection in surveillance video,"978-1-4799-2341-0/13/$31.00 ©2013 IEEE
ICIP 2013"
0d538084f664b4b7c0e11899d08da31aead87c32,Deformable Part Descriptors for Fine-Grained Recognition and Attribute Prediction,"Deformable Part Descriptors for
Fine-grained Recognition and Attribute Prediction
Ning Zhang1
Ryan Farrell1,2
Forrest Iandola1
ICSI / UC Berkeley 2Brigham Young University
Trevor Darrell1"
0dcdef6b8d97483f4d4dab461e1cb5b3c4d1fe1a,Probabilistic Semantic Inpainting with Pixel Constrained CNNs,"Probabilistic Semantic Inpainting with Pixel Constrained CNNs
Emilien Dupont
Suhas Suresha
Schlumberger Software Technology Innovation Center"
0dccc881cb9b474186a01fd60eb3a3e061fa6546,Effective face frontalization in unconstrained images,"Effective Face Frontalization in Unconstrained Images
Tal Hassner1, Shai Harel1 †, Eran Paz1 † and Roee Enbar2
The open University of Israel. 2Adience.
Figure 1: Frontalized faces. Top: Input photos; bottom: our frontalizations,
obtained without estimating 3D facial shapes.
“Frontalization” is the process of synthesizing frontal facing views of faces
ppearing in single unconstrained photos. Recent reports have suggested
that this process may substantially boost the performance of face recogni-
tion systems. This, by transforming the challenging problem of recognizing
faces viewed from unconstrained viewpoints to the easier problem of rec-
ognizing faces in constrained, forward facing poses. Previous frontalization
methods did this by attempting to approximate 3D facial shapes for each
query image. We observe that 3D face shape estimation from unconstrained
photos may be a harder problem than frontalization and can potentially in-
troduce facial misalignments. Instead, we explore the simpler approach of
using a single, unmodified, 3D surface as an approximation to the shape of
ll input faces. We show that this leads to a straightforward, efficient and
easy to implement method for frontalization. More importantly, it produces
esthetic new frontal views and is surprisingly effective when used for face
recognition and gender estimation."
0d96c9d14f079b7b8b6b56b4fa86f611a4ff237f,Semi-supervised low-rank mapping learning for multi-label classification,"Semi-supervised Low-Rank Mapping Learning for Multi-label Classification
Liping Jing1, Liu Yang1, Jian Yu1, Michael K. Ng2
Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University. 2Department of Mathematics, Hong Kong Baptist University.
With the rapid growth of online content such as images, videos, web pages,
it is crucial to design a scalable and effective classification system to au-
tomatically organize, store, and search the content. In conventional clas-
sification, each instance is assumed to belong to exactly one class among
finite number of candidate classes. However, in modern applications, an
instance can have multiple labels. For example, an image can be annotated
y many conceptual tags in semantic scene classification. Multi-label data
have ubiquitously occurred in many application domains: multimedia infor-
mation retrieval, tag recommendation, query categorization, gene function
prediction, medical diagnosis, drug discovery and marketing. An important
nd challenging research problem [1, 4] in multi-label learning is how to
exploit and make use of label correlations.
In this paper, we develop a novel method for multi-label learning when
there is only a small number of labeled data. Our main idea is to design
Semi-supervised Low-Rank Mapping (SLRM) from a feature space to a
label space based on given multi-label data. More specifically, the SLRM
model can be formularized as"
0d6b28691e1aa2a17ffaa98b9b38ac3140fb3306,Review of Perceptual Resemblance of Local Plastic Surgery Facial Images using Near Sets,"Review of Perceptual Resemblance of Local
Plastic Surgery Facial Images using Near Sets
Prachi V. Wagde1, Roshni Khedgaonkar2
,2 Department of Computer Technology,
YCCE Nagpur, India"
0dc2fdf1b97c76de1e7380e8126f8acc7d87e23a,Robust PCA Via Nonconvex Rank Approximation,"Robust PCA via Nonconvex Rank Approximation
Department of Computer Science, Southern Illinois University, Carbondale, IL 62901, USA
Zhao Kang, Chong Peng, Qiang Cheng
{zhao.kang, pchong,"
0d2a9f3357717e0a44eb82d5eabfc047cc4d46f1,Classifier Ensembles with Trajectory Under-Sampling for Face Re-Identification,"Classifier Ensembles with Trajectory Under-Sampling
for Face Re-Identification
Roghayeh Soleymani1, Eric Granger1 and Giorgio Fumera2
Laboratoire d’imagerie, de vision et d’intelligence artificielle, École de technologie supérieure,
Pattern Recognition and Applications Group, Dept. of Electrical and Electronic Engineering, University of
Université du Québec, Montreal, Canada
Cagliari,Cagliari, Italy
Keywords:
Person Re-Identification, Class Imbalance, Ensemble Methods."
0dab1ab19a44b73ce0fdd15014b635eb7362af3c,Reinforcement Cutting-Agent Learning for Video Object Segmentation,"Reinforcement Cutting-Agent Learning for Video Object Segmentation
Junwei Han1, Le Yang1, Dingwen Zhang1
, Xiaojun Chang3, Xiaodan Liang3
Northwestern Polytechincal University, 2Xidian University, 3Carnegie Mellon University"
0d7ddcf97b1341d8d4bbc4718f4ca3094e994a1f,Homographic Active Shape Models for View-Independent Facial Analysis,"Homographic Active Shape Models for View-Independent
Facial Analysis
Federico M. Sukno12 and Jos´e J. Guerrero32 and Alejandro F. Frangi1
Department of Technology, Pompeu Fabra University, Barcelona, Spain;
Aragon Institute of Engineering Research, University of Zaragoza, Spain;
Computer Science and System Engineering Department, University of Zaragoza, Spain"
0dd74bbda5dd3d9305636d4b6f0dad85d6e19572,Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach,"Heterogeneous Face Attribute Estimation:
A Deep Multi-Task Learning Approach
Hu Han, Member, IEEE, Anil K. Jain, Fellow, IEEE, Fang Wang,
Shiguang Shan, Senior Member, IEEE and Xilin Chen, Fellow, IEEE"
0d07db3510c7f9c2ceab65444cb8fc8ec49197b2,Learning-based Composite Metrics for Improved Caption Evaluation,"Learning-based Composite Metrics for Improved Caption Evaluation
Naeha Sharif, Lyndon White, Mohammed Bennamoun and Syed Afaq Ali Shah,
{naeha.sharif,
nd {mohammed.bennamoun,
The University of Western Australia.
5 Stirling Highway, Crawley, Western Australia"
0d130b5536bb1b909ff9a62737d768d4b4fab2f6,Semantic Segmentation with Scarce Data,"Semantic Segmentation with Scarce Data
Isay Katsman * 1 Rohun Tripathi * 1 Andreas Veit 1 Serge Belongie 1"
0d3882b22da23497e5de8b7750b71f3a4b0aac6b,Context is routinely encoded during emotion perception.,"Research Article
Context Is Routinely Encoded
During Emotion Perception
1(4) 595 –599
© The Author(s) 2010
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0956797610363547
http://pss.sagepub.com
Lisa Feldman Barrett1,2,3 and Elizabeth A. Kensinger1,3
Boston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos
Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School"
0d185e6de595bd3844909d3606e9218a498a9bd8,Trace optimization and eigenproblems in dimension reduction methods,"TRACE OPTIMIZATION AND EIGENPROBLEMS IN DIMENSION
REDUCTION METHODS
E. KOKIOPOULOU∗, J. CHEN†, AND Y. SAAD†"
0d90d046db16d3d5ce70590e6dab32cdd58928f6,A robust feature extraction algorithm based on class-Modular Image Principal Component Analysis for face verification,"978-1-4577-0539-7/11/$26.00 ©2011 IEEE
ICASSP 2011"
0d52f1ae438a395fadebf04990d0d1750cdd0218,Face Recognition in Various Illuminations,"Saurabh D. Parmar et al Int. Journal of Engineering Research and Applications          www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 5( Version 5), May 2014, pp.98-102
RESEARCH ARTICLE
Face Recognition in Various Illuminations
Saurabh D. Parmar, Vaishali J. Kalariya
Research Scholar, CE/IT Department-School of Engineering, R.K. University, Rajkot
Professor, CE/IT Department-School of Engineering, R.K. University, Rajkot
OPEN ACCESS"
0d760e7d762fa449737ad51431f3ff938d6803fe,LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems,"LCDet: Low-Complexity Fully-Convolutional Neural Networks for
Object Detection in Embedded Systems
Subarna Tripathi
UC San Diego ∗
Gokce Dane
Qualcomm Inc.
Byeongkeun Kang
UC San Diego
Vasudev Bhaskaran
Qualcomm Inc.
Truong Nguyen
UC San Diego"
0d30a662061a495e4b5aeb92a2edfac868b225ea,Quantification of Emotions for Facial Expression: Generation of Emotional Feature Space Using Self-Mapping,"Chapter 7
Quantification of Emotions for Facial Expression:
Generation of Emotional Feature Space Using Self-
Mapping
Masaki Ishii, Toshio Shimodate, Yoichi Kageyama,
Tsuyoshi Takahashi and Makoto Nishida
Additional information is available at the end of the chapter
http://dx.doi.org/10.5772/51136
. Introduction
Facial expression recognition for the purpose of emotional communication between humans
nd machines has been investigated in recent studies [1-7].
The shape (static diversity) and motion (dynamic diversity) of facial components, such as
the eyebrows, eyes, nose, and mouth, manifest expression. From the viewpoint of static di‐
versity, owing to the individual variation in facial configurations, it is presumed that a facial
expression pattern due to the manifestation of a facial expression includes subject-specific
features.  In  addition,  from  the  viewpoint  of  dynamic  diversity,  because  the  dynamic
hanges in facial expressions originate from subject-specific facial expression patterns, it is
presumed that the displacement vector of facial components has subject-specific features.
On the other hand, although an emotionally generated facial expression pattern of an indi‐
vidual is unique, internal emotions expressed and recognized by humans via facial expres‐"
0d48c282737793b234c56382053cc69cdddeccb0,A Poodle or a Dog? Evaluating Automatic Image Annotation Using Human Descriptions at Different Levels of Granularity,"Proceedings of the 25th International Conference on Computational Linguistics, pages 38–45,
Dublin, Ireland, August 23-29 2014."
0dd151d003ac9b7f3d6936ccdd5ff38fce76c29f,A Review and Comparison of Measures for Automatic Video Surveillance Systems,"Hindawi Publishing Corporation
EURASIP Journal on Image and Video Processing
Volume 2008, Article ID 824726, 30 pages
doi:10.1155/2008/824726
Research Article
A Review and Comparison of Measures for
Automatic Video Surveillance Systems
Axel Baumann, Marco Boltz, Julia Ebling, Matthias Koenig, Hartmut S. Loos, Marcel Merkel,
Wolfgang Niem, Jan Karl Warzelhan, and Jie Yu
Corporate Research, Robert Bosch GmbH, D-70049 Stuttgart, Germany
Correspondence should be addressed to Julia Ebling,
Received 30 October 2007; Revised 28 February 2008; Accepted 12 June 2008
Recommended by Andrea Cavallaro
Today’s video surveillance systems are increasingly equipped with video content analysis for a great variety of applications.
However, reliability and robustness of video content analysis algorithms remain an issue. They have to be measured against
ground truth data in order to quantify the performance and advancements of new algorithms. Therefore, a variety of measures
have been proposed in the literature, but there has neither been a systematic overview nor an evaluation of measures for
specific video analysis tasks yet. This paper provides a systematic review of measures and compares their effectiveness for specific
spects, such as segmentation, tracking, and event detection. Focus is drawn on details like normalization issues, robustness, and
representativeness. A software framework is introduced for continuously evaluating and documenting the performance of video"
0d0cee830772c3b2b274bfb5c3ad0ee42d8a0a57,Multimodal Convolutional Neural Networks for Matching Image and Sentence,"Multimodal Convolutional Neural Networks for Matching Image and Sentence
Lin Ma
Zhengdong Lu
Lifeng Shang
Hang Li
{Lu.Zhengdong, Shang.Lifeng,
Noah’s Ark Lab, Huawei Technologies"
0dd72887465046b0f8fc655793c6eaaac9c03a3d,Real-Time Head Orientation from a Monocular Camera Using Deep Neural Network,"Real-time Head Orientation from a Monocular
Camera using Deep Neural Network
Byungtae Ahn, Jaesik Park, and In So Kweon
KAIST, Republic of Korea"
0dc34e186e8680336e88c3b5e73cde911a8774b8,Image Classification Using Naive Bayes Classifier With Pairwise Local Observations,"JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 32, XXXX-XXXX (2017)
Image Classification Using Naive Bayes Classifier With
Pairwise Local Observations
SHIH-CHUNG HSU1, I-CHIEH CHEN1 AND CHUNG-LIN HUANG2
Department of Electrical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan
Department of M-Commerce and Multimedia Applications, Asia Univ., Tai-Chung, Taiwan
E-mail:
We propose a pairwise local observation-based Naive Bayes (NBPLO) classifier for
image classification. First, we find the salient regions (SRs) and the Keypoints (KPs) as
the local observations. Second, we describe the discriminative pairwise local observations
using Bag-of-features (BoF) histogram. Third, we train the object class models by using
random forest to develop the NBPLO classifier for image classification. The two major
ontributions in this paper are multiple pairwise local observations and regression object
lass model training for NBPLO classifier. In the experiments, we test our method using
Scene-15 and Caltech-101 database and compare the results with the other methods.
Keywords: Local observation-based Naive Bayes classifier (NBPLO), Salient Region(SR),
Keypoint(KP), Bag-of-feature(BoF).
. INTRODUCTION
Image classification has been a challenging unsolved problem due to the complexity of
image  contents.  It  has  been  a  popular  research  subject  of  many  recently  published  re-"
0d0199e48d22ff4b80c983e3b28532f908467da7,Linear regression motion analysis for unsupervised temporal segmentation of human actions,"Linear Regression Motion Analysis for Unsupervised Temporal
Segmentation of Human Actions
Simon Jones, Ling Shao
Department of Electronic and Electrical Engineering
The University of Shef‌f‌ield, Mappin St, Shef‌f‌ield, S1 3JD, UK"
0d30066576c029cd888d7c759349379bdb0e88c2,"How Much Information Kinect Facial Depth Data Can Reveal About Identity, Gender and Ethnicity?","How Much Information Kinect Facial Depth
Data Can Reveal about Identity, Gender and
Ethnicity?
Elhocine Boutellaaa;b, Messaoud Bengherabia, Samy Ait-Aoudiab, Abdenour
Hadidc
Centre de D(cid:19)eveloppement des Technologies Avanc(cid:19)ees (DZ),
Ecole Nationale Sup(cid:18)erieure d’Informatique (DZ),
University of Oulu (FI)"
0d076edd62e258316bc310fafcec88db3ab85434,Automatic detection and tracking of pedestrians from a moving stereo rig,"Automatic detection and tracking of pedestrians from a
moving stereo rig
Konrad Schindlera, Andreas Essb, Bastian Leibec, Luc Van Goolb,d
Photogrammetry and Remote Sensing, ETH Z¨urich, Switzerland
Computer Vision Lab, ETH Z¨urich, Switzerland
UMIC research centre, RWTH Aachen, Germany
dESAT/PSI–VISICS, IBBT, KU Leuven, Belgium"
0da611ca979327840161df87564fd07299c268b5,Bodyprint: Biometric User Identification on Mobile Devices Using the Capacitive Touchscreen to Scan Body Parts,"Bodyprint
Biometric User Identification on Mobile Devices
Using the Capacitive Touchscreen to Scan Body Parts
Christian Holz
Senaka Buthpitiya
Marius Knaust"
0d82ac80275283c3dd26aca9e629ee6a9ca8a07a,An object-based semantic world model for long-term change detection and semantic querying,"An Object-Based Semantic World Model for
Long-Term Change Detection and Semantic Querying
Julian Mason and Bhaskara Marthi"
0dfb47e206c762d2f4caeb99fd9019ade78c2c98,Custom Pictorial Structures for Re-identification,"CHENG et al.: CUSTOM PICTORIAL STRUCTURES FOR RE-IDENTIFICATION
Custom Pictorial Structures for
Re-identification
Dong Seon Cheng1
Marco Cristani1,2
Michele Stoppa2
Loris Bazzani1
Vittorio Murino1,2
http://profs.sci.univr.it/~swan
Dipartimento di Informatica
University of Verona
Italy
Istituto Italiano di Tecnologia
Via Morego, 30
6163 Genova, Italy"
0d8e7cda7d8a2ff737c0ad72f31dfd4d80d3a09a,Network Structure & Information Advantage,"A research and education initiative at the MIT
Sloan School of Management
Network Structure & Information Advantage
Paper 235
Sinan Aral
Marshall Van Alstyne
July 2007
For more information,
please visit our website at  http://digital.mit.edu
or contact the Center directly at
or 617-253-7054"
0d21472dbf20d4c1bd48a15267b4a59eff80e309,Multi-component Models for Object Detection,"Multi-component Models for Object Detection
Chunhui Gu1, Pablo Arbel´aez2, Yuanqing Lin3, Kai Yu4, and Jitendra Malik2
Google Inc., Mountain View, CA, USA
UC Berkeley, Berkeley, CA, USA
NEC Labs America, Cupertino, CA, USA
Baidu Inc., Beijing, China"
0d0041aefb16c5f7b1e593b440bb3df7b05b411c,Secure JPEG scrambling enabling privacy in photo sharing,"Secure JPEG Scrambling Enabling
Privacy in Photo Sharing
Lin Yuan, Pavel Korshunov, Touradj Ebrahimi
Multimedia Signal Processing Group, EPFL
De-ID workshop, Ljubljana, Slovenia
8/14/2015
Workshop on De-identification for Privacy Protection in Multimedia"
0d33b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a,Detection and Tracking of Faces in Videos: A Review of Related Work,"Detection and Tracking of Faces in Videos: A Review
© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939
of Related Work
Seema Saini, 2 Parminder Sandal
Student, 2Assistant Professor
, 2Dept. of Electronics & Comm., S S I E T, Punjab, India
________________________________________________________________________________________________________"
0d8a2034bbdefa214d8debecc704cadc5b9ec6e8,Submitted for the Degree of Doctor of Philosophy at the University of Sussex,"A University of Sussex DPhil thesis
Available online via Sussex Research Online:
http://sro.sussex.ac.uk/
This thesis is protected by copyright which belongs to the author.
This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author
The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author
When referring to this work, full bibliographic details including the
uthor, title, awarding institution and date of the thesis must be given
Please visit Sussex Research Online for more information and further details"
0dd72a3522b99aedea83b47c5d7b33a1df058fd0,A Set of Selected SIFT Features for 3D Facial Expression Recognition,"A Set of Selected SIFT Features for 3D Facial
Expression Recognition
Stefano Berretti, Alberto Del Bimbo, Pietro Pala, Boulbaba Ben Amor,
Daoudi Mohamed
To cite this version:
Stefano Berretti, Alberto Del Bimbo, Pietro Pala, Boulbaba Ben Amor, Daoudi Mohamed. A Set
of Selected SIFT Features for 3D Facial Expression Recognition. 20th International Conference on
Pattern Recognition, Aug 2010, Istanbul, Turkey. pp.4125 - 4128, 2010. <hal-00829354>
HAL Id: hal-00829354
https://hal.archives-ouvertes.fr/hal-00829354
Submitted on 3 Jun 2013
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,"
0da4c3d898ca2fff9e549d18f513f4898e960aca,The Headscarf Effect Revisited: Further Evidence for a Culture-Based Internal Face Processing Advantage.,"Wang, Y., Thomas, J., Weissgerber, S. C., Kazemini, S., Ul-Haq, I., &
Quadflieg, S. (2015). The Headscarf Effect Revisited: Further Evidence for a
36. 10.1068/p7940
Peer reviewed version
Link to published version (if available):
0.1068/p7940
Link to publication record in Explore Bristol Research
PDF-document
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html
Take down policy
Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
nd include the following information in your message:
• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint"
95ace502ba23a8a5543b882937de23b892112cca,Facial Dynamics Interpreter Network: What Are the Important Relations Between Local Dynamics for Facial Trait Estimation?,"Facial Dynamics Interpreter Network: What are
the Important Relations between Local
Dynamics for Facial Trait Estimation?
Seong Tae Kim and Yong Man Ro*
School of Electrical Engineering, KAIST, Daejeon, Republic of Korea"
95f990600abb9c8879e4f5f7cd03f3d696fcdec4,An Online Algorithm for Constrained Face Clustering in Videos,"Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.
Persistent WRAP URL:
http://wrap.warwick.ac.uk/109574
How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.
Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.
Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
eing made available.
Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
ibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way."
956317de62bd3024d4ea5a62effe8d6623a64e53,Lighting Analysis and Texture Modification of 3D Human Face Scans,"Lighting Analysis and Texture Modification of 3D Human
Face Scans
Author
Zhang, Paul, Zhao, Sanqiang, Gao, Yongsheng
Published
Conference Title
Digital Image Computing Techniques and Applications
https://doi.org/10.1109/DICTA.2007.4426825
Copyright Statement
© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/
republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.
Downloaded from
http://hdl.handle.net/10072/17889
Link to published version
http://www.ieee.org/
Griffith Research Online
https://research-repository.griffith.edu.au"
9501db000474dbd182579d311dfb1b1ab8fa871f,Supplementary of Multi-scale Deep Learning Architectures for Person Re-identification,"Supplementary of Multi-scale Deep Learning Architectures for Person
Re-identification
Xuelin Qian1 Yanwei Fu2,5,* Yu-Gang Jiang1,3 Tao Xiang4 Xiangyang Xue1,2
Shanghai Key Lab of Intelligent Info. Processing, School of Computer Science, Fudan University;
School of Data Science, Fudan University; 3Tencent AI Lab;
Queen Mary University of London; 5University of Technology Sydney;
. Multi-scale stream layers
Multi-scale-A layer (Fig. 1), analyses the data stream with
the size 1 × 1, 3 × 3 and 5 × 5 of receptive field. Further-
more, in order to increase both depth and width of this layer,
we split the filter size of 5 × 5 into two 3 × 3 streams cas-
aded (i.e. stream-4 and stream-3 in Tab 1 and Fig. 1). The
weights of each stream are also tied with the corresponding
stream in another branch. Such a design art is, in general,
inspired by, and yet different from the inception architec-
tures [11, 12, 10]. The key difference lies in the weights
which are not tied between any two streams from the same
ranch, but are tied between the two corresponding streams
of different branches.
Reduction layer (Fig. 2) further passes the data stream"
95296302a7fc82edf782cece082d7319cfa584b7,Detection-free Bayesian Multi-object Tracking via Spatio-Temporal Video Bundles Grouping,"Detection-free Bayesian Multi-object Tracking
via Spatio-Temporal Video Bundles Grouping
Technical Report, November 2013
Yongyi Lu, Liang Lin, Yuanlu Xu, Zefeng Lai"
9595a267de2b0ecf7e4e2962a606c8854551e203,On the Relation between Color Image Denoising and Classification,"On the Relation between Color Image Denoising
nd Classification
Jiqing Wu, Radu Timofte, Member, IEEE, Zhiwu Huang, Member, IEEE, and Luc Van Gool, Member, IEEE"
959bcb16afdf303c34a8bfc11e9fcc9d40d76b1c,Temporal Coherency based Criteria for Predicting Video Frames using Deep Multi-stage Generative Adversarial Networks,"Temporal Coherency based Criteria for Predicting
Video Frames using Deep Multi-stage Generative
Adversarial Networks
Prateep Bhattacharjee1, Sukhendu Das2
Visualization and Perception Laboratory
Department of Computer Science and Engineering
Indian Institute of Technology Madras, Chennai, India"
95be490aef44da67ca1cef76b16df14b6e40c421,Learning Cross-View Binary Identities for Fast Person Re-Identification,"Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)
Learning Cross-View Binary Identities
for Fast Person Re-Identification
Feng Zheng1, Ling Shao2
Department of Electronic and Electrical Engineering, The University of Sheffield.
Department of Computer Science and Digital Technologies, Northumbria University."
95593fb20df8ce1273cebe0690cf2cdab054b9b5,Robust Multi-image HDR Reconstruction for the Modulo Camera,
951f21a5671a4cd14b1ef1728dfe305bda72366f,Use of l2/3-norm Sparse Representation for Facial Expression Recognition,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358
Use of ℓ2/3-norm Sparse Representation for Facial
Expression Recognition
Sandeep Rangari1, Sandeep Gonnade2
MATS University, MATS School of Engineering and Technology, Arang, Raipur, India
MATS University, MATS School of Engineering and Technology, Arang, Raipur, India
three
to  discriminate
represents  emotion,"
95aef5184b89daebd0c820c8102f331ea7cae1ad,Recognising facial expressions in video sequences,"Recognising facial expressions in video sequences
Jos´e M. Buenaposada1, Enrique Mu˜noz2⋆, Luis Baumela2
ESCET, Universidad Rey Juan Carlos
C/Tulip´an s/n, 28933 M´ostoles, Spain
Facultad Inform´atica, Universidad Polit´ecnica de Madrid
Campus Montegancedo s/n, 28660 Boadilla del Monte, Spain
http://www.dia.fi.upm.es/~pcr
Received: 7 Jan 2007 / Accepted: 10 July 2007/ Online: 18 Oct 2007"
95225bab187483e37823daab5c503f6b327fb008,Improved MinMax Cut Graph Clustering with Nonnegative Relaxation,"Improved MinMax Cut Graph Clustering with
Nonnegative Relaxation
Feiping Nie, Chris Ding, Dijun Luo, and Heng Huang
Department of Computer Science and Engineering,
University of Texas, Arlington, America"
9588a42bff63fb36015e10fac9f3121154c3ab1d,Explaining Potential Risks in Traffic Scenes by Combining Logical Inference and Physical Simulation,"International Journal of Machine Learning and Computing, Vol. 6, No. 5, October 2016
Explaining Potential Risks in Traffic Scenes by Combining
Logical Inference and Physical Simulation
Ryo Takahashi, Naoya Inoue, Yasutaka Kuriya, Sosuke Kobayashi, and Kentaro Inui
from  observation  and"
9547a7bce2b85ef159b2d7c1b73dea82827a449f,Facial expression recognition using Gabor motion energy filters,"Facial Expression Recognition Using Gabor Motion Energy Filters
Tingfan Wu
Dept. Computer Science Engineering
UC San Diego
Marian S. Bartlett
Javier R. Movellan
Institute for Neural Computation
UC San Diego"
95a9e256c8f8bbce0d86199cacea92b15004dd45,Using Semantic Similarity for Multi-Label Zero-Shot Classification of Text Documents,"Using Semantic Similarity for Multi-Label Zero-Shot
Classification of Text Documents
Jinseok Nam2,3
Sappadla Prateek Veeranna1
Johannes F¨urnkranz2 ∗
Eneldo Loza Menc´ıa2
- Birla Institute of Technology and Science - Pilani - India
- Knowledge Engineering Group - TU Darmstadt - Germany
- Knowledge Discovery in Scientific Literature - DIPF - Germany"
9513503867b29b10223f17c86e47034371b6eb4f,Comparison of Optimisation Algorithms for Deformable Template Matching,"Comparison of optimisation algorithms for
deformable template matching
Vasileios Zografos
Link¨oping University, Computer Vision Laboratory
ISY, SE-581 83 Link¨oping, SWEDEN"
95ed2269c4a13771cc8dfe0ff2d4d6a7f4d73033,Deep Learning for Domain Adaption: Engagement Recognition,"Engagement Recognition using Deep Learning and Facial Expression
Omid Mohamad Nezami , Len Hamey , Deborah Richards , and Mark Dras
Macquarie University, Sydney, NSW, Australia"
956c634343e49319a5e3cba4f2bd2360bdcbc075,A novel incremental principal component analysis and its application for face recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006
A Novel Incremental Principal Component Analysis
nd Its Application for Face Recognition
Haitao Zhao, Pong Chi Yuen, Member, IEEE, and James T. Kwok, Member, IEEE"
95a835cdb5dc46e4de071865f9dccdaf9ec944ad,Euclidean and geodesic distance between a facial feature points in two-dimensional face recognition system,"The International Arab Journal of Information Technology, Vol. 14, No. 4A, Special Issue 2017                                            565
Euclidean and Geodesic Distance between a Facial
Feature Points in Two-Dimensional Face
Recognition System
Rachid Ahdid1,2, Said Safi1, and Bouzid Manaut2
Department of Mathematics and Informatics, Sultan Moulay Slimane University, Morocco
Poladisciplinary Faculty, Sultan Moulay Slimane University, Morocco"
95deb62b82ede5c6732c5c498d3f9452866eaba7,Unsupervised Video Understanding by Reconciliation of Posture Similarities,"Unsupervised Video Understanding by Reconciliation of Posture Similarities
Timo Milbich, Miguel Bautista, Ekaterina Sutter, Bj¨orn Ommer
Heidelberg Collaboratory for Image Processing
IWR, Heidelberg University, Germany
{timo.milbich, miguel.bautista, ekaterina.sutter,"
951af0494e8812fdb7d578b68c342ab876acb27e,THÈSE DE DOCTORAT DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN présentée par JULIEN MAIRAL pour obtenir le grade de DOCTEUR DE L’ÉCOLE NORMALE,"THÈSEDEDOCTORATDEL’ÉCOLENORMALESUPÉRIEUREDECACHANprésentéeparJULIENMAIRALpourobtenirlegradedeDOCTEURDEL’ÉCOLENORMALESUPÉRIEUREDECACHANDomaine:MATHÉMATIQUESAPPLIQUÉESSujetdelathèse:Représentationsparcimonieusesenapprentissagestatistique,traitementd’imageetvisionparordinateur—Sparsecodingformachinelearning,imageprocessingandcomputervisionThèseprésentéeetsoutenueàCachanle30novembre2010devantlejurycomposéde:FrancisBACHDirecteurderecherche,INRIAParis-RocquencourtDirecteurdethèseStéphaneMALLATProfesseur,EcolePolytechnique,New-YorkUniversityRapporteurEricMOULINESProfesseur,Télécom-ParisTechExaminateurBrunoOLSHAUSENProfesseur,UniversityofCalifornia,BerkeleyRapporteurJeanPONCEProfesseur,EcoleNormaleSupérieure,ParisDirecteurdethèseGuillermoSAPIROProfesseur,UniversityofMinnesotaExaminateurJean-PhilippeVERTDirecteurderecherche,EcolesdesMines-ParisTechExaminateurThèsepréparéeauseindel’équipeWillowdulaboratored’informatiquedel’ÉcoleNormaleSupérieure,Paris.(INRIA/ENS/CNRSUMR8548).23avenued’Italie,75214Paris."
95ea564bd983129ddb5535a6741e72bb1162c779,Multi-Task Learning by Deep Collaboration and Application in Facial Landmark Detection,"Multi-Task Learning by Deep Collaboration and
Application in Facial Landmark Detection
Ludovic Trottier
Philippe Giguère
Brahim Chaib-draa
Laval University, Québec, Canada"
9561c7ef4f89019eb7fb779a7b18ef810964b491,Real-Time Object Segmentation Using a Bag of Features Approach,"Real-Time Object Segmentation Using a
Bag of Features Approach
David ALDAVERT a,1, Arnau RAMISA c,b, Ramon LOPEZ DE MANTARAS b and
Ricardo TOLEDO a
Computer Vision Center, Dept. Ciencies de la Computació, Universitat Autonòma de
Barcelona, Catalunya, Spain
Institut d’Investigació d’Inteligencia Artificial (IIIA-CSIC), Campus UAB, Catalunya,
Spain
INRIA-Grenoble, LEAR Team, France"
95029b1041a169e5b4e1ad79f60bfedb7a6844d0,Learning Superpixels with Segmentation-Aware Affinity Loss,"Learning Superpixels with Segmentation-Aware Affinity Loss
Wei-Chih Tu1 Ming-Yu Liu2 Varun Jampani2 Deqing Sun2 Shao-Yi Chien1 Ming-Hsuan Yang2
Jan Kautz2
National Taiwan University 2NVIDIA 3UC Merced"
958c599a6f01678513849637bec5dc5dba592394,Generalized Zero-Shot Learning for Action Recognition with Web-Scale Video Data,"Noname manuscript No.
(will be inserted by the editor)
Generalized Zero-Shot Learning for Action
Recognition with Web-Scale Video Data
Kun Liu · Wu Liu · Huadong Ma ·
Wenbing Huang · Xiongxiong Dong
Received: date / Accepted: date"
950cfcbaafad1e2aaae43728fe499d8a4c90f6ec,Object Instance Detection and Dynamics Modeling in a Long-Term Mobile Robot Context,"Object Instance Detection and Dynamics Modeling in
Long-Term Mobile Robot Context
NILS BORE
Doctoral Thesis
Stockholm, Sweden 2017"
955dc25def91eff6bfa5698249bb189ccfa83367,Geometric Model for Human Body Orientation Classification,"CommIT (Communication and Information Technology) Journal, Vol. 9 No. 1, pp. 29–33
GEOMETRIC MODEL FOR HUMAN
BODY ORIENTATION CLASSIFICATION
Igi Ardiyanto
Department of Electrical Engineering and Information Technology,
Faculty of Engineering, Gadjah Mada University
Yogyakarta 55281, Indonesia
Email:"
95aa80cf672771730393e1d7d263ab6f6d6e535d,Learning articulated body models for people re-identification,"Learning Articulated Body Models
for People Re-identification
Davide Baltieri, Roberto Vezzani, Rita Cucchiara
University of Modena and Reggio Emilia
Via Vignolese 905, 41125 Modena - Italy
{davide.baltieri, roberto.vezzani,"
59b11427853b7892a9f0d8ab6683d96ce59c2ff2,A Multi-Face Challenging Dataset for Robust Face Recognition,"A Multi-Face Challenging Dataset for Robust Face Recognition
Shiv Ram Dubey and Snehasis Mukherjee"
59fc69b3bc4759eef1347161e1248e886702f8f7,Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition,"Final Report of Final Year Project
HKU-Face: A Large Scale Dataset for
Deep Face Recognition
Haoyu Li
035141841
COMP4801 Final Year Project
Project Code: 17007"
59bdd317abe8d87fb525eb4e3197a9311e2766e7,Demystifying Unsupervised Feature Learning a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"DEMYSTIFYING UNSUPERVISED FEATURE LEARNING
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Adam Coates
September 2012"
59ef1efb9239a101c2782fab8adc09b7af07d336,Cross-Domain Image Matching with Deep Feature Maps,"Cross-Domain Image Matching with Deep Feature Maps
Bailey Kong · James Supan˘ci˘c, III · Deva Ramanan · Charless C.
Fowlkes
Received: date / Accepted: date"
59b71e19819c1c6aee98020b34bf92e605f33819,Max-min convolutional neural networks for image classification,"MAX-MIN CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION
Michael Blot, Matthieu Cord, Nicolas Thome
Sorbonne Universit´es, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu 75005 Paris"
59cca46a0442fc6bd0525e5f13cef5b5a9747d34,Cross-Domain Shoe Retrieval With a Semantic Hierarchy of Attribute Classification Network,"Cross-Domain Shoe Retrieval With a Semantic
Hierarchy of Attribute Classification Network
Huijing Zhan, Student Member, IEEE, Boxin Shi, Member, IEEE, and Alex C. Kot, Fellow, IEEE"
59bfeac0635d3f1f4891106ae0262b81841b06e4,Face Verification Using the LARK Face Representation,"Face Verification Using the LARK Face
Representation
Hae Jong Seo, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE,"
59efb1ac77c59abc8613830787d767100387c680,DIF : Dataset of Intoxicated Faces for Drunk Person Identification,"DIF : Dataset of Intoxicated Faces for Drunk Person
Identification
Devendra Pratap Yadav
Indian Institute of Technology Ropar
Abhinav Dhall
Indian Institute of Technology Ropar"
59b21f61ac46e1f982cbd9f49cb855ba5fcd3c45,CCNY at TRECVID 2014: Surveillance Event Detection,"CCNY at TRECVID 2014: Surveillance Event Detection
Yang Xian, Xuejian Rong, Xiaodong Yang, and Yingli Tian
Graduate Center and City College
City University of New York
{xrong, xyang02,"
59f8d0e79eb02c30a5f872038129c4b5dd9bc73a,Design of a Face Recognition System for Security Control,"International Conference on African Development Issues (CU-ICADI) 2015: Information and Communication Teclmology Track
Design of a Face Recognition System for Security
Control
Ambrose A. Azeta, Nicholas A.  Omoregbe, Adewole Adewumi, Dolapo Oguntade
Department of Computer and Information Sciences,
Covenant University,
Ota, Ogun-State, Nigeria"
598f330fc061852162f2aaaf59ea9a3a55d3f6f7,A new strategy based on spatiogram similarity association for multi-pedestrian tracking,"A NEW STRATEGY BASED ON SPATIOGRAM
SIMILARITY ASSOCIATION FOR
MULTI-PEDESTRIAN TRACKING
Nabila MANSOURI1 5, Yousra BEN JEMAA2, Cina MOTAMED 3, Antonio PINTI 4 and Eric WATELAIN1 6
University of Lille North of France, UVHC, LAMIH laboratory
e-mail:
University of Sfax-Tunisie, U2S laboratory
e-mail:
University of Lille North of France, ULCO, LISIC laboratory
e-mail:
University of Orleans -France, I3MTO laboratory
e-mail:
5 University of Sfax-Tunisie, ReDCAD laboratory
6 University of south Toulon-Var, HandiBio laboratory"
595d0fe1c259c02069075d8c687210211908c3ed,A Survey on Learning to Hash,"A Survey on Learning to Hash
Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and Heng Tao Shen"
5921d9a8e143b6d82a2722d9ee27bafa363475f0,Driving Policy Transfer via Modularity and Abstraction,
599b7e1b4460c8ad77def2330ec76a2e0dfedb84,Robust Subspace Clustering via Smoothed Rank Approximation,"Robust Subspace Clustering via Smoothed Rank
Approximation
Zhao Kang, Chong Peng, and Qiang Cheng∗"
59eefa01c067a33a0b9bad31c882e2710748ea24,Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition,"IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
Fast Landmark Localization
with 3D Component Reconstruction and CNN for
Cross-Pose Recognition
Gee-Sern (Jison) Hsu, Hung-Cheng Shie, Cheng-Hua Hsieh"
59e266adc3525b4325156f0cc0052c1d76b1c9ae,Contextual Spatial Analysis and Processing for Visual Surveillance Applications,"Contextual Spatial Analysis and Processing
for Visual Surveillance Applications
Vikas Reddy
A thesis submitted for the degree of Doctor of Philosophy at
The University of Queensland in September 2011
(revised in March 2012)
School of Information Technology and Electrical Engineering"
5911dcef05ffec02cc1dd88ec6feb1f1e0e8bdcb,Happy Companion: A System of Multimodal Human-Computer Affective Interaction,"Happy Companion: A System of Multimodal Human-Computer
Affective Interaction
Jia Jia1,2,3, Lianhong Cai1,2,3, Sirui Wang4, Xiaolan Fu4
State Key Laboratory on Intelligent Technology and Systems"
5955bb0325ec4dd3b56759aeb96cc9c18b09bf3e,Self-Supervised Depth Learning Improves Semantic Segmentation,"Self-Supervised Depth Learning Improves Semantic Segmentation
Huaizu Jiang, Erik Learned-Miller
Univ. of Massachusetts, Amherst
Amherst MA 01003
. Introduction
How does a newborn agent learn about the world?
When an animal (or robot) moves, its visual system is
exposed to a shower of information. Usually, the speed
with which something moves in the image is inversely
proportional to its depth.1 As an agent continues to
experience visual stimuli under its own motion, it is
natural for it to form associations between the appear-
nce of objects and their relative motion in the image.
For example, an agent may learn that objects that look
like mountains typically don’t move in the image (or
hange appearance much) as the agent moves. Objects
like nearby cars and people, however, appear to move
rapidly in the image as the agent changes position rel-
tive to them. This continuous pairing of images with
motion acts as a kind of “automatic” supervision that"
591bd78a06814e75cae7cdef50ad91cf22e66c23,3D face recognition based on evolution of iso-geodesic distance curves,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE
ICASSP 2010"
59d225486161b43b7bf6919b4a4b4113eb50f039,Complex Event Recognition from Images with Few Training Examples,"Complex Event Recognition from Images with Few Training Examples
Unaiza Ahsan∗
Chen Sun∗∗
James Hays∗
Irfan Essa∗
*Georgia Institute of Technology
**University of Southern California1"
59945763707557baace208253c029265b4b6e0a9,Face Recognition under Partial Occlusion and Small Dense Noise a Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Technology,"FACE RECOGNITION UNDER PARTIAL
OCCLUSION AND SMALL DENSE NOISE
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MASTER OF TECHNOLOGY
ELECTRONIC SYSTEMS AND COMMUNICATIONS
ROHIT KUMAR
ROLL NO. -212EE1210
Department of Electrical Engineering
National Institute of Technology, Rourkela-769008
| P a g e"
5945464d47549e8dcaec37ad41471aa70001907f,Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos,"Noname manuscript No.
(will be inserted by the editor)
Every Moment Counts: Dense Detailed Labeling of Actions in Complex
Videos
Serena Yeung · Olga Russakovsky · Ning Jin · Mykhaylo Andriluka · Greg Mori ·
Li Fei-Fei
Received: date / Accepted: date"
59c9d416f7b3d33141cc94567925a447d0662d80,Matrix factorization over max-times algebra for data mining,"Universität des Saarlandes
Max-Planck-Institut für Informatik
Matrix factorization over max-times
lgebra for data mining
Masterarbeit im Fach Informatik
Master’s Thesis in Computer Science
von / by
Sanjar Karaev
ngefertigt unter der Leitung von / supervised by
Dr. Pauli Miettinen
egutachtet von / reviewers
Dr. Pauli Miettinen
Prof. Gerhard Weikum
November 2013
UNIVERSITASSARAVIENSIS"
59a35b63cf845ebf0ba31c290423e24eb822d245,The FaceSketchID System: Matching Facial Composites to Mugshots,"The FaceSketchID System: Matching Facial
Composites to Mugshots
Scott J. Klum, Student Member, IEEE, Hu Han, Member, IEEE, Brendan F. Klare, Member, IEEE,
nd Anil K. Jain, Fellow, IEEE
tedious, and may not"
598ccf73ba504a31d65b50c7ede8982c3b1d9192,Learning a Family of Detectors,"LEARNING A FAMILY OF DETECTORS
QUAN YUAN
Dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
BOSTON
UNIVERSITY"
59f325e63f21b95d2b4e2700c461f0136aecc171,Kernel sparse representation with local patterns for face recognition,"978-1-4577-1302-6/11/$26.00 ©2011 IEEE
FOR FACE RECOGNITION
. INTRODUCTION"
59b202ccc01bae85a88ad0699da7a8ae6aa50fef,"Looking at Vehicles on the Road: A Survey of Vision-Based Vehicle Detection, Tracking, and Behavior Analysis","Looking at Vehicles on the Road: A Survey of
Vision-Based Vehicle Detection, Tracking,
nd Behavior Analysis
Sayanan Sivaraman, Member, IEEE, and Mohan Manubhai Trivedi, Fellow, IEEE"
590065c40574dc797e5aeb380d6e6dab79fad6e5,Face Detection Using Boosted Jaccard Distance-based Regression,"FACE DETECTION USING BOOSTED
JACCARD DISTANCE-BASED REGRESSION
Cosmin Atanasoaei        Chris McCool
Sébastien Marcel
Idiap-RR-02-2012
JANUARY 2012
Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12   www.idiap.ch"
590a52702bdf7f9522cff02f477de1fa98fc2ff3,"Visual tracking of hands, faces and facial features of multiple persons","DOI 10.1007/s00138-012-0409-5
ORIGINAL PAPER
Visual tracking of hands, faces and facial features
of multiple persons
Haris Baltzakis · Maria Pateraki · Panos Trahanias
Received: 17 November 2010 / Revised: 9 December 2011 / Accepted: 18 January 2012
© Springer-Verlag 2012"
590c277e8ca10f2c2d7e32eb4a9dc61078a67b96,Statistical Approaches to Face Recognition a Qualifying Examination Report,"StatisticalApproachesTo
FaceRecognition
AQualifyingExaminationReport
AraV.Ne(cid:12)an
PresentedtotheQualifyingExaminationCommittee
InPartialFul(cid:12)llmentoftheRequirementsforthe
DegreeofDoctorofPhilosophyinElectricalEngineering
Dr.AlbinJ.Gasiewski
Dr.Je(cid:11)Geronimo
Dr.MonsonH.HayesIII
Dr.RussellM.Mersereau
Dr.RonaldW.Schafer
GeorgiaInstituteofTechnology
SchoolofElectricalEngineering
December,		"
59031a35b0727925f8c47c3b2194224323489d68,Sparse Variation Dictionary Learning for Face Recognition with a Single Training Sample per Person,"Sparse Variation Dictionary Learning for Face Recognition with A Single
Training Sample Per Person
Meng Yang, Luc Van Gool
ETH Zurich
Switzerland"
59ee327192c270fc727c5f6d2ef90058ed072b14,Motion Models for People Tracking,"Motion Models for People Tracking
David J. Fleet"
926c67a611824bc5ba67db11db9c05626e79de96,Enhancing Bilinear Subspace Learning by Element Rearrangement,"Enhancing Bilinear Subspace Learning
y Element Rearrangement
Dong Xu, Shuicheng Yan, Stephen Lin,
Thomas S. Huang, and
Shih-Fu Chang"
923412acb90ed2acbb29290147a567f39d2dfc95,FACSGen: A Tool to Synthesize Emotional Facial Expressions Through Systematic Manipulation of Facial Action Units,"J Nonverbal Behav
DOI 10.1007/s10919-010-0095-9
O R I G I N A L P A P E R
FACSGen: A Tool to Synthesize Emotional Facial
Expressions Through Systematic Manipulation of Facial
Action Units
Etienne B. Roesch • Lucas Tamarit •
Lionel Reveret • Didier Grandjean •
David Sander • Klaus R. Scherer
Ó Springer Science+Business Media, LLC 2010"
923ede53b0842619831e94c7150e0fc4104e62f7,Masked correlation filters for partially occluded face recognition,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
92b61b09d2eed4937058d0f9494d9efeddc39002,BoxCars: Improving Vehicle Fine-Grained Recognition using 3D Bounding Boxes in Traffic Surveillance,"Under review in IJCV manuscript No.
(will be inserted by the editor)
BoxCars: Improving Vehicle Fine-Grained Recognition using
D Bounding Boxes in Traf‌f‌ic Surveillance
Jakub Sochor · Jakub ˇSpaˇnhel · Adam Herout
Received: date / Accepted: date"
923e9b437a55853120f1778f55fcd956d81260f8,Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection,"Noname manuscript No.
(will be inserted by the editor)
Zoom Out-and-In Network with Map Attention Decision
for Region Proposal and Object Detection
Hongyang Li · Yu Liu · Wanli Ouyang · Xiaogang Wang
Received: date / Accepted: date"
92020e6540fe9feb38616334645a0ba28dcac69d,Face Recognition Based on Local Derivative Tetra Pattern,"ISSN: 0976-9102 (ONLINE)
ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, FEBRUARY 2017, VOLUME: 07, ISSUE: 03
FACE RECOGNITION BASED ON LOCAL DERIVATIVE TETRA PATTERN
A. Geetha1, M. Mohamed Sathik2 and Y. Jacob Vetharaj3
Department of Computer Applications, Nesamony Memorial Christian College, India
Department of Computer Science, Sadakathullah Appa College, India
Department of Computer Science, Nesamony Memorial Christian College, India"
92b748f2629b3227a9c56bc9e580f45eb5bdfba5,Novel Adaptive Eye Detection and Tracking for Challenging Lighting Conditions,"Version
This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/
Suggested Reference
Rezaei, M., & Klette, R. (2013). Novel Adaptive Eye Detection and Tracking for
Challenging Lighting Conditions. In Lecture Notes in Computer Science Vol. 7729
(pp. 427-440). Daejeon, Korea: Springer Berlin Heidelberg.
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-
642-37484-5_35
Copyright
Items in ResearchSpace are protected by copyright, with all rights reserved, unless
otherwise indicated. Previously published items are made available in accordance
with the copyright policy of the publisher.
http://www.sherpa.ac.uk/romeo/issn/0302-9743/
https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm"
920a92900fbff22fdaaef4b128ca3ca8e8d54c3e,Learning Pattern Transformation Manifolds with Parametric Atom Selection,"LEARNING PATTERN TRANSFORMATION MANIFOLDS WITH PARAMETRIC ATOM
SELECTION
Elif Vural and Pascal Frossard
Ecole Polytechnique F´ed´erale de Lausanne (EPFL)
Signal Processing Laboratory (LTS4)
Switzerland-1015 Lausanne"
9207671d9e2b668c065e06d9f58f597601039e5e,Face Detection Using a 3D Model on Face Keypoints,"Face Detection Using a 3D Model on
Face Keypoints
Adrian Barbu, Gary Gramajo"
9282239846d79a29392aa71fc24880651826af72,Classification of extreme facial events in sign language videos,"Antonakos et al. EURASIP Journal on Image and Video Processing 2014, 2014:14
http://jivp.eurasipjournals.com/content/2014/1/14
RESEARCH
Open Access
Classification of extreme facial events in sign
language videos
Epameinondas Antonakos1,2*, Vassilis Pitsikalis1 and Petros Maragos1"
92115b620c7f653c847f43b6c4ff0470c8e55dab,Training Deformable Object Models for Human Detection Based on Alignment and Clustering,"Training Deformable Object Models for Human
Detection Based on Alignment and Clustering
Benjamin Drayer and Thomas Brox
Department of Computer Science,
Centre of Biological Signalling Studies (BIOSS),
University of Freiburg, Germany"
927ac98da38db528b780f14996bb02b05009c9cc,Hand pose estimation through semi-supervised and weakly-supervised learning,"Hand Pose Estimation through Semi-Supervised and Weakly-Supervised Learning
Natalia Neverovaa,∗, Christian Wolfa, Florian Neboutb, Graham W. Taylorc
Universit´e de Lyon, INSA-Lyon, CNRS, LIRIS, F-69621, France
Awabot SAS, France
School of Engineering, University of Guelph, Canada"
92c2dd6b3ac9227fce0a960093ca30678bceb364,On Color Texture Normalization for Active Appearance Models,"Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published
version when available.
Title
On color texture normalization for active appearance models
Author(s)
Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile
Publication
009-05-12
Publication
Information
Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color
Texture Normalization for Active Appearance Models. Image
Processing, IEEE Transactions on, 18(6), 1372-1378.
Publisher
Link to
publisher's
version
http://dx.doi.org/10.1109/TIP.2009.2017163
Item record
http://hdl.handle.net/10379/1350"
92679c8cff92442f39de3405c21c8028162fe56a,Temporal 3 D ConvNets using Temporal Transition Layer,"Temporal 3D ConvNets using Temporal Transition Layer
Ali Diba1
, Mohsen Fayyaz2, Vivek Sharma3, A.Hossein Karami4, M.Mahdi Arzani4,
Rahman Yousefzadeh4, Luc Van Gool1
ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai"
92373095869f1b9e93823f0bd16bb8527c1665dc,How face blurring affects body language processing of static gestures in women and men,"Social Cognitive and Affective Neuroscience, 2018, 590–603
doi: 10.1093/scan/nsy033
Advance Access Publication Date: 14 May 2018
Original article
How face blurring affects body language processing
of static gestures in women and men
Alice Mado Proverbio, Laura Ornaghi, and Veronica Gabaro
Department of Psychology, Neuro-MI Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
Correspondence should be addressed to Alice Mado Proverbio, Department of Psychology, University of Milano-Bicocca, piazza dell’Ateneo Nuovo 1, U6
Building, Milano, Italy. E-mail:"
92a93693f43a49a7b320d5771c6afaff98b27864,Audio-visual signal processing in a multimodal assisted living environment,"INTERSPEECH 2014
Audio-Visual Signal Processing in a Multimodal Assisted Living Environment
Alexey Karpov 1,5, Lale Akarun 2, Hülya Yalçın 3, Alexander Ronzhin 1, Barış Evrim Demiröz 2,
Aysun Çoban 2 and Miloš Železný 4
St. Petersburg Institute for Informatics and Automation of Russian Academy of Sciences, Russia
Boğaziçi University, İstanbul, Turkey
İstanbul Technical University, İstanbul, Turkey
University of West Bohemia, Pilsen, Czech Republic
5 University ITMO, St. Petersburg, Russia"
927ba64123bd4a8a31163956b3d1765eb61e4426,Customer satisfaction measuring based on the most significant facial emotion,"Customer satisfaction measuring based on the most
significant facial emotion
Mariem Slim, Rostom Kachouri, Ahmed Atitallah
To cite this version:
Mariem Slim, Rostom Kachouri, Ahmed Atitallah. Customer satisfaction measuring based on the
most significant facial emotion. 15th IEEE International Multi-Conference on Systems, Signals
Devices (SSD 2018), Mar 2018, Hammamet, Tunisia. <hal-01790317>
HAL Id: hal-01790317
https://hal-upec-upem.archives-ouvertes.fr/hal-01790317
Submitted on 11 May 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
92f0e02c9f4e95098452d0fd78ba46cd6e7b1f6d,Dynamic machine learning for supervised and unsupervised classification. (Apprentissage automatique dynamique pour la classification supervisée et non supervisée),"Dynamic machine learning for supervised and
unsupervised classification
Adela-Maria Sîrbu
To cite this version:
Adela-Maria Sîrbu. Dynamic machine learning for supervised and unsupervised classification. Machine
Learning [cs.LG]. INSA de Rouen, 2016. English. <NNT : 2016ISAM0002>. <tel-01402052>
HAL Id: tel-01402052
https://tel.archives-ouvertes.fr/tel-01402052
Submitted on 24 Nov 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
9263ca6211ec39469f0daa8790ccaecbd5898423,Exploring Models and Data for Remote Sensing Image Caption Generation,"Exploring Models and Data for
Remote Sensing Image Caption Generation
Xiaoqiang Lu, Senior Member, IEEE, Binqiang Wang, Xiangtao Zheng, and Xuelong Li, Fellow, IEEE"
927ad0dceacce2bb482b96f42f2fe2ad1873f37a,Interest-Point based Face Recognition System,"Interest-Point based Face Recognition System
Interest-Point based Face Recognition System
Cesar Fernandez and Maria Asuncion Vicente
Miguel Hernandez University
Spain
. Introduction
Among  all  applications  of  face  recognition  systems,  surveillance  is  one  of  the  most
hallenging ones. In such an application, the goal is to detect known criminals in crowded
environments, like airports or train stations. Some attempts have been made, like those of
Tokio (Engadget, 2006) or Mainz (Deutsche Welle, 2006), with limited success.
The first task to be carried out in an automatic surveillance system involves the detection of
ll the faces in the images taken by the video cameras. Current face detection algorithms are
highly reliable and thus, they will not be the focus of our work. Some of the best performing
examples are the Viola-Jones algorithm (Viola & Jones, 2004) or the Schneiderman-Kanade
lgorithm (Schneiderman & Kanade, 2000).
The second task to be carried out involves the comparison of all detected faces among the
database of known criminals. The ideal behaviour of an automatic system performing this
task  would  be  to  get  a  100%  correct  identification  rate,  but  this  behaviour  is  far  from  the
apabilities  of  current  face  recognition  algorithms.  Assuming  that  there  will  be  false
identifications,  supervised  surveillance  systems  seem  to  be  the  most  realistic  option:  the"
92a044df6c37571aac25756252dda27676492bb5,Implementation of Real-time System on Fpga Board for Human's Face Detection and Tracking Author Mohd,"IMPLEMENTATION OF REAL-TIME SYSTEM ON FPGA BOARD FOR HUMAN'S
FACE DETECTION AND TRACKING AUTHOR
MOHD NORHAFIZ HASHIM
A project report submitted in partial
Fulfillment of the requirement for the award of the
Degree of Master Electrical Engineering
Fakulti Kejuruteraan Elektrik dan Elektronik
Universiti Tun Hussein Onn Malaysia
JANUARY 2014"
921aaac9b33ec6a417bfc8bb0e21e11e743342c2,Image enhancement for improving face detection under non-uniform lighting conditions,"978-1-4244-1764-3/08/$25.00 ©2008 IEEE
ICIP 2008"
929bd1d11d4f9cbc638779fbaf958f0efb82e603,"Improving the Performance of Facial Expression Recognition Using Dynamic, Subtle and Regional Features","This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:
Zhang, Ligang & Tjondronegoro, Dian W. (2010) Improving the perfor-
mance of facial expression recognition using dynamic, subtle and regional
features.
In Kok, WaiWong, B. Sumudu, U. Mendis, & Abdesselam ,
Bouzerdoum (Eds.) Neural Information Processing. Models and Applica-
tions, Lecture Notes in Computer Science, Sydney, N.S.W, pp. 582-589.
This file was downloaded from: http://eprints.qut.edu.au/43788/
(cid:13) Copyright 2010 Springer-Verlag
Conference proceedings published, by Springer Verlag, will be available
via Lecture Notes in Computer Science http://www.springer.de/comp/lncs/
Notice: Changes introduced as a result of publishing processes such as
opy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:
http://dx.doi.org/10.1007/978-3-642-17534-3_72"
92980965514210b4f6dd074d122078d54684f724,Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition,"Track Everything: Limiting Prior Knowledge in
Online Multi-Object Recognition
Sebastien C. Wong∗, Senior Member, IEEE, Victor Stamatescu†, Member, IEEE, Adam Gatt‡, Member, IEEE,
David Kearney†, Ivan Lee† Senior Member, IEEE and Mark D. McDonnell†, Senior Member, IEEE ∗ Defence
Science and Technology Group, Edinburgh, SA, Australia † Computational Learning Systems Laboratory, School
of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA,
Australia ‡ Australian Defence Force, Edinburgh, SA, Australia
An important practical consideration in the design of online
object recognition systems is the finite amount of labeled and
nnotated data available for training. When scarce, this can de-
grade classification performance due to overfitting and reduce
the detection probability of highly tuned object detectors. Even
when larger data sets are available, these may be biased in such
way that their image statistics do not accurately reflect the
data encountered by the system at run time [2]. In the case
of classifier-based object recognition [3] and detection [4], the
use of features, which are higher-level representations of an
object than the raw image, can mitigate these problems by
providing a degree of invariance across different data sets.
In the case of tracking and object detection algorithms, the"
926ca7ce14332f9f848c28565d0f2f9a2d1e35a8,Impaired facial and vocal emotion decoding in schizophrenia is underpinned by basic perceptivo-motor deficits,"Cognitive Neuropsychiatry
ISSN: 1354-6805 (Print) 1464-0619 (Online) Journal homepage: http://www.tandfonline.com/loi/pcnp20
Impaired facial and vocal emotion decoding in
schizophrenia is underpinned by basic perceptivo-
motor deficits
C. Mangelinckx, J. B. Belge, P. Maurage & E. Constant
To cite this article: C. Mangelinckx, J. B. Belge, P. Maurage & E. Constant (2017): Impaired facial
nd vocal emotion decoding in schizophrenia is underpinned by basic perceptivo-motor deficits,
Cognitive Neuropsychiatry, DOI: 10.1080/13546805.2017.1382342
To link to this article:  http://dx.doi.org/10.1080/13546805.2017.1382342
Published online: 03 Oct 2017.
Submit your article to this journal
View related articles
View Crossmark data
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=pcnp20
Download by: [University of Virginia, Charlottesville]
Date: 06 October 2017, At: 09:26"
0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0baf,F Acial E Xpression R Ecognition Based on Wapa and Oepa F Ast Ica,"International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 3, May 2014
FACIAL EXPRESSION RECOGNITION BASED ON
WAPA AND OEPA FASTICA
Humayra Binte Ali1 and David M W Powers2
Computer Science, Engineering and Mathematics School, Flinders University, Australia
Computer Science, Engineering and Mathematics School, Flinders University, Australia"
0c5a2bb5d1a1e9bb332207be61e13d0afb8f278c,A Supervised Learning Methodology for Real-Time Disguised Face Recognition in the Wild,"A Supervised Learning Methodology for Real-Time Disguised Face
Recognition in the Wild
Saumya Kumaar3, Abhinandan Dogra4, Abrar Majeedi4, Hanan Gani4, Ravi M. Vishwanath2 and S N Omkar1"
0c24ccc6d6c386a8d555a81166eaf6e8d4dfccc3,Person count localization in videos from noisy foreground and detections,"Person Count Localization in Videos from Noisy Foreground and Detections
Sheng Chen1, Alan Fern1, Sinisa Todorovic1
Oregon State University.
In this paper, we introduce a new problem, person count localization from
noisy foreground and person detections. Our formulation strikes a middle-
ground between person detection and frame-level counting. Given a video,
our goal is to output for each frame a set of:
. Detections optimally covering both isolated individuals and crowds
of people in the video; and
. Counts assigned to each detection indicating the number of people
inside.
The problem of detecting people in videos of crowded scenes, where
people frequently appear under severe occlusion by other people in the
rowd is an important line of research, since detecting people in video frames
has become the standard initial step of many approaches to activity recogni-
tion [1, 3, 4], and multi-object tracking by detection [6, 8, 9]. They typically
use as input human appearance, pose, and orientation, and thus critically
depend on robust person detections. In many domains, however, such as
videos of American football or public spaces crowded with pedestrians, de-
tecting every individual person is highly unreliable, and remains an open"
0c8a0a81481ceb304bd7796e12f5d5fa869ee448,A Spatial Regularization of LDA for Face Recognition,"International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 2, June 2010, pp. 95-100
A Spatial Regularization of LDA for Face Recognition
Lae-Jeong Park
Department of Electronics Engineering, Gangnung-Wonju National University
23 Chibyun-Dong, Kangnung, 210-702, Korea
Tel : +82-33-640-2389, Fax : +82-33-646-0740, E-mail :"
0c36c988acc9ec239953ff1b3931799af388ef70,Face Detection Using Improved Faster RCNN,"Face Detection Using Improved Faster RCNN
Changzheng Zhang, Xiang Xu, Dandan Tu*
Huawei Cloud BU, China
{zhangzhangzheng, xuxiang12,
Figure1.Face detection results of FDNet1.0"
0c5ddfa02982dcad47704888b271997c4de0674b,Model-driven and Data-driven Approaches for some Object Recognition Problems,
0c069a870367b54dd06d0da63b1e3a900a257298,Weakly Supervised Learning of Foreground-Background Segmentation Using Masked RBMs,"Author manuscript, published in ""ICANN 2011 - International Conference on Artificial Neural Networks (2011)"""
0c75c7c54eec85e962b1720755381cdca3f57dfb,Face Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Model,"Face Landmark Fitting via Optimized Part
Mixtures and Cascaded Deformable Model
Xiang Yu, Member, IEEE, Junzhou Huang, Member, IEEE,
Shaoting Zhang, Senior Member, IEEE, and Dimitris N. Metaxas, Fellow, IEEE"
0c769c19d894e0dbd6eb314781dc1db3c626df57,Joint Detection and Identification Feature Learning for Person Search,"Joint Detection and Identification Feature Learning for Person Search
Tong Xiao1∗ Shuang Li1∗ Bochao Wang2 Liang Lin2 Xiaogang Wang1
The Chinese University of Hong Kong 2Sun Yat-Sen University"
0cdac46ec42be2d81f64ec4ee53d88be43290d52,Temporal Poselets for Collective Activity Detection and Recognition,"Temporal Poselets for Collective Activity Detection and Recognition
Moin Nabi
Alessio Del Bue
Vittorio Murino
Pattern Analysis and Computer Vision (PAVIS)
Istituto Italiano di Tecnologia (IIT)
Via Morego 30, Genova, Italy"
0c3c469e46668ea2c38a6de610d675975f337522,Self-tuned Visual Subclass Learning with Shared Samples An Incremental Approach,"Self-tuned Visual Subclass Learning with Shared Samples
An Incremental Approach
Updated ICCV 2013 Submission
Hossein Azizpour
Royal Insitute of Technology(KTH)
Stefan Carlsson
Royal Insitute of Technology(KTH)"
0c95ff762bdf6a20609f49f1eb5248de3f748866,Fine-Grained Walking Activity Recognition via Driving Recorder Dataset,"Fine-grained Walking Activity Recognition
via Driving Recorder Dataset
Hirokatsu Kataoka (AIST), Yoshimitsu Aoki (Keio Univ.), Yutaka Satoh (AIST)
Shoko Oikawa (NTSEL), Yasuhiro Matsui (NTSEL)
Email:
http://hirokatsukataoka.net/"
0ca96dc1557032ff9259562a5b8fc026334997a6,Spectral Graph-Based Method of Multimodal Word Embedding,"Proceedings of TextGraphs-11: the Workshop on Graph-based Methods for Natural Language Processing, ACL 2017, pages 39–44,
Vancouver, Canada, August 3, 2017. c(cid:13)2017 Association for Computational Linguistics"
0c049cc7320f9b92f91210ab6961aa6644c867cd,Delving Deep Into Coarse-to-Fine Framework for Facial Landmark Localization,"Delving Deep into Coarse-to-fine Framework
for Facial Landmark Localization
Xi Chen, Erjin Zhou, Yuchen Mo, Jiancheng Liu, Zhimin Cao
Megvii Research
{chenxi, zej, moyuchen, liujiancheng,"
0ca36ecaf4015ca4095e07f0302d28a5d9424254,Improving Bag-of-Visual-Words Towards Effective Facial Expressive Image Classification,"Improving Bag-of-Visual-Words Towards Effective Facial Expressive
Image Classification
Dawood Al Chanti1 and Alice Caplier1
Univ. Grenoble Alpes, CNRS, Grenoble INP∗ , GIPSA-lab, 38000 Grenoble, France
Keywords:
BoVW, k-means++, Relative Conjunction Matrix, SIFT, Spatial Pyramids, TF.IDF."
0cc2fc148eef46c1141edd276d903853052fc19d,Estado del arte en reconocimiento facial,"Estado del arte en reconocimiento facial
Martín Adrián Garduño Santana, L. E. Díaz-Sánchez, Israel Tabarez Paz,
Marcelo Romero Huertas
Universidad Autónoma del Estado de México, Toluca, México
Resumen.  En  este  trabajo  se  resumen  los  métodos  más  utilizados  para  el
reconocimiento  facial,  incluyendo  las  ventajas  y  desventajas  de  los  sistemas
desarrollados  hasta  ahora.    También  se  describen  las  futuras  líneas  de
investigación  y  se  discute  el  rumbo del  reconocimiento  facial  en  los  próximos
ños. Esta revisión es relevante pues se busca la implementación de un novedoso
sistema de reconocimiento facial.
Palabras  clave:  reconocimiento  facial,  sistemas  biométricos,  ciudades
inteligentes, imágenes 2D y 3D.
Face Recognition: a Survey"
0c8d675bcd4489e886f35bee2a347c948ffee270,Semantic bottleneck for computer vision tasks,"Semantic bottleneck for computer vision tasks
Maxime Bucher1,2, St´ephane Herbin1, and Fr´ed´eric Jurie2
ONERA, Universit´e Paris-Saclay, FR-91123 Palaiseau, France
Normandie Univ, UNICAEN, ENSICAEN, CNRS"
0c3c83b7f030fe661548d362ddf33f37bb44043d,Crowd Motion Analysis Based on Social Force Graph with Streak Flow Attribute,"Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2015, Article ID 492051, 12 pages
http://dx.doi.org/10.1155/2015/492051
Research Article
Crowd Motion Analysis Based on Social Force Graph with
Streak Flow Attribute
Shaonian Huang,1,2 Dongjun Huang,1 and Mansoor Ahmed Khuhro1
School of Information Science and Engineering, Central South University, Changsha 410083, China
School of Computer and Information Engineering, Hunan University of Commerce, Changsha 420005, China
Correspondence should be addressed to Shaonian Huang;
Received 28 July 2015; Accepted 27 September 2015
Academic Editor: Stefano Basagni
Copyright © 2015 Shaonian Huang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
ited.
Over the past decades, crowd management has attracted a great deal of attention in the area of video surveillance. Among various
tasks of video surveillance analysis, crowd motion analysis is the basis of numerous subsequent applications of surveillance video.
In this paper, a novel social force graph with streak flow attribute is proposed to capture the global spatiotemporal changes and
the local motion of crowd video. Crowd motion analysis is hereby implemented based on the characteristics of social force graph."
0c17c42d71eacd2244e43fa55a8ed96607337cca,Automatic Face Reenactment,"Automatic Face Reenactment
Pablo Garrido1
Thorsten Thorm¨ahlen2
Levi Valgaerts1
Patrick P´erez3
Ole Rehmsen1
Christian Theobalt1
Philipps-Universit¨at Marburg
Technicolor
MPI for Informatics"
0cfca73806f443188632266513bac6aaf6923fa8,Predictive Uncertainty in Large Scale Classification using Dropout - Stochastic Gradient Hamiltonian Monte Carlo,"Predictive Uncertainty in Large Scale Classification
using Dropout - Stochastic Gradient Hamiltonian
Monte Carlo.
Vergara, Diego∗1, Hern´andez, Sergio∗2, Valdenegro-Toro, Mat´ıas∗∗3 and Jorquera, Felipe∗4.
Laboratorio de Procesamiento de Informaci´on Geoespacial, Universidad Cat´olica del Maule, Chile.
German Research Centre for Artificial Intelligence, Bremen, Germany.
Email:"
0cd032a93890d61b9bd187119abee0d6aeb899f7,Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-Scale Image Retrieval,"IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Iterative Quantization:
A Procrustean Approach to Learning Binary
Codes for Large-scale Image Retrieval
Yunchao Gong, Svetlana Lazebnik, Albert Gordo, Florent Perronnin"
0c5f9f5083b9fca4dcdbc4b122099ac1f630728b,Visual Semantic Role Labeling,"Visual Semantic Role Labeling
Saurabh Gupta
UC Berkeley
Jitendra Malik
UC Berkeley"
0cec42a1593a02ce3f4a44d375e3b95f5797aa21,Recognizing Scene Categories of Historical Postcards,"Recognizing Scene Categories of Historical
Postcards
Rene Grzeszick, Gernot A. Fink
{rene.grzeszick,
Department of Computer Science, TU Dortmund"
0cff123a31dcc115377ecca6ba137bebca909ff8,Anxiety dissociates the adaptive functions of sensory and motor response enhancements to social threats,"RESEARCH ARTICLE
Anxiety dissociates the adaptive functions
of sensory and motor response
enhancements to social threats
Marwa El Zein1,2*, Valentin Wyart1†, Julie Gre` zes1†
Laboratoire de Neurosciences Cognitives, De´ partement d’Etudes Cognitives, Ecole
Normale Supe´ rieure, PSL Research University, Paris, France; 2Universite´ Pierre et
Marie Curie, Paris, France"
0c3f7272a68c8e0aa6b92d132d1bf8541c062141,Kruskal-Wallis-Based Computationally Efficient Feature Selection for Face Recognition,"Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 672630, 6 pages
http://dx.doi.org/10.1155/2014/672630
Research Article
Kruskal-Wallis-Based Computationally Efficient Feature
Selection for Face Recognition
Sajid Ali Khan,1,2 Ayyaz Hussain,3 Abdul Basit,1 and Sheeraz Akram1
Department of Software Engineering, Foundation University, Rawalpindi 46000, Pakistan
Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad,
Islamabad 44000, Pakistan
Department of Computer Science and Software Engineering, International Islamic University, Islamabad 44000, Pakistan
Correspondence should be addressed to Sajid Ali Khan;
Received 5 December 2013; Accepted 10 February 2014; Published 21 May 2014
Academic Editors: S. Balochian, V. Bhatnagar, and Y. Zhang
Copyright © 2014 Sajid Ali Khan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Face recognition in today’s technological world, and face recognition applications attain much more importance. Most of the
existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images.
The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute"
0c87f5a6deba422c0db261c4497b9b013b4ef5b8,Robust Face Detection using Convolutional Neural Network,"International Journal of Computer Applications (0975 – 8887)
Volume 170 – No.6, July 2017
Robust Face Detection using Convolutional
Robert Yao Aaronson
Sch. of Comp. Sci.& Tech
Jiangsu Univ. of Sci. & Tech.
No. 2 Mengxi Road Jingkou
District Zhenjiang Prov. 212003
Neural Network
Wu Chen
Sch. of Comp. Sci. & Tech
Jiangsu Univ. of Sci. & Tech.
No. 2 Mengxi Road Jingkou
District Zhenjiang Prov. 212003
Ben-Bright Benuwa
Sch. of Comp. Sci. & Comm.
Eng. Jiangsu Univ. Xuefu Road
01 Jingkou District Zhenjiang
Prov. 212003
supported  by"
0ceda9dae8b9f322df65ca2ef02caca9758aec6f,Context-Aware CNNs for Person Head Detection,"Context-aware CNNs for person head detection
Tuan-Hung Vu∗
Anton Osokin†
INRIA/ENS
Ivan Laptev∗"
0c990e779067c563a79ae17c9d36094a745d7ed8,Model interpolation for eye localization using the Discriminative Generalized Hough Transform,"Model Interpolation for Eye Localization Using the
Discriminative Generalized Hough Transform
Ferdinand Hahmann, Heike Ruppertshofen, Gordon B¨oer, Hauke Schramm
Institute of Applied Computer Science
University of Applied Sciences Kiel
Grenzstraße 3
4149 Kiel"
0cfcc1cd8bae5f5899cef0995debd7b38c46e817,Discrete texture traces: Topological representation of geometric context,"Discrete Texture Traces: Topological Representation of Geometric Context
Jan Ernst∗ and Maneesh K. Singh
Siemens Corporation, Corporate Research and Technology, Princeton, NJ, USA
Department of Computer Science and Mathematics, Goethe University, Frankfurt am Main, Germany
Visvanathan Ramesh†"
0cbefba0f41982bdff091d0e5f0d5ef93185a55c,"Challenges in Monocular Visual Odometry: Photometric Calibration, Motion Bias, and Rolling Shutter Effect","Challenges in Monocular Visual Odometry:
Photometric Calibration, Motion Bias and
Rolling Shutter Effect
Nan Yang1,2,∗, Rui Wang1,2,∗, Xiang Gao1 and Daniel Cremers1,2"
0ce4110d4c3d8b19ca0f7f75bc680aa9ba8d239a,Genetic Algorithms for Classifiers’ Training Sets Optimisation Applied to Human Face Recognition,"JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 11/2007, ISSN 1642-6037
Michał KAWULOK*
GENETIC ALGORITHMS FOR CLASSIFIERS’ TRAINING SETS
OPTIMISATION APPLIED TO HUMAN FACE RECOGNITION
support vector machines,
genetic algorithms,
human face recognition
Human  face  recognition  is  a  multi-stage  process  within  which  many  classification  problems  must  be
solved. This is performed by learning machines which elaborate classification rules based on a given training set.
Therefore, one of the most important issues is selection of a training set which would properly represent the data
that will be further classified. This paper presents an approach which utilizes genetic algorithms for selecting
lassifiers’ training sets. This approach was implemented for the Support Vector Machines which is applied in
two areas of automatic human face recognition: face verification and feature vectors comparison. Effectiveness
of the presented concept was confirmed with appropriate experiments which results are described in this paper.
.  INTRODUCTION
Face recognition [7, 13, 14] is among the most popular biometric techniques which are
eing developed nowadays and it is worth noticing that this is the method which is the most
frequently used naturally by humans. Automatic face recognition is characterized by a low
level of required interaction with a person who is being recognized, but offers relatively low
effectiveness  comparing  to  other  biometric  methods  [4,  9].  A  face  recognition  system"
0c1d5801f2b86afa969524dc74708a78450300d9,12 : Conditional Random Fields,"0-708: Probabilistic Graphical Models 10-708, Spring 2014
2 : Conditional Random Fields
Lecturer: Eric P. Xing
Scribes: Qin Gao, Siheng Chen
Hidden Markov Model
.1 General parametric form
In hidden Markov model (HMM), we have three sets of parameters,
t = 1|yi
transition probability matrix A : p(yj
initialprobabilities : p(y1) ∼ Multinomial(π1, π2, ..., πM ),
emission probabilities : p(xt|yi
t) ∼ Multinomial(bi,1, bi,2, ..., bi,K).
t−1 = 1) = ai,j,
.2 Inference
The inference can be done with forward algorithm which computes αk
) recursively by
t ≡ µt−1→t(k) = P (x1, ..., xt−1, xt, yk
nd the backward algorithm which computes βk
t = 1) recursively by
(cid:88)"
0c5afb209b647456e99ce42a6d9d177764f9a0dd,Recognizing Action Units for Facial Expression Analysis,"Recognizing Action Units for
Facial Expression Analysis
Ying-li Tian, Member, IEEE, Takeo Kanade, Fellow, IEEE, and Jeffrey F. Cohn, Member, IEEE"
0c98defb5a83ea5dc5d90538d1cc8c4b6267a1cb,Perception of Dynamic Facial Expressions of Emotion: Electrophysiological Evidence,"Humboldt-Universität zu Berlin
Dissertation
Perception of Dynamic Facial Expressions
of Emotion: Electrophysiological Evidence
zur Erlangung des akademischen Grades Doctor rerum naturalium im Fach Psychologie
Mathematisch-Naturwisseschafttlichen Fakultät II
Guillermo Recio
Dekan: Prof. Dr. Dr. Elmar Kulke
Gutachter/in:  1. Prof. Dr. Werner Sommer
2. Prof. Dr. Annekathrin Schacht
3. Prof. Dr. Birgit Stürmer
Datum der Einreichung:
7.09.2012
Datum der Promotion:
07.03.2013"
0c377fcbc3bbd35386b6ed4768beda7b5111eec6,A Unified Probabilistic Framework for Spontaneous Facial Action Modeling and Understanding,"A Unified Probabilistic Framework
for Spontaneous Facial Action Modeling
nd Understanding
Yan Tong, Member, IEEE, Jixu Chen, Student Member, IEEE, and Qiang Ji, Senior Member, IEEE"
0cb2dd5f178e3a297a0c33068961018659d0f443,IARPA Janus Benchmark-B Face Dataset,"© 2017 Noblis, Inc.  IARPA Janus Benchmark-B Face Dataset Cameron Whitelam, Emma Taborsky*, Austin Blanton, Brianna Maze*, Jocelyn Adams*, Tim Miller*, Nathan Kalka*, Anil K. Jain**, James A. Duncan*, Kristen Allen, Jordan Cheney*, Patrick Grother***  Noblis* Michigan State University** NIST*** 21 July 2017"
0c1d40de56698e672d3906b96f47ae1361fc3912,Face recognition using kernel principal component analysis,"Advances in Vision Computing: An International Journal (AVC) Vol.1, No.1, March 2014
Face Recognition Using Kernel
PrincipalComponent Analysis
Jayanthi T and 2Dr. Aji S
Assistant Professor,Department of Computer Applications,
Mohandas College of Engineering and Technology, Anad, Nedumangad
Thiruvananthapuram, India
Assistant Professor,Department of Computer Science,University of Kerala
Kariyavattom,Thiruvananthapuram, India"
0cd8895b4a8f16618686f622522726991ca2a324,Discrete Choice Models for Static Facial Expression Recognition,"Discrete Choice Models for Static Facial Expression
Recognition
Gianluca Antonini1, Matteo Sorci1, Michel Bierlaire2, and Jean-Philippe Thiran1
Ecole Polytechnique Federale de Lausanne, Signal Processing Institute
Ecole Polytechnique Federale de Lausanne, Operation Research Group
Ecublens, 1015 Lausanne, Switzerland
Ecublens, 1015 Lausanne, Switzerland"
0cf7da0df64557a4774100f6fde898bc4a3c4840,Shape matching and object recognition using low distortion correspondences,"Shape Matching and Object Recognition using Low Distortion Correspondences
Alexander C. Berg Tamara L. Berg
Jitendra Malik
Department of Electrical Engineering and Computer Science
U.C. Berkeley"
0cbe059c181278a373292a6af1667c54911e7925,'Owl' and 'Lizard': patterns of head pose and eye pose in driver gaze classification,"Owl and Lizard: Patterns of Head Pose and Eye
Pose in Driver Gaze Classification
Lex Fridman1, Joonbum Lee1, Bryan Reimer1, and Trent Victor2
Massachusetts Institute of Technology (MIT)
Chalmers University of Technology, SAFER"
0c4659b35ec2518914da924e692deb37e96d6206,Registering a MultiSensor Ensemble of Images,"Registering a MultiSensor Ensemble of Images
Jeff Orchard, Member, IEEE, and Richard Mann"
0c53b45321131e61d1266cb960fc47c401f856f1,Space-Time Body Pose Estimation in Uncontrolled Environments,"Space-time Body Pose Estimation in Uncontrolled Environments
Marcel Germann
ETH Zurich
Switzerland
Tiberiu Popa
ETH Zurich
Switzerland
Remo Ziegler
LiberoVision AG
Switzerland
Richard Keiser
LiberoVision AG
Switzerland
Markus Gross
ETH Zurich
Switzerland"
0cd8fabfc8e22be8275c317e7ccd37e640711c62,Experiments on an RGB-D Wearable Vision System for Egocentric Activity Recognition,"Experiments on an RGB-D Wearable Vision System
for Egocentric Activity Recognition
Mohammad Moghimi1, Pablo Azagra2, Luis Montesano2, Ana C. Murillo1,2 and Serge Belongie3
UC San Diego
La Jolla, CA
DIIS - I3A
University of Zaragoza, Spain
{montesano,
Cornell Tech
New York, NY
tech.cornell.edu"
0cdf238fd44684b49302c22b062772e7c66ea182,Autonomous Decision Making Robots,"International Journal of Artificial Intelligence and Applications (IJAIA), Vol.9, No.2, March 2018
UNSUPERVISED ROBOTIC SORTING: TOWARDS
AUTONOMOUS DECISION MAKING ROBOTS
Joris Gu´Erin, St´Ephane Thiery, Eric Nyiri And Olivier Gibaru
Arts et M´etiers ParisTech, Lille, FRANCE"
0ca475433d74abb3c0f38fbe9d212058dc771570,Learning pairwise feature dissimilarities for person re-identification,"Learning Pairwise Feature Dissimilarities
for Person Re-Identification
Niki Martinel
University of Udine
Udine, Italy
Christian Micheloni
University of Udine
Udine, Italy
Claudio Piciarelli
University of Udine
Udine, Italy"
0c03bb741972c99b71d8d733b92e5fa9430cbede,Learning rank reduced interpolation with principal component analysis,"Learning Rank Reduced Interpolation
with Principal Component Analysis
Matthias Ochs1, Henry Bradler1 and Rudolf Mester1,2"
0c2c53d71942ad3171b693f565812f1db43215e0,Descriptive visual words and visual phrases for image applications,"Descriptive Visual Words and Visual Phrases for Image
Shiliang Zhang1, Qi Tian2, Gang Hua3, Qingming Huang4, Shipeng Li2
Applications
Key Lab of Intelli. Info.
Process., Inst. of Comput.
Tech., CAS, Beijing 100080,
China
Microsoft Research Asia,
Beijing 100080, China
Microsoft Live Labs
Research, Redmond, WA
78052, U.S.A.
Graduate University of
Chinese Academy of
Sciences, Beijing 100049,
China
{slzhang, {qitian, ganghua,"
0c30850067c296a01b72cf4803c9712926ae5a95,Text-Dependent Audiovisual Synchrony Detection for Spoofing Detection in Mobile Person Recognition,"INTERSPEECH 2016
September 8–12, 2016, San Francisco, USA
Text-Dependent Audiovisual Synchrony Detection for Spoofing Detection in
Mobile Person Recognition
Amit Aides1,2, Hagai Aronowitz1
Dept of Electrical Engineering,Technion - Israel Institute of Technology, Haifa, Israel
IBM Research - Haifa, Israel
{amitaid,"
0cf333cab1a9ccf671cebf31b78180f863c1caa7,Automated Evaluation of Semantic Segmentation Robustness for Autonomous Driving,"Automated Evaluation of Semantic Segmentation
Robustness for Autonomous Driving
Wei Zhou, Member, IEEE, Julie Stephany Berrio, Member, IEEE,
Stewart Worrall, Member, IEEE, and Eduardo Nebot, Member, IEEE"
0c25a4636ebde18e229f7e459f1adaab1e9a2db9,Multi - class Classification and Clustering based Multi - object Tracking,"Multi-class Classification and Clustering based
Multi-object Tracking
Nii Longdon Sowah, Qingbo Wu, Fanman Meng"
0ced7b814ec3bb9aebe0fcf0cac3d78f36361eae,Central Local Directional Pattern Value Flooding Co-occurrence Matrix based Features for Face Recognition,"Dr. P Chandra Sekhar Reddy, International Journal of Computer Science and Mobile Computing, Vol.6 Issue.1, January- 2017, pg. 221-227
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IMPACT FACTOR: 6.017
IJCSMC, Vol. 6, Issue. 1, January 2017, pg.221 – 227
Central Local Directional Pattern Value
Flooding Co-occurrence Matrix based
Features for Face Recognition
Dr. P Chandra Sekhar Reddy
Professor, CSE Department, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad"
0ccd410b6ae977a945a84bad1c2785cef4c73214,Pseudo two-dimensional Hidden Markov Models for face detection in colour images,"Pseudo two-dimensional Hidden Markov Models
for face detection in colour images
ephane Marchand-Maillet
Bernard M
erialdo
Department of Multimedia Communications
EURECOM Institute
	 Sophia-Antipolis, France
http:www.eurecom.fr~marchand
To be presented in the
nd Int. Conf. on Audio- and Video-based Biometric Person Authentication"
0c9d9ebecfce885f3b1e7bd82ec1b74e9f17b9de,Attribute expansion with sequential learning for object classification,"ATTRIBUTE EXPANSION WITH SEQUENTIAL LEARNING FOR OBJECT
CLASSIFICATION
Biao Niuy, Bin Liz, Peng Liy, Xi Zhangy, Jian Chengy, Hanqing Luy
National Laboratory of Pattern Recognition, CASIA, Beijing, China 100190
ShiJiaZhuang Vocational Technology Institute, Hebei, China 050000
{bniu, pli, xi.zhang, jcheng,"
0c922f8be9f0368c1abd53b8d9554f06b73a56cf,High-Level Fusion of Depth and Intensity for Pedestrian Classification,"High-Level Fusion of Depth and
Intensity for Pedestrian Classification
Marcus Rohrbach1,3,(cid:2), Markus Enzweiler2,(cid:2), and Dariu M. Gavrila1,4
Environment Perception, Group Research, Daimler AG, Ulm, Germany
Image & Pattern Analysis Group, Dept. of Math.
nd Computer Science, Univ. of Heidelberg, Germany
Dept. of Computer Science, TU Darmstadt, Germany
Intelligent Systems Lab, Fac. of Science, Univ. of Amsterdam, The Netherlands"
0c79485f64733bd128ef8c395034b6bc77abf94d,Fully automatic expression-invariant face correspondence,"Fully Automatic Expression-Invariant Face Correspondence
Augusto Salazar∗†
Stefanie Wuhrer†‡
Chang Shu‡
Flavio Prieto §
February 1, 2013"
0c53ef79bb8e5ba4e6a8ebad6d453ecf3672926d,Weakly Supervised PatchNets: Describing and Aggregating Local Patches for Scene Recognition,"SUBMITTED TO JOURNAL
Weakly Supervised PatchNets: Describing and
Aggregating Local Patches for Scene Recognition
Zhe Wang, Limin Wang, Yali Wang, Bowen Zhang, and Yu Qiao, Senior Member, IEEE"
6601a0906e503a6221d2e0f2ca8c3f544a4adab7,Detection of Ancient Settlement Mounds : Archaeological Survey Based on the SRTM Terrain Model,"SRTM-2  2/9/06  3:27 PM  Page 321
Detection of Ancient Settlement Mounds:
Archaeological Survey Based on the
SRTM Terrain Model
B.H. Menze, J.A. Ur, and A.G. Sherratt"
660b73b0f39d4e644bf13a1745d6ee74424d4a16,Constructing Kernel Machines in the Empirical Kernel Feature Space,",250+OPEN ACCESS BOOKS106,000+INTERNATIONALAUTHORS AND EDITORS113+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Reviews, Refinements and New Ideas in Face RecognitionDownloaded from: http://www.intechopen.com/books/reviews-refinements-and-new-ideas-in-face-recognitionPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at"
66d512342355fb77a4450decc89977efe7e55fa2,Learning Non-linear Transform with Discrim- Inative and Minimum Information Loss Priors,"Under review as a conference paper at ICLR 2018
LEARNING NON-LINEAR TRANSFORM WITH DISCRIM-
INATIVE AND MINIMUM INFORMATION LOSS PRIORS
Anonymous authors
Paper under double-blind review"
661be86559295d3b2cbabcd31cc90848f601f55c,Learning to Steer by Mimicking Features from Heterogeneous Auxiliary Networks,"Learning to Steer by Mimicking Features from Heterogeneous Auxiliary Networks
The Chinese University of Hong Kong 2SenseTime Group Limited 3Nanyang Technological University
Yuenan Hou1, Zheng Ma2, Chunxiao Liu2, and Chen Change Loy3
{mazheng,"
661c16658db873efeee3621603fe6bd53eaffac1,LLE Score: A New Filter-Based Unsupervised Feature Selection Method Based on Nonlinear Manifold Embedding and Its Application to Image Recognition,"LLE score: a new filter-based unsupervised feature
selection method based on nonlinear manifold
embedding and its application to image recognition
Chao Yao, Ya-Feng Liu, Member, IEEE, Bo Jiang, Jungong Han, and Junwei Han, Senior Member, IEEE."
6643a7feebd0479916d94fb9186e403a4e5f7cbf,Chapter 8 3 D Face Recognition,"Chapter 8
D Face Recognition
Ajmal Mian and Nick Pears"
66c792b7e9946f8cb92fac185267d03371437451,Adaptive Affinity Fields for Semantic Segmentation,"Adaptive Affinity Fields for Semantic Segmentation
Tsung-Wei Ke*, Jyh-Jing Hwang*, Ziwei Liu, and Stella X. Yu
UC Berkeley / ICSI"
661ca4bbb49bb496f56311e9d4263dfac8eb96e9,Datasheets for Datasets,"Datasheets for Datasets
Timnit Gebru 1 Jamie Morgenstern 2 Briana Vecchione 3 Jennifer Wortman Vaughan 1 Hanna Wallach 1
Hal Daumé III 1 4 Kate Crawford 1 5"
6668ca5ab57d68070f90671a4f92a6bc25f80470,Measuring cues for stand-off deception detection based on full-body non-verbal features in body-worn cameras,"Measuring cues for stand-off deception detection based on full-body
non-verbal features in body-worn cameras
Henri Bouma 1, Gertjan Burghouts, Richard den Hollander, Sophie Van Der Zee, Jan Baan,
Johan-Martijn ten Hove, Sjaak van Diepen, Paul van den Haak, Jeroen van Rest
TNO, Oude Waalsdorperweg 63, 2597 AK The Hague, The Netherlands"
66b37797286952e7735901e152b4cdea171e8567,Recovering 3D Planes from a Single Image via Convolutional Neural Networks,"Recovering 3D Planes from a Single Image via
Convolutional Neural Networks
Fengting Yang and Zihan Zhou
The Pennsylvania State University
{fuy34,"
66f55dc04aaf4eefdecef202211ad7563f7a703b,Synthesizing Programs for Images using Reinforced Adversarial Learning,"Synthesizing Programs for Images using Reinforced Adversarial Learning
Yaroslav Ganin 1 Tejas Kulkarni 2 Igor Babuschkin 2 S. M. Ali Eslami 2 Oriol Vinyals 2"
66d087f3dd2e19ffe340c26ef17efe0062a59290,Dog Breed Identification,"Dog Breed Identification
Whitney LaRow
Brian Mittl
Vijay Singh"
66660f5e8b2a4a695abe0f9e1df32d230126f773,Applying Deep Learning to Improve Maritime Situational Awareness,"Applying Deep Learning to Improve
Maritime Situational Awareness
Kathy Tang
Stottler Henke Associates, Inc.
650 S. Amphlett Blvd. Ste. 300
San Mateo, CA 94402
Intelligence"
6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c,Ordinal Regression with Multiple Output CNN for Age Estimation,"Ordinal Regression with Multiple Output CNN for Age Estimation
Zhenxing Niu1
Gang Hua3
Xidian University 2Xi’an Jiaotong University 3Microsoft Research Asia
Xinbo Gao1
Mo Zhou1
Le Wang2"
66719918aa6562d14ea53286bf248d6f1a7d6b14,Perceive Your Users in Depth: Learning Universal User Representations from Multiple E-commerce Tasks,"Perceive Your Users in Depth: Learning Universal User
Representations from Multiple E-commerce Tasks
Yabo Ni∗, Dan Ou∗, Shichen Liu, Xiang Li, Wenwu Ou, Anxiang Zeng, Luo Si
Search Algorithm Team, Alibaba Group, Seattle & Hangzhou, China"
66b9e9d488ef2bad9bf0d2fb98f73f38fec2bff8,Context-aware Cascade Attention-based RNN for Video Emotion Recognition,"Context-aware Cascade Attention-based RNN for
Video Emotion Recognition
Man-Chin Sun
Emotibot Inc.
Taipei, Taiwan
Shih-Huan Hsu
Emotibot Inc.
Taipei, Taiwan
Min-Chun Yang
Emotibot Inc.
Taipei, Taiwan
Jen-Hsien Chien
Emotibot Inc.
Taipei, Taiwan"
669727b3258bb3edc38709147f348dc67e3fcac4,A Lightweight approach for biometric template protection,"A Lightweight approach for biometric template protection*
Hisham Al-Assam, Harin Sellahewa, & Sabah Jassim
University of Buckingham, Buckingham MK18 1EG, U.K.
{hisham.al-assam , harin.sellahewa,"
66837b29270f3e03df64941a081d70c687c7955c,ActionXPose: A Novel 2D Multi-view Pose-based Algorithm for Real-time Human Action Recognition,"ActionXPose: A Novel 2D Multi-view Pose-based
Algorithm for Real-time Human Action Recognition
Federico Angelini, Student Member, IEEE, Zeyu Fu, Student Member, IEEE, Yang Long, Senior Member, IEEE,
Ling Shao, Senior Member, IEEE, and Syed Mohsen Naqvi, Senior Member, IEEE"
66c92c9145c2b6a304eb1b3a58e2a717884fe064,Emotions in Pervasive Computing Environments,"IJCSI International Journal of Computer Science Issues, Vol. 6, No. 1, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814
Emotions in Pervasive Computing Environments
Nevin VUNKA JUNGUM1 and Éric LAURENT2
1 Computer Science and Engineering Department,
University of Mauritius
Réduit, Mauritius
Laboratoire de Psychologie, ENACT-MCA,
University of Franche-Comté
Besançon, France"
66a2c229ac82e38f1b7c77a786d8cf0d7e369598,A Probabilistic Adaptive Search System for Exploring the Face Space,"Proceedings of the 2016 Industrial and Systems Engineering Research Conference
H. Yang, Z. Kong, and MD Sarder, eds.
A Probabilistic Adaptive Search System
for Exploring the Face Space
Andres G. Abad and Luis I. Reyes Castro
Escuela Superior Politecnica del Litoral (ESPOL)
Guayaquil-Ecuador"
669ae4a3a21b5800829ac9ee7e780fa42f9bc5ad,LDADEEP+: Latent aspect discovery with deep representations,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
6603e7de5b155c86407edc43099b46b974b7f0bb,Local Feature Based Face Recognition,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
66ee33bf0064eee159f3563e32b15c5bbd4140a0,Face Recognition Under Varying Viewing Conditions with Subspace Distance,"Face Recognition Under Varying Viewing Conditions with Subspace Distance
Jen-Mei Chang
Department of Mathematics and Statistics
California State University, Long Beach
250 Bellflower Blvd.
Long Beach, California 90840-1001"
66a9935e958a779a3a2267c85ecb69fbbb75b8dc,Fast and Robust Fixed-Rank Matrix Recovery,"FAST AND ROBUST FIXED-RANK MATRIX RECOVERY
Fast and Robust Fixed-Rank Matrix
Recovery
German Ros*, Julio Guerrero, Angel Sappa, Daniel Ponsa and
Antonio Lopez"
66533107f9abdc7d1cb8f8795025fc7e78eb1122,Visual Servoing for a User's Mouth with Effective Intention Reading in a Wheelchair-based Robotic Arm,"Vi	a Sevig f a Ue 	h wih E(cid:11)ecive ei Readig
i a Wheechai	baed Rbic A
W	y	g Sgy Dae	i iy g	S	g iz ad Ze	ga Biey
y EECS AST 373	1 	g	Dg Y	g	G	 Taej 305	701 REA
z VR Cee ETR 161 ajg	Dg Y	g	G	 Taej 305	350 REA
Abac
Thee exi he c	eaive aciviy bewee a h
a beig ad ehabiiai b beca	e he h
a eae ehabiiai b i he ae evi
e ad ha he bee(cid:12) f ehabiiai b
	ch a ai	ay  bie f	ci. ei
eadig i e f he eeia f	ci f h	a
fiedy ehabiiai b i de  ie he
f ad afey f a wh eed he. Fi f
 he vea 	c	e f a ew wheechai	baed
bic a ye ARES  ad i h	a	b
ieaci echgie ae eeed. Ag he
echgie we cceae  vi	a evig ha
w hi bic a  eae a		y via
vi	a feedback. E(cid:11)ecive iei eadig 	ch a"
66810438bfb52367e3f6f62c24f5bc127cf92e56,Face Recognition of Illumination Tolerance in 2D Subspace Based on the Optimum Correlation Filter,"Face Recognition of Illumination Tolerance in 2D
Subspace Based on the Optimum Correlation
Filter
Xu Yi
Department of Information Engineering, Hunan Industry Polytechnic, Changsha, China
images  will  be  tested  to  project"
668e93e89835ec662d21cf695b7347339ce74c78,Likelihood Ratio Fusion within Scores of Independent Component Analysis Features Based Face Biometrics Verification Systems,"June. 2015. Vol. 6, No.3
ISSN 2305-1493
International Journal of Scientific Knowledge
Computing and Information Technology
© 2012 - 2015 IJSK & K.A.J. All rights reserved
www.ijsk.org/ijsk
LIKELIHOOD RATIO FUSION WITHIN SCORES OF
INDEPENDENT COMPONENT ANALYSIS FEATURES BASED
FACE BIOMETRICS VERIFICATION SYSTEMS
SOLTANE MOHAMED
Electrical Engineering & Computing Department, Faculty of Sciences & Technology,
DOCTOR YAHIA FARES UNIVERSITY OF MEDEA, 26000 MEDEA, ALGERIA
Laboratoire des Systèmes Électroniques Avancées (LSEA)"
66c0fcf637bede76a6ea61b58655c5fc7e890630,Improving the Generalization of Neural Networks by Changing the Structure of Artificial Neuron,"Improving the Generalization of Neural Networks by Changing the Structure of Artificial Neuron. pp 195-204
IMPROVING THE GENERALIZATION OF NEURAL NETWORKS BY CHANGING THE STRUCTURE OF
ARTIFICIAL NEURON
Mohammad Reza Daliri1, Mehdi Fatan2
Biomedical Engineering Department and Iran Neural Technology Center,
Faculty of Electrical Engineering, Iran University of Science and Technology (IUST),
Narmak, 16846-13114 Tehran, Iran (Email:
Mechatronics Group, Faculty of Electrical Engineering,
Qazvin Islamic Azad University, Qazvin, Iran (Email:
Corresponding author: M.R. Daliri, Email:"
66e2c3d23af8ed76b116121827b9bc5e99cf4acc,Video Prediction with Appearance and Motion Conditions,"Video Prediction with Appearance and Motion Conditions
Yunseok Jang 1 2 Gunhee Kim 2 Yale Song 3"
66af2afd4c598c2841dbfd1053bf0c386579234e,Context-assisted face clustering framework with human-in-the-loop,"Noname manuscript No.
(will be inserted by the editor)
Context Assisted Face Clustering Framework with
Human-in-the-Loop
Liyan Zhang · Dmitri V. Kalashnikov ·
Sharad Mehrotra
Received: date / Accepted: date"
66e6f08873325d37e0ec20a4769ce881e04e964e,The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding,"Int J Comput Vis (2014) 108:59–81
DOI 10.1007/s11263-013-0695-z
The SUN Attribute Database: Beyond Categories for Deeper Scene
Understanding
Genevieve Patterson · Chen Xu · Hang Su ·
James Hays
Received: 27 February 2013 / Accepted: 28 December 2013 / Published online: 18 January 2014
© Springer Science+Business Media New York 2014"
665e6aa652b99350a08090faaf9d4bcc7800186e,Detection-Free Multiobject Tracking by Reconfigurable Inference With Bundle Representations,"Detection-Free Multiobject Tracking by
Reconfigurable Inference With
Bundle Representations
Liang Lin, Yongyi Lu, Chenglong Li, Hui Cheng, and Wangmeng Zuo, Senior Member, IEEE"
661da40b838806a7effcb42d63a9624fcd684976,An Illumination Invariant Accurate Face Recognition with Down Scaling of DCT Coefficients,"An Illumination Invariant Accurate
Face Recognition with Down Scaling
of DCT Coefficients
Virendra P. Vishwakarma, Sujata Pandey and M. N. Gupta
Department of Computer Science and Engineering, Amity School of Engineering and Technology, New Delhi, India
In this paper, a novel approach for illumination normal-
ization under varying lighting conditions is presented.
Our approach utilizes the fact that discrete cosine trans-
form (DCT) low-frequency coefficients correspond to
illumination variations in a digital image. Under varying
illuminations, the images captured may have low con-
trast; initially we apply histogram equalization on these
for contrast stretching. Then the low-frequency DCT
oefficients are scaled down to compensate the illumi-
nation variations. The value of scaling down factor and
the number of low-frequency DCT coefficients, which
re to be rescaled, are obtained experimentally. The
lassification is done using k−nearest neighbor classi-
fication and nearest mean classification on the images
obtained by inverse DCT on the processed coefficients."
66886f5af67b22d14177119520bd9c9f39cdd2e6,Learning Additive Kernel For Feature Transformation and Its Application to CNN Features,"T. KOBAYASHI: LEARNING ADDITIVE KERNEL
Learning Additive Kernel For Feature
Transformation and Its Application to CNN
Features
Takumi Kobayashi
National Institute of Advanced Industrial
Science and Technology
Tsukuba, Japan"
664ccdcc614a8ecfbfedadc7b42b9537fe43d3f1,Probabilistic integration of sparse audio-visual cues for identity tracking,"Probabilistic Integration of Sparse Audio-Visual Cues for
Identity Tracking
Keni Bernardin
Universität Karlsruhe, ITI
Am Fasanengarten 5
76131, Karlsruhe, Germany
Rainer Stiefelhagen
Universität Karlsruhe, ITI
Am Fasanengarten 5
76131, Karlsruhe, Germany
Alex Waibel
Universität Karlsruhe, ITI
Am Fasanengarten 5
76131, Karlsruhe, Germany"
660c8a9fa166c1d81e65192e011eacfec208ec00,Discrimination of visual pedestrians data by combining projection and prediction learning,"Discrimination of visual pedestrians data by combining
projection and prediction learning
Mathieu Lefort, Alexander Gepperth
To cite this version:
Mathieu Lefort, Alexander Gepperth. Discrimination of visual pedestrians data by combining
projection and prediction learning. ESANN - European Symposium on Artificial Neural Net-
works, Computational Intelligence and Machine Learning, Apr 2014, Bruges, Belgium. 2014.
<hal-01061654>
HAL Id: hal-01061654
https://hal.inria.fr/hal-01061654
Submitted on 8 Sep 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,"
66f8115136a11684e3b95c5aaa1476a871d58a66,Face recognition using multiple image view line segments,"JAMESCOOKUNIVERSITY
FaceRecognitionusingMultiple
ImageViewLineSegments
StefanAeberhardandOlivierdeVel
TR	/
DEPARTMENTOFCOMPUTERSCIENCETOWNSVILLE
QUEENSLAND
AUSTRALIA"
66b955311ab6841c4644414d8ce2faf6ca721602,RoboCupRescue 2009 - Robot League Team Darmstadt Rescue Robot,"RoboCupRescue 2009 - Robot League Team
Darmstadt Rescue Robot Team (Germany)
Micha Andriluka1, Martin Friedmann1, Stefan Kohlbrecher1, Johannes Meyer2,
Karen Petersen1, Christian Reinl1, Peter Schauß1, Paul Schnitzspan1, Armin
Strobel2, Dirk Thomas1, Anguelina Vatcheva1, Oskar von Stryk1(cid:63)
Department of Computer Science (1) and Department of Mechanical Engineering (2),
Technische Universit¨at Darmstadt,
Karolinenplatz 5, D-64289 Darmstadt, Germany
E-Mail:
Web: www.gkmm.tu-darmstadt.de/rescue"
66860100a3355f26ffcb9dcbf27e27e4757d641d,Feature Selection in Supervised Saliency Prediction,"Feature Selection in Supervised Saliency Prediction
Ming Liang, Student Member, IEEE, and Xiaolin Hu, Senior Member, IEEE"
3edb0fa2d6b0f1984e8e2c523c558cb026b2a983,Automatic Age Estimation Based on Facial Aging Patterns,"Automatic Age Estimation Based on
Facial Aging Patterns
Xin Geng, Zhi-Hua Zhou, Senior Member, IEEE,
Kate Smith-Miles, Senior Member, IEEE"
3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07,Facial Expression Recognition with Local Binary Patterns and Linear Programming,"FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS
AND LINEAR PROGRAMMING
Xiaoyi Feng1, 2, Matti Pietikäinen1, Abdenour Hadid1
Machine Vision Group, Infotech Oulu and Dept. of Electrical and Information Engineering
P. O. Box 4500 Fin-90014 University of Oulu, Finland
2 College of Electronics and Information, Northwestern Polytechnic University
710072 Xi’an, China
In  this  work,  we  propose  a  novel  approach  to  recognize  facial  expressions  from  static
images. First, the Local Binary Patterns (LBP) are used to efficiently represent the facial
images and then the Linear Programming (LP) technique is adopted to classify the seven
facial  expressions  anger,  disgust,  fear,  happiness,  sadness,  surprise  and  neutral.
Experimental results demonstrate an average recognition accuracy of 93.8% on the JAFFE
database, which outperforms the rates of all other reported methods on the same database.
Introduction
Facial  expression  recognition  from  static
images  is  a  more  challenging  problem
than  from  image  sequences  because  less
information  for  expression  actions
vailable.  However,  information  in  a
single  image  is  sometimes  enough  for"
3e6b70e5be3dbe688866d8dd4382ce05b201fd28,Evaluation of Face Recognition Techniques,"PIAGENG 2009: Image Processing and Photonics for Agricultural Engineering, edited by Honghua Tan, Qi Luo,
Proc. of SPIE Vol. 7489, 74890M · © 2009 SPIE · CCC code: 0277-786X/09/$18 · doi: 10.1117/12.836686
Proc. of SPIE Vol. 7489  74890M-1
Downloaded from SPIE Digital Library on 24 Jan 2010 to 130.194.78.137. Terms of Use:  http://spiedl.org/terms"
3e6fa6cf1fe2e23fdf7716f89b160333c7a93b26,A Performance Evaluation of Single and Multi-feature People Detection,"A Performance Evaluation of Single and
Multi-Feature People Detection
Christian Wojek, Bernt Schiele
{wojek,
Computer Science Department
TU Darmstadt"
3e4acf3f2d112fc6516abcdddbe9e17d839f5d9b,Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs,"Deep Value Networks Learn to
Evaluate and Iteratively Refine Structured Outputs
Michael Gygli 1 * Mohammad Norouzi 2 Anelia Angelova 2"
3e0415f0e8c36f20042d6a1f8b7c216fb5543c3a,RGB-D Segmentation of Poultry Entrails,"Aalborg Universitet
RGB-D Segmentation of Poultry Entrails
Philipsen, Mark Philip; Jørgensen, Anders; Guerrero, Sergio Escalera; Moeslund, Thomas B.
Published in:
IX International Conference on Articulated Motion and Deformable Objects
DOI (link to publication from Publisher):
0.1007/978-3-319-41778-3_17
Publication date:
Document Version
Accepted author manuscript, peer reviewed version
Link to publication from Aalborg University
Citation for published version (APA):
Philipsen, M. P., Jørgensen, A., Guerrero, S. E., & Moeslund, T. B. (2016). RGB-D Segmentation of Poultry
Entrails. In IX International Conference on Articulated Motion and Deformable Objects (pp. 168-174). Springer.
Lecture Notes in Computer Science, Vol.. 9756, DOI: 10.1007/978-3-319-41778-3_17
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain"
3efea06ad6398f9db07acf34479c81a99479e80b,Localizing Moments in Video with Natural Language,"Localizing Moments in Video with Natural Language
Lisa Anne Hendricks1
, Oliver Wang2, Eli Shechtman2, Josef Sivic2
, Trevor Darrell1, Bryan Russell2
UC Berkeley, 2Adobe Research, 3INRIA
https://people.eecs.berkeley.edu/˜lisa_anne/didemo.html
Figure 1: We consider localizing moments in video with natural language and demonstrate that incorporating local and
global video features is important for this task. To train and evaluate our model, we collect the Distinct Describable Moments
(DiDeMo) dataset which consists of over 40,000 pairs of localized video moments and corresponding natural language."
3e0a12352fe3e9fb9246ee0f81ff7fbf0600f818,Facial Surface Analysis using Iso-Geodesic Curves in Three Dimensional Face Recognition System,"Facial Surface Analysis using Iso-Geodesic Curves
in Three Dimensional Face Recognition System
Rachid AHDID, El Mahdi BARRAH, Said SAFI and Bouzid MANAUT"
3e3f305dac4fbb813e60ac778d6929012b4b745a,Feature sampling and partitioning for visual vocabulary generation on large action classification datasets,"Feature sampling and partitioning for visual vocabulary
generation on large action classification datasets.
Michael Sapienza1, Fabio Cuzzolin1, and Philip H.S. Torr2
Department of Computing and Communications Technology, Oxford Brookes University.
Department of Engineering Science, University of Oxford."
3ea8a6dc79d79319f7ad90d663558c664cf298d4,Automatic Facial Expression Recognition from Video Sequences,"(cid:13) Copyright by Ira Cohen, 2000"
3e8de2f904dea8368477daebab0c0dc97e0229f4,Detection and Classification of Vehicles from Omnidirectional Videos using Temporal Average of Silhouettes,"Detection and Classification of Vehicles from Omnidirectional Videos
using Temporal Average of Silhouettes
Computer Vision Research Group, Department of Computer Engineering, Izmir Institute of Technology, 35430,
Hakki Can Karaimer and Yalin Bastanlar
Izmir, Turkey
{cankaraimer,
Keywords:
Omnidirectional  Camera,  Omnidirectional  Video,  Object  Detection,  Vehicle  Detection,  Vehicle
Classification."
3eff18934f5870b27f80c8b1d7104967460e3035,Driver hand localization and grasp analysis: A vision-based real-time approach,
3e4f84ce00027723bdfdb21156c9003168bc1c80,A co-training approach to automatic face recognition,"© EURASIP, 2011  -  ISSN 2076-1465
9th European Signal Processing Conference (EUSIPCO 2011)
INTRODUCTION"
3e56a9b6c6aced2cb14f9cd7f89d145851c44113,Zero and Few Shot Learning with Semantic Feature Synthesis and Competitive Learning,"Zero and Few Shot Learning with Semantic
Feature Synthesis and Competitive Learning
Zhiwu Lu, Jiechao Guan, Aoxue Li, Tao Xiang, An Zhao, and Ji-Rong Wen"
3e08d000ba3dd382c16e4295435ef8264235ccbc,Multiple People Tracking in Smart Camera Networks by Greedy Joint-Likelihood Maximization,
3e2588aaa719c63e48fe599a7f0dbea10a41b4eb,Using Sparse Semantic Embeddings Learned from Multimodal Text and Image Data to Model Human Conceptual Knowledge,"Using sparse semantic embeddings learned from multimodal text and
image data to model human conceptual knowledge
Steven Derby1
Paul Miller1
Brian Murphy1,2
Barry Devereux1
Queen’s University Belfast, Belfast, United Kingdom
{sderby02, p.miller, brian.murphy,
BrainWaveBank Ltd., Belfast, United Kingdom"
3edf3a996790fef8957e21c68ddf48b52238e662,Product of tracking experts for visual tracking of surgical tools,"Product of Tracking Experts for Visual Tracking of Surgical Tools
Suren Kumar, Madusudanan Sathia Narayanan, Pankaj Singhal, Jason J. Corso and Venkat Krovi
State University of New York (SUNY) at Buffalo"
3eec9e8d5051e84624ea7e009a8947403dee99d1,"Material Recognition Meets 3D Reconstruction: Novel Tools for Efficient, Automatic Acquisition Systems","Material Recognition Meets 3D
Reconstruction: Novel Tools for Efficient,
Automatic Acquisition Systems
Dissertation
Erlangung des Doktorgrades (Dr. rer. nat.)
Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn
vorgelegt von
Dipl.-Ing. Michael Weinmann
us Karlsruhe
Bonn, Dezember 2015"
3e04feb0b6392f94554f6d18e24fadba1a28b65f,Subspace Image Representation for Facial Expression Analysis and Face Recognition and its Relation to the Human Visual System,"Subspace Image Representation for Facial
Expression Analysis and Face Recognition
nd its Relation to the Human Visual System
Ioan Buciu1,2 and Ioannis Pitas1
Department of Informatics, Aristotle University of Thessaloniki GR-541 24,
Thessaloniki, Box 451, Greece.
Electronics Department, Faculty of Electrical Engineering and Information
Technology, University of Oradea 410087, Universitatii 1, Romania.
Summary. Two main theories exist with respect to face encoding and representa-
tion in the human visual system (HVS). The first one refers to the dense (holistic)
representation of the face, where faces have “holon”-like appearance. The second one
laims that a more appropriate face representation is given by a sparse code, where
only a small fraction of the neural cells corresponding to face encoding is activated.
Theoretical and experimental evidence suggest that the HVS performs face analysis
(encoding, storing, face recognition, facial expression recognition) in a structured
nd hierarchical way, where both representations have their own contribution and
goal. According to neuropsychological experiments, it seems that encoding for face
recognition, relies on holistic image representation, while a sparse image represen-
tation is used for facial expression analysis and classification. From the computer
vision perspective, the techniques developed for automatic face and facial expres-"
3ed186b4337f48e263ef60acffb49f16d5a85511,Discriminatively learned filter bank for acoustic features,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
3eebe8a5adaa49e54ea909b4e2aeb436025c84d5,3D Face Recognition Using Radon Transform and Symbolic Factorial Discriminant Analysis,"Proc. of Int. Conf. onMultimedia Processing, Communication and Info. Tech., MPCIT
D Face Recognition Using Radon Transform and
Symbolic Factorial Discriminant Analysis
P. S. Hiremath, Manjunath Hiremath
Department of Computer Science Gulbarga University, Gulbarga 585106 Karnataka, India
Email:"
3ede3ed28329bf48fbd06438a69c4f855bef003f,Large-scale geo-facial image analysis,"Islam et al. EURASIP Journal on Image and Video Processing  (2015) 2015:17
DOI 10.1186/s13640-015-0070-9
RESEARCH
Open Access
Large-scale geo-facial image analysis
Mohammad T. Islam1, Connor Greenwell1, Richard Souvenir2 and Nathan Jacobs1*"
3e685704b140180d48142d1727080d2fb9e52163,Single Image Action Recognition by Predicting Space-Time Saliency,"Single Image Action Recognition by Predicting
Space-Time Saliency
Marjaneh Safaei and Hassan Foroosh"
3efb04937f6d87ab9540700e04d8133102c67bc0,Ask Your Neurons: A Deep Learning Approach to Visual Question Answering,"myjournal
Ask Your Neurons:
A Deep Learning Approach to Visual Question Answering
Mateusz Malinowski · Marcus Rohrbach · Mario Fritz
Received: date / Accepted: date"
3ee522805e16bf7816ec4abfaf0c7648b5cb5c95,From Numerical Sensor Data to Semantic Representations :,"From Numerical Sensor Data to Semantic Representations:
A Data-driven Approach for Generating Linguistic Descriptions
Hadi Banaee
Akademisk avhandling
Avhandling för filosofie doktorsexamen i datavetenskap,
som kommer att försvaras offentligt
fredag den 20 april 2018 kl. 13.15,
Hörsal T, Örebro universitet, Örebro
Opponent: Prof. Antonio Chella
University of Palermo
Italy
Örebro universitet
Institutionen för Naturvetenskap och Teknik
701 82 Örebro"
3e67058c6ddd0afae692b7665f82124945ea2c5a,On the Learning of Deep Local Features for Robust Face Spoofing Detection,"On the Learning of Deep Local Features for
Robust Face Spoofing Detection
Gustavo Botelho de Souza1, Jo˜ao Paulo Papa2 and Aparecido Nilceu Marana2 - in Proc. of SIBGRAPI 2018
UFSCar - Federal University of S˜ao Carlos. Rod. Washington Lu´ıs, Km 235. S˜ao Carlos (SP), Brazil. 13565-905.
UNESP - S˜ao Paulo State University. Av. Eng. Luiz Edmundo Carrijo Coube, 14-01. Bauru (SP), Brazil. 17033-360.
E-mail: {papa,"
3e4ec7bdd279573d328a26b720854894e68230ed,Efficient Relative Attribute Learning Using Graph Neural Networks,"Ef‌f‌icient Relative Attribute Learning using
Graph Neural Networks
Zihang Meng1, Nagesh Adluru1, Hyunwoo J. Kim1⋆,
Glenn Fung2, and Vikas Singh1
University of Wisconsin – Madison
American Family Insurance"
3e3ba138edbcf594cd0479ac2cddd5a8e3ee6a18,Edge detection for facial expression recognition,"Edge Detection for Facial Expression Recognition
Jesús García-Ramírez, Ivan Olmos-Pineda, J. Arturo Olvera-López, Manuel Martín
Ortíz
Faculty of Computer Science, Benemérita Universidad Autónoma de Puebla, Av. San Claudio
olvera,
y 14 sur. Puebla, Pue. C.P. 72570, México"
3e309126c78261f242d21826bfac37412f5437cd,Attribute CNNs for Word Spotting in Handwritten,"International Journal on Document Analysis and Recognition manuscript No.
(will be inserted by the editor)
Attribute CNNs for Word Spotting in Handwritten
Documents
Sebastian Sudholt · Gernot A. Fink
Received: date / Accepted: date"
3e687d5ace90c407186602de1a7727167461194a,Photo Tagging by Collection-Aware People Recognition,"Photo Tagging by Collection-Aware People Recognition
Cristina Nader Vasconcelos
Vinicius Jardim
Asla S´a
Paulo Cezar Carvalho"
3e0db33884ca8c756b26dc0df85c498c18d5f2ec,Exploiting Pedestrian Interaction via Global Optimization and Social Behaviors,"Exploiting pedestrian interaction via global optimization
nd social behaviors
Laura Leal-Taix´e, Gerard Pons-Moll, and Bodo Rosenhahn
Leibniz Universit¨at Hannover, Appelstr. 9A, Hannover, Germany"
3e18b439a6fff09a0e4c245eb1298531cc766a72,"Semi-automatic Face Image Finding Method , Which Uses the 3 D Model of the Head for Recognising an Unknown Face","Technologies of Computer Control
doi: 10.7250/tcc.2015.001
______________________________________________________________________________________________ 2015 / 16
Semi-automatic Face Image Finding Method, Which
Uses the 3D Model of the Head for Recognising an
Olga Krutikova1, Aleksandrs Glazs2
, 2 Riga Technical University"
3e159084e12ece3664a17bf4dd0eed8c5f06a33f,Deep Neural Networks with Inexact Matching for Person Re-Identification,"Deep Neural Networks with Inexact Matching for
Person Re-Identification
Arulkumar Subramaniam
Indian Institute of Technology Madras
Chennai, India 600036
Moitreya Chatterjee
Indian Institute of Technology Madras
Chennai, India 600036
Anurag Mittal
Indian Institute of Technology Madras
Chennai, India 600036"
3e7b5b07da3465103929b4347852d456c0f0ed58,Video Processing From Electro-Optical Sensors for Object Detection and Tracking in a Maritime Environment: A Survey,"Video Processing from Electro-optical Sensors for
Object Detection and Tracking in Maritime
Environment: A Survey
Dilip K. Prasad1,∗, Deepu Rajan2, Lily Rachmawati3, Eshan Rajabally4, and Chai Quek2"
3e4bd583795875c6550026fc02fb111daee763b4,Convolutional Sketch Inversion,"Convolutional Sketch Inversion
Ya˘gmur G¨u¸cl¨ut¨urk∗, Umut G¨u¸cl¨u∗, Rob van Lier, and Marcel A. J.
van Gerven
Radboud University, Donders Institute for Brain, Cognition and
Behaviour, Nijmegen, the Netherlands
Figure 1: Example results of our convolutional sketch inversion models. Our models
invert face sketches to synthesize photorealistic face images. Each row shows the sketch
inversion / photo synthesis pipeline that transforms a different sketch of the same face
to a different image of the same face via a different deep neural network. Each deep
neural network layer is represented by the top three principal components of its feature
maps."
50f0c495a214b8d57892d43110728e54e413d47d,Pairwise support vector machines and their application to large scale problems,"Submitted 8/11; Revised 3/12; Published 8/12
Pairwise Support Vector Machines and their Application to Large
Scale Problems
Carl Brunner
Andreas Fischer
Institute for Numerical Mathematics
Technische Universit¨at Dresden
01062 Dresden, Germany
Klaus Luig
Thorsten Thies
Cognitec Systems GmbH
Grossenhainer Str. 101
01127 Dresden, Germany
Editor: Corinna Cortes"
506f744801c97f005fa04a09e4a4ae5fdabe94d7,MARCOnI&#x2014;ConvNet-Based MARker-Less Motion Capture in Outdoor and Indoor Scenes,"Local Submodularization
for Binary Pairwise Energies
Lena Gorelick, Yuri Boykov, Olga Veksler, Ismail Ben Ayed, and Andrew Delong"
501096cca4d0b3d1ef407844642e39cd2ff86b37,Illumination Invariant Face Image Representation Using Quaternions,"Illumination Invariant Face Image
Representation using Quaternions
Dayron Rizo-Rodr´ıguez, Heydi M´endez-V´azquez, and Edel Garc´ıa-Reyes
Advanced Technologies Application Center. 7a # 21812 b/ 218 and 222,
Rpto. Siboney, Playa, P.C. 12200, La Habana, Cuba."
501eda2d04b1db717b7834800d74dacb7df58f91,Discriminative Sparse Representation for Expression Recognition,"Pedro Miguel Neves Marques    Discriminative Sparse Representation for Expression Recognition     Master Thesis in Electrical and Computer Engineering September, 2014"
50da9965104d944a8ae648c9aaec43be8ea1c501,Improving the Correspondence Establishment Based on Interactive Homography Estimation,"Improving the Correspondence Establishment
Based on Interactive Homography Estimation*
Xavier Cortés, Carlos Moreno, and Francesc Serratosa
Universitat Rovira i Virgili, Departament d’Enginyeria Informàtica i Matemàtiques, Spain"
5083c6be0f8c85815ead5368882b584e4dfab4d1,Automated Face Analysis for Affective Computing Jeffrey,"Please do not quote.  In press, Handbook of affective computing. New York, NY: Oxford
Automated Face Analysis for Affective Computing
Jeffrey F. Cohn & Fernando De la Torre"
5080655990fe0e0446bcb038b3e0adad0218bd29,Quantum Cuts A Quantum Mechanical Spectral Graph Partitioning Method for Salient Object Detection Julkaisu,"Çağlar Aytekin
Quantum Cuts
A Quantum Mechanical Spectral Graph Partitioning Method for Salient
Object Detection
Julkaisu 1440 • Publication 1440
Tampere 2016"
50c5a552c191bff34ca74e0f8dbac159e3814533,"Overview of the ImageCLEF 2015 Scalable Image Annotation, Localization and Sentence Generation task","Overview of the ImageCLEF 2015 Scalable
Image Annotation, Localization and Sentence
Generation task
Andrew Gilbert, Luca Piras, Josiah Wang, Fei Yan, Emmanuel Dellandrea,
Robert Gaizauskas, Mauricio Villegas and Krystian Mikolajczyk"
5056186a5001921d0a24587e26167a7ee9d88cf9,Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition,"World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:12, No:10, 2018
Optimizing the Capacity of a Convolutional Neural
Network for Image Segmentation and Pattern
Recognition
Yalong Jiang, Zheru Chi"
5087d9bdde0ba5440eb8658be7183bf5074a2a94,Object Detection via a Multi-region and Semantic Segmentation-Aware CNN Model,"Object detection via a multi-region
semantic segmentation-aware CNN model
Spyros Gidaris, Nikos Komodakis
To cite this version:
Spyros Gidaris, Nikos Komodakis. Object detection via a multi-region
semantic segmentation-aware CNN model. ICCV 2015, Dec 2015, Santiago, Chile. ICCV 2015, 2016,
<10.1109/ICCV.2015.135>. <hal-01245664>
HAL Id: hal-01245664
https://hal.archives-ouvertes.fr/hal-01245664
Submitted on 17 Dec 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
50b6d2db19fb71ff5cfde8e2bfa484b10fbb39fe,Perception of Suicide Risk in Mental Health Professionals.,"RESEARCH ARTICLE
Perception of Suicide Risk in Mental Health
Professionals
Tim M. Gale1,2*, Christopher J. Hawley3, John Butler4, Adrian Morton5, Ankush Singhal6
Department of Research, Hertfordshire Partnership University NHS Foundation Trust, Hatfield, United
Kingdom, 2 Department of Psychology, University of Hertfordshire, Hatfield, United Kingdom, 3 Department
of Post-graduate Medicine, University of Hertfordshire, Hatfield, United Kingdom, 4 School of Health,
University of Central Lancaster, Preston, United Kingdom, 5 Reigate Psychology Service, Reigate, Surrey,
United Kingdom, 6 Psychological Medicine Service, The Royal Oldham Hospital, Oldham, United Kingdom
11111"
5090e374a0d505040ca6fe957936a12026f5347a,Human Emotion Classification From Videos,"Human Emotion Classification From Videos
Maria Soledad Elli (mselli) - Dhvani Kotak (dkotak)"
50bc8a4e7e6ab9837c6244b29ff800f523494d65,Learning to Answer Questions from Image Using Convolutional Neural Network,"Learning to Answer Questions From Image Using Convolutional Neural Network
Noah’s Ark Lab, Huawei Technologies
Lin Ma
Zhengdong Lu
Hang Li"
506e2850a564b6085d8f0af4834a97ddd301d423,Alexandra Teynor Visual Object Class Recognition using Local Descriptions,"Alexandra Teynor
Visual Object Class Recognition
using Local Descriptions
Dissertation zur Erlangung des Doktorgrades
der Fakultät für Angewandte Wissenschaften
der Albert-Ludwigs-Universität Freiburg im Breisgau
August 2008"
5058a7ec68c32984c33f357ebaee96c59e269425,A Comparative Evaluation of Regression Learning Algorithms for Facial Age Estimation,"A Comparative Evaluation of Regression Learning
Algorithms for Facial Age Estimation
Carles Fern´andez1, Ivan Huerta2, and Andrea Prati2
Herta Security
Pau Claris 165 4-B, 08037 Barcelona, Spain
DPDCE, University IUAV
Santa Croce 1957, 30135 Venice, Italy"
50ff21e595e0ebe51ae808a2da3b7940549f4035,Age Group and Gender Estimation in the Wild With Deep RoR Architecture,"IEEE TRANSACTIONS ON LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2017
Age Group and Gender Estimation in the Wild with
Deep RoR Architecture
Ke Zhang, Member, IEEE, Ce Gao, Liru Guo, Miao Sun, Student Member, IEEE, Xingfang Yuan, Student
Member, IEEE, Tony X. Han, Member, IEEE, Zhenbing Zhao, Member, IEEE and Baogang Li"
5042b358705e8d8e8b0655d07f751be6a1565482,Review on Emotion Detection in Image,"International Journal of
Emerging Research in Management &Technology
ISSN: 2278-9359 (Volume-4, Issue-8)
Research  Article
August
Review  on Emotion Detection  in Image
Aswinder Kaur*                                                                                                        Kapil Dewan
CSE & PCET, PTU                                                                                             HOD, CSE & PCET, PTU
Punjab, India                                                                                                            Punj ab, India"
50e47857b11bfd3d420f6eafb155199f4b41f6d7,3D Human Face Reconstruction Using a Hybrid of Photometric Stereo and Independent Component Analysis,"International Journal of Computer, Consumer and Control (IJ3C), Vol. 2, No.1 (2013)
D Human Face Reconstruction Using a Hybrid of Photometric
Stereo and Independent Component Analysis
*Cheng-Jian Lin, 2Shyi-Shiun Kuo, 1Hsueh-Yi Lin, 2Shye-Chorng Kuo and 1Cheng-Yi Yu"
50eb75dfece76ed9119ec543e04386dfc95dfd13,Learning Visual Entities and Their Visual Attributes from Text Corpora,"Learning Visual Entities and their Visual Attributes from Text Corpora
Erik Boiy
Dept. of Computer Science
K.U.Leuven, Belgium
Koen Deschacht
Dept. of Computer Science
K.U.Leuven, Belgium
Marie-Francine Moens
Dept. of Computer Science
K.U.Leuven, Belgium"
50a0930cb8cc353e15a5cb4d2f41b365675b5ebf,Robust Facial Landmark Detection and Face Tracking in Thermal Infrared Images using Active Appearance Models,
507660f778fe913f6e1957fe39a87cbf50a52b2e,Sparse Camera Network for Visual Surveillance -- A Comprehensive Survey,"Sparse Camera Network for Visual
Surveillance – A Comprehensive Survey
Mingli Song, Member, IEEE, Dacheng Tao, Senior Member, IEEE,
nd Stephen J. Maybank, Fellow, IEEE"
50fb5e2f0c2fe8679c218ff88d4906e5a0812d34,"Sketch-editing games: human-machine communication, game theory and applications","Sketch-Editing Games: Human-Machine Communication,
Game Theory and Applications
Andre Ribeiro
Takeo Igarashi
JST, Erato, Igarashi
Design Interface Project,
-28-1-7F, Koishikawa
JST, Erato, Igarashi
Design Interface Project,
-28-1-7F, Koishikawa
sketches).  We  argue"
50eb2ee977f0f53ab4b39edc4be6b760a2b05f96,Emotion recognition based on texture analysis of facial expression,"Australian Journal of Basic and Applied Sciences, 11(5) April 2017, Pages: 1-11
AUSTRALIAN JOURNAL OF BASIC AND
APPLIED SCIENCES
ISSN:1991-8178        EISSN: 2309-8414
Journal home page: www.ajbasweb.com
Emotion  Recognition  Based  on  Texture  Analysis  of  Facial  Expressions
Using Wavelets Transform
Suhaila N. Mohammed and 2Loay E. George
Assistant Lecturer, Computer Science Department, College of Science, Baghdad University, Baghdad, Iraq,
Assistant Professor, Computer Science Department, College of Science, Baghdad University, Baghdad, Iraq,
Address For Correspondence:
Suhaila N. Mohammed, Baghdad University, Computer Science Department, College of Science, Baghdad, Iraq.
A R T I C L E   I N F O
Article history:
Received 18 January 2017
Accepted 28 March 2017
Available online 15 April 2017
Keywords:
Facial  Emotion,  Face  Detection,
Template  Based  Methods,  Texture"
50d15cb17144344bb1879c0a5de7207471b9ff74,"Divide, Share, and Conquer: Multi-task Attribute Learning with Selective Sharing","Divide, Share, and Conquer: Multi-task
Attribute Learning with Selective Sharing
Chao-Yeh Chen*, Dinesh Jayaraman*, Fei Sha, and Kristen Grauman"
505942c5f9b5779bda2859e22e9ed0b1c0c7b54a,Towards 3D Face Recognition in the Real: A Registration-Free Approach Using Fine-Grained Matching of 3D Keypoint Descriptors,"Int J Comput Vis
DOI 10.1007/s11263-014-0785-6
Towards 3D Face Recognition in the Real: A Registration-Free
Approach Using Fine-Grained Matching of 3D Keypoint
Descriptors
Huibin Li · Di Huang · Jean-Marie Morvan ·
Yunhong Wang · Liming Chen
Received: 26 April 2013 / Accepted: 27 October 2014
© Springer Science+Business Media New York 2014"
503c16d9cb1560f13a7d6baedf8c9f889b22459d,Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,"Encoder-Decoder with Atrous Separable
Convolution for Semantic Image Segmentation
Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and
Hartwig Adam
{lcchen, yukun, gpapan, fschroff,
Google Inc."
50d961508ec192197f78b898ff5d44dc004ef26d,A Low Indexed Content Based Neural Network Approach for Natural Objects Recognition,"International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009
A LOW INDEXED CONTENT BASED
NEURAL NETWORK APPROACH FOR
NATURAL OBJECTS RECOGNITION
G.Shyama Chandra Prasad1 and Dr. A.Govardhan 2  Dr. T.V.Rao 3
Research Scholar, JNTUH, Hyderabad, AP. India
Principal, JNTUH College of Engineering, jagitial, Karimnagar, AP, India
Principal, Chaithanya Institute of Engineering and Technology, Kakinada, AP, India"
50ccc98d9ce06160cdf92aaf470b8f4edbd8b899,Towards robust cascaded regression for face alignment in the wild,"Towards Robust Cascaded Regression for Face Alignment in the Wild
Chengchao Qu1,2 Hua Gao3
Eduardo Monari2
J¨urgen Beyerer2,1
Jean-Philippe Thiran3
Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT)
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB)
Signal Processing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne (EPFL)"
5028c0decfc8dd623c50b102424b93a8e9f2e390,Revisiting Classifier Two-sample Tests,"Published as a conference paper at ICLR 2017
REVISITING CLASSIFIER TWO-SAMPLE TESTS
David Lopez-Paz1, Maxime Oquab1,2
Facebook AI Research, 2WILLOW project team, Inria / ENS / CNRS"
500993a8852f766d4bac7b5039b9072b587e4d09,HARRISON: A Benchmark on HAshtag Recommendation for Real-world Images in Social Networks,"PARK, LI, KIM: HARRISON: A BENCHMARK FOR IMAGE HASHTAG RECOMMENDATION1
HARRISON: A Benchmark on HAshtag
Recommendation for Real-world Images in
SOcial Networks
School of Electrical Engineering
KAIST
South Korea
Minseok Park
Hanxiang Li
Junmo Kim"
50984f8345a3120d0e6c0a75adc2ac1a13e37961,Impaired face processing in autism: fact or artifact?,"DOI 10.1007/s10803-005-0050-5
Published Online: February 14, 2006
Impaired Face Processing in Autism: Fact or Artifact?
Boutheina Jemel,1,3–5 Laurent Mottron,2–4 and Michelle Dawson2
Within the last 10 years, there has been an upsurge of interest in face processing abilities in
utism which has generated a proliferation of new empirical demonstrations employing a
variety of measuring techniques. Observably atypical social behaviors early in the develop-
ment of children with autism have led to the contention that autism is a condition where the
processing of social
is impaired. While several empirical
sources of evidence lend support to this hypothesis, others suggest that there are conditions
under which autistic individuals do not differ from typically developing persons. The present
paper reviews this bulk of empirical evidence, and concludes that the versatility and abilities of
face processing in persons with autism have been underestimated.
information, particularly faces,
KEY WORDS: Autism; face processing; FFA; configural; local bias.
Impaired face processing is one of the most
the social cognition
ommonly cited aspects of
deficits observed among persons with autism spec-"
505e55d0be8e48b30067fb132f05a91650666c41,A Model of Illumination Variation for Robust Face Recognition,"A Model of Illumination Variation for Robust Face Recognition
Florent Perronnin and Jean-Luc Dugelay
Institut Eur´ecom
Multimedia Communications Department
BP 193, 06904 Sophia Antipolis Cedex, France
fflorent.perronnin,"
507c9672e3673ed419075848b4b85899623ea4b0,Multi-View Facial Expression Classification,"Faculty of Informatics
Institute for Anthropomatics
Chair Prof. Dr.-Ing. R. Stiefelhagen
Facial Image Processing and Analysis Group
Multi-View Facial Expression
Classification
DIPLOMA THESIS OF
Nikolas Hesse
ADVISORS
Dr.-Ing. Hazım Kemal Ekenel
Dipl.-Inform. Hua Gao
Dipl.-Inform. Tobias Gehrig
MARCH 2011
KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association
www.kit.edu"
5020a75c45416073d0b07b1deb7382bc80de1779,Human Detection Using Learned Part Alphabet and Pose Dictionary,"Human Detection using Learned Part Alphabet
nd Pose Dictionary
Anonymous ECCV submission
Paper ID 895"
50e5dd45a94a56cb973e51dc3347e621266db7e4,3D Face Recognition Using Concurrent Neural Modules,"D Face Recognition Using Concurrent Neural Modules
VICTOR-EMIL NEAGOE , IONUT MITRACHE, AND DANIEL CARAUSU
Depart. Electronics, Telecommunications & Information Technology
Polytechnic University of Bucharest
Splaiul Independentei No. 313, Sector 6, Bucharest
ROMANIA
Email:"
684c8acd49148020e9bf9c4f4aefc03708a6dac0,Video-Based Person Re-Identification With Accumulative Motion Context,"Video-based Person Re-identification with
Accumulative Motion Context
Hao Liu, Zequn Jie, Karlekar Jayashree, Meibin Qi, Jianguo Jiang and Shuicheng Yan, Fellow, IEEE, Jiashi Feng"
68df1f746a3434ee8bcc8918d46809ddaad38b12,Subspace learning in minimax detection,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
Email: {raja.fazliza, david.mary,
SUBSPACE LEARNING IN MINIMAX DETECTION
Raja Fazliza R. Suleiman, David Mary and Andr´e Ferrari
Campus Valrose, 06108 Nice Cedex 02, FRANCE
Laboratoire J.-L. Lagrange, UMR7293,
. INTRODUCTION AND PRIOR WORKS
(cid:26) H0"
680d662c30739521f5c4b76845cb341dce010735,Part and Attribute Discovery from Relative Annotations,"Int J Comput Vis (2014) 108:82–96
DOI 10.1007/s11263-014-0716-6
Part and Attribute Discovery from Relative Annotations
Subhransu Maji · Gregory Shakhnarovich
Received: 25 February 2013 / Accepted: 14 March 2014 / Published online: 26 April 2014
© Springer Science+Business Media New York 2014"
68ae4db6acf5361486f153ee0c0d540e0823682a,FlashReport Memory conformity for con fi dently recognized items : The power of social in fl uence on memory reports,"Journal of Experimental Social Psychology 48 (2012) 783–786
Contents lists available at SciVerse ScienceDirect
Journal of Experimental Social Psychology
j o u r n a l h o m e pa ge : w ww . e l s e v i e r . c o m/ l o c a t e / j e s p
FlashReport
Memory conformity for confidently recognized items: The power of social influence
on memory reports
Ruth Horry ⁎, Matthew A. Palmer 1, Michelle L. Sexton, Neil Brewer
Flinders University, Australia
r t i c l e
i n f o
b s t r a c t
Article history:
Received 14 September 2011
Revised 9 December 2011
Available online 22 December 2011
Keywords:
Memory conformity
Confidence
Face recognition"
68e4ed4daa2ae94c789443ed222601a4a47f9a45,Building Extraction from Polarimetric Interferometric Sar Data Using Bayesian Network,"BUILDING EXTRACTION FROM POLARIMETRIC INTERFEROMETRIC SAR DATA
USING BAYESIAN NETWORK
Wenju He and Olaf Hellwich
Berlin University of Technology
{wenjuhe,
. INTRODUCTION
Many researches have been done to extract buildings from high resolution Synthetic Aperture Radar (SAR) data. The extraction
problem is far from solved due to many constraints, e.g. SAR side-look imaging, speckle, and lack of object extent in SAR
images. Building detection algorithms usually use intensity information or textures. Layovers and shadows can be discriminated
from other objects since they have distinct appearances. The detection is hindered by the small geometric extent of buildings
in SAR images and the orientation dependency of reflections. Many buildings are occluded with surrounding environments.
The interactions between radar and various buildings are hard to model. Polarimetric SAR data can resolve some ambiguities
ecause polarimetry can be used to analyze physical scattering properties. Scatterers formed by buildings have strong double-
ounce reflections. Polarimetric SAR data also allow us to extract rich features for object detection. Polarimetric interferometric
SAR (PolinSAR) data are more promising since they are able to provide object height information. Furthermore, coherent
scatterer and permanent scatterer analysis using interferometric SAR (InSAR) data are powerful in urban change detection
pplications. As to building localization, a height map retrieved from PolinSAR data is very advantageous. PolinSAR data are
expected to further resolve ambiguities in building detection problems.
For meter-resolution PolinSAR data, however, it is hard to retrieve phases of building roofs from interferometric phase
ecause of complex scattering mechanisms and building geometries. Building height image was derived from InSAR digital"
683260bf133c282439b91ac4427d42d73a5988b5,"Optimizing Program Performance via Similarity, Using Feature-aware and Feature-agnostic Characterization Approaches","UNIVERSITY OF CALIFORNIA,
IRVINE
Optimizing Program Performance via Similarity,
Using Feature-aware and Feature-agnostic Characterization Approaches
DISSERTATION
submitted in partial satisfaction of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
in Information and Computer Science
Rosario Cammarota
Dissertation Committee:
Professor Alexander V. Veidenbaum, Chair
Professor Alexandru Nicolau
Professor Nikil Dutt"
68a2ee5c5b76b6feeb3170aaff09b1566ec2cdf5,Age Classification Based on Simple Lbp Transitions,"AGE CLASSIFICATION BASED ON
SIMPLE LBP TRANSITIONS
Research Scholar & Assoc Professor, Aditya institute of Technology and Management, Tekkalli-532 201, A.P.,
Gorti Satyanarayana Murty
India,
Dr. V.Vijaya Kumar
A. Obulesu
Dean-Computer Sciences (CSE & IT), Anurag Group of Institutions, Hyderabad – 500088, A.P., India.,
3Asst. Professor, Dept. Of CSE, Anurag Group of Institutions, Hyderabad – 500088, A.P., India."
6821a3fa67d9d58655c26e24b568fda1229ac5be,Fast and robust object segmentation with the Integral Linear Classifier,"Fast and Robust Object Segmentation with the Integral Linear Classifier
David Aldavert
Computer Vision Center
Dept. Computer Science
Arnau Ramisa
INRIA-Grenoble
Artificial Intelligence Research
Univ. Aut`onoma de Barcelona
Institute (IIIA-CSIC)
Ramon Lopez de Mantaras
Artificial Intelligence Research
Institute (IIIA-CSIC)
Campus UAB
Ricardo Toledo
Computer Vision Center
Dept. Computer Science
Univ. Aut`onoma de Barcelona"
68d2afd8c5c1c3a9bbda3dd209184e368e4376b9,Representation Learning by Rotating Your Faces,"Representation Learning by Rotating Your Faces
Luan Tran, Xi Yin, and Xiaoming Liu, Member, IEEE"
688cb9fd33769b152806c04ef6fc276629a9f300,LocNet: Improving Localization Accuracy for Object Detection,"LocNet: Improving Localization Accuracy for Object Detection
Spyros Gidaris
Universite Paris Est, Ecole des Ponts ParisTech
Nikos Komodakis
Universite Paris Est, Ecole des Ponts ParisTech"
68eb5404a22fcca595cc6360e9a77a4b09156eb2,Appearance-based person reidentification in camera networks: problem overview and current approaches,"J Ambient Intell Human Comput (2011) 2:127–151
DOI 10.1007/s12652-010-0034-y
O R I G I N A L R E S E A R C H
Appearance-based person reidentification in camera networks:
problem overview and current approaches
Gianfranco Doretto • Thomas Sebastian •
Peter Tu • Jens Rittscher
Received: 30 January 2010 / Accepted: 4 October 2010 / Published online: 14 January 2011
Ó Springer-Verlag 2011"
6872615b0298aa01affa3b8d71e4d5547244278f,Weighted Fourier Image Analysis and Modeling,"WEIGHTED FOURIER IMAGE ANALYSIS
AND MODELING
Shubing Wang
A dissertation submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
(Statistics)
t the
UNIVERSITY OF WISCONSIN – MADISON"
6859b891a079a30ef16f01ba8b85dc45bd22c352,"2D Face Recognition Based on PCA & Comparison of Manhattan Distance, Euclidean Distance & Chebychev Distance","International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 10, October 2014)
D Face Recognition Based on PCA & Comparison of
Manhattan Distance, Euclidean Distance & Chebychev
Distance
Rajib Saha1, Sayan Barman2
RCC Institute of Information Technology, Kolkata, India"
68d08ed9470d973a54ef7806318d8894d87ba610,Drive Video Analysis for the Detection of Traffic Near-Miss Incidents,"Drive Video Analysis for the Detection of Traffic Near-Miss Incidents
Hirokatsu Kataoka1, Teppei Suzuki1
, Shoko Oikawa3, Yasuhiro Matsui4 and Yutaka Satoh1"
68caf5d8ef325d7ea669f3fb76eac58e0170fff0,Long-term face tracking in the wild using deep learning,
68003e92a41d12647806d477dd7d20e4dcde1354,Fuzzy Based Image Dimensionality Reduction Using Shape Primitives for Efficient Face Recognition,"ISSN: 0976-9102 (ONLINE)
DOI: 10.21917/ijivp.2013.0101
ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, NOVEMBER 2013, VOLUME: 04, ISSUE: 02
FUZZY BASED IMAGE DIMENSIONALITY REDUCTION USING SHAPE
PRIMITIVES FOR EFFICIENT FACE RECOGNITION
P. Chandra Sekhar Reddy1, B. Eswara Reddy2 and V. Vijaya Kumar3
Deprtment of Computer Science and Engineering, Nalla Narasimha Reddy Education Society’s Group of Institutions, India
E-Mail:
Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India
Deprtment of Computer Science and Engineering, Anurag Group of Institutions, India
E-mail:
E-mail:"
68d4056765c27fbcac233794857b7f5b8a6a82bf,Example-Based Face Shape Recovery Using the Zenith Angle of the Surface Normal,"Example-Based Face Shape Recovery Using the
Zenith Angle of the Surface Normal
Mario Castel´an1, Ana J. Almaz´an-Delf´ın2, Marco I. Ram´ırez-Sosa-Mor´an3,
nd Luz A. Torres-M´endez1
CINVESTAV Campus Saltillo, Ramos Arizpe 25900, Coahuila, M´exico
Universidad Veracruzana, Facultad de F´ısica e Inteligencia Artificial, Xalapa 91000,
ITESM, Campus Saltillo, Saltillo 25270, Coahuila, M´exico
Veracruz, M´exico"
684f5166d8147b59d9e0938d627beff8c9d208dd,Discriminative Block-Diagonal Representation Learning for Image Recognition,"IEEE TRANS. NNLS, JUNE 2017
Discriminative Block-Diagonal Representation
Learning for Image Recognition
Zheng Zhang, Yong Xu, Senior Member, IEEE, Ling Shao, Senior Member, IEEE, Jian Yang, Member, IEEE"
683fbd7593cf5c22ef54004bb89c469eab2f656e,URJC&UNED at ImageCLEF 2013 Photo Annotation Task,"URJCyUNED at ImageCLEF 2012 Photo
Annotation task⋆
Jes´us S´anchez-Oro1, Soto Montalvo1, Antonio S. Montemayor1, Ra´ul Cabido1,
Juan J. Pantrigo1, Abraham Duarte1, V´ıctor Fresno2, and Raquel Mart´ınez2
Universidad Rey Juan Carlos, M(cid:19)ostoles, Spain
Universidad Nacional de Educaci(cid:19)on a Distancia, Madrid, Spain"
68333b73613c59914bfe1264a440b3cf854dc15c,Mugeetion: Musical Interface Using Facial Gesture and Emotion,"Mugeetion: Musical Interface Using Facial Gesture and Emotion
Eunjeong Stella Koh
Music Department
UC San Diego"
6864b089c8586b0e3f6bd6736cabea96b1c4a28a,Robust classification for occluded ear via Gabor scale feature-based non-negative sparse representation,"Robust classification for occluded ear via
Gabor scale feature-based non-negative
sparse representation
Baoqing Zhang
Zhichun Mu
Chen Li
Hui Zeng
Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 01/02/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx"
68becbe61cf30ef93b2679866d3a511e919ffb2f,"Motor, emotional, and cognitive empathy in children and adolescents with autism spectrum disorder and conduct disorder.","J Abnorm Child Psychol (2013) 41:425–443
DOI 10.1007/s10802-012-9689-5
Motor, Emotional, and Cognitive Empathy in Children
nd Adolescents with Autism Spectrum Disorder
nd Conduct Disorder
Danielle Bons & Egon van den Broek & Floor Scheepers &
Pierre Herpers & Nanda Rommelse & Jan K. Buitelaaar
Published online: 25 October 2012
# Springer Science+Business Media New York 2012"
688680d9902f688b9ac2d47c399ceebd1014d785,GIS-supported people tracking re-acquisition in a multi-camera environment,"GIS-supported People Tracking Re-Acquisition in a Multi-Camera
Environment
Anastasios Dimou1, Vasileios Lovatsis1, Andreas Papadakis2, Stelios Pantelopoulos2 and Petros
Daras1
CERTH-ITI, 6th kilometer Harilaou-Thermi, Thessaloniki, Greece
SingularLogic, Athens, Greece
Keywords:
GIS, Re-Identification, Multi-camera."
685f8df14776457c1c324b0619c39b3872df617b,Face Recognition with Preprocessing and Neural Networks,"Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2016
Face Recognition with
Preprocessing and Neural
Networks
David Habrman"
68484ae8a042904a95a8d284a7f85a4e28e37513,Spoofing Deep Face Recognition with Custom Silicone Masks,"Spoofing Deep Face Recognition with Custom Silicone Masks
Sushil Bhattacharjee Amir Mohammadi
S´ebastien Marcel
Idiap Research Institute. Centre du Parc, Rue Marconi 19, Martigny (VS), Switzerland
{sushil.bhattacharjee; amir.mohammadi;"
688754568623f62032820546ae3b9ca458ed0870,Resting high frequency heart rate variability is not associated with the recognition of emotional facial expressions in healthy human adults,"ioRxiv preprint first posted online Sep. 27, 2016;
http://dx.doi.org/10.1101/077784
The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a
CC-BY-NC-ND 4.0 International license
Resting high frequency heart rate variability is not associated with the
recognition of emotional facial expressions in healthy human adults.
Brice Beffara1,2,3, Nicolas Vermeulen3,4, Martial Mermillod1,2
Univ. Grenoble Alpes, LPNC, F-38040, Grenoble, France
CNRS, LPNC UMR 5105, F-38040, Grenoble, France
IPSY, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Fund for Scientific Research (FRS-FNRS), Brussels, Belgium
Correspondence concerning this article should be addressed to Brice Beffara, Of‌f‌ice E250, Institut
de Recherches en Sciences Psychologiques, IPSY - Place du Cardinal Mercier, 10 bte L3.05.01 B-1348
Louvain-la-Neuve, Belgium. E-mail:
Author note
This study explores whether the myelinated vagal connection between the heart and the brain
is involved in emotion recognition. The Polyvagal theory postulates that the activity of the
myelinated vagus nerve underlies socio-emotional skills. It has been proposed that the perception
of emotions could be one of this skills dependent on heart-brain interactions. However, this"
688ae87c5e40583ecf9ec6d06d4d15a3e62f5556,A New Angle on L2 Regularization,"A New Angle on L2 Regularization
(interactive version available at https://thomas-tanay.github.io/post--L2-regularization/)
Thomas Tanay
Lewis D Grif‌f‌in
CoMPLEX, UCL
CoMPLEX, UCL
Deep neural networks have been shown to be vulnerable to the
dversarial example phenomenon: all models tested so far can have their
lassifications dramatically altered by small image perturbations [1, 2].
The following predictions were for instance made by a state-of-the-art
network trained to recognize celebrities [3]:"
68b44eb4c7440046783146064ae9e715a72766dc,An Investigation of Physiological Arousal in Children with Autism and Co-morbid Challenging Behaviour,"An Investigation of Physiological Arousal in Children with
Autism and Co-morbid Challenging Behaviour
Sinéad Lydon
A thesis submitted to Trinity College Dublin, the University of Dublin,
in partial fulfillment of the requirements for the Degree of Doctor of
Philosophy (PhD) in Psychology
Supervisors: Dr. Olive Healy (Trinity College Dublin) and
Professor Brian Hughes (National University of Ireland, Galway)."
688f5cb02dc6c779fa9fd18f44b792f9626bdcd0,Visual pattern discovery in image and video data: a brief survey,"Visual Pattern Discovery in Image and Video Data:
A Brief Survey
Hongxing Wang, Gangqiang Zhao and Junsong Yuan"
68f9cb5ee129e2b9477faf01181cd7e3099d1824,ALDA Algorithms for Online Feature Extraction,"ALDA Algorithms for Online Feature Extraction
Youness Aliyari Ghassabeh, Hamid Abrishami Moghaddam"
68b01afed57ed7130d993dffc03dcbfa36d4e038,Adversarial Learning with Local Coordinate Coding,"Adversarial Learning with Local Coordinate Coding
Jiezhang Cao * 1 Yong Guo * 1 Qingyao Wu * 1 Chunhua Shen 2 Junzhou Huang 3 Mingkui Tan 1"
687ef116d7115498f12dff1b3338d959f164ef6b,Using Thought-Provoking Children's Questions to Drive Artificial Intelligence Research,"Using Thought-Provoking Children’s Questions
to Drive Artificial Intelligence Research
Erik T. Mueller and Henry Minsky
Minsky Institute for Artificial Intelligence
http://minskyinstitute.org/
September 14, 2015 00:09"
68ba19afe924699b4a0c84af91c05deb5b03e3bd,Do Characteristics of Faces That Convey Trustworthiness and Dominance Underlie Perceptions of Criminality?,"Do Characteristics of Faces That Convey Trustworthiness
nd Dominance Underlie Perceptions of Criminality?
Heather D. Flowe*
College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom"
68415682aa3e25178c9504866f64cf4b2a32273e,Capturing Complex 3D Human Motions with Kernelized Low-Rank Representation from Monocular RGB Camera,"Article
Capturing Complex 3D Human Motions with
Kernelized Low-Rank Representation from
Monocular RGB Camera
Xuan Wang 1,2,3,4, Fei Wang 1,2,3,4,* and Yanan Chen 1,2,3,4
The Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, No.28 Xianning West Road,
Xi’an 710048, China; (X.W.); (Y.C.)
The School of Software Engineering, Xi’an Jiaotong University, No.28 Xianning West Road,
Xi’an 710048, China
National Engineering Laboratory for Visual Information Processing and Application, Xi’an Jiaotong
University, No.28 Xianning West Road, Xi’an 710048, China
Shaanxi Digital Technology and Intelligent System Key Laboratory, Xi’an Jiaotong University, No.28
Xianning West Road, Xi’an 710048, China
* Correspondence:
Received: 5 July 2017; Accepted: 24 August 2017; Published: 3 September 2017"
68d40176e878ebffbc01ffb0556e8cb2756dd9e9,Locality Repulsion Projection and Minutia Extraction Based Similarity Measure for Face Recognition,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
International Conference on Humming Bird ( 01st March 2014)
RESEARCH ARTICLE
OPEN ACCESS
Locality Repulsion Projection and Minutia Extraction Based
Similarity Measure for Face Recognition
Agnel AnushyaP.1,RamyaP.2
AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of
Ramya P. is currently working as an Asst. Professor in the dept. of Information Technology at Vins Christian
Engineering.
ollege of Engineering."
68c279d4fcc02710056e73a3b0d0d564a7615cad,Unified framework for fast exact and approximate search in dissimilarity spaces,"Unified Framework for Fast Exact and
Approximate Search in Dissimilarity Spaces
TOM´AˇS SKOPAL
Charles University in Prague
In multimedia systems we usually need to retrieve DB objects based on their similarity to a query
object, while the similarity assessment is provided by a measure which defines a (dis)similarity
score for every pair of DB objects. In most existing applications, the similarity measure is required
to be a metric, where the triangle inequality is utilized to speedup the search for relevant objects
y use of metric access methods (MAMs), e.g. the M-tree. A recent research has shown, however,
that non-metric measures are more appropriate for similarity modeling due to their robustness and
ease to model a made-to-measure similarity. Unfortunately, due to the lack of triangle inequality,
the non-metric measures cannot be directly utilized by MAMs. From another point of view, some
sophisticated similarity measures could be available in a black-box non-analytic form (e.g. as an
lgorithm or even a hardware device), where no information about their topological properties is
provided, so we have to consider them as non-metric measures as well. From yet another point
of view, the concept of similarity measuring itself is inherently imprecise and we often prefer fast
ut approximate retrieval over an exact but slower one.
To date, the mentioned aspects of similarity retrieval have been solved separately, i.e. exact
vs. approximate search or metric vs. non-metric search. In this paper we introduce a similarity
retrieval framework which incorporates both of the aspects into a single unified model. Based on"
6889d649c6bbd9c0042fadec6c813f8e894ac6cc,Analysis of Robust Soft Learning Vector Quantization and an application to Facial Expression Recognition,"Analysis of Robust Soft Learning Vector
Quantization and an application to Facial
Expression Recognition"
680402e42c874c14a32146865d985588985744a4,Detection and Tracking of Multiple Humans in High-density Crowds,"DETECTION AND TRACKING OF MULTIPLE HUMANS IN
HIGH-DENSITY CROWDS
Irshad Ali
A research study submitted in partial fulfillment of the requirements for the
degree of Master of Engineering in
Computer Science
Examination Committee: Dr. Matthew N. Dailey (Chairperson)
Dr. Manukid Parnichkun (Member)
Dr. Nitin V. Afzulpurkar (Member)
Nationality: Pakistani
Previous Degree: Bachelor of Science in Computer Engineering
Samara State Technical University, Russia
Scholarship Donor: Higher Education Commission (HEC), Pakistan - AIT
Fellowship
Asian Institute of Technology
School of Engineering and Technology
Thailand
May 2009"
68c17aa1ecbff0787709be74d1d98d9efd78f410,Gender Classification from Face Images Using Mutual Information and Feature Fusion,"International Journal of Optomechatronics, 6: 92–119, 2012
Copyright # Taylor & Francis Group, LLC
ISSN: 1559-9612 print=1559-9620 online
DOI: 10.1080/15599612.2012.663463
GENDER CLASSIFICATION FROM FACE IMAGES
USING MUTUAL INFORMATION AND FEATURE
FUSION
Claudio Perez, Juan Tapia, Pablo Este´vez, and Claudio Held
Department of Electrical Engineering and Advanced Mining Technology
Center, Universidad de Chile, Santiago, Chile
In this article we report a new method for gender classification from frontal face images
using feature selection based on mutual information and fusion of features extracted from
intensity, shape, texture, and from three different spatial scales. We compare the results of
three different mutual information measures: minimum redundancy and maximal relevance
(mRMR), normalized mutual information feature selection (NMIFS), and conditional
mutual information feature selection (CMIFS). We also show that by fusing features
extracted from six different methods we significantly improve the gender classification
results relative to those previously published, yielding 99.13% of the gender classification
rate on the FERET database.
Keywords: Feature fusion, feature selection, gender classification, mutual information, real-time gender"
68f61154a0080c4aae9322110c8827978f01ac2e,"Recognizing blurred , non-frontal , illumination and expression variant partially occluded faces","Research Article
Journal of the Optical Society of America A
Recognizing blurred, non-frontal, illumination and
expression variant partially occluded faces
ABHIJITH PUNNAPPURATH1* AND AMBASAMUDRAM NARAYANAN RAJAGOPALAN1
Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
*Corresponding author:
Compiled June 26, 2016
The focus of this paper is on the problem of recognizing faces across space-varying motion blur, changes
in pose, illumination, and expression, as well as partial occlusion, when only a single image per subject
is available in the gallery. We show how the blur incurred due to relative motion between the camera and
the subject during exposure can be estimated from the alpha matte of pixels that straddle the boundary
etween the face and the background. We also devise a strategy to automatically generate the trimap re-
quired for matte estimation. Having computed the motion via the matte of the probe, we account for pose
variations by synthesizing from the intensity image of the frontal gallery, a face image that matches the
pose of the probe. To handle illumination and expression variations, and partial occlusion, we model the
probe as a linear combination of nine blurred illumination basis images in the synthesized non-frontal
pose, plus a sparse occlusion. We also advocate a recognition metric that capitalizes on the sparsity of the
occluded pixels. The performance of our method is extensively validated on synthetic as well as real face
data. © 2016 Optical Society of America"
6844a700aee36bd809d1188f6f9e81707c513f19,Interactive model-based reconstruction of the human head using an RGB-D sensor,"Interactive Model-based Reconstruction of the
Human Head using an RGB-D Sensor
M. Zollh¨ofer, J. Thies, M. Colaianni, M. Stamminger, G. Greiner
Computer Graphics Group, University Erlangen-Nuremberg, Germany"
682f735ef796370f510218eb7afb4d2a36cd1256,On Offline Evaluation of Vision-Based Driving Models,
6888f3402039a36028d0a7e2c3df6db94f5cb9bb,Classifier-to-generator Attack: Estimation,"Under review as a conference paper at ICLR 2018
CLASSIFIER-TO-GENERATOR ATTACK: ESTIMATION
OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER
Anonymous authors
Paper under double-blind review"
68b6ec13d06facacf5637f90828ab5b6e352be60,Neural Proximal Gradient Descent for Compressive Imaging,"Neural Proximal Gradient Descent for Compressive
Imaging
Morteza Mardani1,2, Qingyun Sun4, Shreyas Vasawanala2, Vardan Papyan3,
Hatef Monajemi3, John Pauly1, and David Donoho3
Depts. of Electrical Eng., Radiology, Statistics, and Mathematics; Stanford University"
6898b0934d2bc34acc61a3c63fbb20337d7b9a95,Learning Styles and Emotion Recognition in a Fuzzy Expert System,"Learning Styles and Emotion Recognition in a Fuzzy
Expert System
Ramón Zatarain-Cabada, M. Lucía Barrón-Estrada, Rosalío Zatarain-Cabada
Instituto Tecnológico de Culiacán, Juan de Dios Bátiz s/n, Col. Guadalupe, Culiacán Sinaloa,
80220, Mexico
{rzatarain,"
5782d17ad87262739d69dcbe76cadfa881179a91,Data Analysis Project: What Makes Paris Look like Paris?,"Data Analysis Project: What Makes Paris Look like
Paris?
Machine Learning Department
Carnegie-Mellon University
Pittsburgh, PA 15213
Carl Doersch⇤"
57235f22abcd6bb928007287b17e235dbef83347,Exemplar Guided Unsupervised Image-to-Image Translation with Semantic Consistency,"EXEMPLAR GUIDED UNSUPERVISED
IMAGE-TO-
IMAGE TRANSLATION WITH SEMANTIC CONSISTENCY
Liqian Ma1 Xu Jia2
KU-Leuven/PSI, TRACE (Toyota Res in Europe)
{liqian.ma, xu.jia, tinne.tuytelaars,
{georgous,
Stamatios Georgoulis1,3 Tinne Tuytelaars2 Luc Van Gool1,3
KU-Leuven/PSI, IMEC 3ETH Zurich"
57165586f65f25edd9d14f0173c4c35dab8c2e66,Aligning plot synopses to videos for story-based retrieval,"Noname manuscript No.
(will be inserted by the editor)
Aligning Plot Synopses to Videos for Story-based Retrieval
Makarand Tapaswi · Martin B¨auml · Rainer Stiefelhagen
Received: date / Accepted: date"
572785b5d6f6fa4b174d79725f82c056b0fb4565,"Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art","Computer Vision for Autonomous Vehicles:
Problems, Datasets and State-of-the-Art
Joel Janaia,∗, Fatma G¨uneya,∗, Aseem Behla,∗, Andreas Geigera,b
Autonomous Vision Group, Max Planck Institute for Intelligent Systems, Spemannstr. 41, D-72076 T¨ubingen, Germany
Computer Vision and Geometry Group, ETH Z¨urich, Universit¨atstrasse 6, CH-8092 Z¨urich, Switzerland"
576372383bfd6ce6944d885e60b19151efdffc99,Can we unify monocular detectors for autonomous driving by using the pixel-wise semantic segmentation of CNNs?,"Can we unify monocular detectors for autonomous driving
y using the pixel-wise semantic segmentation of CNNs?
Eduardo Romera, Luis M. Bergasa, Roberto Arroyo"
57fd229097e4822292d19329a17ceb013b2cb648,Fast Structural Binary Coding,"Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)
Fast Structural Binary Coding
⇤Department of Electrical and Computer Engineering,University of California, San Diego
Dongjin Song⇤, Wei Liu], and David A. Meyer†
La Jolla, USA, 92093-0409. Email:
] Didi Research, Didi Kuaidi, Beijing, China. Email:
Department of Mathematics,University of California, San Diego
La Jolla, USA, 92093-0112. Email:"
57c59011614c43f51a509e10717e47505c776389,Unsupervised Human Action Detection by Action Matching,"Unsupervised Human Action Detection by Action Matching
Basura Fernando∗ Sareh Shirazi† Stephen Gould∗
The Australian National University †Queensland University of Technology"
5725c06b406b5291915a6bef8b5c3d20b2873aa0,Face Recognition Using Principal Component Analysis Based Feature Space by Incorporating with Probabilistic Neural Network,"International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016
RESEARCH  ARTICLE
OPEN  ACCESS
Face Recognition Using Principal Component Analysis
Based Feature Space By Incorporating With Probabilistic
Muhammad  Tahir, Shahid Akbar, Shahzad, Maqsood Hayat, Nazia Azim
Neural Network
Department of Computer Science
Abdul Wali  Khan University
Mardan - Pakistan"
5740a5f9cbfe790afc0ba9a425cfb71197927470,Supplementary Material for Superpixel Sampling Networks,"Supplementary Material for
Superpixel Sampling Networks
Varun Jampani1, Deqing Sun1, Ming-Yu Liu1,
Ming-Hsuan Yang1,2, Jan Kautz1
NVIDIA
UC Merced
In Section 1, we formally define the Acheivable Segmentation Accuracy (ASA)
used for evaluating superpixels. Then, in Section 2, we report F-measure and
Compactness scores with more visual results on different datasets. We also in-
lude a supplementary video1 that gives an overview of Superpixel Sampling
Networks (SSN) with a glimpse of experimental results.
Evaluation Metrics
Here, we formally define the Achievable Segmentation Accuracy (ASA) met-
ric that is used in the main paper. Given an image I with n pixels, let H ∈
{0, 1,··· , m}n×1 denotes the superpixel segmentation with m superpixels. H is
j=1 H j, where jth segment is repre-
sented as H j. Similarly, let G ∈ {0, 1,··· , w}n×1 denotes ground-truth (GT)
l=1 Gl, where Gl denotes lth GT segment.
ASA Score. The ASA score between a given superpixel segmentation H and
the GT segmentation G is defined as"
573c11e7e00389a033787984223ced536e15c904,Pictorial structures revisited: People detection and articulated pose estimation,"Pictorial Structures Revisited: People Detection and Articulated Pose Estimation
Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele
Department of Computer Science, TU Darmstadt"
5720784b7e45693109b867992e3f93e4c747e536,Sparse Methods for Robust and Efficient Visual Recognition,
57f8e1f461ab25614f5fe51a83601710142f8e88,Region Selection for Robust Face Verification using UMACE Filters,"Region Selection for Robust Face Verification using UMACE Filters
Salina Abdul Samad*, Dzati Athiar Ramli, Aini Hussain
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
In  this  paper,  we  investigate  the  verification  performances  of  four  subdivided  face  images  with  varying  expressions.  The
objective of this study is to evaluate which part of the face image is more tolerant to facial expression and still retains its personal
haracteristics due to the variations of the image. The Unconstrained Minimum Average Correlation Energy (UMACE) filter is
implemented to perform the verification process because of its advantages such as shift–invariance, ability to trade-off between
discrimination and distortion tolerance, e.g. variations in pose, illumination and facial expression. The database obtained from the
facial expression database of Advanced Multimedia Processing (AMP) Lab at CMU is used in this study. Four equal
sizes of face regions i.e. bottom, top, left and right halves are used for the purpose of this study. The results show that the bottom
half of the face region gives the best performance in terms of the PSR values with zero false accepted rate (FAR) and zero false
rejection rate (FRR) compared to the other three regions.
. Introduction
Face  recognition  is  a  well  established  field  of  research,
nd a large number of algorithms have been proposed in the
literature. Various classifiers have been explored to improve
the accuracy of face classification. The basic approach is to
use distance-base methods which measure Euclidean distance
etween any two vectors and then compare it with the preset"
57a1466c5985fe7594a91d46588d969007210581,A taxonomy of face-models for system evaluation,"A Taxonomy of Face-models for System Evaluation
Vijay N. Iyer, Shane. R. Kirkbride, Brian C. Parks, Walter J. Scheirer and Terrance. E. Boult
Motivation and Data Types
Synthetic Data Types
Unverified – Have no underlying physical or
statistical basis
Physics -Based – Based on structure and
materials combined with the properties
formally modeled in physics.
Statistical  – Use statistics from real
data/experiments to estimate/learn model
parameters. Generally have measurements
of accuracy
Guided Synthetic – Individual models based
on individual people. No attempt to capture
properties of large groups, a unique model
per person. For faces, guided models are
omposed of 3D structure models and skin
textures,  capturing many artifacts  not
easily  parameterized. Can be combined with"
57246142814d7010d3592e3a39a1ed819dd01f3b,Verification of Very Low-Resolution Faces Using An Identity-Preserving Deep Face Super-resolution Network,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Verification of Very Low-Resolution Faces Using An
Identity-Preserving Deep Face Super-resolution Network
Ataer-Cansizoglu, E.; Jones, M.J.; Zhang, Z.; Sullivan, A.
TR2018-116 August 24, 2018"
57680f0d53392178bb3c431e03bcd8626c12f620,Semantic Image Segmentation,"Workshop track - ICLR 2017
ADVERSARIAL EXAMPLES FOR
SEMANTIC IMAGE SEGMENTATION
Volker Fischer1, Mummadi Chaithanya Kumar2, Jan Hendrik Metzen1 & Thomas Brox2
Bosch Center for Artificial Intelligence, Robert Bosch GmbH
University of Freiburg
{volker.fischer,"
57ff1222a78a230c46fc81f22daa57981b0fa306,Face recognition in multi-camera surveillance videos using Dynamic Bayesian Network,"Face Recognition
in Multi-Camera
Surveillance
Videos using Dynamic Bayesian Network
Center for Research
Le An, Mehran Kafai,  Bir
Bhanu
in Intelligent
Systems,
University
of California,
Riverside
.edu, mkafai bhanu"
57e9b0d3ab6295e914d5a30cfaa3b2c81189abc1,Self-Learning Scene-Specific Pedestrian Detectors Using a Progressive Latent Model,"Self-learning Scene-specific Pedestrian Detectors
using a Progressive Latent Model
Qixiang Ye1,4, Tianliang Zhang 1, Qiang Qiu4, Baochang Zhang2, Jie Chen3, and Guillermo Sapiro4
EECE, University of Chinese Academy of Sciences.
ASEE, Beihang University. 3CMV, Oulu University. 4ECE, Duke University."
57b55a7a1adc8ec06285ebaf93995d67cf80c719,External Data Overcomplete Dictionary Similarity Graph ≈ + Probeimage Gallery Compressed Dictionary With Coefficient Design Phase : Operational Phase : CD Compressed Dictionary,
574705812f7c0e776ad5006ae5e61d9b071eebdb,A Novel Approach for Face Recognition Using PCA and Artificial Neural Network,"Karthik G et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.5, May- 2014, pg. 780-787
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IJCSMC, Vol. 3, Issue. 5, May 2014, pg.780 – 787
RESEARCH ARTICLE
A Novel Approach for Face Recognition
Using PCA and Artificial Neural Network
Karthik G1, Sateesh Kumar H C2
¹Deptartment of Telecommunication Engg., Dayananda Sagar College of Engg., India
²Department of Telecommunication Engg., Dayananda Sagar College of Engg., India
email : 2 email :"
57e8e226e605fe6491111c5dc9461527c5fce56c,Articulated Object Detection,"Articulated Object Detection
Maciej Halber
MEng Computer Science
Submission Date: 26th April 2013
Supervisors
Niloy J. Mitra
Simon Julier
This report is submitted as part requirement for the MEng Degree in Computer
Science at UCL. It is substantially the result of my own work except where ex-
plicitly indicated in the text. The report may be freely copied and distributed
provided the source is explicitly acknowledged."
5712cfc11c561c453da6a31d515f4340dacc91a4,3D Facial Expression Reconstruction using Cascaded Regression,"SUBMITTED TO PATTERN RECOGNITION LETTERS
Cascaded Regression using Landmark
Displacement for 3D Face Reconstruction
Fanzi Wu, Songnan Li, Tianhao Zhao, and King Ngi Ngan,Lv Sheng"
571b83f7fc01163383e6ca6a9791aea79cafa7dd,SeqFace: Make full use of sequence information for face recognition,"SeqFace: Make full use of sequence information for face recognition
Wei Hu1 ∗
Yangyu Huang2
Guodong Yuan2
Fan Zhang1
Ruirui Li1
Wei Li1
College of Information Science and Technology,
Beijing University of Chemical Technology, China
YUNSHITU Corp., China"
5700291077b509b11fb227f84ee9fc2de8f2df99,Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors,"Line search and trust region strategies for canonical
decomposition of semi-nonnegative semi-symmetric 3rd
Julie Coloigner, Ahmad Karfoul, Laurent Albera, Pierre Comon
order tensors
To cite this version:
Julie Coloigner, Ahmad Karfoul, Laurent Albera, Pierre Comon. Line search and trust region
strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors.
Linear Algebra and Applications, Elsevier - Academic Press, 2014, 450, pp.334-374.
HAL Id: hal-00945606
https://hal.archives-ouvertes.fr/hal-00945606
Submitted on 12 Feb 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,"
57a14a65e8ae15176c9afae874854e8b0f23dca7,Seeing Mixed Emotions: The Specificity of Emotion Perception From Static and Dynamic Facial Expressions Across Cultures,"UvA-DARE (Digital Academic Repository)
Seeing mixed emotions: The specificity of emotion perception from static and dynamic
facial expressions across cultures
Fang, X.; Sauter, D.A.; van Kleef, G.A.
Published in:
Journal of Cross-Cultural Psychology
0.1177/0022022117736270
Link to publication
Citation for published version (APA):
Fang, X., Sauter, D. A., & van Kleef, G. A. (2018). Seeing mixed emotions: The specificity of emotion perception
from static and dynamic facial expressions across cultures. Journal of Cross-Cultural Psychology, 49(1), 130-
48. DOI: 10.1177/0022022117736270
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible."
573b687ad970e1931debbf366004c0983de28718,A Corpus for Investigating the Multimodal Nature of Multi-Speaker Spontaneous Conversations – EVA Corpus,"A Corpus for Investigating the Multimodal Nature of Multi-Speaker
Spontaneous Conversations – EVA Corpus
IZIDOR MLAKAR, ZDRAVKO KAČIČ, MATEJ ROJC
Faculty of Electrical Engineering and Computer Science, University of Maribor
SLOVENIA"
57126589b3fe62c35a36a2646dac3045d095ecf5,Adversarial Defense based on Structure-to-Signal Autoencoders,"Adversarial Defense based on
Structure-to-Signal Autoencoders
Joachim Folz(cid:63), Sebastian Palacio(cid:63), Joern Hees, Damian Borth, and Andreas
Dengel
German Research Center for Artificial Intelligence (DFKI)
TU Kaiserslautern"
57fd8bafa4526b9a56fe43fac22dd62b2ab94563,Beyond Shared Hierarchies: Deep Multitask Learning through Soft Layer Ordering,"Under review as a conference paper at ICLR 2018
BEYOND SHARED HIERARCHIES: DEEP MULTITASK
LEARNING THROUGH SOFT LAYER ORDERING
Anonymous authors
Paper under double-blind review"
57d37ad025b5796457eee7392d2038910988655a,Aeaeêêìáîî Áåèääååaeììáçae Çç Àááêêêàáááä Aeçîîäìì Ììììçê,"GEERATVEEETATF
ERARCCAVETYDETECTR
DagaEha
UdeheS	eviif
f.DahaWeiha
ATheiS	biediaiaF	(cid:28)efhe
Re	ieefheDegeef
aefSciece
TheSchfC	eScieceadEgieeig
ebewUiveiyfe	aeae91904
Decebe2009"
57e562cf99b3dfbb6baa5bbf665aa6fd97ffe8ca,Expression-Compensated 3D Face Recognition with Geodesically Aligned Bilinear Models,"Expression-Compensated 3D Face Recognition with Geodesically
Aligned Bilinear Models
Iordanis Mpiperis1,2,Sotiris Malassiotis1 and Michael G. Strintzis1,2"
3b319645bfdc67da7d02db766e17a3e0a37be47b,On the relationship between visual attributes and convolutional networks,"On the Relationship between Visual Attributes and Convolutional Networks
Victor Escorcia1,2, Juan Carlos Niebles2, Bernard Ghanem1
King Abdullah University of Science and Technology (KAUST), Saudi Arabia. 2Universidad del Norte, Colombia.
The seminal work of Krizhevsky et al. [3] that trained a large convo-
lutional network (conv-net) for image-level object recognition on the Ima-
geNet challenge is considered a major stepping stone for subsequent work in
onv-net based visual recognition. Such a network is able to automatically
learn a hierarchy of nonlinear features that richly describe image content as
well as discriminate between object classes. Recent work [4] has shown that
features extracted from a conv-net trained on ImageNet are general purpose
(or black-box) enough to achieve state-of-the-art results in various other
recognition tasks, including scene, fine-grained, and even action recogni-
tion. However, unlike hand-crafted features, those learned by a conv-net
re usually not visually intuitive and straightforward to interpret. Despite
their excellent recognition performance, understanding and interpreting the
inner workings of conv-nets remains mostly elusive to the community. It
is this lack of deep understanding that is currently motivating researchers
to look under the hood and comprehend how and why these deep networks
work so well in practice. Inspired by recent observations on the analysis of
onv-nets [1], this paper takes another step in a similar direction, namely"
3b1aaac41fc7847dd8a6a66d29d8881f75c91ad5,Sparse Representation-Based Open Set Recognition,"Sparse Representation-based Open Set Recognition
He Zhang, Student Member, IEEE and Vishal M. Patel, Senior Member, IEEE"
3b311a1ce30f9c0f3dc1d9c0cf25f13127a5e48c,A Coarse-to-fine Pyramidal Model for Person Re-identification via Multi-Loss Dynamic Training,"A Coarse-to-fine Pyramidal Model for Person Re-identification via Multi-Loss
Dynamic Training
Feng Zheng, Xing Sun, Xinyang Jiang, Xiaowei Guo, Zongqiao Yu, Feiyue Huang
{winfredsun, sevjiang, scorpioguo, quentinyu,
YouTu Lab, Tencent
Shanghai, China"
3b4177556f1c9f5a8f8e1b2e8d824dee20e388e4,Spatial Weighting for Bag-of-Features,"Spatial Weighting for Bag-of-Features
Marcin Marsza(cid:7)ek
Cordelia Schmid
INRIA Rh(cid:136)one-Alpes, LEAR - GRAVIR
665 av de l’Europe, 38330 Montbonnot, France"
3ba3ef6d8394055d43bf4fe62227fbae8ab9b195,Finding images of difficult entities in the long tail,"Finding Images of Difficult Entities in the Long Tail
Bilyana Taneva
Max-Planck Institute for
Informatics
Saarbrücken, Germany
Mouna Kacimi
Free University of
Bozen-Bolzano
Italy
Gerhard Weikum
Max-Planck Institute for
Informatics
Saarbrücken, Germany"
3bc776eb1f4e2776f98189e17f0d5a78bb755ef4,View Synthesis from Image and Video for Object Recognition Applications,
3bfa75238e15e869b902ceb62b31ffddbe8ccb0d,Describing Images using Inferred Visual Dependency Representations,"Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
nd the 7th International Joint Conference on Natural Language Processing, pages 42–52,
Beijing, China, July 26-31, 2015. c(cid:13)2015 Association for Computational Linguistics"
3b14bdb0b1a7353d94973ef4c1578e1bd4a4e35e,Three dimensional binary edge feature representation for pain expression analysis,"Three Dimensional Binary Edge
Feature Representation for Pain
Expression Analysis
Xing Zhang1, Lijun Yin1, Jeffrey F. Cohn2
State University of New York at Binghamton; 2University of Pittsburgh"
3beb94f61b5909fca8917b0475983ea2c66f1df2,Shape model fitting algorithm without point correspondence,"0th European Signal Processing Conference (EUSIPCO 2012)
© EURASIP, 2012  -  ISSN 2076-1465
. INTRODUCTION"
3b1b94441010615195a5c404409ce2416860508c,Image Captioning and Visual Question Answering Based on Attributes and External Knowledge,"MANUSCRIPT, 2016
Image Captioning and Visual Question
Answering Based on Attributes
nd External Knowledge
Qi Wu, Chunhua Shen, Peng Wang, Anthony Dick, Anton van den Hengel"
3b304585d5af0afe98a85d6e0559315fbf3a7807,An Improved Labelling for the INRIA Person Data Set for Pedestrian Detection,"An Improved Labelling for the INRIA Person
Data Set for Pedestrian Detection
Matteo Taiana, Jacinto Nascimento, and Alexandre Bernardino(cid:63)
Institute for Systems and Robotics, IST, Lisboa, Portugal,
WWW home page: http://users.isr.ist.utl.pt/~mtaiana"
3b15a48ffe3c6b3f2518a7c395280a11a5f58ab0,On knowledge transfer in object class recognition,"On Knowledge Transfer in
Object Class Recognition
A dissertation approved by
TECHNISCHE UNIVERSITÄT DARMSTADT
Fachbereich Informatik
for the degree of
Doktor-Ingenieur (Dr.-Ing.)
presented by
MICHAEL STARK
Dipl.-Inform.
orn in Mainz, Germany
Prof. Dr.-Ing. Michael Goesele, examiner
Prof. Martial Hebert, Ph.D., co-examiner
Prof. Dr. Bernt Schiele, co-examiner
Date of Submission: 12th of August, 2010
Date of Defense: 23rd of September, 2010
Darmstadt, 2010"
3bbdfa097a4c39012cb322b23051e360c2f7f023,Learning Race from Face: A Survey,"Learning Race from Face: A Survey
Siyao Fu, Member, IEEE, Haibo He, Senior Member, IEEE, and Zeng-Guang Hou, Senior Member, IEEE"
3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f,Enhancing convolutional neural networks for face recognition with occlusion maps and batch triplet loss,"Enhancing Convolutional Neural Networks for Face Recognition with
Occlusion Maps and Batch Triplet Loss
Daniel S´aez Triguerosa,b, Li Menga,∗, Margaret Hartnettb
School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB, UK
IDscan Biometrics (a GBG company), London E14 9QD, UK"
3b1ba9818e2ee6a54e7ec033c5b2ec8bdbe2935f,Social Signaling Descriptor for Group Behaviour Analysis,"Social Signaling Descriptor for Group
Behaviour Analysis
Eduardo M. Pereira1,2(B), Lucian Ciobanu1, and Jaime S. Cardoso1,2
Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 378,
INESC TEC, Porto, Portugal
200 - 465 Porto, Portugal"
3b996a2e641be7bd395620d30364a27d1558cbad,Tracking Related Multiple Targets in Videos,"Tracking Related Multiple Targets
in Videos
DISSERTATION
zur Erlangung des akademischen Grades
Doktor/in der technischen Wissenschaften
eingereicht von
Nicole M. Artner
Matrikelnummer 0727746
n der
Fakultät für Informatik der Technischen Universität Wien
Betreuung: O.Univ.Prof. Dipl.Ing. Dr.techn. Walter G. Kropatsch
Diese Dissertation haben begutachtet:
(O.Univ.Prof. Dipl.Ing. Dr.techn.
(Prof. Em. Dr. Horst Bunke)
Walter G. Kropatsch)
Wien, 10.10.2013
(Nicole M. Artner)
A-1040 Wien (cid:2) Karlsplatz 13 (cid:2) Tel. +43-1-58801-0 (cid:2) www.tuwien.ac.at
Technische Universität Wien"
3b6310052026fc641d3fa639647342c45d8f5bd5,Eye Contact Modulates Cognitive Processing Differently in Children With Autism,"Child Development, xxxx 2014, Volume 00, Number 0, Pages 1–11
Eye Contact Modulates Cognitive Processing Differently in
Children With Autism
Terje Falck-Ytter
Karolinska Institutet and Uppsala University
Christoffer Carlstr€om and Martin Johansson
Uppsala University
In humans, effortful cognitive processing frequently takes place during social interaction, with eye contact
eing an important component. This study shows that the effect of eye contact on memory for nonsocial infor-
mation is different in children with typical development than in children with autism, a disorder of social
ommunication. Direct gaze facilitated memory performance in children with typical development (n = 25,
6 years old), but no such facilitation was seen in the clinical group (n = 10, 6 years old). Eye tracking con-
ducted during the cognitive test revealed strikingly similar patterns of eye movements, indicating that the
results cannot be explained by differences in overt attention. Collectively, these findings have theoretical sig-
nificance and practical implications for testing practices in children.
Being looked at is a strong signal, indicating that
the other person is attending to you and processing
information about you. In many nonhuman species,
direct gaze functions as an aversive stimulus, likely
ecause of the threat value associated with eye con-"
3b92916dd9d772cf1d167461a548115013a954a8,Unsupervised Framework for Interactions Modeling between Multiple Objects,
3ba8f8b6bfb36465018430ffaef10d2caf3cfa7e,Local Directional Number Pattern for Face Analysis: Face and Expression Recognition,"Local Directional Number Pattern for Face
Analysis: Face and Expression Recognition
Adin Ramirez Rivera, Student Member, IEEE, Jorge Rojas Castillo, Student Member, IEEE,
nd Oksam Chae, Member, IEEE"
3b38dc6d4f676ace52672f6788b66c9abb10d702,Ph.D. Showcase: Measuring Terrain Distances Through Extracted Channel Networks,"Ph.D. Showcase: Measuring Terrain Distances Through
Extracted Channel Networks
PhD Student:
Christopher Stuetzle
Dept. Computer Science
PhD Superviser:
W. Randolph Franklin
Dept. Electrical Engineering
PhD Superviser:
Barbara Cutler
Dept. Computer Science
Mehrad Kamalzare
Dept. Civil Engineering
Zhongxian Chen
Dept. Computer Science
Thomas Zimmie
Dept. Civil Engineering"
3b9ee03255eb5a0040676eead1767db431e83562,Conference on Computer Vision and Pattern Recognition,"013 IEEE Conference on Computer Vision and Pattern Recognition
013 IEEE Conference on Computer Vision and Pattern Recognition
013 IEEE Conference on Computer Vision and Pattern Recognition
063-6919/13 $26.00 © 2013 IEEE
063-6919/13 $26.00 © 2013 IEEE
063-6919/13 $26.00 © 2013 IEEE
DOI 10.1109/CVPR.2013.236
DOI 10.1109/CVPR.2013.236
DOI 10.1109/CVPR.2013.236"
3b9d94752f8488106b2c007e11c193f35d941e92,"Appearance, Visual and Social Ensembles for Face Recognition in Personal Photo Collections","#2052
CVPR 2013 Submission #2052. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
#2052
Appearance, Visual and Social Ensembles for
Face Recognition in Personal Photo Collections
Anonymous CVPR submission
Paper ID 2052"
3bd63bea64c770df5049879f4398e65f958ebd23,Predicting an Object Location Using a Global Image Representation,"Predicting an Object Location using a Global Image Representation
Jose A. Rodriguez-Serrano and Diane Larlus
Computer Vision Group, Xerox Research Centre Europe"
3b47e618c5ceb1c16db7f709dd1cfe53d7417b54,Discrimination on the Grassmann Manifold: Fundamental Limits of Subspace Classifiers,"Discrimination on the Grassmann Manifold:
Fundamental Limits of Subspace Classifiers
Matthew Nokleby, Member, IEEE, Miguel Rodrigues, Member, IEEE, and Robert Calderbank, Fellow,"
3b557c4fd6775afc80c2cf7c8b16edde125b270e,Face recognition: Perspectives from the real world,"Face Recognition: Perspectives from the
Real-World
Bappaditya Mandal
Institute for Infocomm Research, A*STAR,
Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632.
Phone: +65 6408 2071; Fax: +65 6776 1378;
E-mail:"
3b2f78a4edf5da876e52513d0e3960da7d3a253f,Qualitative Evaluation of Detection and Tracking Performance,"Qualitative Evaluation of Detection and Tracking
Performance
Swaminathan Sankaranarayanan, Francois Bremond, David Tax
To cite this version:
Swaminathan Sankaranarayanan, Francois Bremond, David Tax. Qualitative Evaluation of Detection
nd Tracking Performance. 9th IEEE International Conference On Advanced Video and Signal Based
Surveillance (AVSS 12), Sep 2012, Beijing, China. IEEE, pp.362-367, 2012, 2012 IEEE Ninth Inter-
national Conference on Advanced Video and Signal-Based Surveillance. <10.1109/AVSS.2012.57>.
<hal-00763587>
HAL Id: hal-00763587
https://hal.inria.fr/hal-00763587
Submitted on 14 Dec 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents"
3b2697d76f035304bfeb57f6a682224c87645065,ImageNet Large Scale Visual Recognition Challenge,"Noname manuscript No.
(will be inserted by the editor)
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky* · Jia Deng* · Hao Su · Jonathan Krause ·
Sanjeev Satheesh · Sean Ma · Zhiheng Huang · Andrej Karpathy ·
Aditya Khosla · Michael Bernstein · Alexander C. Berg · Li Fei-Fei
Received: date / Accepted: date"
3b8ad690f8d43d189ea2f2559c41b6eebac8dcc8,Mobile 3D object detection in clutter,"Mobile 3D Object Detection in Clutter
David Meger and James J. Little"
3bf66814817f582510e0f0a717112b78aca075a0,UNIVERSITY OF CALIFORNIA RIVERSIDE Bio-Image Analysis for Understanding Plant Development and Mosquito Behaviors A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy,"UNIVERSITY OF CALIFORNIA
RIVERSIDE
Bio-Image Analysis for Understanding Plant Development and Mosquito Behaviors
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Computer Science
Katya Mkrtchyan
March 2017
Dissertation Committee:
Professor Amit Roy-Chowdhury, Chairperson
Professor Eamonn Keogh
Professor Stefano Lonardi
Professor Tamar Shinar"
3b2df7d70ecbe3d0d65d27801d159ddaa150bf42,Doubly Sparse Relevance Vector Machine for Continuous Facial Behavior Estimation,"Doubly Sparse Relevance Vector Machine for
Continuous Facial Behavior Estimation
Sebastian Kaltwang, Sinisa Todorovic, Member, IEEE and Maja Pantic, Fellow, IEEE"
3b410ae97e4564bc19d6c37bc44ada2dcd608552,Scalability Analysis of Audio-Visual Person Identity Verification,"Scalability Analysis of Audio-Visual Person
Identity Verification
Jacek Czyz1, Samy Bengio2, Christine Marcel2, and Luc Vandendorpe1
Communications Laboratory,
Universit´e catholique de Louvain, B-1348 Belgium,
IDIAP, CH-1920 Martigny,
Switzerland"
6f42cb23262066b4034aba99bf674783ed6cac8b,An Empirical Evaluation of various Deep Learning Architectures for Bi-Sequence Classification Tasks,"Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 2762–2773, Osaka, Japan, December 11-17 2016."
6f5d57460e0e156497c4667a875cc5fa83154e3a,Retinal Verification Using a Feature Points-Based Biometric Pattern,"Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 235746, 13 pages
doi:10.1155/2009/235746
Research Article
Retinal Verification Using a Feature Points-Based
Biometric Pattern
M. Ortega,1 M. G. Penedo,1 J. Rouco,1 N. Barreira,1 and M. J. Carreira2
VARPA Group, Faculty of Informatics, Department of Computer Science, University of Coru˜na, 15071 A Coru˜na, Spain
Department of Electronics and Computer Science, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
Correspondence should be addressed to M. Ortega,
Received 14 October 2008; Accepted 12 February 2009
Recommended by Natalia A. Schmid
Biometrics refer to identity verification of individuals based on some physiologic or behavioural characteristics. The typical
uthentication process of a person consists in extracting a biometric pattern of him/her and matching it with the stored pattern
for the authorised user obtaining a similarity value between patterns. In this work an ef‌f‌icient method for persons authentication
is showed. The biometric pattern of the system is a set of feature points representing landmarks in the retinal vessel tree. The
pattern extraction and matching is described. Also, a deep analysis of similarity metrics performance is presented for the biometric
system. A database with samples of retina images from users on different moments of time is used, thus simulating a hard and real
environment of verification. Even in this scenario, the system allows to establish a wide confidence band for the metric threshold"
6fc129d384431d17eb7aa22afd6ab68f1084f038,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cb,Low Resolution Face Recognition Using a Two-Branch Deep Convolutional Neural Network Architecture,"Low Resolution Face Recognition Using a
Two-Branch Deep Convolutional Neural Network
Architecture
Erfan Zangeneh, Mohammad Rahmati, and Yalda Mohsenzadeh"
6fd3bafa25bf6d376bc9d1cc1311eb260d10d024,Facial Recognition Utilizing Patch Based Game Theory,"International Journal of Machine Learning and Computing, Vol. 5, No. 4, August 2015
Facial Recognition Utilizing Patch Based Game Theory
Foysal Ahmad, Kaushik Roy, Brian O‟Connor, Joseph Shelton, Pablo Arias, Albert Esterline, and Gerry
Dozier
theory.  Texture  based"
6f8fa219ea82ded79757de59250b7213f9f5a104,OriNet: A Fully Convolutional Network for 3D Human Pose Estimation,"Chenxu Luo1
Xiao Chu2
Alan Yuille1
Department of Computer Science
The Johns Hopkins University
Baltimore, MD 21218, USA
Baidu Research (USA)
Sunnyvale, CA 94089, USA
LUO ET AL.: ORINET: A FULLY CONVOLUTIONAL NETWORK FOR 3D HUMAN POSE
OriNet: A Fully Convolutional Network for 3D
Human Pose Estimation"
6f288a12033fa895fb0e9ec3219f3115904f24de,Learning Expressionlets via Universal Manifold Model for Dynamic Facial Expression Recognition,"Learning Expressionlets via Universal Manifold
Model for Dynamic Facial Expression Recognition
Mengyi Liu, Student Member, IEEE, Shiguang Shan, Senior Member, IEEE, Ruiping Wang, Member, IEEE,
Xilin Chen, Senior Member, IEEE"
6feb0d42232c31eecee5d90290287afe803e88a5,Recognizing Challenging Handwritten Annotations with Fully Convolutional Networks,"Recognizing Challenging Handwritten Annotations
with Fully Convolutional Networks
Andreas K¨olsch∗†, Ashutosh Mishra∗, Saurabh Varshneya∗†, Muhammad Zeshan Afzal∗†, Marcus Liwicki∗†‡§
{a koelsch12, a ashutosh16, s
MindGarage, University of Kaiserslautern, Germany
Insiders Technologies GmbH, Kaiserslautern, Germany
University of Fribourg, Switzerland
§Lule˚a, University of Technology, Sweden"
6f41b528abc34c249038f612a6c1033790ace628,Discriminant Subspace Analysis: An Adaptive Approach for Image Classification,"Discriminant Subspace Analysis: An Adaptive
Approach for Image Classification
Yijuan Lu, Member, IEEE, and Qi Tian, Senior Member, IEEE"
6f957df9a7d3fc4eeba53086d3d154fc61ae88df,Modélisation et suivi des déformations faciales : applications à la description des expressions du visage dans le contexte de la langue des signes,"Mod´elisation et suivi des d´eformations faciales :
pplications `a la description des expressions du visage
dans le contexte de la langue des signes
Hugo Mercier
To cite this version:
Hugo Mercier. Mod´elisation et suivi des d´eformations faciales : applications `a la description
des expressions du visage dans le contexte de la langue des signes. Interface homme-machine
[cs.HC]. Universit´e Paul Sabatier - Toulouse III, 2007. Fran¸cais. <tel-00185084>
HAL Id: tel-00185084
https://tel.archives-ouvertes.fr/tel-00185084
Submitted on 5 Nov 2007
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,"
6f3a8528841ea323d965d558195710fd8f916ffd,Knowledge Factorization,"Knowledge Factorization
Anubhav Ashok
Khushi Gupta
Nishant Agrawal"
6f089f9959cc711e16f1ebe0c6251aaf8a65959a,Improvement in object detection using Super Pixels,"International Journal of Engineering Research in Electronic and Communication
Engineering (IJERECE) Vol 3, Issue 5, May 2016
Improvement in object detection using Super Pixels
[1] Shruti D Kadam [2] H.Mallika
Dept. of Electronics and communication
M. S. Ramaiah Institute of Technology, Bangalore, Karnataka
[1] [2]"
6f5a3c34360caad4644aea897b8fe7dd72076d0f,Self-calibrating Marker Tracking in 3D with Event-Based Vision Sensors,"Self-Calibrating Marker Tracking in 3D
with Event-Based Vision Sensors
Georg R. Müller, Jörg Conradt
Technische Universität München, Arcisstr. 21,
80290 München, Germany"
6f1a784ebb8df0689361afe26a2e5f7a1f4c66ca,A unified probabilistic framework for measuring the intensity of spontaneous facial action units,"A Unified Probabilistic Framework For Measuring The Intensity of
Spontaneous Facial Action Units
Yongqiang Li1, S. Mohammad Mavadati2, Mohammad H. Mahoor and Qiang Ji
(AU),"
6f7d06ced04ead3b9a5da86b37e7c27bfcedbbdd,Multi-Scale Fully Convolutional Network for Fast Face Detection,"Pages 51.1-51.12
DOI: https://dx.doi.org/10.5244/C.30.51"
6f9873e2a7bc279c4f0a45c1a6e831ef3ba78ae7,Improving GAN Training via Binarized Representation Entropy (BRE) Regularization,"Published as a conference paper at ICLR 2018
IMPROVING GAN TRAINING VIA
BINARIZED REPRESENTATION ENTROPY (BRE)
REGULARIZATION
Yanshuai Cao, Gavin Weiguang Ding, Kry Yik-Chau Lui, Ruitong Huang
Borealis AI
Canada"
6fa9bae381274518d3972294d81e460f0c63900b,Personalized Recommendations in Police Photo Lineup Assembling Task,"S. Krajˇci (ed.): ITAT 2018 Proceedings, pp. 157–160
CEUR Workshop Proceedings Vol. 2203, ISSN 1613-0073, c(cid:13) 2018 Ladislav Peška and Hana Trojanová"
6f1be86c77492af422e936028858c9180b52b698,Indoor Scene Understanding in 2.5/3D: A Survey,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2015
Indoor Scene Understanding in 2.5/3D: A Survey
Muzammal Naseer, Salman H Khan, Fatih Porikli"
6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81,"Structured Output SVM Prediction of Apparent Age, Gender and Smile from Deep Features","Structured Output SVM Prediction of Apparent Age,
Gender and Smile From Deep Features
Michal Uˇriˇc´aˇr
CMP, Dept. of Cybernetics
FEE, CTU in Prague
Radu Timofte
Computer Vision Lab
D-ITET, ETH Zurich
Rasmus Rothe
Computer Vision Lab
D-ITET, ETH Zurich
Luc Van Gool
PSI, ESAT, KU Leuven
CVL, D-ITET, ETH Zurich
Jiˇr´ı Matas
CMP, Dept. of Cybernetics
FEE, CTU in Prague"
6f3391fda6b25796b5e051f822f91243f69276cb,Performance Comparison of Various Face Detection Techniques,"International Journal of Scientific Research Engineering & Technology (IJSRET)
Volume 2 Issue1   pp 019-0027 April 2013
ISSN 2278 - 0882
www.ijsret.org
Performance Comparison of Various Face Detection Techniques
Mohammed Javed, 2Bhaskar Gupta
M.Tech. Student, Jamia Hamdard, New Delhi
Associate Professor,ECE,BBDIT,Ghaziabad,UP
Corresponding Author"
6f08885b980049be95a991f6213ee49bbf05c48d,Author's Personal Copy Multi-kernel Appearance Model ☆,"This article appeared in a journal published by Elsevier. The attached
opy is furnished to the author for internal non-commercial research
nd education use, including for instruction at the authors institution
nd sharing with colleagues.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.
In most cases authors are permitted to post their version of the
rticle (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information
regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:
http://www.elsevier.com/authorsrights"
6fc8c988dd841c6c4f5e96b1b1458b6aa564b2de,Crowd Counting via Scale-Adaptive Convolutional Neural Network,"Crowd counting via scale-adaptive convolutional neural network
Lu Zhang∗†
Tencent Youtu
Miaojing Shi∗
Qiaobo Chen†
Inria Rennes & Tencent Youtu
Shanghai Jiaotong University"
6fa39c0221c8bcae9146d31646cd9f70aba7190c,Review on Histopathological Slide Analysis using Digital Microscopy,"International Journal of Advanced Science and Technology
Vol.62, (2014), pp.65-96
http://dx.doi.org/10.14257/ijast.2014.62.06
Review on Histopathological Slide Analysis using Digital Microscopy
Sangita Bhattacharjee1, Jashojit Mukherjee1, Sanjay Nag1, Indra Kanta Maitra2 and
Samir K. Bandyopadhyay1
Department of Computer Science and Engineering, University of Calcutta, India
B. P. Poddar Institute of Management and Technology, Kolkata, India"
6f41e2ba877ec690bd1c9e5e8742c4088f95c346,Clockwork Convnets for Video Semantic Segmentation,"Clockwork Convnets for Video Semantic Segmentation
Evan Shelhamer(cid:63)
Kate Rakelly(cid:63)
Judy Hoffman(cid:63)
Trevor Darrell
UC Berkeley"
6f8fc12004fa068c424369793fd39426e772b07d,Demystifying Core Ranking in Pinterest Image Search,"Demystifying Core Ranking in Pinterest Image Search
Linhong Zhu
Pinterest & USC/ISI"
6fe149e588a5bf15bf89edfedb1a29cc31384ddc,Fully Convolutional Networks for Automated Segmentation of Abdominal Adipose Tissue Depots in Multicenter Water-Fat MRI,"Fully Convolutional Networks for Automated Segmentation
of Abdominal Adipose Tissue Depots in Multicenter
Water-Fat MRI
Taro Langner1*, Anders Hedstr¨om2, Katharina Paulmichl3,4, Daniel Weghuber3,4,
Anders Forslund5, Peter Bergsten5,6, H˚akan Ahlstr¨om1,2, Joel Kullberg1,2
Dept. of Radiology, Uppsala University, Uppsala, Sweden
Antaros Medical, BioVenture Hub, M¨olndal, Sweden
Dept. of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria
Obesity Research Unit, Paracelsus Medical University, 5020 Salzburg, Austria
5Dept. of Women’s and Children’s Health, Uppsala University, Uppsala, SE 751 05, Sweden
6Dept. of Medical Cell Biology, Uppsala University, Uppsala, SE 751 23, Sweden"
6f35b6e2fa54a3e7aaff8eaf37019244a2d39ed3,Learning probabilistic classifiers for human–computer interaction applications,"DOI 10.1007/s00530-005-0177-4
R E G U L A R PA P E R
Nicu Sebe · Ira Cohen · Fabio G. Cozman ·
Theo Gevers · Thomas S. Huang
Learning probabilistic classifiers for human–computer
interaction applications
Published online: 10 May 2005
(cid:1) Springer-Verlag 2005
intelligent
interaction,"
6f3054f182c34ace890a32fdf1656b583fbc7445,Age Estimation Robust to Optical and Motion Blurring by Deep Residual CNN,"Article
Age Estimation Robust to Optical and Motion
Blurring by Deep Residual CNN
Jeon Seong Kang, Chan Sik Kim, Young Won Lee, Se Woon Cho and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu,
Seoul 100-715, Korea; (J.S.K.); (C.S.K.);
(Y.W.L.); (S.W.C.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 9 March 2018; Accepted: 10 April 2018; Published: 13 April 2018"
6f53466b17a2f9da4dbd1d870e822a1f8e837044,Image Aesthetic Assessment: An experimental survey,"Image Aesthetic Assessment:
An Experimental Survey
Yubin Deng, Chen Change Loy, Member, IEEE, and Xiaoou Tang, Fellow, IEEE"
6fa3857faba887ed048a9e355b3b8642c6aab1d8,Face Recognition in Challenging Environments: An Experimental and Reproducible Research Survey,"Face Recognition in Challenging Environments:
An Experimental and Reproducible Research
Survey
Manuel G¨unther and Laurent El Shafey and S´ebastien Marcel"
6f8ea33c29de7ef94f674c4c847185a127c6ea2f,Cue Integration by Similarity Rank List Coding - Application to Invariant Object Recognition,"nd IEEE International Workshops on Foundations and Applications of Self* Systems
nd IEEE International Workshops on Foundations and Applications of Self* Systems
Cue Integration by Similarity Rank List Coding —
Application to Invariant Object Recognition
Raul Grieben and Rolf P. W¨urtz
Institut f¨ur Neuroinformatik, Ruhr-Universit¨at Bochum,44780 Bochum, Germany"
6f79c4b82f9ccdee918659a8f7091b8ab99fe889,Mono-Camera 3D Multi-Object Tracking Using Deep Learning Detections and PMBM Filtering,"Mono-Camera 3D Multi-Object Tracking Using
Deep Learning Detections and PMBM Filtering
Samuel Scheidegger∗†, Joachim Benjaminsson∗†, Emil Rosenberg†, Amrit Krishnan∗, Karl Granstr¨om†
Zenuity, †Department of Electrical Engineering, Chalmers University of Technology"
6f7ce89aa3e01045fcd7f1c1635af7a09811a1fe,A novel rank order LoG filter for interest point detection,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
6fe2efbcb860767f6bb271edbb48640adbd806c3,Soft Biometrics; Human Identification Using Comparative Descriptions,"SOFT BIOMETRICS: HUMAN IDENTIFICATION USING COMPARATIVE DESCRIPTIONS
Soft Biometrics; Human Identification using
Comparative Descriptions
Daniel A. Reid, Mark S. Nixon, Sarah V. Stevenage"
6fdc0bc13f2517061eaa1364dcf853f36e1ea5ae,DAISEE: Dataset for Affective States in E-Learning Environments,"DAISEE: Dataset for Affective States in
E-Learning Environments
Abhay Gupta1, Richik Jaiswal2, Sagar Adhikari2, Vineeth Balasubramanian2
Microsoft India R&D Pvt. Ltd.
Department of Computer Science, IIT Hyderabad
{cs12b1032, cs12b1034,"
6f5151c7446552fd6a611bf6263f14e729805ec7,Facial Action Unit Recognition using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classi ers,".=?E= )?JE 7EJ 4A?CEJE KIEC
?= *E=HO 2=JJAH .A=JKHAI MEJD
-++ +=IIEAHI
55EJD
+AJHA BH 8EIE 5FAA?D 5EC= 2H?AIIEC 7ELAHIEJO B 5KHHAO
5KHHAO /7  %:0 7
)>IJH=?J 9EJDE JDA ?JANJ B=?A ANFHAIIE ?=IIE?=JE KIEC JDA
B=?E= =?JE IOIJA .)+5 MA JDA FH>A B
EC B=?E= =?JE KEJI )7I 6DA EI J JH=E = IECA
AHHH?HHA?JEC KJFKJ -++ KJE?=II ?=IIEAH J AIJE=JA JDA
FH>=>EEJEAI JD=J A=?D A B IALAH= ?O ??KHHEC )7 CHKFI EI
FHAIAJ E JDA FH>A E=CA 2=JJ I?=EC EI J ?=E>H=JA JDA -++
KJFKJI J FH>=>EEJEAI =FFHFHE=JA IKI B JDAIA FH>=>EEJEAI =HA
J=A J >J=E = IAF=H=JA FH>=>EEJO BH A=?D )7 .A=JKHA
ANJH=?JE EI >O CAAH=JEC = =HCA K>AH B ?= >E=HO F=J
JAH *2 BA=JKHAI JDA IAA?JEC BH JDAIA KIEC B=IJ ?HHA=JE
JAHEC .+*. 6DA >E=I L=HE=?A FHFAHJEAI B JDA ?=IIEAH
=HA MA IDM JD=J >JD JDAIA IKH?AI B AHHH ?= >A HA
>O AD=?EC -++ JDHKCD JDA =FFE?=JE B >JIJH=FFEC
?=IIIAF=H=>EEJO MAECDJEC"
03e83659f0fc98dd03c354a2cc7a90d585ff9cf5,Face Recognition Using Holistic Features and Within Class Scatter-Based PCA,"GSTF JOURNAL ON COMPUTING, VOL. 3, NO. 2, JUNE 2013
(cid:2)(cid:3)(cid:4)(cid:5)(cid:1)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:7)(cid:11)(cid:8)(cid:12)(cid:13)(cid:7)(cid:11)(cid:14)(cid:1)(cid:15)(cid:13)(cid:16)(cid:10)(cid:7)(cid:11)(cid:14)(cid:1)(cid:13)(cid:7)(cid:1)(cid:17)(cid:13)(cid:18)(cid:19)(cid:16)(cid:8)(cid:12)(cid:7)(cid:20)(cid:1)(cid:21)(cid:15)(cid:13)(cid:17)(cid:22)(cid:23)(cid:1)(cid:24)(cid:13)(cid:14)(cid:25)(cid:1)(cid:26)(cid:1)(cid:27)(cid:13)(cid:25)(cid:1)(cid:28)(cid:23)(cid:1)(cid:15)(cid:16)(cid:14)(cid:29)(cid:1)(cid:28)(cid:30)(cid:31)(cid:26)
DOI 10.7603/s40601-013-0002-4
Face Recognition Using Holistic Features and
Within Class Scatter-Based PCA
I Gede Pasek Suta Wijaya, Non-Member, IEEE, Keiichi Uchimura, Non-Member, IEEE,
Gou Koutaki, Non-Member, IEEE"
034050422f90938a43e9cfd292187aef124fef61,Race recognition from face images using Weber local descriptor,"Paper 1569528513
IWSSIP 2012, 11-13 April 2012, Vienna, Austria
. INTRODUCTION"
03c56c176ec6377dddb6a96c7b2e95408db65a7a,A Novel Geometric Framework on Gram Matrix Trajectories for Human Behavior Understanding,"A Novel Geometric Framework on Gram Matrix
Trajectories for Human Behavior Understanding
Anis Kacem, Mohamed Daoudi, Boulbaba Ben Amor, Stefano Berretti, and Juan Carlos Alvarez-Paiva"
031d22b08d9e8235f46679b89e273ab8723d3e67,Zero-Aliasing Correlation Filters for Object Recognition,"Zero-Aliasing Correlation Filters for Object
Recognition
Joseph A. Fernandez, Student Member, IEEE, Vishnu Naresh Boddeti, Member, IEEE, Andres Rodriguez,
Member, IEEE, B. V. K. Vijaya Kumar, Fellow, IEEE"
0322e69172f54b95ae6a90eb3af91d3daa5e36ea,Face Classification using Adjusted Histogram in Grayscale,"Face Classification using Adjusted Histogram in
Grayscale
Weenakorn Ieosanurak, and Watcharin Klongdee"
03f7041515d8a6dcb9170763d4f6debd50202c2b,Clustering Millions of Faces by Identity,"Clustering Millions of Faces by Identity
Charles Otto, Student Member, IEEE, Dayong Wang, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
038ce930a02d38fb30d15aac654ec95640fe5cb0,Approximate structured output learning for Constrained Local Models with application to real-time facial feature detection and tracking on low-power devices,"Approximate Structured Output Learning for Constrained Local
Models with Application to Real-time Facial Feature Detection and
Tracking on Low-power Devices
Shuai Zheng, Paul Sturgess and Philip H. S. Torr"
03df507b31691baeb7343d3eb70d048943e2d4f4,Exploring the Use of Local Descriptors for Fish Recognition in LifeCLEF 2015,"Exploring the use of local descriptors for fish
recognition in LifeCLEF 2015
Jorge Cabrera-G´amez, Modesto Castrill´on-Santana, Antonio Dom´ınguez-Brito,
Daniel Hern´andez-Sosa, Josep Isern-Gonz´alez, and Javier Lorenzo-Navarro
Universidad de Las Palmas de Gran Canaria
SIANI
Spain
http://berlioz.dis.ulpgc.es/roc-siani"
03c1fc9c3339813ed81ad0de540132f9f695a0f8,Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification,"Proceedings of Machine Learning Research 81:1–15, 2018
Conference on Fairness, Accountability, and Transparency
Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification∗
Joy Buolamwini
MIT Media Lab 75 Amherst St. Cambridge, MA 02139
Timnit Gebru
Microsoft Research 641 Avenue of the Americas, New York, NY 10011
Editors: Sorelle A. Friedler and Christo Wilson"
032c1e19a59cdbeb3fb741a812980f52c1461ce1,"Mining textural knowledge in biological images: Applications, methods and trends","Computational and Structural Biotechnology Journal 15 (2017) 56–67
j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c s b j
Mining textural knowledge in biological images: Applications, methods
nd trends
Santa Di Cataldo*, Elisa Ficarra
Dept. of Computer and Control Engineering, Politecnico di Torino, Cso Duca degli Abruzzi 24, Torino 10129, Italy
A R T I C L E
I N F O
A B S T R A C T
Article history:
Received 25 August 2016
Received in revised form 14 November 2016
Accepted 15 November 2016
Available online 24 November 2016
Keywords:
Textural analysis
Bioimaging
Textural features extraction
Texture classification
Feature encoding"
035c606bc6a05e2018e57859737877043673b7b9,Fine-Grained Image Classification by Exploring Bipartite-Graph Labels,"Fine-grained Image Classification by Exploring Bipartite-Graph Labels
Feng Zhou
NEC Labs
Yuanqing Lin
NEC Labs
www.f-zhou.com"
0339459a5b5439d38acd9c40a0c5fea178ba52fb,Multimodal recognition of emotions in car environments,"D|C|I&I 2009 Prague
Multimodal recognition of emotions in car
environments
Dragoş DatcuA and Léon J.M. RothkrantzB"
0393723dff4c00262c1daf34c26d27fa6fc52ab6,Pedestrian detection in outdoor images using color and gradients,"Pedestrian Detection in Outdoor Images using Color and Gradients
Marcel H¨aselich
Michael Klostermann
Dietrich Paulus
Active Vision Group, University of Koblenz-Landau, 56070 Koblenz, Germany
{mhaeselich, michaelk,"
030ff7012b92b805a60976f8dbd6a08c1cecebe6,DCAN: Dual Channel-Wise Alignment Networks for Unsupervised Scene Adaptation,
0315c68902edca77d2c15cfc1f1335d55343c715,Towards optimal distortion-based visual privacy filters,"TOWARDS OPTIMAL DISTORTION-BASED VISUAL PRIVACY FILTERS
Pavel Korshunov and Touradj Ebrahimi
Multimedia Signal Processing Group, EPFL, Lausanne, Switzerland"
03889b0e8063532ae56d36dd9c54c3784a69e4d4,Learning to Play Guess Who? and Inventing a Grounded Language as a Consequence,"Learning to Play Guess Who? and Inventing a
Grounded Language as a Consequence
Emilio Jorge1, Mikael Kågebäck2, and Emil Gustavsson1
Fraunhofer-Chalmers Centre , Göteborg, Sweden ,
Computer Science & Engineering , Chalmers University of Technology , Göteborg, Sweden ,"
033e3fe75da26d8d3dd3cb0f99640181655e6746,From generic to specific deep representations for visual recognition,"Factors of Transferability for a Generic ConvNet Representation
Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, Stefan Carlsson
{azizpour, razavian, sullivan, atsuto,
Computer Vision and Active Perception (CVAP), Royal Institute of Technology (KTH), Stockholm, SE-10044 Sweden
Evidence is mounting that Convolutional Networks (ConvNets) are the most effective representation learning method for visual
recognition tasks. In the common scenario, a ConvNet is trained on a large labeled dataset (source) and the feed-forward units
ctivation of the trained network, at a certain layer of the network, is used as a generic representation of an input image for a
task with relatively smaller training set (target). Recent studies have shown this form of representation transfer to be suitable for a
wide range of target visual recognition tasks. This paper introduces and investigates several factors affecting the transferability of
such representations. It includes parameters for training of the source ConvNet such as its architecture, distribution of the training
data, etc. and also the parameters of feature extraction such as layer of the trained ConvNet, dimensionality reduction, etc. Then,
y optimizing these factors, we show that significant improvements can be achieved on various (17) visual recognition tasks. We
further show that these visual recognition tasks can be categorically ordered based on their distance from the source task such that
correlation between the performance of tasks and their distance from the source task w.r.t. the proposed factors is observed.
Index Terms—Convolutional Neural Networks, Transfer Learning, Representation Learning, Deep Learning, Visual Recognition
I. INTRODUCTION
C ONVOLUTIONAL NETWORKS (ConvNets) trace back
to the early works on digit and character recognition
[11], [23]. Prior to 2012, though, in computer vision field,
neural networks were more renowned for their propensity to"
032825000c03b8ab4c207e1af4daeb1f225eb025,A Novel Approach for Human Face Detection in Color Images Using Skin Color and Golden Ratio,"J. Appl. Environ. Biol. Sci., 7(10)159-164, 2017
ISSN: 2090-4274
© 2017, TextRoad Publication
Journal of Applied Environmental
nd Biological Sciences
www.textroad.com
A Novel Approach for Human Face Detection in Color Images Using Skin
Color and Golden Ratio
Faizan Ullah*1, Dilawar Shah1, Sabir Shah1, Abdus Salam2, Shujaat Ali1
Department of Computer Science, Bacha Khan University, Charsadda, KPK, Pakistan1
Department of Computer Science, Abdul WaliKhan University, Mardan, KPK, Pakistan2
Received: May 9, 2017
Accepted: August 2, 2017"
03a8f53058127798bc2bc0245d21e78354f6c93b,Max-margin additive classifiers for detection,"Max-Margin Additive Classifiers for Detection
Subhransu Maji and Alexander C. Berg
Sam Hare
VGG Reading Group
October 30, 2009"
034f7d5b3878f8b2db92a7cb7f12edcd5681eca7,FAST Pre-Filtering-Based Real Time Road Sign Detection for Low-Cost Vehicle Localization,"Article
FAST Pre-Filtering-Based Real Time Road Sign
Detection for Low-Cost Vehicle Localization
Kyoungtaek Choi 1, Jae Kyu Suhr 2
Department of Electronic Engineering, Korea National University of Transportation, 50 Daehak-ro,
nd Ho Gi Jung 1,*
Chungju-si 27469, Korea;
School of Intelligent Mechatronics Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu,
Seoul 05006, Korea;
* Correspondence: Tel. +82-43-841-5366
Received: 11 September 2018; Accepted: 16 October 2018; Published: 22 October 2018"
0313924b600ebb8f608705d96c06b133b3b9627a,Deciphering the Crowd: Modeling and Identification of Pedestrian Group Motion,"Sensors 2013, 13, 875-897; doi:10.3390/s130100875
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
Deciphering the Crowd: Modeling and Identification of
Pedestrian Group Motion
Zeynep Y¨ucel *, Francesco Zanlungo, Tetsushi Ikeda, Takahiro Miyashita and Norihiro Hagita
Intelligent Robotics and Communication Laboratories, Advanced Telecommunications Research
Institute International, Kyoto 619-0288, Japan; E-Mails: (F.Z.); (T.I.);
(T.M.); (N.H.)
* Author to whom correspondence should be addressed; E-Mail:
Tel.: +81-774-95-1405.
Received: 14 December 2012; in revised form: 20 December 2012 / Accepted: 4 January 2013 /
Published: 14 January 2013"
03b98b4a2c0b7cc7dae7724b5fe623a43eaf877b,Acume: A Novel Visualization Tool for Understanding Facial Expression and Gesture Data,"Acume: A Novel Visualization Tool for Understanding Facial
Expression and Gesture Data"
0306a275e80d11d65c4261b8f3d45317a49c1bf7,Optimal Architecture for Deep Neural Networks with Heterogeneous Sensitivity,"Optimal Architecture for Deep Neural Networks
with Heterogeneous Sensitivity
Hyunjoong Cho, Jinhyeok Jang, Chanhyeok Lee, and Seungjoon Yang"
035ef7b25991b0f7ea841a2270ed053198aab09e,"Retrieval of Images with Objects of Specific Size, Location, and Spatial Configuration","Retrieval of images with objects of specific size, location and spatial configuration
Niloufar Pourian
B.S. Manjunath
Department of Electrical and Computer Engineering
University of California, Santa Barbara, United States"
036fac2b87cf04c3d93e8a59da618d56a483a97d,Query Adaptive Late Fusion for Image Retrieval,"MANUSCRIPT
Query Adaptive Late Fusion for Image Retrieval
Zhongdao Wang, Liang Zheng, Shengjin Wang"
038b8b2b629a8ba1e2ad6f9319e16b68e83e518a,Assessing Water Stress of Desert Tamarugo Trees Using in situ Data and Very High Spatial Resolution Remote Sensing,"Remote Sens. 2013, 5, 5064-5088; doi:10.3390/rs5105064
OPEN ACCESS
ISSN 2072-4292
www.mdpi.com/journal/remotesensing
Article
Assessing Water Stress of Desert Tamarugo Trees Using in situ
Roberto O. Chávez 1,*, Jan G. P. W. Clevers 1, Martin Herold 1, Edmundo Acevedo 2
nd Mauricio Ortiz 2,3
6700 AA Wageningen, The Netherlands; E-Mails: (J.G.P.W.C.);
(M.H.)
Laboratorio de Relación Suelo-Agua-Planta, Facultad de Ciencias Agronómicas,
Universidad de Chile, Casilla 1004, Santiago, Chile; E-Mail: (E.A.);
(M.O.)
Centro de Estudios Avanzados en Fruticultura (CEAF), Conicyt-Regional R08I1001,
Av. Salamanca s/n, Rengo, Chile
*  Author to whom correspondence should be addressed; E-Mails: or
Tel.: +31-317-481-552; Fax: +31-317-419-000.
Received: 24 July 2013; in revised form: 12 September 2013 / Accepted: 9 October 2013 /
Published: 15 October 2013"
03f6d738f9b916f80ce22c3ba605a0fa4d7830c1,Automated Reconstruction of Evolving Curvilinear Tree Structures,"POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCESacceptée sur proposition du jury:Prof. P. Dillenbourg, président du juryProf. P. Fua, directeur de thèseDr F. Moreno-Noguer, rapporteurDr R. Sznitman, rapporteurProf. S. Süsstrunk, rapporteuseAutomated Reconstruction of Evolving Curvilinear Tree StructuresTHÈSE NO 6930 (2016)ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNEPRÉSENTÉE LE 18 MARS 2016À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONSLABORATOIRE DE VISION PAR ORDINATEURPROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS Suisse2016PAR(cid:51)(cid:85)(cid:93)(cid:72)(cid:80)(cid:92)(cid:86)(cid:227)(cid:68)(cid:90)(cid:3)(cid:53)(cid:68)(cid:73)(cid:68)(cid:227)(cid:3)(cid:42)(cid:226)(cid:50)(cid:58)(cid:36)(cid:38)(cid:46)(cid:44)"
034516f37171e7e6cffb8afa84c1f5d6d12d887f,Comparative Analysis of Content Based Image Retrieval using Texture Features for Plant Leaf Diseases,"International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 9 (2016) pp6244-6249
© Research India Publications.  http://www.ripublication.com
Comparative Analysis of Content Based Image Retrieval using Texture
Features for Plant Leaf Diseases
Ph.D. Scholar, Bharati Vidyapeeth Deemed University College of Engineering Pune, Maharashtra, India
Jayamala K.Patil
Professor, Defense Institute of Advanced Tech., Deemed University, Girinagar
Raj Kumar"
03adcf58d947a412f3904a79f2ab51cfdf0e838a,Video-based face recognition: a survey,"World Journal of Science and Technology 2012, 2(4):136-139
ISSN: 2231 – 2587
Available Online: www.worldjournalofscience.com
_________________________________________________________________
Proceedings of ""Conference on Advances in Communication and Computing (NCACC'12)”
Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule,Maharastra,India.
April 21, 2012
Video-based face recognition: a survey
Shailaja A Patil1 and Pramod J Deore2
Department of Electronics and Telecommunication, R.C.Patel Institute of Technology,Shirpur,Dist.Dhule.Maharashtra,India."
03ae36b2ed0215b15c5bc7d42fbe20b1491e551a,Learning scene-specific pedestrian detectors without real data,"Learning Scene-Specific Pedestrian Detectors without Real Data
Hironori Hattori1, Vishnu Naresh Boddeti2, Kris Kitani2, Takeo Kanade2
Sony Corporation. 2Carnegie Mellon University.
Figure 1: Overview: For every grid location, geometrically correct renderings of pedestrian are synthetically generated using known scene information
such as camera calibration parameters, obstacles (red), walls (blue) and walkable areas (green). All location-specific pedestrian detectors are trained
jointly to learn a smoothly varying appearance model. Multiple scene-and-location-specific detectors are run in parallel at every grid location.
Consider the scenario in which a new surveillance system is installed
in a novel location and an image-based pedestrian detector must be trained
without access to real scene-specific pedestrian data. A similar situation
may arise when a new imaging system (i.e., a custom camera with unique
lens distortion) has been designed and must be able to detect pedestrians
without the expensive process of collecting data with the new imaging de-
vice. One can use a generic pedestrian detection algorithm trained over co-
pious amounts of real data to work robustly across many scenes. However,
generic models are not always best-suited for detection in specific scenes.
In many surveillance scenarios, it is more important to have a customized
pedestrian detection model that is optimized for a single scene. Optimiz-
ing for a single scene however often requires a labor intensive process of
ollecting labeled data – drawing bounding boxes of pedestrians taken with
particular camera in a specific scene. The process also takes time, as"
03f14159718cb495ca50786f278f8518c0d8c8c9,Performance evaluation of HOG and Gabor features for vision-based vehicle detection,"015 IEEE International Conference on Control System, Computing and Engineering, Nov 27 – Nov 29, 2015 Penang, Malaysia
015 IEEE International Conference on Control System,
Computing and Engineering (ICCSCE2015)
Technical Session 1A – DAY 1 – 27th Nov 2015
Time: 3.00 pm – 4.30 pm
Venue: Jintan
Topic: Signal and Image Processing
.00 pm – 3.15pm
.15 pm – 3.30pm
.30 pm – 3.45pm
.45 pm – 4.00pm
.00 pm – 4.15pm
.15 pm – 4.30pm
.30 pm – 4.45pm
A 01 ID3
Can  Subspace  Based  Learning  Approach  Perform  on  Makeup  Face
Recognition?
Khor Ean Yee, Pang Ying Han, Ooi Shih Yin and Wee Kuok Kwee
A 02 ID35
Performance  Evaluation  of  HOG  and  Gabor  Features  for  Vision-based"
0394040749195937e535af4dda134206aa830258,Geodesic entropic graphs for dimension and entropy estimation in manifold learning,"Geodesic Entropic Graphs for Dimension and
Entropy Estimation in Manifold Learning
Jose A. Costa and Alfred O. Hero III
December 16, 2003"
03f3bde03f83c3ff4f346d761fde4ce031dd4c69,Deep Models Calibration with Bayesian Neural Networks,"Under review as a conference paper at ICLR 2019
DEEP MODELS CALIBRATION WITH BAYESIAN NEURAL
NETWORKS
Anonymous authors
Paper under double-blind review"
0365ea467c169134e858bb668a8e19bd251019e7,Orthogonal Neighborhood Preserving Projections: A Projection-Based Dimensionality Reduction Technique,"Orthogonal Neighborhood Preserving Projections: A
projection-based dimensionality reduction technique ∗
E. Kokiopoulou †
Y. Saad‡
March 21, 2006"
03161081b47eba967fd3e663c57ec2f99f66eebd,Face and Facial Feature Localization,"Face and facial feature localization
Paola Campadelli?, Raffaella Lanzarotti??, Giuseppe Lipori, and Eleonora Salvi
Dipartimento di Scienze dell’Informazione
Universit(cid:30)a degli Studi di Milano
Via Comelico, 39/41 - 20135 Milano, Italy
fcampadelli, lanzarotti,
http://homes.dsi.unimi.it/(cid:24)campadel/LAIV/"
031532cc5c4e64e02e796360a16f89580a0ba552,Nonnegative Decompositions for Dynamic Visual Data Analysis,"Nonnegative Decompositions for
Dynamic Visual Data Analysis
Lazaros Zafeiriou, Member, IEEE, Yannis Panagakis, Member, IEEE,
Maja Pantic, Fellow, IEEE, and Stefanos Zafeiriou, Member, IEEE"
03ea398fcefc53a1bd041346c895aadcffed0261,Learning an Alphabet of Shape and Appearance for Multi-Class Object Detection,"Int J Comput Vis
DOI 10.1007/s11263-008-0139-3
Learning an Alphabet of Shape and Appearance for Multi-Class
Object Detection
Andreas Opelt · Axel Pinz · Andrew Zisserman
Received: 28 February 2007 / Accepted: 4 April 2008
© The Author(s) 2008"
03ed6f09a29fe5d0dbf6d59798f88a5311c966d3,Re-identification with RGB-D Sensors,"Re-identi(cid:12)cation with RGB-D sensors
Igor Barros Barbosa1;3, Marco Cristani1;2, Alessio Del Bue1,
Loris Bazzani1, and Vittorio Murino1
Pattern Analysis and Computer Vision (PAVIS) - Istituto Italiano di Tecnologia
(IIT), Via Morego 30, 16163 Genova, Italy
Dipartimento di Informatica, University of Verona,
Strada Le Grazie 15, 37134 Verona, Italy
Universit(cid:19)e de Bourgogne, 720 Avenue de lEurope, 71200 Le Creusot, France"
036a8cb922a30d766b0fc0ba5954098a1d2a09f5,Learning Similarities for Rigid and Non-rigid Object Detection,"Learning Similarities for Rigid and Non-Rigid Object Detection
Asako Kanezaki
The Univ. of Tokyo
Emanuele Rodol`a
TU Munich
Daniel Cremers
TU Munich
Tatsuya Harada
The Univ. of Tokyo"
037e17ac0272b4db0d4761067dbf0ee56d91e6dd,A New Multi-modal Dataset for Human Affect Analysis,"A New Multi-Modal Dataset for Human Affect
Analysis
nonymous for review
nonymous for review"
03ac1c694bc84a27621da6bfe73ea9f7210c6d45,Chapter 1 Introduction to information security foundations and applications,"Chapter 1
Introduction to information security
foundations and applications
Ali Ismail Awad1,2
.1 Background
Information security has extended to include several research directions like user
uthentication and authorization, network security, hardware security, software secu-
rity, and data cryptography. Information security has become a crucial need for
protecting almost all information transaction applications. Security is considered as
n important science discipline whose many multifaceted complexities deserve the
synergy of the computer science and engineering communities.
Recently, due to the proliferation of Information and Communication Tech-
nologies, information security has started to cover emerging topics such as cloud
omputing security, smart cities’ security and privacy, healthcare and telemedicine,
the Internet-of-Things (IoT) security [1], the Internet-of-Vehicles security, and sev-
eral types of wireless sensor networks security [2,3]. In addition, information security
has extended further to cover not only technical security problems but also social and
organizational security challenges [4,5].
Traditional systems’ development approaches were focusing on the system’s
usability where security was left to the last stage with less priority. However, the"
03c53fb96a9acd2ec6ba52a2497410f980793bfa,Trainable Convolution Filters and Their Application to Face Recognition,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Trainable Convolution Filters and their
Application to Face Recognition
Ritwik Kumar, Member, IEEE, Arunava Banerjee, Member, IEEE,
Baba C. Vemuri, Fellow, IEEE, and Hanspeter Pfister, Senior Member, IEEE"
0394e684bd0a94fc2ff09d2baef8059c2652ffb0,Median Robust Extended Local Binary Pattern for Texture Classification,"Median Robust Extended Local Binary Pattern
for Texture Classification
Li Liu, Songyang Lao, Paul W. Fieguth, Member, IEEE, Yulan Guo,
Xiaogang Wang, and Matti Pietikäinen, Fellow, IEEE
Index Terms— Texture descriptors, rotation invariance, local
inary pattern (LBP), feature extraction, texture analysis.
how the texture recognition process works in humans as
well as in the important role it plays in the wide variety of
pplications of computer vision and image analysis [1], [2].
The many applications of texture classification include medical
image analysis and understanding, object recognition, biomet-
rics, content-based image retrieval, remote sensing, industrial
inspection, and document classification.
As a classical pattern recognition problem, texture classifi-
ation primarily consists of two critical subproblems: feature
extraction and classifier designation [1], [2]. It is generally
greed that the extraction of powerful texture features plays a
relatively more important role, since if poor features are used
even the best classifier will fail to achieve good recognition
results. Consequently, most research in texture classification"
038277dbfcd767b0a0899de42d3277b5b253cc8e,Review and Implementation of High-Dimensional Local Binary Patterns and Its Application to Face Recognition,"TR-IIS-14-003
Review and Implementation of
High-Dimensional Local Binary
Patterns and Its Application to
Face Recognition
Bor-Chun Chen, Chu-Song Chen, Winston Hsu
July. 24,    2014    ||    Technical Report No. TR-IIS-14-003
http://www.iis.sinica.edu.tw/page/library/TechReport/tr2014/tr14.html"
03f4c0fe190e5e451d51310bca61c704b39dcac8,CHEAVD: a Chinese natural emotional audio-visual database,"J Ambient Intell Human Comput
DOI 10.1007/s12652-016-0406-z
O R I G I N A L R E S E A R C H
CHEAVD: a Chinese natural emotional audio–visual database
Ya Li1
• Jianhua Tao1,2,3
• Linlin Chao1
• Wei Bao1,4
• Yazhu Liu1,4
Received: 30 March 2016 / Accepted: 22 August 2016
Ó Springer-Verlag Berlin Heidelberg 2016"
03de6b2a3c81b26eecbec2705173da3dba25ecbb,FineTag: Multi-attribute Classification at Fine-grained Level in Images,"FineTag: Multi-attribute Classification at
Fine-grained Level in Images
Roshanak Zakizadeh, Michele Sasdelli, Yu Qian and Eduard Vazquez
Cortexica Vision Systems, London, UK"
033fde43e6ff235fd560435bc060d5ffd14fb827,Pose Estimation and Tracking of Eating Persons in Real-life Settings,"ASCI { IPA { SIKS tracks, ICT.OPEN, Veldhoven, November 14{15, 2011
Pose Estimation and Tracking of Eating Persons in Real-life Settings
Lu Zhang
EWI-TUDelft
Laurens van der Maaten
EWI-TUDelft
Nicole Koenderink
Wageningen UR, FBR
Franck Golbach
Wageningen UR, FBR
Emile Hendriks
EWI-TUDelft"
031055c241b92d66b6984643eb9e05fd605f24e2,Multi-fold MIL Training for Weakly Supervised Object Localization,"Multi-fold MIL Training for Weakly Supervised Object Localization
Ramazan Gokberk Cinbis
Jakob Verbeek Cordelia Schmid
Inria∗"
0332ae32aeaf8fdd8cae59a608dc8ea14c6e3136,Large Scale 3D Morphable Models,"Int J Comput Vis
DOI 10.1007/s11263-017-1009-7
Large Scale 3D Morphable Models
James Booth1
Stefanos Zafeiriou1
· Anastasios Roussos1,3 · Allan Ponniah2 · David Dunaway2 ·
Received: 15 March 2016 / Accepted: 24 March 2017
© The Author(s) 2017. This article is an open access publication"
03650399cbf53d916d10a507852c9e94a02ee13f,3D faces in motion: Fully automatic registration and statistical analysis,"D Faces in Motion: Fully Automatic Registration and Statistical Analysis
Timo Bolkarta,∗, Stefanie Wuhrera
Saarland University, Saarbr¨ucken, Germany"
034f7fcf5a393ac3307ac3609c2b971df6efaff6,Can Synthetic Data Handle Unconstrained Gaze Estimation?,"Can Synthetic Data Handle Unconstrained Gaze
Estimation ?
Amine Kacete, Renaud Séguier, Michel Collobert, Jérôme Royan
To cite this version:
Amine Kacete, Renaud Séguier, Michel Collobert, Jérôme Royan. Can Synthetic Data Handle Uncon-
strained Gaze Estimation ?. Conférence Nationale sur les Applications Pratiques de l’Intelligence Ar-
tificielle, Jul 2017, Caen, France. Conférence Nationale sur les Applications Pratiques de l’Intelligence
Artificielle. <hal-01561526>
HAL Id: hal-01561526
https://hal.archives-ouvertes.fr/hal-01561526
Submitted on 12 Jul 2017
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,"
034addac4637121e953511301ef3a3226a9e75fd,Implied Feedback: Learning Nuances of User Behavior in Image Search,"Implied Feedback: Learning Nuances of User Behavior in Image Search
Devi Parikh
Virginia Tech"
03701e66eda54d5ab1dc36a3a6d165389be0ce79,Improved Principal Component Regression for Face Recognition Under Illumination Variations,"Improved Principal Component Regression for Face
Recognition Under Illumination Variations
Shih-Ming Huang and Jar-Ferr Yang, Fellow, IEEE"
9b5b2fd938a9337475cb90a143cf7568f8f63709,Illumination Processing in Face Recognition,"Illumination	Processing	in	Face	Recognition187Illumination	Processing	in	Face	RecognitionYongping	Li,	Chao	Wang	and	Xinyu	AoX 	Illumination Processing in Face Recognition  Yongping Li, Chao Wang and Xinyu Ao Shanghai Institute of Applied Physics, Chinese Academy of Sciences China  1. Introduction Driven by the demanding of public security, face recognition has emerged as a viable solution and achieved comparable accuracies to fingerprint system under controlled lightning environment. In recent years, with wide installing of camera in open area, the automatic face recognition in watch-list application is facing a serious problem. Under the open environment, lightning changes is unpredictable, and the performance of face recognition degrades seriously. Illumination processing is a necessary step for face recognition to be useful in the uncontrolled environment. NIST has started a test called FRGC to boost the research in improving the performance under changing illumination. In this chapter, we will focus on the research effort made in this direction and the influence on face recognition caused by illumination. First of all, we will discuss the quest on the image formation mechanism under various illumination situations, and the corresponding mathematical modelling. The Lambertian lighting model, bilinear illuminating model and some recent model are reviewed. Secondly, under different state of face, like various head pose and different facial expression, how illumination influences the recognition result, where the different pose and illuminating will be examined carefully. Thirdly, the current methods researcher employ to counter the change of illumination to maintain good performance on face recognition are assessed briefly. The processing technique in video and how it will improve face recognition on video, where Wang’s (Wang & Li, 2009) work will be discussed to give an example on the related advancement in the fourth part. And finally, the current state-of-art of illumination processing and its future trends will be discussed.  2. The formation of camera imaging and its difference from the human visual system With the camera invented in 1814 by Joseph N, recording of human face began its new era. Since we do not need to hire a painter to draw our figures, as the nobles did in the middle age. And the machine recorded our image as it is, if the camera is in good condition.  Currently, the imaging system is mostly to be digital format. The central part is CCD (charge-coupled device) or CMOS (complimentary metal-oxide semiconductor). The CCD/CMOS operates just like the human eyes. Both CCD and CMOS image sensors operate 11www.intechopen.com"
9b318098f3660b453fbdb7a579778ab5e9118c4c,Joint Patch and Multi-label Learning for Facial Action Unit and Holistic Expression Recognition,"Joint Patch and Multi-label Learning for Facial
Action Unit and Holistic Expression Recognition
Kaili Zhao, Wen-Sheng Chu, Student Member, IEEE, Fernando De la Torre,
Jeffrey F. Cohn, and Honggang Zhang, Senior Member, IEEE
lassifiers without"
9b69ea8034a24db2bb1a1eef73ec11b6367d2f2e,Face Recognition System Using PCA and DCT in HMM,"International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 1, January 2015
Face Recognition System Using PCA and DCT
ISSN (Online) : 2278-1021
ISSN (Print)    : 2319-5940
in HMM
SamerKais Jameel
Lecturer, Computer Science, University of Raparin, Sulaimaniya, Iraq"
9b74de11c62ce16d0b4509554556e6b6b0d4f5c0,Bayesian Probabilistic Co-Subspace Addition,"Bayesian Probabilistic Co-Subspace Addition
Lei Shi
Baidu.com, Inc"
9b3ed8190d99b107837de142324e4aa2be8b7eb2,An Efficient Multimodal 2D-3D Hybrid Approach to Automatic Face Recognition,"An Efficient Multimodal 2D-3D Hybrid
Approach to Automatic Face Recognition
Ajmal S. Mian, Mohammed Bennamoun, and Robyn Owens"
9b19be86280c8dbb3fdccc24297449290bd2b6aa,Robust Compressive Phase Retrieval via Deep Generative Priors,"Robust Compressive Phase Retrieval via Deep Generative
Priors
Fahad Shamshad, Ali Ahmed
Dept. of Electrical Engg., Information Technology University, Lahore, Pakistan.
{fahad.shamshad,"
9bcfa6d23ea628ccfabf6900ef05437e7cecb1c6,A Hybrid Approach for Secure Biometric Authentication Using Fusion of Iris and Ear,"Volume 5, Issue 8, August 2015                                          ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
A Hybrid Approach for Secure Biometric Authentication Using
Fusion of Iris and Ear
Pamalpreet Kaur*, Er. Nirvair Neeru
CSE Deptt. Punjabi University,
Patiala, India"
9b474d6e81e3b94e0c7881210e249689139b3e04,VG-RAM Weightless Neural Networks for Face Recognition,"VG-RAM Weightless Neural Networks for
Face Recognition
Alberto F. De Souza, Claudine Badue, Felipe Pedroni, Stiven Schwanz Dias,
Hallysson Oliveira and Soterio Ferreira de Souza
Departamento de Inform´atica
Universidade Federal do Esp´ırito Santo
Av. Fernando Ferrari, 514, 29075-910 - Vit´oria-ES
Brazil
. Introduction
Computerized human face recognition has many practical applications, such as access control,
security monitoring, and surveillance systems, and has been one of the most challenging and
ctive research areas in computer vision for many decades (Zhao et al.; 2003). Even though
urrent machine recognition systems have reached a certain level of maturity, the recognition
of faces with different facial expressions, occlusions, and changes in illumination and/or pose
is still a hard problem.
A general statement of the problem of machine recognition of faces can be formulated as fol-
lows: given an image of a scene, (i) identify or (ii) verify one or more persons in the scene
using a database of faces. In identification problems, given a face as input, the system reports
ack the identity of an individual based on a database of known individuals; whereas in veri-
fication problems, the system confirms or rejects the claimed identity of the input face. In both"
9bf6fbccfdf013cfd076f9357a05fb00b50735ee,JAR-Aibo: A Multi-view Dataset for Evaluation of Model-Free Action Recognition Systems,"JAR-Aibo: A Multi-View Dataset for Evaluation
of Model-Free Action Recognition Systems
Marco K¨orner and Joachim Denzler
Friedrich Schiller University of Jena
Computer Vision Group
Ernst-Abbe-Platz 3, 07743 Jena, Germany
http://www.inf-cv.uni-jena.de"
9be5129fec3b6f1efc22e19dae3ae684961f5efb,Probability based Extended Direct Attribute Prediction,"Probability based Extended Direct Attribute Prediction
International Journal of Computer Applications (0975 – 8887)
Volume 155 – No 5, December 2016
Manju
Research Scholar,
Department of computer science,
Baba Mastnath University, Rohtak"
9b95153e4d3972d59fabef0fddce9b7207836b1b,Nonlinear Discrete Hashing,"Nonlinear Discrete Hashing
Zhixiang Chen, Jiwen Lu, Senior Member, IEEE, Jianjiang Feng, Member, IEEE, and Jie Zhou, Senior Member, IEEE"
9bcfadd22b2c84a717c56a2725971b6d49d3a804,How to Detect a Loss of Attention in a Tutoring System using Facial Expressions and Gaze Direction,"How to Detect a Loss of Attention in a Tutoring System
using Facial Expressions and Gaze Direction
Mark ter Maat"
9bdd3ce1879f8fd32d2a3f2c4cedcadcf292a1a5,Geometric Active Learning via Enclosing Ball Boundary,"IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
Geometric Active Learning via Enclosing Ball
Boundary
Xiaofeng Cao, Ivor W. Tsang, Jianliang Xu, Zenglin Shi, Guandong Xu"
9bd973e64750a94dcf528da402b39e3a53118312,An FPGA-Accelerated Design for Deep Learning Pedestrian Detection in Self-Driving Vehicles,"An FPGA-Accelerated Design for Deep
Learning Pedestrian Detection in Self-Driving
Vehicles
Abdallah Moussawi, Kamal Haddad, and Anthony Chahine
Department of Electrical and Computer Engineering
American University of Beirut
Beirut, Lebanon
Email:"
9b30771968b577ea1b71c0cfaee31f3824bfa027,Capturing Form of Non-verbal Conversational Behavior for Recreation on Synthetic Conversational Agent EVA,"Capturing Form of Non-verbal Conversational Behavior for Recreation
on Synthetic Conversational Agent EVA
IZIDOR MLAKAR, 2MATEJ ROJC
Roboti c.s. d.o.o, 2Faculty of Electrical Engineering and Computer Science, University of Maribor
Tržaška cesta 23, 2Smetanova ulica 17
SLOVENIA"
9badcba793a54dd90383a55d7dfee1281c510f75,Local Gradients Smoothing: Defense against localized adversarial attacks,"Local Gradients Smoothing: Defense against localized adversarial attacks
Muzammal Naseer
Australian National University (ANU)
Salman H. Khan
Data61, CSIRO
Fatih Porikli
Australian National University (ANU)"
9b6d61491120bdd579f53e8c5f7cbe1e05cbc91e,Modeling Multimodal Behaviors from Speech Prosody,"Modeling Multimodal Behaviors From Speech
Prosody
Yu Ding1, Catherine Pelachaud1, and Thierry Arti`eres2
CNRS-LTCI, Institut Mines-TELECOM, TELECOM ParisTech, Paris, France
{yu.ding,
Universit´e Pierre et Marie Curie (LIP6), Paris, France"
9b555d8c8f518d907fa273d8691b008d55aedd92,Reasoning with shapes: profiting cognitive susceptibilities to infer linear mapping transformations between shapes,"REASONING WITH SHAPES
Reasoning with shapes: profiting cognitive
susceptibilities to infer linear mapping
transformations between shapes
Vahid Jalili"
9be0de78bb69e7b243e92ab7530f9fd5a08c62cc,Spontaneous Trait Inferences on Social Media,"Article
Spontaneous Trait Inferences
on Social Media
Ana Levordashka1 and Sonja Utz1
Social Psychological and
Personality Science
017, Vol. 8(1) 93-101
ª The Author(s) 2016
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1948550616663803
journals.sagepub.com/home/spp"
9b678aa28facf4f90081d41c2c484c6addddb86d,Fully Convolutional Attention Networks for Fine-Grained Recognition,"Fully Convolutional Attention Networks for Fine-Grained Recognition
Xiao Liu, Tian Xia, Jiang Wang, Yi Yang, Feng Zhou and Yuanqing Lin
Baidu Research
{liuxiao12,xiatian,wangjiang03,yangyi05, zhoufeng09,"
9b164cef4b4ad93e89f7c1aada81ae7af802f3a4,A Fully Automatic and Haar like Feature Extraction-Based Method for Lip Contour Detection,"Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502
Vol. 2(1), 17-20, January (2013)
Res.J.Recent Sci.
A Fully Automatic and Haar like Feature Extraction-Based Method for Lip
Contour Detection
Zahedi Morteza and Mohamadian Zahra
School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN
Received 26th September 2012, revised 27th October 2012, accepted 6th November 2012
Available online at: www.isca.in"
9bac481dc4171aa2d847feac546c9f7299cc5aa0,Matrix Product State for Higher-Order Tensor Compression and Classification,"Matrix Product State for Higher-Order Tensor
Compression and Classification
Johann A. Bengua1, Ho N. Phien1, Hoang D. Tuan1 and Minh N. Do2"
9b7c6ef333c6e64f2dfa97a1a3614d0775d81a8a,A New Evaluation Protocol and Benchmarking Results for Extendable Cross-media Retrieval,"A New Evaluation Protocol and Benchmarking
Results for Extendable Cross-media Retrieval
Ruoyu Liu, Yao Zhao, Liang Zheng, Shikui Wei, and Yi Yang"
9b4e90866c1f096a57383fb7320ac9d516a2f88d,Towards lightweight convolutional neural networks for object detection,"TOWARDS LIGHTWEIGHT CONVOLUTIONAL NEURAL
NETWORKS FOR OBJECT DETECTION
Dmitriy Anisimov, Tatiana Khanova
Intel
Nizhny Novgorod, Russia"
9b7974d9ad19bb4ba1ea147c55e629ad7927c5d7,Faical Expression Recognition by Combining Texture and Geometrical Features,"Faical Expression Recognition by Combining
Texture and Geometrical Features
Renjie Liu, Ruofei Du, Bao-Liang Lu*"
9b6d0b3fbf7d07a7bb0d86290f97058aa6153179,"NII , Japan at the first THUMOS Workshop 2013","NII, Japan at the first THUMOS Workshop 2013
Sang Phan, Duy-Dinh Le, Shin’ichi Satoh
National Institute of Informatics
-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430"
9e8637a5419fec97f162153569ec4fc53579c21e,Segmentation and Normalization of Human Ears Using Cascaded Pose Regression,"Segmentation and Normalization of Human Ears
using Cascaded Pose Regression
Anika Pflug and Christoph Busch
University of Applied Sciences Darmstadt - CASED,
Haardtring 100,
64295 Darmstadt, Germany
http://www.h-da.de"
9ebe5d78163a91239f10c453d76082dfa329851d,Teacher's Perception in the Classroom,"Teachers’ Perception in the Classroom
¨Omer S¨umer1
Patricia Goldberg1
Kathleen St¨urmer1
Tina Seidel3
Peter Gerjets2 Ulrich Trautwein1
Enkelejda Kasneci1
University of T¨ubingen, Germany
Leibniz-Institut f¨ur Wissensmedien, Germany
Technical University of Munich, Germany"
9e4b052844d154c3431120ec27e78813b637b4fc,Local gradient pattern - A novel feature representation for facial expression recognition,"Journal of AI and Data Mining
Vol. 2, No .1, 2014, 33-38.
Local gradient pattern - A novel feature representation for facial
expression recognition
M. Shahidul Islam
Department of Computer Science, School of Applied Statistics, National Institute of Development Administration, Bangkok, Thailand.
Received 23 April 2013; accepted 16 June 2013
*Corresponding author: (M.Shahidul Islam)"
9e6c15150179ce848402e89bd245831d9935f4f9,Bi-modal Face Recognition - How combining 2D and 3D Clues Can Increase the Precision,"Bi-modal face recognition
How combining 2D and 3D clues can increase the precision
Amel Aissaoui1, Jean Martinet2
USTHB, Algeria
Lille 1 University, France
issaoui
Keywords:
Face recognition, multimodal, 2D, 3D, LBP, RGB-depth."
9e594ae4f549e0d838f497de31a5b597a6826d55,Recognition of Emotion from Facial Expressions with Direct or Averted Eye Gaze and Varying Expression Intensities in Children with Autism Disorder and Typically Developing Children,"Hindawi Publishing Corporation
Autism Research and Treatment
Volume 2014, Article ID 816137, 11 pages
http://dx.doi.org/10.1155/2014/816137
Research Article
Recognition of Emotion from Facial Expressions with Direct or
Averted Eye Gaze and Varying Expression Intensities in Children
with Autism Disorder and Typically Developing Children
Dina Tell,1 Denise Davidson,2 and Linda A. Camras3
Department of Health Promotion, Loyola University Chicago, Marcella Niehoff School of Nursing, 2160 S. First Avenue,
Maywood, IL 60153, USA
Department of Psychology, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL 60660, USA
Department of Psychology, DePaul University, 2219 N. Kenmore Avenue, Chicago, IL 60614, USA
Correspondence should be addressed to Denise Davidson;
Received 8 November 2013; Revised 7 February 2014; Accepted 12 February 2014; Published 3 April 2014
Academic Editor: Geraldine Dawson
Copyright © 2014 Dina Tell et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Eye gaze direction and expression intensity effects on emotion recognition in children with autism disorder and typically developing
hildren were investigated. Children with autism disorder and typically developing children identified happy and angry expressions"
9ea73660fccc4da51c7bc6eb6eedabcce7b5cead,Talking head detection by likelihood-ratio test,"Talking Head Detection by Likelihood-Ratio Test†
Carl Quillen, Kara Greenfield, and William Campbell
MIT Lincoln Laboratory,
Lexington MA 02420, USA"
9e9052256442f4e254663ea55c87303c85310df9,Review On Attribute - assisted Reranking for Image Search,"International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)
Volume 4 Issue 10, October 2015
Review On Attribute-assisted Reranking for
Image Search
Waghmare Supriya, Wavhal Archana, Patil Nital, Tapkir Yogita, Prof. Yogesh Thorat"
9eeada49fc2cba846b4dad1012ba8a7ee78a8bb7,A New Facial Expression Recognition Method Based on Local Gabor Filter Bank and PCA plus LDA,"Hong-Bo Deng, Lian-Wen Jin, Li-Xin Zhen, Jian-Cheng Huang
A New Facial Expression Recognition Method Based on Local Gabor Filter Bank and PCA plus LDA
A New Facial Expression Recognition Method Based on
Local Gabor Filter Bank and PCA plus LDA
Hong-Bo Deng1, Lian-Wen Jin1, Li-Xin Zhen2, Jian-Cheng Huang2
School of Electronic and Information Engineering, South China
University of Technology, Guangzhou, 510640, P.R.China
Motorola China Research Center, Shanghai, 210000, P.R.China
{hbdeng,
{Li-Xin.Zhen,"
9ef2b2db11ed117521424c275c3ce1b5c696b9b3,Robust Face Alignment Using a Mixture of Invariant Experts,"Robust Face Alignment Using a Mixture of Invariant Experts
Oncel Tuzel†
Salil Tambe‡∗
Tim K. Marks†
Intel Corporation
Mitsubishi Electric Research Labs (MERL)
{oncel,"
9e5acdda54481104aaf19974dca6382ed5ff21ed,Automatic localization of facial landmarks from expressive images of high complexity,"Yulia Gizatdinova and Veikko Surakka
Automatic localization of facial
landmarks from expressive images
of high complexity
DEPARTMENT OF COMPUTER SCIENCES
UNIVERSITY OF TAMPERE
D‐2008‐9
TAMPERE 2008"
9e9c600919332dcabbd32bbe81a00d1e47449193,Automatic 3D face verification from range data,"- 1330-7803-7663-3/03/$17.00 ©2003 IEEEThis paper was originally published in the Proceedings of the 2003 IEEEInternational Conference on Acoustics, Speech, & Signal Processing,April 6-10, 2003, Hong Kong (cancelled). Reprinted with permission.(cid:224)"
9e0285debd4b0ba7769b389181bd3e0fd7a02af6,From Face Images and Attributes to Attributes,"From face images and attributes to attributes
Robert Torfason, Eirikur Agustsson, Rasmus Rothe, Radu Timofte
Computer Vision Laboratory, ETH Zurich, Switzerland"
9ed3e04586f311b1e2b5ded9c9c4bfeeecf27f0c,Understanding rapid category detection via multiply degraded images.,"http://journalofvision.org/9/6/19/
Understanding rapid category detection via multiply
degraded images
Chetan Nandakumar
Vision Science Graduate Program,
University of California, Berkeley, Berkeley, CA, USA
Jitendra Malik
Department of Electrical Engineering and
Computer Science, University of California,
Berkeley, Berkeley, CA, USA
Rapid category detection, as discovered by S. Thorpe, D. Fize, and C. Marlot (1996), demonstrated that the human visual
system can detect object categories in natural images in as little as 150 ms. To gain insight into this phenomenon and to
determine its relevance to naturally occurring conditions, we degrade the stimulus set along various image dimensions and
investigate the effects on perception. To investigate how well modern-day computer vision algorithms cope with
degradations, we conduct an analog of this same experiment with state-of-the-art object recognition algorithms. We
discover that rapid category detection in humans is quite robust to naturally occurring degradations and is mediated by a
non-linear interaction of visual features. In contrast, modern-day object recognition algorithms are not as robust.
Keywords: rapid category detection, degraded images, object recognition, eye tracking
Citation: Nandakumar, C., & Malik, J. (2009). Understanding rapid category detection via multiply degraded images. Journal
of Vision, 9(6):19, 1–8, http://journalofvision.org/9/6/19/, doi:10.1167/9.6.19."
9e6ecc12794f1d3215f93376a32b350a0492ceb0,Modeling and Predicting Face Recognition System Performance Based on Analysis of Similarity Scores,"Modeling and Predicting Face
Recognition System Performance
Based on Analysis of Similarity Scores
Peng Wang, Member, IEEE,
Qiang Ji, Sr. Member, IEEE, and
James L. Wayman, Sr. Member, IEEE"
9edd7c738171b0f36b65ae771711c38ed1dc38ad,Long-Term Multi-Cue Tracking of Hands in Vehicles,"Long-Term Multi-Cue Tracking of Hands in Vehicles
Akshay Rangesh, Eshed Ohn-Bar, and Mohan Manubhai Trivedi, Fellow, IEEE"
9e759860762d40505f25d6fc5c4f4c1f6500d68b,Elastic Net Hypergraph Learning for Image Clustering and Semi-Supervised Classification,"Elastic Net Hypergraph Learning for Image
Clustering and Semi-supervised Classification
Qingshan Liu, Seninor Member, IEEE, Yubao Sun, Cantian Wang, Tongliang Liu and Dacheng Tao, Fellow, IEEE"
9ef73533507b46278d0d27c41e16af2b8ecf23ef,A comparative assessment of appearance based feature extraction techniques and their susceptibility to image degradations in face recognition systems,"A comparative assessment of appearance based
feature extraction techniques and their susceptibility
to image degradations in face recognition systems
Vitomir ˇStruc and Nikola Paveˇsi´c, Member, IEEE"
9eb111f6990d1494a3904f22be9836c202efd7d1,Exploiting workload similarities for efficient scheduling in diverse asymmetric chip multiprocessing Research,Exploiting workload similarities for efficient scheduling in diverse asymmetric chip multiprocessing                Dani Shaket
9e8dd40aea9204ad670b312a46ba807bfc0c61ce,Distribution-sensitive learning for imbalanced datasets Citation,"Distribution-sensitive learning for imbalanced datasets
The MIT Faculty has made this article openly available. Please share
how this access benefits you.  Your story matters.
Citation
As Published
Publisher
Version
Accessed
Citable Link
Terms of Use
Detailed Terms
Song, Yale, Louis-Philippe Morency, and Randall Davis.
“Distribution-Sensitive Learning for Imbalanced Datasets.” 2013
0th IEEE International Conference and Workshops on
Automatic Face and Gesture Recognition (FG) (n.d.).
http://dx.doi.org/10.1109/FG.2013.6553715
Institute of Electrical and Electronics Engineers (IEEE)
Author's final manuscript
Fri Jan 08 19:33:51 EST 2016
http://hdl.handle.net/1721.1/86107"
9ee5218a2a74fafbc4227f6c7c587b72e141bd33,Iris Compression and Recognition using Spherical Geometry Image,"(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 4, No.6, 2015
Iris Compression and Recognition using Spherical
Geometry Image
College of Computers and Information Technology  University of Tabuk  Tabuk, KSA
Rabab M. Ramadan
in  3D  domain  to  test"
9e2120e48d497b373c53563275c3786c11749883,Topological and metric robot localization through computer vision techniques,"Topological and metric robot localization through computer vision
techniques
A. C. Murillo, J. J. Guerrero and C. Sag¨u´es
DIIS - I3A, University of Zaragoza, Spain"
9ee4d3c173c41ffb6f5aa3c40951aefe3da11d5b,Forming A Random Field via Stochastic Cliques: From Random Graphs to Fully Connected Random Fields,"Forming A Random Field via Stochastic
Cliques: From Random Graphs to Fully
Connected Random Fields
M. J. Shafiee, A. Wong and P. Fieguth"
9e1712ac91c7a882070a8e2740ed476d59d6d5d4,Expressive image manipulations for a variety of visual representations. (Manipulations d'image expressives pour une variété de représentations visuelles),"Expressive image manipulations for a variety of visual
representations
Adrien Bousseau
To cite this version:
Adrien Bousseau. Expressive image manipulations for a variety of visual representations. Human-
Computer Interaction [cs.HC]. Université Joseph-Fourier - Grenoble I, 2009. English. <tel-00429151>
HAL Id: tel-00429151
https://tel.archives-ouvertes.fr/tel-00429151
Submitted on 31 Oct 2009
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
9e263d429c3b87aae2653b6fb925b32b63c172cd,Enhanced image and video representation for visual recognition,"Enhanced image and video representation for visual
recognition
Mihir Jain
To cite this version:
Mihir Jain. Enhanced image and video representation for visual recognition. Computer Vision
nd Pattern Recognition [cs.CV]. Universit´e Rennes 1, 2014. English. <tel-00996793>
HAL Id: tel-00996793
https://tel.archives-ouvertes.fr/tel-00996793
Submitted on 27 May 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de
recherche fran¸cais ou ´etrangers, des laboratoires"
040dc119d5ca9ea3d5fc39953a91ec507ed8cc5d,Large-scale Bisample Learning on ID vs. Spot Face Recognition,"Noname manuscript No.
(will be inserted by the editor)
Large-scale Bisample Learning on ID vs. Spot Face Recognition
Xiangyu Zhu∗ · Hao Liu∗ · Zhen Lei · Hailin Shi · Fan Yang · Dong
Yi · Stan Z. Li
Received: date / Accepted: date"
0422a9bc1bde71d3b4fc4f52b4a62b15f2fb101f,A Customized Vision System for Tracking Humans Wearing Reflective Safety Clothing from Industrial Vehicles and Machinery,"Sensors 2014, 14, 17952-17980; doi:10.3390/s141017952
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
A Customized Vision System for Tracking Humans
Wearing Reflective Safety Clothing from Industrial
Vehicles and Machinery
Rafael Mosberger *, Henrik Andreasson and Achim J. Lilienthal
AASS Research Centre, Örebro University, 70182 Örebro, Sweden;
E-Mails: (H.A.); (A.J.L.)
* Author to whom correspondence should be addressed; E-Mail:
Tel.: +46-1930-1113; Fax: +46-1930-3463.
External Editor: Vittorio M.N. Passaro
Received: 8 July 2014; in revised form: 5 September 2014 / Accepted: 9 September 2014 /
Published: 26 September 2014"
04adf2e51df06a03b6decf520b0952a54a538a18,Randomized Robust Subspace Recovery and Outlier Detection for High Dimensional Data Matrices,"Randomized Robust Subspace Recovery for High Dimensional
Data Matrices
Mostafa Rahmani, Student Member, IEEE and George K. Atia, Member, IEEE"
047f6afa87f48de7e32e14229844d1587185ce45,An Improvement of Energy-Transfer Features Using DCT for Face Detection,"An Improvement of Energy-Transfer Features
Using DCT for Face Detection
Radovan Fusek, Eduard Sojka, Karel Mozdˇreˇn, and Milan ˇSurkala
Technical University of Ostrava, FEECS, Department of Computer Science,
7. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic"
0485e96bb0c1276fe2a27271b939b6e67997acfc,Active Learning for Structured Probabilistic Models,"Active Learning for Structured Probabilistic Models
Qing Sun
Virginia Tech
Ankit Laddha ∗
Virginia Tech
Dhruv Batra
Virginia Tech"
04afb510e11e963fb18e3271ac966164db806120,Harvesting Social Images for Bi-Concept Search,"Harvesting Social Images for Bi-Concept Search
Xirong Li, Cees G. M. Snoek, Senior Member, IEEE, Marcel Worring, Member, IEEE, and
Arnold W. M. Smeulders, Member, IEEE"
04b851f25d6d49e61a528606953e11cfac7df2b2,Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition,"Optical Flow Guided Feature: A Fast and Robust Motion Representation for
Video Action Recognition
Shuyang Sun1,2, Zhanghui Kuang2, Lu Sheng3, Wanli Ouyang1, Wei Zhang2
The University of Sydney 2SenseTime Research 3The Chinese University of Hong Kong
{shuyang.sun
{wayne.zhang"
0447bdb71490c24dd9c865e187824dee5813a676,Manifold Estimation in View-based Feature Space for Face Synthesis Across Pose,"Manifold Estimation in View-based Feature
Space for Face Synthesis Across Pose
Paper 27"
04bb0a1ccca86a4c1084fc7472ea07189c110aa7,Tracking Interacting Objects Using Intertwined Flows,"Tracking Interacting Objects Using
Intertwined Flows
Xinchao Wang∗ , Engin T¨uretken∗, Franc¸ois Fleuret, and Pascal Fua, Fellow, IEEE"
0435a34e93b8dda459de49b499dd71dbb478dc18,"VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification Using Convolutional Neural Networks","VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification
Using Convolutional Neural Networks
Ayesha Gurnani£1, Vandit Gajjar£1, Viraj Mavani£1, Yash Khandhediya£1
Department of Electronics and Communication Engineering and
Computer Vision Group, L. D. College of Engineering, Ahmedabad, India
{gurnani.ayesha.52, gajjar.vandit.381, mavani.viraj.604,
the  need  for  handcrafted  facial  descriptors  and  data
preprocessing.  D-CNN  models  have  been  not  only
successfully  applied  to  human  face  analysis,  but  also  for
the visual saliency detection [21, 22, 23]. Visual Saliency
is  fundamentally  an  intensity  map  where  higher  intensity
signifies  regions,  where  a  general  human  being  would
look, and lower intensities mean decreasing level of visual
ttention.  It’s  a  measure  of  visual  attention  of  humans
ased  on  the  content  of  the  image.  It  has  numerous
pplications  in  computer  vision  and  image  processing
tasks. It is still an open problem when considering the MIT
Saliency Benchmark [24].
In  previous  five  years,  considering  age  estimation,
gender  classification  and  facial  expression  classification"
041ac91c85276f61bec3f0f3c42782e4f9a31f88,Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet Transform,"Detailed Dense Inference with Convolutional Neural Networks
via Discrete Wavelet Transform
Lingni Ma1, J¨org St¨uckler2, Tao Wu1 and Daniel Cremers1"
04f7eab5d03ac6ad678f2fc8adf29bc1a84a2084,Tree based object matching using multi-scale covariance descriptor,"Tree based object matching using multi-scale covariance
descriptor
Walid AYEDI1,2, Hichem SNOUSSI1, Fethi SMACH2 and Mohamed ABID2
Charles Delaunay Institute (FRE CNRS 2848), University of Technology of Troyes, 10010 Troyes, France
Sfax University, National Engineering School of Sfax, 3052 Sfax, Tunisia"
044ba70e6744e80c6a09fa63ed6822ae241386f2,Early Prediction for Physical Human Robot Collaboration in the Operating Room,"TO APPEAR IN AUTONOMOUS ROBOTS, SPECIAL ISSUE IN LEARNING FOR HUMAN-ROBOT COLLABORATION
Early Prediction for Physical Human Robot
Collaboration in the Operating Room
Tian Zhou, Student Member, IEEE, and Juan Wachs, Member, IEEE"
0462aa8b7120a34f111e81f77acd1cc7d81680a6,Color Emotions in Large Scale Content Based Image Indexing,"Link¨oping Studies in Science and Technology
Dissertations, No. 1362
Color Emotions in Large Scale Content Based
Image Indexing
Martin Solli
Department of Science and Technology
Link¨oping University, SE-601 74 Norrk¨oping, Sweden
Norrk¨oping, March 2011"
04741341e26bdcd9ed1de18e5a95c31d7b64fa36,Adversarial Action Prediction Networks,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018
Adversarial Action Prediction Networks
Yu Kong, Member, IEEE, Zhiqiang Tao, Student Member, IEEE and Yun Fu, Senior Member, IEEE"
045b45adbcb83a34d087c917b79274858a878937,A Methodology for Extracting Standing Human Bodies From Single Images,"Invention Journal of Research Technology in Engineering & Management (IJRTEM)                                                  ISSN: 2455-3689
www.ijrtem.com ǁ Volume 1 ǁ Issue 8 ǁ
A Methodology for Extracting Standing Human Bodies from Single Images
Dr. Y. Raghavender Rao1, N. Devadas Naik2
Head ECE JNTUHCEJ Jagtityal
Asst professor Sri Chaitanya engineering college"
04dca7c7f85d607cba64ca56de3364a4085effa1,ExprGAN: Facial Expression Editing with Controllable Expression Intensity,"ExprGAN: Facial Expression Editing with Controllable Expression Intensity
Hui Ding,1 Kumar Sricharan2, Rama Chellappa3
,3University of Maryland, College Park
PARC, Palo Alto"
048eb50c398fa01bd15329945113341102d96454,Addressing perceptual insensitivity to facial affect in violent offenders: first evidence for the efficacy of a novel implicit training approach.,"doi:10.1017/S0033291713001517
O R I G I N A L A R T I C L E
Addressing perceptual insensitivity to facial affect
in violent offenders: first evidence for the efficacy
of a novel implicit training approach
M. Schönenberg*, S. Christian, A.-K. Gaußer, S. V. Mayer, M. Hautzinger and A. Jusyte
Department of Clinical Psychology and Psychotherapy, University of Tübingen, Germany
Background. Although impaired recognition of affective facial expressions has been conclusively linked to antisocial
ehavior, little is known about the modifiability of this deficit. This study investigated whether and under which circum-
stances the proposed perceptual insensitivity can be addressed with a brief implicit training approach.
Method. Facial affect recognition was assessed with an animated morph task, in which the participants (44 male incar-
erated violent offenders and 43 matched controls) identified the onset of emotional expressions in animated morph clips
that gradually changed from neutral to one of the six basic emotions. Half of the offenders were then implicitly trained to
direct attention to salient face regions (attention training, AT) using a modified dot-probe task. The other half underwent
the same protocol but the intensity level of the presented expressions was additionally manipulated over the course of
training sessions (sensitivity to emotional expressions training, SEE training). Subsequently, participants were reassessed
with the animated morph task.
Results. Facial affect recognition was significantly impaired in violent offenders as compared with controls. Further, our
results indicate that only the SEE training group exhibited a pronounced improvement in emotion recognition.
Conclusions. We demonstrated for the first time that perceptual insensitivity to facial affect can be addressed by an"
040601d28b683c3c8b48b29e93b6aa3c26dbdf5f,"Facial Expression Recognition for Color Images using Gabor, Log Gabor Filters and PCA","International Journal of Computer Applications (0975 – 8887)
Volume 113 – No. 4, March 2015
Facial Expression Recognition for Color Images using
Gabor, Log Gabor Filters and PCA
Shail Kumari Shah
PG Scholar,
Computer Engg. Dept.
Vineet Khanna
Assistant Professor,
Computer Engg. Dept.
Rajasthan College of Engineering for Women
Rajasthan Technical University, Jaipur, India
Rajasthan College of Engineering for Women
Rajasthan Technical University, Jaipur, India"
04bf170753cee3d1da1b9ab41a5b0874685142fa,Casualty Detection for Mobile Rescue Robots via Ground-Projected Point Clouds,"TAROS2018, 037, v5 (final): ’Casualty Detection for Mobile Rescue Robots via Ground- . . ."
0480b458439069687ec41c90178ba7e9a056bcca,Gender Classification Using Gradient Direction Pattern,"Sci.Int(Lahore),25(4),797-799,2013
ISSN 1013-5316;  CODEN: SINTE 8
GENDER CLASSIFICATION USING GRADIENT DIRECTION PATTERN
Department of Computer Science, School of Applied Statistics,
National Institute of Development Administration, Bangkok, Thailand.
Mohammad Shahidul Islam"
0449b56b6b19a3c42766962782bfb88576b5bd62,Spontaneous and cued gaze-following in autism and Williams syndrome,"Spontaneous and cued gaze-following in autism
nd Williams syndrome
Riby et al.
Riby et al. Journal of Neurodevelopmental Disorders 2013, 5:13
http://www.jneurodevdisorders.com/content/5/1/13"
04b29b6f1210f4309f3d5ab9e6bd2c8a026ce244,Face Recognition in the Presence of Expressions,"Journal of Software Engineering and Applications, 2012, 5, 321-329
http://dx.doi.org/10.4236/jsea.2012.55038 Published Online May 2012 (http://www.SciRP.org/journal/jsea)
Face Recognition in the Presence of Expressions
Xia Han1*, Moi Hoon Yap2, Ian Palmer3
Centre for Visual Computing, University of Bradford, Bradford, UK; 2School of Computing, Mathematics, and Digital Technology,
Manchester  Metropolitan  University  (MMU),  Manchester,  UK;  3School  of  Computing,  Informatics  and  Media,  University  of
Bradford, Bradford, UK.
Email:
Received February 21st, 2012; revised March 25th, 2012; accepted April 27th, 2012"
04dcdb7cb0d3c462bdefdd05508edfcff5a6d315,Assisting the training of deep neural networks with applications to computer vision,"Assisting the training of deep neural networks
with applications to computer vision
Adriana Romero
tesi  doctoral  està  subjecta  a
Aquesta
CompartirIgual  4.0. Espanya de Creative Commons.
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - NoComercial – CompartirIgual
.0.  España de Creative Commons.
This  doctoral  thesis  is  licensed  under  the Creative  Commons  Attribution-NonCommercial-
ShareAlike 4.0. Spain License.
llicència Reconeixement-  NoComercial  –"
044fdb693a8d96a61a9b2622dd1737ce8e5ff4fa,Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions,"Dynamic Texture Recognition Using Local Binary
Patterns with an Application to Facial Expressions
Guoying Zhao and Matti Pietik¨ainen, Senior Member, IEEE"
0410659b6a311b281d10e0e44abce9b1c06be462,"A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning","A Gift from Knowledge Distillation:
Fast Optimization, Network Minimization and Transfer Learning
Junho Yim1
Donggyu Joo1
Jihoon Bae2
Junmo Kim1
School of Electrical Engineering, KAIST, South Korea
Electronics and Telecommunications Research Institute
{junho.yim, jdg105,"
04b08a2735eff524f17d3f1a63eb7fc6484d4f83,Facial emotion detection using deep learning,IT 16 040Examensarbete 30 hpJuni 2016Facial emotion detection using deep learning Daniel Llatas SpiersInstitutionen för informationsteknologiDepartment of Information Technology
04cdc847f3b10d894582969feee0f37fbd3745e5,Compressed Sensing with Deep Image Prior and Learned Regularization,"Compressed Sensing with Deep Image Prior
nd Learned Regularization
David Van Veen∗†
Ajil Jalal∗†
Eric Price ‡
Sriram Vishwanath †
Alexandros G. Dimakis †
June 19, 2018"
04ff060369c86ccb07414935bd3e3b85e4896261,Object detection can be improved using human-derived contextual expectations,"Object detection can be improved using
human-derived contextual expectations
Harish Katti, Marius V. Peelen, and S. P. Arun"
04f55f81bbd879773e2b8df9c6b7c1d324bc72d8,Multi-view Face Analysis Based on Gabor Features,"Multi-view Face Analysis Based on Gabor Features
Hongli Liu,  Weifeng Liu,  Yanjiang Wang
College of Information and Control Engineering in China University of Petroleum,
Qingdao 266580, China"
046f1c194a09fc84f535c27a3373622223a80c67,Memory-efficient groupby-aggregate using compressed buffer trees,"Memory-Efficient GroupBy-Aggregate using
Compressed Buffer Trees
Hrishikesh Amur†, Wolfgang Richter(cid:63), David G. Andersen(cid:63),
Michael Kaminsky‡, Karsten Schwan†, Athula Balachandran(cid:63), Erik Zawadzki(cid:63)
(cid:63)Carnegie Mellon University, †Georgia Institute of Technology, ‡Intel Labs Pittsburgh"
04f6a747cba48be1cabbf5efe6ce3eb85e061395,Discriminative Detection and Alignment in Volumetric Data,"Discriminative Detection
nd Alignment in Volumetric Data
Dominic Mai1,2, Philipp Fischer1, Thomas Blein4, Jasmin D¨urr3,
Klaus Palme2,3, Thomas Brox1,2, and Olaf Ronneberger1,2
Lehrstuhl f¨ur Mustererkennung und Bildverabeitung, Institut f¨ur Informatik
BIOSS Centre of Biological Signalling Studies
Institut f¨ur Biologie II, Albert-Ludwigs-Universit¨at Freiburg
INRA Versailles"
04d9abdae728f09e1d1f78e36a5de551c3a690f5,Color Local Texture Features Based Face Recognition,"International Journal of Innovations in Engineering and Technology (IJIET)
Color Local Texture Features Based Face
Recognition
Priyanka V. Bankar
Department of Electronics and Communication Engineering
SKN Sinhgad College of Engineering, Korti, Pandharpur, Maharashtra, India
Department of Electronics and Communication Engineering
SKN Singhgad College of Engineering, Korti, Pandharpur, Maharashtra, India
Anjali C. Pise"
04743c503620baffd75f93f8e4583fcba369ac9d,Proofread Sentence Generation as Multi-Task Learning with Editing Operation Prediction,"Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 436–441,
Taipei, Taiwan, November 27 – December 1, 2017 c(cid:13)2017 AFNLP"
04f4679765d2f71576dd77c1b00a2fd92e5c6da4,Part Detector Discovery in Deep Convolutional Neural Networks,"Part Detector Discovery in Deep Convolutional
Neural Networks
Marcel Simon, Erik Rodner, and Joachim Denzler
Computer Vision Group, Friedrich Schiller University of Jena, Germany
www.inf-cv.uni-jena.de"
0431e8a01bae556c0d8b2b431e334f7395dd803a,Learning Localized Perceptual Similarity Metrics for Interactive Categorization,"Learning Localized Perceptual Similarity Metrics for Interactive Categorization
Catherine Wah ∗
Google Inc.
google.com"
04b4c779b43b830220bf938223f685d1057368e9,Video retrieval based on deep convolutional neural network,"Video retrieval based on deep convolutional
neural network
Yajiao Dong
School of Information and Electronics,
Beijing Institution of Technology, Beijing, China
Jianguo Li
School of Information and Electronics,
Beijing Institution of Technology, Beijing, China"
044da4715e439b4f91cee8eec55299e30a615c56,Inducing a Concurrent Motor Load Reduces Categorization Precision for Facial Expressions,"Journal of Experimental Psychology:
Human Perception and Performance
016, Vol. 42, No. 5, 706 –718
0096-1523/16/$12.00
© 2015 The Author(s)
http://dx.doi.org/10.1037/xhp0000177
Inducing a Concurrent Motor Load Reduces Categorization Precision for
Facial Expressions
Alberta Ipser and Richard Cook
City University London
Motor theories of expression perception posit that observers simulate facial expressions within their own
motor system, aiding perception and interpretation. Consistent with this view, reports have suggested that
locking facial mimicry induces expression labeling errors and alters patterns of ratings. Crucially,
however, it is unclear whether changes in labeling and rating behavior reflect genuine perceptual
phenomena (e.g., greater internal noise associated with expression perception or interpretation) or are
products of response bias. In an effort to advance this literature, the present study introduces a new
psychophysical paradigm for investigating motor contributions to expression perception that overcomes
some of the limitations inherent in simple labeling and rating tasks. Observers were asked to judge
whether smiles drawn from a morph continuum were sincere or insincere, in the presence or absence of
motor load induced by the concurrent production of vowel sounds. Having confirmed that smile"
04616814f1aabe3799f8ab67101fbaf9fd115ae4,UNIVERSITÉ DE CAEN BASSE NORMANDIE U . F . R . de Sciences,"UNIVERSIT´EDECAENBASSENORMANDIEU.F.R.deSciences´ECOLEDOCTORALESIMEMTH`ESEPr´esent´eeparM.GauravSHARMAsoutenuele17D´ecembre2012envuedel’obtentionduDOCTORATdel’UNIVERSIT´EdeCAENSp´ecialit´e:InformatiqueetapplicationsArrˆet´edu07aoˆut2006Titre:DescriptionS´emantiquedesHumainsPr´esentsdansdesImagesVid´eo(SemanticDescriptionofHumansinImages)TheworkpresentedinthisthesiswascarriedoutatGREYC-UniversityofCaenandLEAR–INRIAGrenobleJuryM.PatrickPEREZDirecteurdeRechercheINRIA/Technicolor,RennesRapporteurM.FlorentPERRONNINPrincipalScientistXeroxRCE,GrenobleRapporteurM.JeanPONCEProfesseurdesUniversit´esENS,ParisExaminateurMme.CordeliaSCHMIDDirectricedeRechercheINRIA,GrenobleDirectricedeth`eseM.Fr´ed´ericJURIEProfesseurdesUniversit´esUniversit´edeCaenDirecteurdeth`ese"
045fbe21ea8e501d443fa2d297c1292264712c62,Links between multisensory processing and autism,"Exp Brain Res
DOI 10.1007/s00221-012-3223-4
R E S E A R C H A R T I C L E
Links between multisensory processing and autism
Sarah E. Donohue • Elise F. Darling •
Stephen R. Mitroff
Received: 1 June 2012 / Accepted: 7 August 2012
Ó Springer-Verlag 2012"
04241ba56d4499a00beb6991d2460d571a218d85,Learning appearance in virtual scenarios for pedestrian detection,"Learning Appearance in Virtual Scenarios for Pedestrian Detection
Javier Mar´ın, David V´azquez, David Ger´onimo and Antonio M. L´opez
Computer Vision Center and Computer Science Dpt. UAB, 08193 Bellaterra, Barcelona, Spain
{jmarin, dvazquez, dgeronimo,"
041d3eedf5e45ce5c5229f0181c5c576ed1fafd6,How to Take a Good Selfie?,"How to Take a Good Selfie?
Mahdi M. Kalayeh(cid:63) Misrak Seifu◦ Wesna LaLanne(cid:5) Mubarak Shah(cid:63)
(cid:63)Center for Research in Computer Vision at University of Central Florida
◦Jackson State University
(cid:5)University of Central Florida"
040eb316cec08b36ae0b57fede86043ee0526686,Learning Reliable and Scalable Representations Using Multimodal Multitask Deep Learning,"Learning Reliable and Scalable Representations
Using Multimodal Multitask Deep Learning
Abhinav Valada, and Wolfram Burgard
Department of Computer Science, University of Freiburg, Germany
I. INTRODUCTION
Modality 1
Modality 2
Unimodal Seg.
Multimodal Seg.
Fifties - in 5 years robots would be everywhere.
Sixties - in 10 years robots would be everywhere.
Seventies - in 20 years robots would be everywhere.
Eighties - in 40 years robots would be everywhere.
-Marvin Minsky
Those were the words from one of the pioneers of AI
when asked to comment on the progress of robotics in the
twentieth century. This shows the high expectations and
unforeseen challenges that we are faced with for deploying
robots in complex real-world environments. One of the primary
impediments has been the robustness of scene understanding"
047d7cf4301cae3d318468fe03a1c4ce43b086ed,Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression,"Co-Localization of Audio Sources in Images Using
Binaural Features and Locally-Linear Regression
Antoine Deleforge, Radu Horaud, Yoav Y. Schechner, Laurent Girin
To cite this version:
Antoine Deleforge, Radu Horaud, Yoav Y. Schechner, Laurent Girin. Co-Localization of Audio
Sources in Images Using Binaural Features and Locally-Linear Regression. IEEE Transactions
on Audio Speech and Language Processing, 2015, 15p. <hal-01112834>
HAL Id: hal-01112834
https://hal.inria.fr/hal-01112834
Submitted on 3 Feb 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
04317e63c08e7888cef480fe79f12d3c255c5b00,Face Recognition Using a Unified 3D Morphable Model,"Face Recognition Using a Unified 3D Morphable Model
Hu, G., Yan, F., Chan, C-H., Deng, W., Christmas, W., Kittler, J., & Robertson, N. M. (2016). Face Recognition
Using a Unified 3D Morphable Model. In Computer Vision – ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII (pp. 73-89). (Lecture Notes in
Computer Science; Vol. 9912). Springer Verlag. DOI: 10.1007/978-3-319-46484-8_5
Published in:
Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14,
016, Proceedings, Part VIII
Document Version:
Peer reviewed version
Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal
Publisher rights
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-46484-8_5
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.
Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to"
047f8d5d5134dd12c67038623417f05ab9885056,Motion Synthesis In : Static Scan + Expression Out : Best Fitting Sequence + Angry Out : Animated Sequence Statistical Analysis Expression Recognition,"D Faces in Motion: Fully Automatic Registration and Statistical Analysis
Timo Bolkarta,∗, Stefanie Wuhrera
Saarland University, Saarbr¨ucken, Germany"
0464b56c5beee717b074ed950abcc959372256a6,Fast and Robust Optimization Approaches for Pedestrian Detection,"Fast and Robust Optimization Approaches for
Pedestrian Detection
Victor Hugo Cunha de Melo∗, David Menotti (Co-advisor)†, William Robson Schwartz (Advisor)∗
Computer Science Department, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
Computer Science Department, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
Email:"
040806bc41c0dd50273921d8d839fda58d20b01e,Socio-affective touch expression database,"RESEARCH ARTICLE
Socio-affective touch expression database
Haemy Lee Masson*, Hans Op de Beeck*
Department of Brain and Cognition, KU Leuven, Leuven, Belgium
* (HLM); (HOB)"
040033d73d1efe316c8f0a8ed702b833a0550d83,Generating Expressions that Refer to Visible Objects,"Atlanta, Georgia, 9–14 June 2013. c(cid:13)2013 Association for Computational Linguistics
Proceedings of NAACL-HLT 2013, pages 1174–1184,"
04379f40d2a26dd769c53488b7b08a5123f89347,3D Facial Expression Recognition Based on Histograms of Surface Differential Quantities,"D Facial Expression Recognition Based on
Histograms of Surface Differential Quantities
Huibin Li1,2, Jean-Marie Morvan1,3,4, and Liming Chen1,2
Universit´e de Lyon, CNRS
Ecole Centrale de Lyon, LIRIS UMR5205, F-69134, Lyon, France
Universit´e Lyon 1, Institut Camille Jordan,
3 blvd du 11 Novembre 1918, F-69622 Villeurbanne - Cedex, France
King Abdullah University of Science and Technology, GMSV Research Center,
Bldg 1, Thuwal 23955-6900, Saudi Arabia"
04bd29ec1ae0b64367ec37ddde51a0d8f8b7f670,Few-shot Object Detection,"SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017.
Few-shot Object Detection
Xuanyi Dong, Liang Zheng, Fan Ma, Yi Yang, Deyu Meng"
042510b39c6cdb463610fdda2081b36ff469a353,Human Pose Estimation from Video and IMUs,"Human Pose Estimation from Video and IMUs
Timo von Marcard, Gerard Pons-Moll, and Bodo Rosenhahn"
0470b0ab569fac5bbe385fa5565036739d4c37f8,Automatic face naming with caption-based supervision,"Automatic Face Naming with Caption-based Supervision
Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid
To cite this version:
Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid. Automatic Face Naming
with Caption-based Supervision. CVPR 2008 - IEEE Conference on Computer Vision
Pattern Recognition,
iety,
<10.1109/CVPR.2008.4587603>. <inria-00321048v2>
008,
pp.1-8,
008, Anchorage, United
<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4587603>.
IEEE Computer
States.
HAL Id: inria-00321048
https://hal.inria.fr/inria-00321048v2
Submitted on 11 Apr 2011
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-"
6a3cbe2bb27b2a7d32c358e0be4ed268f7d4455c,Shape Tracking with Occlusions via Coarse-to-Fine Region-Based Sobolev Descent,"Modeling Shape, Appearance and Self-Occlusions
for Articulated Object Tracking
Yanchao Yang and Ganesh Sundaramoorthi"
6a951df76a56fc89e5df3fbba2e5699ccad4f199,Relative Pairwise Relationship Constrained Non-negative Matrix Factorisation,"IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
Relative Pairwise Relationship Constrained
Non-negative Matrix Factorisation
Shuai Jiang, Kan Li, and Richard Yida Xu"
6a3a07deadcaaab42a0689fbe5879b5dfc3ede52,Learning to Estimate Pose by Watching Videos,"Learning to Estimate Pose by Watching Videos
Prabuddha Chakraborty and Vinay P. Namboodiri
Department of Computer Science and Engineering
IIT Kanpur
{prabudc, vinaypn}"
6afed8dc29bc568b58778f066dc44146cad5366c,Kernel Hebbian Algorithm for Single-Frame Super-Resolution,"Kernel Hebbian Algorithm for Single-Frame
Super-Resolution
Kwang In Kim1, Matthias O. Franz1, and Bernhard Sch¨olkopf1
Max Planck Institute f¨ur biologische Kybernetik
Spemannstr. 38, D-72076 T¨ubingen, Germany
{kimki, mof,
http://www.kyb.tuebingen.mpg.de/"
6a951a47aa545e08508b0b2c6a2bef45e154a3a9,DeepCoder: Semi-Parametric Variational Autoencoders for Automatic Facial Action Coding,"DeepCoder: Semi-parametric Variational Autoencoders
for Automatic Facial Action Coding
Dieu Linh Tran∗, Robert Walecki, Ognjen (Oggi) Rudovic*, Stefanos Eleftheriadis,
Bj¨orn Schuller and Maja Pantic
{linh.tran, r.walecki14, bjoern.schuller,"
6ad32b70ee21b6fc16ff4caf7b4ada2aaf13cabc,Efficient Subwindow Search: A Branch and Bound Framework for Object Localization,"Efficient Subwindow Search: A Branch and Bound
Framework for Object Localization
Christoph H. Lampert, Matthew B. Blaschko, and Thomas Hofmann
n image of as low resolution as 320×240 contains more than
one billion rectangular subimages. In general, the number of
subimages grows quadratically with the number of image pix-
els, which makes it computationally too expensive to evaluate
the quality function exhaustively for all of these. Instead, one
typically uses heuristics to speed up the search that introduce
the risk of mispredicting the location of an object or even
missing it."
6a16b91b2db0a3164f62bfd956530a4206b23fea,A Method for Real-Time Eye Blink Detection and Its Application,"A Method for Real-Time Eye Blink Detection and Its Application
Chinnawat Devahasdin Na Ayudhya
Mahidol Wittayanusorn School
Puttamonton, Nakornpatom 73170, Thailand"
6a41ba9db0affa701ea125e09a2fe7eb583e3ac9,Frontal imgelerden otomatik yüz tanıma Automatic face recognition from frontal images,"Frontal imgelerden otomatik yüz tanıma
Automatic face recognition from frontal images
Hasan Serhan Yavuz, Hakan Çevikalp, Rıfat Edizkan
Elektrik ve Elektronik Mühendisliği Bölümü
Eskişehir Osmangazi Üniversitesi
Eskişehir, Türkiye
fotoğraflanan
laboratuarımızda
Özetçe—Yüz tanıma basitçe kişilere ait olan yüz imgelerinden
kimlik  tespit  edilmesi  olarak  tanımlanabilir.  Bu  çalışmada,
sayısal  kamera
frontal
imgeler  kullanılarak  yüz  tanıma  yapılmıştır.  Otomatik  yüz
tanıma süreci sırasıyla yüz sezme, göz sezme, sezilen gözlerin orta
noktalarını  kullanarak  belirlenen  standart  bir  yüz  şablonuna
uyacak biçimde haritalama yapma ve sonrasında hizalanan yüz
imgelerini  sınıflandırma  basamaklarından  oluşur.  Literatürde
yüz  imgesi  hazırlama  süreci  genellikle  elle  yapılmaktadır.  Yüz
imgelerinin  tamamı  birebir  aynı  biçimde  kesildiği  için  çok
yüksek tanıma oranları elde edilir ancak bir otomatik yüz tanıma"
6ada03f390f92704f3df1556846697c54c00f7da,Human-Machine Cooperation in Large-Scale Multimedia Retrieval: A Survey,"Human-Machine Cooperation in Large-Scale
Multimedia Retrieval: A Survey
Kimiaki Shirahama,1 Marcin Grzegorzek,1 and Bipin Indurkhya2
University of Siegen, 2AGH University of Science and Technology
Correspondence:
Correspondence concerning this
rticle should be addressed to Kimiaki
Shirahama, Pattern Recognition Group,
University of Siegen, Hoelderlinstrasse 3,
57076 Siegen, Germany, or via email to
Keywords:
large-scale multimedia retrieval, human-
machine cooperation, machine-based
methods, human-based methods
Large-Scale Multimedia Retrieval (LSMR) is the task to fast analyze a large amount of multi-
media data like images or videos and accurately find the ones relevant to a certain semantic
meaning.  Although  LSMR  has  been  investigated  for  more  than  two  decades  in  the  fields
of multimedia processing and computer vision, a more interdisciplinary approach is neces-
sary to develop an LSMR system that is really meaningful for humans. To this end, this paper
ims to stimulate attention to the LSMR problem from diverse research fields. By explaining"
6a1e5f4dbabf451122bf35228c8b25c79c7d235f,Learning to See the Invisible: End-to-End Trainable Amodal Instance Segmentation,"Learning to See the Invisible: End-to-End
Trainable Amodal Instance Segmentation
Patrick Follmann, Rebecca K¨onig, Philipp H¨artinger, Michael Klostermann
MVTec Software GmbH,
www.mvtec.com,"
6a806978ca5cd593d0ccd8b3711b6ef2a163d810,Facial Feature Tracking for Emotional Dynamic Analysis,"Facial feature tracking for Emotional Dynamic
Analysis
Thibaud Senechal1, Vincent Rapp1, and Lionel Prevost2
ISIR, CNRS UMR 7222
Univ. Pierre et Marie Curie, Paris
{rapp,
LAMIA, EA 4540
Univ. of Fr. West Indies & Guyana"
6a27ffd788a0db64fef74e673786763c82902a26,Discriminative deep transfer metric learning for cross-scenario person re-identification,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Discriminativedeeptransfermetriclearningforcross-scenariopersonre-identificationTongguangNiXiaoqingGuHongyuanWangZhongbaoZhangShoubingChenCuiJinTongguangNi,XiaoqingGu,HongyuanWang,ZhongbaoZhang,ShoubingChen,CuiJin,“Discriminativedeeptransfermetriclearningforcross-scenariopersonre-identification,”J.Electron.Imaging27(4),043026(2018),doi:10.1117/1.JEI.27.4.043026."
6a8a3c604591e7dd4346611c14dbef0c8ce9ba54,An Affect-Responsive Interactive Photo Frame,"ENTERFACE’10, JULY 12TH - AUGUST 6TH, AMSTERDAM, THE NETHERLANDS.
An Affect-Responsive Interactive Photo Frame
Hamdi Dibeklio˘glu, Ilkka Kosunen, Marcos Ortega Hortas, Albert Ali Salah, Petr Zuz´anek"
6a1fd51107770edbdd832a1934ff5461e891f2e1,A Robust and Dominant Local Binary Pattern and Its Application,"IJSRD - International Journal for Scientific Research & Development| Vol. 2, Issue 10, 2014 | ISSN (online): 2321-0613
A Robust and Dominant Local Binary Pattern and Its Application
Keerthana A.V1 Ashwin M2
Student of M.E 2Associate Professor
,2Department of Computer Science & Engineering
,2Adhiyamaan College of Engineering, Krishnagiri, Tamilnadu, India
Local
ternary
Pattern,  modified"
6a0b70abb9a81a96d4baa9b396deb9da4cc20f8f,Clustering through ranking on manifolds,"Clustering Through Ranking On Manifolds
Markus Breitenbach
Dept. of Computer Science; University of Colorado, Boulder, USA
Gregory Z. Grudic
Dept. of Computer Science; University of Colorado, Boulder, USA"
6a52e6fce541126ff429f3c6d573bc774f5b8d89,Role of Facial Emotion in Social Correlation,"Role of Facial Emotion in Social Correlation
Pankaj Mishra, Rafik Hadfi, and Takayuki Ito
Department of Computer Science and Engineering
Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan
{pankaj.mishra,"
6a14652508138fcf0aa8c518109165f65c88fd3f,Programming a humanoid robot in natural language: an experiment with description logics,"Programming a humanoid robot in natural language:
n experiment with description logics
Nicola Vitucci , Alessio Mauro Franchi, Giuseppina Gini
DEIB, Politecnico di Milano
Milano, Italy"
6ae13c7dcd1d10d2dfe58546a49da09b0b471d68,Person-independent facial expression recognition based on compound local binary pattern (CLBP),"The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014                                                          195
Person-Independent Facial Expression Recognition
Based on Compound Local Binary Pattern (CLBP)
Department of Computer Science and Engineering, Islamic University of Technology, Bangladesh
Faisal Ahmed1, Hossain Bari2, and Emam Hossain3
2Samsung Bangladesh R & D Center Ltd, Bangladesh
3Department of Computer Science and Engineering, Ahsanullah University of Science and Technology,
Bangladesh"
6af35225cfd744b79577c126e553f549e5b5cdcc,Title Discriminative Hessian Eigenmaps for face recognition,"Title
Discriminative Hessian Eigenmaps for face recognition
Author(s)
Si, S; Tao, D; Chan, KP
Citation
The 2010 IEEE  International Conference on Acoustics, Speech
nd Signal Processing (ICASSP), Dallas, TX., 14-19 March 2010.
In IEEE International Conference on Acoustics, Speech and
Signal Processing Proceedings, 2010, p. 5586-5589
Issued Date
http://hdl.handle.net/10722/125723
Rights
IEEE International Conference on Acoustics, Speech and Signal
Processing Proceedings. Copyright © IEEE.; ©2010 IEEE.
Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
omponent of this work in other works must be obtained from
the IEEE.; This work is licensed under a Creative Commons"
6a553f7ef42000001f407e95f4955e7ddde46a83,A Dataset of Laryngeal Endoscopic Images with Comparative Study on Convolution Neural Network Based Semantic Segmentation,"IJCARS manuscript No.
(will be inserted by the editor)
A Dataset of Laryngeal Endoscopic Images with
Comparative Study on Convolution Neural Network
Based Semantic Segmentation
Max-Heinrich Laves · Jens Bicker · Lüder
A. Kahrs · Tobias Ortmaier
Received: date / Accepted: date"
6a6280189ead63b2eec733b8e8ac507e830928fd,Face localization in color images with complex background,"Face localization in color images with complex
ackground
Paola Campadelli, Raffaella Lanzarotti, Giuseppe Lipori
Dipartimento di Scienze dell’Informazione
Universit(cid:30)a degli Studi di Milano
Via Comelico, 39/41 20135 Milano, Italy
fcampadelli, lanzarotti,"
6ac7fe3a292dc5e0f7d27e11b85ed8277905e9ba,Detecting Traffic Lights by Single Shot Detection,"Detecting Traffic Lights by Single Shot Detection
Julian M¨uller1 and Klaus Dietmayer1"
6a55d6db1b31f44c9bb37b070fbf7c8f64a31f13,Aging and Emotion Recognition : An Examination of Stimulus and Attentional Mechanisms,"Cleveland State University
ETD Archive
Aging and Emotion Recognition: An Examination
of Stimulus and Attentional Mechanisms
Stephanie Nicole Sedall
Follow this and additional works at: http://engagedscholarship.csuohio.edu/etdarchive
Part of the Experimental Analysis of Behavior Commons
How does access to this work benefit you? Let us know!
Recommended Citation
Sedall, Stephanie Nicole, ""Aging and Emotion Recognition: An Examination of Stimulus and Attentional Mechanisms"" (2016). ETD
Archive. 903.
http://engagedscholarship.csuohio.edu/etdarchive/903
This Thesis is brought to you for free and open access by It has been accepted for inclusion in ETD Archive by an
uthorized administrator of For more information, please contact"
6aa21d78af359853ee07288cfc8d047e914ce458,Facial Expression Recognition using Log-Euclidean Statistical Shape Models,"FACIAL EXPRESSION RECOGNITION USING
LOG-EUCLIDEAN STATISTICAL SHAPE MODELS
Bartlomiej W. Papiez, Bogdan J. Matuszewski, Lik-Kwan Shark and Wei Quan
Applied Digital Signal and Image Processing Research Centre, University of Central Lancashire, PR1 2HE Preston, U.K.
Keywords:
Facial expression representation, Facial expression recognition, Vectorial log-Euclidean statistics, Statistical
shape modelling."
6a75ef6b36489cb59c61f21f3cd09c50ad5b2995,MVTec D2S: Densely Segmented Supermarket Dataset,"MVTec D2S: Densely Segmented Supermarket
Dataset
Patrick Follmann1,2[0000−0001−5400−2384], Tobias B¨ottger1,2[0000−0002−5404−8662],
Philipp H¨artinger1[0000−0002−7093−6280], Rebecca K¨onig1[0000−0002−4169−6759],
nd Markus Ulrich1[0000−0001−8457−5554]
MVTec Software GmbH, 80634 Munich, Germany
https://www.mvtec.com/research
Technical University of Munich, 80333 Munich, Germany"
6ac1dc59e823d924e797afaf5c4a960ed7106f2a,Deep Facial Expression Recognition: A Survey,"Deep Facial Expression Recognition: A Survey
Shan Li and Weihong Deng∗, Member, IEEE"
6ae47c7793e2f0f684ae07357335c7cf338d66ef,Optimistic and pessimistic neural networks for object recognition,"published in: International Conference on Image Processing (ICIP) 2017
OPTIMISTIC AND PESSIMISTIC NEURAL NETWORKS FOR OBJECT RECOGNITION
Rene Grzeszick
Sebastian Sudholt
Gernot A. Fink
email:
TU Dortmund University, Germany"
6acc92f30c7a141384b9b1bbec8dffe16b08a438,Improving Bag-of-Visual-Words Towards Effective Facial Expressive Image Classification,"Improving Bag-of-Visual-Words Towards Effective Facial Expressive
Image Classification
Dawood Al Chanti1 and Alice Caplier1
Univ. Grenoble Alpes, CNRS, Grenoble INP∗ , GIPSA-lab, 38000 Grenoble, France
Keywords:
BoVW, k-means++, Relative Conjunction Matrix, SIFT, Spatial Pyramids, TF.IDF."
6af98f9843ba629ae1b0347e8b8d81a263f8d7f2,Does this recession make me look black? The effect of resource scarcity on the categorization of biracial faces.,"Short Report
Does This Recession Make Me Look Black?
The Effect of Resource Scarcity on the
Categorization of Biracial Faces
3(12) 1476 –1478
© The Author(s) 2012
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0956797612450892
http://pss.sagepub.com
Christopher D. Rodeheffer, Sarah E. Hill, and Charles G. Lord
Texas Christian University
Received 2/27/12; Revision accepted 5/10/12
Prosperity makes friends; adversity tries them.
—Publilius Syrus (Lyman, 1856, p. 73)
In-group  biases  are  a  ubiquitous  feature  of  human  social  life
(e.g., Brewer, 1979; Halevy, Bornstein, & Sagiv, 2008; Mullen,
Dovidio, Johnson, & Copper, 1992; Tajfel, 1982). One explana-
tion  offered  for  these  biases  is  that  they  arise  from  resource
ompetition between groups (e.g., Kurzban & Neuberg, 2005;"
6aefe7460e1540438ffa63f7757c4750c844764d,Non-rigid Segmentation Using Sparse Low Dimensional Manifolds and Deep Belief Networks,"Non-rigid Segmentation using Sparse Low Dimensional Manifolds and
Deep Belief Networks ∗
Jacinto C. Nascimento
Instituto de Sistemas e Rob´otica
Instituto Superior T´ecnico, Portugal"
6ad5a38df8dd4cdddd74f31996ce096d41219f72,Multi-cue onboard pedestrian detection,"Objectives
Implementation details
Experiments on TUD-Brussels
Conclusion
{wojek, walk,
Multi-Cue Onboard Pedestrian Detection
Christian Wojek, Stefan Walk, Bernt Schiele
Computer Science Department, TU Darmstadt, Germany
Detect pedestrians from a moving platform
• Exploit motion information
• Leverage complementarity of features
• Evaluate different classifiers
• New datasets with image pairs
Features
• HOG [1]
8× 8 pixel cells, 2× 2 blocks
9-bin histograms, unsigned gradients
• Haar wavelets [2]
2 and 16 pixel masks
horizontal, vertical and diagonal re-"
6a1da83440c7685f5a03e7bda17be9025e0892e3,Semantic Match Consistency for Long-Term Visual Localization,"Semantic Match Consistency for Long-Term
Visual Localization
Carl Toft1, Erik Stenborg1, Lars Hammarstrand1, Lucas Brynte1, Marc
Pollefeys2,3, Torsten Sattler2, Fredrik Kahl1
Department of Electrical Engineering, Chalmers University of Technology, Sweden
Department of Computer Science, ETH Z¨urich, Switzerland
Microsoft, Switzerland"
6a7ec333ccabd41b9d20f05c145b3377f6045f43,Face Recognition under Varying,(cid:13) 2010 Zihan Zhou
6a9c460952a96a04e12caa7bae07ae2f7df1238e,Exploiting scene context for on-line object tracking in unconstrained environments. (Exploitation du contexte de scène pour le suivi d'objet en ligne dans des environnements non contraints),"Exploiting scene context for on-line object tracking in
unconstrained environments
Salma Moujtahid
To cite this version:
Salma Moujtahid. Exploiting scene context for on-line object tracking in unconstrained environments.
Modeling and Simulation. Université de Lyon, 2016. English. <NNT : 2016LYSEI110>. <tel-
01783935>
HAL Id: tel-01783935
https://tel.archives-ouvertes.fr/tel-01783935
Submitted on 2 May 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
6ade1e0d4744d2eb5bf7bab97289ffd7eeb5a661,Simulated+unsupervised Learning with Adaptive Data Generation and Bidirectional Mappings,"Published as a conference paper at ICLR 2018
SIMULATED+UNSUPERVISED LEARNING WITH
ADAPTIVE DATA GENERATION AND
BIDIRECTIONAL MAPPINGS
Kangwook Lee∗, Hoon Kim∗& Changho Suh
School of Electrical Engineering
KAIST
Daejeon, South Korea"
6a536aa4ecd6359d54a34aca7eff828e4df02730,Multimodal Observation and Interpretation of Subjects Engaged in Problem Solving,"Multimodal Observation and Interpretation of Subjects Engaged
in Problem Solving
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP*, LIG,
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP*, LIG,
(cid:140)omas Guntz
F-38000 Grenoble, France
Dominique Vaufreydaz
F-38000 Grenoble, France
Ra(cid:130)aella Balzarini
F-38000 Grenoble, France
James Crowley
F-38000 Grenoble, France
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP*, LIG,
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP*, LIG,"
6a69b790a7ec5a396607eb717da2b271a750faaa,Stacked Latent Attention for Multimodal Reasoning,"Stacked Latent Attention for Multimodal Reasoning
Haoqi Fan
Jiatong Zhou
Facebook Research
Facebook Research
Hacker Way
Hacker Way"
6a7e464464f70afea78552c8386f4d2763ea1d9c,Facial Landmark Localization – A Literature Survey,"Review Article
International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161
©2014 INPRESSCO
, All Rights Reserved
Available at http://inpressco.com/category/ijcet
Facial Landmark Localization – A Literature Survey
Dhananjay RathodȦ*, Vinay A, Shylaja SSȦ and S NatarajanȦ
ȦDepartment of Information Science and Engineering, PES Institute of Technology, Bangalore, Karnataka, India
Accepted 25 May 2014, Available online 01 June2014, Vol.4, No.3 (June 2014)"
32925200665a1bbb4fc8131cd192cb34c2d7d9e3,An Active Appearance Model with a Derivative-Free Optimization,"MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN
An Active Appearance Model with a Derivative-Free
Optimization
Jixia ZHANG‡, Franck DAVOINE†, Chunhong PAN‡
CNRS†, Institute of Automation of the Chinese Academy of Sciences‡
95, Zhongguancun Dong Lu, PO Box 2728 − Beijing 100190 − PR China
LIAMA Sino-French IT Lab."
322c063e97cd26f75191ae908f09a41c534eba90,Improving Image Classification Using Semantic Attributes,"Noname manuscript No.
(will be inserted by the editor)
Improving Image Classification using Semantic Attributes
Yu Su · Fr´ed´eric Jurie
Received: date / Accepted: date"
320e2c950d5b31cb371208a6b752a94585ac6665,Context-Patch Face Hallucination Based on Thresholding Locality-constrained Representation and Reproducing Learning,"Context-Patch Face Hallucination Based on
Thresholding Locality-constrained Representation
nd Reproducing Learning
Junjun Jiang, Member, IEEE, Yi Yu, Suhua Tang, Member, IEEE, Jiayi Ma, Member, IEEE, Akiko Aizawa, and
Kiyoharu Aizawa, Fellow, IEEE"
329c06c00c627c0b041d330f3c0142a88b7cb1e5,Bayesian Sparsification of Gated Recurrent Neural Networks,"Bayesian Sparsification of Gated Recurrent Neural
Networks
Ekaterina Lobacheva1∗, Nadezhda Chirkova1∗, Dmitry Vetrov1,2
Samsung-HSE Laboratory, National Research University Higher School of Economics
Samsung AI Center
Moscow, Russia
{elobacheva, nchirkova,"
32bd968e6cf31e69ee5fca14d3eadeec7f4187c6,Monocular Pedestrian Detection: Survey and Experiments,"Monocular Pedestrian Detection:
Survey and Experiments
Markus Enzweiler, Student Member, IEEE, and Dariu M. Gavrila"
325b048ecd5b4d14dce32f92bff093cd744aa7f8,Multi-Image Graph Cut Clothing Segmentation for Recognizing People,"#2670
CVPR 2008 Submission #2670. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
#2670
Multi-Image Graph Cut Clothing Segmentation for Recognizing People
Anonymous CVPR submission
Paper ID 2670"
327f3d65a380f70bc39fe99c7ad55d76a5f7fff4,A data-synthesis-driven method for detecting and extracting vague cognitive regions,"International Journal of Geographical Information
Science
ISSN: 1365-8816 (Print) 1362-3087 (Online) Journal homepage: http://www.tandfonline.com/loi/tgis20
A data-synthesis-driven method for detecting and
extracting vague cognitive regions
Song Gao, Krzysztof Janowicz, Daniel R. Montello, Yingjie Hu, Jiue-An Yang,
Grant McKenzie, Yiting Ju, Li Gong, Benjamin Adams & Bo Yan
To cite this article: Song Gao, Krzysztof Janowicz, Daniel R. Montello, Yingjie Hu, Jiue-An
Yang, Grant McKenzie, Yiting Ju, Li Gong, Benjamin Adams & Bo Yan (2017): A data-synthesis-
driven method for detecting and extracting vague cognitive regions, International Journal of
Geographical Information Science, DOI: 10.1080/13658816.2016.1273357
To link to this article:  http://dx.doi.org/10.1080/13658816.2016.1273357
Published online: 08 Jan 2017.
Submit your article to this journal
View related articles
View Crossmark data
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tgis20
Download by: [UC Santa Barbara Library]
Date: 09 January 2017, At: 09:44"
32f7e1d7fa62b48bedc3fcfc9d18fccc4074d347,Hierarchical Sparse and Collaborative Low-Rank representation for emotion recognition,"HIERARCHICAL SPARSE AND COLLABORATIVE LOW-RANK REPRESENTATION FOR
EMOTION RECOGNITION
Xiang Xiang, Minh Dao, Gregory D. Hager, Trac D. Tran
Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
{xxiang, minh.dao, ghager1,"
32743e72cdb481b7a30a3d81a96569dcbea4e409,Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for Mobile and Embedded Applications,"Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for
Mobile and Embedded Applications
Baohua Sun,
Lin Yang,
Patrick Dong, Wenhan Zhang,
Gyrfalcon Technology Inc.
Jason Dong, Charles Young
900 McCarthy Blvd. Milpitas, CA 95035"
32a6f6aa50ce2a631bf4de7432f830b29b6b05f2,Through the eyes of a child: preschoolers' identification of emotional expressions from the child affective facial expression (CAFE) set.,"Cognition and Emotion
ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20
Through the eyes of a child: preschoolers’
identification of emotional expressions from the
hild affective facial expression (CAFE) set
Vanessa LoBue, Lewis Baker & Cat Thrasher
To cite this article: Vanessa LoBue, Lewis Baker & Cat Thrasher (2017): Through the eyes of a
hild: preschoolers’ identification of emotional expressions from the child affective facial expression
(CAFE) set, Cognition and Emotion, DOI: 10.1080/02699931.2017.1365046
To link to this article:  http://dx.doi.org/10.1080/02699931.2017.1365046
Published online: 10 Aug 2017.
Submit your article to this journal
View related articles
View Crossmark data
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=pcem20
Download by: [173.56.101.121]
Date: 10 August 2017, At: 05:46"
324f39fb5673ec2296d90142cf9a909e595d82cf,Relationship Matrix Nonnegative Decomposition for Clustering,"Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 864540, 15 pages
doi:10.1155/2011/864540
Research Article
Relationship Matrix Nonnegative
Decomposition for Clustering
Ji-Yuan Pan and Jiang-She Zhang
Faculty of Science and State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong
University, Xi’an Shaanxi Province, Xi’an 710049, China
Correspondence should be addressed to Ji-Yuan Pan,
Received 18 January 2011; Revised 28 February 2011; Accepted 9 March 2011
Academic Editor: Angelo Luongo
Copyright q 2011 J.-Y. Pan and J.-S. Zhang. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
Nonnegative matrix factorization (cid:2)NMF(cid:3) is a popular tool for analyzing the latent structure of non-
negative data. For a positive pairwise similarity matrix, symmetric NMF (cid:2)SNMF(cid:3) and weighted
NMF (cid:2)WNMF(cid:3) can be used to cluster the data. However, both of them are not very ef‌f‌icient
for the ill-structured pairwise similarity matrix. In this paper, a novel model, called relationship"
32cde90437ab5a70cf003ea36f66f2de0e24b3ab,The Cityscapes Dataset for Semantic Urban Scene Understanding,"The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts1,2
Markus Enzweiler1
Mohamed Omran3
Rodrigo Benenson3
Sebastian Ramos1,4
Timo Rehfeld1,2
Uwe Franke1
Stefan Roth2
Bernt Schiele3
Daimler AG R&D, 2TU Darmstadt, 3MPI Informatics, 4TU Dresden
www.cityscapes-dataset.net
train/val – fine annotation – 3475 images
train – coarse annotation – 20 000 images
test – fine annotation – 1525 images"
323d6d93b059372bbe26a86bad1b9d94b076f50e,(A) Vision for 2050 - Context-Based Image Understanding for a Human-Robot Soccer Match,"Electronic Communications of the EASST
Volume 62 (2013)
Specification, Transformation, Navigation
Special Issue dedicated to Bernd Krieg-Br¨uckner
on the Occasion of his 60th Birthday
(A) Vision for 2050 – Context-Based Image Understanding for a
Human-Robot Soccer Match
Udo Frese, Tim Laue, Oliver Birbach, and Thomas R¨ofer
9 pages
Guest Editors: Till Mossakowski, Markus Roggenbach, Lutz Schr¨oder
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ISSN 1863-2122"
3274a13562029f36e2f0fad3270e3ecb9ca013bd,Real-time UAV Target Tracking System Based on Optical Flow and Particle Filter Integration,"Real-time UAV Target Tracking System Based on Optical Flow and
Particle Filter Integration
WESAM ASKAR
Electrical Engineering
Military Tech. College
EGYPT
OSAMA ELMOWAFY
Computer Engineering
New Cairo Academy
ALIAA YOUSSIF
Computer Engineering
Helwan University
GAMAL ELNASHAR
Electrical Engineering
Military Tech. College
EGYPT
EGYPT
EGYPT"
325c9f6f848407a22b86e3253cb7f29fac19e40c,Change Detection in Crowded Underwater Scenes - Via an Extended Gaussian Switch Model Combined with a Flux Tensor Pre-segmentation,"Change Detection in Crowded Underwater Scenes
via an Extended Gaussian Switch Model combined with a Flux Tensor
Pre-Segmentation
Martin Radolko1,2, Fahimeh Farhadifard1,2 and Uwe von Lukas1,2
Institute for Computer Science, University Rostock, Rostock, Germany
Fraunhofer Institute for Computer Fraphics Research IGD , Rostock, Germany
{Martin.Radolko,
Keywords:
Change Detection, Background Subtraction, Video Segmentation, Video Segregation, Underwater Segmenta-
tion, Flux Tensor"
32d8194269faf6ae505a8d7937a3423e4830187e,Big Five Personality Recognition from Multiple Text Genres,"Big Five Personality Recognition from
Multiple Text Genres
Vitor Garcia dos Santos, Ivandr´e Paraboni, and Barbara Barbosa Claudino Silva
University of S˜ao Paulo, School of Arts, Sciences and Humanities, S˜ao Paulo, Brazil"
324cf94743359df3ada2f86ee8cd3bb6dccae695,FERA 2015 - Second Facial Expression Recognition and Analysis Challenge,"FG 2015
FG 2015 Submission. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
FG 2015
FERA 2015 - Second Facial Expression Recognition and Analysis
Challenge
Anonymous FG 2015 submission
– DO NOT DISTRIBUTE –"
321bd4d5d80abb1bae675a48583f872af3919172,Entropy-weighted feature-fusion method for head-pose estimation,"Wang et al. EURASIP Journal on Image and Video Processing  (2016) 2016:44
DOI 10.1186/s13640-016-0152-3
EURASIP Journal on Image
nd Video Processing
R EV I E W
Entropy-weighted feature-fusion method
for head-pose estimation
Xiao-Meng Wang*, Kang Liu and Xu Qian
Open Access"
32575ffa69d85bbc6aef5b21d73e809b37bf376d,Measuring Biometric Sample Quality in Terms of Biometric Information,"-)5741/ *1-641+ 5)2- 37)16; 1 6-45 . *1-641+ 1.4)61
;K=H=
5?D B 1BH=JE 6A?DCO -CEAAHEC
7ELAHIEJO B JJ=M=
J=HE
)*564)+6
6DEI F=FAH = AM =FFH=?D J A=
IKHA L=HE=JEI E >EAJHE? I=FA GK=EJO 9A >ACE MEJD
JDA EJKEJE JD=J J = >EAJHE? I=FA ME HA
JDA =KJ B EBH=JE =L=E=>A 1 H
J A=IKHA JDA =KJ B EBH=JE MA
>EAJHE? EBH=JE =I JDA E K?AHJ=EJO
=>KJ JDA B = FAHI J = IAJ B >EAJHE? A=
IKHAAJI 9A JDA IDM JD=J JDA >EAJHE? EBH=JE BH
= FAHI =O >A >O JDA HA=JELA AJHFO D(p(cid:107)q)
>AJMAA JDA FFK=JE BA=JKHA q JDA FAHII
BA=JKHA p 6DA >EAJHE? EBH=JE BH = IOI
JA EI JDA A= D(p(cid:107)q) BH = FAHII E JDA FFK=JE 1
J FH=?JE?=O A=IKHA D(p(cid:107)q) MEJD I=
FAI MA = =CHEJD MDE?D HACK=HEAI = /=KIIE="
320ea4748b1f7e808eabedbedb75cce660122d26,"Detecting Avocados to Zucchinis: What Have We Done, and Where Are We Going?","Detecting avocados to zucchinis: what have we done, and where are we going?
Olga Russakovsky1, Jia Deng1, Zhiheng Huang1, Alexander C. Berg2, Li Fei-Fei1
Stanford University1 , UNC Chapel Hill2"
325000c2ebe4fcfd08946aef91aee8bec22026a5,Multi-Label Learning With Fused Multimodal Bi-Relational Graph,"Multi-Label Learning With Fused
Multimodal Bi-Relational Graph
Jiejun Xu, Vignesh Jagadeesh, and B. S. Manjunath, Fellow, IEEE"
32b9be86de4f82c5a43da2a1a0a892515da8910d,Robust False Positive Detection for Real-Time Multi-target Tracking,"Robust False Positive Detection for Real-Time
Multi-Target Tracking
Henrik Brauer, Christos Grecos, and Kai von Luck
University of the West of Scotland
University of Applied Sciences Hamburg"
3265c7799f9d14e29de37b1e37aec4330cd1d747,Class-Specific Binary Correlograms for Object Recognition,"Class-Specific Binary Correlograms for Object
Recognition
Jaume Amores1, Nicu Sebe2, Petia Radeva3
IMEDIA Research Group, INRIA, France
Univ. of Amsterdam, The Netherlands
Computer Vision Center, UAB, Spain"
323fabb6cb4e74518fd4c7ad6ea5a1b2674e63d3,Object recognition based on radial basis function neural networks: Experiments with RGB-D camera embedded on mobile robots,"Object Recognition Based on Radial Basis Function
Neural Networks: experiments with RGB-D camera
embedded on mobile robots
Saeed Gholami Shahbandi
LISA - University of Angers
Philippe Lucidarme
LISA - University of Angers
62 av. Notre Dame du Lac, 49000 Angers, France
62 av. Notre Dame du Lac, 49000 Angers, France"
3214ce1c8c86c0c4670e3f8b8f4351d8fa44434d,Deep Semantic Pyramids for Human Attributes and Action Recognition,"Deep Semantic Pyramids for Human Attributes
nd Action Recognition
Fahad Shahbaz Khan1(B), Rao Muhammad Anwer2, Joost van de Weijer3,
Michael Felsberg1, and Jorma Laaksonen2
Computer Vision Laboratory, Link¨oping University, Link¨oping, Sweden
Department of Information and Computer Science,
Aalto University School of Science, Aalto, Finland
Computer Vision Center, CS Department, Universitat Autonoma de Barcelona,
Barcelona, Spain"
32d6ee09bd8f1a7c42708d6dd8a5fb85ac4e08bc,Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans,"ORIGINAL RESEARCH
published: 29 March 2017
doi: 10.3389/fnbeh.2017.00054
Non-Interfering Effects of Active
Post-Encoding Tasks on Episodic
Memory Consolidation in Humans
Samarth Varma 1*, Atsuko Takashima 1,2, Sander Krewinkel 1, Maaike van Kooten 1,
Lily Fu 1, W. Pieter Medendorp 1, Roy P. C. Kessels 1 and Sander M. Daselaar 1
Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands, 2Department of
Neurobiology of Language, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
So far, studies that investigated interference effects of post-learning processes on
episodic memory consolidation in humans have used tasks involving only complex and
meaningful information. Such tasks require reallocation of general or encoding-specific
resources away from consolidation-relevant activities. The possibility that interference
an be elicited using a task that heavily taxes our limited brain resources, but has
low semantic and hippocampal related long-term memory processing demands, has
never been tested. We address this question by investigating whether consolidation
ould persist in parallel with an active, encoding-irrelevant, minimally semantic task,
regardless of its high resource demands for cognitive processing. We distinguish the
impact of such a task on consolidation based on whether it engages resources that"
32f0c95cee39eba143452d6a0fe93283575257e6,Generative Adversarial Networks for Extreme Learned Image Compression,"GENERATIVE ADVERSARIAL NETWORKS FOR
EXTREME LEARNED IMAGE COMPRESSION
Eirikur Agustsson∗, Michael Tschannen∗, Fabian Mentzer∗, Radu Timofte & Luc Van Gool
{aeirikur, mentzerf, radu.timofte,
ETH Zurich"
32728e1eb1da13686b69cc0bd7cce55a5c963cdd,Automatic Facial Emotion Recognition Method Based on Eye Region Changes,"Automatic Facial Emotion Recognition Method Based on Eye
Region Changes
Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
Mina Navraan
Nasrollah Moghadam Charkari*
Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
Muharram Mansoorizadeh
Faculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran
Received: 19/Apr/2015            Revised: 19/Mar/2016            Accepted: 19/Apr/2016"
32ef19e90e7834ec09ef19fcef7cd2aa6eff85a9,Modeling Natural Images Using Gated MRFs,"JOURNAL OF PAMI, VOL. ?, NO. ?, JANUARY 20??
Modeling Natural Images Using Gated MRFs
Marc’Aurelio Ranzato, Volodymyr Mnih, Joshua M. Susskind, Geoffrey E. Hinton"
326df1b94624b7958cff0f7e3d16e612ea9d7e4d,Similarity Rank Correlation for Face Recognition Under Unenrolled Pose,"Similarity Rank Correlation for Face
Recognition Under Unenrolled Pose
Marco K. M¨uller, Alexander Heinrichs, Andreas H.J. Tewes,
Achim Sch¨afer, and Rolf P. W¨urtz
Institut f¨ur Neuroinformatik, Ruhr-Universit¨at, D–44780 Bochum, Germany"
323cd51bc18c700fa88044dd24ae663a7eabaa68,Utilizing student activity patterns to predict performance,"Casey and Azcona International Journal of Educational Technology
in Higher Education  (2017) 14:4
DOI 10.1186/s41239-017-0044-3
R ES EAR CH A R T I C LE
Utilizing student activity patterns to predict
performance
Kevin Casey1* and David Azcona2
Open Access
* Correspondence:
Maynooth University, Maynooth,
Ireland
Full list of author information is
vailable at the end of the article"
32c6086b1605698c8b775b6920741981e85b217d,Designing and sharing activity recognition systems across platforms: methods from wearable computing,"IEEE RAM - SPECIAL ISSUE TOWARDS A WWW FOR ROBOTS
Designing and sharing activity recognition systems
cross platforms: methods from wearable computing
Daniel Roggen, Member, IEEE, and St´ephane Magnenat, Member, IEEE, and Markus Waibel, Member, IEEE,
nd Gerhard Tr¨oster, Senior Member, IEEE"
321fbbe7da848b602f376219ed9aed6a7f4b7f57,Effective Use of Frequent Itemset Mining for Image Classification,"Effective Use of Frequent Itemset Mining for
Image Classification
Basura Fernando1, Elisa Fromont2, and Tinne Tuytelaars1
KU Leuven, ESAT-PSI, IBBT (Belgium)
University of Saint-Etienne(France)"
324d82129642f84838be71bd7401f38c80fb87d7,Adaptive Mixtures of Factor Analyzers,"Adaptive Mixtures of Factor Analyzers
Heysem Kayaa,∗, Albert Ali Salaha
Department of Computer Engineering
Bo˘gazi¸ci University, 34342, Bebek, ˙Istanbul"
324b9369a1457213ec7a5a12fe77c0ee9aef1ad4,Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network,"Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network
Jinwei Gu Xiaodong Yang Shalini De Mello Jan Kautz
NVIDIA"
3295ec2e52cd83cec75fc7c7064a843756b4d1ee,An Efficient Pedestrian Detection Approach Using a Novel Split Function of Hough Forests,"Regular Paper
Journal of Computing Science and Engineering,
Vol. 8, No. 4, December 2014, pp. 207-214
An Efficient Pedestrian Detection Approach Using a Novel Split
Function of Hough Forests
Trung Dung Do, Thi Ly Vu, Van Huan Nguyen, Hakil Kim*, and Chongho Lee
School of Information and Communication Engineering, Inha University, Incheon, Korea
{dotrungdung, vuthily, {hikim,"
32df63d395b5462a8a4a3c3574ae7916b0cd4d1d,Facial expression recognition using ensemble of classifiers,"978-1-4577-0539-7/11/$26.00 ©2011 IEEE
ICASSP 2011"
35570297681daa3973498eabead361d0be961672,Configuration Estimates Improve Pedestrian Finding,"Configuration Estimates Improve Pedestrian Finding
Duan Tran∗
U.Illinois at Urbana-Champaign
Urbana, IL 61801 USA
D.A. Forsyth
U.Illinois at Urbana-Champaign
Urbana, IL 61801 USA"
35af45f799c65d21bbb3cd24f666de861bad33b0,Multi-Target Tracking by Discrete-Continuous Energy Minimization,"Multi-Target Tracking by
Discrete-Continuous Energy Minimization
Anton Milan, Member, IEEE, Konrad Schindler, Senior Member, IEEE and
Stefan Roth, Member, IEEE,"
35308a3fd49d4f33bdbd35fefee39e39fe6b30b7,Efficient and effective human action recognition in video through motion boundary description with a compact set of trajectories,"biblio.ugent.be   The UGent Institutional Repository is the electronic archiving and dissemination platform for allUGent research publications. Ghent University has implemented a mandate stipulating that allacademic publications of UGent researchers should be deposited and archived in this repository.Except for items where current copyright restrictions apply, these papers are available in OpenAccess.   This item is the archived peer-reviewed author-version of:   Efficient and effective human action recognition in video through motion boundary description witha compact set of trajectories   Jeong-Jik Seo, Jisoo Son, Hyung-Il Kim, Wesley De Neve, and Yong Man Ro   In: 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition,1, 1-6, 2015.     To refer to or to cite this work, please use the citation to the published version:   Seo, J., Son, J., Kim, H., De Neve, W., and Ro, Y. M. (2015). Efficient and effective human actionrecognition in video through motion boundary description with a compact set of trajectories. 11thIEEE International Conference and Workshops on Automatic Face and Gesture Recognition 1 1-6.http://dx.doi.org/10.1109/FG.2015.7163123"
3535ba0cba9bf03443d52cbfc9a87090ca2e5d49,Supplementary Material : Synthesized Classifiers for Zero-Shot Learning,"Supplementary Material:
Synthesized Classifiers for Zero-Shot Learning
Soravit Changpinyo∗, Wei-Lun Chao∗
U. of Southern California
Los Angeles, CA
Boqing Gong
U. of Central Florida
Orlando, FL
schangpi,
Fei Sha
U. of California
Los Angeles, CA
In this Supplementary Material, we provide details
omitted in the main text.
• Section 1: cross-validation strategies (Section 3.2
of the main paper).
• Section 2: learning metrics for semantic similarity
(Section 3.1 of the main paper).
• Section 3: details on experimental setup (Sec-
tion 4.1 of the main paper)."
35c0220ab8a8281129a00ac32ef2f488fb562eb7,Part Annotations via Pairwise Correspondence,"Part Annotations via Pairwise Correspondence
Subhransu Maji Gregory Shakhnarovich
{smaji,
Toyota Technological Institute at Chicago, Chicago, IL"
3514140d9c2e692abed0aebe0531f78c250f5806,Discriminative Transformation Learning for Fuzzy Sparse Subspace Clustering,"Discriminative Transformation Learning for Fuzzy
Sparse Subspace Clustering
Zaidao Wen, Biao Hou, Member, IEEE, Qian Wu and Licheng Jiao, Senior Member, IEEE"
352d61eb66b053ae5689bd194840fd5d33f0e9c0,Analysis Dictionary Learning based Classification: Structure for Robustness,"Analysis Dictionary Learning based
Classification: Structure for Robustness
Wen Tang, Ashkan Panahi, Hamid Krim, and Liyi Dai"
3538d2b5f7ab393387ce138611ffa325b6400774,A DSP-based approach for the implementation of face recognition algorithms,"A DSP-BASED APPROACH FOR THE IMPLEMENTATION OF FACE RECOGNITION
ALGORITHMS
A. U. Batur
B. E. Flinchbaugh
M. H. Hayes IIl
Center for Signal and Image Proc.
Georgia Inst. Of Technology
Atlanta, GA
Imaging and Audio Lab.
Texas Instruments
Dallas, TX
Center for Signal and Image Proc.
Georgia Inst. Of Technology
Atlanta, CA"
3504907a2e3c81d78e9dfe71c93ac145b1318f9c,Unconstrained Still/Video-Based Face Verification with Deep Convolutional Neural Networks,"Noname manuscript No.
(will be inserted by the editor)
Unconstrained Still/Video-Based Face Verification with Deep
Convolutional Neural Networks
Jun-Cheng Chen∗
Kumar∗ · Ching-Hui Chen∗ · Vishal M. Patel · Carlos D. Castillo ·
Rama Chellappa
· Rajeev Ranjan∗ · Swami Sankaranarayanan∗ · Amit
Received: date / Accepted: date"
35692e80fa2fc17a1d37a40b3d4ffca28a1bcc7b,Appearance-based people recognition by local dissimilarity representations,"Appearance-based People Recognition by Local
Dissimilarity Representations
Riccardo Satta, Giorgio Fumera, Fabio Roli
Dept. of Electrical and Electronic Engineering, University of Cagliari
Piazza d’Armi, 09123 Cagliari, Italy
riccardo.satta, fumera,"
35fe83665c61adb513781c7208b92706ae2a1578,Answering Visual What-If Questions: From Actions to Predicted Scene Descriptions,
35b1c1f2851e9ac4381ef41b4d980f398f1aad68,Geometry Guided Convolutional Neural Networks for Self-Supervised Video Representation Learning,"Geometry Guided Convolutional Neural Networks for
Self-Supervised Video Representation Learning
Chuang Gan1, Boqing Gong2, Kun Liu3, Hao Su 4, Leonidas J. Guibas 5
MIT-IBM Watson AI Lab , 2 Tencent AI Lab, 3 BUPT, 4 UCSD, 5 Stanford University"
359a4142f6a55a58a3e18628e3ee52c76744fcb0,Prevalence of face recognition deficits in middle childhood.,"ISSN: 1747-0218 (Print) 1747-0226 (Online) Journal homepage: http://www.tandfonline.com/loi/pqje20
Prevalence of face recognition deficits in middle
hildhood
Rachel J Bennetts, Ebony Murray, Tian Boyce & Sarah Bate
To cite this article: Rachel J Bennetts, Ebony Murray, Tian Boyce & Sarah Bate (2016):
Prevalence of face recognition deficits in middle childhood, The Quarterly Journal of
Experimental Psychology, DOI: 10.1080/17470218.2016.1167924
To link to this article:  http://dx.doi.org/10.1080/17470218.2016.1167924
View supplementary material
Accepted author version posted online: 21
Mar 2016.
Submit your article to this journal
View related articles
View Crossmark data
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=pqje20
Download by: [Rachel Bennetts]
Date: 22 March 2016, At: 07:06"
35058a8166a8fa4479167ba33b3010cc8c839f44,A Study on Gait-Based Gender Classification,"A Study on Gait-Based Gender Classification
Shiqi Yu, Member, IEEE, Tieniu Tan, Fellow, IEEE,
Kaiqi Huang, Member, IEEE, Kui Jia, and Xinyu Wu"
351c02d4775ae95e04ab1e5dd0c758d2d80c3ddd,ActionSnapping: Motion-Based Video Synchronization,"ActionSnapping: Motion-based Video
Synchronization
Jean-Charles Bazin and Alexander Sorkine-Hornung
Disney Research"
35c0954acde9c86df8bbcb6edccbcd702796f5eb,"Multimodal Database of Emotional Speech , Video and Gestures","World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:12, No:10, 2018
Multimodal Database of Emotional Speech, Video
nd Gestures
Tomasz Sapi´nski, Dorota Kami´nska, Adam Pelikant, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari"
35e4b6c20756cd6388a3c0012b58acee14ffa604,Gender Classification in Large Databases,"Gender Classification in Large Databases
E. Ram´on-Balmaseda, J. Lorenzo-Navarro, and M. Castrill´on-Santana (cid:63)
Universidad de Las Palmas de Gran Canaria
SIANI
Spain"
357df3ee0f0c30d5c8abc5a1bdf70122322d6fbd,Object Detectors Emerge in Deep Scene CNNs,"Under review as a conference paper at ICLR 2015
OBJECT DETECTORS EMERGE IN DEEP SCENE CNNS
Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba
Department of Computer Science and Artificial Intelligence, MIT"
35be5bea87c465c97127c64919d115e235d62e82,"The automatic detection of chronic pain-related expression : requirements , challenges and a multimodal dataset","IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID
The automatic detection of chronic pain-
related expression: requirements, challenges
nd a multimodal dataset
Min S. H. Aung, Sebastian Kaltwang, Bernardino Romera-Paredes, Brais Martinez, Aneesha
Singh, Matteo Cella, Michel Valstar, Hongying Meng, Andrew Kemp, Moshen Shafizadeh, Aaron
C. Elkins, Natalie Kanakam, Amschel de Rothschild, Nick Tyler, Paul J. Watson, Amanda C. de C.
Williams, Maja Pantic, and Nadia Bianchi-Berthouze*
face  videos,  head  mounted  and  room  audio  signals,"
35f3c4012e802332faf0a1426e9acf8365601551,Bidirectional Conditional Generative Adversarial Networks,"Bidirectional Conditional
Generative Adversarial Networks
Ayush Jaiswal, Wael AbdAlmageed, Yue Wu, and Premkumar Natarajan
USC Information Sciences Institute, Marina del Rey, CA, USA
{ajaiswal, wamageed, yue wu,"
355de7460120ddc1150d9ce3756f9848983f7ff4,Midge: Generating Image Descriptions From Computer Vision Detections,"Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pages 747–756,
Avignon, France, April 23 - 27 2012. c(cid:13)2012 Association for Computational Linguistics"
35e808424317cf03b51516df7d083f45791311ae,A Survey for Action Recognition Research,"A Survey for Action Recognition Research
Yuancheng Ye"
355c8c0dbd80de9d23affb37ac102179b6b2a908,“A Distorted Skull Lies in the Bottom Center...” Identifying Paintings from Text Descriptions,"Anupam Guha, Mohit Iyyer, and Jordan Boyd-Graber. A Distorted Skull Lies in the Bottom Center:
Identifying Paintings from Text Descriptions. NAACL Human-Computer Question Answering Workshop, 2016.
Title = {A Distorted Skull Lies in the Bottom Center: Identifying Paintings from Text Descriptions},
Author = {Anupam Guha and Mohit Iyyer and Jordan Boyd-Graber},
Booktitle = {NAACL Human-Computer Question Answering Workshop},
Year = {2016},
Location = {San Diego, CA},
Url = {docs/2016_naacl_paintings.pdf},
Links:
• Data [http://www.cs.umd.edu/~aguha/data/paintdata.rar]
Downloaded from http://cs.colorado.edu/~jbg/docs/2016_naacl_paintings.pdf"
35035f79256a3f19a111fff34df6d14876d83fab,Satyam: Democratizing Groundtruth for Machine Vision,"SATYAM: DEMOCRATIZING GROUNDTRUTH FOR MACHINE VISION
Hang Qiu?, Krishna Chintalapudi†, Ramesh Govindan?"
35457de70ea13415b8abd3898a4a83021946501f,Learning Robust and Discriminative Subspace With Low-Rank Constraints,"Calhoun: The NPS Institutional Archive
Faculty and Researcher Publications
Funded by Naval Postgraduate School
Learning Robust and Discriminative Subspace
With Low-Rank Constraints
Sheng Li
http://hdl.handle.net/10945/52406"
3506ef7168e07840187ec978b47f3a05a753101d,Robust 3D Face Landmark Localization Based on Local Coordinate Coding,"Robust 3D Face Landmark Localization based on
Local Coordinate Coding
Mingli Song, Senior Member, IEEE, Dacheng Tao, Senior Member, IEEE, Shengpeng Sun, Chun Chen, and
Stephen J. Maybank Fellow, IEEE,"
3575d74eb548c3187ec5b0d27383ac966b9d7110,Feature Extraction and Face Recognition through Neural Network,"International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900
Feature Extraction and Face Recognition through Neural
Network
Sanjay Kumar Dekate,Research scholar, Dr. C. V. Raman University, Bilaspur, India
Dr. Anupam Shukla,Professor, ABV-IIITM, Gwalior, India"
353480b21d5745590db5f70b016a27e25f5b9aec,Cross-Modal and Hierarchical Modeling of Video and Text,"Cross-Modal and Hierarchical Modeling of Video
nd Text
Bowen Zhang(cid:63)1, Hexiang Hu(cid:63)1, and Fei Sha2
Dept. of Computer Science, U. of Southern California, Los Angeles, CA 90089
Netflix, 5808 Sunset Blvd, Los Angeles, CA 90028"
35410a58514cd5fd66d9c43d42e8222526170c1b,Shared mechanism for emotion processing in adolescents with and without autism,"Received: 04 August 2016
Accepted: 05 January 2017
Published: 20 February 2017
Shared mechanism for emotion
processing in adolescents with and
without autism
Christina Ioannou1, Marwa El Zein1, Valentin Wyart1, Isabelle Scheid2,3,
Frédérique Amsellem3,4, Richard Delorme3,4, Coralie Chevallier1,* & Julie Grèzes1,*
Although, the quest to understand emotional processing in individuals with Autism Spectrum Disorders
(ASD) has led to an impressive number of studies, the picture that emerges from this research remains
inconsistent. Some studies find that Typically Developing (TD) individuals outperform those with
ASD in emotion recognition tasks, others find no such difference. In this paper, we move beyond
focusing on potential group differences in behaviour to answer what we believe is a more pressing
question: do individuals with ASD use the same mechanisms to process emotional cues? To this end,
we rely on model-based analyses of participants’ accuracy during an emotion categorisation task in
which displays of anger and fear are paired with direct vs. averted gaze. Behavioural data of 20 ASD
nd 20 TD adolescents revealed that the ASD group displayed lower overall performance. Yet, gaze
direction had a similar impact on emotion categorisation in both groups, i.e. improved accuracy for
salient combinations (anger-direct, fear-averted). Critically, computational modelling of participants’
ehaviour reveals that the same mechanism, i.e. increased perceptual sensitivity, underlies the"
3596c23a0f13c36d2c71c4cba4351363954dd02a,PathFinder: An autonomous mobile robot guided by Computer Vision,"PathFinder: An autonomous mobile robot guided by Computer
Vision
Andre R. de Geus1,2, Marcelo H. Stoppa1, Sergio F. da Silva1,2
Modeling and Optimization Program, Federal University of Goias, Catalao, Goias, Brazil
Biotechnology Institute, Federal University of Goias, Catalao, Goias, Brazil
Email:"
35f084ddee49072fdb6e0e2e6344ce50c02457ef,A bilinear illumination model for robust face recognition,"A Bilinear Illumination Model
for Robust Face Recognition
The Harvard community has made this
rticle openly available.  Please share  how
this access benefits you. Your story matters
Citation
Lee, Jinho, Baback Moghaddam, Hanspeter Pfister, and Raghu
Machiraju. 2005. A bilinear illumination model for robust face
recognition. Proceedings of the Tenth IEEE International Conference
on Computer Vision: October 17-21, 2005, Beijing, China. 1177-1184.
Los Almamitos, C.A.: IEEE Computer Society.
Published Version
doi:10.1109/ICCV.2005.5
Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4238979
Terms of Use
This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
pplicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-"
3533a7714b19396bba8297e0ca22f85ac68ca18a,Dense Captioning with Joint Inference and Visual Context,"Dense Captioning with Joint Inference and Visual Context
Linjie Yang
Kevin Tang
Jianchao Yang
Li-Jia Li
{linjie.yang, kevin.tang,
Snap Inc."
35e730f7967155b9394f9e5d3cadf2b955ce9a7b,Deep Affinity Network for Multiple Object Tracking,"JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2017
Deep Affinity Network
for Multiple Object Tracking
ShiJie Sun, Naveed Akhtar, HuanSheng Song, Ajmal Mian, Mubarak Shah"
3521904cced380b849325d6fda2a4d855edbe405,Finding Images of Rare and Ambiguous Entities,"Finding Images of Rare and
Ambiguous Entities
Bilyana Taneva
Mouna Kacimi
Gerhard Weikum
MPI–I–2011–5–002
May 2011"
353a89c277cca3e3e4e8c6a199ae3442cdad59b5,Learning from Multiple Views of Data,
35e0256b33212ddad2db548484c595334f15b4da,Attentive Fashion Grammar Network for Fashion Landmark Detection and Clothing Category Classification,"Attentive Fashion Grammar Network for
Fashion Landmark Detection and Clothing Category Classification
Wenguan Wang∗1,2, Yuanlu Xu∗2, Jianbing Shen†1, and Song-Chun Zhu2
Beijing Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, China
Department of Computer Science and Statistics, University of California, Los Angeles, USA"
35d94887e4eb075f2603b2c69b19d31471351ff7,People detection and tracking from aerial thermal views,
3555d849b85e9416e9496c9976084b0e692b63cd,Towards Effective Gans,"Under review as a conference paper at ICLR 2018
TOWARDS EFFECTIVE GANS
FOR DATA DISTRIBUTIONS WITH DIVERSE MODES
Anonymous authors
Paper under double-blind review"
3597ca03bded3717f5c88273e4b7dbf24545ff83,Mouse Pose Estimation From Depth Images,"Mouse Pose Estimation From Depth Images
Ashwin Nanjappa1, Li Cheng∗1, Wei Gao1, Chi Xu1, Adam Claridge-Chang2, and
Zoe Bichler3
Bioinformatics Institute, A*STAR, Singapore
Institute of Molecular and Cell Biology, A*STAR, Singapore
National Neuroscience Institute, Singapore"
35e6f6e5f4f780508e5f58e87f9efe2b07d8a864,Summarization of User-Generated Sports Video by Using Deep Action Recognition Features,"This paper is a preprint (IEEE accepted status). IEEE copyright notice. 2018 IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for
dvertising or promotional purposes, creating new collective works, for resale or redistribu-
tion to servers or lists, or reuse of any copyrighted.
A. Tejero-de-Pablos, Y. Nakashima, T. Sato, N. Yokoya, M. Linna and E. Rahtu, ”Sum-
marization of User-Generated Sports Video by Using Deep Action Recognition Features,” in
doi: 10.1109/TMM.2018.2794265
keywords: Cameras; Feature extraction; Games; Hidden Markov models; Semantics;
Three-dimensional displays; 3D convolutional neural networks; Sports video summarization;
ction recognition; deep learning; long short-term memory; user-generated video,
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8259321&isnumber=4456689"
35800a537017803dd08274710388734db66b54f0,Sliced Wasserstein Generative Models,"Sliced Wasserstein Generative Models
Jiqing Wu * 1 Zhiwu Huang * 1 Wen Li 1 Janine Thoma 1 Luc Van Gool 1 2"
35e87e06cf19908855a16ede8c79a0d3d7687b5c,Strategies for Multi-View Face Recognition for Identification of Human Faces: A Review,"Strategies for Multi-View Face Recognition for
Identification of Human Faces: A Review
Pritesh G. Shah
Department of Computer Science
Mahatma Gandhi Shikshan Mandal’s,
Arts, Science and Commerce College, Chopda
Dist: Jalgaon (M.S)
Dr. R.R.Manza
Department of Computer Science and IT
Dr. Babasaheb Ambedkar Marathwada University
Aurangabad."
352110778d2cc2e7110f0bf773398812fd905eb1,Matrix Completion for Weakly-Supervised Multi-Label Image Classification,"TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2014
Matrix Completion for Weakly-supervised
Multi-label Image Classification
Ricardo Cabral, Fernando De la Torre, João P. Costeira, Alexandre Bernardino"
354ddc8976a762ee03fb78b73adc3b5312e5f2a5,Accurate Eye Center Location through Invariant Isocentric Patterns,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Accurate Eye Center Location through Invariant
Isocentric Patterns
Roberto Valenti, Student Member, IEEE, and Theo Gevers, Member, IEEE,"
351de1f7862bd13a82fcfcaa698b4efd53bc2c35,Automatic 3D face verification from range data,- 1930-7803-7663-3/03/$17.00 ©2003 IEEEICASSP 2003(cid:224)
35b9ded80ce2b30ee115b8198d146890b9028d51,Regularizing max-margin exemplars by reconstruction and generative models,"Regularizing Max-Margin Exemplars by Reconstruction and Generative Models
Jose C. Rubio and Bj¨orn Ommer
Heidelberg Collaboratory for Image Processing
IWR, Heidelberg University, Germany"
694dda2a9f6d86c4bf3f57d85dfd376e2067ec62,How Much Face Information Is Needed?,"HOW MUCH FACE INFORMATION IS NEEDED?
P2CA:
Davide Onofrio*, Antonio Rama+, Francesc Tarres+, Stefano Tubaro*
*Dipartimento di Elettronica e Informazione - Politecnico di Milano
+Department Teoria del Senyal i Comunicacions de la Universitat Politècnica de Catalunya"
69c8b0ec77d3164df2069a5133780a36ec8e91ad,Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning,"Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning
Lingjing Wang
NYU Multimedia and Visual Computing Lab
Courant Institute of Mathematical Science
NYU Tandon School of Engineering, USA
Yi Fang ∗
NYU Multimedia and Visual Computing Lab
Dept. of ECE, NYU Abu Dhabi, UAE
Dept. of ECE, NYU Tandon School of Engineering, USA"
693905c29feb7f9be3517308c8a9c2dc68aa8682,Self-supervised CNN for Unconstrained 3D Facial Performance Capture from an RGB-D Camera,"Self-supervised CNN for Unconstrained 3D Facial
Performance Capture from an RGB-D Camera
Yudong Guo, Juyong Zhang†, Lin Cai, Jianfei Cai and Jianmin Zheng"
699a7c88a6d226f59c7a5619b3cfad714415c31a,"Incorporating Luminance, Depth and Color Information by Fusion-based Networks for Semantic Segmentation","Incorporating Luminance, Depth and Color Information by
Fusion-based Networks for Semantic Segmentation
Shao-Yuan Lo
Shang-Wei Hung
National Chiao Ting University, UC San Diego
National Chiao Ting University
Figure 1: Flowchart of the proposed semantic segmentation
system. Y: luminance information.
omplexity. Lately, DenseNet [11] designs the invention of
dding  dense  connections  between  each  layer,  which
enhances  the  information  flow  in  networks,  and  thus  it
previously
outperforms  many
network
rchitectures including ResNet [12].
proposed
With  the  help  of  depth  sensors  such  as  Kinect,  depth
maps can be obtained along with RGB images. Since the
depth channel provides complementary information to the
RGB channels, containing the depth information is believed"
6911686f00c99c51c21f057c45d561c88027f676,Articulated pose estimation with parts connectivity using discriminative local oriented contours,"Articulated Pose Estimation with Parts Connectivity
using Discriminative Local Oriented Contours
Norimichi Ukita
Nara Institute of Science and Technology"
6937fe93e6238ee21904c172809bea0086da4570,Contour Grouping Based on Contour-Skeleton Duality,"Int J Comput Vis (2009) 83: 12–29
DOI 10.1007/s11263-009-0208-2
Contour Grouping Based on Contour-Skeleton Duality
Nagesh Adluru · Longin Jan Latecki
Received: 30 May 2008 / Accepted: 6 January 2009 / Published online: 27 January 2009
© Springer Science+Business Media, LLC 2009"
6903496ee5d4c24ca5f3f18211f406e0ba8442d6,Multi-Mapping Image-to-Image Translation with Central Biasing Normalization,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018
Multi-Mapping Image-to-Image Translation with
Central Biasing Normalization
Xiaoming Yu, Zhenqiang Ying, Student Member, IEEE, Thomas Li, Shan Liu, and Ge Li, Member, IEEE,"
69ff40fd5ce7c3e6db95a2b63d763edd8db3a102,Human Age Estimation via Geometric and Textural Features,"HUMAN AGE ESTIMATION VIA GEOMETRIC AND TEXTURAL
FEATURES
Merve KILINC1 and Yusuf Sinan AKGUL2
TUBITAK BILGEM UEKAE, Anibal Street, 41470, Gebze, Kocaeli, Turkey
GIT Vision Lab, http://vision.gyte.edu.tr/, Department of Computer Engineering, Gebze Institute of Technology, 41400,
Kocaeli, Turkey
Keywords:
Age estimation:age classification:geometric features:LBP:Gabor:LGBP:cross ratio:FGNET:MORPH"
6900bb437679dd0b0c5cea0acdaa9429d0127d38,Self-Erasing Network for Integral Object Attention,"Self-Erasing Network for Integral Object Attention
Qibin Hou
Peng-Tao Jiang
Colledge of Computer Science, Nankai University
Yunchao Wei
Urbana-Champaign, IL, USA
Colledge of Computer Science, Nankai University
Ming-Ming Cheng ∗"
69447482c6d7d0fde4001231ca84c31f866a2d5d,Survey of Advanced Facial Feature Tracking and Facial Expression Recognition,"ISSN (Print)    : 2319-5940
ISSN (Online) : 2278-1021
International Journal of Advanced Research in Computer and Communication Engineering
Vol. 2, Issue 10, October 2013
Survey of Advanced Facial Feature Tracking and
Facial Expression Recognition
Karthick.K1, J.Jasmine2
PG Scholar, Department of Computer science and Technology, Kalaignar Karunanidhi Institute of Technology,
Coimbatore, Tamilnadu, India1
Assistant Professor, Department of Computer science and Technology, Kalaignar Karunanidhi Institute of Technology,
Coimbatore, Tamilnadu, India2"
6957baa0db5576997aef9de43b93fe8fd4d07632,Identifica\c{c}\~ao autom\'atica de picha\c{c}\~ao a partir de imagens urbanas,"Identificac¸˜ao autom´atica de pichac¸˜ao a partir de
imagens urbanas
Eric K. Tokuda and Roberto M. Cesar-Jr.
Institute of Mathematics and Statistics
University of S˜ao Paulo (USP)
Brazil
Claudio Silva
Tandon School of Engineering
New York University (NYU)"
69a55c30c085ad1b72dd2789b3f699b2f4d3169f,Automatic Happiness Strength Analysis of a Group of People using Facial Expressions,"International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 3 - April 2016
Automatic Happiness Strength Analysis of a
Group of People using Facial Expressions
Sagiri Prasanthi#1, Maddali M.V.M. Kumar*2,
#1PG Student, #2Assistant Professor
#1, #2Department of MCA, St. Ann’s College of Engineering & Technology, Andhra Pradesh, India
is  a  collective  concern"
695e4c975740d2aedcfc42d7ec445b4b2b56cbeb,Principal Component Analysis: An Efficient Facial Feature Extraction Technique,"SSRG International Journal of Electronics and Communication Engineering - (ICRTESTM) - Special Issue – April 2017
Principal Component Analysis: An Efficient
Facial Feature Extraction Technique
Research scholar, ECE Dept, JJTU, Rajasthan, India, 333001(Associate Professor, SVIT, Secunderabad-500
Drakshayani Desai, 2Dr. Ramakrishna Seemakurti.
Research Guide (Pricipal,, SVIT, Secunderabd, India, 500003) (Approved Research Guide, JJTU, Jhunjhunu-
33001, Rajasthan, India)"
69aef3ce50967a00c568849fed630c573f6cd1eb,3-D Face Analysis and Identification Based on Statistical Shape Modelling,"-D Face Analysis and Identification Based on Statistical Shape
Modelling
Wei Quan*, Charlie Frowd †
*School of Computing, Engineering and Physical Sciences
University of Central Lancashire, Preston PR1 2HE, UK.
Department of Psychology
University of Winchester, Winchester SO22 4NR, UK.
Keywords: shape modelling, face analysis, identification."
69d9b79757d76b73ed940754f4d05288b76eb8c3,Preschool Externalizing Behavior Predicts Gender-Specific Variation in Adolescent Neural Structure,"RESEARCH ARTICLE
Preschool Externalizing Behavior Predicts
Gender-Specific Variation in Adolescent
Neural Structure
Jessica Z. K. Caldwell1*¤, Jeffrey M. Armstrong2, Jamie L. Hanson1, Matthew J. Sutterer1,
Diane E. Stodola1, Michael Koenigs2, Ned H. Kalin2, Marilyn J. Essex2☯, Richard
J. Davidson1,2,3☯
Department of Psychology, University of Wisconsin–Madison, Madison, Wisconsin, United States of
America, 2 Department of Psychiatry, University of Wisconsin–Madison, Madison, Wisconsin, United States
of America, 3 Center for Investigating Healthy Minds, University of Wisconsin–Madison, Madison,
Wisconsin, United States of America
☯ These authors contributed equally to this work.
¤. Current address: Marquette General Hospital/Michigan State University, Marquette, MI, United States of
America"
6953911c6756ca70de1555df14a06f13305e1926,Author Profiling based on Text and Images: Notebook for PAN at CLEF 2018,"Author Profiling based on Text and Images
Notebook for PAN at CLEF 2018
Luka Stout, Robert Musters, and Chris Pool
Anchormen, The Netherlands"
69526cdf6abbfc4bcd39616acde544568326d856,Face Verification Using Template Matching,"[17] B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian face recogni-
tion,” Pattern Recognit., vol. 33, no. 11, pp. 1771–1782, Nov. 2000.
[18] A. Nefian, “A hidden Markov model-based approach for face detection
nd recognition,” Ph.D. dissertation, Dept. Elect. Comput. Eng. Elect.
Eng., Georgia Inst. Technol., Atlanta, 1999.
[19] P. J. Phillips et al., “Overview of the face recognition grand challenge,”
presented at the IEEE CVPR, San Diego, CA, Jun. 2005.
[20] H. T. Tanaka, M. Ikeda, and H. Chiaki, “Curvature-based face surface
recognition using spherical correlation-principal direction for curved
object recognition,” in Proc. Int. Conf. Automatic Face and Gesture
Recognition, 1998, pp. 372–377.
[21] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognit. Sci.,
pp. 71–86, 1991.
[22] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[23] W. Zhao, R. Chellappa, A. Rosenfeld, and P. Phillips, “Face recogni-
tion: A literature survey,” ACM Comput. Surveys, vol. 35, no. 44, pp.
99–458, 2003.
[24] W. Zhao, R. Chellappa, and P. J. Phillips, “Subspace linear discrimi-
nant analysis for face recognition,” UMD TR4009, 1999.
Face Verification Using Template Matching"
6971bdac5119c4cc1b6d92adac605e13f1bcd80f,Limiting the reconstruction capability of generative neural network using negative learning,"LIMITING THE RECONSTRUCTION CAPABILITY OF GENERATIVE NEURAL NETWORK
USING NEGATIVE LEARNING
Asim Munawar, Phongtharin Vinayavekhin and Giovanni De Magistris
IBM Research - Tokyo"
69dc87575b56ba7f60fa24bdd4fceabeeaf39a80,Decoding of nonverbal language in alcoholism: A perception or a labeling problem?,"tapraid5/ze6-adb/ze6-adb/ze600216/ze62965d15z
xppws S⫽1
/8/16
6:36 Art: 2015-0668
APA NLM
Psychology of Addictive Behaviors
016, Vol. 30, No. 2, 175–183
0893-164X/16/$12.00
© 2016 American Psychological Association
http://dx.doi.org/10.1037/adb0000147
Decoding of Nonverbal Language in Alcoholism:
A Perception or a Labeling Problem?
Université Libre de Bruxelles and Centre Hospitalier
Charles Kornreich
Universitaire Brugmann
Géraldine Petit and Heidi Rolin
Université Libre de Bruxelles
Elsa Ermer
University of Maryland Baltimore
Salvatore Campanella and Paul Verbanck"
69ee78388e0f40941496ab92efe3e0fa065ad22e,Person Re-Identification with RGB-D Camera in Top-View Configuration through Multiple Nearest Neighbor Classifiers and Neighborhood Component Features Selection,"Article
Person Re-Identification with RGB-D Camera in
Top-View Configuration through Multiple Nearest
Neighbor Classifiers and Neighborhood Component
Features Selection
Marina Paolanti *
Emanuele Frontoni
, Luca Romeo, Daniele Liciotti
, Rocco Pietrini, Annalisa Cenci,
nd Primo Zingaretti
Department of Information Engineering, Universitá Politecnica delle Marche, I-60131 Ancona, Italy;
(L.R.); (D.L.); (R.P.);
(A.C.); (E.F.); (P.Z.)
* Correspondence:
Received: 30 August 2018 ; Accepted: 11 October 2018 ; Published: 15 October 2018"
690d669115ad6fabd53e0562de95e35f1078dfbb,"Progressive versus Random Projections for Compressive Capture of Images, Lightfields and Higher Dimensional Visual Signals","Progressive versus Random Projections for Compressive Capture of Images,
Lightfields and Higher Dimensional Visual Signals
Rohit Pandharkar
MIT Media Lab
75 Amherst St, Cambridge, MA
Ashok Veeraraghavan
01 Broadway, Cambridge MA
Ramesh Raskar
MIT Media Lab
75 Amherst St, Cambridge, MA"
695f6dc7165aa3fca15d1b1deb4c496fc093ac19,Learning Discriminative Visual N-grams from Mid-level Image Features,"GUPTA, PANDEY, CHIA: VISUAL N-GRAMS
Learning Discriminative Visual N-grams
from Mid-level Image Features
Raj Kumar Gupta
Megha Pandey
Alex YS Chia
Institute of High Performance
Computing (A*STAR)
Singapore
Institute of Infocomm Research
(A*STAR)
Singapore
Rakuten Institute of Technology
Singapore"
698812f7d37e148c0a99e768f0a7d24e7b9605ab,Image Classification and Retrieval from User-Supplied Tags,"Image Classification and Retrieval from User-Supplied Tags
Hamid Izadinia
Univ. of Washington
Ali Farhadi
Univ. of Washington
Aaron Hertzmann
Adobe Research
Matthew D. Hoffman
Adobe Research"
699b6cbd72ee0274699b939863813499c377ea00,Enlightening Deep Neural Networks with Knowledge of Confounding Factors,"Enlightening Deep Neural Networks
with Knowledge of Confounding Factors
Yu Zhong
Gil Ettinger
{yu.zhong,
Systems & Technology Research"
69d1b055807ef35a8f9490775348cce899421841,An Improved ABC Algorithm Approach Using SURF for Face Identification,"An Improved ABC Algorithm Approach Using
SURF for Face Identification
Chidambaram Chidambaram1,2, Marlon Subtil Mar¸cal2, Leyza Baldo Dorini2,
Hugo Vieira Neto2, and Heitor Silv´erio Lopes2
State University of Santa Catarina-UDESC, Brazil
Federal University of Technology - Paran´a - UTFPR, Brazil
http://www.sbs.udesc.br
http://www.utfpr.edu.br"
6960bfc668aad1b537fbf3f1b48328e7d440b80b,Fully Automatic Recognition of the Temporal Phases of Facial Actions,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 1, FEBRUARY 2012
Fully Automatic Recognition of the
Temporal Phases of Facial Actions
Michel F. Valstar, Member, IEEE, and Maja Pantic, Senior Member, IEEE"
69063f7e0a60ad6ce16a877bc8f11b59e5f7348e,Class-Specific Image Deblurring,"Class-Specific Image Deblurring
Saeed Anwar1, Cong Phuoc Huynh1
, Fatih Porikli1
The Australian National University∗ Canberra ACT 2601, Australia
NICTA, Locked Bag 8001, Canberra ACT 2601, Australia"
691eb8eb9f5d5fbf5d76349098b78e5d6fc25ccc,Deep Learning of Part-Based Representation of Data Using Sparse Autoencoders With Nonnegativity Constraints,"Deep Learning of Part-based Representation of Data
Using Sparse Autoencoders with Nonnegativity
Constraints
Ehsan Hosseini-Asl, Member, IEEE, Jacek M. Zurada, Life Fellow, IEEE, Olfa Nasraoui, Senior Member, IEEE"
69f27ca2f1280587004c8fae6b3b0021305e52eb,Title of dissertation : Scene and Video Understanding,
695b040a9550a46b5ffe31e4a6abbadfac02c1ad,Face recognition with illumination distinction description,"1st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan
978-4-9906441-1-6 ©2012 IAPR"
69f49bae5b1c15adc644b47e6c3b6c3f7aa84171,Variational Bayesian Inference for Audio-Visual Tracking of Multiple Speakers,"Variational Bayesian Inference for Audio-Visual
Tracking of Multiple Speakers
Yutong Ban, Xavier Alameda-Pineda, Laurent Girin and Radu Horaud"
692aecba13add2b8c1d82db303f5b2ec743ceb44,FaceForensics: A Large-scale Video Dataset for Forgery Detection in Human Faces,"FaceForensics: A Large-scale Video Dataset for Forgery
Detection in Human Faces
Andreas R¨ossler1 Davide Cozzolino2 Luisa Verdoliva2 Christian Riess3
Justus Thies1
Matthias Nießner1
Technical University of Munich
University Federico II of Naples
University of Erlangen-Nuremberg"
6997039127d9b262d4a9aa9467c4f4fa3d596085,Classification of Vehicle Types in Car Parks using Computer Vision Techniques,"Classification of Vehicle Types in Car Parks using
Computer Vision Techniques
Chadly Marouane
Research & Development
VIRALITY GmbH
Rauchstraße 7
81679 Munich, Germany
Lorenz Schauer
Ludwig-Maximilians-
Universität
München
Philipp Bauer
Ludwig-Maximilians-
Universität
München
Oettingenstraße 67
80538 München, Germany
Oettingenstraße 67
80538 München, Germany"
6946acb595095407871992da62298254658f8d84,An Efficient Method for Face Recognition System In Various Assorted Conditions,"An Efficient Method for Face Recognition System
In Various Assorted Conditions
V.Karthikeyan
K.Vijayalakshmi
P.Jeyakumar
finding"
69a605b2ef38c59e0c8da284d6f27d33e3573620,Automated Multi - Modal Search and Rescue Using Boosted Histogram of Oriented Gradients,"AUTOMATED MULTI-MODAL SEARCH AND RESCUE USING BOOSTED
HISTOGRAM OF ORIENTED GRADIENTS
A Thesis
presented to
the Faculty of California Polytechnic State University,
San Luis Obispo
In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Electrical Engineering
Matthew Lienemann
December 2015"
3c3eb65a936296d6ae5058b564f6d0e0c07772cf,A metric for sets of trajectories that is practical and mathematically consistent,"A metric for sets of trajectories that is
practical and mathematically consistent
Jos´e Bento
Jia Jie Zhu"
3cb2841302af1fb9656f144abc79d4f3d0b27380,When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition,"See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/319928941
When	3D-Aided	2D	Face	Recognition	Meets	Deep
Learning:	An	extended	UR2D	for	Pose-Invariant
Face	Recognition
Article	·	September	2017
CITATIONS
authors:
READS
Xiang	Xu
University	of	Houston
Pengfei	Dou
University	of	Houston
8	PUBLICATIONS			10	CITATIONS
9	PUBLICATIONS			29	CITATIONS
SEE	PROFILE
SEE	PROFILE
Ha	Le
University	of	Houston
7	PUBLICATIONS			2	CITATIONS
Ioannis	A	Kakadiaris"
3cc3cf57326eceb5f20a02aefae17108e8c8ab57,Benchmark for Evaluating Biological Image Analysis Tools,"BENCHMARK FOR EVALUATING BIOLOGICAL IMAGE ANALYSIS TOOLS
Elisa Drelie Gelasca, Jiyun Byun, Boguslaw Obara, B.S. Manjunath
Center for Bio-Image Informatics, Electrical and Computer Engineering Department,
University of California, Santa Barbara 93106-9560,
http://www.bioimage.ucsb.edu
Biological images are critical components for a detailed understanding of the structure and functioning of cells and proteins.
Image processing and analysis tools increasingly play a significant role in better harvesting this vast amount of data, most of
which is currently analyzed manually and qualitatively. A number of image analysis tools have been proposed to automatically
extract the image information. As the studies relying on image analysis tools have become widespread, the validation of
these methods, in particular, segmentation methods, has become more critical. There have been very few efforts at creating
enchmark datasets in the context of cell and tissue imaging, while, there have been successful benchmarks in other fields, such
s the Berkeley segmentation dataset [1], the handwritten digit recognition dataset MNIST [2] and face recognition dataset [3, 4].
In the field of biomedical image processing, most of standardized benchmark data sets concentrates on macrobiological images
such as mammograms and magnet resonance imaging (MRI) images [5], however, there is still a lack of a standardized dataset
for microbiological structures (e.g. cells and tissues) and it is well known in biomedical imaging [5].
We propose a benchmark for biological images to: 1) provide image collections with well defined ground truth; 2) provide
image analysis tools and evaluation methods to compare and validate analysis tools. We include a representative dataset of
microbiological structures whose scales range from a subcellular level (nm) to a tissue level (µm), inheriting intrinsic challenges
in the domain of biomedical image analysis (Fig. 1). The dataset is acquired through two of the main microscopic imaging
techniques: transmitted light microscopy and confocal laser scanning microscopy. The analysis tools1in the benchmark are"
3cec488a0910b69f50811cebe8c655dca22078d5,Evidence Extraction for Machine Reading Comprehension with Deep Probabilistic Logic,"Confidential TACL submission. DO NOT DISTRIBUTE.
Evidence Extraction for Machine Reading Comprehension
with Deep Probabilistic Logic
Anonymous TACL submission"
3c1c8e171450a9b279df939d4c9209d8dbf6b2fe,Large scale mining and retrieval of visual data in a multimodal context,"Diss. ETH No. 18190
Large-Scale Mining and Retrieval of Visual Data in
Multimodal Context
A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH
for the degree of
Doctor of Technical Sciences
presented by
Till Quack
MSc. ETH Zuerich
orn 15. September 1978
itizen of Germany
ccepted on the recommendation of
Prof. Dr. Luc Van Gool, examiner
Prof. Dr. Andrew Zisserman, co-examiner
September 2008"
3cfbe1f100619a932ba7e2f068cd4c41505c9f58,A Realistic Simulation Tool for Testing Face Recognition Systems under Real-World Conditions,"A Realistic Simulation Tool for Testing Face Recognition
Systems under Real-World Conditions∗
M. Correa, J. Ruiz-del-Solar, S. Parra-Tsunekawa, R. Verschae
Department of Electrical Engineering, Universidad de Chile
Advanced Mining Technology Center, Universidad de Chile"
3caebf3075e52483c7a7179b3491882af0aaaa37,Lateralization of Cognitive Functions: The Visual Half-Field Task Revisited,"Lateralization of Cognitive Functions: The Visual Half-Field
Task Revisited
Ark Verma
Promotor: Prof. Dr. Marc Brysbaert
Proefschrift ingediend tot het behalen van de academische graad
van Doctor in de Psychologie"
3ca983d40b9de7dc12b989fce213b4abee652c9e,Will the Pedestrian Cross? A Study on Pedestrian Path Prediction,"Will the Pedestrian Cross?
A Study on Pedestrian Path Prediction
Christoph G. Keller and Dariu M. Gavrila"
3caf02979d7cd83d2f3894574c86babf3e201bf3,Seeing to hear? Patterns of gaze to speaking faces in children with autism spectrum disorders,"ORIGINAL RESEARCH ARTICLE
published: 08 May 2014
doi: 10.3389/fpsyg.2014.00397
Seeing to hear? Patterns of gaze to speaking faces in
hildren with autism spectrum disorders
Julia R. Irwin1,2* and Lawrence Brancazio1,2
Haskins Laboratories, New Haven, CT, USA
Department of Psychology, Southern Connecticut State University, New Haven, CT, USA
Edited by:
Jean-Luc Schwartz, National Centre
for Scientific Research, France
Reviewed by:
Satu Saalasti, Brain and Mind
Laboratory, Aalto University School of
Science, Finland
David House, Royal Institute of
Technology, Sweden
*Correspondence:
Julia R. Irwin, Haskins Laboratories,
00 George Street, New Haven,"
3cd7b15f5647e650db66fbe2ce1852e00c05b2e4,"ACTIVE, an Extensible Cataloging Platform for Automatic Indexing of Audiovisual Content",
3ceef6572b00bef961c0246a220edcc48553ed2d,Descriptor Learning for Omnidirectional Image Matching,"Descriptor learning for omnidirectional image matching
Jonathan Masci1,2,3
Davide Migliore1,4
Michael M. Bronstein2
J¨urgen Schmidhuber1,2,3
Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Manno, Switzerland
Faculty of Informatics, Universit`a della Svizzera Italiana (USI), Lugano, Switzerland
Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Lugano, Switzerland
Evidence Srl, Pisa, Italy"
3c70360a4ba30b860d337308633842acbb908ee4,Multi-aspect object detection with Boosted Hough Forest,"REDONDO-CABRERA ET AL.: OBJECT DETECTION WITH BOOSTED HOUGH FOREST
Because better detections are still possible:
Multi-aspect Object Detection with Boosted
Hough Forest
Carolina Redondo-Cabrera
Roberto López-Sastre
University of Alcalá
Alcalá de Henares, ES"
3c5f390f99272c59fcf822ab78c90ee6bfa7926a,iCub : Learning Emotion Expressions using Human Reward,"iCub: Learning Emotion Expressions using Human Reward
Nikhil Churamani, Francisco Cruz, Sascha Griffiths and Pablo Barros"
3c77e4ce48d1bbcdb682cdc790806e2d5f2d2e1a,Recognition of Genuine Smiles,"Recognition of Genuine Smiles
Hamdi Dibeklioğlu, Member, IEEE, Albert Ali Salah, Member, IEEE, and Theo Gevers, Member, IEEE"
3ca4ce8ab704b44701bf7ef8dda01c8dbb226fac,On-the-fly hand detection training with application in egocentric action recognition,"On-the-Fly Hand Detection Training with Application in Egocentric Action
Recognition
Jayant Kumar∗, Qun Li∗, Survi Kyal, Edgar A. Bernal, and Raja Bala
{Jayant.Kumar, Qun.Li, Survi.Kyal, Edgar.Bernal,
PARC, A Xerox Company
800 Phillips Road, Webster, NY 14580"
3c917f071bfc1244c75fca3ceed0a8c46bb975cc,Reduced acetylcholinesterase activity in the fusiform gyrus in adults with autism spectrum disorders.,"ORIGINAL ARTICLE
Reduced Acetylcholinesterase Activity
in the Fusiform Gyrus in Adults With Autism
Spectrum Disorders
Katsuaki Suzuki, MD, PhD; Genichi Sugihara, MD, PhD; Yasuomi Ouchi, MD, PhD; Kazuhiko Nakamura, MD, PhD;
Masatsugu Tsujii, MA; Masami Futatsubashi, BS; Yasuhide Iwata, MD, PhD; Kenji J. Tsuchiya, MD, PhD;
Kaori Matsumoto, MA; Kiyokazu Takebayashi, MD, PhD; Tomoyasu Wakuda, MD, PhD; Yujiro Yoshihara, MD, PhD;
Shiro Suda, MD, PhD; Mitsuru Kikuchi, MD, PhD; Nori Takei, MD, PhD, MSc; Toshirou Sugiyama, MD, PhD;
Toshiaki Irie, PhD; Norio Mori, MD, PhD
Context: Both neuropsychological and functional mag-
netic resonance imaging studies have shown deficien-
ies in face perception in subjects with autism spectrum
disorders (ASD). The fusiform gyrus has been regarded
s the key structure in face perception. The cholinergic
system is known to regulate the function of the visual
pathway, including the fusiform gyrus.
Objectives: To determine whether central acetylcho-
linesterase activity, a marker for the cholinergic system,
is altered in ASD and whether the alteration in acetyl-
holinesterase activity, if any, is correlated with their so-"
3c9ad25e91cace6ac93069480745d4578b7f29f5,Automatic Article Commenting: the Task and Dataset,"Automatic Article Commenting: the Task and Dataset
Lianhui Qin1∗, Lemao Liu2, Victoria Bi2, Yan Wang2,
Xiaojiang Liu2, Zhiting Hu, Hai Zhao1, Shuming Shi2
Department of Computer Science and Engineering, Shanghai Jiao Tong University1, Tencent AI Lab2,"
3ce8a74b47f81ec66046f2486afa1a89e3165dfd,LSH banding for large-scale retrieval with memory and recall constraints,"978-1-4244-2354-5/09/$25.00 ©2009 IEEE
ICASSP 2009"
3cb8128b41b419a1fdc7a95bf8e65a37aff79676,Shifting the Baseline: Single Modality Performance on Visual Navigation&QA,"Single Modality Performance on Visual Navigation & QA
Shifting the Baseline:
Jesse Thomason
Yonatan Bisk
Paul G. Allen School of Computer Science and Engineering
Daniel Gordan"
3c2819dae899559f1c61b3b34aeb5d41a6398440,A Stable and Invariant Three-polar Surface Representation: Application to 3D Face Description,"A Stable and Invariant Three-polar Surface Representation:
Application to 3D Face Description
Majdi Jribi
Faouzi Ghorbel
CRISTAL Laboratory,
GRIFT research group
ENSI,La Manouba
University
010, La manouba,
Tunisia
CRISTAL Laboratory,
GRIFT research group
ENSI,La Manouba
University
010, La manouba,
Tunisia"
3c793fa4d7f673f1e9f6799729ec266ce573ec60,Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification,"Margin Sample Mining Loss: A Deep Learning Based Method for Person
Re-identification
Qiqi Xiao , Hao Luo , Chi Zhang"
3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8,Measuring Gaze Orientation for Human-Robot Interaction,"Measuring Gaze Orientation for Human-Robot
Interaction
R. Brochard∗, B. Burger∗, A. Herbulot∗†, F. Lerasle∗†
CNRS; LAAS; 7 avenue du Colonel Roche, 31077 Toulouse Cedex, France
Universit´e de Toulouse; UPS; LAAS-CNRS : F-31077 Toulouse, France
Introduction
In the context of Human-Robot interaction estimating gaze orientation brings
useful information about human focus of attention. This is a contextual infor-
mation : when you point something you usually look at it. Estimating gaze
orientation requires head pose estimation. There are several techniques to esti-
mate head pose from images, they are mainly based on training [3, 4] or on local
face features tracking [6]. The approach described here is based on local face
features tracking in image space using online learning, it is a mixed approach
since we track face features using some learning at feature level. It uses SURF
features [2] to guide detection and tracking. Such key features can be matched
etween images, used for object detection or object tracking [10]. Several ap-
proaches work on fixed size images like training techniques which mainly work
on low resolution images because of computation costs whereas approaches based
on local features tracking work on high resolution images. Tracking face features
such as eyes, nose and mouth is a common problem in many applications such as"
3c0bbfe664fb083644301c67c04a7f1331d9515f,The Role of Color and Contrast in Facial Age Estimation,"The Role of Color and Contrast in Facial Age Estimation
Paper ID: 7
No Institute Given"
3c4f6d24b55b1fd3c5b85c70308d544faef3f69a,A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics,"A Hybrid Deep Learning Architecture for
Privacy-Preserving Mobile Analytics
Seyed Ali Ossia(cid:63), Ali Shahin Shamsabadi(cid:63), Ali Taheri(cid:63), Hamid R. Rabiee(cid:63),
Nic Lane‡, Hamed Haddadi†
(cid:63)Sharif University of Technology, ‡University College London, †Queen Mary University of London"
3cb0ef5aabc7eb4dd8d32a129cb12b3081ef264f,Absolute Head Pose Estimation From Overhead Wide-Angle Cameras,"Absolute Head Pose Estimation From Overhead Wide-Angle Cameras
Ying-Li Tian, Lisa Brown, Jonathan Connell,
Sharat Pankanti, Arun Hampapur, Andrew Senior, Ruud Bolle
IBM T.J. Watson Research Center
9 Skyline Drive, Hawthorne, NY 10532 USA
{ yltian,lisabr,jconnell,sharat,arunh,aws,bolle"
3cc0d9c1f690addd2c82e60f2a460e3c557ff242,Sort Story: Sorting Jumbled Images and Captions into Stories,"Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 925–931,
Austin, Texas, November 1-5, 2016. c(cid:13)2016 Association for Computational Linguistics"
3c0420a0dd90d0900613ac1f1a1174b626df26d9,Learning Discriminative Chamfer Regularization,"YARLAGADDA ∗, EIGENSTETTER ∗, OMMER: CHAMFER REGULARIZATION
Learning Discriminative Chamfer
Regularization
Pradeep Yarlagadda ∗
Angela Eigenstetter ∗
Björn Ommer
Interdisciplinary Center for Scientific
Computing (IWR)
University of Heidelberg
Germany"
3c68763caa67dee55bca76f0f71dd4530f3fd57c,Ranking to Learn and Learning to Rank: On the Role of Ranking in Pattern Recognition Applications,"Ranking to Learn and Learning to Rank:
On the Role of Ranking in Pattern Recognition Applications
Giorgio Roffo
Submitted to the Department of Computer Science
in partial fulfillment of the requirements for the degree of
European Doctor of Philosophy
S.S.D. ING-INF05
Cycle XXIX/2014
t the
Universit`a degli Studi di Verona
May 2017
(cid:13) Universit`a degli Studi di Verona 2017. All rights reserved.
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Computer Science
May 25, 2017
Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Prof. Marco Cristani
Associate Professor
Thesis Tutor
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ."
3c49dafc82ee24e70e338b896868cd9f82f0edd7,Biologically Motivated 3 D Face Recognition,"BIOLOGICALLY MOTIVATED 3D FACE RECOGNITION
Albert Ali Salah
B.S, in Computer Engineering, Bo˘gazi¸ci University, 1998
M.S, in Computer Engineering, Bo˘gazi¸ci University, 2000
Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy
Graduate Program in
Bo˘gazi¸ci University"
3c56acaa819f4e2263638b67cea1ec37a226691d,Body Joint Guided 3-D Deep Convolutional Descriptors for Action Recognition,"Body Joint guided 3D Deep Convolutional
Descriptors for Action Recognition
Congqi Cao, Yifan Zhang, Member, IEEE, Chunjie Zhang, Member, IEEE, and Hanqing Lu, Senior Member, IEEE"
3c8da376576938160cbed956ece838682fa50e9f,Aiding face recognition with social context association rule based re-ranking,"Chapter 4
Aiding Face Recognition with
Social Context Association Rule
ased Re-Ranking
Humans are very ef‌f‌icient at recognizing familiar face images even in challenging condi-
tions. One reason for such capabilities is the ability to understand social context between
individuals. Sometimes the identity of the person in a photo can be inferred based on the
identity of other persons in the same photo, when some social context between them is
known. This chapter presents an algorithm to utilize the co-occurrence of individuals as
the social context to improve face recognition. Association rule mining is utilized to infer
multi-level social context among subjects from a large repository of social transactions.
The results are demonstrated on the G-album and on the SN-collection pertaining to 4675
identities prepared by the authors from a social networking website. The results show that
ssociation rules extracted from social context can be used to augment face recognition and
improve the identification performance.
Introduction
Face recognition capabilities of humans have inspired several researchers to understand
the science behind it and use it in developing automated algorithms. Recently, it is also
rgued that encoding social context among individuals can be leveraged for improved
utomatic face recognition [175]. As shown in Figure 4.1, often times a person’s identity"
3ca1e06dfbaeed0f8dc49bf345369fb8e43da53d,Cross-View Asymmetric Metric Learning for Unsupervised Person Re-Identification,"Cross-view Asymmetric Metric Learning for
Unsupervised Person Re-identification
Hong-Xing Yu, Ancong Wu, Wei-Shi Zheng
Code is available at the project page:
https://github.com/KovenYu/CAMEL
For reference of this work, please cite:
Hong-Xing Yu, Ancong Wu, Wei-Shi Zheng. “Cross-view Asymmetric
Metric Learning for Unsupervised Person Re-identification.” Proceedings
of the IEEE International Conference on Computer Vision. 2017.
title={Cross-view Asymmetric Metric Learning for Unsupervised Person
Re-identification},
uthor={Yu, Hong-Xing and Wu, Ancong and Zheng, Wei-Shi},
ooktitle={Proceedings of the IEEE International Conference on Computer
Vision},
year={2017}"
56e95fa26fb417776824e5adf6d6d511e5b30110,Object and Action Classification with Latent Window Parameters,"Int J Comput Vis
DOI 10.1007/s11263-013-0646-8
Object and Action Classification with Latent Window Parameters
Hakan Bilen · Vinay P. Namboodiri · Luc J. Van Gool
Received: 1 October 2012 / Accepted: 18 July 2013
© Springer Science+Business Media New York 2013"
56e4dead93a63490e6c8402a3c7adc493c230da5,Face Recognition Techniques: A Survey,"World Journal of Computer Application and Technology 1(2): 41-50, 2013
DOI: 10.13189/wjcat.2013.010204
http://www.hrpub.org
Face Recognition Techniques: A Survey
V.Vijayakumari
Department of Electronics and Communication, Sri krishna College of Technology, Coimbatore, India
*Corresponding Author:
Copyright © 2013 Horizon Research Publishing All rights reserved."
56b9c6efe0322f0087d2f82b52129cc6b41ab356,"Acquire, Augment, Segment & Enjoy: Weakly Supervised Instance Segmentation of Supermarket Products","Acquire, Augment, Segment & Enjoy:
Weakly Supervised Instance Segmentation of
Supermarket Products
Patrick Follmann+*, Bertram Drost+, and Tobias B¨ottger+*
+MVTec Software GmbH, Munich, Germany
Technical University of Munich (TUM)
July 9, 2018"
56bc524d7cc1ff2fad8f27c0414cac437fc2b4f0,Protest Activity Detection and Perceived Violence Estimation from Social Media Images,"To appear in Proceedings of the 25th ACM International Conference on Multimedia 2017
Protest Activity Detection and Perceived Violence Estimation
from Social Media Images
Donghyeon Won
Zachary C. Steinert-Threlkeld
Jungseock Joo"
56e885b9094391f7d55023a71a09822b38b26447,Face Retrieval using Frequency Decoded Local Descriptor,"FREQUENCY DECODED LOCAL BINARY PATTERN
Face Retrieval using Frequency Decoded Local
Descriptor
Shiv Ram Dubey, Member, IEEE"
568727a76dc1242e3d48392f9c19678a27c63482,High Entropy Ensembles for Holistic Figure-ground Segmentation,"GALLO et al.: HEE FOR HOLISTIC FIGURE-GROUND SEGMENTATION
High Entropy Ensembles for Holistic
Figure-ground Segmentation
Ignazio Gallo
Alessandro Zamberletti
Simone Albertini
Lucia Noce
Applied Recognition Technology
Laboratory
Department of Theoretical and Applied
Science
University of Insubria
Varese, Italy"
56d4eeb7fcdfd4f3156b9bdd20a9f35c995ebcac,Local Similarity Based Linear Discriminant Analysis for Face Recognition with Single Sample per Person,"Local Similarity based Linear Discriminant
Analysis for Face Recognition with Single
Sample per Person
Fan Liu1, Ye Bi1, Yan Cui2, Zhenmin Tang1
School of Computer Science and Engineering, Nanjing University of Science and
Key Laboratory of Broadband Wireless Communication and Sensor Network
Technology, Nanjing University of Posts and Telecommunications, China
Technology, China"
56fcc0ef7c10ff322626fec29f532af1860ff2f7,Occlusion and Abandoned Object Detection for Surveillance Applications,"International Journal of Computer Applications Technology and Research
Volume 2– Issue 6, 708 - 713, 2013, ISSN:  2319–8656
Occlusion and Abandoned Object Detection for
Surveillance Applications
M. Chitra
RVS college of Engineering
nd Technology
Karaikal, India
M.Kalaiselvi Geetha
Annamalai University
Chidambaram, India
L.Menaka
RVS college of Engineering
nd Technology
Karaikal, India
is  challenging  and"
568067d7232c753e182dbc1d7075364560ffc363,Scope of physiological and behavioural pain assessment techniques in children – a review,"Scope of physiological and behavioural pain assessment techniques
in children – a review
Saranya Devi Subramaniam1, Brindha Doss1 ✉, Lakshmi Deepika Chanderasekar2, Aswini Madhavan1,
Antony Merlin Rosary2
Department of Biomedical Engineering, PSG College of Technology, Coimbatore 641004, India
Department of Electronics & Communication Engineering, PSG College of Technology, Coimbatore, 641004, India
✉ E-mail:
Published in Healthcare Technology Letters; Received on 7th February 2018; Accepted on 10th May 2018
Pain is an unpleasant subjective experience. At present, clinicians are using self-report or pain scales to recognise and monitor pain in children.
However, these techniques are not efficient to observe the pain in children having cognitive disorder and also require highly skilled observers
to measure pain. Using these techniques it is also difficult to choose the analgesic drug dosages to the patients after surgery. Thus, this
onceptual work explains the demand for automatic coding techniques to evaluate pain and also it documents some evidence of
techniques that act as an alternative approach for objectively determining pain in children. In this review, some good indicators of pain in
hildren are explained in detail; they are facial expressions from an RGB image, thermal image and also feature from well proven
physiological signals such as electrocardiogram, skin conductance, body temperature, surgical pleth index, pupillary reflex dilation,
nalgesia nociception index, photoplethysmography, perfusion index etc.
. Introduction: The children will encounter pain resulting from
injuries, disease, after surgery and other health problems. The
‘International Association for the Study of Pain (IASP)’, an
interdisciplinary organisation created in 1973 to study pain and"
564babec16b895d385d06d38545febd66ef02f35,Robust Statistics for Feature-based Active Appearance Models,
562f35a662545d839876deeb605ca2c864507a82,Revealing Variations in Perception of Mental States from Dynamic Facial Expressions: A Cautionary Note,"Revealing Variations in Perception of Mental States from
Dynamic Facial Expressions: A Cautionary Note
Elisa Back1*, Timothy R. Jordan2
Department of Psychology, Kingston University London, Kingston upon Thames, United Kingdom, 2 Department of Psychology, Zayed University, Dubai, United Arab
Emirates"
564d4ee76c0511bc395dfc8ef8e3b3867fc34a6d,Robust group sparse representation via half-quadratic optimization for face recognition,"Robust Group Sparse Representation via Half-Quadratic Optimization
for Face Recognition
Yong Peng and Bao-Liang Lu(cid:3), Senior Member, IEEE"
56a653fea5c2a7e45246613049fb16b1d204fc96,Quaternion Collaborative and Sparse Representation With Application to Color Face Recognition,"Quaternion Collaborative and Sparse Representation
With Application to Color Face Recognition
Cuiming Zou, Kit Ian Kou, Member, IEEE, and Yulong Wang, Student Member, IEEE
representation-based"
5666ed763698295e41564efda627767ee55cc943,Relatively-Paired Space Analysis: Learning a Latent Common Space From Relatively-Paired Observations,"Manuscript
Click here to download Manuscript: template.tex
Click here to view linked References
Noname manuscript No.
(will be inserted by the editor)
Relatively-Paired Space Analysis: Learning a Latent Common
Space from Relatively-Paired Observations
Zhanghui Kuang · Kwan-Yee K. Wong
Received: date / Accepted: date"
564555b7fdc45938d813650de7a7b1cd40005aa8,Implementation of SIFT In Various Applications,"International Journal of Engineering Research and Development
e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com
Volume 7, Issue 4 (May 2013), PP. 59-64
Implementation of SIFT In Various Applications
,2,3Deen Bandhu Chotu Ram University of Science and Technology Murthal, Haryana, India.
Ritu Rani1, S. K. Grewal 2, Indiwar 3"
5615d6045301ecbc5be35e46cab711f676aadf3a,Discriminatively Learned Hierarchical Rank Pooling Networks,"Discriminatively Learned Hierarchical Rank Pooling Networks
Basura Fernando · Stephen Gould
Received: date / Accepted: date"
56cf859363f1b5231418b40b957a9132a78ea546,VLASE: Vehicle Localization by Aggregating Semantic Edges,"VLASE: Vehicle Localization by Aggregating Semantic Edges
Xin Yu1∗, Sagar Chaturvedi1∗, Chen Feng2, Yuichi Taguchi2, Teng-Yok Lee2, Clinton Fernandes1, Srikumar Ramalingam1"
56f5a94047966eac4b2f97ded4b50513f9a09951,Is the Kidney Donor Risk Index a Useful Tool in Non-US Patients?,"791148 CJKXXX10.1177/2054358118791148Canadian Journal of Kidney Health and DiseaseYoung et al
research-article20182018
Original Research Article
Is the Kidney Donor Risk Index a
Useful Tool in Non-US Patients?
Ann Young1, Greg A. Knoll2,3, Eric McArthur2,
Stephanie N. Dixon2,4, Amit X. Garg2,5,
Charmaine E. Lok1,2,6, Ngan N. Lam7, and S. Joseph Kim1,2,6,8
Canadian Journal of Kidney Health
nd Disease
Volume 5: 1 –10
© The Author(s) 2018
Reprints and permissions:
sagepub.com/journals-permissions
DOI: 10.1177/2054358118791148
https://doi.org/10.1177/2054358118791148
journals.sagepub.com/home/cjk"
56852a56dd830a6ee3882773c453025ddec652e2,Emotion recognition through static faces and moving bodies: a comparison between typically developed adults and individuals with high level of autistic traits,"ORIGINAL RESEARCH
published: 23 October 2015
doi: 10.3389/fpsyg.2015.01570
Emotion recognition through static
faces and moving bodies: a
omparison between typically
developed adults and individuals
with high level of autistic traits†
Rossana Actis-Grosso1,2*, Francesco Bossi1 and Paola Ricciardelli1,2
Department of Psychology, University of Milano-Bicocca, Milano, Italy, 2 Milan Centre for Neuroscience, Milano, Italy
We investigated whether the type of stimulus (pictures of static faces vs. body motion)
ontributes differently to the recognition of emotions. The performance (accuracy and
response times) of 25 Low Autistic Traits (LAT group) young adults (21 males) and 20
young adults (16 males) with either High Autistic Traits or with High Functioning Autism
Spectrum Disorder (HAT group) was compared in the recognition of four emotions
(Happiness, Anger, Fear, and Sadness) either shown in static faces or conveyed by
moving body patch-light displays (PLDs). Overall, HAT individuals were as accurate as
LAT ones in perceiving emotions both with faces and with PLDs. Moreover, they correctly
described non-emotional actions depicted by PLDs, indicating that they perceived the
motion conveyed by the PLDs per se. For LAT participants, happiness proved to be"
56a0ead811a1bf15e42be8a9a007b0299636f213,Talk the Walk: Navigating New York City through Grounded Dialogue,"Talk the Walk: Navigating New York City through
Grounded Dialogue
Harm de Vries1, Kurt Shuster3, Dhruv Batra3,2, Devi Parikh3,2, Jason Weston3 & Douwe Kiela3
MILA, Université de Montréal; 2Georgia Institute of Technology; 3Facebook AI Research"
566038a3c2867894a08125efe41ef0a40824a090,Face recognition and gender classification in personal memories,"978-1-4244-2354-5/09/$25.00 ©2009 IEEE
ICASSP 2009"
56dca23481de9119aa21f9044efd7db09f618704,Riemannian Dictionary Learning and Sparse Coding for Positive Definite Matrices,"Riemannian Dictionary Learning and Sparse
Coding for Positive Definite Matrices
Anoop Cherian
Suvrit Sra"
560447750f45ea18cb21f202e30344c4fe12c52e,Removal Of Blurred And Illuminated Face Image With Different Poses,"International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014                                                                           33
ISSN 2229-5518
Removal Of Blurred And Illuminated
Face Image With Different Poses
C.Indhumathi, C.Dhanamani"
56c5d08103c5bf4b263a81da73135455136bbe6d,Kernel MBPLS for a Scalable and Multi-Camera Person Re-Identification System,"Kernel MBPLS for a Scalable and Multi-Camera Person
Re-Identification System
Raphael Pratesa,*, William Robson Schwartza
Smart Surveillance Interest Group, Computer Science Department, Universidade Federal de Minas Gerais, Minas
Gerais, Brazil
Person re-identification aims at establishing global identities for individuals as they move
cross a camera network.
It is a challenging task due to the drastic appearance changes that
occur between cameras as consequence of different pose and illumination conditions. Pairwise
matching models yield state-of-the-art results in most of the person re-identification datasets by
apturing nuances that are robust and discriminative for a specific pair of cameras. Nonetheless,
pairwise models are not scalable with the number of surveillance cameras. Therefore, elegant solu-
tions combining scalability with high matching rates are crucial for the person re-identification in
real-world scenarios. In this work, we tackle this problem proposing a multi-camera nonlinear re-
gression model called Kernel Multiblock Partial Least Squares (Kernel MBPLS), a single subspace
model for the entire camera network that uses all the labeled information. In this subspace, probe
nd gallery individual can be successfully matched. Experimental results in three multi-camera
person re-identification datasets (WARD, RAID and SAIVT-SoftBIO) demonstrate that the Ker-
nel MBPLS presents favorable aspects such as the scalability and robustness with respect to the
number of cameras combined with the high matching rates."
5665d98136cc39322d47cb782b8e49d141c5a29e,An Agile Framework for Real-time Visual Tracking in Videos,"REPORT DOCUMENTATION PAGE
Form Approved OMB NO. 0704-0188
this  collection  of
information
is  estimated
instructions,
The  public  reporting  burden
Send  comments
searching  existing  data  sources,  gathering  and  maintaining
to  Washington
regarding
this  burden  estimate  or  any  other  aspect  of
Information  Operations  and  Reports,  1215 Jefferson  Davis  Highway,  Suite  1204,  Arlington  VA,  22202-4302.
Headquarters  Services,  Directorate
Respondents  should  be  aware  that  notwithstanding  any  other  provision  of  law,  no  person  shall  be  subject  to  any  oenalty  for  failing  to  comply  with  a  collection  of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
. REPORT DATE (DD-MM-YYYY)
the  data  needed,  and  completing  and  reviewing
this  collection  of"
516a27d5dd06622f872f5ef334313350745eadc3,Fine-Grained Facial Expression Analysis Using Dimensional Emotion Model,"> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <
Fine-Grained Facial Expression Analysis Us-
ing Dimensional Emotion Model
ǂFeng Zhou, ǂShu Kong, Charless C. Fowlkes, Tao Chen, *Baiying Lei, Member, IEEE"
513d9d0fdc9efa0f042ed1a3c8eab1fbb564f67b,Efficient Processing of Deep Neural Networks: A Tutorial and Survey,"Efficient Processing of Deep Neural Networks:
A Tutorial and Survey
Vivienne Sze, Senior Member, IEEE, Yu-Hsin Chen, Student Member, IEEE, Tien-Ju Yang, Student
Member, IEEE, Joel Emer, Fellow, IEEE"
51c3050fb509ca685de3d9ac2e965f0de1fb21cc,Fantope Regularization in Metric Learning,"Fantope Regularization in Metric Learning
Marc T. Law
Nicolas Thome
Matthieu Cord
Sorbonne Universit´es, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France"
51c7c5dfda47647aef2797ac3103cf0e108fdfb4,Cs 395t: Celebrity Look-alikes *,"CS 395T: Celebrity Look-Alikes ∗
Adrian Quark"
511dda02d39dc8107ac385ea8a572970e2eb9b7b,"Face recognition using distributed, mobile computing","014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
Klipsch School of Electrical and Computer Engineering
Gregorio Hinojos and Phillip L. De Leon
Las Cruces, New Mexico, U.S.A.
New Mexico State University
. INTRODUCTION"
519f4eb5fe15a25a46f1a49e2632b12a3b18c94d,Non-Lambertian Reflectance Modeling and Shape Recovery of Faces Using Tensor Splines,"Non-Lambertian Reflectance Modeling and
Shape Recovery of Faces using Tensor Splines
Ritwik Kumar, Student Member, IEEE, Angelos Barmpoutis, Member, IEEE,
Arunava Banerjee, Member, IEEE, and Baba C. Vemuri, Fellow, IEEE"
5171157c2c09a85ad6558c5c03da6b75b0cf5fe6,Dynamic Coattention Networks For Question Answering,"Published as a conference paper at ICLR 2017
DYNAMIC COATTENTION NETWORKS
FOR QUESTION ANSWERING
Caiming Xiong∗, Victor Zhong∗, Richard Socher
Salesforce Research
Palo Alto, CA 94301, USA
{cxiong, vzhong,"
518439ba2895c84ba686db5b83674c440e637c0b,The Price of Fair PCA: One Extra Dimension,"The Price of Fair PCA: One Extra Dimension
Samira Samadi
Georgia Tech
Uthaipon Tantipongpipat
Georgia Tech
Jamie Morgenstern
Georgia Tech
Mohit Singh
Georgia Tech
Santosh Vempala
Georgia Tech"
519db7bb7d1778bddfbe3725220756627373d69a,A Comparative Study of Local Matching Approach for Face Recognition,"A Comparative Study of Local Matching
Approach for Face Recognition
Jie Zou, Member, IEEE, Qiang Ji, Senior Member, IEEE, and George Nagy, Fellow, IEEE
to holistic methods,"
516a014f4654c90a22ae3d363b6e80bda68a084d,Adaptive human-centered representation for activity recognition of multiple individuals from 3D point cloud sequences,"Adaptive Human-Centered Representation for Activity Recognition of
Multiple Individuals from 3D Point Cloud Sequences
Hao Zhang1, Christopher Reardon2, Chi Zhang2, and Lynne E. Parker2"
51c7236feaa2ae23cef78c7bca75c69d7081e24a,Deep multi-frame face super-resolution,"Deep multi-frame face super-resolution
Evgeniya Ustinova, Victor Lempitsky
October 17, 2017"
51cc78bc719d7ff2956b645e2fb61bab59843d2b,Face and Facial Expression Recognition with an Embedded System for Human-Robot Interaction,"Face and Facial Expression Recognition with an
Embedded System for Human-Robot Interaction
Yang-Bok Lee1, Seung-Bin Moon1, and Yong-Guk Kim 1*
School of Computer Engineering, Sejong University, Seoul, Korea"
517cc1084952133b6d2ecd0a535cdc3ddf8955d7,A Graphical Social Topology Model for Multi-Object Tracking,"A Graphical Social Topology Model for
Multi-Object Tracking
Shan Gao, Xiaogang Chen, Qixiang Ye, Senior Member, IEEE, Arjan Kuijper, Member, IEEE,
Xiangyang Ji, Member, IEEE,"
511b06c26b0628175c66ab70dd4c1a4c0c19aee9,Face Recognition using Laplace Beltrami Operator by Optimal Linear Approximations,"International Journal of Engineering Research and General ScienceVolume 2, Issue 5, August – September 2014
ISSN 2091-2730
Face Recognition using Laplace Beltrami Operator by Optimal Linear
Approximations
Tapasya Sinsinwar1, P.K.Dwivedi2
Professor and Director Academics, Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj.)
Research Scholar (M.Tech, IT), Institute of Engineering and Technology"
5122a5d4bdf58b4f413d4de1fb250d4ab5e0608a,Gender Classification from Pose-Based GEIs,"Gender Classification from Pose-Based GEIs(cid:2)
Ra´ul Mart´ın-F´elez, Ram´on A. Mollineda, and J. Salvador S´anchez
Institute of New Imaging Technologies (INIT)
Universitat Jaume I. Av. Sos Baynat s/n, 12071, Castell´o de la Plana, Spain"
5146832515ba8b4ad48372967d9fb7dcdea61869,CUNI System for WMT16 Automatic Post-Editing and Multimodal Translation Tasks,"Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 646–654,
Berlin, Germany, August 11-12, 2016. c(cid:13)2016 Association for Computational Linguistics"
51a81a17328ad36f1bbc15e240076b68d3271c0c,Laplacian object: One-shot object detection by locality preserving projection,"LAPLACIAN OBJECT: ONE-SHOT OBJECT DETECTION BY LOCALITY PRESERVING
PROJECTION
Sujoy Kumar Biswas and Peyman Milanfar
Electrical Engineering Department
University of California, Santa Cruz
156 High Street, Santa Cruz, CA, 95064"
5193328862366e114781cb6b196ae958c1553357,Incremental Learning in Person Re-Identification,"Incremental Learning in Person Re-Identification
Prajjwal Bhargava
SRM University
Chennai"
511662e02373433c8c9e27d1425707069e3695b7,Effects of image compression on ear biometrics,"Engineering and Technology Copyright. The copy of record is available at IET Digital Library.
Research Article
Effects of image compression on ear
iometrics
ISSN 2047-4938
Received on 23rd October 2015
Revised on 27th January 2016
Accepted on 15th February 2016
doi: 10.1049/iet-bmt.2015.0098
www.ietdl.org
Christian Rathgeb1 ✉, Anika Pflug2, Johannes Wagner1, Christoph Busch1
da/sec – Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany
Media Security and IT Forensics – Fraunhofer Institute for Secure Information Technology, Germany
✉ E-mail:"
5120fb7db8eadb26118847d0553fca1c22ed6f07,Deep Extreme Tracker Based on Bootstrap Particle Filter,"Journal of Theoretical and Applied Information Technology
31st August 2014. Vol. 66 No.3
© 2005 - 2014 JATIT & LLS. All rights reserved.
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195
DEEP EXTREME TRACKER BASED ON
BOOTSTRAP PARTICLE FILTER
ALEXANDER A S GUNAWAN,
2 MOHAMAD IVAN FANANY,
WISNU JATMIKO
Bina Nusantara University, Mathematics Department, School of Computer Science, Jakarta, Indonesia
, 3 Universitas Indonesia, Faculty of Computer Science, Depok, Indonesia
E-mail:  1 2 3"
51b70582fb0d536d4a235f91bf6ad382f29e2601,Detection of emotions from video in non-controlled environment. (Détection des émotions à partir de vidéos dans un environnement non contrôlé),"Detection of emotions from video in non-controlled
environment
Rizwan Ahmed Khan
To cite this version:
Rizwan Ahmed Khan. Detection of emotions from video in non-controlled environment. Image
Processing. Universit´e Claude Bernard - Lyon I, 2013. English. <NNT : 2013LYO10227>.
<tel-01166539v2>
HAL Id: tel-01166539
https://tel.archives-ouvertes.fr/tel-01166539v2
Submitted on 23 Jun 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
51319bb12c67fb5b11cbf2012a7e2059718b52eb,Local Fisher Discriminant Analysis for Pedestrian Re-identification,"Local Fisher Discriminant Analysis for Pedestrian Re-identification
Sateesh Pedagadi, James Orwell
Kingston University London
Sergio Velastin
Universidad de Santiago de Chile
Boghos Boghossian
Ipsotek Ltd, UK"
5161e38e4ea716dcfb554ccb88901b3d97778f64,SSPP-DAN: Deep domain adaptation network for face recognition with single sample per person,"SSPP-DAN: DEEP DOMAIN ADAPTATION NETWORK FOR
FACE RECOGNITION WITH SINGLE SAMPLE PER PERSON
Sungeun Hong, Woobin Im, Jongbin Ryu, Hyun S. Yang
School of Computing, KAIST, Republic of Korea"
5121f42de7cb9e41f93646e087df82b573b23311,Classifying Online Dating Profiles on Tinder using FaceNet Facial Embeddings,"CLASSIFYING ONLINE DATING PROFILES ON TINDER USING FACENET FACIAL
EMBEDDINGS
Charles F. Jekel and Raphael T. Haftka
Department of Mechanical & Aerospace Engineering - University of Florida - Gainesville, FL 32611"
51cf3fa26b7c31c10427317fb5d72a6712023279,What Shape Is Your Conjugate? A Survey of Computational Convex Analysis and Its Applications,"A SURVEY OF COMPUTATIONAL CONVEX ANALYSIS AND ITS APPLICATIONS
WHAT SHAPE IS YOUR CONJUGATE?
YVES LUCET"
51d1a6e15936727e8dd487ac7b7fd39bd2baf5ee,"A Fast and Accurate System for Face Detection, Identification, and Verification","JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
A Fast and Accurate System for Face Detection,
Identification, and Verification
Rajeev Ranjan, Ankan Bansal, Jingxiao Zheng, Hongyu Xu, Joshua Gleason, Boyu Lu, Anirudh Nanduri,
Jun-Cheng Chen, Carlos D. Castillo, Rama Chellappa"
5194a8acc87dd05a92a21f94fea966a2815f9b38,Noise aware analysis operator learning for approximately cosparse signals,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
51e43578ad761c7c4d58cb159eee0f8e6cf0f7a4,Incremental indexing and distributed image search using shared randomized vocabularies,"Introduction
Method
Results
Incremental Indexing and Distributed Image Search
using Shared Randomized Vocabularies
Rapha¨el Mar´ee, Philippe Denis, Louis Wehenkel, Pierre Geurts
GIGA Bioinformatics
GIGA Research ; Dept. EE & CS (Montefiore Institute)
University of Li`ege, Belgium
MIR 2010
March 29–31, 2010
Philadelphia, Pennsylvania, USA
Mar´ee et al.
Shared Randomized Vocabularies
(1 / 44)"
51d97f4e4385a3da78bf9277a5426216198698c3,Improving the Accuracy of Face Detection for Damaged Video and Distant Targets,"Improving the Accuracy of Face Detection for Damaged Video and
Distant Targets
Department of Communication Engineering, Oriental Institute of Technology, New Taiepi City, Taiwan
Jun-Horng Chen
Keywords:
Error Concealment, Face Detection, Super-resolution."
514fdf2152dda3a39fc05eb6e1c80314837d96a2,Detailed 3D Representations for Object Recognition and Modeling,"Detailed 3D Representations for
Object Recognition and Modeling
M. Zeeshan Zia, Student Member, IEEE, Michael Stark, Member, IEEE,
Bernt Schiele, Member, IEEE, and Konrad Schindler, Member, IEEE"
51bfc693d170b4171f5bd9f9aed51f1fe8b5304d,Zero-Shot Recognition via Direct Classifier Learning with Transferred Samples and Pseudo Labels,"Zero-shot Recognition via Direct Classifier Learning
with Transferred Samples and Pseudo Labels
AAAI Anonymous Submission 182"
5157dde17a69f12c51186ffc20a0a6c6847f1a29,Evolutionary Cost-Sensitive Extreme Learning Machine,"Evolutionary Cost-sensitive Extreme Learning
Machine
Lei Zhang, Member, IEEE, and David Zhang, Fellow, IEEE"
3dec830b2514e82c714162622b3077966660112f,Statistical Evaluation of Face Recognition Techniques under Variable Environmental Constraints,"International Journal of Statistics and Probability; Vol. 4, No. 4; 2015
ISSN 1927-7032      E-ISSN 1927-7040
Published by Canadian Center of Science and Education
Statistical Evaluation of Face Recognition Techniques under Variable
Environmental Constraints
Louis Asiedu1, Atinuke O. Adebanji2, Francis Oduro3
& Felix O. Mettle4
Department of Statistics, University of Ghana, Legon-Accra, Ghana
Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
Department  of  Mathematics,  Kwame  Nkrumah  University  of  Science  and  Technology,  Kumasi,  Ghana
Department of Statistics, University of Ghana, Legon-Accra, Ghana
Correspondence:  Louis  Asiedu,  Department  of  Statistics,  University  of  Ghana,  Legon-Accra,  Ghana.  Tel:
33-543-426-707. E-mail:
Received: August 1, 2015      Accepted: August 19, 2015      Online Published: October 9, 2015
doi:10.5539/ijsp.v4n4p93                    URL: http://dx.doi.org/10.5539/ijsp.v4n4p93"
3d74d4177f5c1444b73221c12f359e858625a691,Composite-ISA Cores : Enabling Multi-ISA Heterogeneity Using a Single ISA,"ISCA 2018 Submission #283
Confidential Draft: DO NOT DISTRIBUTE
Composite-ISA Cores: Enabling Multi-ISA Heterogeneity
Using a Single ISA"
3d6229044f6605604818f39f08c5270a5a132a03,Projective Nonnegative Matrix Factorization based on α-Divergence,"Projective Nonnegative Matrix Factorization based on
-Divergence
Zhirong Yang and Erkki Oja
Department of Information and Computer Science∗
Aalto University School of Science and Technology
P.O.Box 15400, FI-00076, Aalto, Finland"
3dbb2ca6942eb49538d92823fe22c7475e866ca1,Institutionen För Systemteknik Department of Electrical Engineering Examensarbete Autonomous Morphometrics Using Depth Cameras for Object Classification and Identification Autonomous Morphometrics Using Depth Cameras for Object Classification and Identification Examensarbete Utfört I Datorseende Vid Tekniska Högskolan Vid Linköpings Universitet Av,"Institutionen för systemteknik
Department of Electrical Engineering
Examensarbete
Autonomous Morphometrics using Depth Cameras for
Object Classification and Identification
Examensarbete utfört i Datorseende
vid Tekniska högskolan vid Linköpings universitet
Felix Björkeson
LiTH-ISY-EX--13/4680--SE
Linköping 2013
Department of Electrical Engineering
Linköpings universitet
SE-581 83 Linköping, Sweden
Linköpings tekniska högskola
Linköpings universitet
581 83 Linköping"
3da97d97b12fcf22208c36f471119f33a08d9b6f,Multi-modal Biometric system using ear and face(2D+3D) Modalities,"Multi-modal Biometric system using ear and
face(2D+3D) Modalities
M.Pujitha Raj
Computer Science and engineering
Amrita University
Coimbatore, India
B.Achyut Sarma
Computer Science and engineering
Amrita University
Coimbatore, India"
3daafe6389d877fe15d8823cdf5ac15fd919676f,Human Action Localization with Sparse Spatial Supervision,"Human Action Localization
with Sparse Spatial Supervision
Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid, Fellow, IEEE"
3daf1191d43e21a8302d98567630b0e2025913b0,Can Autism be Catered with Artificial Intelligence-Assisted Intervention Technology? A Literature Review,"Can Autism be Catered with Artificial Intelligence-Assisted Intervention
Technology? A Literature Review
Muhammad Shoaib Jaliawala∗, Rizwan Ahmed Khan∗†
Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan
Universit´e Claude Bernard Lyon 1, France"
3dcc51a37f2e5e91d77ff00f18178484c4e938cb,Excitation Dropout: Encouraging Plasticity,"Under review as a conference paper at ICLR 2019
EXCITATION DROPOUT: ENCOURAGING PLASTICITY
IN DEEP NEURAL NETWORKS
Anonymous authors
Paper under double-blind review"
3d36f941d8ec613bb25e80fb8f4c160c1a2848df,Out-of-Sample Generalizations for Supervised Manifold Learning for Classification,"Out-of-sample generalizations for supervised
manifold learning for classification
Elif Vural and Christine Guillemot"
3d7a5d1fbec861542631fcb10f58e38f4f51a04c,Face Recognition Application of Blur-Robust,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358
Face Recognition Application of Blur-Robust
Pitta Santhosh Kumar1, Ankush Jain2
M.Tech student, Department of CSE, Anurag Group of Institutions, Hyderabad, India
Assistant professor, Department of CSE, Anurag Group of Institutions, Hyderabad, India"
3d5a1be4c1595b4805a35414dfb55716e3bf80d8,Hidden Two-Stream Convolutional Networks for Action Recognition,"Hidden Two-Stream Convolutional Networks for
Action Recognition
Yi Zhu, Zhenzhong Lan, Shawn Newsam, Alexander G. Hauptmann"
3de3c479164312ab3a1795ee84f20c16632c04c4,Scalable Deep Learning Logo Detection,"Scalable Deep Learning Logo Detection
Hang Su∗, Shaogang Gong†, Xiatian Zhu‡
† Queen Mary University of London ‡ Vision Semantics Ltd."
3d62b2f9cef997fc37099305dabff356d39ed477,Joint Face Alignment and 3D Face Reconstruction with Application to Face Recognition,"Joint Face Alignment and 3D Face
Reconstruction with Application to Face
Recognition
Feng Liu, Qijun Zhao, Member, IEEE, Xiaoming Liu, Member, IEEE and Dan Zeng"
3d97f739ae76c8db1146da4aaeb0dc1ef3d31c33,Données multimodales pour l ’ analyse d ’ image,"UNIVERSITÉDEGRENOBLENoattribuéparlabibliothèqueTHÈSEpourobtenirlegradedeDOCTEURDEL’UNIVERSITÉDEGRENOBLESpécialité:MathématiquesetInformatiquepréparéeauLaboratoireJeanKuntzmanndanslecadredel’ÉcoleDoctoraleMathématiques,SciencesetTechnologiesdel’Information,InformatiqueprésentéeetsoutenuepubliquementparMatthieuGuillauminle27septembre2010ExploitingMultimodalDataforImageUnderstandingDonnéesmultimodalespourl’analysed’imageDirecteursdethèse:CordeliaSchmidetJakobVerbeekJURYM.ÉricGaussierUniversitéJosephFourierPrésidentM.AntonioTorralbaMassachusettsInstituteofTechnologyRapporteurMmeTinneTuytelaarsKatholiekeUniversiteitLeuvenRapporteurM.MarkEveringhamUniversityofLeedsExaminateurMmeCordeliaSchmidINRIAGrenobleExaminatriceM.JakobVerbeekINRIAGrenobleExaminateur"
3d91ba69bfbb2ba018419342d279f2d7571530f6,Qualitative Tracking Performance Evaluation without Ground-Truth,"Qualitative Tracking Performance Evaluation without Ground-Truth∗
Dept. of Computer Science and Engineering
Dept. of Computer Science and Engineering
Jihun Hamm
Bohyung Han
POSTECH, Korea"
3da4fa2365c01f53180050c7d332107089d913c0,Face Recognition Using Parzenfaces,"Face Recognition Using Parzenfaces
Zhirong Yang and Jorma Laaksonen
Laboratory of Computer and Information Science ⋆
Helsinki University of Technology
P.O. Box 5400, FI-02015 TKK, Espoo, Finland
{zhirong.yang,"
3dd4d719b2185f7c7f92cc97f3b5a65990fcd5dd,Ensemble of Hankel Matrices for Face Emotion Recognition,"Ensemble of Hankel Matrices for
Face Emotion Recognition
Liliana Lo Presti and Marco La Cascia
DICGIM, Universit´a degli Studi di Palermo,
V.le delle Scienze, Ed. 6, 90128 Palermo, Italy,
DRAFT
To appear in ICIAP 2015"
3da12b99cd8040bb374eed160f8016b3fe492967,Multiperson Tracking by Online Learned Grouping Model With Nonlinear Motion Context,"Multi-person Tracking by Online Learned Grouping
Model with Non-linear Motion Context
Xiaojing Chen, Zhen Qin, Le An, Member, IEEE, and Bir Bhanu, Fellow, IEEE"
3d1b0c7e9ef0e31dd635041539e795dc07ebee86,Tracking people in 3D using a bottom-up top-down detector,"Tracking People in 3D Using a Bottom-Up Top-Down Detector
Luciano Spinello, Matthias Luber and Kai O. Arras
Social Robotics Lab, University of Freiburg, Germany
{spinello, luber,"
3d88180732d63a4babf3a4b1a82dd7fdf27a7520,"Facial expression, size, and clutter: Inferences from movie structure to emotion judgments and back.","23Attention, Perception, &Psychophysics ISSN 1943-3921Volume 78Number 3 Atten Percept Psychophys (2016)78:891-901DOI 10.3758/s13414-015-1003-5Facial expression, size, and clutter:Inferences from movie structure to emotionjudgments and backJames E. Cutting & Kacie L. Armstrong"
3db123d094c7ba33bbd3c4ccbea77e2093ad6174,Online Visual Multi-Object Tracking via Labeled Random Finite Set Filtering,"JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, X XXXX
A Labeled Random Finite Set Online
Multi-Object Tracker for Video Data
Du Yong Kim, Ba-Ngu Vo, Member, IEEE, and Ba-Tuong Vo, Member, IEEE"
3dc3f0b64ef80f573e3a5f96e456e52ee980b877,Maximum Likelihood Training of the Embedded HMM for Face Detection and Recognition,"AXU ED TRAG F TE EBEDDED  FR FACE
DETECT AD RECGT
Aa V. e(cid:12)a ad  . aye 
Cee f Siga ad age ceig
Sch f Eecica ad C	e Egieeig
Gegia i	e f Techgy Aaa GA 30332
faa"
3d67e97227846f579d1825e00d395d30e17f5d0e,Face and ECG Based Multi-Modal Biometric Authentication,"Face and ECG Based Multi-Modal
Biometric Authentication
Ognian Boumbarov1, Yuliyan Velchev1, Krasimir Tonchev1
nd Igor Paliy2
Technical University of Sofia
Ternopil National Economic University
Bulgaria
Ukraine
. Introduction
A biometric system is essentially a pattern recognition system. This system measures
nd analyses human body physiological characteristics, such as face and facial features,
fingerprints, eye, retinas, irises, voice patterns or behavioral characteristic for enrollment,
verification or identification (Bolle & Pankanti, 1998). Uni-modal biometric systems have
poor performance and accuracy, and over last few decades the multi-modal biometric systems
have become very popular. The main objective of multi biometrics is to reduce one or more
false accept rate, false reject rate and failure to enroll rate. Face Recognition (FR) is still
onsidered as one of the most challenging problems in pattern recognition. The FR systems
try to recognize the human face in video sequences as 3D object (Chang et al., 2003; 2005), in
unconstrained conditions, in comparison to the early attempts of 2D frontal faces in controlled
onditions. Despite the effort spent on research today there is not a single, clearly defined,"
3dcebd4a1d66313dcd043f71162d677761b07a0d,Local binary pattern domain local appearance face recognition,"Yerel Đkili Örüntü Ortamında Yerel Görünüme Dayalı Yüz Tanıma
Local Binary Pattern Domain Local Appearance Face Recognition
Hazım K. Ekenel1, Mika Fischer1, Erkin Tekeli2, Rainer Stiefelhagen1, Aytül Erçil2
Institut für Theorestische Informatik, Universität Karlsruhe (TH), Karlsruhe, Germany
Faculty of Engineering and Natural Sciences, Sabancı University, Đstanbul, Turkey
Özetçe
Bu bildiride, ayrık kosinüs dönüşümü tabanlı yerel görünüme
dayalı  yüz  tanıma  algoritması  ile  yüz  imgelerinin  yerel  ikili
örüntüye  (YĐÖ)  dayalı  betimlemesini  birleştiren  hızlı  bir  yüz
tanıma  algoritması  sunulmuştur.  Bu  tümleştirmedeki  amaç,
yerel  ikili  örüntünün  dayanıklı  imge  betimleme  yeteneği  ile
yrık  kosinüs  dönüşümünün  derli-toplu  veri  betimleme
yeteneğinden  yararlanmaktır.  Önerilen  yaklaşımda,  yerel
görünümün  modellenmesinden  önce  girdi  yüz  imgesi  yerel
ikili  örüntü  ile  betimlenmiştir.  Elde  edilen  YĐÖ  betimlemesi,
irbirleri  ile  örtüşmeyen  bloklara  ayrılmış  ve  her  blok
üzerinde  yerel  özniteliklerin  çıkartımı  için  ayrık  kosinüs
dönüşümü uygulanmıştır.  Çıkartımı  yapılan  yerel  öznitelikler
daha  sonra  arka  arkaya  eklenerek  global  öznitelik  vektörü
oluşturulmuştur.  Önerilen  algoritma,  CMU  PIE  ve  FRGC"
3d7fce66c1880f4b29171e415cfad57d8b96ced2,Exploiting Ambiguities in the Analysis of Cumulative Matching Curves for Person Re-identification,
3df5e17e87144b1e84b5ab9467bc2c2f233b66c7,Convolutional Architecture Exploration for Action Recognition and Image Classification,"Convolutional Architecture Exploration for
Action Recognition and Image Classification
JT Turner∗1,2, David Aha1, Leslie Smith1, and Kalyan Moy Gupta2
Knexus Research Corporation;
74 Waterfront Street Suite 310; National Harbor, MD 20745
Navy Center for Applied Research in Artificial Intelligence;
Naval Research Laboratory (Code 5514); Washington, DC 20375"
3d42e17266475e5d34a32103d879b13de2366561,The Global Dimensionality of Face Space,"Proc.4thIEEEInt’lConf.AutomaticFace&GestureRecognition,Grenoble,France,pp264–270
The Global Dimensionality of Face Space
(cid:3)
http://venezia.rockefeller.edu/
The Rockefeller University
Penio S. Penev
Laboratory of Computational Neuroscience
Lawrence Sirovich
Laboratory for Applied Mathematics
Mount Sinai School of Medicine
(cid:13) IEEE2000
230 York Avenue, New York, NY 10021
One Gustave L. Levy Place, New York, NY 10029"
3d8c8acb8c59e9f23f048f44a23f36ffd791cdf5,Visual tracking over multiple temporal scales,"Khan, Muhammad Haris (2015) Visual tracking over
multiple temporal scales. PhD thesis, University of
Nottingham.
Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/33056/1/Thesis.pdf
Copyright and reuse:
The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.
This article is made available under the University of Nottingham End User licence and may
e reused according to the conditions of the licence.  For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf
For more information, please contact"
3dba6c86541aad3ec8f54c55d57eca9aa98f4ed2,PAC-Bayesian Majority Vote for Late Classifier Fusion,"PAC-Bayesian Majority Vote for Late Classifier Fusion∗
Aix-Marseille Univ., LIF-QARMA, CNRS, UMR 7279, F-13013, Marseille, France
Emilie Morvant
St´ephane Ayache
Amaury Habrard
Univ. of St-Etienne, Lab. Hubert Curien, CNRS, UMR 5516, F-42000, St-Etienne, France
May 2, 2014"
3df7401906ae315e6aef3b4f13126de64b894a54,Robust learning of discriminative projection for multicategory classification on the Stiefel manifold,"Robust Learning of Discriminative Projection for Multicategory Classification on
the Stiefel Manifold
Duc-Son Pham and Svetha Venkatesh
Dept. of Computing, Curtin University of Technology
GPO Box U1987, Perth, WA 6845, Australia"
3dd1338a5d0aa47fa2aef31654ee1392b8089991,Crowdsourcing the construction of a 3D object recognition database for robotic grasping,"014 IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China
978-1-4799-3685-4/14/$31.00 ©2014 IEEE"
3d1382fa43c31e594ed2d84dda9984b1db047b0e,Compositional Memory for Visual Question Answering,"Compositional Memory for Visual Question Answering
Aiwen Jiang1,2
Fang Wang2
Fatih Porikli2
Yi Li∗ 2,3
NICTA and ANU
{fang.wang,
Toyota Research Institute North America
feature as the first word to initialize the sequential learning.
While the use of holistic approach is straightforward and
onvenient, it is, however, debatably problematic. For ex-
mple, in the VQA problems many answers are directly re-
lated to the contents of some image regions. Therefore, it
is dubious if the holistic features are rich enough to provide
the information only available at regions. Also, it may hin-
der the exploration of finer-grained local features for VQA.
In this paper we propose a Compositional Memory for
n end-to-end training framework. Our approach takes the
dvantage of the recent progresses in image captioning [3,
], natural language processing [5], and computer vision to"
3d21b7b4f48e614bc2f2b87eb110aa329b7d66d8,Recognizing Human Actions by Using Effective Codebooks and Tracking,"Recognizing Human Actions by using Effective
Codebooks and Tracking
Lamberto Ballan, Lorenzo Seidenari, Giuseppe Serra, Marco Bertini and Alberto
Del Bimbo"
3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a,Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs,"Random Multispace Quantization as
n Analytic Mechanism for BioHashing
of Biometric and Random Identity Inputs
Andrew B.J. Teoh, Member, IEEE, Alwyn Goh, and David C.L. Ngo, Member, IEEE"
3dffacda086689c1bcb01a8dad4557a4e92b8205,Multiple Object Tracking: A Literature Review,"Multiple Object Tracking: A Literature Review
Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang, Wei Liu, Xiaowei Zhao and Tae-Kyun Kim"
3d67aa108e65e636158abc0f31b703af3d31baa6,Decorrelating Semantic Visual Attributes by Resisting the Urge to Share,"Decorrelating Semantic Visual Attributes by Resisting the Urge
Supplementary material for CVPR 2014 submission ID 0824
to Share
In this document, we provide supplementary material for our CVPR 2014 submission “Decorrelating Semantic
Visual Attributes by Resisting the Urge to Share”(Paper ID 0824). Sec 1 gives additional details for our experi-
mental setup (Sec 4 of the paper). Sec 1.1 lists the groups used in all three datasets in our experiments. Sec 1.2
discusses the details of the image descriptors used for each dataset. Sec 2 discusses how attributes are localized
for our experiments in Sec 4.1 in the paper. Sec 3 discusses how it is posible to set parameters that generalize well
to novel test sets, using only training data. Sec 4 discusses the details of the optimization of our formulation (Eq 4
in the paper).
Datasets
.1 Groups
(see para on Semantic groups in Sec 4 in the paper)
Fig 1, 2 and 3 show the attribute groups used in our experiments on the CUB, AwA and aPY datasets
respectively. The 28 CUB groups come pre-specified with the dataset [6]. The groups on AwA match exactly the
groups specified in [5]. Those on aPY also match the groups outlined in [5] on the 25 attributes (see paper) used
in our experiments (aPY-25). In each figure, attribute groups are enclosed in shaded boxes, and phrases in larger
font labeling the boxes indicate the rationale for the grouping.
.2 Features
(see also Sec 3.2 and para on Features in Sec 4 in the paper)"
3dc78b41ed926b88c9cc4d40c6c5250bfafad74a,A pilot study for mood-based classification of TV programmes,"Research & Development
White Paper
WHP 231
September 2012
A Pilot Study for
Mood-based Classification of TV Programmes
Jana Eggink, Penelope Allen, Denise Bland
BRITISH BROADCASTING CORPORATION"
3d94f81cf4c3a7307e1a976dc6cb7bf38068a381,Data-Dependent Label Distribution Learning for Age Estimation,"Data-Dependent Label Distribution Learning
for Age Estimation
Zhouzhou He, Xi Li, Zhongfei Zhang, Fei Wu, Xin Geng, Yaqing Zhang, Ming-Hsuan Yang, and Yueting Zhuang"
3d5187a957cc90f4143e6302786d65dbedf7d9bb,Stacking With Auxiliary Features for Visual Question Answering,"To Appear In Proceedings of the 16th Annual Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies 2018."
3d9d1f8075ebdd03f86b4e40b9a5d08447ade8d3,Comparison of Illumination Normalization Methods for Face Recognition∗,"COMPARISON OF ILLUMINATION NORMALIZATION METHODS FOR
FACE RECOGNITION(cid:3)
Mauricio Villegas Santamar·(cid:17)a and Roberto Paredes Palacios
Instituto Tecnol·ogico de Inform·atica
Universidad Polit·ecnica de Valencia
Camino de Vera s/n, 46022 Valencia (Spain)"
3d5b8127ce57279f9fd77d3a24d8034b485163a4,System ( tm ) for Image and Vision Computing Manuscript Draft Manuscript Number : IMAVIS-D16-00270 R 2 Title : Extended three-dimensional rotation invariant local binary patterns,"Elsevier Editorial System(tm) for Image and
Vision Computing
Manuscript Draft
Manuscript Number: IMAVIS-D-16-00270R2
Title: Extended three-dimensional rotation invariant local binary
patterns
Article Type: Full Length Article
Keywords: Local binary patterns (LBP); Three-dimensions; Rotation
invariance; Texture classification
Corresponding Author: Mr. Leonardo Citraro, MSc.
Corresponding Author's Institution: University of Southampton
First Author: Leonardo Citraro, MSc.
Order of Authors: Leonardo Citraro, MSc.; Sasan Mahmoodi, Professor, Phd;
Angela Darekar, Phd; Brigitte Vollmer, Professor, Phd"
3db588f1e58c1207685771d8015fa9427d731a53,An automatic 3D expression recognition framework based on sparse representation of conformal images,"An Automatic 3D Expression Recognition Framework based on Sparse
Representation of Conformal Images
Wei Zeng, Huibin Li, Liming Chen, Jean-Marie Morvan, Xianfeng David Gu"
3d740c4f2246ce8e63d0eacc2cc1a5c31259e9ee,Discovering Attribute Shades of Meaning with the Crowd,"http://dx.doi.org/10.1007/s11263-014-0798-1
Discovering Attribute Shades of Meaning with the Crowd
Adriana Kovashka · Kristen Grauman
Received: date / Accepted: date"
3da9a9091cfa8f4bf625829faf7a4c35a8fe91e0,Working memory network alterations in high-functioning adolescents with an autism spectrum disorder.,"PDF hosted at the Radboud Repository of the Radboud University
Nijmegen
The following full text is a publisher's version.
For additional information about this publication click this link.
http://hdl.handle.net/2066/183247
Please be advised that this information was generated on 2018-05-20 and may be subject to
hange."
3d42aedd347f927a6bce28d0fa509c6d2132c11f,3D Hand Pose Detection in Egocentric RGB-D Images,"International Journal of Computer Vision manuscript No.
(will be inserted by the editor)
D Hand Pose Detection in Egocentric RGB-D Images
Gr´egory Rogez · J. S. Supanˇciˇc III · Maryam Khademi ·
J. M. M. Montiel · Deva Ramanan
Received: date / Accepted: date"
58b80f0e484d32c9fe5b57648848e048270d435b,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
58cbd5a31e92cff29e29e8b25ee79f30ff4e6d4b,Culture shapes spatial frequency tuning for face identification.,"Journal of Experimental Psychology:
Human Perception and Performance
017, Vol. 43, No. 2, 294 –306
0096-1523/17/$12.00
© 2016 American Psychological Association
http://dx.doi.org/10.1037/xhp0000288
Culture Shapes Spatial Frequency Tuning for Face Identification
Université de Montréal and Université du Québec en Outaouais
Jessica Tardif
Daniel Fiset
Université du Québec en Outaouais
Ye Zhang
Hangzhou Normal University
Amanda Estéphan
Université du Québec en Outaouais
Qiuju Cai, Canhuang Luo, and Dan Sun
Hangzhou Normal University
Frédéric Gosselin
Université de Montréal
Caroline Blais"
58d16e23e1192be4acaf6a29c1f5995817146554,Bringing back simplicity and lightliness into neural image captioning,"Bringing back simplicity and lightliness into neural image captioning
Jean-Benoit Delbrouck and St´ephane Dupont
{jean-benoit.delbrouck,
TCTS Lab, University of Mons, Belgium"
5834555d239c27369e7a4167bb0c0fed725d761e,Improved illumination invariant homomorphic filtering using the dual tree complex wavelet transform,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
5801690199c1917fa58c35c3dead177c0b8f9f2d,Application of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis,"Remote Sens. 2010, 2, 2748-2772; doi:10.3390/rs2122748
OPEN ACCESS
Article
Application of Object Based Classification and High Resolution
Satellite Imagery for Savanna Ecosystem Analysis
ISSN 2072-4292
www.mdpi.com/journal/remotesensing
Cerian Gibbes *, Sanchayeeta Adhikari, Luke Rostant, Jane Southworth, and Youliang Qiu
Department of Geography & Land Use and Environmental Change Institute (LUECI), University of
Florida, 3141 Turlington Hall, P. O. Box 117315, Gainesville, FL 32611, USA;
E-Mails: (S.A.); (L.R.); (J.S.);
(Y.Q.)
*  Author to whom correspondence should be addressed; E-Mail:
Tel.: +1-352-392-0494; Fax: +1-352-392-8855.
Received: 16 October 2010; in revised form: 7 December 2010 / Accepted: 8 December 2010 /
Published: 10 December 2010"
58a6eb3584b2f5df2f25d39a218904d510cae516,The UAVid Dataset for Video Semantic Segmentation,"The UAVid Dataset for Video Semantic Segmentation
Ye Lyu1, George Vosselman1, Guisong Xia2, Alper Yilmaz3, Michael Ying Yang1∗"
5892f8367639e9c1e3cf27fdf6c09bb3247651ed,Estimating Missing Features to Improve Multimedia Information Retrieval,"Estimating Missing Features to Improve Multimedia Information Retrieval
Abraham Bagherjeiran
Nicole S. Love
Chandrika Kamath (cid:3)"
58cb6677b77d5a79fc5b8058829693ca30b36ac5,Learning Similarity Metrics by Factorising Adjacency Matrices,"Learning Similarity Metrics by Factorising Adjacency Matrices
Henry Gouk†
Bernhard Pfahringer†
Michael Cree‡
Department of Computer Science, University of Waikato, Hamilton, New Zealand
School of Engineering, University of Waikato, Hamilton, New Zealand"
587f81ae87b42c18c565694c694439c65557d6d5,DeepFace: Face Generation using Deep Learning,"DeepFace: Face Generation using Deep Learning
Hardie Cate
Fahim Dalvi
Zeshan Hussain"
580054294ca761500ada71f7d5a78acb0e622f19,A Subspace Model-Based Approach to Face Relighting Under Unknown Lighting and Poses,"A Subspace Model-Based Approach to Face
Relighting Under Unknown Lighting and Poses
Hyunjung Shim, Student Member, IEEE, Jiebo Luo, Senior Member, IEEE, and Tsuhan Chen, Fellow, IEEE"
58abb5001087f51dd2e9ab17b9fb8fb3567988e8,Array of Multilayer Perceptrons with No-class Resampling Training for Face Recognition,"Inteligencia Artificial 44(2009), 5-13
doi: 10.4114/ia.v13i44.1041
INTELIGENCIA ARTIFICIAL
http://erevista.aepia.org/
Array of Multilayer Perceptrons with No-class
Resampling Training for Face Recognition
D. Capello1, C. Mart´ınez2,3, D. Milone2 and G. Stegmayer1
CIDISI-UTN-FRSF, CONICET, Lavaise 610 - Santa Fe (Argentina)
Sinc(i)-FICH-UNL, CONICET, Ciudad Universitaria UNL - Santa Fe (Argentina)
Laboratorio de Cibern´etica-FI-UNER, C.C. 47 Suc. 3-3100, Entre R´ıos (Argentina)"
587c48ec417be8b0334fa39075b3bfd66cc29dbe,Serial dependence in the perception of attractiveness,"Journal of Vision (2016) 16(15):28, 1–8
Serial dependence in the perception of attractiveness
Ye Xia
Department of Psychology, University of California,
Berkeley, CA, USA
Allison Yamanashi Leib
Department of Psychology, University of California,
Berkeley, CA, USA
David Whitney
Department of Psychology, University of California,
Berkeley, CA, USA
Helen Wills Neuroscience Institute, University of
California, Berkeley, CA, USA
Vision Science Group, University of California,
Berkeley, CA, USA
The perception of attractiveness is essential for choices
of food, object, and mate preference. Like perception of
other visual features, perception of attractiveness is
stable despite constant changes of image properties due
to factors like occlusion, visual noise, and eye"
58081cb20d397ce80f638d38ed80b3384af76869,Embedded Real-Time Fall Detection Using Deep Learning For Elderly Care,"Embedded Real-Time Fall Detection Using Deep
Learning For Elderly Care
Hyunwoo Lee∗
Jooyoung Kim
Dojun Yang
Joon-Ho Kim
Samsung Research, Samsung Electronics
{hyun0772.lee, joody.kim, dojun.yang,"
58a5c2f9f60bdc6ab640767cb21fd6ba04eef5d7,Towards a Unified 3D Affective Model,"Towards a Unified 3D Affective Model
Kuderna-Iulian Benţa1, Hannelore-Inge Lisei2, Marcel Cremene1
Technical University of Cluj-Napoca, 400016 Cluj-Napoca, România,
“Babeş-Bolyai“ University, 400084 Cluj-Napoca, România,
{Iulian.Benta, Marcel.Cremene,"
581e920ddb6ecfc2a313a3aa6fed3d933b917ab0,Automatic Mapping of Remote Crowd Gaze to Stimuli in the Classroom,"Automatic Mapping of Remote Crowd Gaze to
Stimuli in the Classroom
Thiago Santini1, Thomas K¨ubler1, Lucas Draghetti1, Peter Gerjets2, Wolfgang
Wagner3, Ulrich Trautwein3, and Enkelejda Kasneci1
University of T¨ubingen, T¨ubingen, Germany
Leibniz-Institut f¨ur Wissensmedien, T¨ubingen, Germany
Hector Research Institute of Education Sciences and Psychology, T¨ubingen,
Germany"
58fa85ed57e661df93ca4cdb27d210afe5d2cdcd,Facial expression recognition by re-ranking with global and local generic features,"Cancún Center, Cancún, México, December 4-8, 2016
978-1-5090-4847-2/16/$31.00 ©2016 IEEE"
58888b30e9123c1b1709be1efa92898e090d7bd2,Person Re-Identification by Discriminative Selection in Video Ranking,"Person Re-Identification by Discriminative
Selection in Video Ranking
Taiqing Wang, Shaogang Gong, Xiatian Zhu, and Shengjin Wang"
5860cf0f24f2ec3f8cbc39292976eed52ba2eafd,COMPUTATION EvaBio: A TOOL FOR PERFORMANCE EVALUATION IN BIOMETRICS,"International Journal of Automated Identification Technology, 3(2), July-December 2011, pp. 51-60
COMPUTATION EvaBio: A TOOL FOR PERFORMANCE
EVALUATION IN BIOMETRICS
Julien Mahier, Baptiste Hemery, Mohamad El-Abed*, Mohamed T. El-Allam, Mohamed Y.
Bouhaddaoui and Christophe Rosenberger
GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS,
6 Boulevard Maréchal Juin, 14000 Caen Cedex - France"
5882e62866fe1fcf7f8458e0bd0bcb39057afce3,Attention to Head Locations for Crowd Counting,"Attention to Head Locations for Crowd Counting
Youmei Zhang, Chunluan Zhou, Faliang Chang, and Alex C. Kot, Fellow Member, IEEE"
5872a8ae1879c3f20d94e7cc5a4fcef47b654c7e,Sparse Matching of Salient Facial Curves for Recognizing 3 D Faces,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391
Sparse Matching of Salient Facial Curves for
Recognizing 3D Faces
Madhura Patil1, L. J. Sankpal2
Pune University, Sinhgad Academy of Engineering, Kondhwa, Pune 411048, India
Professor, Pune University, Sinhgad Academy of Engineering, Kondhwa, Pune 411048
cknowledgment
unique  mark
cknowledgment.
increase  acquisition  commotion
furthermore"
589b30ebdb76659ce5d3a19cd9fa0e7a3466d85d,Very Low Resolution Face Recognition Problem,"Very Low Resolution Face Recognition Problem
Wilman ZOU
Pong C. Yuen"
58bf72750a8f5100e0c01e55fd1b959b31e7dbce,PyramidBox: A Context-assisted Single Shot Face Detector,"PyramidBox: A Context-assisted Single Shot
Face Detector.
Xu Tang∗, Daniel K. Du∗, Zeqiang He, and Jingtuo Liu†
Baidu Inc."
58542eeef9317ffab9b155579256d11efb4610f2,"Face Recognition Revisited On Pose , Alignment , Color , Illumination And Expression-Pyten","International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611
Face Recognition Revisited on Pose, Alignment,
Color, Illumination and Expression-PyTen
Mugdha Tripathi
Computer Science, BIT Noida, India"
58823377757e7dc92f3b70a973be697651089756,Automatic facial expression analysis,"Technical Report
UCAM-CL-TR-861
ISSN 1476-2986
Number 861
Computer Laboratory
Automatic facial expression analysis
Tadas Baltrusaitis
October 2014
5 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500
http://www.cl.cam.ac.uk/"
58f7b9ebdb9b380cdfbef12b8abefceee0160a58,Public Document Document Evolution Executive Summary,"Project N° IST-2002-507634 - BioSecure
D7.2.2 – Revision: b3
Contract Number:
Project Acronym:
Project Title:
Instrument:
Start Date of Project:
Duration:
Deliverable Number:
Title of Deliverable:
8 April 2005
IST-2002-507634
BioSecure
Biometrics for Secure Authentication
Network of Excellence
01 June, 2004
6 months
D7.2.2
Report on the face state of the art
Contractual Due Date:"
5865e824e3d8560e07840dd5f75cfe9bf68f9d96,Embodied conversational agents for multimodal automated social skills training in people with autism spectrum disorders,"RESEARCH ARTICLE
Embodied conversational agents for
multimodal automated social skills training in
people with autism spectrum disorders
Hiroki Tanaka1*, Hideki Negoro2, Hidemi Iwasaka3, Satoshi Nakamura1
Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara, 630-
0101, Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara, 630-8538,
Japan, 3 Developmental Center for Child and Adult, Shigisan Hospital, Ikoma-gun, Nara, 636-0815, Japan"
58bb77dff5f6ee0fb5ab7f5079a5e788276184cc,Facial expression recognition with PCA and LBP features extracting from active facial patches,"Facial Expression Recognition with PCA and LBP
Features Extracting from Active Facial Patches
Yanpeng Liua, Yuwen Caoa, Yibin Lia, Ming Liu, Rui Songa
Yafang Wang, Zhigang Xu , Xin Maa†"
585efe3c8efd1a4fa2ed8221c278997521668bc1,Recognizing Face Images with Disguise Variations,
58db008b204d0c3c6744f280e8367b4057173259,Facial Expression Recognition,"International  Journal  of Current Engineering  and Technology
ISSN 2277 - 4106
© 2012  INPRESSCO.  All  Rights Reserved.
Available at http://inpressco.com/category/ijcet
Research Article
Facial Expression  Recognition
Riti Kushwahaa and  Neeta Naina*
Department of Computer  Engineering Malaviya National Institute of Technology, Jaipur, Rajasthan, India
Accepted 3June  2012,  Available online 8 June 2012"
677585ccf8619ec2330b7f2d2b589a37146ffad7,A flexible model for training action localization with varying levels of supervision,"A flexible model for training action localization
with varying levels of supervision
Guilhem Chéron∗ 1 2
Jean-Baptiste Alayrac∗ 1
Ivan Laptev1
Cordelia Schmid2"
67a6bd37e91f2c334b1092fd9e9b16be93f82377,Data Driven Visual Recognition,"Data Driven Visual Recognition
OMID AGHAZADEH
Doctoral Thesis
Stockholm, Sweden, 2014"
6720edcea05b31a9b9a6db98ee71e8ed31efdc38,Practices in source code sharing in astrophysics,"Practices
source
sharing
astrophysics
Shamir1,
Wallin2,
Alice
Allen3,
Bruce
Berriman4,
Peter
Teuben5,
Robert
Nemiroff6,
Jessica
Mink7,
Robert
Hanisch8,
Kimberly
DuPrie3"
6768b558cc58e113096540c123ef3b2c2d2469a1,Maximum Margin Linear Classifiers in Unions of Subspaces,"LYU, ZEPEDA, PÉREZ: US-SVM
Maximum Margin Linear Classifiers in
Unions of Subspaces
Xinrui Lyu1,2
Joaquin Zepeda1
Patrick Pérez1
Technicolor
5576, Cesson-Sevigne, France
École Polytechnique Fédérale de
Lausanne (EPFL)
CH-1015, Lausanne, Switzerland"
67bf0b6bc7d09b0fe7a97469f786e26f359910ef,Abnormal use of facial information in high-functioning autism.,"J Autism Dev Disord
DOI 10.1007/s10803-006-0232-9
O R I G I N A L P A P E R
Abnormal Use of Facial Information in High-Functioning
Autism
Michael L. Spezio Æ Ralph Adolphs Æ
Robert S. E. Hurley Æ Joseph Piven
Ó Springer Science+Business Media, LLC 2006"
6789bddbabf234f31df992a3356b36a47451efc7,Unsupervised Generation of Free-Form and Parameterized Avatars.,"Unsupervised Generation of Free-Form and
Parameterized Avatars
Adam Polyak, Yaniv Taigman, and Lior Wolf, Member, IEEE"
6733adb12458678c606759233f6f55782bace372,Photogenic Facial Expression Discrimination,"PHOTOGENIC FACIAL EXPRESSION DISCRIMINATION
Luana Bezerra Batista and Herman Martins Gomes
Departamento de Sistemas e Computação
João Marques de Carvalho
Departamento de Engenharia Elétrica
Universidade Federal de Campina Grande
Campina Grande, Paraíba, Brasil, 58.109-970
Keywords:
Facial Expression Recognition, Photogeny, Principal Component Analysis, Multi-Layer Perceptron."
67490b6f34c827f107b046adeef0f5476132d4f8,"How good are detection proposals, really?","J. HOSANG ET AL.: HOW GOOD ARE DETECTION PROPOSALS, REALLY?
How good are detection proposals, really?
Jan Hosang
http://mpi-inf.mpg.de/~jhosang
Rodrigo Benenson
http://mpi-inf.mpg.de/~benenson
Bernt Schiele
http://mpi-inf.mpg.de/~schiele
MPI Informatics
Saarbrücken, Germany"
674fcadf1b895e3a79380d3ac5afb43d406fd31a,Facial Asymmetry Assessment from 3D Shape Sequences: The Clinical Case of Facial Paralysis,
675b2caee111cb6aa7404b4d6aa371314bf0e647,AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions,"AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions
Chunhui Gu∗
Yeqing Li∗
Chen Sun∗
David A. Ross∗
Sudheendra Vijayanarasimhan∗
Carl Vondrick∗
George Toderici∗
Caroline Pantofaru∗
Susanna Ricco∗
Rahul Sukthankar∗
Cordelia Schmid† ∗
Jitendra Malik‡ ∗"
67dca0d4b87ab2a4f18b5a1ef76f6ba17b599245,Top-Down Regularization of Deep Belief Networks,"Top-Down Regularization of Deep Belief Networks
Hanlin Goh∗, Nicolas Thome, Matthieu Cord
Laboratoire d’Informatique de Paris 6
UPMC – Sorbonne Universit´es, Paris, France
Joo-Hwee Lim†
Institute for Infocomm Research
A*STAR, Singapore"
67a56dd94906a5460c263e1a1b87fa3a52c4b453,Face Analysis by Local Directional Number Pattern,"International Journal of Engineering Research and General Science Volume 3, Issue 1,  January-February, 2015
ISSN 2091-2730
FACE ANALYSIS BY LOCAL DIRECTIONAL NUMBER PATTERN
Manjunatha S B, Guruprasad A M, Vineesh P
Coorg Institute of Technology, Ponnampet, Coorg-District, Karnataka, 9611962024"
67f88f37e4853b870debef2bd29b257b5b19f255,EgoSampling: Wide View Hyperlapse from Single and Multiple Egocentric Videos,"EgoSampling: Wide View Hyperlapse from
Single and Multiple Egocentric Videos
Tavi Halperin Yair Poleg Chetan Arora Shmuel Peleg"
67484723e0c2cbeb936b2e863710385bdc7d5368,Anchor Cascade for Efficient Face Detection,"Anchor Cascade for Efficient Face Detection
Baosheng Yu and Dacheng Tao, Fellow, IEEE"
678b367b2d5250f278c994238bbf816098252d9d,IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors,"Article
IrisDenseNet: Robust Iris Segmentation Using
Densely Connected Fully Convolutional Networks in
the Images by Visible Light and Near-Infrared Light
Camera Sensors
Muhammad Arsalan, Rizwan Ali Naqvi, Dong Seop Kim, Phong Ha Nguyen, Muhammad Owais
nd Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; (M.A.); (R.A.N.);
(D.S.K.); (P.H.N.); (M.O.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 2 April 2018; Accepted: 8 May 2018; Published: 10 May 2018"
670637d0303a863c1548d5b19f705860a23e285c,Face swapping: automatically replacing faces in photographs,"Face Swapping: Automatically Replacing Faces in Photographs
Dmitri Bitouk
Neeraj Kumar
Samreen Dhillon∗
Columbia University†
Peter Belhumeur
Shree K. Nayar
Figure 1: We have developed a system that automatically replaces faces in an input image with ones selected from a large collection of
face images, obtained by applying face detection to publicly available photographs on the internet. In this example, the faces of (a) two
people are shown after (b) automatic replacement with the top three ranked candidates. Our system for face replacement can be used for face
de-identification, personalized face replacement, and creating an appealing group photograph from a set of “burst” mode images. Original
images in (a) used with permission from Retna Ltd. (top) and Getty Images Inc. (bottom).
Rendering, Computational Photography
Introduction
Advances in digital photography have made it possible to cap-
ture large collections of high-resolution images and share them
on the internet. While the size and availability of these col-
lections is leading to many exciting new applications,
lso creating new problems. One of the most
important of"
6742c0a26315d7354ab6b1fa62a5fffaea06da14,What does 2D geometric information really tell us about 3D face shape?,"BAS AND SMITH: WHAT DOES 2D GEOMETRIC INFORMATION REALLY TELL US ABOUT 3D FACE SHAPE?
What does 2D geometric information
really tell us about 3D face shape?
Anil Bas and William A. P. Smith, Member, IEEE"
6775c818b26263c885b0ce85c224dfd942c9652e,Pedestrian and Object Detection Using Learned Convolutional Filters,"U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 2, 2015
ISSN 2286-3540
PEDESTRIAN AND OBJECT DETECTION USING LEARNED
CONVOLUTIONAL FILTERS
Anamaria R ˘ADOI1 , Dan Alexandru STOICHESCU2
Object detection is still a very active field in Computer Vision. Until now, part
ased models proved to be one of the most interesting and successful approaches
in object and pedestrian detection. The method applies a machine learning ap-
proach not to the input images themselves, but to histograms of gradients. How-
ever, its performances are still limited when compared to what humans can do.
The purpose of the present paper is to show that sparse representations can be
successfully used in object detection. The main advantage of using this method is
related to the possibility of learning only those filters that are able to express the
most frequent patterns that appear in the analyzed images. The experiments are
arried out on two widely used datasets, namely VOC2007 and INRIA Person.
Keywords: learned filterbanks, stochastic gradient descent, pedestrian detection,
object detection, Histogram of Oriented Gradients.
. Introduction
Object detection is a major challenge for many areas of research, starting
from medicine and going to applications such as street surveillance or video appli-"
67bee729d046662c6ebd9d3d695823c9d820343a,Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus,"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 588–598,
Berlin, Germany, August 7-12, 2016. c(cid:13)2016 Association for Computational Linguistics"
67c703a864aab47eba80b94d1935e6d244e00bcb,Face Retrieval Based On Local Binary Pattern and Its Variants: A Comprehensive Study,"(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 7, No. 6, 2016
Face Retrieval Based On Local Binary Pattern and Its
Variants: A Comprehensive Study
Department of Computer Vision and Robotics, University of Science, VNU-HCM, Viet Nam
Phan Khoi, Lam Huu Thien, Vo Hoai Viet
face  searching,"
6752b59da83c03e64c73f9248a67304713b6efa9,Chapter 3 Re - identification by Covariance Descriptors,"Chapter 3
Re-identification by Covariance Descriptors
Sławomir B ˛ak and François Brémond"
67c30688bd46d305c610a83a0b28e86e10ef5cc4,Ship Detection in Harbour Surveillance based on Large-Scale Data and CNNs,
67e00f7e928e6eab0faf1917252778b36bf64e39,Sparse radial sampling LBP for writer identification,"Sparse Radial Sampling LBP for Writer
Identification
Anguelos Nicolaou∗, Andrew D. Bagdanov∗, Marcus Liwicki†, and Dimosthenis Karatzas∗
Computer Vision Center, Edifici O, Universitad Autonoma de Barcelona,Bellaterra, Spain
DIVA research group, Department of Informatics, University of Fribourg, Switzerland
Email:"
6737a429dd615a0d9ac78d836c6b65bfd9ec36e8,Image Classification by Transfer Learning Based on the Predictive Ability of Each Attribute,"Image Classification by Transfer Learning Based
on the Predictive Ability of Each Attribute
Masahiro Suzuki, Haruhiko Sato, Satoshi Oyama, and Masahito Kurihara"
6757254d27b761ada5dbd88642bd0112fcb962cf,Gait Recognition Using Wearable Motion Recording Sensors,"Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 415817, 16 pages
doi:10.1155/2009/415817
Research Article
Gait Recognition Using Wearable Motion Recording Sensors
Davrondzhon Gafurov and Einar Snekkenes
Norwegian Information Security Laboratory, Gjøvik University College, P.O. Box 191, 2802 Gjøvik, Norway
Correspondence should be addressed to Davrondzhon Gafurov,
Received 1 October 2008; Revised 26 January 2009; Accepted 26 April 2009
Recommended by Natalia A. Schmid
This paper presents an alternative approach, where gait is collected by the sensors attached to the person’s body. Such wearable
sensors record motion (e.g. acceleration) of the body parts during walking. The recorded motion signals are then investigated for
person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods,
the best EER obtained for foot-, pocket-, arm- and hip- based user authentication were 5%, 7%, 10% and 13%, respectively.
Furthermore, we present the results of our analysis on security assessment of gait. Studying gait-based user authentication (in case
of hip motion) under three attack scenarios, we revealed that a minimal effort mimicking does not help to improve the acceptance
hances of impostors. However, impostors who know their closest person in the database or the genders of the users can be a
threat to gait-based authentication. We also provide some new insights toward the uniqueness of gait in case of foot motion. In
particular, we revealed the following: a sideway motion of the foot provides the most discrimination, compared to an up-down or"
67fd4f209aa6e8359fc86bdc12c62bbdb0529077,Scalable Nearest Neighbor Algorithms for High Dimensional Data,"Scalable Nearest Neighbor Algorithms
for High Dimensional Data
Marius Muja, Member, IEEE and David G. Lowe, Member, IEEE"
67ba3524e135c1375c74fe53ebb03684754aae56,A compact pairwise trajectory representation for action recognition,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
679136c2844eeddca34e98e483aca1ff6ef5e902,Scene-Specific Pedestrian Detection Based on Parallel Vision,"Scene-Specific Pedestrian Detection Based on
Parallel Vision
Wenwen Zhang, Kunfeng Wang, Member, IEEE, Hua Qu, Jihong Zhao, and Fei-Yue Wang, Fellow, IEEE"
676c76c4e3ac2f91a2209ecdae8d20be4de7c9c0,Performance of Gabor mean Feature Extraction Techniques for Ear Biometrics Recognition System,"International Journal of Computer Applications (0975 – 8887)
Volume 168 – No.12, June 2017
Performance of Gabor mean Feature Extraction
Techniques for Ear Biometrics Recognition System
Bhanu Vadhwani
Rajasthan College of Engg.
for Women, India
Vineet Khanna
JaipuRajasthan College of
Engg. for Women
Shubhlakshmi Agarwal
The ICFAI University, Jaipur, India
Sandeep Kumar Gupta
Machine Learning Research
Lab, Jaipur, India"
67751b7ce7f934ffadcf095f4189b31f890e9fdc,Pilot Comparative Study of Different Deep Features for Palmprint Identification in Low-Quality Images,"Ninth Hungarian Conference on Computer Graphics and Geometry, Budapest, 2018
Pilot Comparative Study of Different Deep Features
for Palmprint Identification in Low-Quality Images
A.S. Tarawneh1, D. Chetverikov1,2 and A.B. Hassanat3
Eötvös Loránd University, Budapest, Hungary
Institute for Computer Science and Control, Budapest, Hungary
Mutah University, Karak, Jordan"
6769cfbd85329e4815bb1332b118b01119975a95,Tied factor analysis for face recognition across large pose changes,"Tied factor analysis for face recognition across
large pose changes"
0b4189d874ee67f259a1a366ac93740d500064a5,Single-Shot Multi-person 3D Pose Estimation from Monocular RGB,"Single-Shot Multi-Person 3D Pose Estimation From Monocular RGB
Dushyant Mehta[1,2], Oleksandr Sotnychenko[1,2], Franziska Mueller[1,2],
Weipeng Xu[1,2], Srinath Sridhar[3], Gerard Pons-Moll[1,2], Christian Theobalt[1,2]
[1] MPI For Informatics
[2] Saarland Informatics Campus
[3] Stanford University"
0be43cf4299ce2067a0435798ef4ca2fbd255901,Title A temporal latent topic model for facial expression recognition,"Title
A temporal latent topic model for facial expression recognition
Author(s)
Shang, L; Chan, KP
Citation
The 10th Asian Conference on Computer Vision (ACCV 2010),
Queenstown, New Zealand, 8-12 November 2010. In Lecture
Notes in Computer Science, 2010, v. 6495, p. 51-63
Issued Date
http://hdl.handle.net/10722/142604
Rights
Creative Commons: Attribution 3.0 Hong Kong License"
0b6bd0a6f396e1479dc30318102bf49c12959783,Face Recognition Using Local Binary Decisions,"Face recognition using local binary decisions
Author
James, Alex, Dimitrijev, Sima
Published
Journal Title
https://doi.org/10.1109/LSP.2008.2006339
Copyright Statement
© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.
Downloaded from
http://hdl.handle.net/10072/23556
Griffith Research Online
https://research-repository.griffith.edu.au"
0b2277a0609565c30a8ee3e7e193ce7f79ab48b0,Cost-Sensitive Semi-Supervised Discriminant Analysis for Face Recognition,"Cost-Sensitive Semi-Supervised Discriminant
Analysis for Face Recognition
Jiwen Lu, Member, IEEE, Xiuzhuang Zhou, Member, IEEE, Yap-Peng Tan, Senior Member, IEEE,
Yuanyuan Shang, Member, IEEE, and Jie Zhou, Senior Member, IEEE"
0b2c543e0c47454c4512569175094e6cb6ae02a9,The VizWiz Grand Challenge: A Large Visual Question Answering Dataset from Blind People,"#1687
CVPR 2016 Submission #1687. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
The VizWiz Grand Challenge:
A Large Visual Question Answering Dataset from Blind People
Anonymous CVPR submission
Paper ID 1687"
0b57eb772ad9129ea4011c7fcb16c57967409018,“A Distorted Skull Lies in the Bottom Center...” Identifying Paintings from Text Descriptions,"Proceedings of 2016 NAACL Human-Computer Question Answering Workshop, pages 43–47,
San Diego, California, June 12-17, 2016. c(cid:13)2016 Association for Computational Linguistics"
0b0b0d9b15613a6e3c4f9a4dd1c17c0313ca4303,Evaluation of 3D Face Recognition in the presence of facial expressions: an Annotated Deformable Model approach,"D face recognition
in the presence of facial expressions:
An annotated deformable model approach
I.A. Kakadiaris, Member, IEEE, G. Passalis, G. Toderici, N. Murtuza, Y. Lu,
N. Karampatziakis, and T. Theoharis
August 15, 2006
DRAFT"
0b9ce839b3c77762fff947e60a0eb7ebbf261e84,Logarithmic Fourier Pca: a New Approach to Face Recognition,"Proceedings of the IASTED International Conference
Computer Vision (CV 2011)
June 1 - 3, 2011  Vancouver, BC, Canada
LOGARITHMIC FOURIER PCA: A NEW APPROACH TO FACE
RECOGNITION
Lakshmiprabha  Nattamai  Sekar,
Jhilik Bhattacharya,
omjyoti
Majumder
Surface Robotics Lab
Central Mechanical Engineering Research Institute
Mahatma Gandhi Avenue,
Durgapur - 713209, West Bengal, India.
email: 1 n prabha 2 3"
0bcd89b356dc78aaf3573086f13e94b8e7b5bee6,Comparative Testing of Face Detection Algorithms,"Comparative Testing of Face Detection
Algorithms⋆
Nikolay Degtyarev and Oleg Seredin
Tula State University
http://lda.tsu.tula.ru"
0bf26d2fd1b375f50c0a6bef086f09f7698c3156,Predicting Entry-Level Categories,"Noname manuscript No.
(will be inserted by the editor)
Predicting Entry-Level Categories
Vicente Ordonez · Wei Liu · Jia Deng · Yejin Choi ·
Alexander C. Berg · Tamara L. Berg
Received: date / Accepted: date"
0b278c9dc9b16b46ed602eab884ad7a37a988031,Robust Face-Name Graph Matching for Movie Character Identification,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391
Robust Face-Name Graph Matching for Movie
Character Identification
Jonnadula Narasimha1, S Nishanth Kumar2, Chiluka Shiva Kumar3, D Vamshi Krishna Rao4
Associate Professor, Department of Computer Science and Engineering, CMR Technical Campus,
Medchal, Hyderabad, Telangana, India
, 3, 4Department of Computer Science and Engineering, CMR Technical Campus, Medchal, Hyderabad, Telangana, India"
0b6a5200c33434cbfa9bf24ba482f6e06bf5fff7,"The use of deep learning in image segmentation, classification and detection","The Use of Deep Learning in Image
Segmentation, Classification and Detection
Mihai-Sorin Badea, Iulian-Ionuț Felea, Laura Maria Florea, Constantin Vertan
The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania"
0b605b40d4fef23baa5d21ead11f522d7af1df06,Label-Embedding for Attribute-Based Classification,"Label-Embedding for Attribute-Based Classification
Zeynep Akataa,b, Florent Perronnina, Zaid Harchaouib and Cordelia Schmidb
Computer Vision Group∗, XRCE, France
LEAR†, INRIA, France"
0b61cad6ae6e7ab99f2e3c187bd8530da71f10ae,Gameplay Genre Video Classification by Using Mid-Level Video Representation,"Gameplay genre video classification by using
mid-level video representation
Renato Augusto de Souza‡, Raquel Pereira de Almeida‡, Arghir-Nicolae Moldovan∗,
Zenilton Kleber G. do Patrocínio Jr.‡, Silvio Jamil F. Guimarães‡
Audio-Visual Information Proc. Lab. (VIPLAB)
Computer Science Department – ICEI – PUC Minas
School of Computing, National College of Ireland, Dublin, Ireland
named GameGenre, consists of 700 videos (more than 116
hours), classified into 7 game genres."
0b0535fbdc468d1fd6ff32545a717a8af14f634f,The Discriminative Generalized Hough Transform as a Proposal Generator for a Deep Network in Automatic Pedestrian Localization,
0b0eb562d7341231c3f82a65cf51943194add0bb,Line with Your Paper Identification Number ( Double - Click Here to Edit,"> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <
Facial Image Analysis Based on Local Binary
Patterns: A Survey
Di Huang, Caifeng Shan, Mohsen Ardebilian, Liming Chen"
0b3a146c474166bba71e645452b3a8276ac05998,Whos In the Picture,"Who’s in the Picture?
Tamara L. Berg, Alexander C. Berg, Jaety Edwards and D.A. Forsyth
Berkeley, CA 94720
Computer Science Division
U.C. Berkeley"
0b937abb3b356a2932d804f9fc4b463485f63d0e,Visual word disambiguation by semantic contexts,"Visual word disambiguation by semantic contexts
Yu Su, Frédéric Jurie
To cite this version:
Yu Su, Frédéric Jurie. Visual word disambiguation by semantic contexts. IEEE Intenational Confer-
ence on Computer Vision (ICCV), 2011, Spain. pp.311-318, 2011, <10.1109/ICCV.2011.6126257>.
<hal-00808655>
HAL Id: hal-00808655
https://hal.archives-ouvertes.fr/hal-00808655
Submitted on 5 Apr 2013
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
0b6f810f287561ff694a9406c7b319fd8549ca68,Face Recognition Based on Texture Features using Local Ternary Patterns,"I.J. Image, Graphics and Signal Processing, 2015, 10, 37-46
Published Online September 2015 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijigsp.2015.10.05
Face Recognition Based on Texture Features
using Local Ternary Patterns
Associate Professor, Dept. of CSE, BVRIT Hyderabad College of Engineering for Women, Hyderabad, T.S., India.
K. Srinivasa Reddy
Director-CACR, Dean-Computer Sciences (CSE & IT), Anurag Group of Institutions, Hyderabad, T.S., India.
Email:
V. Vijaya Kumar
Email:
B. Eswara Reddy
Professor, Dept. of CSE, JNTUA, Ananthapuram, A.P., India.
Email:"
0bb574ad77f55f395450b4a9f863ecfdd4880bcd,Learning the Base Distribution in Implicit Generative Models,"Learning the Base Distribution in Implicit Generative Models
Y. Cem Subakan(cid:91), Oluwasanmi Koyejo(cid:91), Paris Smaragdis(cid:91),(cid:93)
(cid:91)UIUC, (cid:93)Adobe Inc."
0b0958493e43ca9c131315bcfb9a171d52ecbb8a,A Unified Neural Based Model for Structured Output Problems,"A Unified Neural Based Model for Structured Output Problems
Soufiane Belharbi∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien Adam∗2
LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France
LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France.
April 13, 2015"
0b20f75dbb0823766d8c7b04030670ef7147ccdd,Feature selection using nearest attributes,"Feature selection using nearest attributes
Alex Pappachen James, Member, IEEE, and Sima Dimitrijev, Senior Member, IEEE"
0b5a82f8c0ee3640503ba24ef73e672d93aeebbf,On Learning 3D Face Morphable Model from In-the-wild Images,"On Learning 3D Face Morphable Model
from In-the-wild Images
Luan Tran, and Xiaoming Liu, Member, IEEE"
0b174d4a67805b8796bfe86cd69a967d357ba9b6,A Survey on Face Detection and Recognition Approaches,"Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502
Vol. 3(4), 56-62, April (2014)
Res.J.Recent Sci."
0ba6f4fb548d8289fb42d68ac64d55f9e3a274ca,Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation,"Auto-context and Its Application to High-level Vision Tasks
nd 3D Brain Image Segmentation
Lab of Neuro Imaging, University of California, Los Angeles
Zhuowen Tu and Xiang Bai
July 9, 2009"
0b87d91fbda61cdea79a4b4dcdcb6d579f063884,Research on Theory and Method for Facial Expression Recognition Sys- tem Based on Dynamic Image Sequence,"The Open Automation and Control Systems Journal, 2015, 7, 569-579
Open Access
Research  on  Theory  and  Method  for  Facial  Expression  Recognition  Sys-
tem Based on Dynamic Image Sequence
Send Orders for Reprints to
Yang Xinfeng1,* and Jiang Shan2
School  of  Computer  &  Information  Engineering,  Nanyang  Institute  of  Technology,  Henan,  Nanyang,  473000,  P.R.
China
Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China"
0b24cca96ca61248a3fa3973525a967f94292835,Two Novel Face Recognition Approaches,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
0b70facac4d10c7c73e7fdf3a85848ce429d98ab,"Segmentation features, visibility modeling and shared parts for object detection","Segmentation Features, Visibility Modeling and
Shared Parts for Object Detection
Patrick Ott
Submitted in accordance with the requirements
for the degree of Doctor of Philosophy.
The University of Leeds
School of Computing
February 2012
The candidate confirms that the work submitted is his own and that the appropriate
redit has been given where reference has been made to the work of others.
This copy has been supplied on the understanding that it is copyright material
nd that no quotation from the thesis may be published without proper
cknowledgment."
0b79356e58a0df1d0efcf428d0c7c4651afa140d,Bayesian Modeling of Facial Similarity,"Appears In: Advances in Neural Information Processing Systems , MIT Press, 			.
Bayesian Modeling of Facial Similarity
Baback Moghaddam
Mitsubishi Electric Research Laboratory
 Broadway
Cambridge, MA 	, USA
Tony Jebara and Alex Pentland
Massachusettes Institute of Technology
 Ames St.
Cambridge, MA 	, USA"
0b572a2b7052b15c8599dbb17d59ff4f02838ff7,Automatic Subspace Learning via Principal Coefficients Embedding,"Automatic Subspace Learning via Principal
Coefficients Embedding
Xi Peng, Jiwen Lu, Senior Member, IEEE, Zhang Yi, Fellow, IEEE and Rui Yan, Member, IEEE,"
0bc9f1749e23b37ea5b5588c5bfe23879174d343,Pythia v0.1: the Winning Entry to the VQA Challenge 2018,"Pythia v0.1: the Winning Entry to the VQA Challenge 2018
Yu Jiang∗, Vivek Natarajan∗, Xinlei Chen∗, Marcus Rohrbach, Dhruv Batra, Devi Parikh
Facebook AI Research"
0b888196dda951287dddb60bd44798aab16d6fca,Learning Common Sense through Visual Abstraction,
0ba544ff0d837ba5279b03eb91246d00f2c78817,Direct Prediction of 3D Body Poses from Motion Compensated Sequences,"Direct Prediction of 3D Body Poses from Motion Compensated Sequences
Bugra Tekin1
Artem Rozantsev1
Vincent Lepetit1,2
Pascal Fua1
CVLab, EPFL, Lausanne, Switzerland,
TU Graz, Graz, Austria,"
0bc7d8e269a8c8018a7cb120ff25adf02d45c7ed,Exploiting Dissimilarity Representations for Person Re-identification,"Exploiting Dissimilarity Representations for
Person Re-Identification
Riccardo Satta, Giorgio Fumera, and Fabio Roli
Dept. of Electrical and Electronic Engineering, University of Cagliari
Piazza d’Armi, 09123 Cagliari, Italy"
0b02bfa5f3a238716a83aebceb0e75d22c549975,Learning Probabilistic Models for Recognizing Faces under Pose Variations,"Learning Probabilistic Models for Recognizing Faces
under Pose Variations
M. Saquib Sarfraz and Olaf Hellwich
Computer vision and Remote Sensing, Berlin university of Technology
Sekr. FR-3-1, Franklinstr. 28/29, Berlin, Germany"
0beaf17d42b1171dd245131825d2de67000f45ac,Expert Gate: Lifelong Learning with a Network of Experts,"Expert Gate: Lifelong Learning with a Network of Experts
Rahaf Aljundi
Punarjay Chakravarty
Tinne Tuytelaars
KU Leuven, ESAT-PSI, iMinds, Belgium
{rahaf.aljundi, Punarjay.Chakravarty,"
0bce54bfbd8119c73eb431559fc6ffbba741e6aa,Recurrent Neural Networks,"Published as a conference paper at ICLR 2018
SKIP RNN: LEARNING TO SKIP STATE UPDATES IN
RECURRENT NEURAL NETWORKS
V´ıctor Campos∗†, Brendan Jou‡, Xavier Gir´o-i-Nieto§, Jordi Torres†, Shih-Fu ChangΓ
Barcelona Supercomputing Center, ‡Google Inc,
§Universitat Polit`ecnica de Catalunya, ΓColumbia University
{victor.campos,"
0b19177107a102ee81e5ef1bb9fb2f2881441503,Comparing Robustness of Pairwise and Multiclass Neural-Network Systems for Face Recognition,"Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2008, Article ID 468693, 7 pages
doi:10.1155/2008/468693
Research Article
Comparing Robustness of Pairwise and Multiclass
Neural-Network Systems for Face Recognition
J. Uglov, L. Jakaite, V. Schetinin, and C. Maple
Computing and Information System Department, University of Bedfordshire, Luton LU1 3JU, UK
Correspondence should be addressed to V. Schetinin,
Received 16 June 2007; Revised 28 August 2007; Accepted 19 November 2007
Recommended by Konstantinos N. Plataniotis
Noise, corruptions, and variations in face images can seriously hurt the performance of face-recognition systems. To make these
systems robust to noise and corruptions in image data, multiclass neural networks capable of learning from noisy data have been
suggested. However on large face datasets such systems cannot provide the robustness at a high level. In this paper, we explore a
pairwise neural-network system as an alternative approach to improve the robustness of face recognition. In our experiments, the
pairwise recognition system is shown to outperform the multiclass-recognition system in terms of the predictive accuracy on the
test face images.
Copyright © 2008 J. Uglov et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited."
0b1cf351a4a6758606bea32d29c7d529e79ab7ce,Fake Face Detection System Using Pupil Reflection 양재준,"한국지능시스템학회  논문지  2010,  Vol.  20,  No.  5,  pp.  645-651
동공의  반사특징을  이용한  얼굴위조판별  시스템
Fake  Face  Detection  System  Using  Pupil  Reflection
양재준*․조성원*․정선태**
JaeJun  Yang,  Seongwon  Cho  and  Sun-Tae  Chung
*  홍익대학교  전기정보제어공학과
**숭실대학교  정보통신전자공학부
최근  지능형  범죄가  늘면서  첨단  보안  기술에  대한  요구가  점차  늘어나고  있다.  현재까지  보고된  위조영상검출방법은  실용
화를  위하여  정확도  개선이  요구된다.  본  논문에서는  사람의  얼굴에  대하여  동공의  반사광을  이용한  얼굴위조판별  시스템
을  제안한다.  제안된  시스템은  먼저  다중  스케일  가버특징  벡터를  기반으로  눈의  위치를  찾은  후  2단계의  템플릿  매칭을
통해서  설정된  적용범위를  벗어나는  눈에  대하여  위조판별을  고려하지  않음으로써  정확도를  높이는  방법을  사용한다.  신뢰
도가  확보된  눈의  위치를  기반으로  적외선  조명에  반사되는  동공의  특징을  이용하여  눈위치  근처에서의
화소값을  계산하
여  위조  여부를  판단한다.  실험을  통하여  본  논문에서  제안한  방법이  더욱  신뢰성  높은  위조판별시스템임을  확인하였다.
키워드  :  변조영상  검출,  얼굴  검출,  EBGM,  템플릿  매칭,  얼굴  식별"
0b8ef6f5ec5dfc3eded5241fd3d636a596b94d26,Stereological analysis of amygdala neuron number in autism.,"7674 • The Journal of Neuroscience, July 19, 2006 • 26(29):7674 –7679
Neurobiology of Disease
Stereological Analysis of Amygdala Neuron Number
in Autism
Cynthia Mills Schumann and David G. Amaral
Department of Psychiatry and Behavioral Sciences and The M.I.N.D. Institute, University of California, Davis, Sacramento, California 95817
The amygdala is one of several brain regions suspected to be pathological in autism. Previously, we found that young children with autism
have a larger amygdala than typically developing children. Past qualitative observations of the autistic brain suggest increased cell density
in some nuclei of the postmortem autistic amygdala. In this first, quantitative stereological study of the autistic brain, we counted and
measured neurons in several amygdala subdivisions of 9 autism male brains and 10 age-matched male control brains. Cases with
omorbid seizure disorder were excluded from the study. The amygdaloid complex was outlined on coronal sections then partitioned into
five reliably defined subdivisions: (1) lateral nucleus, (2) basal nucleus, (3) accessory basal nucleus, (4) central nucleus, and (5) remaining
nuclei. There is no difference in overall volume of the amygdala or in individual subdivisions. There are also no changes in cell size.
However, there are significantly fewer neurons in the autistic amygdala overall and in its lateral nucleus. In conjunction with the findings
from previous magnetic resonance imaging studies, the autistic amygdala appears to undergo an abnormal pattern of postnatal devel-
opment that includes early enlargement and ultimately a reduced number of neurons. It will be important to determine in future studies
whether neuron loss in the amygdala is a consistent characteristic of autism and whether cell loss occurs in other brain regions as well.
Key words: autism; neuropathology; stereology; neuronal density; medial temporal lobe; neuroanatomy; amygdaloid complex
Introduction
Autism is a lifelong neurodevelopmental disorder characterized"
0bdd8f824fa4d4e770e34268a78dca12fb6a135b,Compact Hash Codes for Efficient Visual Descriptors Retrieval in Large Scale Databases,"Compact Hash Codes for Efficient Visual Descriptors
Retrieval in Large Scale Databases
Simone Ercoli, Marco Bertini and Alberto Del Bimbo
Media Integration and Communication Center, Università degli Studi di Firenze
Viale Morgagni 65 - 50134 Firenze, Italy"
0bdfc21178347ed4f137d4c7d0ba14c996c66b6e,Automated X-Ray Object Recognition Using an Efficient Search Algorithm in Multiple Views,"Automated X-ray object recognition using
n efficient search algorithm in multiple views
Domingo Mery, Vladimir Riffo, Irene Zuccar, Christian Pieringer
Department of Computer Science – Pontificia Universidad Cat´olica de Chile
Av. Vicu˜na Mackenna 4860(143) – Santiago de Chile
http://dmery.ing.puc.cl"
0b4c4ea4a133b9eab46b217e22bda4d9d13559e6,MORF: Multi-Objective Random Forests for face characteristic estimation,"MORF: Multi-Objective Random Forests for Face Characteristic Estimation
Dario Di Fina1
MICC - University of Florence
Svebor Karaman1,3
Andrew D. Bagdanov2
{dario.difina,
CVC - Universitat Autonoma de Barcelona
Alberto Del Bimbo1
DVMM Lab - Columbia University"
0b9db62b26b811e8c24eb9edc37901a4b79a897f,Structured Face Hallucination,"Structured Face Hallucination
Chih-Yuan Yang Sifei Liu Ming-Hsuan Yang
Electrical Engineering and Computer Science
University of California at Merced
{cyang35, sliu32,"
0b6c10ea6bf8a6c254e00fcc2163c4b6fc0f1c3a,"Anti-Spoofing for Text-Independent Speaker Verification: An Initial Database, Comparison of Countermeasures, and Human Performance","Anti-Spoofing for Text-Independent Speaker Verification: An
Initial Database, Comparison of Countermeasures, and Human
Performance
Citation for published version:
Wu, Z, De Leon, P, Demiroglu, C, Khodabakhsh, A, King, S, Ling, Z, Saito, D, Stewart, B, Toda, T, Wester,
M & Yamagishi, J 2016, 'Anti-Spoofing for Text-Independent Speaker Verification: An Initial Database,
Comparison of Countermeasures, and Human Performance'  IEEE/ACM Transactions on Audio, Speech,
nd Language Processing, vol. 24, no. 4, pp. 768 - 783. DOI: 10.1109/TASLP.2016.2526653
Digital Object Identifier (DOI):
0.1109/TASLP.2016.2526653
Link:
Link to publication record in Edinburgh Research Explorer
Document Version:
Peer reviewed version
Published In:
General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
nd / or other copyright owners and it is a condition of accessing these publications that users recognise and
bide by the legal requirements associated with these rights.
Take down policy"
0b4d3e59a0107f0dad22e74054bab1cf1ad9c32e,Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations,"Int J Comput Vis
DOI 10.1007/s11263-016-0981-7
Visual Genome: Connecting Language and Vision Using
Crowdsourced Dense Image Annotations
· Yuke Zhu1 · Oliver Groth2 · Justin Johnson1 · Kenji Hata1 ·
Ranjay Krishna1
Joshua Kravitz1 · Stephanie Chen1 · Yannis Kalantidis3 · Li-Jia Li4 ·
David A. Shamma5 · Michael S. Bernstein1 · Li Fei-Fei1
Received: 23 February 2016 / Accepted: 12 September 2016
© The Author(s) 2017. This article is published with open access at Springerlink.com"
0b2d49cb2d2de06b022e2c636e337d294171dc22,New features and insights for pedestrian detection,"New Features and Insights for Pedestrian Detection
Stefan Walk1 Nikodem Majer1 Konrad Schindler1 Bernt Schiele1,2
Computer Science Department, TU Darmstadt
MPI Informatics, Saarbr¨ucken"
0bf2765d431c16de7b8f9c644684e69fa52598eb,Integrating Remote PPG in Facial Expression Analysis Framework,"Integrating Remote PPG in Facial Expression Analysis
Framework
H. Emrah Tasli
Marten den Uyl
Vicarious Perception Technologies, Amsterdam, The Netherlands
Amogh Gudi"
0b8c92463f8f5087696681fb62dad003c308ebe2,On matching sketches with digital face images,"On Matching Sketches with Digital Face Images
Himanshu S. Bhatt, Samarth Bharadwaj, Richa Singh, and Mayank Vatsa
in local"
0bc0f9178999e5c2f23a45325fa50300961e0226,Recognizing facial expressions from videos using Deep Belief Networks,"Recognizing facial expressions from videos using Deep
Belief Networks
CS 229 Project
Advisor: Prof. Andrew Ng
Adithya Rao Narendran Thiagarajan"
0babc4af06d210cf38bdf8324c339b6cf3f424fa,A Predictive Model of Patient Readmission Using Combined ICD-9 Codes as Engineered Features,"A Predictive Model of Patient Readmission Using Combined ICD-9
Codes as Engineered Features"
0b5c3cf7c8c643cb09d55a08b15de22e134081be,Online Tracking and Offline Recognition Using Scale Invariant Feature Transform,"IJMTES | International Journal of Modern Trends in Engineering and Science                                         ISSN: 2348-3121
Online Tracking and Offline Recognition Using Scale
Invariant Feature Transform
A. Bahmidha Banu1; Dr. V. Venkatesa kumar2
PG Scholar, Department of CSE, Anna University Regional Centre, Tamilnadu,
Assistant Professor, Department of CSE, Anna University Regional Centre, , Tamilnadu,
________________________________________________________________________________________________________"
0bfabcf5c74cc17fe8b5777093699789411868b9,Predictive Tagging of Social Media Images using Unsupervised Learning,"International Journal of Computer Applications (0975 – 8887)
Volume 65– No.24, March 2013
Predictive Tagging of Social Media Images using
Unsupervised Learning
Nishchol Mishra
Asstt. Professor
School of IT
RGPV, Bhopal
India
Sanjay Silakari, PhD.
Professor, Deptt. Of CSE
UIT- RGPV
Bhopal
India"
0bc82ec532228427a497ac47391d524e3b4537ae,Fluid Annotation: A Human-Machine Collaboration Interface for Full Image Annotation,"Fluid Annotation: A Human-Machine Collaboration Interface
for Full Image Annotation
Mykhaylo Andriluka∗
Jasper R. R. Uijlings∗
Google Research
Z¨urich, Switzerland
Vi(cid:138)orio Ferrari"
0b4453df81091bcdafedc07b64bea946bf3441b2,Fast and Accurate 3D Face Recognition Using Registration to an Intrinsic Coordinate System and Fusion of Multiple Region Classifiers,"Int J Comput Vis
DOI 10.1007/s11263-011-0426-2
Fast and Accurate 3D Face Recognition
Using Registration to an Intrinsic Coordinate System and Fusion of Multiple Region
Classifiers
Luuk Spreeuwers
Received: 20 September 2010 / Accepted: 7 February 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com"
0b4b6932d5df74b366d9235b40334bc40d719c72,Temporal Ensembling for Semi-Supervised Learning,"Temporal Ensembling for Semi-Supervised Learning
Samuli Laine
NVIDIA
Timo Aila
NVIDIA"
93cfc6fd29d50fe6589f9506b503f32f6d0372f4,A Face-to-Face Neural Conversation Model,"A Face-to-Face Neural Conversation Model
Hang Chu1,2 Daiqing Li1 Sanja Fidler1,2
University of Toronto 2Vector Institute
{chuhang1122, daiqing,"
9391618c09a51f72a1c30b2e890f4fac1f595ebd,Globally Tuned Cascade Pose Regression via Back Propagation with Application in 2D Face Pose Estimation and Heart Segmentation in 3D CT Images,"Globally Tuned Cascade Pose Regression via
Back Propagation with Application in 2D Face
Pose Estimation and Heart Segmentation in 3D
CT Images
Peng Sun
James K Min
Guanglei Xiong
Dalio Institute of Cardiovascular Imaging, Weill Cornell Medical College
April 1, 2015
This work was submitted to ICML 2015 but got rejected. We put the initial
submission ”as is” in Page 2 - 11 and add updated contents at the tail. The
ode of this work is available at https://github.com/pengsun/bpcpr5."
93498110032a458fddebfae80d7a93991e11673d,Brownian descriptor: A rich meta-feature for appearance matching,"Brownian descriptor: a Rich Meta-Feature for Appearance Matching
Sławomir B ˛ak
Ratnesh Kumar
François Brémond
INRIA Sophia Antipolis, STARS group
004, route des Lucioles, BP93
06902 Sophia Antipolis Cedex - France"
93675f86d03256f9a010033d3c4c842a732bf661,Localized Growth and Characterization of Silicon Nanowires,Universit´edesSciencesetTechnologiesdeLilleEcoleDoctoraleSciencesPourl’ing´enieurUniversit´eLilleNord-de-FranceTHESEPr´esent´ee`al’Universit´edesSciencesetTechnologiesdeLillePourobtenirletitredeDOCTEURDEL’UNIVERSIT´ESp´ecialit´e:MicroetNanotechnologieParTaoXULocalizedgrowthandcharacterizationofsiliconnanowiresSoutenuele25Septembre2009Compositiondujury:Pr´esident:TuamiLASRIRapporteurs:ThierryBARONHenriMARIETTEExaminateurs:EricBAKKERSXavierWALLARTDirecteurdeth`ese:BrunoGRANDIDIER
938566dc8ee83a12d07e4d26bbb75e65ca7963cd,Multi-Scale Singularity Trees (MSSTs),"Multi-Scale Singularity Trees
(MSSTs)
Kerawit Somchaipeng"
936c7406de1dfdd22493785fc5d1e5614c6c2882,Detecting Visual Text,"012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 762–772,
Montr´eal, Canada, June 3-8, 2012. c(cid:13)2012 Association for Computational Linguistics"
93d3f2e546314305e8102538c4714e30e9146858,Image categorization combining neighborhood methods and boosting,"Image Categorization Combining Neighborhood Methods
nd Boosting
Matthew Cooper
FX Palo Alto Laboratory
Palo Alto, CA 94304 USA"
93610676003ef1dcda3864b236bca3852cb05388,RECOGNIZING ACTIVITIES WITH CLUSTER-TREES OF TRACKLETS 1 Recognizing activities with cluster-trees of tracklets,"Recognizing activities with cluster-trees of tracklets
Adrien Gaidon, Zaid Harchaoui, Cordelia Schmid
To cite this version:
Adrien Gaidon, Zaid Harchaoui, Cordelia Schmid. Recognizing activities with cluster-trees of
tracklets. Richard Bowden and John P. Collomosse and Krystian Mikolajczyk. BMVC 2012
- British Machine Vision Conference, Sep 2012, Guildford, United Kingdom. BMVA Press,
pp.30.1-30.13, 2012, <10.5244/C.26.30>. <hal-00722955v2>
HAL Id: hal-00722955
https://hal.inria.fr/hal-00722955v2
Submitted on 7 Aug 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
93cbb3b3e40321c4990c36f89a63534b506b6daf,Learning from examples in the small sample case: face expression recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005
Learning From Examples in the Small Sample Case:
Face Expression Recognition
Guodong Guo and Charles R. Dyer, Fellow, IEEE"
93a4c7ac0b09671db8cd3adbe62851d7befc4658,Machine Analysis of Facial Expressions,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
93ed1c9274906f1916d58cd618a9a82858448a3f,Deep Learning for Accurate Population Counting in Aerial Imagery,"Deep Learning for Accurate Population Counting in
Aerial Imagery
Matt Epperson, James Rotenberg, Eric Lo, Sebastian Afshari & Brian Kim"
931a70ec0bfc1d86894ff37a6f702a033e0129e3,ParlAI: A Dialog Research Software Platform,"ParlAI: A Dialog Research Software Platform
Alexander H. Miller, Will Feng, Adam Fisch, Jiasen Lu,
Dhruv Batra, Antoine Bordes, Devi Parikh and Jason Weston
Facebook AI Research"
93dce341666b6a57f8888dddb25a3fd37df69b02,Deep Layer Aggregation,"Deep Layer Aggregation
Fisher Yu Dequan Wang
Evan Shelhamer
Trevor Darrell
UC Berkeley"
934a77d099a38374ef1babe02d95952c089cce5f,Set of texture descriptors for music genre classification,"Set of texture descriptors for music genre classification
Loris Nanni
Yandre Costa
Department of
Information Engineering
University of Padua
viale Gradenigo 6
5131, Padua, Italy
State University of
Maringa (UEM)
Av. Colombo, 5790
87020-900, Maringa,
Parana, Brazil"
93e962f8886eae13b02ad2aa98bdedfbd7e68709,Dual Conditional GANs for Face Aging and Rejuvenation,"Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
Source: datasets(b)Target: our outputs are a series of images belonging to the same person010Input FaceOutputs2  78x/Age groupy/Personality  2178Non-sequential facial imagesSequential facial imagesFigure1:Anillustrationofourfaceagingandrejuvenationpro-cess.As(a)shows,ourtrainingexamplesarenon-sequentialandun-paired,andweaimtosimultaneouslyrenderaseriesofage-changedfacialimagesofapersonandpreservepersonality,asshownin(b).specificallydescribethechangesoffacesindifferentages.Thesemethodsparametricallymodelshapeandtexturepa-rametersfordifferentfeaturesofeachagegroup,e.g.,mus-cles[Suoetal.,2012],wrinkles[RamanathanandChellappa,2008;Suoetal.,2010]andfacialstructure[RamanathanandChellappa,2006;Lanitisetal.,2002].Ontheotherhand,prototype-basedmethods[KemelmacherShlizermanetal.,2014;Tiddemanetal.,2001]dividefacesintogroupsbyage,andthenconstructanaveragefaceasitsprototypeforeachagegroup.Afterthat,thesemethodscantransferthetexturedifferencebetweentheprototypestotheinputfacialimage.Morerecently,thedeeplearning-basedmethod[Wangetal.,2016;Liuetal.,2017]achievedthestate-of-the-artper-formance.In[Wangetal.,2016],RNNisappliedonthecoefficientsofeigenfacesforagepatterntransition.Itper-formsthegroup-basedlearningwhichrequiresthetrueageoftestingfacestolocalizethetransitionstatewhichmightnotbeconvenient.Inaddition,theseapproachesonlypro-videageprogressionfromyoungerfacetoolderones.Toachieveflexiblebidirectionalagechanges,itmayneedtoretrainthemodelinversely.GenerativeAdversarialNet-"
935ce31268232b25c9f685128ae0ae9e5c3a0e8e,Implementation of Human detection system using DM 3730,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358
Implementation of Human detection system using
DM3730
Amaraneni Srilaxmi1, Shaik Khaddar Sharif2
VNR Vignana Jyothi Institute of Engineering & Technology, Bachupally, Hyderabad, India
VNR Vignana Jyothi Institute of Engineering & Technology, Bachupally, Hyderabad, India
digital
ontent  management,"
93798ead90afe86636ca582a92cadd846905a95d,Learning Visual Classifiers From Limited Labeled Images,
930663a0812a7a53963563b647c5957807d3d97d,A unified view of non-monotonic core selection and application steering in heterogeneous chip multiprocessors,"A Unified View of Non-monotonic Core Selection
nd Application Steering in Heterogeneous
Chip Multiprocessors
Sandeep Navada*, Niket K. Choudhary*,
Salil V. Wadhavkar*
CPU Design Center
Qualcomm
Raleigh, NC, USA
{snavada, niketc,"
930a6ea926d1f39dc6a0d90799d18d7995110862,Privacy-preserving photo sharing based on a secure JPEG,"Privacy-Preserving Photo Sharing
ased on a Secure JPEG
Lin Yuan, Pavel Korshunov, and Touradj Ebrahimi
Multimedia Signal Processing Group, EPFL, Lausanne, Switzerland
Email: {lin.yuan, pavel.korshunov,"
94b9c0a6515913bad345f0940ee233cdf82fffe1,Face Recognition using Local Ternary Pattern for Low Resolution Image,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358
Face Recognition using Local Ternary Pattern for
Low Resolution Image
Vikas1, Amanpreet Kaur2
Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India
Assistant Professor, Department of Computer Science Engineering, Chandigarh University, Gharuan, Punjab, India"
94826cb68980e3b89118569c93cfd36f3945fa99,Computer face-matching technology using two-dimensional photographs accurately matches the facial gestalt of unrelated individuals with the same syndromic form of intellectual disability,"Dudding-Byth et al. BMC Biotechnology  (2017) 17:90
DOI 10.1186/s12896-017-0410-1
Open Access
R ES EAR CH A R T I C LE
Computer face-matching technology using
two-dimensional photographs accurately
matches the facial gestalt of unrelated
individuals with the same syndromic form
of intellectual disability
Tracy Dudding-Byth1,2,3,11*†
Susan M. White5,6, John Attia3,4, Han Brunner7, Bert de Vries7, David Koolen7, Tjitske Kleefstra7, Seshika Ratwatte4,8,
Carlos Riveros3, Steve Brain9 and Brian C. Lovell9,10
, Anne Baxter1†, Elizabeth G. Holliday3,4, Anna Hackett1,4,11, Sheridan O’Donnell1,"
94eeae23786e128c0635f305ba7eebbb89af0023,On the Emergence of Invariance and Disentangling in Deep Representations,"Journal of Machine Learning Research 18 (2018) 1-34
Submitted 01/17; Revised 4/18; Published 6/18
Emergence of Invariance and Disentanglement
in Deep Representations∗
Alessandro Achille
Department of Computer Science
University of California
Los Angeles, CA 90095, USA
Stefano Soatto
Department of Computer Science
University of California
Los Angeles, CA 90095, USA
Editor: Yoshua Bengio"
940ab36a8b2cdf6cb6a08093bd382ad375717942,Human violence recognition and detection in surveillance videos,"Human Violence Recognition and Detection in Surveillance Videos
Piotr Bilinski
nd Francois Bremond
INRIA Sophia Antipolis, STARS team
004 Route des Lucioles, BP93, 06902 Sophia Antipolis, France"
9499b8367a84fccb3651a95e4391d6e17fd92ec5,Face Recognition Issues in a Border Control Environment,"Face Recognition Issues in a Border Control
Environment
Marijana Kosmerlj, Tom Fladsrud, Erik Hjelm˚as, and Einar Snekkenes
Department of Computer Science and Media Technology
NISlab
Gjøvik University College
P. O. Box 191, N-2802 Gjøvik, Norway"
942bb63e78d9edfe3b8d0a4bf9a3511c736a6930,"Implementing Efficient, Portable Computations for Machine Learning","Implementing Efficient, Portable Computations for Machine
Learning
Matthew Walter Moskewicz
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2017-37
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-37.html
May 9, 2017"
9432e1157f252ee626511b2270126436b0e80b73,A set theoretic approach to object-based image restoration,"Image Processing: Algorithms and Systems IV, edited by Edward R. Dougherty,
Jaakko T. Astola, Karen O. Egiazarian, Proc. of SPIE-IS&T Electronic Imaging,
SPIE Vol. 5672 © 2005 SPIE and IS&T · 0277-786X/05/$15"
944faf7f14f1bead911aeec30cc80c861442b610,Action Tubelet Detector for Spatio-Temporal Action Localization,"Action Tubelet Detector for Spatio-Temporal Action Localization
Vicky Kalogeiton1,2
Philippe Weinzaepfel3
Vittorio Ferrari2
Cordelia Schmid1"
9458c518a6e2d40fb1d6ca1066d6a0c73e1d6b73,A Benchmark and Comparative Study of Video-Based Face Recognition on COX Face Database,"A Benchmark and Comparative Study of
Video-Based Face Recognition
on COX Face Database
Zhiwu Huang, Student Member, IEEE, Shiguang Shan, Senior Member, IEEE,
Ruiping Wang, Member, IEEE, Haihong Zhang, Member, IEEE,
Shihong Lao, Member, IEEE, Alifu Kuerban,
nd Xilin Chen, Senior Member, IEEE"
940a675de8a48b54bac6b420f551529d2bc53b99,"Advances , Challenges , and Opportunities in Automatic Facial Expression Recognition","Advances, Challenges, and Opportunities in
Automatic Facial Expression Recognition
Brais Martinez and Michel F. Valstar"
9434524669777d281a8a7358f20181c9e157942e,VSEM: An open library for visual semantics representation,"Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 187–192,
Sofia, Bulgaria, August 4-9 2013. c(cid:13)2013 Association for Computational Linguistics"
948af4b04b4a9ae4bff2777ffbcb29d5bfeeb494,Face Recognition From Single Sample Per Person by Learning of Generic Discriminant Vectors,"Available online at www.sciencedirect.com
Procedia Engineering   41  ( 2012 )  465 – 472
International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012)
Face Recognition From Single Sample Per Person by Learning of
Generic Discriminant Vectors
Fadhlan Hafiza*, Amir A. Shafieb, Yasir Mohd Mustafahb
Faculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia
Faculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia"
947399fef66bd8c536c6f784a0501b34e4e094bf,Towards Recovery of Conditional Vectors from Conditional Generative Adversarial Networks,"Towards Recovery of Conditional Vectors from
Conditional Generative Adversarial Networks
Sihao Ding
Andreas Wallin
{sihao.ding,"
9458642e7645bfd865911140ee8413e2f5f9fcd6,Efficient Multiple People Tracking Using Minimum Cost Arborescences,"Ef‌f‌icient Multiple People Tracking Using
Minimum Cost Arborescences
Roberto Henschel1, Laura Leal-Taix´e2, Bodo Rosenhahn1
Institut f¨ur Informationsverarbeitung, Leibniz Universit¨at Hannover,
Institute of Geodesy and Photogrammetry, ETH Zurich,"
949079cc466e875df1ee6bd6590052ba382a35cf,0 Large-Scale Face Image Retrieval :,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
94686d5df14875ed800a9f710bfa43ba4eb19b75,Occlusion Handling for Pedestrian Tracking Using Partial Object Template-based Component Particle Filter,"IADIS International Journal on Computer Science and Information Systems
Vol. 8, No. 2, pp. 40-50
ISSN: 1646-3692
OCCLUSION HANDLING FOR PEDESTRIAN
TRACKING USING PARTIAL OBJECT
TEMPLATE-BASED COMPONENT PARTICLE
FILTER
Daw-Tung Lin. Department of Computer Science and Information Engineering, National Taipei
University, Taiwan.
Yen-Hsiang Chang. Department of Computer Science and Information Engineering, National Taipei
University, Taiwan."
941166547968081463398c9eb041f00eb04304f7,Structure-Preserving Sparse Decomposition for Facial Expression Analysis,"Structure-Preserving Sparse Decomposition for
Facial Expression Analysis
Sima Taheri, Student Member, IEEE, Qiang Qiu, Student Member, IEEE, and Rama Chellappa, Fellow, IEEE"
940865fc3f7ee5b386c4188c231eb6590db874e9,Security and Surveillance System for Drivers Based on User Profile and learning systems for Face Recognition,"Network Protocols and Algorithms
ISSN  1943-3581
015,  Vol.  7,  No.  1
Security and Surveillance System for Drivers based on
User Profile and Learning Systems for Face
Recognition
Loubna Cherrat
Mathematic and Application Laboratory, FSTT of Tangier
Tangier (Morocco)
Tel: 06-64-43-39-18    E-mail:
Mostafa Ezziyyani
Mathematic and Application Laboratory, FSTT of Tangier
Tangier (Morocco)
Tel: 06-61-63-03-01    E-mail:
Annas EL Mouden
Mathematic and Application Laboratory, FSTT of Tangier
Tangier (Morocco)
Tel: 06-66-63-73-63    E-mail:
Mohammed Hassar
Mathematic and Application Laboratory, FSTT of Tangier"
9441253b638373a0027a5b4324b4ee5f0dffd670,A Novel Scheme for Generating Secure Face Templates Using BDA,"A Novel Scheme for Generating Secure Face
Templates Using BDA
Shraddha S. Shinde
Prof. Anagha P. Khedkar
P.G. Student, Department of Computer Engineering,
Associate Professor, Department of Computer
MCERC,
Nashik (M.S.), India
e-mail:"
948853c269cf97251ba5082db0481ce6f96cf886,Efficient Distributed Training of Vehicle Vision Systems,"Efficient Distributed Training of Vehicle Vision Systems
Sung-Li Chiang
Xinlei Pan
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2016-195
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-195.html
December 11, 2016"
94a11b601af77f0ad46338afd0fa4ccbab909e82,"Title of dissertation : EFFICIENT SENSING , SUMMARIZATION AND CLASSIFICATION OF VIDEOS",
0e23229289b1fbea14bc425718bc0a227d100b8e,Survey of Recent Advances in Visual Question Answering,"Survey of Recent Advances in Visual Question Answering
Supriya Pandhre∗
Indian Institute of Technology Hyderabad
Hyderabad, India
Shagun Sodhani
Adobe Systems
Noida, India"
0efdd82a4753a8309ff0a3c22106c570d8a84c20,Lda with Subgroup Pca Method for Facial Image Retrieval,"LDA WITH SUBGROUP PCA METHOD FOR FACIAL IMAGE RETRIEVAL
Wonjun Hwang, Tae-Kyun Kim, Seokcheol Kee
Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea."
0ed78b9562661c550e382ed30de252d877a04cdc,An Evaluation of Video-to-Video Face Verification,"An Evaluation of Video-to-Video Face Verification
Norman Poh, Member, IEEE, Chi Ho Chan, Josef Kittler, Sébastien Marcel, Christopher Mc Cool,
Enrique Argones Rúa, José Luis Alba Castro, Mauricio Villegas, Student Member, IEEE, Roberto Paredes,
Vitomir ˇStruc, Member, IEEE, Nikola Paveˇsic´, Albert Ali Salah, Hui Fang, and Nicholas Costen
features,"
0ec17d929f62660fb3d1bcdd791f9639034f5344,How Do We Evaluate Facial Emotion Recognition?,"Psychology & Neuroscience
016, Vol. 9, No. 2, 153–175
983-3288/16/$12.00
© 2016 American Psychological Association
http://dx.doi.org/10.1037/pne0000047
How Do We Evaluate Facial Emotion Recognition?
Ana Idalina de Paiva-Silva
Universidade de Brasília and Universidade Federal
de Goiás
Marta Kerr Pontes,
Juliana Silva Rocha Aguiar, and
Wânia Cristina de Souza
Universidade de Brasília
The adequate interpretation of facial expressions of emotion is crucial for social
functioning and human interaction. New methods are being applied, and a review of the
methods that are used to evaluate facial emotion recognition is timely for the field. An
extensive review was conducted using the Web of Science, PsycINFO, and PubMed
databases. The following keywords were used to identify articles that were published
within the past 20 years: emotion recognition, face, expression, and assessment. The
initial search yielded 291 articles. After applying the exclusion criteria, 115 articles"
0e9f7d8554e065a586163845dd2bfba26e55cefb,Registration of 3D Face Scans with Average Face Models,"Registration of 3D Face Scans with Average Face Models
Albert Ali Salah1,2, Ne¸se Aly¨uz1, Lale Akarun1
{salah, nese.alyuz,
Bo˘gazi¸ci University,
4342 Bebek, ˙Istanbul, Turkey
Phone: +90 212 359 4523-24
Fax: +90 212 287 2461
Centrum voor Wiskunde en Informatica,
Kruislaan 413, 1098 SJ, 94079, The Netherlands
Phone: +31 020 592 4214
Fax: +31 020 592 4199"
0ef40a21edf2b48c73fd51c21d213ee69ca30a4b,Hidden Markov model as a framework for situational awareness,
0eac652139f7ab44ff1051584b59f2dc1757f53b,Efficient Branching Cascaded Regression for Face Alignment under Significant Head Rotation,"Efficient Branching Cascaded Regression
for Face Alignment under Significant Head Rotation
Brandon M. Smith
Charles R. Dyer
University of Wisconsin–Madison"
0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a,The Pascal Visual Object Classes (VOC) Challenge,"Int J Comput Vis (2010) 88: 303–338
DOI 10.1007/s11263-009-0275-4
The PASCAL Visual Object Classes (VOC) Challenge
Mark Everingham · Luc Van Gool ·
Christopher K. I. Williams · John Winn ·
Andrew Zisserman
Received: 30 July 2008 / Accepted: 16 July 2009 / Published online: 9 September 2009
© Springer Science+Business Media, LLC 2009"
0e13f7fc698cbe78ddbf3412b13ca27a4d878fa8,Greater need to belong predicts a stronger preference for extraverted faces,"See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/306357929
Greater	need	to	belong	predicts	a	stronger
preference	for	extraverted	faces	☆
Article		in		Personality	and	Individual	Differences	·	January	2017
DOI:	10.1016/j.paid.2016.08.012
CITATION
authors,	including:
READS
Mitch	Brown
University	of	Southern	Mississippi
6	PUBLICATIONS			5	CITATIONS
SEE	PROFILE
Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:
Metaphor	and	Disease	View	project
Limbal	Rings	View	project
All	content	following	this	page	was	uploaded	by	Mitch	Brown	on	10	November	2016.
The	user	has	requested	enhancement	of	the	downloaded	file."
0e031312cb6e1634e3115e428505e2be9ef46b75,Explicit Knowledge-based Reasoning for Visual Question Answering,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
giraffe people people Attributes: glass house room standing walking wall zoo  Scenes: museum indoor  Visual Question: How many giraffes are there in the image? Answer: Two.  Common-Sense Question: Is this image related to zoology? Answer: Yes. Reason: Object/Giraffe  -->  Herbivorous animals    --> Animal --> Zoology; Attribute/Zoo --> Zoology. KB-Knowledge Question: What are the common properties between the animal in this image and zebra? Answer: Herbivorous animals; Animals; Megafauna of Africa. Figure1:ArealexampleoftheproposedKB-VQAdatasetandtheresultsgivenbyAhab,theproposedVQAapproach.Ourapproachanswersquestionsbyextractingseveraltypesofvisualconceptsfromanimageandaligningthemtolarge-scalestructuredknowl-edgebases.Apartfromanswers,ourapproachcanalsoproviderea-sonsandexplanationsforcertaintypesofquestions.itisansweringthequestionbasedonimageinformation,orjusttheprevalenceofaparticularanswerinthetrainingset.Thesecondproblemisthatbecausethemodelistrainedonindividualquestion/answerpairs,therangeofquestionsthatcanbeaccuratelyansweredislimited.Answeringgeneralquestionsposedbyhumansaboutimagesinevitablyrequiresreferencetoadiversevarietyofinformationnotcontainedintheimageitself.CapturingsuchlargeamountofinformationwouldrequireanimplausiblylargeLSTM,andacompletelyimpracticalamountoftrainingdata.Thethird,andmajor,problemwiththeLSTMapproachisthatitisincapableofex-plicitreasoningexceptinverylimitedsituations[Rockt¨ascheletal.,2016].OurmaincontributionisamethodwecallAhab1foran-sweringawidevarietyofquestionsaboutimagesthatrequire1Ahab,thecaptaininthenovelMobyDick,iseitherabrilliantvisionary,oradeludedfanatic,dependingonyourperspective."
0eb45876359473156c0d4309f548da63470d30ee,A Deeply-Initialized Coarse-to-fine Ensemble of Regression Trees for Face Alignment,"A Deeply-initialized Coarse-to-fine Ensemble of
Regression Trees for Face Alignment
Roberto Valle1[0000−0003−1423−1478], Jos´e M.
Buenaposada2[0000−0002−4308−9653], Antonio Vald´es3, and Luis Baumela1
Univ. Polit´ecnica de Madrid, Spain.
Univ. Rey Juan Carlos, Spain.
Univ. Complutense de Madrid, Spain."
0e50fe28229fea45527000b876eb4068abd6ed8c,Angle Principal Component Analysis,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
0eff410cd6a93d0e37048e236f62e209bc4383d1,Learning discriminative MspLBP features based on Ada-LDA for multi-class pattern classification,"Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA
978-1-4244-5040-4/10/$26.00 ©2010 IEEE"
0ecaabbf846bbc78c91bf7ff71b998b61c0082d8,Automated Visual Fin Identification of Individual Great White Sharks,"Noname manuscript No.
(will be inserted by the editor)
Automated Visual Fin Identification
of Individual Great White Sharks
Benjamin Hughes and Tilo Burghardt
Received: date / Accepted: date"
0ee737085af468f264f57f052ea9b9b1f58d7222,SiGAN: Siamese Generative Adversarial Network for Identity-Preserving Face Hallucination,"SiGAN: Siamese Generative Adversarial Network
for Identity-Preserving Face Hallucination
Chih-Chung Hsu, Member, IEEE, Chia-Wen Lin, Fellow, IEEE, Weng-Tai Su, Student Member, IEEE,
nd Gene Cheung, Senior Member, IEEE,"
0ee661a1b6bbfadb5a482ec643573de53a9adf5e,On the Use of Discriminative Cohort Score Normalization for Unconstrained Face Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH YEAR
On the Use of Discriminative Cohort Score
Normalization for Unconstrained Face Recognition
Massimo Tistarelli, Senior Member, IEEE, Yunlian Sun, and Norman Poh, Member, IEEE"
0e986f51fe45b00633de9fd0c94d082d2be51406,"Face detection, pose estimation, and landmark localization in the wild","Face Detection, Pose Estimation, and Landmark Localization in the Wild
Xiangxin Zhu Deva Ramanan
Dept. of Computer Science, University of California, Irvine"
0e36bf238d2db6c970ade0b5f68811ed6debc4e8,Recognizing Partial Biometric Patterns,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 4, AUGUST 2018
Recognizing Partial Biometric Patterns
Lingxiao He, Student Member, IEEE, Zhenan Sun, Member, IEEE, Yuhao Zhu and Yunbo Wang"
0e49a23fafa4b2e2ac097292acf00298458932b4,Unsupervised Detection of Outlier Images Using Multi-Order Image Transforms,"Theory and Applications of Mathematics & Computer Science 3 (1) (2013) 13–31
Unsupervised Detection of Outlier Images Using Multi-Order
Image Transforms
Lior Shamira,∗
Lawrence Technological University, 21000 W Ten Mile Rd., Southfield, MI 48075, United States."
0e95f68171b27621a39e393afb7c74ef1506fe85,Content Based Image Retrieval Using Enhanced Local Tetra Patterns,"CONTENT BASED IMAGE RETRIEVAL USING
ENHANCED LOCAL TETRA PATTERNS
Divya Gupta1, Anjali Jindal2
Assistant Professor, Computer Science Department
SRM University, Delhi NCR Campus, India
M.Tech Student (Computer Science and Engineering)
SRM University, Delhi NCR Campus, India"
0ed91520390ebdee13a0ac13d028f65d959bdc10,Hard Example Mining with Auxiliary Embeddings,"Hard Example Mining with Auxiliary Embeddings
Evgeny Smirnov
Speech Technology Center
Aleksandr Melnikov
ITMO University
Andrei Oleinik
ITMO University
melnikov
Elizaveta Ivanova
Ilya Kalinovskiy
Speech Technology Center
Speech Technology Center
Eugene Luckyanets
ITMO University"
0e78af9bd0f9a0ce4ceb5f09f24bc4e4823bd698,Spontaneous Subtle Expression Recognition: Imbalanced Databases & Solutions,"Spontaneous Subtle Expression Recognition:
Imbalanced Databases & Solutions (cid:63)
Anh Cat Le Ngo1, Raphael Chung-Wei Phan1, John See2
Faculty of Engineering,
Multimedia University (MMU), Cyberjaya, Malaysia
Faculty of Computing & Informatics,
Multimedia University (MMU), Cyberjaya, Malaysia"
0e2ea7af369dbcaeb5e334b02dd9ba5271b10265,Multi-Level Feature Abstraction from Convolutional Neural Networks for Multimodal Biometric Identification,
0e7fdc0b03a1481b2fa1b5d592125f41b6cb7ad7,Dual CNN Models for Unsupervised Monocular Depth Estimation,"Dual CNN Models for Unsupervised Monocular Depth Estimation
Computer Vision Group,
Indian Institute of Information Technology, Sri City,
Vamshi Krishna Repala
Shiv Ram Dubey
Andhra Pradesh-517646, India
vamshi.r14,"
0e7c70321462694757511a1776f53d629a1b38f3,2012 Proceedings of the Performance Metrics for Intelligent Systems (PerMI'12) Workshop,"NIST Special Publication 1136
012 Proceedings of the
Performance Metrics for Intelligent
Systems (PerMI ‘12) Workshop
Rajmohan Madhavan
Elena R. Messina
Brian A. Weiss
http://dx.doi.org/10.6028/NIST.SP.1136"
0e5640677feb2e1d78639b516f7977e80d9d394f,Volume-based Human Re-identification with RGB-D Cameras,"Cosar, S., Coppola, C. and Bellotto, N.
Volume-based Human Re-identification with RGB-D Cameras.
In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017) - Volume 4: VISAPP, pages
89-397
ISBN: 978-989-758-225-7
Copyright c(cid:13) 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved"
0efb7d1413ada560ab1aee1ea4cc94d80737e662,Performance Analysis of Eye localization Methods for Real Time Vision Interface using Low Grade Video Camera,"International Journal of Computer Applications (0975 – 8887)
Volume 114 – No. 2, March 2015
Performance Analysis of Eye localization Methods for
Real Time Vision Interface using Low Grade Video
Krupa Jariwala
Assistant Professor
Computer Engineering Department
SVNIT, Surat
Camera
Upena Dalal, Ph.D.
Associate Professor
Electronics Engineering Department
SVNIT, Surat"
0edd3517579a110da989405309e4235e47dd8937,Performance and security analysis of Gait-based user authentication,"Performance and Security Analysis
of Gait-based User Authentication
Doctoral Dissertation by
Davrondzhon Gafurov
Submitted to the Faculty of Mathematics and Natural Sciences at the
University of Oslo in partial fulfillment of the requirements for the degree
Philosophiae Doctor (PhD) in Computer Science"
607850dc8e640c25f027f2eee202dee5605cf27c,A Survey on Face Detection and Recognition Techniques in Different Application Domain,"I.J. Modern Education and Computer Science, 2014, 8, 34-44
Published Online August 2014 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijmecs.2014.08.05
A Survey on Face Detection and Recognition
Techniques in Different Application Domain
Subrat Kumar Rath, Siddharth Swarup Rautaray
School of Computer Engineering, KIIT University, Bhubaneswar, Odisha, India
related
technology
recognition,
to  biometric  science
the  popularity  and"
600025c9a13ff09c6d8b606a286a79c823d89db8,A Review on Linear and Non-linear Dimensionality Reduction Techniques,"Machine Learning and Applications: An International Journal (MLAIJ) Vol.1, No.1, September 2014
A REVIEW ON LINEAR AND NON-LINEAR
DIMENSIONALITY REDUCTION
TECHNIQUES
Arunasakthi. K, 2KamatchiPriya. L
Assistant Professor
Department of Computer Science and Engineering
Ultra College of Engineering and Technology for Women,India.
Assistant Professor
Department of Computer Science and Engineering
Vickram College of Engineering, Enathi, Tamil Nadu, India."
602ff4fd0f5bd10c9fb971ecd2317e542f070883,Object Detection from the Satellite Images using Divide and Conquer Model,"SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014
Object Detection from the Satellite Images
using Divide and Conquer Model
Lakhwinder Kaur, Guru Kashi University
Er.Vinod Kumar Sharma (Assistant professor), Guru Kashi University"
60fb007eef153fdf9c3d6620c419bef1c657c555,A soft-biometrics dataset for person tracking and re-identification,"A Soft-Biometrics Dataset for Person Tracking and Re-Identification
Arne Schumann, Eduardo Monari
Fraunhofer Institute for Optronics, System Technologies and Image Exploitation
{arne.schumann,"
60f7de07de4d090990120483bd5407369b29a120,ℓ₁-Norm Heteroscedastic Discriminant Analysis Under Mixture of Gaussian Distributions.,"L1-Norm Heteroscedastic Discriminant Analysis
under Mixture of Gaussian Distributions
Wenming Zheng, Member, IEEE, Cheng Lu, Zhouchen Lin, Fellow, IEEE, Tong Zhang, Zhen Cui, Wankou Yang"
60ec284f67c1012419e5dea508d1bae4bc144bb2,Curvelet Based Multiresolution Analysis of Face Images for Recognition using Robust Local Binary Pattern Descriptor,"Proc. of Int. Conf. on  Recent Trends in Signal Processing, Image Processing and VLSI, ICrtSIV
Curvelet Based Multiresolution Analysis of Face
Images for Recognition using Robust Local Binary
Pattern Descriptor
Nagaraja S. and Prabhakar C.J
Department of P.G. Studies and Research in Computer Science,
Kuvempu University, Karnataka, India
Email: { nagarajas27, psajjan"
604a4f7c0958c5cac017b853a7d0f5f5b4a4c509,Can We Teach Empathy ? Techniques Using Standardized Patients to Assist Learners with Empathy ( Submission # 1039 ) Gayle,
60ea05df719973ac4d9d70d3141e671131a55db5,A Practical Subspace Approach To Landmarking,"A Practical Subspace Approach To Landmarking
Signals and systems group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of
G. M. Beumer, and R.N.J. Veldhuis
Twente, Enschede, The Netherlands
Email:"
60e2b9b2e0db3089237d0208f57b22a3aac932c1,Frankenstein: Learning Deep Face Representations Using Small Data,"Frankenstein: Learning Deep Face Representations
using Small Data
Guosheng Hu, Member, IEEE, Xiaojiang Peng, Yongxin Yang, Timothy M. Hospedales, and Jakob Verbeek"
6097c33a382c62a44379926ee96b23b51dba49c4,From Depth Data to Head Pose Estimation: a Siamese approach,"From Depth Data to Head Pose Estimation: a Siamese approach
Marco Venturelli, Guido Borghi, Roberto Vezzani, Rita Cucchiara
University of Modena and Reggio Emilia, DIEF
{marco.venturelli, guido.borghi, roberto.vezzani,
Via Vivarelli 10, Modena, Italy
Keywords:
Head Pose Estimation, Deep Learning, Depth Maps, Automotive"
6025f0761024006e0ea5782a7cea29ed69231fbf,Neural Mechanisms of Qigong Sensory Training Massage for Children With Autism Spectrum Disorder: A Feasibility Study,"Original Article
Neural Mechanisms of Qigong Sensory
Training Massage for Children With Autism
Spectrum Disorder: A Feasibility Study
Global Advances in Health and Medicine
Volume 7: 1–10
! The Author(s) 2018
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/2164956118769006
journals.sagepub.com/home/gam
Kristin K Jerger, MD, LMBT1, Laura Lundegard2, Aaron Piepmeier, PhD1,
Keturah Faurot, PA, MPH, PhD1, Amanda Ruffino, BA1,
Margaret A Jerger, PhD, CCC-SLP1, and Aysenil Belger, PhD3"
60ab5c64375c4f5f8949a184fd9bfb68778ae6ea,Understanding and Verifying Kin Relationships in a Photo,"N. S. Syed et al Int. Journal of Engineering Research and Applications                          www.ijera.com
ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1225-1229
RESEARCH ARTICLE                                                                            OPEN ACCESS
Understanding and Verifying Kin Relationships in a Photo
Ms.N.S.Syed, 2mr.B.K.Patil, 3mr.Zafar Ul Hasan
(Department of Computer Science, Everest College of Engg. & Tech., Aurangabad, M.S., India )
(Department of Computer Science, Everest College of Engg. & Tech., Aurangabad, M.S., India )
(Department of Computer Science, Sandip Institute of Technology and Research Centre, Nashik, M.S,India)"
60ce4a9602c27ad17a1366165033fe5e0cf68078,Combination of Face Regions in Forensic Scenarios.,"TECHNICAL NOTE
DIGITAL & MULTIMEDIA SCIENCES
J Forensic Sci, 2015
doi: 10.1111/1556-4029.12800
Available online at: onlinelibrary.wiley.com
Pedro Tome,1 Ph.D.; Julian Fierrez,1 Ph.D.; Ruben Vera-Rodriguez,1 Ph.D.; and Javier Ortega-Garcia,1
Ph.D.
Combination of Face Regions in Forensic
Scenarios*"
609ff585468ad0faba704dde1a69edb9f847c201,LogDet Rank Minimization with Application to Subspace Clustering,"Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2015, Article ID 824289, 10 pages
http://dx.doi.org/10.1155/2015/824289
Research Article
LogDet Rank Minimization with Application to
Subspace Clustering
Zhao Kang,1 Chong Peng,1 Jie Cheng,2 and Qiang Cheng1
Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
Department of Computer Science and Engineering, University of Hawaii at Hilo, Hilo, HI 96720, USA
Correspondence should be addressed to Qiang Cheng;
Received 25 March 2015; Revised 15 June 2015; Accepted 18 June 2015
Academic Editor: Jos´e Alfredo Hernandez
Copyright © 2015 Zhao Kang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Low-rank matrix is desired in many machine learning and computer vision problems. Most of the recent studies use the nuclear
norm as a convex surrogate of the rank operator. However, all singular values are simply added together by the nuclear norm, and
thus the rank may not be well approximated in practical problems. In this paper, we propose using a log-determinant (LogDet)
function as a smooth and closer, though nonconvex, approximation to rank for obtaining a low-rank representation in subspace
lustering. Augmented Lagrange multipliers strategy is applied to iteratively optimize the LogDet-based nonconvex objective"
60efdb2e204b2be6701a8e168983fa666feac1be,Transferring Deep Object and Scene Representations for Event Recognition in Still Images,"Int J Comput Vis
DOI 10.1007/s11263-017-1043-5
Transferring Deep Object and Scene Representations for Event
Recognition in Still Images
Limin Wang1
· Zhe Wang2 · Yu Qiao3 · Luc Van Gool1
Received: 31 March 2016 / Accepted: 1 September 2017
© Springer Science+Business Media, LLC 2017"
60189e2b592056d43a28b6ffa491867f793ebe1e,Bağlamın Hiyerarşik Doğası,"Ba˘glamın Hiyerar¸sik Do˘gası
Fethiye Irmak Do˘gan, Sinan Kalkan
Bilgisayar Mühendisli˘gi Bölümü
Orta Do˘gu Teknik Üniversitesi
Ankara, Türkiye
Email:
Özetçe —Ba˘glam, insan bili¸si için oldukça elzemdir ve du-
ru¸s, davranı¸s, konu¸sma biçimi gibi gündelik insan hayatı için
önemli pek çok sürece etki etmektedir. Yakın zamanda hay-
tımızda yer edinmesini bekledi˘gimiz robotların da i¸slevlerini
yerine do˘gru ve verimli bir biçimde getirebilmesi için, ba˘glamı
lgılama ve kullanma yetene˘gine sahip olması beklenmektedir.
Ancak ba˘glam, yapay veya do˘gal bili¸s için ne kadar elzem
olsa da, ba˘glamın yapısı yeterince çalı¸sılmı¸s ve çözümlenebilmi¸s
de˘gildir. Bu çalı¸smada, ba˘glamın çözümlenememi¸s ö˘gelerinden
ir tanesine, ba˘glamın yapısının hiyerar¸sik olup olmadı˘gına
odaklanılmaktadır. Yaptı˘gımız irdelemeye göre, ba˘glama ait
muhtelif sosyal, uzamsal ve zamansal özellikler ve olgular,
a˘glamın hiyerar¸sik bir yapıya sahip oldu˘gunu önermektedir. Bu
konudaki sinirbilim, psikoloji bulguları ve bili¸simsel modelleme"
60824ee635777b4ee30fcc2485ef1e103b8e7af9,Cascaded Collaborative Regression for Robust Facial Landmark Detection Trained Using a Mixture of Synthetic and Real Images With Dynamic Weighting,"Cascaded Collaborative Regression for Robust Facial
Landmark Detection Trained using a Mixture of Synthetic and
Real Images with Dynamic Weighting
Zhen-Hua Feng, Student Member, IEEE, Guosheng Hu, Student Member, IEEE, Josef Kittler,
Life Member, IEEE, William Christmas, and Xiao-Jun Wu"
60c06e5884a672e0ba3bf1d3488307489583b7e5,Audiovisual speech perception and eye gaze behavior of adults with asperger syndrome.,"J Autism Dev Disord
DOI 10.1007/s10803-011-1400-0
O R I G I N A L P A P E R
Audiovisual Speech Perception and Eye Gaze Behavior of Adults
with Asperger Syndrome
Satu Saalasti • Jari Ka¨tsyri • Kaisa Tiippana •
Mari Laine-Hernandez • Lennart von Wendt •
Mikko Sams
Ó Springer Science+Business Media, LLC 2011"
60c12b3a1bfd547f5a165c95774a1a17d18a5941,People recognition by mobile robots,"People Recognition by Mobile Robots
Grzegorz Cielniak and Tom Duckett
Centre for Applied Autonomous Sensor Systems
Dept. of Technology, ¨Orebro University
SE-70182 ¨Orebro, Sweden
Phone: +46 19 30 11 13, +46 19 30 34 83
Email:
Telefax: +46 19 30 34 63"
60bc358296ae11ac8f11286bba0a49ac7e797d26,Diverse Image-to-Image Translation via Disentangled Representations,"Diverse Image-to-Image Translation via
Disentangled Representations
Hsin-Ying Lee(cid:63)1, Hung-Yu Tseng(cid:63)1, Jia-Bin Huang2, Maneesh Singh3,
Ming-Hsuan Yang1,4
University of California, Merced 2Virginia Tech 3Verisk Analytics 4Google Cloud
Photo to van Gogh
Content
Attribute Generated
Winter to summer
Photograph to portrait
Input
Output
Input
Output
Fig. 1: Unpaired diverse image-to-image translation. (Lef t) Our model
learns to perform diverse translation between two collections of images without
ligned training pairs. (Right) Example-guided translation."
60d75d32d345c519fa5c0d8d6b6eb62e633a8d13,Person reidentification by semisupervised dictionary rectification learning with retraining module,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
PersonreidentificationbysemisuperviseddictionaryrectificationlearningwithretrainingmoduleHongyuanWangZongyuanDingJiZhangSuolanLiuTongguangNiFuhuaChenHongyuanWang,ZongyuanDing,JiZhang,SuolanLiu,TongguangNi,FuhuaChen,“Personreidentificationbysemisuperviseddictionaryrectificationlearningwithretrainingmodule,”J.Electron.Imaging27(4),043043(2018),doi:10.1117/1.JEI.27.4.043043."
60ffc8db53b02e95d852f5a06f97686486f72195,Video Matching Using DC-image and Local Features,"Video Matching Using DC-image and Local
Features
Saddam Bekhet, Amr Ahmed and Andrew Hunter"
6084cac63fe6fcc1436610f1db4a3764ec2e3692,TST/BTD: An End-to-End Visual Recognition System,"TST/BTD: An End-to-End Visual Recognition System
Taehee Lee
Stefano Soatto
Technical Report UCLA-CSD100008
February 8, 2010, Revised March 18, 2010"
60161c712a491764b6f227d72e9d01e956caa873,"Wrong Today, Right Tomorrow: Experience-Based Classification for Robot Perception","Wrong Today, Right Tomorrow:
Experience-Based Classification for
Robot Perception
Jeffrey Hawke†, Corina Gur˘au†, Chi Hay Tong and Ingmar Posner"
60cc2e8abc20c145727e7089c55bdba5722436d0,Higher Order Matching for Consistent Multiple Target Tracking,"Higher Order Matching for Consistent Multiple Target Tracking
Chetan Arora
Amir Globerson
School of Computer Science and Engineering
The Hebrew University
http://www.cs.huji.ac.il/˜chetan/"
604d7533bdcfb06f4ae217a2cd9fd2e1467192f8,Gender Recognition using Hog with Maximized Inter-Class Difference,
60cdcf75e97e88638ec973f468598ae7f75c59b4,Face Annotation Using Transductive Kernel Fisher Discriminant,"Face Annotation Using Transductive
Kernel Fisher Discriminant
Jianke Zhu, Steven C.H. Hoi, and Michael R. Lyu"
60a33bcfe4b40cf46772e6aa1ead10489e924847,Bayesian representation learning with oracle constraints,"When crowds hold privileges: Bayesian unsupervised
representation learning with oracle constraints
Theofanis Karaletsos
Computational Biology Program, Sloan Kettering Institute
275 York Avenue, New York, USA
Serge Belongie
Cornell Tech
11 Eighth Avenue #302, New York, USA
Gunnar R¨atsch
Computational Biology Program, Sloan Kettering Institute
275 York Avenue, New York, USA"
60040e4eae81ab6974ce12f1c789e0c05be00303,Graphical Facial Expression Analysis and Design Method: An Approach to Determine Humanoid Skin Deformation,"Yonas Tadesse1,2
e-mail:
Shashank Priya
e-mail:
Center for Energy Harvesting
Materials and Systems (CEHMS),
Bio-Inspired Materials and
Devices Laboratory (BMDL),
Center for Intelligent Material
Systems and Structure (CIMSS),
Department of Mechanical Engineering,
Virginia Tech,
Blacksburg, VA 24061
Graphical Facial Expression
Analysis and Design Method:
An Approach to Determine
Humanoid Skin Deformation
The architecture of human face is complex consisting of 268 voluntary muscles that perform
oordinated action to create real-time facial expression. In order to replicate facial expres-
sion on humanoid face by utilizing discrete actuators, the first and foremost step is the identi-"
60b3601d70f5cdcfef9934b24bcb3cc4dde663e7,Binary Gradient Correlation Patterns for Robust Face Recognition,"SUBMITTED TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Binary Gradient Correlation Patterns
for Robust Face Recognition
Weilin Huang, Student Member, IEEE, and Hujun Yin, Senior Member, IEEE"
60bd1d33d74619f08baf0d7477b3f8cb8fc711e5,Amygdala Connectivity during Involuntary Attention to Emotional Faces in Typical Development and Autism Spectrum Disorders,"AMYGDALA CONNECTIVITY DURING INVOLUNTARY ATTENTION TO EMOTIONAL FACES
IN TYPICAL DEVELOPMENT AND AUTISM SPECTRUM DISORDERS
A Dissertation
Submitted to the Faculty of the
Graduate School of Arts and Sciences
of Georgetown University
in partial fulfillment of the requirement for the
degree of
Doctor of Philosophy
in Psychology
Eric R. Murphy, M.A.
Washington, DC
August 27th, 2013"
60b66ec51ddadd132453f700d1781e8e7a8f78c8,Self-Validated Labeling of Markov Random Fields for Image Segmentation,"Self-Validated Labeling of Markov Random
Fields for Image Segmentation
Wei Feng, Jiaya Jia, Member, IEEE, and Zhi-Qiang Liu"
60c7711bf9a00f697fff61474433da01f8550bf4,A Hybrid Approach of Facial Emotion Detection using Genetic Algorithm along with Artificial Neural Network,"A Hybrid Approach of Facial Emotion Detection using Genetic Algorithm along with Artificial Neural Network
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 175
Number 4
Year of Publication: 2017
Authors:
Amrendra Sharan, Sunil Kumar Chhillar
10.5120/ijca2017915494
{bibtex}2017915494.bib{/bibtex}"
6047e9af00dcffbd2effbfa600735eb111f7de65,A Discriminative Representation of Convolutional Features for Indoor Scene Recognition,"A Discriminative Representation of Convolutional
Features for Indoor Scene Recognition
S. H. Khan, M. Hayat, M. Bennamoun, Member, IEEE, R. Togneri, and F. Sohel, Senior Member, IEEE"
60bffecd79193d05742e5ab8550a5f89accd8488,Proposal Classification using sparse representation and applications to skin lesion diagnosis,"PhD Thesis Proposal
Classification using sparse representation and applications to skin
lesion diagnosis
I. Description
In only a few decades, sparse representation modeling has undergone a tremendous expansion with
successful applications in many fields including signal and image processing, computer science,
machine  learning,  statistics.  Mathematically,  it  can  be  considered  as  the  problem  of  finding  the
sparsest solution (the one with the fewest non-zeros entries) to an underdetermined linear system
of equations [1]. Based on the observation for natural images (or images rich in textures) that small
scale  structures  tend  to  repeat  themselves  in  an  image  or  in  a  group  of  similar  images,  a  signal
source can be sparsely represented over some well-chosen redundant basis (a dictionary). In other
words, it can be approximately representable by a linear combination of a few elements (also called
toms or basis vectors) of a redundant/over-complete dictionary.
Such models have been proven successful in many tasks including denoising [2]-[5], compression
[6],[7], super-resolution [8],[9], classification and pattern recognition [10]-[16]. In the context of
lassification, the objective is to find the class to which a test signal belongs, given training data
from multiple classes. Sparse representation has become a powerful technique in classification and
pplications, including texture classification [16], face recognition [12], object detection [10], and
segmentation of medical images [17], [18]. In conventional Sparse Representation Classification
(SRC) schemes, learned dictionaries and sparse representation are involved to classify image pixels"
60e065dbb795cc0d76ec187116eb87d1f42b5485,A General Framework for Density Based Time Series Clustering Exploiting a Novel Admissible Pruning Strategy,"IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID
A General Framework for Density Based
Time Series Clustering Exploiting a Novel
Admissible Pruning Strategy
Nurjahan Begum1, Liudmila Ulanova1, Hoang Anh Dau1, Jun Wang2, and Eamonn Keogh1"
601834a4150e9af028df90535ab61d812c45082c,A short review and primer on using video for psychophysiological observations in human-computer interaction applications,"A short review and primer on using video for
psychophysiological observations in
human-computer interaction applications
Teppo Valtonen1
Quantified Employee unit, Finnish Institute of Occupational Health,
teppo. valtonen fi,
POBox 40, 00250, Helsinki, Finland"
60978f66eac568ae65d3acdc6559273fc30bc8c4,GReTA-A Novel Global and Recursive Tracking Algorithm in Three Dimensions,"GReTA – a novel Global and Recursive
Tracking Algorithm in three dimensions
Alessandro Attanasi, Andrea Cavagna, Lorenzo Del Castello, Irene Giardina, Asja Jeli´c,
Stefania Melillo, Leonardo Parisi, Fabio Pellacini, Edward Shen, Edmondo Silvestri, Massimiliano Viale"
346dbc7484a1d930e7cc44276c29d134ad76dc3f,Artists portray human faces with the Fourier statistics of complex natural scenes.,"This article was downloaded by:[University of Toronto]
On: 21 November 2007
Access Details: [subscription number 785020433]
Publisher: Informa Healthcare
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK
Systems
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713663148
Artists portray human faces with the Fourier statistics of
omplex natural scenes
Christoph Redies a; Jan Hänisch b; Marko Blickhan a; Joachim Denzler b
Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany
Department of Computer Science, Friedrich Schiller University, D-07740 Jena,
Germany
First Published on: 28 August 2007
To cite this Article: Redies, Christoph, Hänisch, Jan, Blickhan, Marko and Denzler,
Joachim (2007) 'Artists portray human faces with the Fourier statistics of complex
To link to this article: DOI: 10.1080/09548980701574496
URL: http://dx.doi.org/10.1080/09548980701574496"
34b124ecdc3471167cea1675a74a0232a881bc69,Infrared face recognition based on LBP co-occurrence matrix,"Int. J. Wireless and Mobile Computing, Vol. 8, No. 1, 2015
Infrared face recognition based on LBP
o-occurrence matrix and partial least squares
Zhihua Xie and Guodong Liu*
Key Lab of Optic-Electronic and Communication,
Jiangxi Sciences and Technology Normal University,
Nanchang, China
Email:
Email:
*Corresponding author"
343d21ae54b45ef219ac4ba024265eeabf4d6edd,Where Will They Go? Predicting Fine-Grained Adversarial Multi-agent Motion Using Conditional Variational Autoencoders,"Where Will They Go? Predicting Fine-Grained
Adversarial Multi-Agent Motion using
Conditional Variational Autoencoders
Panna Felsen1,2, Patrick Lucey2, and Sujoy Ganguly2
BAIR, UC Berkeley
STATS
{plucey,"
34d53d2a418051c56cad9e0c90ea793af6cbb729,Structured Multi-class Feature Selection for Effective Face Recognition,"Structured multi-class feature selection for
effective face recognition
Giovanni Fusco, Luca Zini, Nicoletta Noceti, and Francesca Odone
DIBRIS - Universit`a di Genova
via Dodecaneso, 35
6146-IT, Italy"
34c7254d2f420df6309260b2bb461a9c107dfd5a,Semi-supervised image classification based on a multi-feature image query language,"University of Huddersfield Repository
Pein, Raoul Pascal
Semi-Supervised Image Classification based on a Multi-Feature Image Query Language
Original Citation
Pein, Raoul Pascal (2010) Semi-Supervised Image Classification based on a Multi-Feature Image
Query Language. Doctoral thesis, University of Huddersfield.
This version is available at http://eprints.hud.ac.uk/9244/
The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
an be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:
• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.
For more information, including our policy and submission procedure, please
ontact the Repository Team at:
http://eprints.hud.ac.uk/"
34b3b14b4b7bfd149a0bd63749f416e1f2fc0c4c,The AXES submissions at TrecVid 2013,"The AXES submissions at TrecVid 2013
Robin Aly1, Relja Arandjelovi´c3, Ken Chatfield3, Matthijs Douze6, Basura Fernando4, Zaid Harchaoui6,
Kevin McGuinness2, Noel E. O’Conner2, Dan Oneata6, Omkar M. Parkhi3, Danila Potapov6, Jérôme Revaud6,
Cordelia Schmid6, Jochen Schwenninger5, David Scott2, Tinne Tuytelaars4, Jakob Verbeek6, Heng Wang6,
Andrew Zisserman3
University of Twente 2Dublin City University 3Oxford University
KU Leuven 5Fraunhofer Sankt Augustin 6INRIA Grenoble"
34cd99528d873e842083abec429457233fdb3226,Person Re-identification using group context,"Person Re-identification using group context
Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla
Baskurt
To cite this version:
Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla Baskurt. Person Re-
identification using group context. Advanced Concepts for Intelligent Vision systems, Sep 2018,
Poitiers, France. <hal-01895373>
HAL Id: hal-01895373
https://hal.archives-ouvertes.fr/hal-01895373
Submitted on 15 Oct 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
344f647463ef160956143ebc8ce370cca144961a,Confidence-Aware Probability Hypothesis Density Filter for Visual Multi-Object Tracking,
3413af6c689eedb4fe3e7d6c5dc626647976307a,Horizontally Scalable Submodular Maximization,"Horizontally Scalable Submodular Maximization
Mario Lucic1
Olivier Bachem1
Morteza Zadimoghaddam2
Andreas Krause1
Department of Computer Science, ETH Zurich, Switzerland
Google Research, New York"
34d484b47af705e303fc6987413dc0180f5f04a9,RI:Medium: Unsupervised and Weakly-Supervised Discovery of Facial Events,"RI:Medium: Unsupervised and Weakly-Supervised
Discovery of Facial Events
Introduction
The face is one of the most powerful channels of nonverbal communication. Facial expression has been a
focus of emotion research for over a hundred years [11]. It is central to several leading theories of emotion
[16, 28, 44] and has been the focus of at times heated debate about issues in emotion science [17, 23, 40].
Facial expression figures prominently in research on almost every aspect of emotion, including psychophys-
iology [30], neural correlates [18], development [31], perception [4], addiction [24], social processes [26],
depression [39] and other emotion disorders [46], to name a few. In general, facial expression provides cues
bout emotional response, regulates interpersonal behavior, and communicates aspects of psychopathology.
While people have believed for centuries that facial expressions can reveal what people are thinking and
feeling, it is relatively recently that the face has been studied scientifically for what it can tell us about
internal states, social behavior, and psychopathology.
Faces possess their own language. Beginning with Darwin and his contemporaries, extensive efforts
have been made to manually describe this language. A leading approach, the Facial Action Coding System
(FACS) [19] , segments the visible effects of facial muscle activation into ”action units.” Because of its
descriptive power, FACS has become the state of the art in manual measurement of facial expression and is
widely used in studies of spontaneous facial behavior. The FACS taxonomy was develop by manually ob-
serving graylevel variation between expressions in images and to a lesser extent by recording the electrical
ctivity of underlying facial muscles [9]. Because of its importance to human social dynamics, person per-"
3402b5e354eebcf443789f3c8d3c97eccd3ae55e,Multimodal Machine Learning: A Survey and Taxonomy,"Multimodal Machine Learning:
A Survey and Taxonomy
Tadas Baltruˇsaitis, Chaitanya Ahuja, and Louis-Philippe Morency"
341002fac5ae6c193b78018a164d3c7295a495e4,von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification,"von Mises-Fisher Mixture Model-based Deep
learning: Application to Face Verification
Md. Abul Hasnat, Julien Bohn´e, Jonathan Milgram, St´ephane Gentric and Liming Chen"
34ae449ae64cd2c6bfc2f102eac82bd606cd12f7,A Unified Model with Structured Output for Fashion Images Classification,"A Unified Model with Structured Output for Fashion Images
Classification
Beatriz Quintino Ferreira
ISR, Instituto Superior Técnico, Universidade de Lisboa,
Portugal
João Faria
Farfetch"
34ec83c8ff214128e7a4a4763059eebac59268a6,Action Anticipation By Predicting Future Dynamic Images,"Action Anticipation By Predicting Future
Dynamic Images
Cristian Rodriguez, Basura Fernando and Hongdong Li
Australian Centre for Robotic Vision, ANU, Canberra, Australia
{cristian.rodriguez, basura.fernando,"
34128e93f4af820cea65477526645cdc82e0e59b,Decomposed Learning for Joint Object Segmentation and Categorization,"TSAI et al.: DECOMPOSED LEARNING FOR OBJECT RECOGNITION
Decomposed Learning for Joint Object
Segmentation and Categorization
Yi-Hsuan Tsai
Jimei Yang
Ming-Hsuan Yang
Electrical Engineering and Computer
Science
University of California
Merced, USA"
34c594abba9bb7e5813cfae830e2c4db78cf138c,Transport-based single frame super resolution of very low resolution face images,"Transport-Based Single Frame Super Resolution of Very Low Resolution Face Images
Soheil Kolouri1, Gustavo K. Rohde1,2
Department of Biomedical Engineering, Carnegie Mellon University. 2Department of Electrical and Computer Engineering, Carnegie Mellon University.
We describe a single-frame super-resolution method for reconstructing high-
resolution (abbr. high-res) faces from very low-resolution (abbr. low-res)
face images (e.g. smaller than 16× 16 pixels) by learning a nonlinear La-
grangian model for the high-res face images. Our technique is based on the
mathematics of optimal transport, and hence we denote it as transport-based
SFSR (TB-SFSR). In the training phase, a nonlinear model of high-res fa-
ial images is constructed based on transport maps that morph a reference
image into the training face images. In the testing phase, the resolution of
degraded image is enhanced by finding the model parameters that best fit
the given low resolution data.
Generally speaking, most SFSR methods [2, 3, 4, 5] are based on a
linear model for the high-res images. Hence, ultimately, the majority of
SFSR models in the literature can be written as, Ih(x) = ∑i wiψi(x), where
Ih is a high-res image or a high-res image patch, w’s are weight coefficients,
nd ψ’s are high-res images (or image patches), which are learned from the
training images using a specific model. Here we propose a fundamentally
different approach toward modeling high-res images. In our approach the"
3412d9f3c620155bf3eb203f5817a310000f0c63,Biomarkers in autism spectrum disorder: the old and the new,"DOI 10.1007/s00213-013-3290-7
REVIEW
Biomarkers in autism spectrum disorder: the old and the new
Barbara Ruggeri & Ugis Sarkans & Gunter Schumann &
Antonio M. Persico
Received: 15 April 2013 /Accepted: 7 September 2013
# Springer-Verlag Berlin Heidelberg 2013"
3490683560ca18d19884949dccca0ad7c98d4749,Content-Based Filtering for Video Sharing Social Networks,"Content-Based Filtering for Video Sharing Social Networks
Eduardo Valle1, Sandra Avila2, Fillipe de Souza2,
Marcelo Coelho2,3, Arnaldo de A. Araújo2
RECOD Lab — DCA / FEEC / UNICAMP, Campinas, SP, Brazil
NPDI Lab — DCC / UFMG, Belo Horizonte, MG, Brazil
Preparatory School of Air Cadets — EPCAR, Barbacena, MG, Brazil
{sandra, fdms, mcoelho,"
340798e6b7a9863005863f38c1bbfda5cf85d201,"Image Retrieval, Object Recognition, and Discriminative Models","Image Retrieval, Object Recognition,
nd Discriminative Models
Von der Fakult¨at f¨ur Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften genehmigte Dissertation
vorgelegt von
Diplom-Informatiker Thomas Deselaers
us Aachen
Berichter:
Universit¨atsprofessor Dr.-Ing. Hermann Ney
Universit¨atsprofessor Dr. Bernt Schiele
Tag der m¨undlichen Pr¨ufung: 2. Dezember 2008
Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verf¨ugbar."
348035720dba98ff54f2ff8c375ace09287c89f6,3D Human Pose Estimation in RGBD Images for Robotic Task Learning,"D Human Pose Estimation in RGBD Images for Robotic Task Learning
Christian Zimmermann*, Tim Welschehold*, Christian Dornhege, Wolfram Burgard and Thomas Brox"
341ed69a6e5d7a89ff897c72c1456f50cfb23c96,"DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network","DAGER: Deep Age, Gender and Emotion
Recognition Using Convolutional Neural
Networks
Afshin Dehghan
Enrique G. Ortiz
Guang Shu
Syed Zain Masood
{afshindehghan, egortiz, guangshu,
Computer Vision Lab, Sighthound Inc., Winter Park, FL"
3493b2232449635aff50fc17e03163cb4b66f1b5,Visual exploration of machine learning results using data cube analysis,"Visual Exploration of Machine Learning Results
using Data Cube Analysis
Minsuk Kahng
Georgia Tech
Atlanta, GA, USA
Dezhi Fang
Georgia Tech
Atlanta, GA, USA
Duen Horng (Polo) Chau
Georgia Tech
Atlanta, GA, USA"
341de07abfb89bf78f3a72513c8bce40d654e0a3,Sparse and Deep Generalizations of the FRAME Model,"Annals of Mathematical Sciences and Applications
Volume 3, Number 1, 211–254, 2018
Sparse and deep generalizations of the
FRAME model
Ying Nian Wu, Jianwen Xie, Yang Lu, and Song-Chun Zhu
In the pattern theoretical framework developed by Grenander and
dvocated by Mumford for computer vision and pattern recog-
nition, different patterns are represented by statistical generative
models. The FRAME (Filters, Random fields, And Maximum En-
tropy) model is such a generative model for texture patterns. It
is a Markov random field model (or a Gibbs distribution, or an
energy-based model) of stationary spatial processes. The log prob-
bility density function of the model (or the energy function of the
Gibbs distribution) is the sum of translation-invariant potential
functions that are one-dimensional non-linear transformations of
linear filter responses. In this paper, we review two generalizations
of this model. One is a sparse FRAME model for non-stationary
patterns such as objects, where the potential functions are loca-
tion specific, and they are non-zero only at a selected collection of
locations. The other generalization is a deep FRAME model where"
341633ccce0f8c055dfc633765d905c269e28f82,Collaborative Representation for Face Recognition based on Bilateral Filtering,"Collaborative Representation for Face
Recognition based on Bilateral Filtering
Rokan Khaji1, Hong Li2, Ramadan Abdo Musleh3, Hongfeng Li4, Qabas Ali5
School of Mathematics and Statistics,
Huazhong University of Science & Technology , Wuhan, 430074, China
Department of Mathematics, College of Science, Diyala University,  Diyala, 32001 ,Iraq
,3,4School of Mathematics and Statistics,
Huazhong University of Science & Technology , Wuhan, 430074, China
5Department of Electronics and Information Engineering,
Huazhong University of Science & Technology , Wuhan, 430074, China."
34b6466e3e69547f6d464ad6b5660b1e629a5c35,Similar and Class Based Image Retrieval Using Hash Code,"IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.3, March 2015
Similar and Class Based Image Retrieval Using Hash Code
B.Bharathi 1, Nagarjuna Reddy Akkim2
Faculty of computing, Sathyabama University, Chennai, India
Introduction"
34f8086eb67eb2cd332cd2d6bca0dd8f1e8f1062,Face Recognition and Growth Prediction using a 3D Morphable Face Model,"Saarland University
Faculty of Natural Sciences and Technology I
Department of Computer Science
Master’s Program in Computer Science
Master’s Thesis
Face Recognition and
Growth Prediction using
3D Morphable Face Model
submitted by Kristina Scherbaum
on October 30, 2007
Supervisor
Prof. Dr. Hans-Peter Seidel
Saarland University – Computer Science Department
Advisor
Prof. Dr. Volker Blanz
Universit¨at Siegen – Dekanat FB 12
Reviewers
Prof. Dr. Hans-Peter Seidel
Prof. Dr. Volker Blanz"
34e23b934794a5abff251698df09cbac5ad2dd56,Towards Engineering a Web-Scale Multimedia Service: A Case Study Using Spark,"Towards Engineering a Web-Scale Multimedia Service:
A Case Study Using Spark∗
Gylfi Þór Guðmundsson
Reykjavik University
Reykjavík, Iceland
Björn Þór Jónsson
Reykjavik University, Iceland
IT University of Copenhagen, Denmark
Laurent Amsaleg
IRISA–CNRS
Rennes, France
Michael J. Franklin
University of Chicago
Chicago, IL, USA"
3423f3dcb0edee1c5c6a5505b9e8c0bbdcffbd51,Nurses' Reactions to Patient Weight: Effects on Clinical Decisions,"University of Wisconsin Milwaukee
UWM Digital Commons
Theses and Dissertations
May 2017
Nurses' Reactions to Patient Weight: Effects on
Clinical Decisions
Heidi M. Pfeiffer
University of Wisconsin-Milwaukee
Follow this and additional works at: http://dc.uwm.edu/etd
Part of the Psychology Commons
Recommended Citation
Pfeiffer, Heidi M., ""Nurses' Reactions to Patient Weight: Effects on Clinical Decisions"" (2017). Theses and Dissertations. 1524.
http://dc.uwm.edu/etd/1524
This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
y an authorized administrator of UWM Digital Commons. For more information, please contact"
344682f69dd9bec68d89a79b0b7f28a3891ab857,Perception of Social Cues of Danger in Autism Spectrum Disorders,"Perception of Social Cues of Danger in Autism Spectrum
Disorders
Nicole R. Zu¨ rcher1,2, Ophe´ lie Rogier1, Jasmine Boshyan2, Loyse Hippolyte1, Britt Russo1, Nanna Gillberg3,
Adam Helles3, Torsten Ruest1, Eric Lemonnier4, Christopher Gillberg3, Nouchine Hadjikhani1,2,3*
Brain Mind Institute, EPFL, Lausanne, Switzerland, 2 Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital,
Charlestown, Massachusetts, United States of America, 3 Gillberg Centrum, University of Gothenburg, Gothenburg, Sweden, 4 Laboratoire de Neurosciences, Universite´ de
Brest, Brest, France"
340d1a9852747b03061e5358a8d12055136599b0,Audio-Visual Recognition System Insusceptible to Illumination Variation over Internet Protocol _ICIE_28_,"Audio-Visual Recognition System Insusceptible
to Illumination Variation over Internet Protocol
Yee Wan Wong, Kah Phooi Seng, and Li-Minn Ang"
3468740e4a9fc72a269f4f0ca8470ccd60925f92,Robustness Analysis of Visual QA Models by Basic Questions,"Robustness Analysis of Visual QA Models by Basic Questions
Jia-Hong Huang
Bernard Ghanem
Cuong Duc Dao* Modar Alfadly*
C. Huck Yang
King Abdullah University of Science and Technology ; Georgia Institute of Technology
{jiahong.huang, dao.cuong, modar.alfadly, ;"
34b4f264578fc674dd2bf8d478ec1314739a5629,3D Novel Face Sample Modeling for Face Recognition,"D Novel Face Sample Modeling for Face
Recognition
Yun Ge, Yanfeng Sun, Baocai Yin, Hengliang Tang
Beijing Key Laboratory of Multimedia and Intelligent Software Technology
College of Computer Science and Technology, BJUT, Beijing, China
Email:"
34df09a9445089c8f23eff5b2a43a822c9713f6e,Boosting Chamfer Matching by Learning Chamfer Distance Normalization,"Boosting Chamfer Matching by Learning
Chamfer Distance Normalization
Tianyang Ma, Xingwei Yang, and Longin Jan Latecki
Dept. of Computer and Information Sciences,Temple Unviersity, Philadelphia.
{tianyang.ma,xingwei,latecki}.temple.edu"
3410136b86b813b075a258842450835906d58600,A facial expression image database and norm for Asian population: A preliminary report,"Image Quality and System Performance VI, edited by Susan P. Farnand, Frans Gaykema,
Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 7242, 72421D · © 2009 SPIE-IS&T
CCC code: 0277-786X/09/$18 · doi: 10.1117/12.806130
SPIE-IS&T/ Vol. 7242  72421D-1
Downloaded from SPIE Digital Library on 07 Oct 2009 to 140.112.113.225. Terms of Use:  http://spiedl.org/terms"
5a9126f4478384f6615bf57b6da7299dc17b9a6b,3-D Facial Landmark Localization With Asymmetry Patterns and Shape Regression from Incomplete Local Features,"JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012
D Facial Landmark Localization with Asymmetry
Patterns and Shape Regression from Incomplete
Local Features
Federico M. Sukno, John L. Waddington, and Paul F. Whelan"
5a3da29970d0c3c75ef4cb372b336fc8b10381d7,CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images.,"CNN-based Real-time Dense Face Reconstruction
with Inverse-rendered Photo-realistic Face Images
Yudong Guo, Juyong Zhang†, Jianfei Cai, Boyi Jiang and Jianmin Zheng"
5a93f9084e59cb9730a498ff602a8c8703e5d8a5,Face Recognition using Local Quantized Patterns,"HUSSAIN ET. AL: FACE RECOGNITION USING LOCAL QUANTIZED PATTERNS
Face Recognition using Local Quantized
Patterns
Sibt ul Hussain
Thibault Napoléon
Fréderic Jurie
GREYC — CNRS UMR 6072,
University of Caen Basse-Normandie,
Caen, France"
5ad65c6474c135a6c15e7127d8bb91de8c8a55a1,Designing Empathetic Animated Agents for a B-Learning Training Environment within the Electrical Domain,"Hernández,  Y.,  Pérez-Ramírez,  M.,  Zatarain-Cabada,  R.,  Barrón-Estrada,  L.,  &  Alor-Hernández,  G.  (2016).  Designing
Empathetic  Animated Agents for a B-Learning Training Environment  within the Electrical Domain. Educational Technology  &
Society, 19 (2), 116–131.
Designing Empathetic Animated Agents for a B-Learning Training
Environment within the Electrical Domain
Yasmín Hernández1*, Miguel Pérez-Ramírez1, Ramón Zatarain-Cabada2, Lucía Barrón-
Estrada2 and Giner Alor-Hernández3
Instituto de Investigaciones Eléctricas, Gerencia de Tecnologías de la Información, Cuernavaca, México // 2Instituto
Tecnológico de Culiacán, Departamento de Posgrado, Culiacán, México // 3Instituto Tecnológico de Orizaba,
División de Estudios de Posgrado e Investigación, Orizaba, México // // //
// //
*Corresponding author"
5a14209a5241877f92743d04282598f41fd3e50f,From BoW to CNN: Two Decades of Texture Representation for Texture Classification,"From BoW to CNN: Two Decades of Texture Representation for Texture
Classification
Li Liu 1,2 · Jie Chen 2 · Paul Fieguth 3 ·
Guoying Zhao 2 · Rama Chellappa 4 · Matti Pietik¨ainen 2
Received: date / Accepted: date"
5afd6c5eb5cc1e8496bb78b8f7b3a00b2900deb3,Self-Supervised Learning of Pose Embeddings from Spatiotemporal Relations in Videos,"Self-supervised Learning of Pose Embeddings
from Spatiotemporal Relations in Videos
¨Omer S¨umer∗
Tobias Dencker∗
Bj¨orn Ommer
Heidelberg Collaboratory for Image Processing
IWR, Heidelberg University, Germany"
5ac18d505ed6d10e8692cbb7d33f6852e6782692,"The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale","IJCV submission in review
The Open Images Dataset V4
Unified image classification, object detection, and visual relationship detection at scale
Alina Kuznetsova Hassan Rom Neil Alldrin
Shahab Kamali
Stefan Popov Matteo Malloci Tom Duerig Vittorio Ferrari
Jasper Uijlings
Ivan Krasin
Jordi Pont-Tuset"
5ad4e9f947c1653c247d418f05dad758a3f9277b,WLFDB: Weakly Labeled Face Databases,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI)
WLFDB: Weakly Labeled Face Databases
Dayong Wang†, Steven C.H. Hoi∗, and Jianke Zhu‡"
5ac707ab88c565b1ed34fac89939f0cd2451eb22,Automated Object Recognition in Baggage Screening using Multiple X-ray Views,"Automated Object Recognition in Baggage Screening
using Multiple X-ray Views
Domingo Mery and Vladimir Riffo
Department of Computer Science – Pontificia Universidad Cat´olica de Chile
Av. Vicu˜na Mackenna 4860(143) – Santiago de Chile
http://dmery.ing.puc.cl"
5aeaee0e3a324970c02ae8463e1b358597457d03,Towards a Types-As-Classifiers Approach to Dialogue Processing in Human-Robot Interaction,"Towards a Types-As-Classifiers Approach to Dialogue Processing in
Human-Robot Interaction
HOUGH, J; JAMONE, L; Schlangen, D; Walck, G; Haschke, R; Workshop on Dialogue and
Perception (DaP 2018)
© The Author(s) 2018
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/45947
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
5a34a9bb264a2594c02b5f46b038aa1ec3389072,Label-Embedding for Image Classification,"Label-Embedding for Image Classification
Zeynep Akata, Member, IEEE, Florent Perronnin, Member, IEEE, Zaid Harchaoui, Member, IEEE,
nd Cordelia Schmid, Fellow, IEEE"
5af5802cc6128bafbde1ae12e0ab41612aee9e3b,An object tracking method using extreme learning machine with online learning,"An Object Tracking Method Using Extreme
Learning Machine with Online Learning
Yuanlong Yu, Liyan Xie, and Zhiyong Huang
College of Mathematics and Computer Science
Fuzhou University
Fuzhou, Fujian, 350116, China
Emails: hzy"
5ade87a54c8baec555c37d59071c6fb4a9a55cf7,Deep Learning For Video Saliency Detection,"Deep Learning For Video Saliency Detection
Wenguan Wang, and Jianbing Shen, Senior Member, IEEE, and Ling Shao, Senior Member,"
5a6b2f3a542322be153fc9104f3064f2a1bc76eb,"A French-Spanish Multimodal Speech Communication Corpus Incorporating Acoustic Data, Facial, Hands and Arms Gestures Information","Interspeech 2018
-6 September 2018, Hyderabad
0.21437/Interspeech.2018-2212"
5a0209515ab62e008efeca31f80fa0a97031cd9d,Dataset fingerprints: Exploring image collections through data mining,"Dataset Fingerprints: Exploring Image Collections Through Data Mining
Konstantinos Rematas1, Basura Fernando1, Frank Dellaert2, and Tinne Tuytelaars1
KU Leuven, ESAT-PSI, iMinds
Georgia Tech
Figure 1: Given an image collection, our system extracts patterns of discriminative mid level features and uses the connection
etween them to enable structure specific browsing."
5a1669abdc4f958c589843cff2f4d83a11fe8007,Robust Recognition via ` 1-Minimization April,"Robust Recognition via ‘1-Minimization
April 13, 2007"
5a8d20ecd92d22bf077208a5e7b1bb008a9b7dbc,A new manifold distance measure for visual object categorization,"A New Manifold Distance Measure for Visual Object
Categorization
Fengfu Li, Xiayuan Huang, Hong Qiao and Bo Zhang
index. The proposed distance is more robust"
5aaa84090c50da903ea1d61495c0fe96a5470909,Image-embodied Knowledge Representation Learning,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
of armourhas partFigure1:Examplesofentityimages.Fig.1demonstratessomeexamplesofentityimages.Eachentityhasmultipleimageswhichcanprovidesignificantvisu-alinformationthatintuitivelydescribestheappearancesandbehavioursofthisentity.Toutilizetherichinformationinimages,weproposetheImage-embodiedKnowledgeRepre-sentationLearningmodel(IKRL).Morespecifically,wefirstproposeanimageencoderwhichconsistsofaneuralrep-resentationmoduleandaprojectionmoduletogeneratetheimage-basedrepresentationforeachimageinstance.Second,weconstructtheaggregatedimage-basedrepresentationforeachentityjointlyconsideringallitsimageinstanceswithanattention-basedmethod.Finally,wejointlylearntheknowl-edgerepresentationswithtranslation-basedmethods.WeevaluatetheIKRLmodelonknowledgegraphcom-pletionandtripleclassification.Experimentalresultsdemon-stratethatourmodelachievesthestate-of-the-artperfor-mancesonbothtasks,whichconfirmsthesignificanceofvi-sualinformationinknowledgerepresentationlearning.ItalsoindicatesthatourIKRLmodeliscapableofencodingimageinformationwellintoknowledgerepresentations.Wedemon-stratethemaincontributionsofthisworkasfollows:(cid:15)WeproposeanovelIKRLmodelconsideringvisualin-formationinentityimagesforknowledgerepresentationlearning.Tothebestofourknowledge,thisisthefirstattempttocombineimageswithknowledgegraphsforknowledgerepresentationlearning.(cid:15)Weevaluateourmodelsonareal-worlddatasetandre-ceivepromisingperformancesonbothknowledgegraph"
5af1e8a38b64c6694b9a34cd0b1596f2c905d3ff,Context-based trajectory descriptor for human activity profiling,"Context-based Trajectory Descriptor for Human
Activity Profiling
Eduardo M. Pereira
INESC TEC and
Faculty of Engineering
of the University of Porto
Rua Dr. Roberto Frias, 378
Porto, Portugal 4200 - 465
Email:
Lucian Ciobanu
INESC TEC
Rua Dr. Roberto Frias, 378
Porto, Portugal 4200 - 465
Email:
Jaime S. Cardoso
INESC TEC and
Faculty of Engineering
of the University of Porto
Rua Dr. Roberto Frias, 378
Porto, Portugal 4200 - 465"
5a4c6246758c522f68e75491eb65eafda375b701,Contourlet structural similarity for facial expression recognition,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE
ICASSP 2010"
5aad5e7390211267f3511ffa75c69febe3b84cc7,Driver Gaze Region Estimation Without Using Eye Movement,"Driver Gaze Estimation
Without Using Eye Movement
Lex Fridman, Philipp Langhans, Joonbum Lee, Bryan Reimer
MIT AgeLab"
5a86842ab586de9d62d5badb2ad8f4f01eada885,Facial Emotion Recognition and Classification Using Hybridization Method,"International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015
ISSN 2091-2730
Facial Emotion Recognition and Classification Using Hybridization
Method
Anchal Garg , Dr. Rohit Bajaj
Deptt. of CSE, Chandigarh Engg. College,  Mohali, Punjab, India.
07696449500"
5ad88a16e2efe9bb67c20cdbd9b003ffb79c12ef,Real-time video event detection in crowded scenes using MPEG derived features: A multiple instance learning approach,"Manuscript Draft
Manuscript Number: PRLETTERS-D-13-00222R2
Title: Real-Time Video Event Detection in Crowded Scenes using MPEG Derived Features: a Multiple
Instance Learning Approach
Article Type: Special Issue: SIPRCA
Keywords: Event Detection; Crowded Scene; Multiple Instance Learning;
MPEG domain; Sparse Approximation; Random Matrix; Traffic
Surveillance; Naive Bayes Model
Corresponding Author: Mr. Jingxin Xu, M.D
Corresponding Author's Institution: Queensland University of Technology
First Author: Jingxin Xu, M.D
Order of Authors: Jingxin Xu, M.D; Simon  Denman, PhD; Vikas  Reddy, PhD; Clinton Fookes, PhD;
Sridha Sridhran, PhD"
5ac8edd62fe23911e19d639287135f91e22421cc,Gender and 3D facial symmetry: What's the relationship?,"Gender and 3D Facial Symmetry: What’s the
Relationship?
Baiqiang Xia, Boulbaba Ben Amor, Hassen Drira, Mohamed Daoudi,
Lahoucine Ballihi
To cite this version:
Baiqiang Xia, Boulbaba Ben Amor, Hassen Drira, Mohamed Daoudi, Lahoucine Ballihi. Gender
nd 3D Facial Symmetry: What’s the Relationship?. 10th IEEE Conference on Automatic Face and
Gesture Recognition (FG 2013), Apr 2013, shanghai, China. 2013. <hal-00771988>
HAL Id: hal-00771988
https://hal.archives-ouvertes.fr/hal-00771988
Submitted on 9 Jan 2013
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,"
5a4ec5c79f3699ba037a5f06d8ad309fb4ee682c,Automatic age and gender classification using supervised appearance model,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12/17/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
AutomaticageandgenderclassificationusingsupervisedappearancemodelAliMainaBukarHassanUgailDavidConnahAliMainaBukar,HassanUgail,DavidConnah,“Automaticageandgenderclassificationusingsupervisedappearancemodel,”J.Electron.Imaging25(6),061605(2016),doi:10.1117/1.JEI.25.6.061605."
5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6,Human Expression Recognition using Facial Features,"International Journal of Computer Applications® (IJCA) (0975 – 8887)
International Conference on Knowledge Collaboration in Engineering, ICKCE-2014
Human Expression Recognition using Facial Features
G.Saranya
Post graduate student, Dept. of ECE
Parisutham Institute of Technology & Science
Thanjavur.
Affiliated to Anna university, Chennai
recognition  can  be  used"
5a7520380d9960ff3b4f5f0fe526a00f63791e99,The Indian Spontaneous Expression Database for Emotion Recognition,"The Indian Spontaneous Expression
Database for Emotion Recognition
S L Happy, Student Member, IEEE, Priyadarshi Patnaik, Aurobinda Routray, Member, IEEE,
nd Rajlakshmi Guha"
5f4a873118e033e5e168ee99d64474b4cc4d94a3,Lessons Learned from Crime Caught on Camera,"Article
Lessons Learned
from Crime Caught
on Camera
Marie Rosenkrantz Lindegaard1,2
nd Wim Bernasco1,3
Journal of Research in Crime and
Delinquency
018, Vol. 55(1) 155-186
ª The Author(s) 2018
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0022427817727830
journals.sagepub.com/home/jrc"
5fff61302adc65d554d5db3722b8a604e62a8377,Additive Margin Softmax for Face Verification,"Additive Margin Softmax for Face Verification
Feng Wang
UESTC
Weiyang Liu
Georgia Tech
Haijun Liu
UESTC
Jian Cheng
UESTC
haijun"
5f943f9bfe3154fbd368034903ea11620d2946eb,Cascade Category-Aware Visual Search,"MiniManuscript.com
The one stop shop for academic literature.
07:00am  8 Dec, 2018
Cascade Category-Aware Visual Search.
Authors Zhang S, Tian Q, Huang Q, Gao W, Rui Y
Volume
Issue
Pages"
5fa6e4a23da0b39e4b35ac73a15d55cee8608736,RED-Net: A Recurrent Encoder–Decoder Network for Video-Based Face Alignment,"IJCV special issue (Best papers of ECCV 2016) manuscript No.
(will be inserted by the editor)
RED-Net:
A Recurrent Encoder-Decoder Network for Video-based Face Alignment
Xi Peng · Rogerio S. Feris · Xiaoyu Wang · Dimitris N. Metaxas
Submitted: April 19 2017 / Revised: December 12 2017"
5f871838710a6b408cf647aacb3b198983719c31,Locally Linear Regression for Pose-Invariant Face Recognition,"Locally Linear Regression for Pose-Invariant
Face Recognition
Xiujuan Chai, Shiguang Shan, Member, IEEE, Xilin Chen, Member, IEEE, and Wen Gao, Senior Member, IEEE"
5fc621cdef59c38ef898a2adc2b4472a8396119a,Synthesizing Samples for Zero-shot Learning,"Synthesizing Samples for Zero-shot Learning
IJCAI Anonymous Submission 2625"
5f34c96ddcf992e1b8660b5cb01e3c311b05023c,Towards Online Iris and Periocular Recognition Under Relaxed Imaging Constraints,"IEEE Trans. Image Processing, 2013
Towards Online Iris and Periocular Recognition under
Relaxed Imaging Constraints
Chun-Wei Tan, Ajay Kumar"
5f58bf2c25826cb6ee927a1461aa72bd623157ff,Tasting Families of Features for Image Classification,"ICCV 2011 Submission #549. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
Tasting Families of Features for Image Classification
Anonymous ICCV submission
Paper ID 549"
5f92de3683b4fee28ad3f431c889e7c8bff604f8,"Performance study of Face Recognition systems using LBP and ICA descriptors with sparse representation-MRLSR and KNN Classifiers , respectively","International Journal of Computer Trends and Technology (IJCTT) – Volume 42 Number 1 – December 2016
Performance study of Face Recognition
systems using LBP and ICA descriptors
with sparse representation - MRLSR and
KNN Classifiers, respectively
K Sarath1 and G. Sreenivasulu2
PG scholar, Department of Electronics and Communication Engineering, SVU College of Engineering,
Professor, Department of Electronics and Communication Engineering, SVU College of Engineering,
Tirupathi, India
Tirupathi, India
sparse
representation"
5f344a4ef7edfd87c5c4bc531833774c3ed23542,Semisupervised Learning of Classifiers with Application to Human-computer Interaction," Copyright by Ira Cohen, 2003"
5f02e49aa0fe467bbeb9de950e4abb6c99133feb,"Enhancing person re-identification by late fusion of low-, mid- and high-level features","Aalborg Universitet
Enhancing Person Re-identification by Late Fusion of Low-, Mid-, and High-Level
Features
Lejbølle, Aske Rasch; Nasrollahi, Kamal; Moeslund, Thomas B.
Published in:
DOI (link to publication from Publisher):
0.1049/iet-bmt.2016.0200
Publication date:
Document Version
Accepted author manuscript, peer reviewed version
Link to publication from Aalborg University
Citation for published version (APA):
Lejbølle, A. R., Nasrollahi, K., & Moeslund, T. B. (2018). Enhancing Person Re-identification by Late Fusion of
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?
Take down policy"
5f19b98e5cd22198d25660d609cbd3f4a69c94e7,Combining Head Pose and Eye Location Information for Gaze Estimation,"Combining Head Pose and Eye Location Information
for Gaze Estimation
Roberto Valenti, Member, IEEE, Nicu Sebe, Member, IEEE, and Theo Gevers, Member, IEEE"
5fc15baee1383d502775fab8ee91d56f4875429c,Factorial Discriminant Analysis for 3 D Face Recognition System using SVM Classifier,"International Journal of Computer Applications (0975 – 8887)
International Conference on Information and Communication Technologies (ICICT-2014)
Factorial Discriminant Analysis for
D Face Recognition System using SVM Classifier
P. S. Hiremath
Department of P. G. Studies and Research in
Computer Science,
Gulbarga University, Gulbarga-585106
Karnataka, India
turned"
5f6116b6e5f21da66a304e9f59f3e224e188caef,Behavior Is Everything: Towards Representing Concepts with Sensorimotor Contingencies,"Behavior is Everything – Towards Representing Concepts
with Sensorimotor Contingencies
Nicholas Hay, Michael Stark, Alexander Schlegel, Carter Wendelken,
Dennis Park, Eric Purdy, Tom Silver, D. Scott Phoenix, and Dileep George
Vicarious AI, San Francisco, CA, USA"
5f0b7245bedfc984b327b8e144c3cba9d9b2a807,Morphological Primitive Patterns with Grain Components on LDP for Child and Adult Age Classification,"International Journal of Computer Applications (0975 – 8887)
Volume 21– No.3, May 2011
Morphological Primitive Patterns with Grain Components
on LDP for Child and Adult Age Classification
B.Sujatha
Dr.V.Vijaya Kumar
Associate Professor
G.I.E.T, Rajahmundry
Dean, Dept. of Comp. Sciences
Head, SRRF-G.I.E.T
JNTUK,Kakinada
Andhra Pradesh, India
Rajahmundry
Andhra Pradesh, India
M.Rama Bai
Associate Professor
M.G.I.T, JNTUH
Hyderabad
Andhra Pradesh, India"
5f7354634e13c9fad64163d53beb0a8eb5df30e1,Sketch-Based Image Retrieval: Benchmark and Bag-of-Features Descriptors,"Sketch-Based Image Retrieval: Benchmark
nd Bag-of-Features Descriptors
Mathias Eitz, Kristian Hildebrand, Tamy Boubekeur and Marc Alexa"
5ffd74d2873b7cba2cbc5fd295cc7fbdedca22a2,The Cityscapes Dataset,"The Cityscapes Dataset
Marius Cordts1,2
Mohamed Omran3
Rodrigo Benenson3
Sebastian Ramos1,4
Uwe Franke1
Timo Scharw¨achter1,2
Markus Enzweiler1
Stefan Roth2
Bernt Schiele3
Daimler AG R&D, 2TU Darmstadt, 3MPI Informatics, 4TU Dresden
www.cityscapes-dataset.net"
5f534bacc658f620a15b5647adecb0ea813286c8,Reliable object detection and segmentation using inpainting,"Reliable Object Detection and Segmentation using Inpainting
Ji Hoon Joung, M. S. Ryoo, Sunglok Choi, and Sung-Rak Kim"
5f5906168235613c81ad2129e2431a0e5ef2b6e4,A Unified Framework for Compositional Fitting of Active Appearance Models,"Noname manuscript No.
(will be inserted by the editor)
A Unified Framework for Compositional Fitting of
Active Appearance Models
Joan Alabort-i-Medina · Stefanos Zafeiriou
Received: date / Accepted: date"
5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70c,Multiple Facial Attributes Estimation Based on Weighted Heterogeneous Learning,"Multiple Facial Attributes Estimation based on
Weighted Heterogeneous Learning
H.Fukui* T.Yamashita* Y.Kato* R.Matsui*
T. Ogata** Y.Yamauchi* H.Fujiyoshi*
*Chubu University
**Abeja Inc.
200, Matuoto-cho, Kasugai,
-1-20, Toranomon, Minato-ku,
Aichi, Japan
Tokyo, Japan"
5f769ba95ffea0ce76ac9d8e7cd47e2d1c91e1bf,Using Geometry to Detect Grasps in 3D Point Clouds,"Localizing antipodal grasps in point clouds
Andreas ten Pas and Robert Platt"
5f0e9cc18374a670dfea4698424c9d48494f3093,Online Domain Adaptation for Multi-Object Tracking,"GAIDON & VIG: ONLINE DOMAIN ADAPTATION FOR MULTI-OBJECT TRACKING
Online Domain Adaptation for Multi-Object Tracking
Computer Vision Group
Xerox Research Centre Europe
Meylan, France
Adrien Gaidon
Eleonora Vig"
5fc371760fd4c8abe94b91ae2ca03d428ac05faa,Fear-specific amygdala function in children and adolescents on the fragile x spectrum: a dosage response of the FMR1 gene.,"doi:10.1093/cercor/bhs341
Fear-Specific Amygdala Function in Children and Adolescents on the Fragile X Spectrum:
A Dosage Response of the FMR1 Gene
So-Yeon Kim1, Jessica Burris1, Frederick Bassal1, Kami Koldewyn5, Sumantra Chattarji6, Flora Tassone2, David Hessl2,3 and
Susan M. Rivera1,2,4
Center for Mind and Brain, University of California, Davis, CA 95618, USA, 2MIND Institute, University of California, Davis, CA
95817, USA, 3Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95817, USA, 4Department of
Psychology, University of California, Davis, CA 95616, USA, 5McGovern Institute for Brain Research, MIT, MA 02139, USA and
6National Center for Biological Sciences, Bangalore 560065, India
Address correspondence to Susan M. Rivera, Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618,
USA. Email:
Mutations of the fragile X mental retardation 1 (FMR1) gene are the
genetic cause of fragile X syndrome (FXS). The presence of signifi-
ant socioemotional problems has been well documented in FXS
lthough the brain basis of those deficits remains unspecified. Here,
we investigated amygdala dysfunction and its relation to socioemo-
tional deficits and FMR1 gene expression in children and adoles-
ents on the FX spectrum (i.e., individuals whose trinucleotide CGG
repeat expansion from 55 to over 200 places them somewhere
within the fragile X diagnostic range from premutation to full"
5f107c92dd1c3f294b53627a5de1c7c46d996994,Complex Eye Movement Pattern Biometrics: The Effects of Environment and Stimulus,"Complex Eye Movement Pattern Biometrics:
The Effects of Environment and Stimulus
Corey D. Holland, Student Member, IEEE and Oleg V. Komogortsev, Member, IEEE"
5fd147f57fc087b35650f7f3891d457e4c745d48,Coulomb GANs: Provably Optimal Nash Equilibria via Potential Fields,"Published as a conference paper at ICLR 2018
COULOMB GANS: PROVABLY OPTIMAL NASH EQUI-
LIBRIA VIA POTENTIAL FIELDS
Thomas Unterthiner1
Bernhard Nessler1
Calvin Seward1,2
Günter Klambauer1
Martin Heusel1
Hubert Ramsauer1
Sepp Hochreiter1
LIT AI Lab & Institute of Bioinformatics, Johannes Kepler University Linz, Austria
Zalando Research, Mühlenstraße 25, 10243 Berlin, Germany"
5fc664202208aaf01c9b62da5dfdcd71fdadab29,Automatic Face Recognition from Video,rXiv:1504.05308v1  [cs.CV]  21 Apr 2015
5fcde9236d654a0f92a76c1a3f07c0cad954985c,Personality-Dependent Referring Expression Generation,"Personality-dependent Referring Expression Generation
Ivandr´e Paraboni, Danielle Sampaio Monteiro, and Alex Gwo Jen Lan
University of S˜ao Paulo, School of Arts, Sciences and Humanities, S˜ao Paulo, Brazil"
5f5164cf998a10d2bef37741adb562ab07fac413,A Comprehensive Study on Cross-View Gait Based Human Identification with Deep CNNs,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2545669, IEEE
Transactions on Pattern Analysis and Machine Intelligence
A Comprehensive Study on Cross-View Gait Based
Human Identification with Deep CNNs
Zifeng Wu, Yongzhen Huang, Liang Wang, Xiaogang Wang, and Tieniu Tan"
5f0f8c9acc3e8eb50ca6e7d9c33cf3d9a8a54985,Structured Inhomogeneous Density Map Learning for Crowd Counting,"Structured Inhomogeneous Density Map Learning
for Crowd Counting
Hanhui Li, Xiangjian He, Hefeng Wu, Saeed Amirgholipour Kasmani, Ruomei Wang, Xiaonan Luo, Liang Lin"
5fa1724a79a9f7090c54925f6ac52f1697d6b570,The Development of Multimodal Lexical Resources,"Proceedings of the Workshop on Grammar and Lexicon: Interactions and Interfaces,
pages 41–47, Osaka, Japan, December 11 2016."
5ff64afd70434b12e043ff39a91271eab6391124,Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters,"Article
Building Extraction in Very High Resolution
nd Guided Filters
Yongyang Xu 1 ID , Liang Wu 1,2, Zhong Xie 1,2,* and Zhanlong Chen 1
Department of Information Engineering, China University of Geosciences, Wuhan 430074, China;
(Y.X.); (L.W.); (Z.C.)
National Engineering Research Center of Geographic Information System, Wuhan 430074, China
* Correspondence:
Received: 19 December 2017; Accepted: 16 January 2018; Published: 19 January 2018"
33919313bb3cf09b00f9fa2253b30af33a52bc51,Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs,"Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs
Anton Osokin∗,1 Jean-Baptiste Alayrac∗,1
Isabella Lukasewitz1 Puneet K. Dokania2 Simon Lacoste-Julien1
INRIA – ´Ecole Normale Sup´erieure, Paris, France
Both authors contributed equally.
INRIA – CentraleSup´elec, Chˆatenay-Malabry, France"
33236cd0b9454ab88ec9deddfb8ce8e492056770,Salient social cues are prioritized in autism spectrum disorders despite overall decrease in social attention.,"J Autism Dev Disord
DOI 10.1007/s10803-012-1710-x
O R I G I N A L P A P E R
Salient Social Cues are Prioritized in Autism Spectrum Disorders
Despite Overall Decrease in Social Attention
Coralie Chevallier • Pascal Huguet •
Francesca Happe´ • Nathalie George •
Laurence Conty
Ó Springer Science+Business Media New York 2012"
33a1a049d15e22befc7ddefdd3ae719ced8394bf,An Efficient Approach to Facial Feature Detection for Expression Recognition,"FULL PAPER
International Journal of Recent Trends in Engineering, Vol 2, No. 1, November 2009
An Efficient Approach to Facial Feature Detection
for Expression Recognition
S.P. Khandait1, P.D. Khandait2 and Dr.R.C.Thool2
Deptt. of Info.Tech., K.D.K.C.E., Nagpur, India
2Deptt.of Electronics Engg., K.D.K.C.E., Nagpur, India, 2Deptt. of Info.Tech., SGGSIET, Nanded"
33d045b39bc4645ff2a8bffd83a49697631ff968,Learning Discrete Representations via Information Maximizing Self-Augmented Training,"Learning Discrete Representations via Information Maximizing
Self Augmented Training
Weihua Hu 1 Takeru Miyato 2 3 Seiya Tokui 2 1 Eiichi Matsumoto 2 1 Masashi Sugiyama 4 1"
332339c32d41cc8176d360082b4d9faa90dadffa,"UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using Diverse Datasets and Limited Memory","UberNet : Training a ‘Universal’ Convolutional Neural Network for Low-, Mid-,
nd High-Level Vision using Diverse Datasets and Limited Memory
Iasonas Kokkinos
CentraleSup´elec - INRIA"
333aa36e80f1a7fa29cf069d81d4d2e12679bc67,Suggesting Sounds for Images from Video Collections,"Suggesting Sounds for Images
from Video Collections
Matthias Sol`er1, Jean-Charles Bazin2, Oliver Wang2, Andreas Krause1 and
Alexander Sorkine-Hornung2
Computer Science Department, ETH Z¨urich, Switzerland
Disney Research, Switzerland"
33ea400ca2105b9a3cd0e3c7c147e06c2d3c6d79,Vision based Decision-Support and Safety Systems for Robotic Surgery,"Vision based Decision-Support and Safety Systems for
Robotic Surgery
Suren Kumar
PhD Candidate
Madusudanan Sathia
Narayanan*
PhD Candidate
Sukumar Misra
Surgical Intern
Sudha Garimella
Assistant Professor
Pankaj Singhal
Director of Robotic Surgery
Jason J. Corso
Assistant Professor"
33891ca0f8fab0eab503f4b4bcee009a1cf3b880,A video database of human faces under near Infra-Red illumination for human computer interaction applications,"A Video Database of Human Faces under Near Infra-Red
Illumination for Human Computer Interaction Aplications
S L Happy, Anirban Dasgupta, Anjith George, and Aurobinda Routray
Department of Electrical Engineering
Indian Institute of Technology Kharagpur"
33792bb27ef392973e951ca5a5a3be4a22a0d0c6,Two-Dimensional Whitening Reconstruction for Enhancing Robustness of Principal Component Analysis,"Two-dimensional Whitening Reconstruction for
Enhancing Robustness of Principal Component
Analysis
Xiaoshuang Shi, Zhenhua Guo, Feiping Nie, Lin Yang, Jane You, and Dacheng Tao"
3328674d71a18ed649e828963a0edb54348ee598,A face and palmprint recognition approach based on discriminant DCT feature extraction,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004
A Face and Palmprint Recognition Approach Based
on Discriminant DCT Feature Extraction
Xiao-Yuan Jing and David Zhang"
3355aff37b5e4ba40fc689119fb48d403be288be,Deep Private-Feature Extraction,"Deep Private-Feature Extraction
Seyed Ali Osia, Ali Taheri, Ali Shahin Shamsabadi, Kleomenis Katevas, Hamed Haddadi, Hamid R. Rabiee"
339937141ffb547af8e746718fbf2365cc1570c8,Facial Emotion Recognition in Real Time,"Facial Emotion Recognition in Real Time
Dan Duncan
Gautam Shine
Chris English"
33ae696546eed070717192d393f75a1583cd8e2c,Subspace selection to suppress confounding source domain information in AAM transfer learning,
33c485b59249af2d763d6951cd11e4080f3bbb3d,Learning to Fuse 2D and 3D Image Cues for Monocular Body Pose Estimation,"Fusing 2D Uncertainty and 3D Cues for Monocular Body Pose Estimation
Bugra Tekin
Pablo M´arquez-Neila
Mathieu Salzmann
Pascal Fua
EPFL, Switzerland"
3316521a5527c7700af8ae6aef32a79a8b83672c,People-tracking-by-detection and people-detection-by-tracking,"People-Tracking-by-Detection and People-Detection-by-Tracking
Mykhaylo Andriluka
Stefan Roth
Bernt Schiele
Computer Science Department
TU Darmstadt, Germany
{andriluka, sroth,"
3393459600368be2c4c9878a3f65a57dcc0c2cfa,Eigen-PEP for Video Face Recognition,"Eigen-PEP for Video Face Recognition
Haoxiang Li†, Gang Hua†, Xiaohui Shen‡, Zhe Lin‡, Jonathan Brandt‡
Stevens Institute of Technology ‡Adobe Systems Inc."
330bcf952a5a20aac0e334aad1de4cd6ba6ed6eb,Pedestrian Detection at Day/Night Time with Visible and FIR Cameras: A Comparison,"Article
Pedestrian Detection at Day/Night Time with Visible
nd FIR Cameras: A Comparison
Alejandro González 1,2,*, Zhijie Fang 1,2, Yainuvis Socarras 1,2, Joan Serrat 1,2, David Vázquez 1,2,
Jiaolong Xu 1,2 and Antonio M. López 1,2
Autonomous University of Barcelona, Cerdanyola, Barcelona 08193, Spain; (Z.F.);
(Y.S.); (J.S.); (D.V.); (J.X.);
(A.M.L.)
Computer Vision Center, Cerdanyola, Barcelona 08193, Spain
* Correspondence: Tel.: +34-622-605-455
Academic Editor: Vittorio M. N. Passaro
Received: 17 March 2016; Accepted: 30 May 2016; Published: 4 June 2016"
3323a905a3960a663a9884540e8c3586cf362ba9,Face Hallucination Using Sparse Representation Algorithm,"International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)
Volume 4 Issue 9, September 2015
Face Hallucination Using Sparse Representation
Algorithm
Sudhir Kumar                                                 Vikram Mutneja"
336b2ae3e4db996538f930b754f7d233af56a628,Learning local descriptors by optimizing the keypoint-correspondence criterion,"Learning Local Descriptors by Optimizing the
Keypoint-Correspondence Criterion: Applications to
Face Matching, Learning from Unlabeled Videos
nd 3D-Shape Retrieval
Nenad Markuˇs†, Igor S. Pandˇzi´c†, and J¨orgen Ahlberg‡
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
Computer Vision Laboratory, Dept. of Electrical Engineering, Link¨oping University, SE-581 83 Link¨oping, Sweden"
3352426a67eabe3516812cb66a77aeb8b4df4d1b,Joint Multi-view Face Alignment in the Wild,"JOURNAL OF LATEX CLASS FILES, VOL. 4, NO. 5, APRIL 2015
Joint Multi-view Face Alignment in the Wild
Jiankang Deng, Student Member, IEEE, George Trigeorgis, Yuxiang Zhou, and Stefanos Zafeiriou, Member, IEEE"
333be4858994e6d9364341aeb520f7800a0f6a07,Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks,"Unsupervised Pixel–Level Domain Adaptation
with Generative Adversarial Networks
Konstantinos Bousmalis
Google Brain
San Francisco, CA
Nathan Silberman
Google Research
New York, NY
David Dohan
Google Brain
Mountain View, CA
Dumitru Erhan
Google Brain
San Francisco, CA
Dilip Krishnan
Google Research
Cambridge, MA"
334d6c71b6bce8dfbd376c4203004bd4464c2099,Biconvex Relaxation for Semidefinite Programming in Computer Vision,"BICONVEX RELAXATION FOR SEMIDEFINITE PROGRAMMING IN
COMPUTER VISION
SOHIL SHAH*, ABHAY KUMAR*, DAVID JACOBS,
CHRISTOPH STUDER, AND TOM GOLDSTEIN"
33695e0779e67c7722449e9a3e2e55fde64cfd99,Riemannian coding and dictionary learning: Kernels to the rescue,"Riemannian Coding and Dictionary Learning: Kernels to the Rescue
Mehrtash Harandi, Mathieu Salzmann
Australian National University & NICTA
While sparse coding on non-flat Riemannian manifolds has recently become
increasingly popular, existing solutions either are dedicated to specific man-
ifolds, or rely on optimization problems that are difficult to solve, especially
when it comes to dictionary learning. In this paper, we propose to make use
of kernels to perform coding and dictionary learning on Riemannian man-
ifolds. To this end, we introduce a general Riemannian coding framework
with its kernel-based counterpart. This lets us (i) generalize beyond the spe-
ial case of sparse coding; (ii) introduce efficient solutions to two coding
schemes; (iii) learn the kernel parameters; (iv) perform unsupervised and
supervised dictionary learning in a much simpler manner than previous Rie-
mannian coding approaches.
i=1, di ∈ M, be a dictionary on a Rie-
mannian manifold M, and x ∈ M be a query point on the manifold. We
(cid:17)
define a general Riemannian coding formulation as
More specifically, let D = {di}N
(cid:93)N"
330dda431e0343a96f9d630a0b4ee526bd93ad11,Domain Adaptation for Visual Applications: A Comprehensive Survey,"Domain Adaptation for Visual Applications: A Comprehensive
Survey
Gabriela Csurka"
33e20449aa40488c6d4b430a48edf5c4b43afdab,The Faces of Engagement: Automatic Recognition of Student Engagementfrom Facial Expressions,"TRANSACTIONS ON AFFECTIVE COMPUTING
The Faces of Engagement: Automatic
Recognition of Student Engagement from Facial
Expressions
Jacob Whitehill, Zewelanji Serpell, Yi-Ching Lin, Aysha Foster, and Javier R. Movellan"
333e7ad7f915d8ee3bb43a93ea167d6026aa3c22,3D Assisted Face Recognition: Dealing With Expression Variations,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2014.2309851
DRAFT
D Assisted Face Recognition: Dealing With
Expression Variations
Nesli Erdogmus, Member, IEEE, Jean-Luc Dugelay, Fellow Member, IEEE"
334166a942acb15ccc4517cefde751a381512605,Facial Expression Analysis using Deep Learning,"International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056
Volume: 04 Issue: 10 | Oct -2017                     www.irjet.net                                                                 p-ISSN: 2395-0072
Facial Expression Analysis using Deep Learning
Hemanth Singh1, Raman Patel2
,2 M.Tech Student, SSG Engineering College, Odisha, India
---------------------------------------------------------------------***---------------------------------------------------------------------
examination structures need to analyse the facial exercises"
335486cb9bb326e2b33fb03a74d0f9d671490ae7,Real-time pedestrian detection with deformable part models,"Real-time Pedestrian Detection with Deformable Part Models
Hyunggi Cho, Paul E. Rybski, Aharon Bar-Hillel and Wende Zhang"
3369692338841f14ce032fc5d0b5b4fe7cc79f1a,Visualising mental representations: A primer on noise-based reverse correlation in social psychology,"European Review of Social Psychology
ISSN: 1046-3283 (Print) 1479-277X (Online) Journal homepage: http://www.tandfonline.com/loi/pers20
Visualising mental representations: A primer
on noise-based reverse correlation in social
psychology
L. Brinkman, A. Todorov & R. Dotsch
To cite this article: L. Brinkman, A. Todorov & R. Dotsch (2017) Visualising mental
representations: A primer on noise-based reverse correlation in social psychology, European
Review of Social Psychology, 28:1, 333-361, DOI: 10.1080/10463283.2017.1381469
To link to this article:  http://dx.doi.org/10.1080/10463283.2017.1381469
© 2017 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.
Published online: 16 Oct 2017.
Submit your article to this journal
View related articles
View Crossmark data
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=pers20
Download by: [Princeton University]"
3347d3e9f8a2da66e1c00f6a1e56bb37d27145ae,devant le jury composé de:,"Spécialité: Informatique et Télécommunications    Ecole doctorale: Informatique, Télécommunications et Electronique de Paris  Présentée par   Raluca-Diana ŞAMBRA-PETRE  Pour obtenir le grade de DOCTEUR DE TELECOM SUDPARIS    MODELISATION ET INFERENCE 2D/3D DE CONNAISSANCES POUR L'ACCES INTELLIGENT AUX CONTENUS VISUELS ENRICHIS     Soutenue le 18 Juin 2013 à Paris                              devant le jury composé de :   Président de jury: Madame le Maître de Conférences, HDR Catherine ACHARD Rapporteur:  Monsieur le Professeur Marc ANTONINI Rapporteur:  Monsieur le Professeur Constantin VERTAN Examinateur:  Monsieur le Professeur Miroslaw BOBER  Examinateur:  Monsieur le Docteur Olivier MARTINOT Directeur de thèse:  Monsieur le Professeur Titus ZAHARIA    Thèse n°: 2013TELE0012      THESE DE DOCTORAT CONJOINT TELECOM SUDPARIS et L'UNIVERSITE PIERRE ET MARIE CURIE"
3389fa2f292b72320f4554261eae34d57e2db7b6,Morphable Reflectance Fields for enhancing face recognition,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Morphable Reflectance Fields for Enhancing
Face Recognition
Ritwik Kumar, Michael Jones, Tim Marks
TR2010-039
July 2010"
330126c9dd71b3b0319d6429737186f1f20057a7,Deep Ordinal Regression Based on Data Relationship for Small Datasets,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
33e5d1c93e4195a1bfd303a94f0fc3f1c5e233bd,3D Face Recognition Under Expression Variations using Similarity Metrics Fusion,"(cid:176)2007 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collec-
tive works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works
must be obtained from the IEEE."
3387805b752dadfa34cb8eb63d9dc86aff49934a,"UNIVERSITY OF CALIFORNIA RIVERSIDE Exploration of Contextual Relationships for Robust Video Analysis: Applications in Camera Networks, Bio-image Analysis and Activity Forecasting A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering","UNIVERSITY OF CALIFORNIA
RIVERSIDE
Exploration of Contextual Relationships for Robust Video Analysis:
Applications in Camera Networks, Bio-image Analysis and Activity Forecasting
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Electrical Engineering
Anirban Chakraborty
August 2014
Dissertation Committee:
Dr. Amit K. Roy-Chowdhury, Chairperson
Dr. Ertem Tuncel
Dr. Stefano Lonardi"
33e7bc26047de3c1b607f04a644c2c03920201fd,Learning to Navigate Autonomously in Outdoor Environments : MAVNet,"Learning to Navigate Autonomously in Outdoor Environments :
MAVNet
Saumya Kumaar2, Arpit Sangotra3, Sudakshin Kumar3, Mayank Gupta3, Navaneethkrishnan B2 and S N Omkar1"
05ce0e4e9ae2c7b2320decb3bb29e066f1dd96d3,Patch-wise low-dimensional probabilistic linear discriminant analysis for Face Recognition,"PATCH-WISE LOW-DIMENSIONAL PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS
FOR FACE RECOGNITION
Vitomir ˇStruc, Nikola Paveˇsi´c
Jerneja ˇZganec-Gros, Boˇstjan Vesnicer
Faculty of Electrical Engineering UL
Trˇzaˇska cesta 25, 1000 Ljubljana, Slovenia
Alpineon Ltd., Ulica Iga Grudna 15
000 Ljubljana, Slovenia"
05b8673d810fadf888c62b7e6c7185355ffa4121,A Comprehensive Survey to Face Hallucination,"(will be inserted by the editor)
A Comprehensive Survey to Face Hallucination
Nannan Wang · Dacheng Tao · Xinbo Gao · Xuelong Li · Jie Li
Received: date / Accepted: date"
05e658fed4a1ce877199a4ce1a8f8cf6f449a890,Domain Transfer Learning for Object and Action Recognition,
0569d7d3d8f96140adc8ec5a6016fdc97e7ef8aa,Random tree walk toward instantaneous 3D human pose estimation,"Random Tree Walk toward Instantaneous 3D Human Pose Estimation
Ho Yub Jung1, Soochahn Lee2, Yong Seok Heo3, Il Dong Yun1
Div. of Comp. & Elect. Sys. Eng., Hankuk University of Foreign Studies. 2Dept. of Elect. Eng., Soonchunghyang University. 3Dept. of Elect. & Comp. Eng.,
Ajou University.
Figure 1: The red lines represents the random tree walks trained to find
the head position. The random walk starts from the body center in (a). In
(b), the head position is found with fewer steps by starting from the chest,
which is much closer than the body center. (c) illustrates the kinematic tree
implemented along with RTW. The adjacent joint positions can be used as
the starting positions for new RTW. (d) shows the RTW path examples.
Figure 2: Example results of the RTW from EVAL db [1]. Proposed ap-
proach achieves the state-of-the-art accuracy without using the temporal
prior. 64 RTW steps are taken for each joint to estimate human pose from
single depth image. The RTW paths are drawn, and the expectations of
RTW steps are used to find the joint positions. The pose estimation from a
single frame takes less than 1 millisecond.
The availability of accurate depth cameras have made real-time human
pose estimation possible; however, there are still demands for faster algo-
rithms on low power processors. This paper introduces 1000 frames per
second pose estimation method on a single core 3.20 GHz CPU with no"
05e3167206bc440d5aacf2256fd2e2e421b0808c,People Detection and Re-identification for Multi Surveillance Cameras,"People detection and re-identification for multi surveillance cameras
Etienne Corvee, Slawomir Bak and Francois Bremond
INRIA, Sophia Antipolis, Pulsar Team
{etienne.corvee, slawomir.bak,
Keywords:
people detection, people tracking, people re-identification, local binary pattern, mean Riemannian covariance"
05ad478ca69b935c1bba755ac1a2a90be6679129,Attribute Dominance: What Pops Out?,"Attribute Dominance: What Pops Out?
Naman Turakhia
Georgia Tech"
050e7e32fdc48150f66cb5edf166790c69652b8b,Land Cover Segmentation of Airborne LiDAR Data Using Stochastic Atrous Network,"Article
Land Cover Segmentation of Airborne LiDAR Data
Using Stochastic Atrous Network
Hasan Asy’ari Arief 1,* ID , Geir-Harald Strand 1,2 ID , Håvard Tveite 1 ID and Ulf Geir Indahl 1
Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway;
(G.H.S.); (H.T.); (U.G.I.)
Division of Survey and Statistics, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
* Correspondence: Tel.: +47-453-91-706
Received: 30 April 2018; Accepted: 17 June 2018; Published: 19 June 2018"
051d8bbf12877c46ae9a598a386c5b72d1b103ac,Object Detection using Geometrical Context Feedback,"Int J Comput Vis (2012) 100:154–169
DOI 10.1007/s11263-012-0547-2
Object Detection using Geometrical Context Feedback
Min Sun · Sid Yingze Bao · Silvio Savarese
Received: 17 December 2010 / Accepted: 16 July 2012 / Published online: 2 August 2012
© Springer Science+Business Media, LLC 2012"
054738ce39920975b8dcc97e01b3b6cc0d0bdf32,Towards the design of an end-to-end automated system for image and video-based recognition,"Towards the Design of an End-to-End Automated
System for Image and Video-based Recognition
Rama Chellappa1, Jun-Cheng Chen3, Rajeev Ranjan1, Swami Sankaranarayanan1, Amit Kumar1,
Vishal M. Patel2 and Carlos D. Castillo4"
05a22ebec697cfa5e8e2883d68e6f4762bbdebd7,Few-Example Object Detection with Model Communication.,"Few-Example Object Detection
with Model Communication
Xuanyi Dong, Liang Zheng, Fan Ma, Yi Yang, Deyu Meng"
05e03c48f32bd89c8a15ba82891f40f1cfdc7562,Scalable Robust Principal Component Analysis Using Grassmann Averages,"Scalable Robust Principal Component
Analysis using Grassmann Averages
Søren Hauberg, Aasa Feragen, Raffi Enficiaud, and Michael J. Black"
05ce73c39368aca1d10ab48dbe0dee80ee084bdb,Multi-label Learning with the Rnns for Fashion Search,"Under review as a conference paper at ICLR 2017
MULTI-LABEL LEARNING WITH THE RNNS
FOR FASHION SEARCH
Se-Yeoung Kim, Sang-Il Na, Ha-Yoon Kim, Moon-Ki Kim, Byoung-Ki Jeon
Machine Intelligence Lab., SK Planet
Seongnam City, South Korea
Taewan Kim ∗
Naver Labs, Naver Corp.
Seongnam City, South Korea"
056ba488898a1a1b32daec7a45e0d550e0c51ae4,Cascaded Continuous Regression for Real-Time Incremental Face Tracking,"Cascaded Continuous Regression for Real-time
Incremental Face Tracking
Enrique S´anchez-Lozano, Brais Martinez,
Georgios Tzimiropoulos, and Michel Valstar
Computer Vision Laboratory. University of Nottingham"
050fdbd2e1aa8b1a09ed42b2e5cc24d4fe8c7371,Spatio-Temporal Scale Selection in Video Data,"Contents
Scale Space and PDE Methods
Spatio-Temporal Scale Selection in Video Data . . . . . . . . . . . . . . . . . . . . .
Tony Lindeberg
Dynamic Texture Recognition Using Time-Causal Spatio-Temporal
Scale-Space Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ylva Jansson and Tony Lindeberg
Corner Detection Using the Affine Morphological Scale Space . . . . . . . . . . .
Luis Alvarez
Nonlinear Spectral Image Fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Martin Benning, Michael Möller, Raz Z. Nossek, Martin Burger,
Daniel Cremers, Guy Gilboa, and Carola-Bibiane Schönlieb
Tubular Structure Segmentation Based on Heat Diffusion. . . . . . . . . . . . . . .
Fang Yang and Laurent D. Cohen
Analytic Existence and Uniqueness Results for PDE-Based Image
Reconstruction with the Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laurent Hoeltgen, Isaac Harris, Michael Breuß, and Andreas Kleefeld
Combining Contrast Invariant L1 Data Fidelities with Nonlinear
Spectral Image Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leonie Zeune, Stephan A. van Gils, Leon W.M.M. Terstappen,"
05a6a40c840c069631a825509f3095697592e1c4,IAN: The Individual Aggregation Network for Person Search,"IAN: The Individual Aggregation Network for
Person Search
Jimin XIAO, Member, IEEE, Yanchun XIE, Tammam TILLO, Senior Member, IEEE, Kaizhu HUANG, Senior
Member, IEEE, Yunchao WEI, Member, IEEE, Jiashi FENG"
052880031be0a760a5b606b2ad3d22f237e8af70,Datasets on object manipulation and interaction: a survey,"Datasets on object manipulation and interaction: a survey
Yongqiang Huang and Yu Sun"
05bba1f1626f02ef4ca497090b4a04d47f36ebb6,Social projection increases for positive targets: ascertaining the effect and exploring its antecedents.,"545039 PSPXXX10.1177/0146167214545039Personality and Social Psychology BulletinMachunsky et al.
research-article2014
Article
Social Projection Increases for
Positive Targets: Ascertaining the
Effect and Exploring Its Antecedents
Maya Machunsky1, Claudia Toma2, Vincent Yzerbyt3,
nd Olivier Corneille3
Personality and Social
Psychology Bulletin
014, Vol. 40(10) 1373 –1388
© 2014 by the Society for Personality
nd Social Psychology, Inc
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0146167214545039
pspb.sagepub.com"
053c2f592a7f153e5f3746aa5ab58b62f2cf1d21,Performance Evaluation of Illumination Normalization Techniques for Face Recognition,"International Journal of Research in
Engineering & Technology (IJRET)
ISSN 2321-8843
Vol. 1, Issue 2, July 2013, 11-20
© Impact Journals
PERFORMANCE EVALUATION OF ILLUMINATION NORMALIZATION TECHNIQUES
FOR FACE RECOGNITION
A. P. C. SARATHA DEVI & V. MAHESH
Department of Information Technology, PSG College of Technology, Coimbatore, Tamil Nadu, India"
05ef5efd9e42f49dbb9e50ec3fe367f275a94931,Biologically Inspired Processing for Lighting Robust Face Recognition,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
05487784c1c94e17c26862e342c1b81acfe11258,Spontaneous facial expression analysis based on temperature changes and head motions,"Spontaneous Facial Expression Analysis
Based on Temperature
Changes and Head Motions
Peng Liu and Lijun Yin
State University of New York-at Binghamton"
051830b0ea58d1568f19ec3297e301d9789c9a76,Bringing Semantics into Focus Using Visual Abstraction,
05ea7930ae26165e7e51ff11b91c7aa8d7722002,Learning And-Or Model to Represent Context and Occlusion for Car Detection and Viewpoint Estimation,"Learning And-Or Model to Represent Context and
Occlusion for Car Detection and Viewpoint Estimation
Tianfu Wu∗, Bo Li∗ and Song-Chun Zhu"
05384ac77be3211fb7d221802bc79eb3c9fa2873,A Novel Image Classification System Based on Evidence Probabilistic Transformation,"International Journal of  Research in Computer and
Communication Technology, Vol 4,Issue 2 ,February -2015
ISSN (Online) 2278- 5841
ISSN (Print)    2320- 5156
A Novel Image Classification System Based on Evidence
Probabilistic Transformation
Department of Computer Science, Mansoura University, Mansoura 35516, Egypt
A.E. Amin
information
different
identity
paper
evidence"
056892b7e573608e64c3c9130e8ce33353a94de2,Semantic Image Segmentation with Task-Specific Edge Detection Using CNNs and a Discriminatively Trained Domain Transform,"Semantic Image Segmentation with Task-Specific Edge Detection Using CNNs
nd a Discriminatively Trained Domain Transform
Liang-Chieh Chen∗
Jonathan T. Barron, George Papandreou, Kevin Murphy
{barron, gpapan,
Alan L. Yuille"
056e2c82db905b93f7762a2ee7778d3aacc5a1f0,Bag of Attributes for Video Event Retrieval,"Bag of Attributes for Video Event Retrieval
Leonardo A. Duarte1, Ot´avio A. B. Penatti2, and Jurandy Almeida1
Institute of Science and Technology
Federal University of S˜ao Paulo – UNIFESP
2247-014, S˜ao Jos´e dos Campos, SP – Brazil
Email: {leonardo.assuane,
Advanced Technologies
SAMSUNG Research Institute
3097-160, Campinas, SP – Brazil
Email:"
05fcbe4009543ec8943bdc418ee81e9594b899a4,Social perception in autism spectrum disorders: impaired category selectivity for dynamic but not static images in ventral temporal cortex.,"doi:10.1093/cercor/bhs276
Social Perception in Autism Spectrum Disorders: Impaired Category Selectivity
for Dynamic but not Static Images in Ventral Temporal Cortex
Jill Weisberg1, Shawn C. Milleville1, Lauren Kenworthy1,2, Gregory L. Wallace1, Stephen J. Gotts1,
Michael S. Beauchamp3 and Alex Martin1
NIMH, Laboratory of Brain and Cognition, Bethesda, MD 20850, 2Children’s National Medical Center, Center for Autism
Spectrum Disorders, Rockville, MD 20850 and 3Department of Neurobiology and Anatomy, University of Texas Medical School
t Houston, Houston, TX 77030, USA
Address correspondence to Jill Weisberg, San Diego State University Research Foundation, Laboratory for Language and Cognitive Neuroscience,
6495 Alvarado Rd, Suite 200, San Diego, CA 92120, USA. Email:
Studies of autism spectrum disorders (ASDs) reveal dysfunction in
the neural systems mediating object processing (particularly faces)
nd social cognition, but few investigations have systematically as-
sessed the specificity of the dysfunction. We compared cortical
responses in typically developing adolescents and those with ASD
to stimuli from distinct conceptual domains known to elicit cat-
egory-related activity in separate neural systems. In Experiment 1,
subjects made category decisions to photographs, videos, and
point-light displays of people and tools. In Experiment 2, subjects
interpreted displays of simple, geometric shapes in motion depicting"
051a84f0e39126c1ebeeb379a405816d5d06604d,Biometric Recognition Performing in a Bioinspired System,"Cogn Comput (2009) 1:257–267
DOI 10.1007/s12559-009-9018-7
Biometric Recognition Performing in a Bioinspired System
Joan Fa`bregas Æ Marcos Faundez-Zanuy
Published online: 20 May 2009
Ó Springer Science+Business Media, LLC 2009"
053ff27aba868c64823dbbe2167a762dd3f33b53,Probabilistic Slow Features for Behavior Analysis,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Probabilistic Slow Features for Behavior Analysis
Lazaros Zafeiriou, Student Member, IEEE, Mihalis A. Nicolaou, Member, IEEE,
Stefanos Zafeiriou, Member, IEEE, Symeon Nikitidis,
nd Maja Pantic, Fellow, IEEE
feature"
0559fb9f5e8627fecc026c8ee6f7ad30e54ee929,Facial Expression Recognition,"Facial Expression Recognition
Bogdan J. Matuszewski, Wei Quan and Lik-Kwan Shark
ADSIP Research Centre, University of Central Lancashire
. Introduction
Facial  expressions  are  visible  signs  of  a  person’s  affective  state,  cognitive  activity  and
personality.  Humans  can  perform  expression  recognition  with  a  remarkable  robustness
without  conscious  effort  even  under  a  variety  of  adverse  conditions  such  as  partially
occluded faces, different appearances and poor illumination. Over the last two decades, the
dvances in imaging technology and ever increasing computing power have opened up a
possibility of automatic facial expression recognition and this has led to significant research
efforts from the computer vision and pattern recognition communities. One reason for this
growing interest is due to a wide spectrum of possible applications in diverse areas, such as
more engaging human-computer interaction (HCI) systems, video conferencing, augmented
reality.  Additionally  from  the  biometric  perspective,  automatic  recognition  of  facial
expressions has been investigated in the context of monitoring patients in the intensive care
nd neonatal units for signs of pain and anxiety, behavioural research, identifying level of
oncentration, and improving face recognition.
Automatic  facial  expression  recognition  is  a  difficult  task  due  to  its  inherent  subjective
nature,  which  is  additionally  hampered  by  usual  difficulties  encountered  in  pattern
recognition and computer vision research. The vast majority of the current state-of-the-art"
05a7be10fa9af8fb33ae2b5b72d108415519a698,Multilayer and Multimodal Fusion of Deep Neural Networks for Video Classification,"Multilayer and Multimodal Fusion of Deep Neural Networks
for Video Classification
Xiaodong Yang Pavlo Molchanov Jan Kautz
{xiaodongy, pmolchanov,
NVIDIA"
057d879fe2d6c40ef79fe901cc62625a3b2ea8ba,EgoSampling: Fast-forward and stereo for egocentric videos,"EgoSampling: Fast-Forward and Stereo for Egocentric Videos
Yair Poleg
Tavi Halperin
The Hebrew University
The Hebrew University
Jerusalem, Israel
Jerusalem, Israel
Chetan Arora
Delhi, India
Shmuel Peleg
The Hebrew University
Jerusalem, Israel"
056be8a896f71be4a1dee67b01f4d59e3e982304,Generative Models of Visually Grounded Imagination,"Published as a conference paper at ICLR 2018
GENERATIVE MODELS OF VISUALLY GROUNDED
IMAGINATION
Ramakrishna Vedantam∗
Georgia Tech
Ian Fischer
Google Inc.
Jonathan Huang
Google Inc.
Kevin Murphy
Google Inc."
050a149051a5d268fcc5539e8b654c2240070c82,Magisterské a doktorské studijnı́ programy,MAGISTERSKÉ A DOKTORSKÉSTUDIJNÍ PROGRAMY31. 5. 2018SBORNÍKSTUDENTSKÁ VĚDECKÁ KONFERENCE
05fd17673f1500d46196b0e38857eb3eaf09296e,Fourier Descriptors Based on the Structure of the Human Primary Visual Cortex with Applications to Object Recognition,"(will be inserted by the editor)
Fourier descriptors based on the structure of the human
primary visual cortex with applications to object recognition
Amine Bohi · Dario Prandi · Vincente Guis · Fr´ed´eric Bouchara ·
Jean-Paul Gauthier
Received: date / Accepted: date"
0580edbd7865414c62a36da9504d1169dea78d6f,Baseline CNN structure analysis for facial expression recognition,"Baseline CNN structure analysis for facial expression recognition
Minchul Shin1, Munsang Kim2 and Dong-Soo Kwon1"
05a2547d976420f7d1de19907e16280d15199008,Semantic Road Layout Understanding by Generative Adversarial Inpainting,"Road layout understanding by generative
dversarial inpainting
Lorenzo Berlincioni, Federico Becattini, Leonardo Galteri, Lorenzo Seidenari,
Alberto Del Bimbo"
0534304bc09e92b2cfa0a8da59cfcf0be84d70a4,Towards reliable real-time person detection,"Towards Reliable Real-Time Person Detection
Silviu-Tudor SERBAN1, Srinidhi MUKANAHALLIPATNA SIMHA1, Vasanth
BATHRINARAYANAN1, Etienne CORVEE1 and Francois BREMOND1
INRIA Sophia Antipolis - Mediterranee, 2004 route des Lucioles, Sophia Antipolis, France
{silviu-tudor.serban,srinidhi.mukanahallipatna
Keywords:
Random sampling, Adaboost, Soft cascade, LBP channel features"
0582d338a5e5b325c282e2ff13bfd62cf4d08108,Affordance Research in Developmental Robotics: A Survey,"Affordance Research in Developmental
Robotics: A Survey
Huaqing Min, Chang’an Yi, Ronghua Luo, Jinhui Zhu, and Sheng Bi
apture"
051aa14e0b7dd4231636db39398c0c15b2687682,Robust Subspace Clustering via Thresholding,"Robust Subspace Clustering via Thresholding
Reinhard Heckel and Helmut B¨olcskei
Dept. of IT & EE, ETH Zurich, Switzerland
July 2013; last revised August 2015"
054953d915f65b66485b653cd2ffbf61568b2849,Face Description with Local Invariant Features: Application to Face Recognition,"Face Description with Local Invariant Features: Application to Face Recognition
{tag}                                  {/tag}
International Journal of Computer Applications
© 2010 by IJCA Journal
Number 24 - Article 12
Year of Publication: 2010
Authors:
Sanjay A. Pardeshi
Dr. S.N. Talbar
10.5120/555-726"
9d58e8ab656772d2c8a99a9fb876d5611fe2fe20,Beyond Temporal Pooling: Recurrence and Temporal Convolutions for Gesture Recognition in Video,"Beyond Temporal Pooling: Recurrence and Temporal
Convolutions for Gesture Recognition in Video
Lionel Pigou, A¨aron van den Oord∗ , Sander Dieleman∗ ,
{lionel.pigou,aaron.vandenoord,sander.dieleman,
Mieke Van Herreweghe & Joni Dambre
mieke.vanherreweghe,
Ghent University
February 11, 2016"
9d42df42132c3d76e3447ea61e900d3a6271f5fe,AutoCAP: An Automatic Caption Generation System based on the Text Knowledge Power Series Representation Model,"International Journal of Computer Applications (0975 – 8887)
Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)
AutoCAP: An Automatic Caption Generation System
ased on the Text Knowledge Power Series
Representation Model
Krishnapriya P S
M.Tech Dept of CSE
NSS College of Engineering
Palakkad, Kerala"
9d4c05c7c9284c8e303641b95e997f11df2dd1a7,Misalignment-robust Face Recognition via Efficient Locality-constrained Representation,"Misalignment-robust Face Recognition via Effi-
ient Locality-constrained Representation
Yandong Wen, Weiyang Liu, Meng Yang, Member, IEEE, Yuli Fu, Zhifeng Li, Senior Member, IEEE"
9d8fd639a7aeab0dd1bc6eef9d11540199fd6fe2,L Earning to C Luster,"Workshop track - ICLR 2018
LEARNING TO CLUSTER
Benjamin B. Meier, Thilo Stadelmann & Oliver D¨urr
ZHAW Datalab, Zurich University of Applied Sciences
Winterthur, Switzerland"
9d2ad0b408bddc9c5a713e250b52aa48f1786a46,Visual Recognition Using Local Quantized Patterns,"Visual Recognition using Local Quantized Patterns
Sibt Ul Hussain, Bill Triggs
To cite this version:
Sibt Ul Hussain, Bill Triggs. Visual Recognition using Local Quantized Patterns. Andrew Fitzgibbon,
Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid. ECCV 2012 - 12th European
Conference on Computer Vision, Oct 2012, Florence, Italy. Springer, 7573, pp.716-729, 2012, Lecture
Notes in Computer Science. <10.1007/978-3-642-33709-3_51>. <hal-00695627>
HAL Id: hal-00695627
https://hal.archives-ouvertes.fr/hal-00695627
Submitted on 9 May 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
9d357bbf014289fb5f64183c32aa64dc0bd9f454,Face Identification by Fitting a 3D Morphable Model Using Linear Shape and Texture Error Functions,"Face Identification by Fitting a 3D Morphable Model
using Linear Shape and Texture Error Functions
Sami Romdhani, Volker Blanz, and Thomas Vetter
University of Freiburg, Instit¨ut f¨ur Informatik,
Georges-K¨ohler-Allee 52, 79110 Freiburg, Germany,
fromdhani, volker,"
9d0bf3b351fb4d80cee5168af8367c5f6c8b2f3a,"The Tromso Infant Faces Database (TIF): Development, Validation and Application to Assess Parenting Experience on Clarity and Intensity Ratings","METHODS
published: 24 March 2017
doi: 10.3389/fpsyg.2017.00409
The Tromso Infant Faces Database
(TIF): Development, Validation and
Application to Assess Parenting
Experience on Clarity and Intensity
Ratings
Jana K. Maack†, Agnes Bohne†, Dag Nordahl, Lina Livsdatter, Åsne A. W. Lindahl,
Morten Øvervoll, Catharina E. A. Wang and Gerit Pfuhl*
Department of Psychology, UiT – The Arctic University of Norway, Tromsø, Norway
Newborns and infants are highly depending on successfully communicating their needs;
e.g., through crying and facial expressions. Although there is a growing interest in
the mechanisms of and possible influences on the recognition of facial expressions in
infants, heretofore there exists no validated database of emotional infant faces. In the
present article we introduce a standardized and freely available face database containing
Caucasian infant face images from 18 infants 4 to 12 months old. The development
nd validation of the Tromsø Infant Faces (TIF) database is presented in Study 1. Over
700 adults categorized the photographs by seven emotion categories (happy, sad,
disgusted, angry, afraid, surprised, neutral) and rated intensity, clarity and their valance."
9d6a2180a5f452356526edd8b4833180fa09cb3f,Photo Aesthetics Analysis via DCNN Feature Encoding,"Photo Aesthetics Analysis
via DCNN Feature Encoding
Hui-Jin Lee, Ki-Sang Hong, Henry Kang, and Seungyong Lee"
9d67af2158807aa815b5a4485b076f7a18ce6ab4,Model Adaptation with Synthetic and Real Data for Semantic Dense Foggy Scene Understanding,"Model Adaptation with Synthetic and Real Data
for Semantic Dense Foggy Scene Understanding
Christos Sakaridis1(), Dengxin Dai1, Simon Hecker1, and Luc Van Gool1,2
ETH Z¨urich, Z¨urich, Switzerland
KU Leuven, Leuven, Belgium"
9df7ea3eed6b0c9c067521119698cfa79cc1f91d,Representations and Matching Techniques for 3D Free-form Object and Face Recognition,"Representations and Matching
Techniques for 3D Free-form Object and
Face Recognition
Ajmal Saeed Mian
This thesis is presented for the degree of
Doctor of Philosophy
of The University of Western Australia
School of Computer Science and Software Engineering.
March 2006"
9dc263210770e7e836040c8e9d0edff40814254b,A track before detect approach for sequential Bayesian tracking of multiple speech sources,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE
ICASSP 2010"
9da9ee38d5845d39497b10b0ab442580e75ee4d3,Dynamic Video Segmentation Network,"Dynamic Video Segmentation Network
Yu-Syuan Xu, Tsu-Jui Fu∗, Hsuan-Kung Yang∗, Student Member, IEEE and Chun-Yi Lee, Member, IEEE
Elsa Lab, Department of Computer Science, National Tsing Hua Uiversity
{yusean0118, rayfu1996ozig,"
9d8978ee319d671283a90761aaed150c7cc9154b,Fader Networks: Manipulating Images by Sliding Attributes,"Fader Networks:
Manipulating Images by Sliding Attributes
Guillaume Lample1,2, Neil Zeghidour1,3, Nicolas Usunier1,
Antoine Bordes1, Ludovic Denoyer2, Marc’Aurelio Ranzato1"
9d839dfc9b6a274e7c193039dfa7166d3c07040b,Augmented faces,"Augmented Faces
Matthias Dantone1
Lukas Bossard1
Till Quack1,2
Luc van Gool1,3
ETH Z¨urich
Kooaba AG
K.U. Leuven"
9d1940f843c448cc378214ff6bad3c1279b1911a,Shape-aware Instance Segmentation,"Shape-aware Instance Segmentation
Zeeshan Hayder1,2, Xuming He2,1
Australian National University & 2Data61/CSIRO ∗
Mathieu Salzmann2,3
CVLab, EPFL, Switzerland"
9da2abae3072fd9fcff0e13b8f00fc21f22d0085,NOKMeans: Non-Orthogonal K-means Hashing,"NOKMeans: Non-Orthogonal K-means Hashing
Xiping Fu, Brendan McCane, Steven Mills, and Michael Albert
Dep. of Computer Science, University of Otago, Dunedin, NZ"
9d3ac3d29164c2665c371a3c71de75bea753eb47,Skeleton-Aided Articulated Motion Generation,"Skeleton-aided Articulated Motion Generation
Yichao Yan, Jingwei Xu, Bingbing Ni, Xiaokang Yang"
9d35d4fba9217404a7aab84a7d09e53c324710be,Biometrics Project: Bayesian Face Recognition,"Biometrics Project: Bayesian Face Recognition
Jinwei Gu
Computer Science Department"
9d36c81b27e67c515df661913a54a797cd1260bb,3d Face Recognition Techniques - a Review,"Preeti.B.Sharma, Mahesh M. Goyani / International Journal of Engineering Research and
Applications (IJERA)      ISSN: 2248-9622                           www.ijera.com
Vol. 2, Issue 1,Jan-Feb 2012, pp.787-793
3D FACE RECOGNITION TECHNIQUES - A REVIEW
Preeti B. Sharma*, Mahesh M. Goyani**
*(Department of Information Technology, Gujarat Technological University, India)
**( Department of Computer Engineering, Gujarat Technological University, India)
security  at  many  places"
9d743bbef448e7c145aeb11e55cc05fdbafe9d6d,Person tracking and gesture recognition in challenging visibility conditions using 3D thermal sensing,"Person Tracking and Gesture  Recognition
in Challenging Visibility Conditions
Using 3D Thermal Sensing
Ariel Kapusta and Patrick Beeson
IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)
August, 30, 2016"
9dc70aa3d51a9403e1894a7fa535ace99b527861,3 Bayesian Tracking by Online Co-Training and Sequential Evolutionary Importance Resampling,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,700
08,500
.7 M
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact"
9d757c0fede931b1c6ac344f67767533043cba14,Search Based Face Annotation Using PCA and Unsupervised Label Refinement Algorithms,"Search Based Face Annotation Using PCA and
Unsupervised Label Refinement Algorithms
Shital Shinde1, Archana Chaugule2
Computer Department, Savitribai Phule Pune University
D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18
Mahatma Phulenagar, 120/2 Mahaganpati soc, Chinchwad, Pune-19, MH, India
D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18
Computer Department, D.Y.PIET, Pimpri, Pune-18, MH, India
presents"
9d1e32f6af50354b64ca8f004746073473559056,A visual surveillance system for person re-identification,"International Conference on Quality Control by Artificial Vision 2017, edited by Hajime Nagahara,Kazunori Umeda, Atsushi Yamashita, Proc. of SPIE Vol. 10338, 103380D · © 2017 SPIECCC code: 0277-786X/17/$18 · doi: 10.1117/12.2266509Proc. of SPIE Vol. 10338  103380D-1"
9d5db7427b44d83bf036ff4cff382c23c6c7b6d8,Video redaction: a survey and comparison of enabling technologies,"Downloaded From: https://biomedicaloptics.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 10/14/2018
Terms of Use: https://biomedicaloptics.spiedigitallibrary.org/terms-of-use
Videoredaction:asurveyandcomparisonofenablingtechnologiesShaganSahAmeyaShringiRaymondPtuchaAaronBurryRobertLoceShaganSah,AmeyaShringi,RaymondPtucha,AaronBurry,RobertLoce,“Videoredaction:asurveyandcomparisonofenablingtechnologies,”J.Electron.Imaging26(5),051406(2017),doi:10.1117/1.JEI.26.5.051406."
9d60ad72bde7b62be3be0c30c09b7d03f9710c5f,A Survey: Face Recognition Techniques,"A Survey: Face Recognition Techniques
Arun Agrawal
Assistant Professor, ITM GOI
Ranjana Sikarwar
M Tech, ITM GOI
video
(Eigen
passport-verification,"
9d138bc60593c2770d968ba56172332773e02fa5,GPLAC: Generalizing Vision-Based Robotic Skills Using Weakly Labeled Images,
9d24179aa33a94c8c61f314203bf9e906d6b64de,Searching for People through Textual and Visual Attributes,"Searching for People through
Textual and Visual Attributes
Junior Fabian, Ramon Pires, Anderson Rocha
Institute of Computing
University of Campinas (Unicamp)
Campinas-SP, Brazil
Fig. 1. The proposed approach aims at searching for people using textual and visual attributes. Given an image database of faces, we extract the points of
interest (PoIs) to construct a visual dictionary that allow us to obtain the feature vectors by a quantization process (top). Then we train attribute classifiers to
generate a score for each image (middle). Finally, given a textual query (e.g., male), we fusion obtained scores to return a unique final rank (bottom)."
9d9166e1d9e80bbe772423384af53a3d5da898ae,Object Geolocation Using MRF Based Multi-Sensor Fusion,"OBJECT GEOLOCATION USING MRF BASED MULTI-SENSOR FUSION
Vladimir A. Krylov and Rozenn Dahyot
ADAPT Centre, School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland"
9d518344d5c7d889f9c90c6193be4757fa584770,3 D registration based on a multi-references local parametrisation : Application to 3 D faces,"D registration based on a multi-references local parametrisation:
Application to 3D faces
Wieme Gadacha1, Faouzi Ghorbel1
CRISTAL laboratory, GRIFT research group
National School of Computer Sciences (NSCS), La Manouba 2010, Tunisia"
9da2b79c6942852e8076cdaa4d4c93eb1ae363f1,Constraint-Based Visual Generation,"Constraint-Based Visual Generation
Giuseppe Marra
Francesco Giannini
Marco Gori
Michelangelo Diligenti
Department of Information Engineering and Mathematical Sciences
http://sailab.diism.unisi.it/
October 9, 2018"
9cabbb686883635d8755706ee4f1349d812d7ccb,Detection and Tracking of General Movable Objects in Large 3D Maps,"Detection and Tracking of General
Movable Objects in Large 3D Maps
Nils Bore, Johan Ekekrantz, Patric Jensfelt and John Folkesson
Robotics, Perception and Learning Lab
Royal Institute of Technology (KTH)
Stockholm, SE-100 44, Sweden
Email: {nbore, ekz, patric,"
9cb152758ee57f2abcc0b59348752e528a2ed2f7,Full Video Processing for Mobile Audio-Visual Identity Verification,
9cdb83ed96f5aa74bc4e2e9edacfbb5263e8fc37,Learning Mutual Visibility Relationship for Pedestrian Detection with a Deep Model,"Manuscript
Click here to download Manuscript: Mutual-DBN-J2.pdf
Click here to view linked References
Noname manuscript No.
(will be inserted by the editor)
Learning Mutual Visibility Relationship for Pedestrian Detection with a
Deep Model
Wanli Ouyang · Xingyu Zeng · Xiaogang Wang
Received: date / Accepted: date"
9c1305383ce2c108421e9f5e75f092eaa4a5aa3c,Speaker Retrieval for Tv Show Videos by Associating Audio Speaker Recognition Result to Visual Faces∗,"SPEAKER RETRIEVAL FOR TV SHOW VIDEOS BY ASSOCIATING AUDIO SPEAKER
RECOGNITION RESULT TO VISUAL FACES∗
Yina Han*’, Joseph Razik’, Gerard Chollet’, and Guizhong Liu*
*School of Electrical and Information Engineering, Xi’an Jiaotong University, Xi’an, China
’CNRS-LTCI, TELECOM-ParisTech, Paris, France"
9cd7487e0eed11dabc94dd867178204c53eb2270,Self-Organizing Traffic Lights : A Pedestrian Oriented Approach,"Self-Organizing Traffic Lights: A Pedestrian
Oriented Approach
Jessica S. Souza1, Cesar A. M. Ferreira2, Cassio E. dos Santos Jr3, Victor H. C. Melo4, William Robson Schwartz4
Computer Science Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
the vehicular and pedestrian traffic. One of"
9ca82f5936723a773fb44336cd66c315f2024d34,Latent-Class Hough Forests for 3D Object Detection and Pose Estimation,"Latent-Class Hough Forests for 3D Object Detection
nd Pose Estimation
Alykhan Tejani, Danhang Tang, Rigas Kouskouridas, and Tae-Kyun Kim
Imperial Collge London"
9c1860de6d6e991a45325c997bf9651c8a9d716f,3D reconstruction and face recognition using kernel-based ICA and neural networks,"D Reconstruction and Face Recognition Using Kernel-Based
ICA and Neural Networks
Cheng-Jian Lin                  Ya-Tzu Huang
Chi-Yung Lee
Dept. of Electrical                Dept. of CSIE                    Dept. of CSIE
Engineering              Chaoyang University              Nankai Institute of
National University            of Technology                        Technology
of Kaohsiung"
9c341221e19fac7a5e38b9fe5c62361f780a7f08,Productivity Effects of Information Diffusion in Networks Paper 234,"A research and education initiative at the MIT
Sloan School of Management
Productivity Effects of Information
Diffusion in Networks
Paper 234
July 2007
Sinan Aral
Erik Brynjolfsson
Marshall Van Alstyne
For more information,
please visit our website at  http://digital.mit.edu
or contact the Center directly at
or 617-253-7054"
9c2f3e9c223153b70f37ee84224d67b5a577bd58,Towards unlocking web video: Automatic people tracking and clustering,"Towards Unlocking Web Video: Automatic People Tracking and Clustering
Alex Holub*, Pierre Moreels*, Atiq Islam*, Andrei Makhanov*, Rui Yang*
Ooyala Inc, 800 W. El Camino Real, Suite 350, Mountain View, CA 94040
*All authors contributed equally to this work"
9cc4abd2ec10e5fa94ff846c5ee27377caf17cf0,Improved Techniques for GAN based Facial Inpainting,"Improved Techniques for GAN based Facial
Inpainting
Avisek Lahiri*, Arnav Jain*, Divyasri Nadendla and Prabir Kumar Biswas, Senior Member, IEEE"
9cf69de9e06e39f7f7ce643b3327bf69be8b9678,SHREC ’ 18 track : Recognition of geometric patterns over 3 D models,"SHREC’18 track: Recognition of geometric patterns
over 3D models
S Biasotti, E. Moscoso Thompson, L Bathe, S Berretti, A. Giachetti, T
Lejemble, N Mellado, K Moustakas, Iason Manolas, Dimitrios Dimou, et al.
To cite this version:
S Biasotti, E. Moscoso Thompson, L Bathe, S Berretti, A. Giachetti, et al.. SHREC’18 track: Recog-
nition of geometric patterns over 3D models. Eurographics Workshop on 3D Object Retrieval, 2018.
<hal-01774423>
https://hal-mines-paristech.archives-ouvertes.fr/hal-01774423
HAL Id: hal-01774423
Submitted on 30 Apr 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,"
9c576520ed9c960270715f790a62b9337ce88bd2,Beyond Pixels: Leveraging Geometry and Shape Cues for Online Multi-Object Tracking,"Beyond Pixels: Leveraging Geometry and Shape Cues for Online
Multi-Object Tracking
Sarthak Sharma1∗, Junaid Ahmed Ansari1∗, J. Krishna Murthy2, K. Mahdava Krishna1
Robotics Research Center, KCIS, IIIT Hyderabad, India
Mila, Universite de Montreal, Canada
denotes equal contribution
Fig. 1. An illustration of the proposed method. The first two rows show objects tracks in frames t and t + 1. The bottom row depicts how 3D position
nd orientation information is propagated from frame t to frame t + 1. This information is used to specify search areas for each object in the subsequent
frame, and this greatly reduces the number of pairwise costs that are to be computed."
9ca7899338129f4ba6744f801e722d53a44e4622,Deep neural networks regularization for structured output prediction,"Deep Neural Networks Regularization for Structured
Output Prediction
Soufiane Belharbi∗
INSA Rouen, LITIS
76000 Rouen, France
Clément Chatelain
INSA Rouen, LITIS
76000 Rouen, France
Romain Hérault
INSA Rouen, LITIS
76000 Rouen, France
Sébastien Adam
INSA Rouen, LITIS
76000 Rouen, France
Normandie Univ, UNIROUEN, UNIHAVRE,
Normandie Univ, UNIROUEN, UNIHAVRE,
Normandie Univ, UNIROUEN, UNIHAVRE,
Normandie Univ, UNIROUEN, UNIHAVRE,"
9c3b9dee9da817134325357afbebbd1a0d67cab2,Deep Learning for Saliency Prediction in Natural Video,"Deep Learning for Saliency Prediction in Natural Video
Souad CHAABOUNIa,b, Jenny BENOIS-PINEAUa, Ofer HADARc, Chokri
BEN AMARb
Universit´e de Bordeaux, Laboratoire Bordelais de Recherche en Informatique, Bˆatiment
Sfax university, Research Groups in Intelligent Machines, National Engineering School of
A30, F-33405 Talence cedex, France
Communication Systems Engineering department, Ben Gurion University of the Nagev
Sfax (ENIS), Tunisia"
9c731b820c495904a6f7d255d7e6a3bf9e5fc365,Geometric inpainting of 3D structures,"Geometric inpainting of 3D structures
Pratyush Sahay, A.N. Rajagopalan
Indian Institute of Technology Madras
Chennai, India"
9c889616034adce2af05d74eac44cf43a8106468,Binary Quadratic Programing for Online Tracking of Hundreds of People in Extremely Crowded Scenes,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Binary Quadratic Programing for Online Tracking
of Hundreds of People in Extremely Crowded
Scenes
Afshin Dehghan, Member, IEEE, and Mubarak Shah, Fellow, IEEE"
9cf6d66a0b4e5a3347466a60caea411d67c4b5b7,Joint transfer component analysis and metric learning for person re-identification,"Joint transfer component analysis and
metric learning for person re-identification
Yixiu Liu, Yunzhou Zhang✉, Sonya Coleman and
Jianning Chi
nd efficient metric
A novel
learning strategy for person
re-identification is proposed. Person re-identification is formulated as
multi-domain learning problem. The assumption that the feature dis-
tributions from different camera views are the same is overthrown in
this Letter. ID-based transfer component analysis (IDB-TCA) is pro-
posed to learn a shared subspace, in which the differences in the
feature distribution between source domain and target domain are sig-
nificantly reduced. Experimental evaluation on the CUHK01 dataset
demonstrates that metric learning with IDB-TCA embedded outper-
forms state-of-art metric methods for person re-identification.
Introduction: Person re-identification, aiming to finding the images that
match the target person in a large-scale image library, greatly reduces the
time cost of human search. Due to its great significance to visual super-
vision, it has rapidly become a research hotspot in the field of computer"
9c93512df188d7dbab63ebe47586a930559e6279,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
9cd8e1ccc5a410c7f31c7e404588597c0bb1952b,Whats Your Type ? Personalized Prediction of Facial Attractiveness,"Whats Your Type? Personalized Prediction of
Facial Attractiveness
Sam Crognale, Computer Science, Danish Shabbir Electrical Engineering
INTRODUCTION
Attempts to obtain a universal model of facial beauty by
the  way  of  symmetry,  golden  ratios,  and  measured
placement of various facial features fall short in explaining
the varied attraction that is actually witnessed in the world.
In this investigation, we devise an application to give a user
some insight about their ‘type’ as users swipe yes or no on a
large dataset of images
There  is  a  wealth  of  interesting  literature  attempting  to
map the psychophysics of attraction. For example, Johnston
nd Franklin (1993) use a genetic algorithm which evolves a
“most  beautiful”  female  face  according  to  interactive  user
selections. They sought to  mimic the way humans filter for
features they find the most attractive.
Our approach builds on Kagian et. al (2007), where it was
shown that feature selection and training procedure with the
original geometric features instead of the eigenfeatures fails"
9c1664f69d0d832e05759e8f2f001774fad354d6,Action Representations in Robotics: A Taxonomy and Systematic Classification,"Action representations in robotics: A
taxonomy and systematic classification
Journal Title
XX(X):1–32
(cid:13)The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/
Philipp Zech, Erwan Renaudo, Simon Haller, Xiang Zhang and Justus Piater"
9caa7f125d3e861450bc3685699fceeaebea04d8,Designing Video Surveillance Systems as Services,"Designing Video Surveillance Systems as
Services
R. Cucchiara and A. Prati and R. Vezzani"
9c2039d036c01e421176d33c1436633d03be4678,Review of person re-identification techniques,"Received on 21st February 2013
Revised on 14th November 2013
Accepted on 18th December 2013
doi: 10.1049/iet-cvi.2013.0180
www.ietdl.org
ISSN 1751-9632
Review of person re-identification techniques
Mohammad Ali Saghafi1, Aini Hussain1, Halimah Badioze Zaman2,
Mohamad Hanif Md. Saad1
Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
Institute of Visual Informatics, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
E-mail:"
9c07704226e536834c4a8c01e1eb428584bacec6,Benchmarking Single-Image Dehazing and Beyond,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Benchmarking Single Image Dehazing and Beyond
Boyi Li*, Wenqi Ren*, Member, IEEE, Dengpan Fu*, Dacheng Tao, Fellow, IEEE, Dan Feng, Member, IEEE,
Wenjun Zeng, Fellow, IEEE and Zhangyang Wang†, Member, IEEE."
9cc3172efb42d2f9fa1b9ae7b7eef9cc349cdef9,Imbalanced Deep Learning by Minority Class Incremental Rectification,"Imbalanced Deep Learning by Minority Class
Incremental Rectification
Qi Dong, Shaogang Gong, and Xiatian Zhu"
9c59304a619b7d503be95bd560f90be976a5309a,DenseASPP for Semantic Segmentation in Street Scenes,"DenseASPP for Semantic Segmentation in Street Scenes
Maoke Yang
Kun Yu
Chi Zhang
DeepMotion
Zhiwei Li
Kuiyuan Yang
{maokeyang, kunyu, chizhang, zhiweili,"
9cd3ea5cbbe0716fe19ff750940222cdedb22fc8,Learning to Attend On Essential Terms: An Enhanced Retriever-Reader Model for Scientific Question Answering,"Learning to Attend On Essential Terms: An Enhanced Retriever-Reader
Model for Scientific Question Answering
Jianmo Ni1,2∗, Chenguang Zhu1, Weizhu Chen1, Julian McAuley2
Microsoft Business Applications Group AI Research
Department of Computer Science, UC San Diego"
9c065dfb26ce280610a492c887b7f6beccf27319,Learning from Video and Text via Large-Scale Discriminative Clustering,"Learning from Video and Text via Large-Scale Discriminative Clustering
Antoine Miech1,2
Jean-Baptiste Alayrac1,2
Piotr Bojanowski2
Ivan Laptev 1,2
Josef Sivic1,2,3
´Ecole Normale Sup´erieure
Inria
CIIRC"
9c781f7fd5d8168ddae1ce5bb4a77e3ca12b40b6,Attribute Based Face Classification Using Support Vector Machine,"International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056
Volume: 03 Issue: 07 | July-2016                       www.irjet.net                                                               p-ISSN: 2395-0072
Attribute Based Face Classification Using Support Vector Machine
Brindha.M1, Amsaveni.R2
Research Scholar, Dept. of Computer Science, PSGR Krishnammal College for Women, Coimbatore
Assistant Professor, Dept. of Information Technology, PSGR Krishnammal College for Women, Coimbatore."
9c8da385750db215dc0728dc310251b320d319af,Deep embodiment: grounding semantics in perceptual modalities,"Technical Report
UCAM-CL-TR-899
ISSN 1476-2986
Number 899
Computer Laboratory
Deep embodiment:
grounding semantics
in perceptual modalities
Douwe Kiela
February 2017
5 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500
http://www.cl.cam.ac.uk/"
9c8a2d66b8fd6973751b8ee2fe6738327968cfcb,Exploring a model of far-from-equilibrium computation,"Exploring a model of far-from-equilibrium
omputation
R˘azvan V. Florian
Center for Cognitive and Neural Studies (Coneural)
Str. Saturn 24, 400504 Cluj-Napoca, Romania
July 10, 2005"
9c49e4ba8ad0ba4634fe9306fb612695ed2b8cae,Satellite Imagery Feature Detection using Deep Convolutional Neural Network: A Kaggle Competition,"Satellite Imagery Feature Detection using
Deep Convolutional Neural Network: A Kaggle Competition
Vladimir Iglovikov
True Accord
Sergey Mushinskiy
Open Data Science
Vladimir Osin
AeroState"
9ce0d64125fbaf625c466d86221505ad2aced7b1,Recognizing expressions of children in real life scenarios View project PhD ( Doctor of Philosophy ) View project,"Saliency Based Framework for Facial Expression
Recognition
Rizwan Ahmed Khan, Alexandre Meyer, Hubert Konik, Saïda Bouakaz
To cite this version:
Rizwan Ahmed Khan, Alexandre Meyer, Hubert Konik, Saïda Bouakaz. Saliency Based Framework for
Facial Expression Recognition. Frontiers of Computer Science, 2017, <10.1007/s11704-017-6114-9>.
<hal-01546192>
HAL Id: hal-01546192
https://hal.archives-ouvertes.fr/hal-01546192
Submitted on 23 Jun 2017
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
9c6d92f3d796242332ebf419a4f9b584864cfa15,Genetic Model Optimization for Hausdorff Distance-Based Face Localization,"(cid:176) In Proc. International ECCV 2002 Workshop on Biometric Authentication,
Springer, Lecture Notes in Computer Science, LNCS-2359, pp. 103{111,
Copenhagen, Denmark, June 2002.
Genetic Model Optimization
for Hausdorfi Distance-Based Face Localization
Klaus J. Kirchberg, Oliver Jesorsky, and Robert W. Frischholz
BioID AG, Germany
WWW home page: http://www.bioid.com"
9ca2dfe8a6265c4f6ea12bae0e7ff6ffc9128226,Dialog-based Interactive Image Retrieval,"Dialog-based Interactive Image Retrieval
Xiaoxiao Guo†
IBM Research AI
Hui Wu†
IBM Research AI
Steven Rennie
Fusemachines Inc.
Gerald Tesauro
IBM Research AI"
9cf07922cf91c4aea66c8d72606ca444f4607cc6,Distinct neural activation patterns underlie economic decisions in high and low psychopathy scorers.,"doi:10.1093/scan/nst093
SCAN (2014) 9,1099^1107
Distinct neural activation patterns underlie economic
decisions in high and low psychopathy scorers
Joana B. Vieira,1,2,3 Pedro R. Almeida,1,4 Fernando Ferreira-Santos,1 Fernando Barbosa,1 Joa˜o Marques-Teixeira,1
nd Abigail A. Marsh3
Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, 2Faculty of Medicine, University of Porto, 4200-135
Porto, Portugal, 3Department of Psychology, Georgetown University, Washington, DC 20057, USA, and 4School of Criminology, Faculty of Law,
University of Porto, 4200-135 Porto, Portugal
Psychopathic traits affect social functioning and the ability to make adaptive decisions in social interactions. This study investigated how psychopathy
ffects the neural mechanisms that are recruited to make decisions in the ultimatum game. Thirty-five adult participants recruited from the community
underwent functional magnetic resonance imaging scanning while they performed the ultimatum game under high and low cognitive load. Across load
onditions, high psychopathy scorers rejected unfair offers in the same proportion as low scorers, but perceived them as less unfair. Among low
scorers, the perceived fairness of offers predicted acceptance rates, whereas in high scorers no association was found. Imaging results revealed
that responses in each group were associated with distinct patterns of brain activation, indicating divergent decision mechanisms. Acceptance of
unfair offers was associated with dorsolateral prefrontal cortex activity in low scorers and ventromedial prefrontal cortex activity in high scorers. Overall,
our findings point to distinct motivations for rejecting unfair offers in individuals who vary in psychopathic traits, with rejections in high psychopathy
scorers being probably induced by frustration. Implications of these results for models of ventromedial prefrontal cortex dysfunction in psychopathy
re discussed.
Keywords: psychopathy; functional magnetic resonance imaging; ultimatum game; ventromedial prefrontal cortex"
022edc074693c52d4e689947bd2def8b2117fa8b,A super-resolution method for low-quality face image through RBF-PLS regression and neighbor embedding,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
022d74ae2f8680e780b18e0cbb041d5c5a57c7a5,Video Salient Object Detection via Fully Convolutional Networks,"Video Salient Object Detection via
Fully Convolutional Networks
Wenguan Wang, Jianbing Shen, Senior Member, IEEE, and Ling Shao, Senior Member, IEEE"
02601d184d79742c7cd0c0ed80e846d95def052e,Graphical Representation for Heterogeneous Face Recognition,"Graphical Representation for Heterogeneous
Face Recognition
Chunlei Peng, Xinbo Gao, Senior Member, IEEE, Nannan Wang, Member, IEEE, and Jie Li"
02fbf86b975c3f45b04de8288d1565cce8b53f62,A real-time pedestrian detection system based on structure and appearance classification,"Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA
978-1-4244-5040-4/10/$26.00 ©2010 IEEE"
02e43d9ca736802d72824892c864e8cfde13718e,Transferring a semantic representation for person re-identification and search,"Transferring a Semantic Representation for Person Re-Identification and
Search
Shi, Z; Yang, Y; Hospedales, T; XIANG, T; IEEE Conference on Computer Vision and
Pattern Recognition
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/10075
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
02fda07735bdf84554c193811ba4267c24fe2e4a,Illumination Invariant Face Recognition Using Near-Infrared Images,"Illumination Invariant Face Recognition
Using Near-Infrared Images
Stan Z. Li, Senior Member, IEEE, RuFeng Chu, ShengCai Liao, and Lun Zhang"
02ccd5f0eb9a48a6af088197b950fb30a8e3abcc,Scaling for Multimodal 3D Object Detection,"Scaling for Multimodal 3D Object Detection
Andrej Karpathy
Stanford"
02a99a43670ab83e77de9d935eb8d3d164e1972c,Joint Segmentation and Pose Tracking of Human in Natural Videos,"Joint Segmentation and Pose Tracking of Human in Natural Videos∗
Taegyu Lim1,2
Seunghoon Hong2
Bohyung Han2
Joon Hee Han2
DMC R&D Center, Samsung Electronics, Korea
Department of Computer Science and Engineering, POSTECH, Korea"
0241513eeb4320d7848364e9a7ef134a69cbfd55,Supervised translation-invariant sparse coding,"Supervised Translation-Invariant Sparse
Coding
¹Jianchao Yang, ²Kai Yu, and ¹Thomas Huang
¹University of Illinois at Urbana Champaign
²NEC Laboratories America at Cupertino"
02dd0af998c3473d85bdd1f77254ebd71e6158c6,PPP: Joint Pointwise and Pairwise Image Label Prediction,"PPP: Joint Pointwise and Pairwise Image Label Prediction
Yilin Wang1 Suhang Wang1
Jiliang Tang2 Huan Liu1 Baoxin Li1
Department of Computer Science, Arizona State Univerity
Yahoo Research"
026ca771bd3995748b477e100ed4283a9bf8215a,Predicting performance of a face recognition system based on image quality,"Predicting Performance of a Face
Recognition System Based on
Image Quality
Abhishek Dutta"
023da8828f9c039c20ac9267a6b37813b74d4824,Free supervision from video games,"Free supervision from video games
Philipp Kr¨ahenb¨uhl
UT Austin"
02086be014c4a276663e66ffde4d14f9c4cebe7e,BiggerPicture: data-driven image extrapolation using graph matching,"This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository: http://orca.cf.ac.uk/67868/
This is the author’s version of a work that was submitted to / accepted for publication.
Citation for final published version:
Wang, Miao, Lai, Yukun, Liang, Yuan, Martin, Ralph Robert and Hu, Shi-Min 2014. Biggerpicture:
data-driven image extrapolation using graph matching. ACM Transactions on Graphics 33 (6) , 173.
0.1145/2661229.2661278 file
Publishers page: http://dx.doi.org/10.1145/2661229.2661278
<http://dx.doi.org/10.1145/2661229.2661278>
Changes made as a result of publishing processes such as copy-editing, formatting and page
numbers may not be reflected in this version. For the definitive version of this publication, please
refer to the published source. You are advised to consult the publisher’s version if you wish to cite
Please note:
this paper.
This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications
made available in ORCA are retained by the copyright holders."
02b0bf28f34c3c403abecd2fb4fb7d4969c0e0db,Learning Disentangled Joint Continuous and Discrete Representations,"Learning Disentangled Joint Continuous and Discrete
Representations
Schlumberger Software Technology Innovation Center
Emilien Dupont
Menlo Park, CA, USA"
0252256fa23eceb54d9eea50c9fb5c775338d9ea,Application-driven Advances in Multi-biometric Fusion,"Application-driven Advances
in Multi-biometric Fusion
dem Fachbereich Informatik
der Technischen Universität Darmstadt
vorzulegende
DISSERTATION
zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)
M.Sc. Naser Damer
geboren in Amman, Jordanien
Referenten der Arbeit:
Prof. Dr. Arjan Kuijper
Technische Universität Darmstadt
Prof. Dr. Dieter W. Fellner
Technische Universität Darmstadt
Prof. Dr. Raghavendra Ramachandra
Norwegian University of Science and Technology
Tag der Einreichung:
Tag der mündlichen Prüfung:
2/01/2018"
020d97ca2bf617b7ffed5a31aa8a27ffa5efadbb,An Efficient and Flexible FPGA Implementation of a Face Detection System,"Fekih, H. B., Elhossini, A., & Juurlink, B.
An Efficient and Flexible FPGA
Implementation of a Face Detection
System.
Chapter in book   |
This version is available at https://doi.org/10.14279/depositonce-6778
Accepted manuscript (Postprint)
This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer
Science. The final authenticated version is available online at:
http://dx.doi.org/10.1007/978-3-319-16214-0_20.
Fekih, H. B., Elhossini, A., & Juurlink, B. (2015). An Efficient and Flexible FPGA Implementation of a Face
Detection System. In Lecture Notes in Computer Science (pp. 243–254). Springer International
Publishing. https://doi.org/10.1007/978-3-319-16214-0_20
Terms of Use
Copyright applies. A non-exclusive, non-transferable and
limited right to use is granted. This document is intended
solely for personal, non-commercial use."
028dc6a134f1204bd9ae28213e2e6665e82ddcb0,Integral Normalized Gradient Image A Novel Illumination Insensitive Representation,"Integral Normalized Gradient Image
A Novel Illumination Insensitive
Representation
Samsung Advanced Institute of Technology
E-mail:"
029317f260b3303c20dd58e8404a665c7c5e7339,Character Identification in Feature-Length Films Using Global Face-Name Matching,"Character Identification in Feature-Length Films
Using Global Face-Name Matching
Yi-Fan Zhang, Student Member, IEEE, Changsheng Xu, Senior Member, IEEE, Hanqing Lu, Senior Member, IEEE,
nd Yeh-Min Huang, Member, IEEE"
0273414ba7d56ab9ff894959b9d46e4b2fef7fd0,Photographic home styles in Congress: a computer vision approach,"Photographic home styles in Congress: a
omputer vision approach∗
L. Jason Anastasopoulos†.
Dhruvil Badani‡
Crystal Lee§
Shiry Ginosar¶
Jake Williams(cid:107)
December 1, 2016"
02aff7faf2f6b775844809805424417eed30f440,"A Tale of Three Probabilistic Families: Discriminative, Descriptive and Generative Models","QUARTERLY OF APPLIED MATHEMATICS
VOLUME , NUMBER 0
XXXX XXXX, PAGES 000–000
A TALE OF THREE PROBABILISTIC FAMILIES: DISCRIMINATIVE,
DESCRIPTIVE AND GENERATIVE MODELS
YING NIAN WU (Department of Statistics, University of California, Los Angeles),
RUIQI GAO (Department of Statistics, University of California, Los Angeles),
TIAN HAN (Department of Statistics, University of California, Los Angeles),
SONG-CHUN ZHU (Department of Statistics, University of California, Los Angeles)"
02e133aacde6d0977bca01ffe971c79097097b7f,Convolutional Neural Fabrics,
02567fd428a675ca91a0c6786f47f3e35881bcbd,Deep Label Distribution Learning With Label Ambiguity,"ACCEPTED BY IEEE TIP
Deep Label Distribution Learning
With Label Ambiguity
Bin-Bin Gao, Chao Xing, Chen-Wei Xie, Jianxin Wu, Member, IEEE, and Xin Geng, Member, IEEE"
0296fc4d042ca8657a7d9dd02df7eb7c0a0017ad,Subspace Learning from Image Gradient Orientations,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Subspace Learning from Image Gradient
Orientations
Georgios Tzimiropoulos, Member, IEEE, Stefanos Zafeiriou Member, IEEE, and Maja Pantic Fellow, IEEE"
02bee2cef6b04e6b57cfa3fd54cabc756f0c2e8d,Data-driven methods for interactive visual content creation and manipulation,"Data-driven Methods for
Interactive Visual Content Creation
nd Manipulation
Dissertation zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften der
Naturwissenschaftlich-Technischen Fakultäten der
Universität des Saarlandes
Vorgelegt durch
Arjun Jain
Max-Planck-Institut Informatik
Campus E1 4
66123 Saarbrücken
Germany
m 4. February 2013 in Saarbrücken"
02e9f1bb203a5ade98308eaff4f6a5c96a2c11e0,Self-Supervised Relative Depth Learning for Urban Scene Understanding,"Self-Supervised Relative Depth Learning for
Urban Scene Understanding
Huaizu Jiang1,
Erik Learned-Miller1
Gustav Larsson2, Michael Maire3, Greg Shakhnarovich3
UMass Amherst
University of Chicago
TTI-Chicago"
02af5e40653b5a545b62aa6aebfaca6557f4173d,Sensor fusion for human safety in industrial workcells,"Sensor Fusion for Human Safety in Industrial Workcells*
Paul Rybski1, Peter Anderson-Sprecher1, Daniel Huber1, Chris Niessl1, Reid Simmons1
Figure 1: An example of our approach. (a) The workcell as seen
y one of the 3D sensors. The red region indicates the adaptive
danger zone surrounding the moving robot arm. (b) As the person
enters the workcell, the green region indicates the adaptive safety
zone surrounding the person. (c) When the person gets too close
to the robot, the safety zone and danger zones intersect (shown
with a red circle), and the robot automatically halts. LIGHTEN THE
CONTRAST ON THESE FIGURES TO MAKE THEM EASIER TO SEE"
029fa43a49a2f5df4bee8aa6a9574f8da5098f98,"Learning event representation: As sparse as possible, but not sparser","Learning event representation: As sparse as possible, but not sparser
Tuan Do and James Pustejovsky
Department of Computer Science
Brandeis University
Waltham, MA 02453 USA"
027beed800f7d5e20194caf6d689345045e8d0d4,Smoothed Dilated Convolutions for Improved Dense Prediction,"Smoothed Dilated Convolutions for Improved Dense Prediction
Zhengyang Wang
Washington State University
Pullman, Washington, USA
Shuiwang Ji
Washington State University
Pullman, Washington, USA"
02a2c5b332d883d726929474060a7e62411c010a,Totally Corrective Multiclass Boosting with Binary Weak Learners,"SEPTEMBER 2010
with Binary Weak Learners
Zhihui Hao, Chunhua Shen, Nick Barnes, and Bo Wang"
02f038ed453de0551813159284746126168f5e15,Multi Channel-Kernel Canonical Correlation Analysis for Cross-View Person Re-Identification,"This is a pre-print version, the final version of the manuscript with more experiments can be found at:
https://doi.org/10.1145/3038916
Multi Channel-Kernel Canonical Correlation
Analysis for Cross-View Person Re-Identification
Giuseppe Lisanti, Svebor Karaman, Iacopo Masi"
02e4025fd63f168810724156fb6b20b0b14dccdc,Local inter-session variability modelling for object classification,"This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:
Anantharajah, Kaneswaran, Ge, ZongYuan, McCool, Christopher, Den-
man, Simon, Fookes, Clinton B., Corke, Peter, Tjondronegoro, Dian W., &
Sridharan, Sridha
(2014)
Local inter-session variability modelling for object classification. In
014), 24-26 March 2014, Steamboat Springs, CO.
This file was downloaded from: https://eprints.qut.edu.au/67786/
(cid:13) Copyright 2014 [please consult the author]
Notice: Changes introduced as a result of publishing processes such as
opy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:"
02b72a5a4389cb32a7dd784b1c9084e8412e2e78,Hierarchical Bayesian Image Models,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,700
08,500
.7 M
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact"
02e97e65fd0ec9a6d98a255d0396eb796a5e444a,Online Multiple View Tracking: Targets Association Across Cameras,"Q.LE, D.CONTE, M.HIDANE: COLLABORATIVE TRACKING
Online Multiple View Tracking:
Targets Association Across Cameras
Quoc Cuong LE1
Donatello CONTE1
Moncef HIDANE2
LIFAT
University of Tours,
Tours, France
Computer Science Department
INSA Centre Val de Loire,
Blois, France"
0278acdc8632f463232e961563e177aa8c6d6833,Selective Transfer Machine for Personalized Facial Expression Analysis,"Selective Transfer Machine for Personalized
Facial Expression Analysis
Wen-Sheng Chu, Fernando De la Torre, and Jeffrey F. Cohn
INTRODUCTION
Index Terms—Facial expression analysis, personalization, domain adaptation, transfer learning, support vector machine (SVM)
A UTOMATIC facial AU detection confronts a number of"
0291b43490e02303c9414f03980e606950ec7261,Pose-conditioned joint angle limits for 3D human pose reconstruction,"Pose-Conditioned Joint Angle Limits for 3D Human Pose Reconstruction
Ijaz Akhter, Michael J. Black
Max Planck Institute for Intelligent Systems, Tübingen, Germany
Figure 1: Joint-limit dataset. We captured a new dataset for learning pose-
dependent joint angle limits. This includes an extensive variety of stretching
poses. A few sample images are shown here. We use this dataset to learn
pose-conditioned joint-angle limits. The dataset and the learned joint-angle
model will be made publicly available.
Figure 2: We use our joint-angle-limit prior for 3D pose estimation given
D joint locations in an image. The proposed prior helps in reducing the
space of possible solutions to only valid 3D human poses. Our prior can
e also used for many other problems where estimating 3D human pose is
mbiguous.
Accurate modeling of priors over 3D human pose is fundamental to many
problems in computer vision. Most previous priors are either not general
enough for the diverse nature of human poses or not restrictive enough to
void invalid 3D poses. We propose a physically-motivated prior that only
llows anthropometrically valid poses and restricts the ones that are invalid.
One can use joint-angle limits to evaluate whether two connected bones
re valid or not. However, it is established in biomechanics that there are"
02bee6bf61566cfc3963fe42b320a740a9458920,Efficient Pedestrian Detection via Rectangular Features Based on a Statistical Shape Model,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Efficient Pedestrian Detection via Rectangular
Features Based on a Statistical Shape Model
Shanshan Zhang, Student Member, IEEE, Christian Bauckhage, Member, IEEE, and Armin B. Cremers"
02a88a2f2765b17c9ea76fe13148b4b8a9050b95,DeepPose: Human Pose Estimation via Deep Neural Networks,"DeepPose: Human Pose Estimation via Deep Neural Networks
Alexander Toshev
Christian Szegedy
Google
600 Amphitheatre Pkwy
Mountain View, CA 94043
mainly by the first challenge, the need to search in the large
space of all possible articulated poses. Part-based models
lend themselves naturally to model articulations ([16, 8])
nd in the recent years a variety of models with efficient
inference have been proposed ([6, 19]).
The above efficiency, however, is achieved at the cost of
limited expressiveness – the use of local detectors, which
reason in many cases about a single part, and most impor-
tantly by modeling only a small subset of all interactions
etween body parts. These limitations, as exemplified in
Fig. 1, have been recognized and methods reasoning about
pose in a holistic manner have been proposed [15, 21] but
with limited success in real-world problems.
In this work we ascribe to this holistic view of human"
02d6df5060281cf13fbef68a8f1ddc29983fe8b3,An Enhanced Default Approach Bias Following Amygdala Lesions in Humans.,"583804 PSSXXX10.1177/0956797615583804Harrison et al.Default Approach Bias Following Amygdala Lesions
research-article2015
Research Article
An Enhanced Default Approach Bias
Following Amygdala Lesions in Humans
1 –13
© The Author(s) 2015
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0956797615583804
pss.sagepub.com
Laura A. Harrison1, Rene Hurlemann2, and Ralph Adolphs1
California Institute of Technology and 2University of Bonn"
02cce8b08e4839d16f2142c5723fc009ccb4e3e1,Improving spatial codification in semantic segmentation,"IMPROVING SPATIAL CODIFICATION IN SEMANTIC SEGMENTATION
Carles Ventura(cid:63)
Kevin McGuinness†
Xavier Gir´o-i-Nieto(cid:63)
Ferran Marqu´es(cid:63)
Ver´onica Vilaplana(cid:63)
Noel E. O’Connor†
(cid:63) Universitat Polit`ecnica de Catalunya (UPC), Barcelona, Spain
Insight Centre for Data Analytics, Dublin City University (DCU), Ireland"
026050f71175d235f3f91ca0e99e994c00f9b5a6,Supervised Discrete Hashing,"Supervised Discrete Hashing
Fumin Shen1, Chunhua Shen2, Wei Liu3, Heng Tao Shen4
University of Electronic Science and Technology of China. 2 University of Adelaide; and Australian Centre for Robotic Vision. 3IBM Research.
The University of Queensland.
Recently, learning based hashing techniques have attracted broad research
interests due to the resulting efficient storage and retrieval of images, videos,
documents, etc. However, a major difficulty of learning to hash lies in han-
dling the discrete constraints imposed on the needed hash codes. In general,
the discrete constraints imposed on the binary codes that the target hash
functions generate lead to mixed-integer optimization problems—which is
generally NP hard. To simplify the optimization involved in a binary code
learning procedure, most of the aforementioned methods choose to first
solve a relaxed problem through directly discarding the discrete constraints,
nd then threshold the continuous outputs to be binary. This greatly simpli-
fies the optimization but, unfortunately, the approximated solution is typi-
ally of low quality and often makes the final hash functions less effective,
possibly due to the accumulated quantization errors. This is especially the
ase when long-length codes are needed.
Directly learning the binary codes without relaxations would be pre-
ferred if (and only if) a tractable and scalable solver is available. The impor-"
026509ad687f9cdaba8f2dac0fe5720e0553a8bd,Integrated pedestrian classification and orientation estimation,"Integrated Pedestrian Classification
nd Orientation Estimation
Markus Enzweiler1
Dariu M. Gavrila2,3
Image & Pattern Analysis Group, Univ. of Heidelberg, Germany
Environment Perception, Group Research, Daimler AG, Ulm, Germany
Intelligent Autonomous Systems Group, Univ. of Amsterdam, The Netherlands"
02f1d5c896ced7f6f002eb7514ba49eca940b75c,A Comparison of Efficient Global Image Features for Localizing Small Mobile Robots,"A Comparison of Efficient Global Image Features
for Localizing Small Mobile Robots
Marius Hofmeister, Philipp Vorst and Andreas Zell
Computer Science Department, University of Tübingen, Tübingen, Germany"
a49b661e42aea6f205e543a80106fc9c6ff0f9d4,Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry,"Deep Virtual Stereo Odometry:
Leveraging Deep Depth Prediction for
Monocular Direct Sparse Odometry
Nan Yang1,2, Rui Wang1,2, J¨org St¨uckler1, and Daniel Cremers1,2
Technical University of Munich
Artisense"
a45450824c6e8e6b42fd9bbf52871104b6c6ce8b,Optimizing the Latent Space of Generative Networks,"Optimizing the Latent Space of Generative Networks
Piotr Bojanowski, Armand Joulin, David Lopez-Paz, Arthur Szlam
{bojanowski, ajoulin, dlp,
Facebook AI Research"
a46f285b928aa547df8d8d8d63d2f9256a73aae7,Networked Decision Making for Poisson Processes With Applications to Nuclear Detection,"[16] E. D. Sontag, “Input-to-state stability: Basic concepts and results,” in
Nonlinear and Optimal Control Theory, P. Nistri and G. Stefani, Eds.
Berlin, Germany: Springer–Verlag, 2006, pp. 163–220.
[17] Z.-P. Jiang, A. R. Teel, and L. Praly, “Small-gain theorem for ISS sys-
tems and applications,” Mathem. of Control, Signals, and Syst., vol. 7,
pp. 95–120, 1994.
[18] A. R. Teel, “A nonlinear small gain theorem for the analysis of control
systems with saturation,” IEEE Trans. Autom. Control, vol. AC-41, no.
9, pp. 1256–1270, Sep. 1996.
[19] Z.-P. Jiang and I. M. Y. Mareels, “A small-gain control method for
nonlinear cascaded systems with dynamic uncertainties,” IEEE Trans.
Autom. Control, vol. 42, no. 3, pp. 292–308, Mar. 1997.
[20] S. Dashkovskiy, Z.-P. Jiang, and B. Rüffer, “Special issue on robust sta-
ility and control of large-scale nonlinear systems,” Mathem. of Con-
trol, Signals, and Syst., vol. 24, no. 1, pp. 1–2, 2012.
[21] H. K. Khalil, Nonlinear Systems, third ed. Upper Saddle River, NJ:
Prentice–Hall, 2002.
[22] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge University Press, 1985.
[23] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems"
a49acd70550c209965a6d39d7ff92d11f0a5b1b6,"YouTube Scale, Large Vocabulary Video Annotation","YouTube Scale, Large Vocabulary
Video Annotation
Nicholas Morsillo, Gideon Mann and Christopher Pal"
a427ee25ef515ddd9cf50b4cc3a7376f57d58926,Human-Drone-Interaction: A Case Study to Investigate the Relation Between Autonomy and User Experience,"Human-Drone-Interaction: A Case Study to
Investigate the Relation between Autonomy and
User Experience
Patrick Ferdinand Christ1,3(cid:63), Florian Lachner2,3(cid:63), Axel H¨osl3, Bjoern Menze1,
Klaus Diepold3, and Andreas Butz2
Image-based Biomedical Modeling Group,
Technical University of Munich (TUM)
{patrick.christ,
Chair for Human-Computer-Interaction,
University of Munich (LMU)
{florian.lachner, axel.hoesl,
Center for Digital and Technology Management,
TUM and LMU
Chair for Data Processing,
Technical University of Munich (TUM)"
a4a90a2db209db2d5c49adfd2091ede2d4130f60,Interactive Grounded Language Acquisition and Generalization in a 2D World,"Published as a conference paper at ICLR 2018
INTERACTIVE GROUNDED LANGUAGE ACQUISITION
AND GENERALIZATION IN A 2D WORLD
Haonan Yu1, Haichao Zhang1 & Wei Xu1,2
Baidu Research, Sunnyvale USA
National Engineering Laboratory for Deep Learning Technology and Applications, Beijing China"
a4a5ad6f1cc489427ac1021da7d7b70fa9a770f2,Gated spatio and temporal convolutional neural network for activity recognition: towards gated multimodal deep learning,"Yudistira and Kurita EURASIP Journal on Image and Video
Processing  (2017) 2017:85
DOI 10.1186/s13640-017-0235-9
EURASIP Journal on Image
nd Video Processing
RESEARCH
Open Access
Gated spatio and temporal convolutional
neural network for activity recognition:
towards gated multimodal deep learning
Novanto Yudistira1* and Takio Kurita2"
a4f38e32c23fd1f5a1e1157a4e62b38731f2e5d8,Online Learning for Ship Detection in Maritime Surveillance,"Online Learning for Ship Detection
in Maritime Surveillance
Rob Wijnhoven1
ViNotion1
, Kris van Rens1, Egbert G. T. Jaspers1, Peter H. N. de With2
University of Technol. Eindhoven2 CycloMedia Technol.3
P.O. Box 2346
5600 CH Eindhoven
The Netherlands
P.O. Box 513
5600 MB Eindhoven
The Netherlands"
a416513aaf97060287bf3e64ccdc1ccf85106c07,Seasonal Separation of African Savanna Components Using Worldview-2 Imagery: A Comparison of Pixel- and Object-Based Approaches and Selected Classification Algorithms,"Article
Seasonal Separation of African Savanna Components
Using Worldview-2 Imagery: A Comparison of Pixel-
nd Object-Based Approaches and Selected
Classification Algorithms
˙Zaneta Kaszta 1,2,*, Ruben Van De Kerchove 1,3, Abel Ramoelo 4, Moses Azong Cho 4,
Sabelo Madonsela 4, Renaud Mathieu 4,5 and Eléonore Wolff 1
Institut de Gestion de l’Environnement et d’Aménagement de Territoire (IGEAT),
Université Libre de Bruxelles, Brussels 1050, Belgium;
School of Applied Environmental Sciences, Pietermaritzburg 3209, South Africa
Mol 2400, Belgium;
Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (A.R.);
(M.A.C.); (S.M.); (R.M.)
5 Department of Geography, Geoinformatics and Meteorology, University of Pretoria,
Pretoria 0028, South Africa
* Correspondence: Tel.: +32-02-650-68-20
Academic Editors: Giles M. Foody, Magaly Koch, Clement Atzberger and Prasad S. Thenkabail
Received: 15 May 2016; Accepted: 8 September 2016; Published: 16 September 2016"
a4bab165158b9627280fb3052b1c731210f2a901,"Pedestrian Localization, Tracking and Behavior Analysis from Multiple Cameras","Pedestrian Localization, Tracking and Behavior Analysis
from Multiple Cameras
THÈSE NO 4629 (2010)
PRÉSENTÉE LE 9 AVRIL 2010
À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE VISION PAR ORDINATEUR
PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES
Jérôme BERCLAZ
cceptée sur proposition du jury:
Prof. P. Thiran, président du jury
Prof. P. Fua, Dr F. Fleuret, directeurs de thèse
Prof. M. Bierlaire, rapporteur
Prof. H. Bischof, rapporteur
Dr J. Ferryman, rapporteur
Suisse"
a40f8881a36bc01f3ae356b3e57eac84e989eef0,"End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks","End-to-end semantic face segmentation with conditional
random fields as convolutional, recurrent and adversarial
networks
Umut Güçlü*, 1, Yağmur Güçlütürk*, 1,
Meysam Madadi2, Sergio Escalera3, Xavier Baró4, Jordi González2,
Rob van Lier1, Marcel van Gerven1"
a4a0b5f08198f6d7ea2d1e81bd97fea21afe3fc3,Efficient Recurrent Residual Networks Improved by Feature Transfer,"Ecient Recurrent Residual Networks Improved by
Feature Transfer
MSc Thesis
written by
Yue Liu
under the supervision of Dr. Silvia-Laura Pintea, Dr. Jan van Gemert,
nd Dr. Ildiko Suveg and submitted to the Board of Examiners for the
degree of
Master of Science
t the Delft University of Technology.
Date of the public defense: Members of the Thesis Committee:
August 31, 2017
Prof. Marcel Reinders
Dr. Jan van Gemert
Dr. Julian Urbano Merino
Dr. Silvia-Laura Pintea
Dr. Ildiko Suveg (Bosch)
Dr. Gonzalez Adrlana (Bosch)"
a4ee9f089ab9a48a6517a6967281247339a51747,Resembled Generative Adversarial Networks: Two Domains with Similar Attributes,"DUHYEON BANG, HYUNJUNG SHIM: RESEMBLED GAN
Resembled Generative Adversarial Networks:
Two Domains with Similar Attributes
School of Integrated Technology, Yonsei
University, South Korea
Duhyeon Bang
Hyunjung Shim"
a47e51dd3f73817679ff0e987a0064d43db25060,Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization,"Visual Explanations from Deep Networks via Gradient-based Localization
Grad-CAM: Why did you say that?
Ramprasaath R. Selvaraju
Abhishek Das
Devi Parikh
Ramakrishna Vedantam
Dhruv Batra
Virginia Tech
Michael Cogswell
{ram21, abhshkdz, vrama91, cogswell, parikh,
(a) Original Image
(b) Guided Backprop ‘Cat’
(c) Grad-CAM for ‘Cat’
(d) Guided Grad-CAM ‘Cat’
(e) Occlusion Map ‘Cat’
(f) ResNet Grad-CAM ‘Cat’
(g) Original Image
(h) Guided Backprop ‘Dog’
(i) Grad-CAM for ‘Dog’
(l) ResNet Grad-CAM ‘Dog’"
a44b91f46ba66c8279b93caab6842444de0c9343,Frequency-domain Tracking Spatial-domain Detection Generic Object Proposal Histogram based Representation Detection Result Tracking State Estimation Spatial Regressor Correlation Model IFFT Search Space Feature Extraction Correlation Map Correlation Model FFT,"Monocular Long-term Target Following on UAVs
Rui Li ∗
Minjian Pang†
Cong Zhao ‡
Guyue Zhou ‡
Lu Fang †§"
a493a731dadababb6f2ae0b4b6233d861206345b,Studio2Shop: from studio photo shoots to fashion articles,"Studio2Shop: from studio photo shoots to fashion articles
Julia Lasserre1, Katharina Rasch1 and Roland Vollgraf
Zalando Research, Muehlenstr. 25, 10243 Berlin, Germany
Keywords:
omputer vision, deep learning, fashion, item recognition, street-to-shop"
a44590528b18059b00d24ece4670668e86378a79,Learning the Hierarchical Parts of Objects by Deep Non-Smooth Nonnegative Matrix Factorization,"Learning the Hierarchical Parts of Objects by Deep
Non-Smooth Nonnegative Matrix Factorization
Jinshi Yu, Guoxu Zhou, Andrzej Cichocki
IEEE Fellow, and Shengli Xie IEEE Senior Member"
a453863082a7fb42c9b402023294390eb4167fbe,Identifying Where to Focus in Reading Comprehension for Neural Question Generation,"Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2067–2073
Copenhagen, Denmark, September 7–11, 2017. c(cid:13)2017 Association for Computational Linguistics"
a472d59cff9d822f15f326a874e666be09b70cfd,Visual Learning with Weakly Labeled Video a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"VISUAL LEARNING WITH WEAKLY LABELED VIDEO
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Kevin Tang
May 2015"
a47ac8569ab1970740cff9f1643f77e9143a62d4,Associative Compression Networks for Representation Learning,"Associative Compression Networks for Representation Learning
Alex Graves 1 Jacob Menick 1 A¨aron van den Oord 1"
a4c430b7d849a8f23713dc283794d8c1782198b2,Video Concept Embedding,"Video Concept Embedding
Anirudh Vemula
Rahul Nallamothu
Syed Zahir Bokhari
. Introduction
In the area of natural language processing, there has been
much success in learning distributed representations for
words as vectors. Doing so has an advantage over using
simple labels, or a one-hot coding scheme for representing
individual words. In learning distributed vector representa-
tions for words, we manage to capture semantic relatedness
of words in vector distance. For example, the word vector
for ”car” and ”road” should end up being closer together in
the vector space representation than ”car” and ”penguin”.
This has been very useful in NLP areas of machine transla-
tion and semantic understanding.
In the computer vision domain, video understanding is a
very important topic.
It is made hard due to the large
mount of high dimensional data in videos. One strategy"
a48c71153265d6da7fbc4b16327320a5cbfa6cba,Unite the People: Closing the loop between 3D and 2D Human Representations Supplementary Material,"Unite the People: Closing the loop between 3D and 2D Human Representations
Supplementary Material
Christoph Lassner1,2
Javier Romero2
Martin Kiefel2
Federica Bogo2,3
Michael J. Black2
Peter V. Gehler1,2
Bernstein Center for Comp. Neuroscience1
Max-Planck Institute for Intelligent Systems2
Microsoft3
Otfried-M¨uller-Str. 25, T¨ubingen
Spemannstr. 41, T¨ubingen
1 Station Rd., Cambridge
. Introduction
We have obtained human segmentation labels to inte-
grate shape information into the SMPLify 3D fitting pro-
edure and for the evaluation of methods introduced in the
main paper. The labels consist of foreground segmentation
for multiple human pose datasets and six body part segmen-"
a4f37cfdde3af723336205b361aefc9eca688f5c,Recent Advances in Face Recognition,"Recent Advances
in Face Recognition"
a32ebfa79097fdf5c9d44d2f74e33b7c8343425c,A Deeper Look at Dataset Bias,"Chapter 2
A Deeper Look at Dataset Bias
Tatiana Tommasi, Novi Patricia, Barbara Caputo and Tinne Tuytelaars"
a30869c5d4052ed1da8675128651e17f97b87918,Fine-Grained Comparisons with Attributes,"Fine-Grained Comparisons with Attributes
Aron Yu and Kristen Grauman"
a32f28156b47fd262e04426806037d138bb3ed0b,Fisher’s linear discriminant (FLD) and support vector machine (SVM) in non-negative matrix factorization (NMF) residual space for face recognition,"Optica Applicata, Vol. XL, No. 3, 2010
Fisher’s linear discriminant (FLD)
nd support vector machine (SVM)
in non-negative matrix factorization (NMF)
residual space for face recognition
CHANGJUN ZHOU, XIAOPENG WEI*, QIANG ZHANG, XIAOYONG FANG
Key Laboratory of Advanced Design and Intelligent Computing, Dalian University,
Ministry of Education, Dalian, 116622, China
*Corresponding author:
A novel method of Fisher’s linear discriminant (FLD) in the residual space is put forward for
the  representation  of  face  images  for  face  recognition,  which  is  robust  to  the  slight  local
feature changes. The residual images are computed by subtracting the reconstructed images from
the original face images, and the reconstructed images are obtained by performing non-negative
matrix factorization (NMF) on original images. FLD is applied to the residual images for extracting
FLD subspace and the corresponding coefficient matrices. Furthermore, features are obtained by
mapping the residual image to FLD subspace. Finally, the features are utilized to train and test
support vector machines (SVMs) for face recognition. The computer simulation illustrates that
this method is effective on the ORL database and the extended Yale face database B.
Keywords: face recognition, Fisher linear discriminant (FLD), non-negative matrix factorization (NMF),
residual image."
a3ebacd8bcbc7ddbd5753935496e22a0f74dcf7b,"First International Workshop on Adaptive Shot Learning for Gesture Understanding and Production ASL4GUP 2017 Held in conjunction with IEEE FG 2017, in May 30, 2017, Washington DC, USA","First International Workshop on Adaptive Shot Learning
for Gesture Understanding and Production
ASL4GUP 2017
Held in conjunction with IEEE FG 2017, in May 30, 2017,
Washington DC, USA"
a3d8b5622c4b9af1f753aade57e4774730787a00,Pose-Aware Person Recognition,"Pose-Aware Person Recognition
Vijay Kumar (cid:63)
Anoop Namboodiri (cid:63)
(cid:63) CVIT, IIIT Hyderabad, India
Manohar Paluri †
Facebook AI Research
C. V. Jawahar (cid:63)"
a3fdba7975494c34552b33cf839f21d62734e6f0,Excavate Condition-invariant Space by Intrinsic Encoder,"Excavate Condition-invariant Space by Intrinsic Encoder
Jian Xu, Chunheng Wang, Cunzhao Shi, and Baihua Xiao
Institute of Automation, Chinese Academy of Sciences (CASIA)"
a3017bb14a507abcf8446b56243cfddd6cdb542b,Face Localization and Recognition in Varied Expressions and Illumination,"Face Localization and Recognition in Varied
Expressions and Illumination
Hui-Yu Huang, Shih-Hang Hsu"
a3c8c7da177cd08978b2ad613c1d5cb89e0de741,A Spatio-temporal Approach for Multiple Object Detection in Videos Using Graphs and Probability Maps,"A Spatio-temporal Approach for Multiple
Object Detection in Videos Using Graphs
nd Probability Maps
Henrique Morimitsu1(B), Roberto M. Cesar Jr.1, and Isabelle Bloch2
University of S˜ao Paulo, S˜ao Paulo, Brazil
Institut Mines T´el´ecom, T´el´ecom ParisTech, CNRS LTCI, Paris, France"
a3ccf7fa5c130c8bcd20cbcd356ad7a47cdd4296,SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering,"Journal of Global Optimization manuscript No.
(will be inserted by the editor)
SymNMF: Nonnegative Low-Rank Approximation of
Similarity Matrix for Graph Clustering
Da Kuang · Sangwoon Yun · Haesun Park
The final publication is available at Springer via http://dx.doi.org/10.1007/s10898-014-0247-2."
a378fc39128107815a9a68b0b07cffaa1ed32d1f,Determining a Suitable Metric when Using Non-Negative Matrix Factorization,"Determining a Suitable Metric When using Non-negative Matrix Factorization∗
David Guillamet and Jordi Vitri`a
Computer Vision Center, Dept. Inform`atica
Universitat Aut`onoma de Barcelona
08193 Bellaterra, Barcelona, Spain"
a32dadf343f811e6837b8ac5bab873674fa626b3,Moving Object Detection and Tracking in Forward Looking Infra-Red Aerial Imagery,"Moving Object Detection and Tracking
in Forward Looking Infra-Red Aerial Imagery
Subhabrata Bhattacharya, Haroon Idrees, Imran Saleemi, Saad Ali
nd Mubarak Shah"
a34d75da87525d1192bda240b7675349ee85c123,Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?,"Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?
Erjin Zhou
Face++, Megvii Inc.
Zhimin Cao
Face++, Megvii Inc.
Qi Yin
Face++, Megvii Inc."
a3dc109b1dff3846f5a2cc1fe2448230a76ad83f,Active Appearance Model and Pca Based Face Recognition System,"J.Savitha et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.4, April- 2015, pg. 722-731
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IJCSMC, Vol. 4, Issue. 4, April 2015, pg.722 – 731
RESEARCH ARTICLE
ACTIVE APPEARANCE MODEL AND PCA
BASED FACE RECOGNITION SYSTEM
Mrs. J.Savitha M.Sc., M.Phil.
Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India
Email:
Dr. A.V.Senthil Kumar
Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India
Email:"
a3f69a073dcfb6da8038607a9f14eb28b5dab2db,3D-Aided Deep Pose-Invariant Face Recognition,Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
a38045ed82d6800cbc7a4feb498e694740568258,African American and Caucasian males ' evaluation of racialized female facial averages,"UNLV Theses, Dissertations, Professional Papers, and Capstones
5-2010
African American and Caucasian males' evaluation
of racialized female facial averages
Rhea M. Watson
University of Nevada Las Vegas
Follow this and additional works at: http://digitalscholarship.unlv.edu/thesesdissertations
Part of the Cognition and Perception Commons, Race and Ethnicity Commons, and the Social
Psychology Commons
Repository Citation
Watson, Rhea M., ""African American and Caucasian males' evaluation of racialized female facial averages"" (2010). UNLV Theses,
Dissertations, Professional Papers, and Capstones. 366.
http://digitalscholarship.unlv.edu/thesesdissertations/366
This Thesis is brought to you for free and open access by Digital It has been accepted for inclusion in UNLV Theses, Dissertations,
Professional Papers, and Capstones by an authorized administrator of Digital For more information, please contact"
a357bc79b1ac6f2474ff6b9f001419745a8bc21c,Toward More Realistic Face Recognition Evaluation Protocols for the YouTube Faces Database,"Toward More Realistic Face Recognition Evaluation Protocols
for the YouTube Faces Database
Yoanna Mart´ınez-D´ıaz, Heydi M´endez-V´azquez, Leyanis L´opez-Avila
Advanced Technologies Application Center (CENATAV)
7A ♯21406 Siboney, Playa, P.C. 12200, Havana, Cuba
Leonardo Chang
L. Enrique Sucar
Massimo Tistarelli
Tecnol´ogico de Monterrey,
Estado de Mexico, Mexico
INAOE,
University of Sassari,
Puebla, Mexico
Sassari, Italy"
a3f78cc944ac189632f25925ba807a0e0678c4d5,Action Recognition in Realistic Sports Videos,"Action Recognition in Realistic Sports Videos
Khurram Soomro and Amir Roshan Zamir"
a3177f82ea8391d9d733be47e4a0656a7b56e64c,The Roles of Emotions in the Law,"Emotion Researcher | ISRE's Sourcebook for Research on Emotion and Affect
Emotion Researcher
ISRE's Sourcebook for Research on Emotion and Affect
Interviews
Articles
Spotlight
Contact
How To Cite ER
Table of Contents
New Editor Search
THE ROLES OF EMOTIONS IN THE LAW
Time  for  new  blood  at  the  helm  of Emotion
Researcher! ISRE is seeking one or more new
editors,  who  should  take  over  in April 2017. It
is a fun and highly rewarding job. Nominations
of suitable candidates are also encouraged.
Editor’s Column
In this issue of Emotion Researcher, we focus on the roles emotions play in the law. We will explore
the emotions of jurors, judges, defendants, attorneys and other legal actors.
Call for Papers"
a3fd234763844663f72a8fa22a076eeadce7245c,DelugeNets: Deep Networks with Efficient and Flexible Cross-Layer Information Inflows,"DelugeNets: Deep Networks with Efficient and Flexible Cross-layer Information
Inflows
Jason Kuen1
Xiangfei Kong1
Gang Wang2
Yap-Peng Tan1
Nanyang Technological University1 Alibaba Group2"
a30e987e9909a4e307c35809275cf80431211f22,Automatic Sapstain Detection in Processed Timber Through Image Feature Analysis,"Automatic Sapstain Detection in Processed
Timber Through Image Feature Analysis
Jeremiah Deng
The Information Science
Discussion Paper Series
Number 2009/04
April 2009
ISSN 1177-455X"
a3fe284b029269ad5f071dd37bb137593c67dfc2,Feature Learning for the Image Retrieval Task,"Feature Learning for the Image Retrieval Task
Aakanksha Rana, Joaquin Zepeda, Patrick Perez
Technicolor R&I, 975 avenue des Champs Blancs, CS 17616, 35576 Cesson Sevigne, France"
a3a6e3cadfed3c0a520e4417fc27da561324fbc6,Facing the challenge of teaching emotions to individuals with low- and high-functioning autism using a new Serious game: a pilot study,"Serret et al. Molecular Autism 2014, 5:37
http://www.molecularautism.com/content/5/1/37
R ES EAR CH
Facing the challenge of teaching emotions to
individuals with low- and high-functioning autism
using a new Serious game: a pilot study
Sylvie Serret1*, Stephanie Hun1, Galina Iakimova2, Jose Lozada3, Margarita Anastassova3, Andreia Santos1,
Stephanie Vesperini1 and Florence Askenazy4
Open Access"
a32f693e98ae35da5508c8eee245a876b6e130a1,Small Sample Scene Categorization from Perceptual Relations Ilan Kadar and,"Small Sample Scene Categorization from Perceptual Relations
Ilan Kadar and Ohad Ben-Shahar
Dept. of Computer Science, Ben-Gurion University
Beer-Sheva, Israel"
a3fcf3d32a5a4fcc83027e3d367ecc0df3ec4f64,Iris Recognition: On the Segmentation of Degraded Images Acquired in the Visible Wavelength,"Iris Recognition: On the Segmentation
of Degraded Images Acquired
in the Visible Wavelength
Hugo Proenc¸ a"
a3ed080262f130051d2a02e846f5d227a440b294,ContextNet: Exploring Context and Detail for Semantic Segmentation in Real-time,"ContextNet: Exploring Context and Detail
for Semantic Segmentation in Real-time
Rudra P K Poudel, Ujwal Bonde, Stephan Liwicki, and Christopher Zach
Toshiba Research, Cambridge, UK"
a35d85c2efd1fb090267980ebb3fd7b6381e3b74,Very Low Resolution Image Classification,"Very Low Resolution Image Classification
Adam Vest1
Muhammadabdullah Jamal2
Boqing Gong2
University of Louisville 2 University of Central Florida"
a3a6a6a2eb1d32b4dead9e702824375ee76e3ce7,Multiple Local Curvature Gabor Binary Patterns for Facial Action Recognition,"Multiple Local Curvature Gabor Binary
Patterns for Facial Action Recognition
Anıl Y¨uce, Nuri Murat Arar and Jean-Philippe Thiran
Signal Processing Laboratory (LTS5),
´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland"
a33262933df8534de571027d78ccd936bb9ec263,Real-Time Deep Learning Method for Abandoned Luggage Detection in Video,"Real-Time Deep Learning Method for Abandoned Luggage Detection in Video
University of Bucharest, 14 Academiei, Bucharest, Romania
Sorina Smeureanu∗‡, Radu Tudor Ionescu∗‡
SecurifAI, 24 Mircea Vod˘a, Bucharest, Romania
E-mails:"
a32c5138c6a0b3d3aff69bcab1015d8b043c91fb,Video redaction: a survey and comparison of enabling technologies,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/19/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Videoredaction:asurveyandcomparisonofenablingtechnologiesShaganSahAmeyaShringiRaymondPtuchaAaronBurryRobertLoceShaganSah,AmeyaShringi,RaymondPtucha,AaronBurry,RobertLoce,“Videoredaction:asurveyandcomparisonofenablingtechnologies,”J.Electron.Imaging26(5),051406(2017),doi:10.1117/1.JEI.26.5.051406."
a3bf7248e38ed6f9456f0f309b36470c5c0dabd0,Predicting the Driver's Focus of Attention: the DR(eye)VE Project,"Predicting the Driver’s Focus of Attention:
the DR(eye)VE Project
Andrea Palazzi∗, Davide Abati∗, Simone Calderara, Francesco Solera, and Rita Cucchiara"
a3eab933e1b3db1a7377a119573ff38e780ea6a3,Sparse Representation for accurate classification of corrupted and occluded facial expressions,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE
ICASSP 2010"
a308ad39f3cc25096f493280319621a25c2c7f46,Monocular 3D Scene Modeling and Inference: Understanding Multi-Object Traffic Scenes,"Monocular 3D Scene Modeling and Inference:
Understanding Multi-Object Traffic Scenes
Christian Wojek1,2, Stefan Roth1, Konrad Schindler1,3, and Bernt Schiele1,2
Computer Science Department, TU Darmstadt
MPI Informatics, Saarbr¨ucken
Photogrammetry and Remote Sensing Group, ETH Z¨urich"
a3be57fc74460463f03c2a14e81e7e62c05c692e,Object Detection,"Object Detection
Yali Amit and Pedro Felzenszwalb, University of Chicago
Related Concepts
– Object Recognition
– Image Classification
Definition
Object detection involves detecting instances of objects from a particular
lass in an image.
Background
The goal of object detection is to detect all instances of objects from a known
lass, such as people, cars or faces in an image. Typically only a small number
of instances of the object are present in the image, but there is a very large
number of possible locations and scales at which they can occur and that need
to somehow be explored.
Each detection is reported with some form of pose information. This could
e as simple as the location of the object, a location and scale, or the extent
of the object defined in terms of a bounding box. In other situations the pose
information is more detailed and contains the parameters of a linear or non-linear
transformation. For example a face detector may compute the locations of the
eyes, nose and mouth, in addition to the bounding box of the face. An example"
a3b87364aa68b371ca9831d333b934402fbc3713,Which neural mechanisms mediate the effects of a parenting intervention program on parenting behavior: design of a randomized controlled trial,"Kolijn et al. BMC Psychology  (2017) 5:9
DOI 10.1186/s40359-017-0177-0
Open Access
ST UD Y P R O T O C O L
Which neural mechanisms mediate the
effects of a parenting intervention program
on parenting behavior: design of a
randomized controlled trial
Laura Kolijn1,2,3, Saskia Euser1,2,3, Bianca G. van den Bulk1,2,3, Renske Huffmeijer1,2,3,
Marinus H. van IJzendoorn1,2,3 and Marian J. Bakermans-Kranenburg1,2,3*"
a3a34c1b876002e0393038fcf2bcb00821737105,Face Identification across Different Poses and Illuminations with a 3D Morphable Model,"Face Identification across Different Poses and Illuminations
with a 3D Morphable Model
V. Blanz, S. Romdhani, and T. Vetter
University of Freiburg
Georges-K¨ohler-Allee 52, 79110 Freiburg, Germany
fvolker, romdhani,"
a3f1db123ce1818971a57330d82901683d7c2b67,Poselets and Their Applications in High-Level Computer Vision,"Poselets and Their Applications in High-Level
Computer Vision
Lubomir Bourdev
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2012-52
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-52.html
May 1, 2012"
a3d071d2a5c11329aa324b2cae6b7b6ca7800213,C-VQA: A Compositional Split of the Visual Question Answering (VQA) v1.0 Dataset,"C-VQA: A Compositional Split of the
Visual Question Answering (VQA) v1.0 Dataset
Aishwarya Agrawal∗, Aniruddha Kembhavi†, Dhruv Batra‡, Devi Parikh‡
Virginia Tech, †Allen Institute for Artificial Intelligence, ‡Georgia Institute of Technology
{dbatra,"
a3a97bb5131e7e67316b649bbc2432aaa1a6556e,Role of the hippocampus and orbitofrontal cortex during the disambiguation of social cues in working memory.,"Cogn Affect Behav Neurosci
DOI 10.3758/s13415-013-0170-x
Role of the hippocampus and orbitofrontal cortex
during the disambiguation of social cues in working memory
Robert S. Ross & Matthew L. LoPresti & Karin Schon &
Chantal E. Stern
# Psychonomic Society, Inc. 2013"
a35d3ba191137224576f312353e1e0267e6699a1,Increasing security in DRM systems through biometric authentication,"Javier Ortega-Garcia, Josef Bigun, Douglas Reynolds,
nd Joaquin Gonzalez-Rodriguez
Increasing security in DRM systems
through biometric authentication.
ecuring  the  exchange
of  intellectual  property
nd  providing  protection
to  multimedia  contents  in
distribution systems have enabled the
dvent  of  digital  rights  management
(DRM)  systems  [5],  [14],  [21],  [47],
[51], [53]. Rights holders should be able to
license, monitor, and track the usage of rights
in  a  dynamic  digital  trading  environment,  espe-
ially in the near future when universal multimedia
ccess (UMA) becomes a reality, and any multimedia
ontent  will  be  available  anytime,  anywhere.  In  such
DRM  systems,  encryption  algorithms,  access  control,
key  management  strategies,  identification  and  tracing
of contents, or copy control will play a prominent role"
a3d8887625040d3c07f779ac5353452fd48058e4,A Study of Activity Recognition and Questionable Observer Detection,"International Journal of Computer Applications (0975 – 8887)
Volume 182 – No. 15, September 2018
A Study of Activity Recognition and Questionable
Observer Detection
D. M. Anisuzzaman
Department of Computer Science and Engineering,
Ahsanullah University of Science and Technology,
Dhaka, Bangladesh"
b55489547790f7fb2c8b4689530b5660fbc8ee64,Face Scanning in Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder: Human Versus Dog Face Scanning,"ORIGINAL RESEARCH
published: 23 October 2015
doi: 10.3389/fpsyt.2015.00150
Face scanning in autism spectrum
disorder and attention deficit/
hyperactivity disorder: human
versus dog face scanning
Mauro Muszkat 1, Claudia Berlim de Mello 2, Patricia de Oliveira Lima Muñoz 3,
Tania Kiehl Lucci 3, Vinicius Frayze David 3, José de Oliveira Siqueira 3 and Emma Otta 3*
Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil, 2 Programa de Pós Graduação em
Educação e Saúde, Universidade Federal de São Paulo, São Paulo, Brazil, 3 Departamento de Psicologia Experimental,
Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
This study used eye tracking to explore attention allocation to human and dog faces in chil-
dren and adolescents with autism spectrum disorder (ASD), attention deficit/hyperactivity
disorder (ADHD), and typical development (TD). Significant differences were found among
the three groups. TD participants looked longer at the eyes than ASD and ADHD ones,
irrespective of the faces presented. In spite of this difference, groups were similar in that
they looked more to the eyes than to the mouth areas of interest. The ADHD group gazed
longer at the mouth region than the other groups. Furthermore, groups were also similar
in that they looked more to the dog than to the human faces. The eye-tracking tech-"
b50f2ad8d7f08f99d4ba198120120f599f98095e,Spatiotemporal data fusion for precipitation nowcasting,"Spatiotemporal data fusion for precipitation
nowcasting
Vladimir Ivashkin
Yandex, Moscow, Russia
Vadim Lebedev
Yandex, Moscow, Russia"
b5f5781cba3c3da807359a6f600aa19c666a3f81,Comparing Attention to Socially-Relevant Stimuli in Autism Spectrum Disorder and Developmental Coordination Disorder,"Journal of Abnormal Child Psychology
https://doi.org/10.1007/s10802-017-0393-3
Comparing Attention to Socially-Relevant Stimuli in Autism
Spectrum Disorder and Developmental Coordination Disorder
Emma Sumner 1
& Hayley C. Leonard 2 & Elisabeth L. Hill 3
# The Author(s) 2018. This article is an open access publication"
b58672881dd8112cd3e6dedebcf8367ce2c9d78b,Mechanistic Analytical Modeling of Superscalar In-Order Processor Performance,"Mechanistic Analytical Modeling of Superscalar In-Order
Processor Performance
MAXIMILIEN B. BREUGHE, STIJN EYERMAN, and LIEVEN EECKHOUT,
Ghent University, Belgium
Superscalar in-order processors form an interesting alternative to out-of-order processors because of their
energy efficiency and lower design complexity. However, despite the reduced design complexity, it is nontrivial
to get performance estimates or insight in the application–microarchitecture interaction without running
slow, detailed cycle-level simulations, because performance highly depends on the order of instructions within
the application’s dynamic instruction stream, as in-order processors stall on interinstruction dependences
nd functional unit contention. To limit the number of detailed cycle-level simulations needed during design
space exploration, we propose a mechanistic analytical performance model that is built from understanding
the internal mechanisms of the processor.
The mechanistic performance model for superscalar in-order processors is shown to be accurate with an
verage performance prediction error of 3.2% compared to detailed cycle-accurate simulation using gem5. We
lso validate the model against hardware, using the ARM Cortex-A8 processor and show that it is accurate
within 10% on average. We further demonstrate the usefulness of the model through three case studies:
(1) design space exploration, identifying the optimum number of functional units for achieving a given
performance target; (2) program–machine interactions, providing insight into microarchitecture bottlenecks;
nd (3) compiler–architecture interactions, visualizing the impact of compiler optimizations on performance.
Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—Modeling of com-"
b569f22ce779d221ec008c0baa354796d71e3d80,Image Classification for Arabic: Assessing the Accuracy of Direct English to Arabic Translations,"Image Classification for Arabic: Assessing the Accuracy of
Direct English to Arabic Translations
Information Systems Department, Prince Sattam Bin Abdulaziz university, Al Kharj, Saudi Arabia
Abdulkareem Alsudais"
b558be7e182809f5404ea0fcf8a1d1d9498dc01a,Bottom-up and top-down reasoning with convolutional latent-variable models,"Bottom-up and top-down reasoning with convolutional latent-variable models
Peiyun Hu
UC Irvine
Deva Ramanan
UC Irvine"
b5fffbc0e590ce67d485f1602c8158befcef9fa8,The use of hidden Markov models to verify the identity based on facial asymmetry,"Kubanek and Bobulski EURASIP Journal on Image and Video
Processing  (2017) 2017:45
DOI 10.1186/s13640-017-0193-2
EURASIP Journal on Image
nd Video Processing
RESEARCH
Open Access
The use of hidden Markov models to
verify the identity based on facial asymmetry
Mariusz Kubanek and Janusz Bobulski*"
b5cd8151f9354ee38b73be1d1457d28e39d3c2c6,Finding Celebrities in Video,"Finding Celebrities in Video
Nazli Ikizler
Jai Vasanth
Linus Wong
David Forsyth
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2006-77
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-77.html
May 23, 2006"
b5476afccf97fc498f51170e65ac9cd9665fd2ce,Wide Range Face Pose Estimation by Modelling the 3D Arrangement of Robustly Detectable Sub-parts,"Wide Range Face Pose Estimation
y Modelling the 3D Arrangement
of Robustly Detectable Sub-Parts
Thiemo Wiedemeyer1, Martin Stommel2 and Otthein Herzog3
TZI Center for Computing and Communication Technologies,
University Bremen, Am Fallturm 1, 28359 Bremen, Germany"
b5fc4f9ad751c3784eaf740880a1db14843a85ba,Significance of image representation for face verification,"SIViP (2007) 1:225–237
DOI 10.1007/s11760-007-0016-5
ORIGINAL PAPER
Significance of image representation for face verification
Anil Kumar Sao · B. Yegnanarayana ·
B. V. K. Vijaya Kumar
Received: 29 August 2006 / Revised: 28 March 2007 / Accepted: 28 March 2007 / Published online: 1 May 2007
© Springer-Verlag London Limited 2007"
b525a863eab597055e02351acfeab64754d22690,Pictorial Structures Revisited : Multiple Human Pose Estimation,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
D Pictorial Structures Revisited:
Multiple Human Pose Estimation
Vasileios Belagiannis, Sikandar Amin, Mykhaylo Andriluka,
Bernt Schiele, Nassir Navab, and Slobodan Ilic"
b5af4b9d68f1b9b2c2999a726f6d2fbb2a49a3bf,Modulating early visual processing by language,"Modulating early visual processing by language
Harm de Vries∗
University of Montreal
Florian Strub∗
Univ. Lille, CNRS, Centrale Lille,
Jérémie Mary†
Univ. Lille, CNRS, Centrale Lille,
Inria, UMR 9189 CRIStAL
Inria, UMR 9189 CRIStAL
Hugo Larochelle
Google Brain
Olivier Pietquin
DeepMind
Aaron Courville
University of Montreal, CIFAR Fellow"
b5f9c5af707f55d96b1d3d65d970270d35a60987,Comparison of face Recognition Algorithms on Dummy Faces,"The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.4, August 2012
Comparison of face Recognition Algorithms on
Dummy Faces
Aruni Singh, Sanjay Kumar Singh, Shrikant Tiwari
Department of Computer Engineering, IT-BHU, Varanasi-India"
b5ba0c50cfe2559f4197bb35cf50441118b768c8,audEERING's approach to the One-Minute-Gradual Emotion Challenge,"udEERING’s approach to the One-Minute-Gradual Emotion Challenge
Andreas Triantafyllopoulos, Hesam Sagha, Florian Eyben, Bj¨orn Schuller
udEERING GmbH, Gilching, Germany"
b5cf931cf0bd606575bc793c0c8ec6d913d08bc6,"Geometric primitive feature extraction - concepts, algorithms, and applications","GEOMETRIC PRIMITIVE FEATURE EXTRACTION –
CONCEPTS, ALGORITHMS, AND APPLICATIONS
DILIP KUMAR PRASAD
School of Computer Engineering
A Thesis submitted to the Nanyang Technological University
in fulfillment of the requirement for the degree of
Doctor of Philosophy"
b506aa23949b6d1f0c868ad03aaaeb5e5f7f6b57,Modeling Social and Temporal Context for Video Analysis,"UNIVERSITY OF CALIFORNIA
RIVERSIDE
Modeling Social and Temporal Context for Video Analysis
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Computer Science
Zhen Qin
June 2015
Dissertation Committee:
Dr. Christian R. Shelton, Chairperson
Dr. Tao Jiang
Dr. Stefano Lonardi
Dr. Amit Roy-Chowdhury"
b599f323ee17f12bf251aba928b19a09bfbb13bb,Autonomous Quadcopter Videographer,"AUTONOMOUS QUADCOPTER VIDEOGRAPHER
REY R. COAGUILA
B.S. Universidad Peruana de Ciencias Aplicadas, 2009
A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science
t the University of Central Florida
Orlando, Florida
Spring Term
Major Professor: Gita R. Sukthankar"
b55853483873d3947e8c962f1152128059369d93,DoShiCo challenge: Domain shift in control prediction,"DoShiCo challenge:
Domain Shift in Control prediction
Klaas Kelchtermans∗ and Tinne Tuytelaars∗"
b58e71a3336193bed5785b2818a4fec85dd5f5ff,Object Detection and Tracking for Autonomous Navigation in Dynamic Environments,"Object detection and tracking for autonomous navigation
in dynamic environments
Andreas Ess · Konrad Schindler · Bastian Leibe · Luc Van Gool"
b5160e95192340c848370f5092602cad8a4050cd,Video Classification With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor,"IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, TO APPEAR
Video Classification With CNNs: Using The Codec
As A Spatio-Temporal Activity Sensor
Aaron Chadha, Alhabib Abbas and Yiannis Andreopoulos, Senior Member, IEEE"
b501361ad3ad4f78a3966830a40d2b4f68466c80,Night-time Vehicle Detection for Automatic Headlight Beam Control,"International Journal of Computer Applications (0975 – 8887)
Volume 157 – No 7, January 2017
Night-time Vehicle Detection for Automatic Headlight
Beam Control
Pushkar Sevekar
Student, Department of
Electronics Engineering
A.I.S.S.M.S. Institute of
Information Technology,
Pune, India"
b58417561ea400b60bd976104e43b1361e1314ba,Target Tracking In Real Time Surveillance Cameras and Videos,"Target Tracking In Real Time Surveillance
Cameras and Videos
Nayyab Naseem                                             Mehreen Sirshar
Department of Software Engineering             Department of Software Engineering
Fatima Jinnah Women University                   Fatima Jinnah Women University"
b52886610eda6265a2c1aaf04ce209c047432b6d,Microexpression Identification and Categorization Using a Facial Dynamics Map,"Microexpression Identification and Categorization
using a Facial Dynamics Map
Feng Xu, Junping Zhang, James Z. Wang"
b5790f1bc586a77ff2cbea002b7ad2646e32af6b,Person Re-Identification Ranking Optimisation by Discriminant Context Information Analysis,"Person Re-Identification Ranking Optimisation by
Discriminant Context Information Analysis
Jorge Garc´ıa1, Niki Martinel2, Christian Micheloni2 and Alfredo Gardel1
Department of Electronics, University of Alcala, Alcal´a de Henares, Spain
Department of Mathematics and Computer Science, University of Udine, Udine, Italy"
b573a57b3da678631bd78f25ecdeac7cd36fa617,A Multi-view RGB-D Approach for Human Pose Estimation in Operating Rooms,"A Multi-view RGB-D Approach for Human Pose Estimation in Operating Rooms
Abdolrahim Kadkhodamohammadi1, Afshin Gangi1,2, Michel de Mathelin1, Nicolas Padoy1
ICube, University of Strasbourg, CNRS, IHU Strasbourg, France
Radiology Department, University Hospital of Strasbourg, France
{kadkhodamohammad, gangi, demathelin,"
b5f9d5be7561bb6eacee9012275b17c75696c388,A Teacher Student Network for Faster Video Classification,"Under review as a conference paper at ICLR 2019
A TEACHER STUDENT NETWORK FOR FASTER VIDEO
CLASSIFICATION
Anonymous authors
Paper under double-blind review"
b5793958cd1654b4817ebb57f5484dfd8861f916,Recurrent Image Captioner: Describing Images with Spatial-Invariant Transformation and Attention Filtering,"Recurrent Image Captioner: Describing Images with Spatial-Invariant
Transformation and Attention Filtering
Hao Liu
UESTC, China
Yang Yang
UESTC, China
Fumin Shen
UESTC, China
Lixin Duan
UESTC, China
Heng Tao Shen
UESTC, China"
b5c5a57f5ecd8e11cd47814d584daba53aa14d3c,SOSVR Team Description Paper Robocup 2017 Rescue Virtual Robot League,"SOSVR Team Description Paper
Robocup 2017 Rescue Virtual Robot League
Mahdi Taherahmadi, Sajjad Azami, MohammadHossein GohariNejad, Mostafa
Ahmadi, and Saeed Shiry Ghidary
Cognitive Robotics Lab, Amirkabir University of Technology (Tehran Polytechnic),
No. 424, Hafez Ave., Tehran, Iran. P. O. Box"
b5857b5bd6cb72508a166304f909ddc94afe53e3,SSIG and IRISA at Multimodal Person Discovery,"SSIG and IRISA at Multimodal Person Discovery
Cassio E. dos Santos Jr1, Guillaume Gravier2, William Robson Schwartz1
Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
IRISA & Inria Rennes , CNRS, Rennes, France"
b5050d74dd8f0384506bcd365b31044c80d476c0,Discriminative Multimetric Learning for Kinship Verification,"Discriminative Multimetric Learning
for Kinship Verification
Haibin Yan, Jiwen Lu, Member, IEEE, Weihong Deng, and Xiuzhuang Zhou, Member, IEEE"
b51e3d59d1bcbc023f39cec233f38510819a2cf9,"Can a biologically-plausible hierarchy effectively replace face detection, alignment, and recognition pipelines?","CBMM Memo No. 003
March 27, 2014
Can a biologically-plausible hierarchy effectively
replace face detection, alignment, and
recognition pipelines?
Qianli Liao1, Joel Z Leibo1, Youssef Mroueh1, Tomaso Poggio1"
b54c477885d53a27039c81f028e710ca54c83f11,Semi-Supervised Kernel Mean Shift Clustering,"Semi-Supervised Kernel Mean Shift Clustering
Saket Anand, Member, IEEE, Sushil Mittal, Member, IEEE, Oncel Tuzel, Member, IEEE,
nd Peter Meer, Fellow, IEEE"
b503f481120e69b62e076dcccf334ee50559451e,Recognition of Facial Action Units with Action Unit Classifiers and an Association Network,"Recognition of Facial Action Units with Action
Unit Classifiers and An Association Network
Junkai Chen1, Zenghai Chen1, Zheru Chi1 and Hong Fu1,2
Department of Electronic and Information Engineering, The Hong Kong Polytechnic
University, Hong Kong
Department of Computer Science, Chu Hai College of Higher Education, Hong Kong"
b55d0c9a022874fb78653a0004998a66f8242cad,Hybrid Facial Representations for Emotion Recognition Woo,"Hybrid Facial Representations
for Emotion Recognition
Woo-han Yun, DoHyung Kim, Chankyu Park, and Jaehong Kim
Automatic  facial  expression  recognition  is  a  widely
studied  problem  in  computer  vision  and  human-robot
interaction.  There  has  been  a  range  of  studies  for
representing  facial  descriptors  for  facial  expression
recognition. Some prominent descriptors were presented
in  the  first  facial  expression  recognition  and  analysis
hallenge  (FERA2011).  In  that  competition,  the  Local
Gabor  Binary  Pattern  Histogram  Sequence  descriptor
showed the most powerful description capability. In this
paper, we introduce hybrid facial representations for facial
expression  recognition,  which  have  more  powerful
description  capability  with  lower  dimensionality.  Our
descriptors consist of a block-based descriptor and a pixel-
ased  descriptor.  The  block-based  descriptor  represents
the  micro-orientation  and  micro-geometric  structure
information. The pixel-based descriptor represents texture
information.  We  validate  our  descriptors  on  two  public"
b5f7b17b0feb3a1f3af60dce61fd9a9c6b067368,The Benefits of Dense Stereo for Pedestrian Detection,"The Benefits of Dense Stereo
for Pedestrian Detection
Christoph G. Keller, Markus Enzweiler, Marcus Rohrbach, David Fernández Llorca,
Christoph Schnörr, and Dariu M. Gavrila"
b22b4817757778bdca5b792277128a7db8206d08,SCAN: Learning Hierarchical Compositional Visual Concepts,"Published as a conference paper at ICLR 2018
SCAN: LEARNING HIERARCHICAL
COMPOSITIONAL VISUAL CONCEPTS
Irina Higgins, Nicolas Sonnerat, Loic Matthey, Arka Pal,
Christopher P Burgess, Matko Bošnjak, Murray Shanahan,
Matthew Botvinick, Demis Hassabis, Alexander Lerchner
DeepMind, London, UK
{irinah,sonnerat,lmatthey,arkap,cpburgess,"
b26f6e3cad2b3d129c0e70e9307ce9197cad2123,Robust Wearable Camera Localization as a Target Tracking Problem on SE(3),"G.BOURMAUD ET AL.: ROBUST WEARABLE CAMERA LOCALIZATION
Robust Wearable Camera Localization as a
Target Tracking Problem on SE(3)
Guillaume Bourmaud
Audrey Giremus
IMS Laboratory CNRS UMR 5218
University of Bordeaux
France"
b266be4d9fab8bf307ee2e6fdd6180ac7f6ef893,Look into Person: Joint Body Parsing&Pose Estimation Network and A New Benchmark,"Look into Person: Joint Body Parsing & Pose
Estimation Network and A New Benchmark
Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin"
b2e2260b8d811948e71898d3adfa8aa6b64fe125,Learning Arbitrary Potentials in CRFs with Gradient Descent,"Learning Arbitrary Potentials in CRFs with Gradient Descent
M˚ans Larsson1
Fredrik Kahl1,2
Chalmers Univ. of Technology 2Lund Univ.
Shuai Zheng3 Anurag Arnab3
Oxford Univ.
Philip Torr3 Richard Hartley4
Australian National Univ."
b2444e837095706998b03fa5fed223411b9d4d55,Color Based Tracing in Real-Life Surveillance Data,"Color Based Tracing in Real-life Surveillance
Michael J. Metternich, Marcel Worring, and Arnold W.M. Smeulders
ISLA-University of Amsterdam,
Science Park 107, 1098 XG Amsterdam, The Netherlands
http://www.science.uva.nl/research/isla/"
b2046c78d4e2f00a72ee9a76875746d2d3f47e1c,Variational Infinite Hidden Conditional Random Fields,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Variational Infinite
Hidden Conditional Random Fields
Konstantinos Bousmalis, Student Member, IEEE, Stefanos Zafeiriou, Member, IEEE,
Louis-Philippe Morency, Member, IEEE, Maja Pantic, Fellow, IEEE,
nd Zoubin Ghahramani, Member, IEEE"
b216040f110d2549f61e3f5a7261cab128cab361,Weighted Voting of Discriminative Regions for Face Recognition,"IEICE TRANS. INF. & SYST., VOL.E100–D, NO.11 NOVEMBER 2017
LETTER
Weighted Voting of Discriminative Regions for Face Recognition∗
Wenming YANG†, Member, Riqiang GAO†a), and Qingmin LIAO†, Nonmembers
SUMMARY
This paper presents a strategy, Weighted Voting of Dis-
riminative Regions (WVDR), to improve the face recognition perfor-
mance, especially in Small Sample Size (SSS) and occlusion situations.
In WVDR, we extract the discriminative regions according to facial key
points and abandon the rest parts. Considering different regions of face
make different contributions to recognition, we assign weights to regions
for weighted voting. We construct a decision dictionary according to the
recognition results of selected regions in the training phase, and this dic-
tionary is used in a self-defined loss function to obtain weights. The final
identity of test sample is the weighted voting of selected regions. In this
paper, we combine the WVDR strategy with CRC and SRC separately, and
extensive experiments show that our method outperforms the baseline and
some representative algorithms.
key words: discriminative regions, small sample size, occlusion, weighted
strategy, face recognition"
b28e142376a2dd639f58935f2f63a9dc7651131e,Investigation of Gait Representations in Lower Knee Gait Recognition,
b261439b5cde39ec52d932a222450df085eb5a91,Facial Expression Recognition using Analytical Hierarchy Process,"International Journal of Computer Trends and Technology (IJCTT) – volume 24 Number 2 – June 2015
Facial Expression Recognition using Analytical Hierarchy
Process
MTech Student 1 , Assistant Professor 2  , Department of Computer Science and Engineeringt1, 2, Disha Institute of
Management and Technology, Raipur Chhattisgarh, India1, 2
Vinita Phatnani1, Akash Wanjari2,
its  significant  contribution"
b29e60ddcabff5002c3ddec135ec94dd991d8d5a,Compressing deep convolutional neural networks in visual emotion recognition,"Compressing deep convolutional neural networks in visual emotion
recognition
A.G. Rassadin1, A.V. Savchenko1
National Research University Higher School of Economics, Laboratory of Algorithms and Technologies for Network Analysis, 25/12 Bolshaya Pecherskaya
Street, 603155, Nizhny Novgorod, Russia"
b277bde51641d6b08693c171aea761beb14af800,Face Kernel Extraction from Local Features,"FACE KERNEL EXTRACTION FROM
LOCAL FEATURES
A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy
in the Faculty of Engineering and Physical Sciences
Maria Pavlou
School of Electrical Engineering and Electronics"
b2e67e67e5bbb19a02524afcc217929b0a76a9a7,Chapter 12 Using Ocular Data for Unconstrained Biometric Recognition,"Face Recognition in Adverse ConditionsMaria De MarsicoSapienza University of Rome, ItalyMichele NappiUniversity of Salerno, ItalyMassimo TistarelliUniversity of Sassari, ItalyA volume in the Advances in Computational Intelligence and Robotics (ACIR) Book Series"
b2b535118c5c4dfcc96f547274cdc05dde629976,Automatic Recognition of Facial Displays of Unfelt Emotions,"JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017
Automatic Recognition of Facial Displays of
Unfelt Emotions
Kaustubh Kulkarni*, Ciprian Adrian Corneanu*, Ikechukwu Ofodile*, Student Member, IEEE, Sergio
Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik,
nd Gholamreza Anbarjafari, Senior Member, IEEE"
b235b4ccd01a204b95f7408bed7a10e080623d2e,Regularizing Flat Latent Variables with Hierarchical Structures,"Regularizing Flat Latent Variables with Hierarchical Structures
Rongcheng Lin(cid:117) , Huayu Li(cid:117) , Xiaojun Quan† , Richang Hong(cid:63) , Zhiang Wu∓ , Yong Ge(cid:117)
(cid:117)UNC Charlotte. Email: {rlin4, hli38,
(cid:63) Hefei University of Technology. Email:
Institute for Infocomm Research. Email:
∓ Nanjing University of Finance and Economics. Email:"
b20a5427d79c660fe55282da2533071629bfc533,Deep Learning Advances on Different 3D Data Representations: A Survey,"Deep Learning Advances on Different 3D Data
Representations: A Survey
Eman Ahmed, Alexandre Saint, Abd El Rahman Shabayek, Kseniya Cherenkova, Rig Das, Gleb Gusev,
Djamila Aouada and Bj¨orn Ottersten"
b2504b0b2a7e06eab02a3584dd46d94a3f05ffdf,Conditional Neural Processes,"Conditional Neural Processes
Marta Garnelo 1 Dan Rosenbaum 1 Chris J. Maddison 1 Tiago Ramalho 1 David Saxton 1 Murray Shanahan 1 2
Yee Whye Teh 1 Danilo J. Rezende 1 S. M. Ali Eslami 1"
b285e50220fb6c09cf3c724c7e48093373df3c58,Semisupervised Classifier Evaluation and Recalibration,"Semisupervised Classifier Evaluation
nd Recalibration
Peter Welinder∗, Max Welling†, and Pietro Perona‡
October 7, 2012"
b2c25af8a8e191c000f6a55d5f85cf60794c2709,A novel dimensionality reduction technique based on kernel optimization through graph embedding,"Noname manuscript No.
(will be inserted by the editor)
A Novel Dimensionality Reduction Technique based on
Kernel Optimization Through Graph Embedding
N. Vretos, A. Tefas and I. Pitas
the date of receipt and acceptance should be inserted later"
b2f4871cf9f61c44b16c733369d8730e90d9cc0d,The role of emotion in problem solving: first results from observing chess,"The Role of Emotion in Problem Solving: First Results
from Observing Chess
Thomas Guntz1, James L. Crowley1, Dominique Vaufreydaz1, Raffaella Balzarini1,
Philippe Dessus1,2
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
Univ. Grenoble Alpes, LaRAC, 38000 Grenoble, France
Author version"
b2624c3cb508bf053e620a090332abce904099a1,Dynamic Memory Networks for Visual and Textual Question Answering,"Dynamic Memory Networks for Visual and Textual Question Answering
Caiming Xiong*, Stephen Merity*, Richard Socher
MetaMind, Palo Alto, CA USA
{CMXIONG,SMERITY,RICHARD}METAMIND.IO
*indicates equal contribution."
b2abaffc4d68ebf910dd85c0f7a367895ab90e2a,Iris recognition using scattering transform and textural features,"IRIS RECOGNITION USING SCATTERING TRANSFORM AND TEXTURAL FEATURES
Shervin Minaee, AmirAli Abdolrashidi and Yao Wang
ECE Department, NYU Polytechnic School of Engineering, USA
{shervin.minaee, abdolrashidi,"
d904f945c1506e7b51b19c99c632ef13f340ef4c,0 ° 15 ° 30 ° 45 ° 60 ° 75 ° 90 °,"A scalable 3D HOG model for fast object detection and viewpoint estimation
Marco Pedersoli
Tinne Tuytelaars
KU Leuven, ESAT/PSI - iMinds
Kasteelpark Arenberg 10 B-3001 Leuven, Belgium"
d914c53cdf26acc64259d381fbd45c4e150633ee,Pedestrian Tracking in the Compressed Domain Using Thermal Images,"Pedestrian Tracking in the Compressed Domain
Using Thermal Images
Ichraf Lahouli1,2,3, Robby Haelterman1, Zied Chtourou2, Geert De Cubber1,
nd Rabah Attia3
Royal Military Academy,
Brussels, Belgium
VRIT Lab, Military Academy of Tunisia,
Nabeul, Tunisia
SERCOM Lab, Tunisia Polytechnic School,
La Marsa, Tunisia"
d9f0640716ec25278e6f1a4fdda5596660504c54,A Correlated Parts Model for Object Detection in Large 3D Scans,"EUROGRAPHICS 2013 / I. Navazo, P. Poulin
(Guest Editors)
Volume 32 (2013), Number 2
A Correlated Parts Model for Object Detection in Large 3D
Scans
M. Sunkel1, S. Jansen1, M. Wand1,2, H.-P. Seidel1
MPI Informatik
Saarland University
Figure 1: Based on sparse user annotations a shape model is learned. The detected instances are transformed into descriptors
for the second hierarchy level. Hierarchical detections shown on the right are obtained using only the example marked red."
d9810786fccee5f5affaef59bc58d2282718af9b,Adaptive Frame Selection for Enhanced Face Recognition in Low-Resolution Videos,"Adaptive Frame Selection for
Enhanced Face Recognition in
Low-Resolution Videos
Raghavender Reddy Jillela
Thesis submitted to the
College of Engineering and Mineral Resources
t West Virginia University
in partial fulfillment of the requirements
for the degree of
Master of Science
Electrical Engineering
Arun Ross, PhD., Chair
Xin Li, PhD.
Donald Adjeroh, PhD.
Lane Department of Computer Science and Electrical Engineering
Morgantown, West Virginia
Keywords: Face Biometrics, Super-Resolution, Optical Flow, Super-Resolution using
Optical Flow, Adaptive Frame Selection, Inter-Frame Motion Parameter, Image Quality,
Image-Level Fusion, Score-Level Fusion
Copyright 2008 Raghavender Reddy Jillela"
d929534024614e3153c986e55d758ea7471d3fff,How Not to Evaluate a Developmental System,"How Not to Evaluate a Developmental System
Frederick Shic and Brian Scassellati"
d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c,Face Album: Towards automatic photo management based on person identity on mobile phones,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
d930ec59b87004fd172721f6684963e00137745f,Face Pose Estimation using a Tree of Boosted Classifiers,"Face Pose Estimation using a
Tree of Boosted Classifiers
Javier Cruz Mota
Project Assistant: Julien Meynet
Professor: Jean-Philippe Thiran
Signal Processing Institute,
´Ecole Polytechnique F´ed´erale de Lausanne (EPFL)
September 11, 2006"
d951ff5f378b2a5f878423029123ad6b3491b444,Foveal Vision for Instance Segmentation of Road Images,"Foveal Vision for Instance Segmentation of Road Images
Benedikt Ortelt1, Christian Herrmann2,3, Dieter Willersinn2, J¨urgen Beyerer2,3
Robert Bosch GmbH, Leonberg, Germany
Fraunhofer IOSB, Karlsruhe, Germany
Karlsruhe Institute of Technology KIT, Vision and Fusion Lab, Karlsruhe, Germany
Keywords:
Instance Segmentation, Multi-Scale Analysis, Foveated Imaging, Cityscapes."
d9fe0b257ec50a12ba1af749fad56a6f705d16a4,High Frequency Regions for Face Recognition,"The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.1, February 2012
FEATURE IMAGE GENERATION USING LOW, MID
AND HIGH FREQUENCY REGIONS FOR FACE
RECOGNITION
Vikas Maheshkar1, Sushila Kamble2, Suneeta Agarwal3 and Vinay Kumar
Srivastava4
-3Department of Computer Science and Engineering, MNNIT, Allahabad
Department of Electronics & Communication Engineering, MNNIT, Allahabad"
d9318c7259e394b3060b424eb6feca0f71219179,Face Matching and Retrieval Using Soft Biometrics,"Face Matching and Retrieval Using Soft Biometrics
Unsang Park, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
d9ee64038aea3a60120e9f7de16eb4130940a103,Message Passing Multi-Agent GANs,"Message Passing Multi-Agent GANs
Arnab Ghosh∗, Viveka Kulharia∗, Vinay Namboodiri
IIT Kanpur"
d97e7799142e2c66b63fe63bc52632fdf305f313,Lanczos Vectors versus Singular Vectors for Effective Dimension Reduction,"Lanczos Vectors versus Singular Vectors for
Effective Dimension Reduction
Jie Chen and Yousef Saad"
d9fda0030ca349da7b1dafca015bea95a6aabea0,ISA2: Intelligent Speed Adaptation from Appearance,"ISA2: Intelligent Speed Adaptation from Appearance
Carlos Herranz-Perdiguero1 and Roberto J. L´opez-Sastre1"
d950af49c44bc5d9f4a5cc1634e606004790b1e5,Divide and Fuse: A Re-ranking Approach for Person Re-identification,"YU ET AL.: DIVIDE AND FUSE: A RE-RANKING APPROACH FOR PERSON RE-ID
Divide and Fuse: A Re-ranking Approach for
Person Re-identification
Huazhong University of Science and
Technology
Wuhan, China
Rui Yu
Zhichao Zhou
Song Bai
Xiang Bai ∗"
d9ef1a80738bbdd35655c320761f95ee609b8f49,A Research - Face Recognition by Using Near Set Theory,"Volume 5, Issue 4, 2015                                     ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
A Research - Face Recognition by Using Near Set Theory
Manisha V. Borkar, Bhakti Kurhade
Department of Computer Science and  Engineering
Abha Gaikwad -Patil College of  Engineering, Nagpur, Maharashtra, India"
d930d20ba42a5d868dd78dd73bac0f72110e0bc5,Multivariate Shape Modeling and Its Application to Characterizing Abnormal Amygdala Shape in Autism,"Multivariate Shape Modeling and Its Application to
Characterizing Abnormal Amygdala Shape in Autism
Moo K. Chunga,b∗,Keith J. Worsleyd, Brendon, M. Nacewiczb,
Kim M. Daltonb, Richard J. Davidsonb,c
Department of Biostatistics and Medical Informatics
Waisman Laboratory for Brain Imaging and Behavior
Department of Psychology and Psychiatry
University of Wisconsin, Madison, WI 53706, USA
dDepartment of Statistics
University of Chicago, Chicago, IL 60637, USA
September 22, 2009"
d94b37958657aa703d8a3d02a66ee251b4c3f597,Learning deep features from body and parts for person re-identification in camera networks,"Zhang and Si EURASIP Journal on Wireless Communications and
Networking  (2018) 2018:52
https://doi.org/10.1186/s13638-018-1060-2
RESEARCH
Open Access
Learning deep features from body and
parts for person re-identification in camera
networks
Zhong Zhang1,2* and Tongzhen Si1,2"
d9df2ed64494f54c0e2529f2c05a16423a57235c,A Novel Approach for Facial Expression Analysis in real time applications using SIFT flow and SVM,"Australian Journal of Basic and Applied Sciences, 9(21) Special 2015, Pages: 1-6
ISSN:1991-8178
Australian Journal of Basic and Applied Sciences
Journal home page: www.ajbasweb.com
A Novel Approach for Facial Expression Analysis in real time applications using SIFT
flow and SVM
K. Suganya Devi and 2P. Srinivasan
Department of Computer Science and Engineering, University college of Engg Panruti, Panruti 607106, Tamilnadu, India
Department of Physics, University college of Engg Panruti, Panruti 607106, Tamilnadu, India
A R T I C L E   I N F O
Article history:
Article Received : 12 January 2015
Revised: 1 May 2015
Accepted:  8 May 2015
Keywords:
Expression  recognition,  Facial  region
selection,  Facial  expression,  Sparse
learning  technique,  Scale  Invariant
Feature Transform flow, SVM
A B S T R A C T"
d9c4b1ca997583047a8721b7dfd9f0ea2efdc42c,Learning Inference Models for Computer Vision,Learning Inference Models for Computer Vision
d94c7a89adf6f568bbe1510910850d5083a58b4f,Deep Cross Modal Learning for Caricature Verification and Identification (CaVINet),"Deep Cross Modal Learning for Caricature Verification and
Identification(CaVINet)
https://lsaiml.github.io/CaVINet/
Jatin Garg∗
Indian Institute of Technology Ropar
Himanshu Tolani∗
Indian Institute of Technology Ropar
Skand Vishwanath Peri∗
Indian Institute of Technology Ropar
Narayanan C Krishnan
Indian Institute of Technology Ropar"
d9bc16dcbc13502389704e4a0bdd8ee7af618069,Learning pullback HMM distances for action recognition,Learning pullback HMM distances for action recognition
d9bad7c3c874169e3e0b66a031c8199ec0bc2c1f,"It All Matters: Reporting Accuracy, Inference Time and Power Consumption for Face Emotion Recognition on Embedded Systems","It All Matters:
Reporting Accuracy, Inference Time and Power Consumption
for Face Emotion Recognition on Embedded Systems
Jelena Milosevic
Institute of Telecommunications, TU Wien
Andrew Forembsky
Movidius an Intel Company
Dexmont Pe˜na
Movidius an Intel Company
David Moloney
Movidius an Intel Company
Miroslaw Malek
ALaRI, Faculty of Informatics, USI"
d9327b9621a97244d351b5b93e057f159f24a21e,Laplacian smoothing transform for face recognition,"SCIENCE CHINA
Information Sciences
. RESEARCH PAPERS .
December 2010 Vol. 53 No. 12: 2415–2428
doi: 10.1007/s11432-010-4099-1
Laplacian smoothing transform for face recognition
GU SuiCheng, TAN Ying
& HE XinGui
Key Laboratory of Machine Perception (MOE); Department of Machine Intelligence,
School of Electronics Engineering and Computer Science; Peking University, Beijing 100871, China
Received March 16, 2009; accepted April 1, 2010"
d92581c452e780710938cfbfa0f1ca2ffccc5d5e,Facial Feature Extraction Based on Local Color and Texture for Face Recognition using Neural Network,"International Journal of Science and Engineering Applications
Volume 2 Issue 4, 2013, ISSN-2319-7560 (Online)
Facial Feature Extraction Based on Local Color and Texture
for Face Recognition using Neural Network
S.Cynthia Christabel
M.Annalakshmi
Sethu Institute of Technology.
Sethu Institute of Technology.
Kariapatti.
Kariapatti.
Mr.D.Prince Winston
Aruppukottai."
aca232de87c4c61537c730ee59a8f7ebf5ecb14f,Ebgm Vs Subspace Projection for Face Recognition,"EBGM VS SUBSPACE PROJECTION FOR FACE RECOGNITION
Andreas Stergiou, Aristodemos Pnevmatikakis, Lazaros Polymenakos
9.5 Km Markopoulou Avenue, P.O. Box 68, Peania, Athens, Greece
Athens Information Technology
Keywords:
Human-Machine Interfaces, Computer Vision, Face Recognition."
ac7f898ff5789914d423526c392ee61b979fdd8e,"Target Tracking with Kalman Filtering, KNN and LSTMs","Target Tracking with Kalman Filtering, KNN and LSTMs
Dan Iter
Jonathan Kuck
Philip Zhuang
December 17, 2016"
ac6a9f80d850b544a2cbfdde7002ad5e25c05ac6,Privacy-Protected Facial Biometric Verification Using Fuzzy Forest Learning,"Privacy-Protected Facial Biometric Verification
Using Fuzzy Forest Learning
Richard Jiang, Ahmed Bouridane, Senior Member, IEEE, Danny Crookes, Senior Member, IEEE,
M. Emre Celebi, Senior Member, IEEE, and Hua-Liang Wei"
aca8c4a62ed6e590889f1e859d7bc79311fa6f4d,Beyond Universal Saliency: Personalized Saliency Prediction with Multi-task CNN,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
Semantic labels Observer A Observer B Observer C Figure1:AnillustrationofPSMdataset.Ourdatasetprovidesbotheyefixationsofdifferentsubjectsandsemanticlabels.Duetothelargeamountofobjectsinourdataset,foreachimage,wedidn’tful-lysegmentitandonlylabelledobjectsthatcoveratleastthreegazepointsfromeachindividual.AnotabledifferencebetweenPSManditspredecessorsisthateachsubjectslooks4timesonPSMdatatoderivesolidfixationgroundtruthmaps.Bothcommonalityanddis-tinctivenessexistforPSMsviewedbydifferentparticipant.ThismotivatesustomodelPSMbasedonUSM.recognizingheterogeneityacrossindividuals.ExamplesinFig.1illustratethatwhilemultipleobjectsaredeemedhigh-lysalientwithinthesameimage(eg,humanface(firstrow),text(lasttowrows)andobjectof(highcolorcontrast),differ-entindividualshaveverydifferentfixationpreferenceswhenviewingtheimage.Fortherestofthepaper,weusetermuniversalsaliencytodescribesalientregionsthatincurhighfixationsacrossallsubjectsandtermpersonalizedsaliencytodescribetheheterogeneousones.Motivation.Infact,heterogeneityinsaliencypreferencehasbeenwidelyrecognizedinpsychology:”Interestingnessishighlysubjectiveandthereareindividualswhodidnotconsideranyimageinterestinginsomesequences”[Gyglietal.,2013].Therefore,onceweknowaperson’spersonal-izedinterestingnessovereachimage(personalizedsaliency),weshalldesigntailoredalgorithmstocatertohim/herneed-s.Forexample,intheapplicationofimageretargeting,thetextsonthetableinthefourthrowinFig.1shouldbepre-"
ac83b9ad20ecf63c7818ff1e43a99b4c626fac12,Accuracy and Security Evaluation of Multi-Factor Biometric Authentication,"Accuracy and Security Evaluation of Multi-Factor Biometric Authentication
Hisham Al-Assam, Harin Sellahewa, Sabah Jassim
Department of Applied Computing
University of Buckingham
Buckingham, MK18 1EG, United Kingdom
{hisham.al-assam, harin.sellahewa,"
ac57b04359818c17d416ee53ae05a5f126eca4db,Detection and classification of the behavior of people in an intelligent building by camera,"Detection and classification of the behavior of people in an
intelligent building by camera
Henni Sid Ahmed1, Belbachir Mohamed Faouzi2, Jean Caelen3
Universite of sciences and technology USTO in Oran Algeria, laboratory LSSD, Faculty  genie
electrique, department electronique, BP 1505 el menouar Oran 31000 Algeria
Universite of sciences and technology USTO in Oran Algeria,  laboratory LSSD, Faculty genie
electrique, department electronique,  BP 1505 el menouar Oran 31000 Algeria
Universite Joseph Fourier, Grenoble, F , LIG   Grenoble computer laboratory ,domaine
universitaire BP 53, 220 rue de la   chimie 38041 Grenoble cedex 9  France
Emails: 1
Submitted: Apr. 10, 2013                 Accepted: July 30, 2013              Published: Sep. 3, 2013"
accbd6cd5dd649137a7c57ad6ef99232759f7544,Facial Expression Recognition with Local Binary Patterns and Linear Programming,"FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS
AND LINEAR PROGRAMMING
Xiaoyi Feng1, 2, Matti Pietikäinen1, Abdenour Hadid1
Machine Vision Group, Infotech Oulu and Dept. of Electrical and Information Engineering
P. O. Box 4500 Fin-90014 University of Oulu, Finland
2 College of Electronics and Information, Northwestern Polytechnic University
710072 Xi’an, China
In  this  work,  we  propose  a  novel  approach  to  recognize  facial  expressions  from  static
images. First, the Local Binary Patterns (LBP) are used to efficiently represent the facial
images and then the Linear Programming (LP) technique is adopted to classify the seven
facial  expressions  anger,  disgust,  fear,  happiness,  sadness,  surprise  and  neutral.
Experimental results demonstrate an average recognition accuracy of 93.8% on the JAFFE
database, which outperforms the rates of all other reported methods on the same database.
Introduction
Facial  expression  recognition  from  static
images  is  a  more  challenging  problem
than  from  image  sequences  because  less
information  for  expression  actions
vailable.  However,  information  in  a
single  image  is  sometimes  enough  for"
ac88405d34b7b6fa701e25d9fbdb56126cc9a8c3,On the Diversity of Realistic Image Synthesis,"On the Diversity of Realistic Image Synthesis
Zichen Yang, Haifeng Liu, Member, IEEE and Deng Cai, Member, IEEE"
ac4c19e52a58aea27593b99f0ebe5316339b9646,A Probabilistic Approach for Image Retrieval Using Descriptive Textual Queries,"A Probabilistic Approach for Image Retrieval Using
Descriptive Textual Queries
Yashaswi Verma
CVIT, IIIT Hyderabad, India
C. V. Jawahar
CVIT, IIIT Hyderabad, India"
ac479607e6b44c69022a56b5847a055535ae63ed,Cross-domain fashion image retrieval,"Cross-domain fashion image retrieval
Bojana Gaji´c, Ramon Baldrich
Computer Vision Center
Universitat Autnoma de Barcelona
Edifici O. UAB. Bellaterra, Spain.
{bgajic,"
ac968bf321f1dfa2d216dccc22fa5315de63d7bd,Face Template Protection using Deep Convolutional Neural Network,"Face Template Protection using Deep Convolutional Neural Network
Arun Kumar Jindal, Srinivas Chalamala, Santosh Kumar Jami
TCS Research, Tata Consultancy Services, India
{jindal.arun, chalamala.srao,"
acaa89fb6263aef7ad58a37d9cac79c8fcaa29ca,Person Re-identification in Identity Regression Space,"Noname manuscript No.
(will be inserted by the editor)
Person Re-Identification in Identity Regression Space
Hanxiao Wang · Xiatian Zhu · Shaogang Gong · Tao Xiang
Received: date / Accepted: date"
acee1e7700e9f084ff64805a2c67d16fe69e63a8,250 years Lambert surface: does it really exist?,"50 years Lambert surface: does it really
exist?
Institut f¨ur Lasertechnologien in der Medizin und Meßtechnik, Helmholtzstr.12, D-89081 Ulm,
Alwin Kienle∗ and Florian Foschum
Germany"
ac26166857e55fd5c64ae7194a169ff4e473eb8b,Personalized Age Progression with Bi-Level Aging Dictionary Learning,"Personalized Age Progression with Bi-level
Aging Dictionary Learning
Xiangbo Shu, Jinhui Tang, Senior Member, IEEE, Zechao Li, Hanjiang Lai, Liyan Zhang
nd Shuicheng Yan, Fellow, IEEE"
ac559873b288f3ac28ee8a38c0f3710ea3f986d9,Team DEEP-HRI Moments in Time Challenge 2018 Technical Report,"Team DEEP-HRI Moments in Time Challenge 2018 Technical Report
Chao Li, Zhi Hou, Jiaxu Chen, Yingjia Bu, Jiqiang Zhou, Qiaoyong Zhong, Di Xie and Shiliang Pu
Hikvision Research Institute"
ac8e09128e1e48a2eae5fa90f252ada689f6eae7,Leolani: A Reference Machine with a Theory of Mind for Social Communication,"Leolani: a reference machine with a theory of
mind for social communication
Piek Vossen, Selene Baez, Lenka Baj˘ceti´c, and Bram Kraaijeveld
VU University Amsterdam, Computational Lexicology and Terminology Lab, De
Boelelaan 1105, 1081HV Amsterdam, The Netherlands
www.cltl.nl"
acc5318592303852feba755a1202fb3c683b3b53,Correction of AI systems by linear discriminants: Probabilistic foundations,"Correction of AI systems by linear discriminants: Probabilistic foundations
A.N. Gorbana,b,∗, A. Golubkovc, B. Grechuka, E.M. Mirkesa,b, I.Y. Tyukina,b
Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
Lobachevsky University, Nizhni Novgorod, Russia
Saint-Petersburg State Electrotechnical University, Saint-Petersburg, Russia"
ac9feef881ed00a5a5e53bddb88f135a9cffe048,A General Method for Appearance-Based People Search Based on Textual Queries,"A general method for appearance-based people
search based on textual queries
Riccardo Satta, Giorgio Fumera, and Fabio Roli
Dept. of Electrical and Electronic Engineering, University of Cagliari
Piazza d’Armi, 09123 Cagliari, Italy"
ac8441e30833a8e2a96a57c5e6fede5df81794af,Hierarchical Representation Learning for Kinship Verification,"IEEE TRANSACTIONS ON IMAGE PROCESSING
Hierarchical Representation Learning for Kinship
Verification
Naman Kohli, Student Member, IEEE, Mayank Vatsa, Senior Member, IEEE, Richa Singh, Senior Member, IEEE,
Afzel Noore, Senior Member, IEEE, and Angshul Majumdar, Senior Member, IEEE"
acc37d228f6cb2205497df81532c582ed71dd9fe,Deep Ordinal Ranking for Multi-Category Diagnosis of Alzheimer's Disease using Hippocampal MRI data,"Deep Ordinal Ranking for Multi-Category Diagnosis of Alzheimer’s
Disease using Hippocampal MRI data
Hongming Li, Mohamad Habes, Yong Fan
nd for the Alzheimer's Disease Neuroimaging Initiative*
Section for Biomedical Image Analysis (SBIA), Center for Biomedical Image Computing and
Analytics (CBICA), Department of Radiology, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA, 19104, USA
*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found
t: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf"
acf13c52c86a3b38642ba0c6cbcd1b771778965c,NAACL HLT 2018 Generalization in the Age of Deep Learning Proceedings of the Workshop,"NAACLHLT2018GeneralizationintheAgeofDeepLearningProceedingsoftheWorkshopJune5,2018NewOrleans,Louisiana"
ac5c93b789bdd557b90ce77221f1c01ead63041f,Robust People Detection using Computer Vision Spring Term 2013,"Autonomous Systems Lab
Prof. Roland Siegwart
Master-Thesis
Robust People Detection
using Computer Vision
Spring Term 2013
Supervised by:
Jerome Maye
Paul Beardsley
Author:
Endri Dibra"
ac12ba5bf81de83991210b4cd95b4ad048317681,Combining Deep Facial and Ambient Features for First Impression Estimation,"Combining Deep Facial and Ambient Features
for First Impression Estimation
Furkan G¨urpınar1, Heysem Kaya2, Albert Ali Salah3
Program of Computational Science and Engineering, Bo˘gazi¸ci University,
Bebek, Istanbul, Turkey
Department of Computer Engineering, Namık Kemal University,
C¸ orlu, Tekirda˘g, Turkey
Department of Computer Engineering, Bo˘gazi¸ci University,
Bebek, Istanbul, Turkey"
ac0d88ca5f75a4a80da90365c28fa26f1a26d4c4,MOT16: A Benchmark for Multi-Object Tracking,"MOT16: A Benchmark for Multi-Object Tracking
Anton Milan∗, Laura Leal-Taix´e∗, Ian Reid, Stefan Roth, and Konrad Schindler"
acb83d68345fe9a6eb9840c6e1ff0e41fa373229,"Kernel methods in computer vision: object localization, clustering, and taxonomy discovery","Kernel Methods in Computer Vision:
Object Localization, Clustering,
nd Taxonomy Discovery
vorgelegt von
Matthew Brian Blaschko, M.S.
us La Jolla
Von der Fakult¨at IV - Elektrotechnik und Informatik
der Technischen Universit¨at Berlin
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
Dr. rer. nat.
genehmigte Dissertation
Promotionsausschuß:
Vorsitzender: Prof. Dr. O. Hellwich
Berichter: Prof. Dr. T. Hofmann
Berichter: Prof. Dr. K.-R. M¨uller
Berichter: Prof. Dr. B. Sch¨olkopf
Tag der wissenschaftlichen Aussprache: 23.03.2009
Berlin 2009"
ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7,Multimodal Caricatural Mirror,"Multimodal Caricatural Mirror
Martin O.(1), Adell J.(2), Huerta A.(3), Kotsia I.(4), Savran A.(5), Sebbe R.(6)
(1)  : Université catholique de Louvain, Belgium
(2)  Universitat Polytecnica de Barcelona, Spain
(3)  Universidad Polytècnica de Madrid, Spain
(4)  Aristotle University of Thessaloniki, Greece
(5)  Bogazici University, Turkey
(6)  Faculté Polytechnique de Mons, Belgium"
adf7ccb81b8515a2d05fd3b4c7ce5adf5377d9be,Apprentissage de métrique appliqué à la détection de changement de page Web et aux attributs relatifs,"Apprentissage de métrique appliqué à la
détection de changement de page Web et
ux attributs relatifs
Marc T. Law* — Nicolas Thome* — Stéphane Gançarski* — Mat-
thieu Cord*
* Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris,
France
RÉSUMÉ. Nous proposons dans cet article un nouveau schéma d’apprentissage de métrique.
Basé sur l’exploitation de contraintes qui impliquent des quadruplets d’images, notre approche
vise à modéliser des relations sémantiques de similarités riches ou complexes. Nous étudions
omment ce schéma peut être utilisé dans des contextes tels que la détection de régions impor-
tantes dans des pages Web ou la reconnaissance à partir d’attributs relatifs."
ad3caae50feee550b047e17699cfe7bb9e243cf5,Sparse similarity-preserving hashing,"Sparse similarity-preserving hashing
Jonathan Masci
Alex M. Bronstein
Michael M. Bronstein
Pablo Sprechmann
Guillermo Sapiro"
ad7a7f70e460d4067d7170bcc0f1ea62eedd7234,CBinfer: Exploiting Frame-to-Frame Locality for Faster Convolutional Network Inference on Video Streams,"CBinfer: Exploiting Frame-to-Frame Locality for Faster
Convolutional Network Inference on Video Streams
Lukas Cavigelli, Luca Benini"
adb2d1e241933ef363bcf03d865a9219d2911780,Classification of Age from Facial Features of Humans,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611
Classification of Age from Facial Features of
Poonam Shirode1, S. M. Handore2
, 2Department of E&TC, K.J’s Educational Institute’s TCOER, Pune, Maharashtra, India
Humans"
ade18cf978e4b00fb74352a7eba90b4f4509d645,Articulated Multi-body Tracking under Egomotion,"Articulated Multi-body Tracking Under Egomotion
S. Gammeter1, A. Ess1, T. J¨aggli1, K. Schindler1, B. Leibe1,2, and L. Van Gool1,3
ETH Z¨urich
RWTH Aachen
KU Leuven, IBBT"
ad30152944a42975f16a53cf0e0666e9937e9d73,Dyadic Interaction Detection from Pose and Flow,"Dyadic interaction detection from pose and flow
Anonymous ECCV submission
Paper ID 17"
ada73060c0813d957576be471756fa7190d1e72d,VRPBench: A Vehicle Routing Benchmark Tool,"VRPBench: A Vehicle Routing Benchmark Tool
October 19, 2016
Guilherme A. Zeni1 , Mauro Menzori1, P. S. Martins1, Luis A. A. Meira1"
adaff7ff015b4be77e8c0bdb9d002b614d6e2851,A Hybrid Method for Face Recognition using LLS CLAHE Method,"International Journal of Computer Applications (0975 – 8887)
Volume 152 – No.7, October 2016
A Hybrid Method for Face Recognition using LLS
CLAHE Method
Mohandas College of Engineering and
A. Thamizharasi
Assistant Professor,
Department of Computer
Science & Engineering,
Technology,
Anad, Nedumangad P.O.,
Trivandrum, Kerala, India"
adca02d4b34a9851d1c9c0a7c1bb8d5178b59b85,Modeling the dynamics of individual behaviors for group detection in crowds using low-level features,"Modeling the dynamics of individual behaviors for group
detection in crowds using low-level features
Omar Adair Islas Ram´ırez
Giovanna Varni
Mihai Andries
Mohamed Chetouani
Raja Chatila"
ad01c5761c89fdf523565cc0dec77b9a6ec8e694,Global and Local Consistent Wavelet-domain Age Synthesis,"Global and Local Consistent Wavelet-domain Age
Synthesis
Peipei Li†, Yibo Hu†, Ran He Member, IEEE and Zhenan Sun Member, IEEE"
ada4901e0022b4fdeb9ec3ae26b986199f7ae3be,Human Face Recognition based on Improved PCA Algorithm,"Human Face Recognition based on Improved
PCA Algorithm
Xu Yue
College of art and design, LanZhou JiaoTong University, Lanzhou, China
Email:
Linhao Li
AT&T Labs, 200 South Laurel Ave, #D4-3C05, NJ, USA
Email:"
ad9937ff6c5bff4dae72ca90eddc4dd77751b3fa,FusionNet and AugmentedFlowNet: Selective Proxy Ground Truth for Training on Unlabeled Images,"FusionNet and AugmentedFlowNet:
Selective Proxy Ground Truth
for Training on Unlabeled Images
Osama Makansi*, Eddy Ilg*, and Thomas Brox
University of Freiburg, Germany"
ad2afeb4c1975c637291bc3f7087d665c3f501c8,WebVision Challenge: Visual Learning and Understanding With Web Data,"WebVision Challenge: Visual Learning and
Understanding With Web Data
Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, Jesse Berent, Abhinav Gupta, Rahul Sukthankar,
nd Luc Van Gool"
adfaf01773c8af859faa5a9f40fb3aa9770a8aa7,Large Scale Visual Recognition,"LARGE SCALE VISUAL RECOGNITION
JIA DENG
A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY
RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE
ADVISER: FEI-FEI LI
JUNE 2012"
adf5caca605e07ee40a3b3408f7c7c92a09b0f70,Line-Based PCA and LDA Approaches for Face Recognition,"Line-based PCA and LDA approaches for Face Recognition
Vo Dinh Minh Nhat, and Sungyoung Lee
Kyung Hee University – South of Korea
{vdmnhat,"
adaf2b138094981edd615dbfc4b7787693dbc396,Statistical methods for facial shape-from-shading and recognition,"Statistical Methods For Facial
Shape-from-shading and Recognition
William A. P. Smith
Submitted for the degree of Doctor of Philosophy
Department of Computer Science
0th February 2007"
adf1b20cffb0ab12d20f878d07373efc4c1bc6c4,Image Retagging Using Collaborative Tag Propagation,"Image Retagging Using Collaborative
Tag Propagation
Dong Liu, Shuicheng Yan, Senior Member, IEEE, Xian-Sheng Hua, Member, IEEE, and
Hong-Jiang Zhang, Fellow, IEEE"
ad88fcfd12b62d607259db8d98e2a1a0a9642ca0,Real-time tracking-with-detection for coping with viewpoint change,"Real-Time Tracking-with-Detection for Coping With Viewpoint Change
Shaul Oron · Aharon Bar-Hillel · Shai Avidan
Received: 11 May 2014 / Revised: 02 Nov 2014 / Accepted: 09 Mar 2015"
ad75879082132a73fe173a890a0f414f2c279739,A comparison of CNN-based face and head detectors for real-time video surveillance applications,"A Comparison of CNN-based Face and Head Detectors for
Real-Time Video Surveillance Applications
Le Thanh Nguyen-Meidine1, Eric Granger 1, Madhu Kiran1 and Louis-Antoine Blais-Morin2
´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montreal, Canada
Genetec Inc., Montreal, Canada"
adefabe194863b4f764ec982e3120554165c841c,Radius based Block Local Binary Pattern on T-Zone Face Area for Face Recognition,"Journal of Computer Science 11 (1): 96-108, 2015
ISSN: 1549-3636
© 2015 Science Publications
RADIUS BASED BLOCK LOCAL BINARY PATTERN ON T-
ZONE FACE AREA FOR FACE RECOGNITION
Md. Jan Nordin, 2Abdul Aziz K. Abdul Hamid,
Sumazly Ulaiman and 2R.U. Gobithaasan
Center for Artificial Intelligent Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
School of Informatics and App. Maths, Universiti Malaysia Terengganu, Terengganu, Malaysia
Received 2014-02-20; Revised 2014-04-29; Accepted 2014-08-04"
adf62dfa00748381ac21634ae97710bb80fc2922,ViFaI : A trained video face indexing scheme Harsh,"ViFaI: A trained video face indexing scheme
Harsh Nayyar
Audrey Wei
. Introduction
With the increasing prominence of inexpensive
video recording devices (e.g., digital camcorders and
video recording smartphones),
the average user’s
video collection today is increasing rapidly. With this
development, there arises a natural desire to rapidly
ccess a subset of one’s collection of videos. The solu-
tion to this problem requires an effective video index-
ing scheme. In particular, we must be able to easily
process a video to extract such indexes.
Today, there also exist large sets of labeled (tagged)
face images. One important example is an individual’s
Facebook profile. Such a set of of tagged images of
one’s self, family, friends, and colleagues represents
n extremely valuable potential training set.
In this work, we explore how to leverage the afore-"
add85ee833e2a1c5cdbcd206d5423d63f20cda24,International Journal of Advanced Robotic Systems Embedded Face Detection and Recognition Regular Paper,"International Journal of Advanced Robotic Systems
Embedded Face Detection
nd Recognition
Regular Paper
Göksel Günlü
Department of Electrical and Electronics Engineering Turgut Özal University, Ankara, Turkey
* Corresponding author E-mail:
Received 07 May 2012; Accepted 28 Jun 2012
DOI: 10.5772/51132
© 2012 Günlü; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited."
bb2944569a2b3d3b8340b36d4903c8cddf20047f,Improving Regression Performance with Distributional Losses,"Improving Regression Performance with Distributional Losses
Ehsan Imani 1 Martha White 1"
bb06c12e83255b2c3afca1e3e115e721c53b46b3,Beyond Local Appearance: Category Recognition from Pairwise Interactions of Simple Features,"Beyond Local Appearance: Category Recognition from Pairwise Interactions of
Simple Features
Marius Leordeanu1
Martial Hebert1
Rahul Sukthankar2,1
Carnegie Mellon University 2Intel Research Pittsburgh"
bb7c5a521607a02e7a291dca7fc33b595c3b7bff,Texture Classification using Local Binary Patterns and Modular PCA,"ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)
Volume 5, Issue 5, May 2016
Texture Classification using Local Binary
Patterns and Modular PCA
Sayanshree Ghosh, Srimanta Kundu and Sayantari Ghosh
www.ijarcet.org"
bb35ef89addbbc28d960bc0cab70d8a29fdf6eee,A Survey on Multi-Task Learning,"A Survey on Multi-Task Learning
Yu Zhang and Qiang Yang"
bb489e4de6f9b835d70ab46217f11e32887931a2,Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask,"Everything you wanted to know about Deep Learning for Computer Vision but were
fraid to ask
Moacir A. Ponti, Leonardo S. F. Ribeiro, Tiago S. Nazare
ICMC – University of S˜ao Paulo
S˜ao Carlos/SP, 13566-590, Brazil
Tu Bui, John Collomosse
CVSSP – University of Surrey
Guildford, GU2 7XH, UK
Email: [ponti, leonardo.sampaio.ribeiro,
Email: [t.bui,
tools,"
bb97664df153ac563e46ec2233346129cafe601b,A study on the use of Boundary Equilibrium GAN for Approximate Frontalization of Unconstrained Faces to aid in Surveillance,"A study on the use of Boundary Equilibrium GAN for Approximate
Frontalization of Unconstrained Faces to aid in Surveillance
Wazeer Zulfikar, Sebastin Santy, Sahith Dambekodi and Tirtharaj Dash
BITS Pilani - KK Birla Goa Campus, Goa, India
{f20150003, f20150357, f20150192,"
bba281fe9c309afe4e5cc7d61d7cff1413b29558,An unpleasant emotional state reduces working memory capacity: electrophysiological evidence,"Social Cognitive and Affective Neuroscience, 2017, 984–992
doi: 10.1093/scan/nsx030
Advance Access Publication Date: 11 April 2017
Original article
An unpleasant emotional state reduces working
memory capacity: electrophysiological evidence
Jessica S. B. Figueira,1 Leticia Oliveira,1 Mirtes G. Pereira,1 Luiza B. Pacheco,1
Isabela Lobo,1,2 Gabriel C. Motta-Ribeiro,3 and Isabel A. David1
Laboratorio de Neurofisiologia do Comportamento, Departamento de Fisiologia e Farmacologia, Instituto
Biome´dico, Universidade Federal Fluminense, Niteroi, Brazil, 2MograbiLab, Departamento de Psicologia,
Pontifıcia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil, and 3Laboratorio de Engenharia
Pulmonar, Programa de Engenharia Biome´dica, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Correspondence should be addressed to Isabel A. David, Departamento de Fisiologia e Farmacologia, Instituto Biome´dico, Universidade Federal
Fluminense, Rua Hernani Pires de Mello, 101, Niteroi, RJ 24210-130, Brazil. E-mail:"
bb79bb04e569f9319fbc9d8e1f275bbb2cf8d32e,NMT-Keras: a Very Flexible Toolkit with a Focus on Interactive NMT and Online Learning,"NMT-Keras: a Very Flexible Toolkit with a Focus
on Interactive NMT and Online Learning
Álvaro Peris, Francisco Casacuberta
Pattern Recognition and Human Language Technology Research Center, Universitat Politècnica de València, Spain"
bbc76f0e50ab96e7318816e24c65fd3459d0497c,Survey of Pedestrian Detection for Advanced Driver Assistance Systems,"JULY 2010
Survey of Pedestrian Detection for
Advanced Driver Assistance Systems
David Gero´ nimo, Antonio M. Lo´ pez, Angel D. Sappa, Member, IEEE, and Thorsten Graf"
bb131650627cf2d1da570589f6c540041df1ae92,Improving the Intra Class Distance using RBSQI Technique for Facial Images with Illumination Variations,"Volume 2 Special Issue                                                                                                                     ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences
©2010-11 CIS Journal. All rights reserved.
http://www.cisjournal.org
Improving the Intra Class Distance using RBSQI Technique for Facial
Images with Illumination Variations
K. R. Singh1, M. A. Zaveri2, M.M. Raghuwanshi3
,2Computer Engineering Department, S.V.National Institute of Technology, Surat, 329507, India.
NYSS College of Engineering and Research, Nagpur, 441 110, India."
bb1f4c8e4f310047e50b7dc41d87292025d42eb7,Intersubject Differences in False Nonmatch Rates for a Fingerprint-Based Authentication System,"Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 896383, 9 pages
doi:10.1155/2009/896383
Research Article
Intersubject Differences in False Nonmatch Rates for
Fingerprint-Based Authentication System
Jeroen Breebaart, Ton Akkermans, and Emile Kelkboom
Philips Research, HTC 34 MS61, 5656 AE Eindhoven, The Netherlands
Correspondence should be addressed to Jeroen Breebaart,
Received 4 September 2008; Accepted 7 July 2009
Recommended by Jonathon Phillips
The intersubject dependencies of false nonmatch rates were investigated for a minutiae-based biometric authentication process
using single enrollment and verification measurements. A large number of genuine comparison scores were subjected to statistical
inference tests that indicated that the number of false nonmatches depends on the subject and finger under test. This result was also
observed if subjects associated with failures to enroll were excluded from the test set. The majority of the population (about 90%)
showed a false nonmatch rate that was considerably smaller than the average false nonmatch rate of the complete population.
The remaining 10% could be characterized as “goats” due to their relatively high probability for a false nonmatch. The image
quality reported by the template extraction module only weakly correlated with the genuine comparison scores. When multiple
verification attempts were investigated, only a limited benefit was observed for “goats,” since the conditional probability for a false"
bba22e04fbe124bf58330e5d911d873a80afa0eb,Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection,"Probabilistic Global Scale Estimation for MonoSLAM
Based on Generic Object Detection
Centro de Investigaci´on en Matem´aticas - Universidad de Guanajuato
Jalisco S/N, Col. Valenciana CP: 36023 Guanajuato, Gto, Mxico
Edgar Sucar, Jean-Bernard Hayet"
bb22104d2128e323051fb58a6fe1b3d24a9e9a46,Analyzing Facial Expression by Fusing Manifolds,")=OEC .=?E= -NFHAIIE >O .KIEC
9A;= +D=C1,2 +DK5C +DA1,3 ;E2EC 0KC1,2,3
1IJEJKJA B 1BH=JE 5?EA?A 5EE?= 6=EM=
,AFJ B +FKJAH 5?EA?A 1BH=JE -CEAAHEC =JE= 6=EM= 7ELAHIEJO
IJEJKJA B AJMHEC =JE= 6=EM= 7ELAHIEJO
{wychang,
)>IJH=?J .A=JKHA HAFHAIAJ=JE ?=IIE?=JE =HA JM =H EIIKAI E B=?E=
ANFHAIIE ==OIEI 1 JDA F=IJ IJ AEJDAH DEIJE? H ?= HAFHA
IAJ=JE BH ==OIEI 1 AIIA?A ?= EBH=JE =EO B?KIAI  JDA IK>JA
L=HE=JEI B ANFHAIIEI DEIJE? HAFHAIAJ=JE IJHAIIAI  C>=
JEAI 6 J=A JDA B >JD = HAFHAIAJ=JE EI E JDEI
F=FAH A=HEC EI J ?D=H=?JAHEA C>= ?= EBH=
JE 7EA IA KIEC A=H
EC =FFH=?DAI B JDA HAFHAIAJ=JE =HA >O
= A=HEC JA?DEGKA 6 EJACH=JA JDAIA
ABBA?JELAO = BKIE ?=IIEAH EI MDE?D ?= DAF J AFO IKEJ=>A
?>E=JE MAECDJI B B=?E= ?FAJI J = ANFHAIIE +FHADA
IELA ?F=HEII  B=?E= ANFHAIIE HA?CEJE =HA J JDA
ABBA?JELAAII B KH =CHEJD
A=EEC DK= AJEI F=OI = EFHJ=J HA E DK= ?KE?=JE 6"
bbab2c3d0ebc0957c5e962298ffd8c6d4bc25c5a,Have we met before? Neural correlates of emotional learning in women with social phobia.,"Research Paper
Have we met before? Neural correlates of emotional
learning in women with social phobia
Inga Laeger, MA; Kati Keuper, MA; Carina Heitmann, MA; Harald Kugel, PhD;
Christian Dobel, PhD; Annuschka Eden, MA; Volker Arolt, MD; Pienie Zwitserlood, PhD;
Udo Dannlowski, MD, PhD*; Peter Zwanzger, MD*
Laeger,  Heitmann,  Arolt,  Dannlowski,  Zwanzger  —  Department  of  Psychiatry,  University  of  Muenster,  Germany;  Keuper,
Dobel, Eden — Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Germany; Kugel — Department of
Clinical  Radiology,  University  of  Muenster,  Germany;  Zwitserlood  —  Institute  for  Psychology,  University  of  Muenster,  Ger-
many; Dannlowski — Department of Psychiatry, University of Marburg, Germany
Background: Altered memory processes are thought to be a key mechanism in the etiology of anxiety disorders, but little is known about
the neural correlates of fear learning and memory biases in patients with social phobia. The present study therefore examined whether pa-
tients with social phobia exhibit different patterns of neural activation when confronted with recently acquired emotional stimuli. Methods:
Patients with social phobia and a group of healthy controls learned to associate pseudonames with pictures of persons displaying either a
fearful or a neutral expression. The next day, participants read the pseudonames in the magnetic resonance imaging scanner. Afterwards,
memory tests were carried out.  Results: We enrolled 21 patients and 21 controls in our study. There were no group differences for
learning performance, and results of the memory tests were mixed. On a neural level, patients showed weaker amygdala activation than
ontrols for the contrast of names previously associated with fearful versus neutral faces. Social phobia severity was negatively related to
mygdala  activation.  Moreover,  a  detailed  psychophysiological  interaction  analysis  revealed  an  inverse  correlation  between  disorder
severity and frontolimbic connectivity for the emotional > neutral pseudonames contrast. Limitations: Our sample included only women."
bbf534b8ee9455b8e492a252bef26f9293d4f91a,Effects of cannabis use and subclinical depression on the P3 event-related potential in an emotion processing task,"Observational Study
Medicine®
Effects of cannabis use and subclinical
depression on the P3 event-related potential
in an emotion processing task
Lucy J. Troup, PhD
, Robert D. Torrence, MS, Jeremy A. Andrzejewski, BSc, Jacob T. Braunwalder, BSc"
bb7f2c5d84797742f1d819ea34d1f4b4f8d7c197,From Images to 3D Shape Attributes.,"TO APPEAR IN TPAMI
From Images to 3D Shape Attributes
David F. Fouhey, Abhinav Gupta, Andrew Zisserman"
bb893fac40eb901229567abb507a8cb82553d198,Will the Pedestrian Cross? Probabilistic Path Prediction Based on Learned Motion Features,"Will the Pedestrian Cross?
Probabilistic Path Prediction Based on Learned Motion Features
Christoph G. Keller1, Christoph Hermes2, and Dariu M. Gavrila3,4
Image & Pattern Analysis Group, Univ. of Heidelberg, Germany
Applied Informatics Group, Univ. of Bielefeld, Germany
Environment Perception, Group Research, Daimler AG, Ulm, Germany
Intelligent Systems Lab, Fac. of Science, Univ. of Amsterdam, The Netherlands"
bb7c093c41fcec269b6a7a950902cc95429bb289,Robust video object tracking via Bayesian model averaging based feature fusion,"Robust video object tracking via Bayesian model
veraging based feature fusion
Yi Dai, Bin Liu, Member, IEEE"
bbf5575f0d20b79b61c8c0d8b7c2a57224c359de,Emotion Recognition from Decision Level Fusion of Visual and Acoustic Features using Hausdorff Classifier,"Emotion Recognition from Decision Level Fusion
of Visual and Acoustic Features using Hausdorff
Classifier
H.D.Vankayallapati1, K.R.Anne2, and K. Kyamakya1
Institute of Smart System Technologies, Transportation Informatics Group
University of Klagenfurt, Klagenfurt, Austria.
Department of Information Technology, TIFAC-CORE in Telematics
VR Siddhartha Engineering College, Vijayawada, India."
bb667cbbf050040fa39cd9e756cd5bf485fccf32,Effective Deterministic Initialization for $k$-Means-Like Methods via Local Density Peaks Searching,"Effective Deterministic Initialization for
k-Means-Like Methods via Local Density Peaks
Searching
Fengfu Li, Hong Qiao, and Bo Zhang"
bb021f58f8822d12f5747d583a46005ade4a0b10,Breaking Microsoft’s CAPTCHA,"Breaking Microsoft’s CAPTCHA
Colin Hong Bokil Lopez-Pineda Karthik Rajendran Adri`a Recasens
May 2015"
bb6ac4e26499dea5bdedb05b269f40f56247b4c6,An Action Unit based Hierarchical Random Forest Model to Facial Expression Recognition,
bbc4bbf7aa80a8108d62644fea24e6f70a805df9,Inducing Wavelets into Random Fields via Generative Boosting,"Inducing Wavelets into Random Fields via Generative
Boosting
Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian Wu∗
Department of Statistics, University of California, Los Angeles, USA"
bb980dd94463b03c6584513bcccf780e43f089b2,Prediction Error Meta Classification in Semantic Segmentation: Detection via Aggregated Dispersion Measures of Softmax Probabilities,"Prediction Error Meta Classification in Semantic
Segmentation: Detection via Aggregated Dispersion
Measures of Softmax Probabilities
Matthias Rottmann∗, Pascal Colling∗, Thomas Paul Hack†,
Fabian H¨uger‡, Peter Schlicht‡ and Hanno Gottschalk∗"
bb451dc2420e1a090c4796c19716f93a9ef867c9,A Review on: Automatic Movie Character Annotation by Robust Face-Name Graph Matching,"International Journal of Computer Applications (0975 – 8887)
Volume 104 – No.5, October 2014
A Review on: Automatic Movie Character Annotation
y Robust Face-Name Graph Matching
Bhandare P.S.
Research Scholar
Sinhgad College of
Engineering, korti, Pandharpur,
Solapur University, INDIA
Gadekar P.R.
Assistant Professor
Sinhgad College of
Engineering, korti, Pandharpur,
Solapur University, INDIA
Bandgar Vishal V.
Assistant Professor
College of Engineering (Poly),
Pandharpur, Solapur, INDIA
Bhise Avdhut S.
HOD, Department of"
bbd1eb87c0686fddb838421050007e934b2d74ab,Look at Boundary: A Boundary-Aware Face Alignment Algorithm,"(68	points)	COFW	(29	points)	AFLW	(19	points)	Figure1:Thefirstcolumnshowsthefaceimagesfromdifferentdatasetswithdifferentnumberoflandmarks.Thesecondcolumnillustratestheuniversallydefinedfacialboundariesestimatedbyourmethods.Withthehelpofboundaryinformation,ourapproachachieveshighaccuracylocalisationresultsacrossmultipledatasetsandannotationprotocols,asshowninthethirdcolumn.Differenttofacedetection[45]andrecognition[75],facealignmentidentifiesgeometrystructureofhumanfacewhichcanbeviewedasmodelinghighlystructuredout-put.Eachfaciallandmarkisstronglyassociatedwithawell-definedfacialboundary,e.g.,eyelidandnosebridge.However,comparedtoboundaries,faciallandmarksarenotsowell-defined.Faciallandmarksotherthancornerscanhardlyremainthesamesemanticallocationswithlargeposevariationandocclusion.Besides,differentannotationschemesofexistingdatasetsleadtoadifferentnumberoflandmarks[28,5,66,30](19/29/68/194points)andanno-tationschemeoffuturefacealignmentdatasetscanhardlybedetermined.Webelievethereasoningofauniquefacial"
d745cf8c51032996b5fee6b19e1b5321c14797eb,Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features,"Viewpoint Invariant Pedestrian Recognition
with an Ensemble of Localized Features
Douglas Gray and Hai Tao
University of California, Santa Cruz
{dgray,
http://vision.soe.ucsc.edu/"
d79121a03584123fad02c4f2607f0e63d08ff7c2,Tracking Occluded Objects and Recovering Incomplete Trajectories by Reasoning About Containment Relations and Human Actions,"Tracking Occluded Objects and Recovering Incomplete Trajectories
y Reasoning about Containment Relations and Human Actions
Wei Liang1,2
Yixin Zhu2
Song-Chun Zhu2
Beijing Laboratory of Intelligent Information Technology, Beijing Institute of Technology, China
Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, USA"
d7ed878c08c90186e3bf607c20ff943834ad0d68,Semantic Data Integration,"Semantic Data Integration
Michelle Cheatham and Catia Pesquita"
d78dde04ac4215ed0ed6f2bd5d85094b389d7f5e,A Warping Window Approach to Real-time Vision-based Pedestrian Detection in a Truck's Blind Spot Zone,"A warping window approach to real-time vision-based pedestrian
detection in a truck’s blind spot zone
Kristof Van Beeck1, Toon Goedem´e1;2 and Tinne Tuytelaars2
IIW/EAVISE, Lessius Mechelen - Campus De Nayer, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
ESAT/PSI-VISICS, KU Leuven, IBBT, Kasteelpark Arenberg 10, 3100, Heverlee, Belgium
fkristof.vanbeeck,
Keywords:
Computer vision: Pedestrian tracking: Real-time: Active safety systems"
d74c6e6fbd8952cbad96013e227374c903797162,With Great Training Comes Great Vulnerability: Practical Attacks against Transfer Learning,"With Great Training Comes Great Vulnerability:
Practical Attacks against Transfer Learning
Bolun Wang
Yuanshun Yao
Bimal Viswanath
Haitao Zheng
UC Santa Barbara
University of Chicago
Virginia Tech
University of Chicago
Ben Y. Zhao
University of Chicago"
d7c6e4348542fd2b5e64a73d9c1fd0172e2b1774,Grounding language acquisition by training semantic parsers using captioned videos,"Grounding language acquisition by training semantic parsers
using captioned videos
Candace Ross
CSAIL, MIT
Andrei Barbu
CSAIL, MIT
Yevgeni Berzak
BCS, MIT
Battushig Myanganbayar
CSAIL, MIT"
d7f7eb0fbe3339d13f5a6a23df0fd27fdb357d48,Intention-Aware Multi-Human Tracking for Human-Robot Interaction via Particle Filtering over Sets,"Intention-Aware Multi-Human Tracking for
Human-Robot Interaction via Particle Filtering over Sets
Aijun Bai
Univ. of Sci. & Tech. of China
Reid Simmons
Carnegie Mellon Univ.
Manuela Veloso
Carnegie Mellon Univ.
The Approach
The ability for an autonomous robot to track and identify
multiple humans and understand their intentions is crucial
for socialized human-robot interactions in dynamic envi-
ronments (Michalowski and Simmons 2006). Take CoBot
(Rosenthal, Biswas, and Veloso 2010) trying to enter an ele-
vator as an example. When the elevator door opens, suppose
there are multiple humans occupied, CoBot needs to track
each human’s state and intention in terms of whether he/she
is going to exit the elevator or not. For the purposes of safely
nd friendly interacting with humans, CoBot can only make
the decision to enter the elevator when any human who in-"
d7731565ec4cb1b910290ccb580405cb55224286,Robust Face Recognition via Adaptive Sparse Representation,"Robust Face Recognition via Adaptive Sparse
Representation
Jing Wang, Canyi Lu, Meng Wang, Member, IEEE, Peipei Li,
Shuicheng Yan, Senior Member, IEEE, Xuegang Hu"
d7eae9f76dcfa978b99eef430feb9420eac702eb,A Multi-Layer K-means Approach for Multi-Sensor Data Pattern Recognition in Multi-Target Localization,"A Multi-Layer K-means Approach for Multi-Sensor Data Pattern
Recognition in Multi-Target Localization
Samuel Silva, Rengan Suresh, Feng Tao, Johnathan Votion, Yongcan Cao"
d7fe2a52d0ad915b78330340a8111e0b5a66513a,Photo-to-Caricature Translation on Faces in the Wild,"Unpaired Photo-to-Caricature Translation on Faces in
the Wild
Ziqiang Zhenga, Chao Wanga, Zhibin Yua, Nan Wanga, Haiyong Zhenga,∗,
Bing Zhenga
No. 238 Songling Road, Department of Electronic Engineering, Ocean University of
China, Qingdao, China"
d7f19812ee77e508b314d0ac6ab49d05ac81e0d1,Active Visual-Based Detection and Tracking of Moving Objects from Clustering and Classification Methods,"Active Visual-based Detection and Tracking of Moving
Objects from Clustering and Classification methods
David Márquez-Gámez Michel Devy
CNRS; LAAS; Université de Toulouse
7 avenue du Colonel Roche, F-31077 Toulouse Cedex, France"
d7c659ce0442bf1047e7d2e942837b18105f6f47,Depth-Adaptive Deep Neural Network for Semantic Segmentation,"Depth Adaptive Deep Neural Network
for Semantic Segmentation
Byeongkeun Kang, Yeejin Lee, and Truong Q. Nguyen, Fellow, IEEE"
d76f68c2d0a45ab224065d57836bf3da360c82f2,Learning to Segment Human by Watching YouTube,"Learning to Segment Human by Watching
YouTube
Xiaodan Liang, Yunchao Wei, Liang Lin, Yunpeng Chen, Xiaohui Shen, Jianchao Yang,
Shuicheng Yan"
d7a0f9ab321e728b981e12775b4906f55d3aab15,3D Object Reconstruction using Computer Vision: Reconstruction and Characterization Applications for External Human Anatomical Structures,"D Object Reconstruction using
Computer Vision: Reconstruction
nd Characterization Applications for
External Human Anatomical Structures
Teresa Cristina de Sousa Azevedo
BSc in Electrical and Computer Engineering by
Faculdade de Engenharia da Universidade do Porto (2002)
MSc in Biomedical Engineering by
Faculdade de Engenharia da Universidade do Porto (2007)
Thesis submitted for the fulfilment of the requirements for the
PhD degree in Informatics Engineering by
Faculdade de Engenharia da Universidade do Porto
Supervisor:
João Manuel R. S. Tavares
Associate Professor of the Department of Mechanical Engineering
Faculdade de Engenharia da Universidade do Porto
Co-supervisor:
Mário A. P. Vaz
Associate Professor of the Department of Mechanical Engineering
Faculdade de Engenharia da Universidade do Porto"
d708ce7103a992634b1b4e87612815f03ba3ab24,FCVID: Fudan-Columbia Video Dataset,"FCVID: Fudan-Columbia Video Dataset
Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, Shih-Fu Chang
Available at: http://bigvid.fudan.edu.cn/FCVID/
OVERVIEW
Recognizing visual contents in unconstrained videos
has become a very important problem for many ap-
plications, such as Web video search and recommen-
dation, smart content-aware advertising, robotics, etc.
Existing datasets for video content recognition are
either small or do not have reliable manual labels.
In this work, we construct and release a new Inter-
net video dataset called Fudan-Columbia Video Dataset
(FCVID), containing 91,223 Web videos (total duration
,232 hours) annotated manually according to 239
ategories. We believe that the release of FCVID can
stimulate innovative research on this challenging and
important problem.
COLLECTION AND ANNOTATION
The categories in FCVID cover a wide range of topics
like social events (e.g., “tailgate party”), procedural"
d7da0f595d135474cc2193d382b22458b313cdbf,Multi-View Constraint Propagation with Consensus Prior Knowledge,Multi-View Constraint Propagation with Consensus Prior Knowledge
d78b190f98f9630cab261eabc399733af052f05c,Unsupervised Deep Domain Adaptation for Pedestrian Detection,
d73221adda13a99e8dd8dab101abcfeae6b7b706,The ApolloScape Dataset for Autonomous Driving,"The ApolloScape Dataset for Autonomous Driving
Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao,
Dingfu Zhou, Peng Wang, Yuanqing Lin, and Ruigang Yang
Baidu Research, Beijing, China
National Engineering Laboratory of Deep Learning Technology and Application, China"
d7612e01c10f351a3e2ff1a57465c3d17ddbb193,Rain Streaks Removal in an Image by using Image Decomposition,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391
Rain Streaks Removal in an Image by using Image
Decomposition
Priyanka A. Chougule1, J. A. Shaikh2
Research Student, Electronics Dept., PVPIT, Budhgaon
Associate Professor, Electronics Dept. PVPIT, Budhgaon"
d7b6bbb94ac20f5e75893f140ef7e207db7cd483,griffith . edu . au Face Recognition across Pose : A Review,"Griffith Research Online
https://research-repository.griffith.edu.au
Face Recognition across Pose: A
Review
Author
Zhang, Paul, Gao, Yongsheng
Published
Journal Title
Pattern Recognition
https://doi.org/10.1016/j.patcog.2009.04.017
Copyright Statement
Copyright 2009 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance
with the copyright policy of the publisher. Please refer to the journal's website for access to the
definitive, published version.
Downloaded from
http://hdl.handle.net/10072/30193"
d7144bc7d91841963b037f210f9356d28f76e70e,A comparison of features for regression-based driver head pose estimation under varying illumination conditions,"A COMPARISON OF FEATURES FOR REGRESSION-BASED DRIVER HEAD POSE
ESTIMATION UNDER VARYING ILLUMINATION CONDITIONS
Dimitri J. Walger1, Toby P. Breckon2, Anna Gaszczak3, Thomas Popham3
Cranfield University, Bedfordshire, UK 2Durham University, Durham, UK
Jaguar Land Rover, Warwickshire, UK"
d7d6200e41d574e2f3ddd9ded299613683519c7c,Accurate Iris Recognition at a Distance Using Stabilized Iris Encoding and Zernike Moments Phase Features,"IEEE Trans. Image Processing, 2014
Accurate Iris Recognition at a Distance Using
Stabilized Iris Encoding and Zernike Moments Phase Features
Chun-Wei Tan, Ajay Kumar"
d75d074c11a62780b836376249391da39660cad6,Task Scheduling Frameworks for Heterogeneous Computing Toward Exascale,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018
Task Scheduling Frameworks for Heterogeneous
Computing Toward Exascale
Suhelah Sandokji1, Fathy Eassa2
Faculty of Computing and Information Technology, KAU
Jeddah ,Saudi Arabia
studies  consider  partitioning"
d7e8672caecc7e4b17e8d9d3cbd673d402c7e7af,Robust Stereo-Based Person Detection and Tracking for a Person Following Robot,"Robust Stereo-Based Person Detection and Tracking
for a Person Following Robot
Junji Satake and Jun Miura
Department of Information and Computer Sciences
Toyohashi University of Technology"
d7d9fa9a5a57f9f3da7ab2c87ca58127665774cc,Improving Shadow Suppression for Illumination Robust Face Recognition,"Improving Shadow Suppression for Illumination
Robust Face Recognition
Wuming Zhang, Xi Zhao, Jean-Marie Morvan and Liming Chen, Senior Member, IEEE"
d7d166aee5369b79ea2d71a6edd73b7599597aaa,Fast Subspace Clustering Based on the Kronecker Product,"Fast Subspace Clustering Based on the
Kronecker Product
Lei Zhou1, Xiao Bai1, Xianglong Liu1, Jun Zhou2, and Hancock Edwin3
Beihang University 2Grif‌f‌ith University 3University of York, UK"
d7e8c6da1a95f41d8097b7b713890ccde13ef1d8,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
d79f9ada35e4410cd255db39d7cc557017f8111a,Evaluation of accurate eye corner detection methods for gaze estimation,"Journal of Eye Movement Research
7(3):3, 1-8
Evaluation of accurate eye corner detection methods for gaze
estimation
Jose Javier Bengoechea
Public University of Navarra, Spain
Juan J. Cerrolaza
Childrens National Medical Center, USA
Arantxa Villanueva
Public University of Navarra, Spain
Rafael Cabeza
Public University of Navarra, Spain
Accurate detection of iris center and eye corners appears to be a promising
pproach for low cost gaze estimation.
In this paper we propose novel eye
inner corner detection methods. Appearance and feature based segmentation
pproaches are suggested. All these methods are exhaustively tested on a realistic
dataset containing images of subjects gazing at different points on a screen.
We have demonstrated that a method based on a neural network presents the
est performance even in light changing scenarios."
d7f3836f2d28adf15fc809bd4f90afb1f61ba8e0,Segment-before-Detect: Vehicle Detection and Classification through Semantic Segmentation of Aerial Images,"Article
Segment-before-Detect: Vehicle Detection and
Classification through Semantic Segmentation of
Aerial Images
Nicolas Audebert 1,2,*, Bertrand Le Saux 1 and Sébastien Lefèvre 2
ONERA, The French Aerospace Lab, F-91761 Palaiseau, France;
Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), University Bretagne Sud, UMR 6074,
F-56000 Vannes, France;
* Correspondence:
Academic Editors: Norman Kerle, Markus Gerke and Prasad S. Thenkabail
Received: 28 December 2016; Accepted: 7 April 2017; Published: 13 April 2017"
d03265ea9200a993af857b473c6bf12a095ca178,Multiple deep convolutional neural networks averaging for face alignment,"Multiple deep convolutional neural
networks averaging for face
lignment
Shaohua Zhang
Hua Yang
Zhouping Yin
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 05/28/2015 Terms of Use: http://spiedl.org/terms"
d0462aa7754ffdf39962e2003344937258a0e42e,You Can’t Gamble on Others: Dissociable Systems for Strategic Uncertainty and Risk in the Brain,"You Can’t Gamble on Others: Dissociable Systems for
Strategic Uncertainty and Risk in the Brain
W. Gavin Ekins1, Ricardo Caceda, C. Monica Capra1, and Gregory S. Berns1*
1Center for Neuropolicy and Economics Department, Emory University, Atlanta, GA 30322 USA
*Correspondance:"
d096bdd5743cbb33f0cd0ae984d188b2c302f054,Extractive and Abstractive Caption Generation Model for News Images,"ISSN:2321-1156
International Journal of Innovative Research in Technology & Science(IJIRTS)"
d00f6ec074bbe777ba2e419b39729283a28101c5,Hashtag Recommendation for Multimodal Microblog Using Co-Attention Network,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
d0d186779ae4a4e53101a26dc741254e822e07ab,Multi Camera for Surveillance System Ground Detection and 3D Reconstruction,"Multi Camera for Surveillance System Ground Detection and
International Journal of Smart Home
Vol. 9, No. 1 (2015), pp. 103-110
http://dx.doi.org/10.14257/ijsh.2015.9.1.11
D Reconstruction
Xu Yongzhe1 and Byungsoo Lee1
Department of Computer Engineering, University of Incheon, Korea"
d0ad7324fab174609f26c617869fa328960617e2,Person Identification From Text Independent Lip Movement Using the Longest Matching Segment Method,"Person Identification From Text Independent Lip Movement
Using the Longest Matching Segment Method
Paul C. Brown, Ji Ming, Daryl Stewart
Institute of ECIT, Electronics and Computer Engineering Cluster, Queen(cid:48)s University Belfast,
Belfast BT7 1NN, UK"
d0a6a700779ac8cb70d7bb95f9a5afdda60152d9,Pyramid Mean Representation of Image Sequences for Fast Face Retrieval in Unconstrained Video Data,"Pyramid Mean Representation of Image Sequences for
Fast Face Retrieval in Unconstrained Video Data
Christian Herrmann1,2 and J¨urgen Beyerer1,2
Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB,
Karlsruhe, Germany"
d04631e40b237ae29cb8d2bd187b04033580e63b,Multi-cue Based Multi-target Tracking with Boosted MHT,"Multi-cue Based Multi-target Tracking
with Boosted MHT
Long Ying1,2, Tianzhu Zhang1,2, Shengsheng Qian1,2, and Changsheng Xu1,2
Institute of Automation, Chinese Academy of Science, Beijing, China
China-Singapore Institute of Digital Media, Singapore"
d07e9b04c1480d65e37e44bec3be95fc3206c17b,Combining classifiers for face recognition,- 130-7803-7965-9/03/$17.00 ©2003 IEEEICME 2003(cid:224)
d0f709ab39e280467d854064132570c1d5316de5,Multi-Object Tracking and Identification over Sets,"Multi-Object Tracking and Identification over Sets
Aijun Bai
UC Berkeley"
d04d53038d4267cf25badc5d6acccd2fc910a8a7,Online Multi-Object Tracking with Structural Invariance Constraint,"ZHOU, JIANG, WEI, DONG, WANG: ONLINE MULTI-OBJECT TRACKING WITH SIC
Online Multi-Object Tracking
with Structural Invariance Constraint
Xiao Zhou
Peilin Jiang
Zhao Wei
Hang Dong
Fei Wang
National Engineering
Laboratory for Visual Information
Processing and Application,
XJTU, 99 Yanxiang Road,
Xi’an, Shaanxi 710054, China
School of Software Engineering,
XJTU, 28 West Xianning Road,
Xi’an, Shaanxi 710049, China"
d0de92865a53576af3dd118f4d1fa73be12aee9b,PCANet-II: When PCANet Meets the Second Order Pooling,"PCANet-II:WhenPCANetMeetstheSecondOrderPoolingLeiTian,XiaopengHong"
d014011b24c62d5b689c782c09b89c52970f46e7,"SRDA: Generating Instance Segmentation Annotation via Scanning, Reasoning and Domain Adaptation","SRDA: Generating Instance Segmentation
Annotation Via Scanning, Reasoning And
Domain Adaptation
Wenqiang Xu(cid:63), Yonglu Li(cid:63), Cewu Lu
Department of Computer Science and Engineering,
Shanghai Jiaotong University
{vinjohn,yonglu"
d05825a394f11a391c8815f6b0d394cdb4cfaa95,I2T2I: Learning text to image synthesis with textual data augmentation,
d0e1ad4f3f608124cd3efc2d5bd01b421ffc3274,Running head: SUPPRESSING BEHAVIOUR DOES NOT INFLUENCE WORKING MEMORY CAPACITY DEPARTMENT OF PSYCHOLOGY Suppressing behaviour related to discomfort induced with a cold pressure task does not influence working memory capacity in a 2-back task,"Running
head:
SUPPRESSING
BEHAVIOUR
INFLUENCE
WORKING
MEMORY
CAPACITY
DEPARTMENT OF PSYCHOLOGY
Suppressing behaviour related to discomfort
induced with a cold pressure task does not
influence working memory capacity in a 2-back
task.
Erik Danielski
Master thesis spring 2013
Supervisors: Martin Wolgast & Emelie Stiernströmer"
d00c335fbb542bc628642c1db36791eae24e02b7,Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor,"Article
Deep Learning-Based Gaze Detection System for
Automobile Drivers Using a NIR Camera Sensor
Rizwan Ali Naqvi, Muhammad Arsalan, Ganbayar Batchuluun, Hyo Sik Yoon and
Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu,
Seoul 100-715, Korea; (R.A.N.); (M.A.);
(G.B.); (H.S.Y.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 5 January 2018; Accepted: 1 February 2018; Published: 3 February 2018"
d03f1257066ce5dd843c6977858a1daef0671f3d,Stories for Images-in-Sequence by using Visual and Narrative Components,"Stories for Images-in-Sequence by using Visual
nd Narrative Components (cid:63)
Marko Smilevski1,2, Ilija Lalkovski2, and Gjorgji Madjarov1,3
Ss. Cyril and Methodius University, Skopje, Macedonia
Pendulibrium, Skopje, Macedonia
Elevate Global, Skopje, Macedonia"
d0631ba22add59684fff926d80d2e6948dfb7d7e,MUTT: Metric Unit TesTing for Language Generation Tasks,"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1935–1943,
Berlin, Germany, August 7-12, 2016. c(cid:13)2016 Association for Computational Linguistics"
d01e65591745fc46a3f69a6c9387be17caf55c16,State-Driven Particle Filter for Multi-person Tracking,"State-Driven Particle Filter
for Multi-Person Tracking
David Gerónimo1, Frédéric Lerasle2,3, and Antonio M. López1
Computer Vision Center and Department of Computer Science
Edifici O, 08193 Campus Universitat Autònoma de Barcelona, Bellaterra, Spain.
CNRS-LAAS, 7 avenue du Colonel Roche, F-31077 Toulouse, France
Université de Toulouse (UPS), F-31077 Toulouse, France"
d0a9bbd3bd9dcb62f9874fc1378a7f1a17f44563,Prototype Generation Using Self-Organizing Maps for Informativeness-Based Classifier,"Hindawi
Computational Intelligence and Neuroscience
Volume 2017, Article ID 4263064, 15 pages
https://doi.org/10.1155/2017/4263064
Research Article
Prototype Generation Using Self-Organizing Maps for
Informativeness-Based Classifier
Leandro Juvêncio Moreira1 and Leandro A. Silva2
Graduate Program in Electrical Engineering and Computing, Mackenzie Presbyterian University, Sao Paulo, SP, Brazil
Computing and Informatics Faculty & Graduate Program in Electrical Engineering and Computing,
Mackenzie Presbyterian University, Sao Paulo, SP, Brazil
Correspondence should be addressed to Leandro A. Silva;
Received 31 January 2017; Revised 13 June 2017; Accepted 15 June 2017; Published 25 July 2017
Academic Editor: Toshihisa Tanaka
Copyright © 2017 Leandro Juvˆencio Moreira and Leandro A. Silva. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.
The 𝑘 nearest neighbor is one of the most important and simple procedures for data classification task. The 𝑘NN, as it is called,
requires only two parameters: the number of𝑘 and a similarity measure. However, the algorithm has some weaknesses that make it
nalysis and all training dataset is necessary. Another weakness is the optimal choice of 𝑘 parameter when the object analyzed"
d0144d76b8b926d22411d388e7a26506519372eb,Improving Regression Performance with Distributional Losses,"Improving Regression Performance with Distributional Losses
Ehsan Imani 1 Martha White 1"
d0e20aa3d61b77d17f005a1d24d7cf47600836ef,Rethinking Atrous Convolution for Semantic Image Segmentation,"Rethinking Atrous Convolution for Semantic Image Segmentation
Liang-Chieh Chen George Papandreou Florian Schroff Hartwig Adam
{lcchen, gpapan, fschroff,
Google Inc."
d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae,A 3-D Audio-Visual Corpus of Affective Communication,"A 3-D Audio-Visual Corpus
of Affective Communication
Gabriele Fanelli, Juergen Gall, Harald Romsdorfer, Member, IEEE, Thibaut Weise, and
Luc Van Gool, Member, IEEE"
d0a21f94de312a0ff31657fd103d6b29db823caa,Facial Expression Analysis,"Facial Expression Analysis
Fernando De la Torre and Jeffrey F. Cohn"
d03e4e938bcbc25aa0feb83d8a0830f9cd3eb3ea,Face Recognition with Patterns of Oriented Edge Magnitudes,"Face Recognition with Patterns of Oriented
Edge Magnitudes
Ngoc-Son Vu1,2 and Alice Caplier2
Vesalis Sarl, Clermont Ferrand, France
Gipsa-lab, Grenoble INP, France"
d02c54192dbd0798b43231efe1159d6b4375ad36,3 D Reconstruction and Face Recognition Using Kernel-Based ICA and Neural Networks,"D Reconstruction and Face Recognition Using Kernel-Based
ICA and Neural Networks
Cheng-Jian Lin                  Ya-Tzu Huang
Chi-Yung Lee
Dept. of Electrical                Dept. of CSIE                    Dept. of CSIE
Engineering              Chaoyang University              Nankai Institute of
National University            of Technology                        Technology
of Kaohsiung"
d00787e215bd74d32d80a6c115c4789214da5edb,Faster and Lighter Online Sparse Dictionary Learning,"Faster and Lighter Online
Sparse Dictionary Learning
Project report
By: Shay Ben-Assayag, Omer Dahary
Supervisor: Jeremias Sulam"
be8c517406528edc47c4ec0222e2a603950c2762,Measuring Facial Action,"Harrigan / The new handbook of methods in nonverbal behaviour research 02-harrigan-chap02 Page Proof page 7
7.6.2005
5:45pm
B A S I C R E S E A RC H
M E T H O D S A N D
P RO C E D U R E S"
beb3fd2da7f8f3b0c3ebceaa2150a0e65736d1a2,Adaptive Histogram Equalization and Logarithm Transform with Rescaled Low Frequency DCT Coefficients for Illumination Normalization,"RESEARCH PAPER
International Journal of Recent Trends in Engineering Vol 1, No. 1, May 2009,
Adaptive Histogram Equalization and Logarithm
Transform with Rescaled Low Frequency DCT
Coefficients for Illumination Normalization
Virendra P. Vishwakarma, Sujata Pandey and M. N. Gupta
Department of Computer Science and Engineering
Amity School of Engineering Technology, 580, Bijwasan, New Delhi-110061, India
(Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India)
Email:
illumination  normalization.  The
lighting  conditions.  Most  of  the"
bee609ea6e71aba9b449731242efdb136d556222,Multi-Target Tracking in Multiple Non-Overlapping Cameras using Constrained Dominant Sets,"Multi-Target Tracking in Multiple
Non-Overlapping Cameras using Constrained
Dominant Sets
Yonatan Tariku Tesfaye*, Student Member, IEEE, Eyasu Zemene*, Student Member, IEEE,
Andrea Prati, Senior member, IEEE, Marcello Pelillo, Fellow, IEEE, and Mubarak Shah, Fellow, IEEE"
be48b5dcd10ab834cd68d5b2a24187180e2b408f,Constrained Low-Rank Learning Using Least Squares-Based Regularization,"FOR PERSONAL USE ONLY
Constrained Low-rank Learning Using Least
Squares Based Regularization
Ping Li, Member, IEEE, Jun Yu, Member, IEEE, Meng Wang, Member, IEEE,
Luming Zhang, Member, IEEE, Deng Cai, Member, IEEE, and Xuelong Li, Fellow, IEEE,"
be9dde86ebd10ecb05808e034e3cadd210fe0bfb,SLAMIT: A Sub-map based SLAM system On-line creation of multi-leveled map,"Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2016
SLAMIT: A Sub-map based
SLAM system
On-line creation of multi-leveled map
Karl Holmquist"
be48780eb72d9624a16dd211d6309227c79efd43,Interactive Visual and Semantic Image Retrieval,"Interactive Visual and Semantic Image Retrieval
Joost van de Weijer, Fahad Khan and Marc Masana Castrillo
Introduction
One direct consequence of recent advances in digital visual data generation and
the direct availability of this information through the World-Wide Web, is a urgent
demand for efficient image retrieval systems. The disclosure of the content of these
millions of photos available on the internet is of great importance. The objective
of image retrieval is to allow users to efficiently browse through this abundance
of images. Due to the non-expert nature of the majority of the internet users, such
systems should be user friendly, and therefore avoid complex user interfaces.
Traditionally, two sources of information are exploited in the description of im-
ges on the web. The first approach, called text-based image retrieval, describes
images by a set of labels or keywords [1]. These labels can be automatically ex-
tracted from for example the image name (e.g. ’car.jpg’ would provide information
bout the presence of a car in the image), or alternatively from the webpage text
surrounding the image. Another, more expensive way would be to manually label
images with a set of keywords. Shortcomings of the text-based approach to image
retrieval are obvious: many objects in the scene will not be labeled, words suffer
from the confusions in case of synonyms or homonyms, and words often fall short
in describing the esthetics, composition and color scheme of a scene. However, un-"
bea2c35ef78eb40df52e27cf4098f28a79bcbad5,TabletGaze: A Dataset and Baseline Algorithms for Unconstrained Appearance-based Gaze Estimation in Mobile Tablets,"TabletGaze: Unconstrained Appearance-based Gaze
Estimation in Mobile Tablets
Qiong Huang, Student Member, IEEE,, Ashok Veeraraghavan, Member, IEEE,,
nd Ashutosh Sabharwal, Fellow, IEEE"
be437b53a376085b01ebd0f4c7c6c9e40a4b1a75,Face Recognition and Retrieval Using Cross Age Reference Coding,"ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526
INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
Vol. 4, Issue 5, May 2016
IJIREEICE
Face Recognition and Retrieval Using Cross
Age Reference Coding
Sricharan H S1, Srinidhi K S1, Rajath D N1, Tejas J N1, Chandrakala B M2
BE, DSCE, Bangalore1
Assistant Professor, DSCE, Bangalore2"
bea5780d621e669e8069f05d0f2fc0db9df4b50f,Convolutional Deep Belief Networks on CIFAR-10,"Convolutional Deep Belief Networks on CIFAR-10
Alex Krizhevsky
Introduction
We describe how to train a two-layer convolutional Deep Belief Network (DBN) on the 1.6 million tiny images
dataset.
When training a convolutional DBN, one must decide what to do with the edge pixels of teh images. As
the pixels near the edge of an image contribute to the fewest convolutional lter outputs, the model may
see it t to tailor its few convolutional lters to better model the edge pixels. This is undesirable becaue it
usually comes at the expense of a good model for the interior parts of the image. We investigate several ways
of dealing with the edge pixels when training a convolutional DBN. Using a combination of locally-connected
onvolutional units and globally-connected units, as well as a few tricks to reduce the eects of overtting,
we achieve state-of-the-art performance in the classication task of the CIFAR-10 subset of the tiny images
dataset.
The dataset
Throughout this paper we employ two subsets of the 80 million tiny images dataset [2]. The 80 million
tiny images dataset is a collection of 32 × 32 color images obtained by searching various online image search"
be07f2950771d318a78d2b64de340394f7d6b717,3D HMM-based Facial Expression Recognition using Histogram of Oriented Optical Flow,"See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/290192867
D	HMM-based	Facial	Expression	Recognition
using	Histogram	of	Oriented	Optical	Flow
ARTICLE		in		SYNTHESIS	LECTURES	ON	ARTIFICIAL	INTELLIGENCE	AND	MACHINE	LEARNING	·	DECEMBER	2015
DOI:	10.14738/tmlai.36.1661
READS
AUTHORS,	INCLUDING:
Sheng	Kung
Oakland	University
Djamel	Bouchaffra
Institute	of	Electrical	and	Electronics	Engineers
PUBLICATION			0	CITATIONS
57	PUBLICATIONS			402	CITATIONS
SEE	PROFILE
SEE	PROFILE
All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,
letting	you	access	and	read	them	immediately.
Available	from:	Djamel	Bouchaffra
Retrieved	on:	11	February	2016"
be313072e9706df300d86bfac54079acfb9c1ef0,Descripteurs à divers niveaux de concepts pour la classification d ’ images multi-objets,"Descripteurs à divers niveaux de concepts pour la classification
d’images multi-objets
Y. Tamaazousti1 3
H. Le Borgne1
C. Hudelot2 3
CentraleSupélec, Laboratoire de Mathématiques et Informatique pour la Complexité et les Systèmes
CEA LIST, Laboratoire Vision et Ingénierie des Contenus
Université Paris-Saclay, Laboratoire MICS
{Youssef.tamaazousti,
Résumé
La classification d’images au moyen de descripteurs sé-
mantiques repose sur des caractéristiques formées par
les sorties de classifieurs binaires, chacun détectant un
oncept visuel dans l’image. Les approches existantes
onsidèrent souvent
les concepts visuels indépendam-
ment les uns des autres, alors qu’ils sont souvent liés.
Ces relations sont parfois prises en compte, au moyen
d’un schéma ascendant dépendant fortement de descrip-
teurs bas-niveaux, induisant des relations non-pertinentes"
bea185a15d5df7bbfce83bc684c316412703efbb,Pixelnn: Example-based Image Synthesis,"Under review as a conference paper at ICLR 2018
PIXELNN: EXAMPLE-BASED IMAGE SYNTHESIS
Anonymous authors
Paper under double-blind review"
be24e5fd1ec27d444c66183e89b5033db9155de9,"A Continuous, Full-scope, Spatio-temporal Tracking Metric based on KL-divergence","A Continuous, Full-scope, Spatio-temporal Tracking
Metric based on KL-divergence
Terry Adams
U.S. Government
Suite 6587
Ft. Meade, MD 20755
Email:"
be21529c47b79b688b420c5e296086698ba11350,CNN-Based Multimodal Human Recognition in Surveillance Environments,"Article
CNN-Based Multimodal Human Recognition in
Surveillance Environments
Ja Hyung Koo, Se Woon Cho, Na Rae Baek, Min Cheol Kim and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pil-dong-ro, 1-gil, Jung-gu,
Seoul 100-715, Korea; (J.H.K.); (S.W.C.);
(N.R.B.); (M.C.K.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 7 August 2018; Accepted: 8 September 2018; Published: 11 September 2018"
be6f29e129a99529f7ed854384d1f4da04c4ca1f,Spatially Consistent Nearest Neighbor Representations for Fine-Grained Classification. (Représentations d'images basées sur un principe de voisins partagés pour la classification fine),"Spatially Consistent Nearest Neighbor Representations
for Fine-Grained Classification
Valentin Leveau
To cite this version:
Valentin Leveau. Spatially Consistent Nearest Neighbor Representations for Fine-Grained Classifica-
tion. Computer Science [cs]. Université Montpellier, 2016. English. <tel-01410137>
HAL Id: tel-01410137
https://hal.archives-ouvertes.fr/tel-01410137
Submitted on 6 Dec 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
beb4546ae95f79235c5f3c0e9cc301b5d6fc9374,A Modular Approach to Facial Expression Recognition,"A Modular Approach to Facial Expression Recognition
Michal Sindlar
Cognitive Artificial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht
Marco Wiering
Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht"
befd21f74248ca5f22f608043d64cdea67829737,Decoupled Access-Execute on ARM big.LITTLE,"Decoupled Access-Execute on ARM big.LITTLE
Anton Weber
Uppsala University
nton.weber.0295
Kim-Anh Tran
Uppsala University
kim-anh.tran
Stefanos Kaxiras
Uppsala University
stefanos.kaxiras
Alexandra Jimborean
lexandra.jimborean
Uppsala University"
be0bd420b78be8dfc0aad65dddae10ff1ec30a94,People Orientation Recognition by Mixtures of Wrapped Distributions on Random Trees,"People Orientation Recognition by Mixtures
of Wrapped Distributions on Random Trees
Davide Baltieri, Roberto Vezzani, and Rita Cucchiara
DIEF - University of Modena and Reggio Emilia
Via Vignolese 905, 41125 - Modena, Italy
http://imagelab.ing.unimore.it"
be707bf7c7096df0fcf5bb07ef0fa53494d6a781,Effective Classifiers for Detecting Objects,"Effective Classifiers for Detecting Objects
Michael Mayo
Dept. of Computer Science
University of Waikato
Private Bag 3105, Hamilton, New Zealand
in  the
literature:
Introduction
image. Many image databases such as Caltech-101 [1]
onsist  of  images  with  the  objects  of  interest  in  a
dominant foreground position, occupying most of the
image."
bebea83479a8e1988a7da32584e37bfc463d32d4,Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning,"Discovery of Latent 3D Keypoints via
End-to-end Geometric Reasoning
Supasorn Suwajanakorn∗ Noah Snavely
Jonathan Tompson Mohammad Norouzi
{supasorn, snavely, tompson,
Google AI"
beeeade98988e55afe81faaedf06dc00848ec751,ARBEE: Towards Automated Recognition of Bodily Expression of Emotion In the Wild,"Int J Comput Vis manuscript No.
(will be inserted by the editor)
ARBEE: Towards Automated Recognition of Bodily
Expression of Emotion In the Wild
Yu Luo · Jianbo Ye · Reginald B. Adams, Jr. · Jia Li ·
Michelle G. Newman · James Z. Wang
Received: date / Accepted: date"
beb7a0329c3042c2ce63b5789e2581bb8e2dbbea,Generating Visual Representations for Zero-Shot Classification,"Generating Visual Representations for Zero-Shot Classification
Maxime Bucher, St´ephane Herbin
ONERA - The French Aerospace Lab
Palaiseau, France
Normandie Univ, UNICAEN, ENSICAEN, CNRS
Fr´ed´eric Jurie
Caen, France"
bed7834ae7d371171977a590872f60d137c2f951,GuessWhat?! Visual Object Discovery through Multi-modal Dialogue,"GuessWhat?! Visual object discovery through multi-modal dialogue
Harm de Vries
University of Montreal
Florian Strub
Univ. Lille, CNRS, Centrale Lille,
Inria, UMR 9189 CRIStAL
Sarath Chandar
University of Montreal
Olivier Pietquin
DeepMind
Hugo Larochelle
Twitter
Aaron Courville
University of Montreal"
bed06e7ff0b510b4a1762283640b4233de4c18e0,Face Interpretation Problems on Low Quality Images,"Bachelor Project
Czech
Technical
University
in Prague
Faculty of Electrical Engineering
Department of Cybernetics
Face Interpretation Problems on Low
Quality Images
Adéla Šubrtová
Supervisor: Ing. Jan Čech, Ph.D
May 2018"
beec0138d21271379bdfa89317a0a1d648733bad,Model-Free Multiple Object Tracking with Shared Proposals,"Model-Free Multiple Object Tracking with
Shared Proposals
Gao Zhu1, Fatih Porikli1,2,3, Hongdong Li1,3
Australian National University1, Data61/CSIRO2,
ARC Centre of Excellence for Robotic Vision3"
befa14324bb71e5d0f30808e54abc970d52f758c,A Convex Approach for Image Hallucination,"OAGM/AAPR Workshop 2013 (arXiv:1304.1876)
A Convex Approach for Image Hallucination
Institute for Computer Graphics and Vision, University of Technology Graz
Peter Innerhofer, Thomas Pock"
be25d7bff3b5928adf6c0a7f5495d47113f80997,Learning to Drive: Perception for Autonomous Cars a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"LEARNING TO DRIVE:
PERCEPTION FOR AUTONOMOUS CARS
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
David Michael Stavens
May 2011"
be4c2b6fdde83179dd601541f57ee5d14fe1e98a,Graphical Generative Adversarial Networks,"Graphical Generative Adversarial Networks
Chongxuan Li 1 Max Welling 2 Jun Zhu 1 Bo Zhang 1"
becb704450c6b2f7f57f03955036a5b66380b816,A Software Architecture for RGB-D People Tracking Based on ROS Framework for a Mobile Robot,"A software architecture for RGB-D
people tracking based on ROS
framework for a mobile robot
Matteo Munaro, Filippo Basso, Stefano Michieletto, Enrico Pagello, and
Emanuele Menegatti"
be993d793e393127e3fb34d27fda255894edaedc,UnFlow: Unsupervised Learning of Optical Flow With a Bidirectional Census Loss,"UnFlow: Unsupervised Learning of Optical Flow
with a Bidirectional Census Loss
Simon Meister, Junhwa Hur, Stefan Roth
Department of Computer Science
TU Darmstadt, Germany"
be72b20247fb4dc4072d962ced77ed89aa40372f,"Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN","Ef‌f‌icient Facial Representations for Age, Gender
nd Identity Recognition in Organizing Photo
Albums using Multi-output CNN
Andrey V. Savchenko
Samsung-PDMI Joint AI Center, St. Petersburg Department of Steklov Institute of
Mathematics
National Research University Higher School of Economics
Nizhny Novgorod, Russia"
be75a0ff3999754f20e63fde90f4c68b4af22d60,R4-A.1: Dynamics-Based Video Analytics,"R4-A.1: Dynamics-Based Video Analytics
PARTICIPANTS
Octavia Camps
Mario Sznaier
Title
Co-PI
Co-PI
Faculty/Staff
Institution
Graduate, Undergraduate and REU Students
Oliver Lehmann
Mengran Gou
Yongfang Cheng
Yin Wang
Sadjad Asghari-Esfeden
Angels Rates
Degree Pursued
Institution
Email
Month/Year of Graduation"
be5b455abd379240460d022a0e246615b0b86c14,"The MR2: A multi-racial, mega-resolution database of facial stimuli.","Behav Res
DOI 10.3758/s13428-015-0641-9
The MR2: A multi-racial, mega-resolution database of facial
stimuli
Nina Strohminger1,6 · Kurt Gray2 · Vladimir Chituc3 · Joseph Heffner4 ·
Chelsea Schein2 · Titus Brooks Heagins5
© Psychonomic Society, Inc. 2015"
be62019734554152c4feef62ba3092894b402efb,ARISTA - image search to annotation on billions of web photos,"The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition
Poster Spotlights
Session: Thursday Poster Session, Thurs 17 June 2010, 10:30 - 12:10 am
ARISTA - Image Search to Annotation
on Billions of Web Photos
Xin-Jing Wang, Lei Zhang, Ming Liu, Yi Li,
Wei-Ying Ma"
beab10d1bdb0c95b2f880a81a747f6dd17caa9c2,DeepDeblur: Fast one-step blurry face images restoration,"DeepDeblur: Fast one-step blurry face images restoration
Lingxiao Wang, Yali Li, Shengjin Wang
Tsinghua Unversity"
b331ca23aed90394c05f06701f90afd550131fe3,Double regularized matrix factorization for image classification and clustering,"Zhou et al. EURASIP Journal on Image and Video Processing  (2018) 2018:49
https://doi.org/10.1186/s13640-018-0287-5
EURASIP Journal on Image
nd Video Processing
R ES EAR CH
Double regularized matrix factorization for
image classification and clustering
Wei Zhou1*
, Chengdong Wu2, Jianzhong Wang3,4, Xiaosheng Yu2 and Yugen Yi5
Open Access"
b37f57edab685dba5c23de00e4fa032a3a6e8841,Towards social interaction detection in egocentric photo-streams,"Towards Social Interaction Detection in Egocentric Photo-streams
Maedeh Aghaei, Mariella Dimiccoli, Petia Radeva
University of Barcelona and Computer Vision Centre, Barcelona, Spain
Recent advances in wearable camera technology have
led to novel applications in the field of Preventive Medicine.
For some of them, such as cognitive training of elderly peo-
ple by digital memories and detection of unhealthy social
trends associated to neuropsychological disorders, social in-
teraction are of special interest. Our purpose is to address
this problem in the domain of egocentric photo-streams cap-
tured by a low temporal resolution wearable camera (2fpm).
These cameras are suited for collecting visual information
for long period of time, as required by the aforementioned
pplications. The major difficulties to be handled in this
ontext are the sparsity of observations as well as the unpre-
dictability of camera motion and attention orientation due
to the fact that the camera is worn as part of clothing (see
Fig. 1). Inspired by the theory of F-formation which is a
pattern that people tend to follow when interacting [5], our
proposed approach consists of three steps: multi-faces as-"
b33b88a5fa5d4f20c24dd0e5f3b3529b7545c9e6,Object Detection in Real Images,"SCHOOL OF COMPUTER ENGINEERING
PhD Confirmation Report
Object Detection in Real Images
Submitted by: Dilip Kumar Prasad
Research Student (PhD)
School of Computer Engineering
E-mail:
Supervisor:     Dr. Maylor K. H. Leung
Associate Professor,
School of Computer Engineering
E-mail:
August 2010"
b3d8705d46a1d63b40a76bbcf8822b2e90b3b9ad,Efficient Labelling of Pedestrian Supervisions,"Electronic Letters on Computer Vision and Image Analysis 15(1):77-99, 2016
Efficient Labelling of Pedestrian Supervisions
Kyaw Kyaw Htike
School of Information Technology, UCSI University, Kuala Lumpur, Malaysia
Received 7th Mar 2016; accepted 26th Jun 2016"
b30bdbad88c72938c476f1ea6827d8b10c300da4,Supervised Mixed Norm Autoencoder for Kinship Verification in Unconstrained Videos,"Supervised Mixed Norm Autoencoder for Kinship
Verification in Unconstrained Videos
Naman Kohli, Student Member, IEEE, Daksha Yadav, Student Member, IEEE, Mayank Vatsa,
Senior Member, IEEE, Richa Singh, Senior Member, IEEE, and Afzel Noore, Senior Member, IEEE."
b3adc7617dff08d7427142837a326b95d2e83969,A Panoramic View of Performance,"Comp. by: BVijayalakshmi Stage: Galleys ChapterID: 0000883562 Date:27/1/09 Time:17:57:10
Evaluation of Gait Recognition
, ZONGYI LIU
SUDEEP SARKAR
Computer Science and Engineering, University of
South Florida, Tampa, FL, USA
Amazon.com, Seattle, WA, USA
Synonyms
Gait recognition; Progress in gait recognition
Definition
Gait recognition refers to automated vision methods
that use video of human gait to recognize or to identify
person. Evaluation of gait recognition refers to the
enchmarking of progress in the design of gait recog-
nition algorithms on standard, common, datasets.
Introduction
Design of biometric algorithms and evaluation of per-
formance goes hand in hand. It is important to con-
stantly evaluate and analyze progress being at various
levels of biometrics design. This evaluation can be of"
b3cb91a08be4117d6efe57251061b62417867de9,Label propagation approach for predicting missing biographic labels in face-based biometric records,"T. Swearingen and A. Ross. ""A label propagation approach for predicting missing biographic labels in
A Label Propagation Approach for
Predicting Missing Biographic Labels
in Face-Based Biometric Records
Thomas Swearingen and Arun Ross"
b336f946d34cb427452517f503ada4bbe0181d3c,Diagnosing Error in Temporal Action Detectors,"Diagnosing Error in Temporal Action Detectors
Humam Alwassel, Fabian Caba Heilbron, Victor Escorcia, and Bernard
Ghanem
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
http://www.humamalwassel.com/publication/detad/
{humam.alwassel, fabian.caba, victor.escorcia,"
b340f275518aa5dd2c3663eed951045a5b8b0ab1,Visual inference of human emotion and behaviour,"Visual Inference of Human Emotion and Behaviour
Shaogang Gong
Caifeng Shan
Tao Xiang
Dept of Computer Science
Queen Mary College, London
Dept of Computer Science
Queen Mary College, London
Dept of Computer Science
Queen Mary College, London
England, UK
England, UK
England, UK"
b38e5da11281be44c82d184079d762c9d526ba2e,Understanding Grounded Language Learning Agents,"Under review as a conference paper at ICLR 2018
UNDERSTANDING GROUNDED LANGUAGE LEARNING
AGENTS
Anonymous authors
Paper under double-blind review"
b34487edb8d47c0101d514b8cb63148d80deee54,Utility of Satellite and Aerial Images for Quantification of Canopy Cover and Infilling Rates of the Invasive Woody Species Honey Mesquite (Prosopis Glandulosa) on Rangeland,"Remote Sens. 2012, 4, 1947-1962; doi:10.3390/rs4071947
OPEN ACCESS
ISSN 2072-4292
www.mdpi.com/journal/remotesensing
Article
Utility of Satellite and Aerial Images for Quantification of
Canopy Cover and Infilling Rates of the Invasive Woody Species
Honey Mesquite (Prosopis Glandulosa) on Rangeland
Mustafa Mirik * and R. James Ansley
Texas AgriLife Research, P.O. Box 1658, 11708 Hwy 70 South, Vernon, TX 76385, USA;
E-Mail:
*  Author to whom correspondence should be addressed; E-Mail:
Tel.: +1-940-552-9941; Fax: +1-940-552-2317.
Received: 9 May 2012; in revised form: 5 June 2012 / Accepted: 25 June 2012 /
Published: 29 June 2012"
b3655bcc6f491ae995c652c7f51e1b9b3a36d39c,User authentication based on foot motion,"Noname manuscript No.
(will be inserted by the editor)
User Authentication Based on Foot Motion
Davrondzhon Gafurov, Patrick Bours and Einar Snekkenes
Received: date / Accepted: date"
b3d936c0d82f9b2032949af685a10708c6856d2c,Deep Learning from Noisy Image Labels with Quality Embedding,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Deep Learning from Noisy Image Labels with
Quality Embedding
Jiangchao Yao, Jiajie Wang,
Ivor Tsang, Ya Zhang, Jun Sun, Chengqi Zhang, Rui Zhang"
b3f0a87043f7843b79744ec19dc0b93324d055d5,Improvements to Tracking Pedestrians in Video Streams Using a Pre-trained Convolutional Neural Network,"Western University
Electronic Thesis and Dissertation Repository
August 2016
Improvements to Tracking Pedestrians in Video
Streams Using a Pre-trained Convolutional Neural
Network
Marjan Ramin
The University of Western Ontario
Supervisor
Dr. Jagath Samarabandu
The University of Western Ontario
Graduate Program in Electrical and Computer Engineering
A thesis submitted in partial fulfillment of the requirements for the degree in Master of Engineering Science
© Marjan Ramin 2016
Follow this and additional works at: https://ir.lib.uwo.ca/etd
Part of the Computer Engineering Commons
Recommended Citation
Ramin, Marjan, ""Improvements to Tracking Pedestrians in Video Streams Using a Pre-trained Convolutional Neural Network"" (2016).
Electronic Thesis and Dissertation Repository. 3886.
https://ir.lib.uwo.ca/etd/3886"
b375db63742f8a67c2a7d663f23774aedccc84e5,Brain-Inspired Classroom Occupancy Monitoring on a Low-Power Mobile Platform,"Brain-inspired Classroom Occupancy
Monitoring on a Low-Power Mobile Platform
Department of Electrical, Electronic and Information Engineering, University of Bologna, Italy
Francesco Conti∗, Antonio Pullini† and Luca Benini∗†
Integrated Systems Laboratory, ETH Zurich, Switzerland"
b3e2bd3f89e49833d45c30af7d5c923489b4d5fc,Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection,"Fast Approximate kNN Graph Construction for High
Dimensional Data via Recursive Lanczos Bisection∗
Jie Chen†
Haw-ren Fang†
Yousef Saad†
October 2, 2008"
b3ca58539e1407e0fb6b308194234279f78eb1d7,Structure Aligning Discriminative Latent Embedding for Zero-Shot Learning,"GUNE ET AL: STRUCTURE ALIGNING DISCRIMINATIVE LATENT EMBEDDING FOR ZSL 1
Structure Aligning Discriminative Latent
Embedding for Zero-Shot Learning
Omkar Gune
Biplab Banerjee
Subhasis Chaudhuri
Indian Institute of Technology Bombay,
Mumbai, India
Indian Institute of Technology Bombay,
Mumbai, India
Indian Institute of Technology Bombay,
Mumbai, India"
b3c60b642a1c64699ed069e3740a0edeabf1922c,Max-Margin Object Detection,"Max-Margin Object Detection
Davis E. King"
b362b812ececef21100d7a702447fcf5ab6d4715,Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer,"Understanding and Improving Interpolation in
Autoencoders via an Adversarial Regularizer
David Berthelot∗
Google Brain
Colin Raffel∗
Google Brain
Aurko Roy
Google Brain
Ian Goodfellow
Google Brain"
b3f7c772acc8bc42291e09f7a2b081024a172564,"A novel approach for performance parameter estimation of face recognition based on clustering , shape and corner detection","www.ijmer.com            Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3225-3230                 ISSN: 2249-6645
International Journal of Modern Engineering Research (IJMER)
A novel approach for performance parameter estimation of face
recognition based on clustering, shape and corner detection
.Smt.Minj Salen Kujur , 2.Prof. Prashant Jain,
Department of Electronics & Communication Engineering college Jabalpur"
b3c398da38d529b907b0bac7ec586c81b851708f,Face recognition under varying lighting conditions using self quotient image,"Face Recognition under Varying Lighting Conditions Using Self Quotient
Haitao Wang, 2Stan Z Li, 1Yangsheng Wang
Image
Institute of Automation, Chinese Academy of
Sciences, Beijing, 100080, China,
Email:"
b32cf547a764a4efa475e9c99a72a5db36eeced6,Mimicry of ingroup and outgroup emotional expressions,"UvA-DARE (Digital Academic Repository)
Mimicry of ingroup and outgroup emotional expressions
Sachisthal, M.S.M.; Sauter, D.A.; Fischer, A.H.
Published in:
Comprehensive Results in Social Psychology
0.1080/23743603.2017.1298355
Link to publication
Citation for published version (APA):
Sachisthal, M. S. M., Sauter, D. A., & Fischer, A. H. (2016). Mimicry of ingroup and outgroup emotional
expressions. Comprehensive Results in Social Psychology, 1(1-3), 86-105. DOI:
0.1080/23743603.2017.1298355
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.
Download date: 08 Aug 2018"
b34e7a2218abd5894525a60ed4f106cb9c3dc1e8,Understanding Grounded Language Learning Agents,"Under review as a conference paper at ICLR 2018
UNDERSTANDING GROUNDED LANGUAGE LEARNING
AGENTS
Anonymous authors
Paper under double-blind review"
b32631f456397462b3530757f3a73a2ccc362342,Discriminant Tensor Dictionary Learning with Neighbor Uncorrelation for Image Set Based Classification,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
b348d5c7ac93d1148265284d71234e200c9c5f02,GibbsNet: Iterative Adversarial Inference for Deep Graphical Models,"GibbsNet: Iterative Adversarial Inference for Deep
Graphical Models
Alex Lamb
MILA, Universite de Montreal
Yaroslav Ganin
MILA, Universite de Montreal
R Devon Hjelm
MILA, Universite de Montreal
Joseph Paul Cohen
MILA, Universite de Montreal
Institute for Reproducible Research
Aaron Courville
MILA, Universite de Montreal
CIFAR
Yoshua Bengio
MILA, Universite de Montreal
CIFAR"
dfd18b71f5c53ec2a95fcbe327cf7710da3b4851,Robust Submodular Maximization: A Non-Uniform Partitioning Approach,"Robust Submodular Maximization:
A Non-Uniform Partitioning Approach
Ilija Bogunovic 1 Slobodan Mitrovi´c 2 Jonathan Scarlett 1 Volkan Cevher 1"
df90850f1c153bfab691b985bfe536a5544e438b,"Face Tracking Algorithm Robust to Pose , Illumination and Face Expression Changes : a 3 D Parametric Model Approach","FACE TRACKING ALGORITHM ROBUST TO POSE,
ILLUMINATION AND FACE EXPRESSION CHANGES: A 3D
PARAMETRIC MODEL APPROACH
Marco Anisetti, Valerio Bellandi
University of Milan - Department of Information Technology
via Bramante 65 - 26013, Crema (CR), Italy
Luigi Arnone, Fabrizio Beverina
STMicroelectronics - Advanced System Technology Group
via Olivetti 5 - 20041, Agrate Brianza, Italy
Keywords:
Face tracking, expression changes, FACS, illumination changes."
df8da144a695269e159fb0120bf5355a558f4b02,Face Recognition using PCA and Eigen Face Approach,"International Journal of Computer Applications (0975 – 8887)
International Conference on Recent Trends in engineering & Technology - 2013(ICRTET'2013)
Face Recognition using PCA and Eigen Face
Approach
Anagha A. Shinde
ME EXTC [VLSI & Embedded System]
Sinhgad Academy of Engineering
EXTC Department
Pune, India"
df577a89830be69c1bfb196e925df3055cafc0ed,"Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions","Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions
Bichen Wu, Alvin Wan∗, Xiangyu Yue∗, Peter Jin, Sicheng Zhao,
Noah Golmant, Amir Gholaminejad, Joseph Gonzalez, Kurt Keutzer
UC Berkeley"
df353e3a46cca8c1ef274994f5a6dcb580231726,Data-driven fundamental models for pedestrian movements,"POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCESacceptée sur proposition du jury:Prof. P. Frossard, président du juryProf. M. Bierlaire, directeur de thèseProf. H. Mahmassani, rapporteurProf. S. Hoogendoorn, rapporteurProf. N. Geroliminis, rapporteurData-driven fundamental models for pedestrian movementsTHÈSE NO 7613 (2017)ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNEPRÉSENTÉE LE 5 MAI 2017À LA FACULTÉ DE L'ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUITLABORATOIRE TRANSPORT ET MOBILITÉPROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE Suisse2017PARMarija NIKOLIĆ"
df50e6e2ad60825167c6b3e641eb5cda0f3dc505,Theoretical vs. empirical discriminability: the application of ROC methods to eyewitness identification,"Wixted and Mickes Cognitive Research: Principles and Implications  (2018) 3:9
https://doi.org/10.1186/s41235-018-0093-8
Cognitive Research: Principles
nd Implications
TU T O R I A L R E V I EW
Theoretical vs. empirical discriminability:
the application of ROC methods to
eyewitness identification
John T. Wixted1* and Laura Mickes2
Open Access"
dfb342327c5e883d21a1f91cd283b36dbc2a3661,Game of Sketches: Deep Recurrent Models of Pictionary-style Word Guessing,"Deep Recurrent Models of Pictionary-style Word
Guessing
Ravi Kiran Sarvadevabhatla, Member, IEEE, Shiv Surya, Trisha Mittal and R. Venkatesh Babu Senior
Member, IEEE"
dff612c198dc50a7bef5a9cd48da5da1f893fa72,A fast stereo-based multi-person tracking using an approximated likelihood map for overlapping silhouette templates,"A Fast Stereo-Based Multi-Person Tracking
using an Approximated Likelihood Map
for Overlapping Silhouette Templates
Junji Satake
Jun Miura
Department of Computer Science and Engineering
Toyohashi University of Technology
Email: {satake,
Toyohashi, Japan"
df51dfe55912d30fc2f792561e9e0c2b43179089,Face Hallucination Using Linear Models of Coupled Sparse Support,"Face Hallucination using Linear Models of Coupled
Sparse Support
Reuben A. Farrugia, Member, IEEE, and Christine Guillemot, Fellow, IEEE
grid and fuse them to suppress the aliasing caused by under-
sampling [5], [6]. On the other hand, learning based meth-
ods use coupled dictionaries to learn the mapping relations
etween low- and high- resolution image pairs to synthesize
high-resolution images from low-resolution images [4], [7].
The research community has lately focused on the latter
ategory of super-resolution methods, since they can provide
higher quality images and larger magnification factors."
df054fa8ee6bb7d2a50909939d90ef417c73604c,Image Quality-aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild,"Image Quality-Aware Deep Networks Ensemble for Efficient
Gender Recognition in the Wild
Mohamed Selim1, Suraj Sundararajan1, Alain Pagani2 and Didier Stricker1,2
Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany
German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
{mohamed.selim, alain.pagani, s
Keywords:
Gender, Face, Deep Neural Networks, Quality, In the Wild"
df4525d7d99f7237c864adbcb2dab30d8f7447e0,Kernel Cross-View Collaborative Representation based Classification for Person Re-Identification,"Kernel Cross-View Collaborative Representation based Classification for Person
Re-Identification
Raphael Prates and William Robson Schwartz
Universidade Federal de Minas Gerais, Brazil
6627, Av. Pres. Antˆonio Carlos - Pampulha, Belo Horizonte - MG, 31270-901"
df80fed59ffdf751a20af317f265848fe6bfb9c9,Learning Deep Sharable and Structural Detectors for Face Alignment,"Learning Deep Sharable and Structural
Detectors for Face Alignment
Hao Liu, Jiwen Lu, Senior Member, IEEE, Jianjiang Feng, Member, IEEE, and Jie Zhou, Senior Member, IEEE"
df3b560a5d6c8cc5fa1477d3a89245a0d3b60715,Human tracking with multiple parallel metrics,"Human tracking with multiple parallel metrics
P. M. Birch*, W. Hassan, R. C. D. Young, C.R. Chatwin
Dept. of Engineering and Design, University of Sussex, Falmer, UK, BN1 9QT
Keywords: HOG, Correlation, Tracking"
dfe2d36ca249876e5ab5500f155e3a5094dbc170,Application of common sense computing for the development of a novel knowledge-based opinion mining engine,"Application of Common Sense Computing for
the Development of a Novel Knowledge-Based
Opinion Mining Engine
A thesis submitted in accordance with the requirements of
the University of Stirling for the degree of Doctor of Philosophy
Erik Cambria
Principal Supervisor: Amir Hussain (University of Stirling, UK)
Additional Supervisor: Catherine Havasi (MIT Media Laboratory, USA)
Industrial Supervisor: Chris Eckl (Sitekit Solutions Ltd, UK)
Department of Computing Science & Mathematics
University of Stirling, Scotland, UK
December 2011"
df310591dfba9672252d693bc87da73c246749c9,Fusion of Holistic and Part Based Features for Gender Classification in the Wild,"Fusion of Holistic and Part Based Features
for Gender Classification in the Wild
Modesto Castrill´on-Santana(B), Javier Lorenzo-Navarro,
nd Enrique Ram´on-Balmaseda
Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
http://berlioz.dis.ulpgc.es/roc-siani"
dfcb4773543ee6fbc7d5319b646e0d6168ffa116,Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks,"Unifying Variational Autoencoders and Generative Adversarial Networks
Adversarial Variational Bayes:
Lars Mescheder 1
Sebastian Nowozin 2
Andreas Geiger 1 3"
dfbf49ed66a9e48671964872c84f75d7f916c131,Supplementary Material for Sparsity Invariant CNNs,"Supplementary Material for
Sparsity Invariant CNNs
Jonas Uhrig(cid:63),1,2 Nick Schneider(cid:63),1,3
Lukas Schneider1,4
Uwe Franke1
Thomas Brox2 Andreas Geiger4,5
Daimler R&D Sindelfingen
University of Freiburg
KIT Karlsruhe
ETH Z¨urich
5MPI T¨ubingen
. Convergence Analysis
We find that Sparse Convolutions converge much faster than standard convolutions for most input-output-combinations,
especially for those on Synthia with irregularly sparse depth input, as considered in Section 5.1 of the main paper. In Figure
, we show the mean average error in meters on our validation subset of Synthia over the process of training with identical
solver settings (Adam with momentum terms of β1 = 0.9, β2 = 0.999 and delta 1e−8). We chose for each variant the
maximal learning rate which still causes the network to converge (which turned out to be 1e−3 for all three variants). We
find that Sparse Convolutions indeed train much faster and much smoother compared to both ConvNet variants, most likely
aused by the explicit ignoring of invalid regions in the update step. Interestingly, the ConvNet variant with concatenated
visibility mask in the input converges smoother than the variant with only sparse depth in the input, however, additionally"
dfbc3a6a629433f24f4e06fdfe8389f83afa7094,Learning OpenCV,"Learning OpenCV
Gary Bradski and Adrian Kaehler
Beijing  ·  Cambridge  ·  Farnham  ·  Köln  ·  Sebastopol  ·  Taipei  ·  Tokyo"
df999184b1bb5691cd260b2b77df7ef00c0fe7b1,On Latent Distributions Without Finite Mean in Generative Models,"On Latent Distributions Without Finite Mean in
Generative Models
Damian Le´sniak∗
Igor Sieradzki∗
Jagiellonian University
Igor Podolak"
df28cd627afe6d20eb198b8406ff25ece340653d,The Acquisition of Sign Language by Deaf Children with Autism Spectrum Disorder,"The Acquisition of Sign
Language by Deaf Children
with Autism Spectrum
Disorder
Aaron Shield and Richard P. Meier
Introduction
Autism spectrum disorder (ASD) consists of a set of neurobiological
developmental disorders characterized by communicative and social deficits
s well as repetitive, stereotyped behaviors.1 In this chapter, we use the
terms ‘ASD’ and ‘autism’ interchangeably; although ‘autism’ is not a clinical
term, it is the term popularly used to refer to the range of disorders found
in ASD.
The language deficits of hearing children with autism are well docu-
mented, and can range from the very mild in highly fluent speakers to the
very severe in children with a total absence of productive spoken language.
For those children who do acquire speech, the most common  characteristics
of autistic language include echolalia (echoing the utterances of others),
pronoun reversal, idiosyncratic language use and neologisms (the creation
of new words), difficulty with pragmatics (problems interpreting the use
of language in context and the non-literal use of language), and abnormal"
dfaa547451aae219cd2ca7a761e6c16c1e1d0add,Representation Learning by Rotating Your Faces,"Representation Learning by Rotating Your Faces
Luan Tran, Xi Yin, and Xiaoming Liu, Member, IEEE"
dfa80e52b0489bc2585339ad3351626dee1a8395,Human Action Forecasting by Learning Task Grammars,"Human Action Forecasting by Learning Task Grammars
Tengda Han
Jue Wang
Anoop Cherian
Stephen Gould"
dfe7700ed053d4788ecea4a18431806581e03291,Grammatical facial expression recognition using customized deep neural network architecture,"Grammatical facial expression recognition using customized
deep neural network architecture
Devesh Walawalkar"
dffb64ac066bbcfe6aea6b11408b5ea62a40e9fb,"A New Face Recognition Scheme for Faces with Expressions , Glasses and Rotation","International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING &
ISSN 0976 - 6375(Online), Volume 5, Issue 4, April (2014), pp. 11-23 © IAEME
TECHNOLOGY (IJCET)
ISSN 0976 – 6367(Print)
ISSN 0976 – 6375(Online)
Volume 5, Issue 4, April (2014), pp. 11-23
© IAEME: www.iaeme.com/ijcet.asp
Journal Impact Factor (2014): 8.5328 (Calculated by GISI)
www.jifactor.com
IJCET
© I A E M E
A NEW FACE RECOGNITION SCHEME FOR FACES WITH EXPRESSIONS,
GLASSES AND ROTATION
Walaa M Abdel-Hafiez1,    Mohamed Heshmat2,    Moheb Girgis3,    Seham Elaw4
, 2, 4Faculty of Science, Mathematical and Computer Science Department,
Sohag University, 82524, Sohag, Egypt
3Faculty of Science, Department of Computer Science,
Minia University, El-Minia, Egypt"
dfecaedeaf618041a5498cd3f0942c15302e75c3,A recursive framework for expression recognition: from web images to deep models to game dataset,"Noname manuscript No.
(will be inserted by the editor)
A Recursive Framework for Expression Recognition: From
Web Images to Deep Models to Game Dataset
Wei Li · Christina Tsangouri · Farnaz Abtahi · Zhigang Zhu
Received: date / Accepted: date"
df5fe0c195eea34ddc8d80efedb25f1b9034d07d,Robust modified Active Shape Model for automatic facial landmark annotation of frontal faces,"Robust Modified Active Shape Model for Automatic Facial Landmark
Annotation of Frontal Faces
Keshav Seshadri and Marios Savvides"
dfc784c860795f4f9aa704b7655f6d1321018980,Unsupervised Co-Activity Detection from Multiple Videos Using Absorbing Markov Chain,"Unsupervised Co-activity Detection from
Multiple Videos using Absorbing Markov Chain
Donghun Yeo, Bohyung Han, Joon Hee Han
Department of Computer Science and Engineering, POSTECH, Korea"
df2494da8efa44d70c27abf23f73387318cf1ca8,Supervised Filter Learning for Representation Based Face Recognition,"RESEARCH ARTICLE
Supervised Filter Learning for Representation
Based Face Recognition
Chao Bi1, Lei Zhang2, Miao Qi1, Caixia Zheng1, Yugen Yi3, Jianzhong Wang1*,
Baoxue Zhang4*
College of Computer Science and Information Technology, Northeast Normal University, Changchun,
China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of
Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of
Economics and Business, Beijing, China
11111
* (JW); (BZ)"
df674dc0fc813c2a6d539e892bfc74f9a761fbc8,An Image Mining System for Gender Classification & Age Prediction Based on Facial Features,"IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 6 (May. - Jun. 2013), PP 21-29
www.iosrjournals.org
An Image Mining System for Gender Classification & Age
Prediction Based on Facial Features
1.Ms.Dhanashri Shirkey  , 2Prof.Dr.S.R.Gupta,
M.E(Scholar),Department Computer Science & Engineering, PRMIT & R, Badnera
Asstt.Prof. Department Computer Science & Engineering, PRMIT & R, Badnera"
da7ffe21508ad8d6dd9de7da378e184cb43a56c8,3D Landmark Localisation,"D Landmark Localisation
Luke Gahan, Supervised by Prof. Paul F. Whelan"
dab6921a578c9ded6904a5a18bdd054aee62d2ad,Learning to Recognize Faces by Successive Meetings,"Learning to recognize faces
y successive meetings
M. Castrill´on-Santana, O. D´eniz-Su´arez,
J. Lorenzo-Navarro and M. Hern´andez-Tejera
IUSIANI
Edif. Ctral. del Parque Cient´ıfico Tecnol´ogico
Universidad de Las Palmas de Gran Canaria
Las Palmas de Gran Canaria, 35017
Spain"
dac07680925b6c56b7ddf184dbdaf143a5d4816d,Object Ordering with Bidirectional Matchings for Visual Reasoning,"Object Ordering with Bidirectional Matchings for Visual Reasoning
Hao Tan and Mohit Bansal
UNC Chapel Hill
{haotan,"
dad7b8be074d7ea6c3f970bd18884d496cbb0f91,Super-Sparse Regression for Fast Age Estimation from Faces at Test Time,"Super-Sparse Regression for Fast Age
Estimation From Faces at Test Time
Ambra Demontis, Battista Biggio, Giorgio Fumera, and Fabio Roli
Dept. of Electrical and Electronic Engineering, University of Cagliari
Piazza d’Armi, 09123 Cagliari, Italy
WWW home page: http://prag.diee.unica.it"
da523ee3b7e8077713ebb7d903c3dc3bcb78921a,Multi-person Tracking-by-Detection Based on Calibrated Multi-camera Systems,"Multi-Person Tracking-by-Detection based on
Calibrated Multi-Camera Systems
Xiaoyan Jiang, Erik Rodner, and Joachim Denzler
Computer Vision Group Jena
Friedrich Schiller University of Jena
http://www.inf-cv.uni-jena.de"
da288fca6b3bcaee87a034529da5621bb90123d1,Aesthetics and Emotions in Images,"[ Dhiraj Joshi,
Ritendra Datta,
Elena Fedorovskaya,
Quang-Tuan Luong,
James Z. Wang,
Jia Li, and Jiebo Luo]
PUBLICDOMAINPICTURES.NET &
© BRAND X PICTURES
[ A computational perspective]
In this tutorial, we define and discuss key aspects of the problem of computational inference of aesthetics
nd emotion from images. We begin with a background discussion on philosophy, photography, paintings,
visual arts, and psychology. This is followed by introduction of a set of key computational problems that the
research  community  has  been  striving  to  solve  and  the  computational  framework  required  for  solving
them. We also describe data sets available for performing assessment and outline several real-world applica-
tions where research in this domain can be employed. A significant number of papers that have attempted to
solve problems in aesthetics and emotion inference are surveyed in this tutorial. We also discuss future direc-
tions  that  researchers  can  pursue  and  make  a  strong  case  for  seriously  attempting  to  solve  problems  in  this
research domain.
Digital Object Identifier 10.1109/MSP.2011.941851
Date of publication: 22 August 2011"
dadb7ddfde3478238d23a8bacf5eddecc59e84c9,Vocabulary Image Captioning with Constrained Beam Search,"Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 947–956
Copenhagen, Denmark, September 7–11, 2017. c(cid:13)2017 Association for Computational Linguistics
image containing previously unseen object (‘suitcase’)CNN-RNNCaptioning ModelA catsitting insideofa suitcase.cat, suitcase, insideConstrainedBeamSearchBeamSearchA cat sitting on top ofa refrigerator.Image TagsFigure1:Wesuccessfullycaptionimagescontain-ingpreviouslyunseenobjectsbyincorporatingse-manticattributes(i.e.,imagetags)duringRNNde-coding.ActualexamplefromSection4.2.prisingly,modelstrainedonthesedatasetsdonotgeneralizewelltoout-of-domainimagescontain-ingnovelscenesorobjects(Tranetal.,2016).Thislimitationseverelyhinderstheuseofthesemodelsinrealworldapplicationsdealingwithim-agesinthewild.Althoughavailableimage-captiontrainingdataislimited,manyimagecollectionsareaugmentedwithground-truthtextfragmentssuchassemanticattributes(i.e.,imagetags)orobjectannotations.Eveniftheseannotationsdonotexist,theycanbegeneratedusing(potentiallytaskspecific)imagetaggers(Chenetal.,2013;Zhangetal.,2016)orobjectdetectors(Renetal.,2015;Krauseetal.,2016),whichareeasiertoscaletonewconcepts.Inthispaperourgoalistoincorporatetextfrag-mentssuchastheseduringcaptiongeneration,toimprovethequalityofresultingcaptions.Thisgoalposestwokeychallenges.First,RNNsaregenerallyopaque,anddifficulttoinfluenceattesttime.Second,textfragmentsmayincludewords"
da55917aa3a8a95179bae92c5b01e4c8f2f61b75,What makes a place? Building bespoke place dependent object detectors for robotics,"What Makes a Place? Building Bespoke Place Dependent Object Detectors
for Robotics
Jeffrey Hawke, Alex Bewley, Ingmar Posner"
da4170c862d8ae39861aa193667bfdbdf0ecb363,Multi-Task CNN Model for Attribute Prediction,"Multi-task CNN Model for Attribute Prediction
Abrar H. Abdulnabi, Student Member, IEEE, Gang Wang, Member, IEEE, , Jiwen Lu, Member, IEEE
nd Kui Jia, Member, IEEE"
da013b84a93cc89d78f2d9a346fc275e3c159565,Affordable Self Driving Cars and Robots with Semantic Segmentation,"Affordable Self Driving Cars and Robots with Semantic Segmentation
Gaurav Bansal
Jeff Chen
Evan Darke"
dabf269f516adc6bf87a7ceb455cceda4466917a,Investigation of Facial Artifacts on Face Biometrics using Eigenface based Single and Multiple Neural Networks,"Investigation of Facial Artifacts on Face Biometrics
using Eigenface based Single and Multiple Neural Networks
K. Sundaraj
University Malaysia Perlis (UniMAP)
School of Mechatronics Engineering
02600 Jejawi - Perlis
MALAYSIA"
da9080d5b433f73444078ac79c3a8a4515ad958e,IIS at ImageCLEF 2015: Multi-label Classification Task,"IIS at ImageCLEF 2015:
Multi-label classification task
Antonio J Rodr´ıguez-S´anchez1, Sabrina Fontanella1,2,
Justus Piater1, and Sandor Szedmak1
Intelligent and Interactive Systems, Department of Computer Science,
University of Innsbruck, Austria
Department of Computer Science, University of Salerno, Italy
https://iis.uibk.ac.at/"
da995212c9c8a933307cd893d862f5bf7d99f3ec,Synthesizing Samples for Zero-shot Learning,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
EmbeddingSample EmbeddingElephantLionPandaMonkeyDolphinDog0.140.490.660.721.060.59Figure1:FrameworkofembeddingbasedZSLapproaches.occurfrequentlyenough,andthenewconceptsemergeev-erydayespeciallyintheWeb,whichmakesitdifficultandex-pensivetocollectandlabelasufficientlylargetrainingsetformodellearning[Changpinyoetal.,2016].Howtotraineffec-tiveclassificationmodelsfortheuncommonclasseswithoutusingthelabeledsamplesbecomesanimportantandpracti-calproblemandhasgatheredconsiderableresearchinterestsfromthemachinelearningandcomputervisioncommunities.Itisestimatedthathumanscanrecognizeapproximate30;000basicobjectcategoriesandmanymoresubordinateonesandtheyareabletoidentifynewclassesgivenanat-tributedescription[Lampertetal.,2014].Basedonthisob-servation,manyzero-shotlearning(ZSL)approacheshavebeenproposed[Akataetal.,2015;Romera-ParedesandTorr,2015;ZhangandSaligrama,2016a;Guoetal.,2017a].ThegoalofZSListobuildclassifiersfortargetunseenclassesgivennolabeledsamples,withclassattributesassidein-formationandfullylabeledsourceseenclassesasknowl-edgesource.Differentfrommanysupervisedlearningap-proacheswhichtreateachclassindependently,ZSLasso-ciatesclasseswithanintermediaryattributeorsemantics-paceandthentransfersknowledgefromthesourceseenclassestothetargetunseenclassesbasedontheassocia-tion.Inthisway,onlytheattributevectorofatarget(un-seen)classisrequiredandtheclassificationmodelcanbebuiltevenwithoutanylabeledsamplesforthisclass.Inparticular,anembeddingfunctionislearnedusingthela-beledsamplesofsourceseenclassesthatmapstheimagesandclassesintoacommonembeddingspacewherethedis-tanceorsimilaritybetweenthemcanbemeasured.Becausetheattributesaresharedbybothsourceandtargetclass-es,theembeddingfunctionlearnedbysourceclassescanbedirectlyappliedtotargetclasses[Farhadietal.,2009;Socheretal.,2013].Finally,givenatestimage,wemapit"
da1ba46027b7236c937d276fb54e99906036c4ef,Using 3D Representations of the Nasal Region for Improved Landmarking and Expression Robust Recognition,"Using 3D Representations of the Nasal
Region for Improved Landmarking and
Expression Robust Recognition
Jiangning Gao1
Adrian N Evans1
Department of Electronic and
Electrical Engineering, University
of Bath, Bath, UK, BA2 7AY."
dac2103843adc40191e48ee7f35b6d86a02ef019,Unsupervised Celebrity Face Naming in Web Videos,"Unsupervised Celebrity Face Naming in Web Videos
Lei Pang and Chong-Wah Ngo"
dae420b776957e6b8cf5fbbacd7bc0ec226b3e2e,Recognizing Emotions in Spontaneous Facial Expressions,"RECOGNIZING EMOTIONS IN SPONTANEOUS FACIAL EXPRESSIONS
Michael Grimm, Dhrubabrata Ghosh Dastidar, and Kristian Kroschel
Institut f¨ur Nachrichtentechnik
Universit¨at Karlsruhe (TH), Germany"
da833d8ec9c91d55256effccd370b2e62a896ccb,Front-view Gait Recognition,"Front-view Gait Recognition
Michela Goffredo, John N. Carter and Mark S. Nixon"
daa02cf195818cbf651ef81941a233727f71591f,Face recognition system on Raspberry Pi,"Face recognition system on Raspberry Pi
Olegs Nikisins, Rihards Fuksis, Arturs Kadikis, Modris Greitans
Institute of Electronics and Computer Science,
4 Dzerbenes Street, Riga, LV 1006, Latvia"
da8d0855e7760e86fbec47a3cfcf5acd8c700ca8,F 2 ConText : How to Extract Holistic Contexts of Persons of Interest for Enhancing Exploratory Analysis,"Accepted on 15 Sep 2018. To appear in Knowledge and Information Systems.
Under consideration for publication in Knowledge and Information Sys-
F2ConText: How to Extract Holistic
Contexts of Persons of Interest for
Enhancing Exploratory Analysis
Md Abdul Kader1, Arnold P. Boedihardjo2 and M. Shahriar Hossain3
IBM Innovation Center, Austin, TX 78758
Radiant Solutions, Herndon, VA 20171
The University of Texas at El Paso, El Paso, TX 79968"
da1e0b9e445493d3e6dc0e3c23be194228c5d796,Video Segmentation using Teacher-Student Adaptation in a Human Robot Interaction (HRI) Setting,"Video Segmentation using Teacher-Student Adaptation
in a Human Robot Interaction (HRI) Setting
Mennatullah Siam1, Chen Jiang1, Steven Lu1, Laura Petrich1,
Mahmoud Gamal2, Mohamed Elhoseiny3, Martin Jagersand1"
daefac0610fdeff415c2a3f49b47968d84692e87,Multimodal Frame Identification with Multilingual Evaluation,"New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics
Proceedings of NAACL-HLT 2018, pages 1481–1491"
daef6fa60c7d79930ad0a341aab69f1f4fa80442,Supplement for BIER,"Supplement for BIER
. Introduction
In this document we provide further insights into Boost-
ing Independent Embeddings Robustly (BIER). First, in
Section 2 we describe our method for loss functions op-
erating on triplets. Next, in Section 3 we show how our
method behaves when we vary the embedding size and the
number of groups. In Section 4 we summarize the effect of
our boosting based training approach and our initialization
pproach. We provide an experiment evaluating the impact
of end-to-end training in Section 5. Further, in Section 6 we
demonstrate that our method is applicable to generic im-
ge classification problems. Finally, we show a qualitative
omparison of the different embeddings in our ensemble in
Section 7 and some qualitative results in Section 8.
. BIER for Triplets
For loss functions operating on triplets of samples, we
illustrate our training method in Algorithm 1. In contrast
to our tuple based algorithm, we sample triplets x(1), x(2)
nd x(3) which satisfy the constraint that the first pair (x(1),"
da24f3e196c5345ce08dfcc835574035da197f48,A Global Alignment Kernel based Approach for Group-level Happiness Intensity Estimation,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017
A Global Alignment Kernel based Approach for
Group-level Happiness Intensity Estimation
Xiaohua Huang, Abhinav Dhall, Roland Goecke, Member, IEEE, Matti Pietik¨ainen, Fellow, IEEE, and
Guoying Zhao, Senior Member, IEEE"
b49affdff167f5d170da18de3efa6fd6a50262a2,Linking Names and Faces : Seeing the Problem in Different Ways,"Author manuscript, published in ""Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France
(2008)"""
b4d117e109b3a6762d1b675defd9f2b228613ac1,Financialized methods for market-based multi-sensor fusion,"Congress Center Hamburg
Sept 28 - Oct 2, 2015. Hamburg, Germany
978-1-4799-9993-4/15/$31.00 ©2015 IEEE"
b498640d8f0ac5a628563ff84dbef8d35d12a7ec,Overcoming catastrophic forgetting with hard attention to the task,"Overcoming Catastrophic Forgetting with Hard Attention to the Task
Joan Serr`a 1 D´ıdac Sur´ıs 1 2 Marius Miron 1 3 Alexandros Karatzoglou 1"
b4b6a0129bf6a716fca80a4cfc322687a72fa927,Automatic Generation of Planar Marionettes from Frontal Images,"Automatic Generation of Planar Marionettes from Frontal Images
Elad Richardson and Gil Ben-Shachar
Supervised by Anastasia Dubrovina and Aaron Weltzer"
b4a3f480e2004bdc8106de2f772283101bb290d0,Multi-stage ranking approach for fast person re-identification,"IET Research Journals
A Multi-Stage Ranking Approach for Fast Person Re-Identification
A Multi-Stage Ranking Approach for Fast
Person Re-Identification
Bahram Lavi, Giorgio Fumera , Fabio Roli
Department of Electrical and Electronic Engineering, University of Cagliari
Piazza d’Armi, 09123, Cagliari, Italy
E-mail:
ISSN 1751-8644
doi: 0000000000
www.ietdl.org"
b40881a905cf6c4963658df4f64b860f9b1755fe,Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation,"Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation
Matan Sela
Elad Richardson
Ron Kimmel
Department of Computer Science, Technion - Israel Institute of Technology
Figure 1: Results of the proposed method. Reconstructed geometries are shown next to the corresponding input images."
b4270de7380d305b4417f662686093c40d842da4,Graphical Models for Wide-Area Activity Analysis in Continuous Videos,"UNIVERSITY OF CALIFORNIA
RIVERSIDE
Graphical Models for Wide-Area Activity Analysis in Continuous Videos
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Computer Science
Nandita M. Nayak
May 2014
Dissertation Committee:
Professor Amit K. Roy-Chowdhury, Chairperson
Professor Christian Shelton
Professor Eamonn Keogh
Professor Victor Zordan"
b49aa569ff63d045b7c0ce66d77e1345d4f9745c,Convolutional Neural Networks for Crop Yield Prediction using Satellite Images,"Convolutional Neural Networks for Crop Yield Prediction using Satellite Images
H. Russello"
b41374f4f31906cf1a73c7adda6c50a78b4eb498,Iterative Gaussianization: From ICA to Random Rotations,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Iterative Gaussianization: From ICA to
Random Rotations
Valero Laparra, Gustavo Camps-Valls, Senior Member, IEEE, and Jesús Malo"
b408b939c0f3be9cce0f84871a78a71d1684cd77,Identifying spatial relations in images using convolutional neural networks,"Identifying Spatial Relations in Images using
Convolutional Neural Networks
Mandar Haldekar, Ashwinkumar Ganesan
Dept. Of Computer Science & Engineering,
Tim Oates
Dept. Of Computer Science & Engineering,
UMBC,
Baltimore, MD
mandarh1,
UMBC,
Baltimore, MD"
b44d8ecac21867c540d9122a150c8d8c0875cbe6,Mixture Density Generative Adversarial Networks,"Mixture Density Generative Adversarial Networks
Hamid Eghbal-zadeh1 ∗
Werner Zellinger2
Gerhard Widmer1
LIT AI Lab & Institute of Computational Perception
Department of Knowledge-Based Mathematical Systems
{hamid.eghbal-zadeh, werner.zellinger,
Johannes Kepler University of Linz, Austria"
b4b1b39f8902208bbd37febfb68e08809098036d,TRECVid Semantic Indexing of Video : A 6-year Retrospective,"UvA-DARE (Digital Academic Repository)
TRECVid Semantic Indexing of Video: A 6-year Retrospective
Awad, G.; Snoek, C.G.M.; Smeaton, A.F.; Quénot, G.
Published in:
ITE Transactions on Media Technology and Applications
0.3169/mta.4.187
Link to publication
Citation for published version (APA):
Awad, G., Snoek, C. G. M., Smeaton, A. F., & Quénot, G. (2016). TRECVid Semantic Indexing of Video: A 6-
year Retrospective. ITE Transactions on Media Technology and Applications, 4(3), 187-208. DOI:
0.3169/mta.4.187
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.
Download date: 02 Nov 2018"
b4223cc72543656c28b55af1ffdabb1e47a0f2dd,Stacking with Auxiliary Features for Visual Question Answering,"New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics
Proceedings of NAACL-HLT 2018, pages 2217–2226"
b4fe9594e1de682e7270645ba95ab64727b6632e,Generative Adversarial Positive-Unlabelled Learning,"Generative Adversarial Positive-Unlabelled Learning
Ming Hou1, Brahim Chaib-draa2, Chao Li1, Qibin Zhao1,
Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
Department of Computer Science and Software Engineering, Laval University, Quebec, Canada"
b4c02e071432a9a986501b7317b524f216e87ec8,Visual Saliency Prediction using Deep learning Techniques A Degree Thesis,"Visual Saliency Prediction
using Deep learning Techniques
A Degree Thesis
Submitted to the Faculty of the
Escola Tècnica d'Enginyeria de Telecomunicació de
Barcelona
Universitat Politècnica de Catalunya
Junting Pan
In partial fulfilment
of the requirements for the degree in
TELECOMUNICATION ENGINEERING
Advisor: Xavier Giró i Nieto
Barcelona, July 2015"
b49425f78907fcc447d181eb713abffc74dd85e4,Sampling Matters in Deep Embedding Learning,"Sampling Matters in Deep Embedding Learning
Chao-Yuan Wu∗
UT Austin
R. Manmatha
A9/Amazon
Alexander J. Smola
Amazon
Philipp Kr¨ahenb¨uhl
UT Austin"
b4ee64022cc3ccd14c7f9d4935c59b16456067d3,Unsupervised Cross-Domain Image Generation,"Unsupervised Cross-Domain Image Generation
Xinru Hua, Davis Rempe, and Haotian Zhang"
b45a9f95980c434582c920bf15a8099ec267c1f7,Robust Kronecker Component Analysis,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Robust Kronecker Component Analysis
Mehdi Bahri, Student Member, IEEE, Yannis Panagakis, and Stefanos Zafeiriou, Member, IEEE"
b4f6962068c27d10df9016090a0ca14f65f26b70,A Statisitical Shape Model for Deformable Surface Registration,"A STATISITICAL SHAPE MODEL FOR DEFORMABLE
SURFACE REGISTRATION
Wei Quan, Bogdan J. Matuszewski and Lik-Kwan Shark
Applied Digital Signal and Image Processing (ADSIP) Research Centre
University of Central Lancashire, Preston PR1 2HE, United Kingdom
{wquan, bmatuszewski1,
Keywords:
Deformable Registration, Surface Matching, Shape Modelling and Face Articulation."
b40290a694075868e0daef77303f2c4ca1c43269,Combining Local and Global Information for Hair Shape Modeling,"第 40 卷 第 4 期
014 年 4 月
自 动 化 学 报
ACTA AUTOMATICA SINICA
Vol. 40, No. 4
April, 2014
融合局部与全局信息的头发形状模型
王 楠 1 艾海舟 1
摘 要 头发在人体表观中具有重要作用, 然而, 因为缺少有效的形状模型, 头发分割仍然是一个非常具有挑战性的问题. 本
文提出了一种基于部件的模型, 它对头发形状以及环境变化更加鲁棒. 该模型将局部与全局信息相结合以描述头发的形状. 局
部模型通过一系列算法构建, 包括全局形状词表生成, 词表分类器学习以及参数优化; 而全局模型刻画不同的发型, 采用支持
向量机 (Support vector machine, SVM) 来学习, 它为所有潜在的发型配置部件并确定势函数. 在消费者图片上的实验证明
了本文算法在头发形状多变和复杂环境等条件下的准确性与有效性.
关键词 头发形状建模, 部件模型, 部件配置算法, 支持向量机
引用格式 王楠, 艾海舟. 融合局部与全局信息的头发形状模型. 自动化学报, 2014, 40(4): 615−623
DOI 10.3724/SP.J.1004.2014.00615
Combining Local and Global Information for Hair Shape Modeling
WANG Nan1
AI Hai-Zhou1"
b4ee2a6b5fdf66f57e94a998cff2acef4af7d256,Monocular Visual Scene Understanding: Understanding Multi-Object Traffic Scenes,"Monocular Visual Scene Understanding:
Understanding Multi-Object Traffic Scenes
Christian Wojek, Stefan Walk, Stefan Roth, Konrad Schindler, Bernt Schiele"
b419e0e1192d307d536421d811d10657f65eb72b,Face Recognition using DCT based Energy Discriminant Mask,"International Journal of Computer Applications (0975 – 8887)
Volume 170 – No.5, July 2017
Face Recognition using DCT based Energy
Discriminant Mask
Vikas Maheshkar
Division of Information technology
New Delhi, India"
b47386e10125462d60d66f8d6d239a69c5966853,Robust Multi Gradient Entropy Method for Face Recognition System for Low Contrast Noisy Images,"International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email:
ISSN 2278-6856
Volume 2, Issue 3, May – June 2013
ROBUST MULTI GRADIENT ENTROPY
METHOD FOR FACE RECOGNITION
SYSTEM FOR LOW CONTRAST NOISY
IMAGES
C. Naga Raju1, P.Prathap Naidu2, R. Pradeep Kumar Reddy3, G. Sravana Kumari4
Associate Professor, CSE Dept, YSR Engg College of YVU
Asst. Professor, CSE Dept, RGM Engg College
Asst. Professor, CSE Dept, YSR Engg College.
M.Tech In CSE RGM Engg College
the  most
recognition  under  difficult"
b47ea4d5b0040d85181925bda74da4ab5303768f,LIFEisGAME:A Facial Character Animation System to Help Recognize Facial Expressions,"LIFEisGAME:A Facial Character Animation System to
Help Recognize Facial Expressions
Tiago Fernandes1,5, Samanta Alves2, José Miranda3,5, Cristina Queirós2,
Verónica Orvalho1,4
Instituto de Telecomunicações, Lisboa, Portugal,
Faculdade de Psicologia da Universidade do Porto, Porto, Portugal,
Instituto Politécnico da Guarda, Porto, Portugal,
Faculdade de Ciências da Universidade do Porto, Porto, Portugal,
5 Faculdade de Engenharia da Universidade do Porto, Porto, Portugal,"
b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4,Autonomous Learning Framework Based on Online Hybrid Classifier for Multi-view Object Detection in Video,"Autonomous Learning Framework Based on Online Hybrid
Classifier for Multi-view Object Detection in Video
Dapeng Luoa*Zhipeng Zenga Longsheng Weib Yongwen Liua Chen Luoc Jun Chenb Nong Sangd
School of Electronic Information and Mechanics, China University of Geosciences, Wuhan, Hubei 430074, China
School of Automation, China University of Geosciences, Wuhan, Hubei 430074, China
Huizhou School Affiliated to Beijing Normal University, Huizhou 516002, China
dNational Key Laboratory of Science and Technology on Multispectral Information Processing, School of Automation, Huazhong
University of Science and Technology, Wuhan, 430074, China"
b411850a3614fbb06bc77e6f776b2f23af563a90,Size Does Matter: Improving Object Recognition and 3D Reconstruction with Cross-Media Analysis of Image Clusters,"Size does matter: improving object recognition
nd 3D reconstruction with cross-media analysis
of image clusters
Stephan Gammeter1, Till Quack1, David Tingdahl2, and Luc van Gool1,2
BIWI, ETH Z¨urich1 http://www.vision.ee.ethz.ch
VISICS, K.U. Leuven2 http://www.esat.kuleuven.be/psi/visics"
a285b6edd47f9b8966935878ad4539d270b406d1,Facial Expression Recognition Based on Local Binary Patterns and Kernel Discriminant Isomap,"Sensors 2011, 11, 9573-9588; doi:10.3390/s111009573
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
Facial Expression Recognition Based on Local Binary Patterns
nd Kernel Discriminant Isomap
Xiaoming Zhao 1,* and Shiqing Zhang 2
Department of Computer Science, Taizhou University, Taizhou 317000, China
School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, China;
E-Mail:
*  Author to whom correspondence should be addressed; E-Mail:
Tel.: +86-576-8513-7178; Fax: ++86-576-8513-7178.
Received: 31 August 2011; in revised form: 27 September 2011 / Accepted: 9 October 2011 /
Published: 11 October 2011"
a2ad9ae7c5adbbce9ded16ac3ebdfa96505c0f46,Déjà Image-Captions: A Corpus of Expressive Descriptions in Repetition,"Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 504–514,
Denver, Colorado, May 31 – June 5, 2015. c(cid:13)2015 Association for Computational Linguistics"
a2359c0f81a7eb032cff1fe45e3b80007facaa2a,Towards Structured Analysis of Broadcast Badminton Videos,"Towards Structured Analysis of Broadcast Badminton Videos
Anurag Ghosh
Suriya Singh
C.V.Jawahar
{anurag.ghosh,
CVIT, KCIS, IIIT Hyderabad"
a28f831b4014fa75a69f3c56e39d9c40fc0af48f,AAD: Adaptive Anomaly Detection through traffic surveillance videos,"AAD: Adaptive Anomaly Detection through traffic
surveillance videos
Mohammad Farhadi Bajestani
Seyed Soroush Heidari Rahmat Abadi
Seyed Mostafa Derakhshandeh Fard
Roozbeh Khodadadeh"
a271f83cb1f72e0f9ca077499f51adb086fb449d,Unsupervised and Semi-supervised Methods for Human Action Analysis,"Unsupervised and
Semi-supervised Methods
for Human Action Analysis
Simon Jones
September 22, 2014
A thesis submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
Department of Electronic and Electrical Engineering
The University of Shef‌f‌ield"
a290019f7125f6ebdc0dcec3b03b771de6905dd0,Heterogeneous AdaBoost with Real-time Constraints - Application to the Detection of Pedestrians by Stereovision,"HETEROGENEOUS ADABOOST WITH REAL-TIME
Application to the Detection of Pedestrians by stereovision
CONSTRAINTS
Lo¨ıc Jourdheuil1, Nicolas Allezard1, Thierry Chateau2 and Thierry Chesnais1
CEA, LIST, Laboratoire Vision et Ing´enierie des Contenus, Gif-sur-Yvette, France
LASMEA, UMR UBP-CNRS 6602, 24 Avenue des Landais, AUBIERE, France
{loic.jourdheuil, nicolas.allezard,
Keywords:
Adaboost. stereovision. real time."
a24f84b156bbb1edeb1d0761f5940de318b7ed9d,Copula Eigenfaces - Semiparametric Principal Component Analysis for Facial Appearance Modeling,
a2db611b6179f3bc4cfe0e891df7b9d4ab58d642,On the usability of deep networks for object-based image analysis,"ON THE USABILITY OF DEEP NETWORKS FOR OBJECT-BASED IMAGE ANALYSIS
Nicolas Audeberta, b, Bertrand Le Sauxa, Sébastien Lefèvreb
ONERA, The French Aerospace Lab, F-91761 Palaiseau, France
Univ. Bretagne-Sud, UMR 6074, IRISA, F-56000 Vannes, France -
KEY WORDS: deep learning, vehicle detection, semantic segmentation, object classification"
a212be7ec1ff75ecfee52c7c49c73d7244a87eb7,Video Scene-Aware Dialog Track in DSTC 7,"Video Scene-Aware Dialog Track in DSTC7
Chiori Hori∗, Tim K. Marks∗, Devi Parikh∗∗, and Dhruv Batra∗∗
Mitsubishi Electric Research Laboratories
Cambridge, MA, USA
{chori,
School of Interactive Computing
Georgia Tech
{parikh,"
a2a42aa37641490213b2de9eb8e83f3dab75f5ed,Multilinear Supervised Neighborhood Preserving Embedding Analysis of Local Descriptor Tensor,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
a2505774d5654685c6d899760759520b339e6c1e,Ranking Eigenfaces Through Adaboost and Perceptron Ensembles,"Ranking Eigenfaces Through Adaboost and
Perceptron Ensembles
Tiene A. Filisbino, Gilson A. Giraldi
Laborat´orio Nacional de Computac¸˜ao Cient´ıfica - LNCC
Petr´opolis, Brasil
Email:
Carlos Eduardo Thomaz
Departamento de Engenharia El´etrica
Centro Universit´ario da FEI
S˜ao Bernardo do Campo - Brasil
Email:"
a2bfab80a4b48717aa647cb38069632c5962c6a6,Countering Bias in Tracking Evaluations,
a27735e4cbb108db4a52ef9033e3a19f4dc0e5fa,Intention from Motion,"Intention from Motion
Andrea Zunino, Jacopo Cavazza, Atesh Koul, Andrea Cavallo, Cristina Becchio and Vittorio Murino"
a2aa272b32c356ec9933b32ca5809c09f2d21b9f,Clockwork Convnets for Video Semantic Segmentation,"Clockwork Convnets for Video Semantic Segmentation
Evan Shelhamer(cid:63)
Kate Rakelly(cid:63)
Judy Hoffman(cid:63)
Trevor Darrell
UC Berkeley"
a2f2996145d3d670608af1cbbda59c1ac28d4f7c,Real-Time Hand Posture Recognition for Human-Robot Interaction Tasks,"Article
Real-Time Hand Posture Recognition for
Human-Robot Interaction Tasks
Uriel Haile Hernandez-Belmonte and Victor Ayala-Ramirez *
Received: 30 October 2015; Accepted: 18 December 2015; Published: 4 January 2016
Academic Editor: Lianqing Liu
Universidad de Guanajuato DICIS, Carr. Salamanca-Valle Km. 3.5 + 1.8, Palo Blanco, Salamanca, C.P. 36885,
Mexico;
* Correspondence: Tel.: +52-464-647-9940 (ext. 2413); Fax: +52-464-647-9940 (ext. 2311)"
a27740f8a3834d6bc605a6b383c4d802ced373c9,"Exploiting feature representations through similarity learning, post-ranking and ranking aggregation for person re-identification","Exploiting feature representations through similarity learning, post-ranking and
ranking aggregation for person re-identification
Julio C. S. Jacques Juniora,b,∗, Xavier Bar´oa,b, Sergio Escalerac,b
Faculty of Computer Science, Multimedia and Telecommunication - Universitat Oberta de Catalunya, Spain
Computer Vision Center - Universitat Aut`onoma de Barcelona, Spain
Department of Mathematics and Informatics - University of Barcelona, Spain"
a27c7afac5a34141ec5415defed6d4d85325230a,Utrecht Multi-Person Motion (UMPM) benchmark,"Utrecht Multi-Person Motion (UMPM)
enchmark
N.P. van der Aa, X. Luo, G.-J. Giezeman
R.T. Tan, R.C. Veltkamp
Technical Report UU-CS-2011-027
September 2011
Department of Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl"
a2afaa782be91f5baf9e9f1794d57dd29143cbf4,IGCV$2$: Interleaved Structured Sparse Convolutional Neural Networks,"IGCV2: Interleaved Structured Sparse Convolutional Neural Networks
Guotian Xie1,2,∗ Jingdong Wang3 Ting Zhang3
Jianhuang Lai1,2 Richang Hong4 Guo-Jun Qi5
Sun Yat-Sen University 2Guangdong Key Laboratory of Information Security Technology
Microsoft Research 4Hefei University of Technology 5University of Central Florida"
a2fce1c551a3c3b1cac16a96f86a59cd7fbd4c80,Attachment and Children’s Biased Attentional Processing: Evidence for the Exclusion of Attachment-Related Information,"Attachment and Children’s Biased Attentional
Processing: Evidence for the Exclusion of Attachment-
Related Information
Eva Vandevivere1*, Caroline Braet1, Guy Bosmans2, Sven C. Mueller3, Rudi De Raedt3
Department of Developmental, Personality and Social Psychology, Ghent University, Gent, Belgium, 2 Parenting and Special Education Research Unit, Leuven, Belgium,
Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium"
a237e3d89c460e1b2e3f12c5d4275bd0c6eb47a8,Domain Adaptation on Graphs by Learning Aligned Graph Bases,"Domain Adaptation on Graphs by Learning
Aligned Graph Bases
Mehmet Pilancı and Elif Vural"
a2b9c998264ab1920ea8f2e07c3590ebb3dc6f35,Shopper Analytics: A Customer Activity Recognition System Using a Distributed RGB-D Camera Network,"Shopper Analytics: a customer activity
recognition system using a distributed RGB-D
amera network
Daniele Liciotti, Marco Contigiani, Emanuele Frontoni, Adriano Mancini,
Primo Zingaretti1, and Valerio Placidi2
Dipartimento di Ingegneria dell’Informazione, Universit`a Politecnica delle Marche,
{d.liciotti, m.contigiani,e.frontoni, a.mancini,
Via Brecce Bianche, 60131 Ancona, Italy,
Grottini Lab srl,
Via S.Maria in Potenza, 62017, Porto Recanati, Italy,"
a2fbaa0b849ecc74f34ebb36d1442d63212b29d2,An Efficient Approach to Face Recognition of Surgically Altered Images,"Volume 5, Issue 6, June 2015                                           ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
An Efficient Approach to Face Recognition of Surgically
Altered Images
Er. Supriya, Er. Sukhpreet Kaur
Department of computer science and engineering
SUS college of Engineering and Technology,
Tangori, District, Mohali, Punjab, India"
a21b8aadb27cd10d8a228fe1aad27c0c88d67f15,Design and Implementation of PC Operated Flying Robot for Rescue Operation in Coalmines,"ISSN: 2278 – 7798
International Journal of Science, Engineering and Technology Research (IJSETR)
Volume 2, Issue 1, January 2013
Design and Implementation of PC Operated
Flying Robot for Rescue Operation in
Coalmines
Aditya Kumar T , Pravin A, M S Madhan mohan, T V Janardhanarao"
a23e7e71fb92a56c2e7717f6356e8b69fc2f4bfc,"Multimodal fusion of audio, scene, and face features for first impression estimation","Multimodal Fusion of Audio, Scene, and Face
Features for First Impression Estimation
Furkan G¨urpınar
Program of Computational
Science and Engineering
Bo˘gazic¸i University
Bebek, Istanbul, Turkey
Email:
Heysem Kaya
Albert Ali Salah
Department of Computer Engineering
Department of Computer Engineering
Namık Kemal University
C¸ orlu, Tekirda˘g, Turkey
Email:
Bo˘gazic¸i University
Bebek, Istanbul, Turkey
Email:"
a2dd13729206a7434ef1f0cd016275c0d6f3bb6d,SFV: Reinforcement Learning of Physical Skills from Videos,"SFV: Reinforcement Learning of Physical Skills from Videos
XUE BIN PENG, University of California, Berkeley
ANGJOO KANAZAWA, University of California, Berkeley
JITENDRA MALIK, University of California, Berkeley
PIETER ABBEEL, University of California, Berkeley
SERGEY LEVINE, University of California, Berkeley
Fig. 1. Simulated characters performing highly dynamic skills learned by imitating video clips of human demonstrations. Left: Humanoid performing
artwheel B on irregular terrain. Right: Backflip A retargeted to a simulated Atlas robot.
Data-driven character animation based on motion capture can produce
highly naturalistic behaviors and, when combined with physics simula-
tion, can provide for natural procedural responses to physical perturbations,
environmental changes, and morphological discrepancies. Motion capture
remains the most popular source of motion data, but collecting mocap data
typically requires heavily instrumented environments and actors. In this
paper, we propose a method that enables physically simulated characters
to learn skills from videos (SFV). Our approach, based on deep pose esti-
mation and deep reinforcement learning, allows data-driven animation to
leverage the abundance of publicly available video clips from the web, such
s those from YouTube. This has the potential to enable fast and easy de-
sign of character controllers simply by querying for video recordings of the"
a50b4d404576695be7cd4194a064f0602806f3c4,Efficiently Estimating Facial Expression and Illumination in Appearance-based Tracking,"In Proceedings of BMVC, Edimburgh, UK, September 2006
Efficiently estimating facial expression and
illumination in appearance-based tracking
Jos´e M. Buenaposada†, Enrique Mu˜noz‡, Luis Baumela‡
ESCET, U. Rey Juan Carlos
C/ Tulip´an, s/n
8933 M´ostoles, Spain
Facultad Inform´atica, UPM
Campus de Montegancedo s/n
8660 Boadilla del Monte, Spain
http://www.dia.fi.upm.es/~pcr"
a511463a423f842bdb524009f6ce6c6b0ffa0f77,Kernel diff-hash,"Kernel diff-hash
Michael M. Bronstein
Institute of Computational Science
Faculty of Informatics,
Universit`a della Svizzera Italiana
Via G. Buf‌f‌i 13, Lugano 6900, Switzerland
November 3, 2011"
a5e5094a1e052fa44f539b0d62b54ef03c78bf6a,Detection without Recognition for Redaction,"Detection without Recognition for Redaction
Shagan Sah1, Ram Longman1, Ameya Shringi1, Robert Loce2, Majid Rabbani1, and Raymond Ptucha1
Rochester Institute of Technology - 83 Lomb Memorial Drive, Rochester, NY USA, 14623
Conduent, Conduent Labs - US, 800 Phillips Rd, MS128, Webster, NY USA, 14580
Email:"
a55dea7981ea0f90d1110005b5f5ca68a3175910,"Are 1, 000 Features Worth A Picture? Combining Crowdsourcing and Face Recognition to Identify Civil War Soldiers","Combining Crowdsourcing and Face Recognition to Identify Civil War Soldiers
Are 1,000 Features Worth A Picture?
Vikram Mohanty, David Thames, Kurt Luther
Department of Computer Science and Center for Human-Computer Interaction
Virginia Tech, Arlington, VA, USA"
a5c63f38e2e6ca7fff48fc5cd1dbdb8f6362c99f,A Neural Approach to Blind Motion Deblurring,"A Neural Approach to Blind Motion Deblurring
Ayan Chakrabarti
Toyota Technological Institute at Chicago"
a55ec6bade29f23f8cb1337edf417b2da2f48695,Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions,"Deep Asymmetric Networks with a Set of
Node-wise Variant Activation Functions
Jinhyeok Jang, Hyunjoong Cho, Jaehong Kim, Jaeyeon Lee, and Seungjoon Yang"
a5be204b71d1daaf6897270f2373d1a5e37c3010,Improving Spatiotemporal Self-supervision by Deep Reinforcement Learning,"Improving Spatiotemporal Self-Supervision
y Deep Reinforcement Learning
Uta B¨uchler(cid:63), Biagio Brattoli(cid:63), and Bj¨orn Ommer
Heidelberg University, HCI / IWR, Germany"
a56c1331750bf3ac33ee07004e083310a1e63ddc,Efficient Point-to-Subspace Query in ℓ1 with Application to Robust Object Instance Recognition,"Vol. xx, pp. x
(cid:13) xxxx Society for Industrial and Applied Mathematics
Ef‌f‌icient Point-to-Subspace Query in (cid:96)1 with Application to Robust Object
Instance Recognition
Ju Sun∗, Yuqian Zhang†, and John Wright‡"
a5006c29b0609296b5c1368ff1113eeb12b119ad,In-flight launch of unmanned aerial vehicles,"In-flight launch of unmanned aerial vehicles
Niels Nauwynck, Haris Balta, Geert De Cubber, and Hichem Sahli"
a59e338fec32adee012e31cdb0513ec20d6c8232,Phase Retrieval Under a Generative Prior,"Phase Retrieval Under a Generative Prior
Paul Hand∗, Oscar Leong∗, and Vladislav Voroninski†
July 12, 2018"
a565990d6b176bf9c82eec9354b0936fb141e631,Scheduling on Heterogeneous Multi-core Processors Using Stable Matching Algorithm,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 6, 2016
Scheduling on Heterogeneous Multi-core Processors
Using Stable Matching Algorithm
Muhammad  Rehman  Zafar
Department  of  Computer  Science
Bahria  University
Islamabad,  Pakistan
Muhammad  Asfand-e-Yar
Department  of  Computer  Science
Bahria  University
Islamabad,  Pakistan"
a54e0f2983e0b5af6eaafd4d3467b655a3de52f4,Face Recognition Using Convolution Filters and Neural Networks,"Face Recognition Using Convolution Filters and
Neural Networks
V. Rihani
Head, Dept. of E&E,PEC
Sec-12, Chandigarh – 160012
Amit Bhandari
Department of CSE & IT, PEC
Sec-12, Chandigarh – 160012
C.P. Singh
Physics Department, CFSL,
Sec-36, Chandigarh - 160036
to:  (a)
potential  method"
a52d6daf72281521ee99dabd82cd80093e8d6f4a,Person re-identification across different datasets with multi-task learning,"Person re-identification across different datasets
with multi-task learning
Matthieu Ospici, Antoine Cecchi
Atos BDS R&D"
a5625cfe16d72bd00e987857d68eb4d8fc3ce4fb,VFSC: A Very Fast Sparse Clustering to Cluster Faces from Videos,"VFSC: A Very Fast Sparse Clustering to Cluster Faces
from Videos
Dinh-Luan Nguyen, Minh-Triet Tran
University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam"
a5da6a6d4243a89e974a6467cb5c6df6d914a946,Static and Dynamic Approaches for Pain Intensity Estimation using Facial Expressions,
a546fd229f99d7fe3cf634234e04bae920a2ec33,Fast Fight Detection,"RESEARCH ARTICLE
Fast Fight Detection
Ismael Serrano Gracia1*, Oscar Deniz Suarez1*, Gloria Bueno Garcia1*, Tae-Kyun Kim2
Department of Systems Engineering and Automation, E.T.S.I. Industriales, Ciudad Real, Castilla-La
Mancha, Spain, 2 Department of Electrical and Electronic Engineering, Imperial College, London, UK
* (ISG); (ODS); (GBG)"
a5531b5626c1ee3b6f9aed281a98338439d06d12,Multichannel Attention Network for Analyzing Visual Behavior in Public Speaking,"Multichannel Attention Network for Analyzing
Visual Behavior in Public Speaking
Rahul Sharma, Tanaya Guha and Gaurav Sharma
IIT Kanpur
{rahus, tanaya,"
a5ae7fe2bb268adf0c1cd8e3377f478fca5e4529,Exemplar Hidden Markov Models for classification of facial expressions in videos,"Exemplar Hidden Markov Models for Classification of Facial Expressions in
Videos
Univ. of California San Diego
Univ. of Canberra, Australian
Univ. of California San Diego
Abhinav Dhall
Marian Bartlett
Karan Sikka
California, USA
National University
Australia
California, USA"
a577eefb31ba63baa087f321537b0be2784ec013,Security Event Recognition for Visual Surveillance,"Security Event Recognition for Visual Surveillance
Michael Ying Yang∗, Senior Member, IEEE, Wentong Liao, Chun Yang, Yanpeng Cao, Member, IEEE and Bodo
Rosenhahn Member, IEEE"
a55efc4a6f273c5895b5e4c5009eabf8e5ed0d6a,"Continuous Head Movement Estimator for Driver Assistance: Issues, Algorithms, and On-Road Evaluations","Continuous Head Movement Estimator for
Driver Assistance: Issues, Algorithms,
nd On-Road Evaluations
Ashish Tawari, Student Member, IEEE, Sujitha Martin, Student Member, IEEE, and
Mohan Manubhai Trivedi, Fellow, IEEE"
a51d5c2f8db48a42446cc4f1718c75ac9303cb7a,Cross-validating Image Description Datasets and Evaluation Metrics,"Cross-validating Image Description Datasets and Evaluation Metrics
Josiah Wang and Robert Gaizauskas
Department of Computer Science
University of Sheffield, UK
{j.k.wang,"
a52d9e9daf2cb26b31bf2902f78774bd31c0dd88,Understanding and Designing Convolutional Networks for Local Recognition Problems,"Understanding and Designing Convolutional Networks
for Local Recognition Problems
Jonathan Long
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2016-97
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-97.html
May 13, 2016"
a52d6c456122007f10c90989a1e81dc8e1c599da,Query-Adaptive Image Search With Hash Codes,"Query-Adaptive Image Search with Hash Codes
Yu-Gang Jiang, Jun Wang, Member, IEEE, Xiangyang Xue, Member, IEEE, Shih-Fu Chang, Fellow, IEEE"
a5a44a32a91474f00a3cda671a802e87c899fbb4,Moments in Time Dataset: one million videos for event understanding,"Moments in Time Dataset: one million
videos for event understanding
Mathew Monfort, Bolei Zhou, Sarah Adel Bargal,
Alex Andonian, Tom Yan, Kandan Ramakrishnan, Lisa Brown,
Quanfu Fan, Dan Gutfruend, Carl Vondrick, Aude Oliva"
bd0e100a91ff179ee5c1d3383c75c85eddc81723,Okutama-Action: An Aerial View Video Dataset for Concurrent Human Action Detection,"Okutama-Action: An Aerial View Video Dataset for Concurrent Human Action
Detection∗
Mohammadamin Barekatain1, Miquel Mart´ı2,3, Hsueh-Fu Shih4, Samuel Murray2, Kotaro Nakayama5,
Yutaka Matsuo5, Helmut Prendinger6
Technical University of Munich, Munich, 2KTH Royal Institute of Technology, Stockholm,
Polytechnic University of Catalonia, Barcelona, 4National Taiwan University, Taipei, 5University of
Tokyo, Tokyo, 6National Institute of Informatics, Tokyo"
bd07d1f68486052b7e4429dccecdb8deab1924db,Face representation under different illumination conditions,
bd96c3af9c433b4eaf95c8a28f072e1b0fc2de1a,A Study on Facial Expression Recognition Model using an Adaptive Learning Capability,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
bdb74f1b633b2c48d5e9d101e09bad2db8d68be6,Chapter 1 . Medical Image Annotation (,"Chapter 1
Medical image annotation 1
Thanks to the rapid development of modern medical devices and the use of
digital systems, more and more medical images are being generated. This
has lead to an increase in the demand for automatic methods to index, com-
pare, analyze and annotate them. Until 2005, automatic categorization of
medical images was often restricted to a small number of classes. The Image-
CLEF medical image annotation challenge was born in this scenario, propos-
ing a task reflecting real life constraints of content based image classification
in medical applications. In this chapter we report about our experience first
s participants, then as co-organizers. This research activity started in 2007,
supported by a 1-year IM2 fellowship. By leveraging over the initial IM2
support, in 2008 a 4-year project started (EMMA, Enhanced Multimodal
Medical data Access), sponsored by the Halser foundation. Since 2009, B.
Caputo has been an ImageCLEF task organizers, respectively for the medi-
al annotation and robot vision tasks. Since 2013, she is main organizer of
ImageCLEF.
Introduction
This chapter presents the algorithms and results of the Idiap team partici-
pation to the ImageCLEFmed annotation task in 2007, 2008 and 2009. The"
bdbf414a2059d542f501ad9b1d21eacc9831082b,Two-Layer Mixture Network Ensemble for Apparel Attributes Classification,"Two-Layer Mixture Network Ensemble for Apparel
Attributes Classification
Tianqi Han, Zhihui Fu, and Hongyu Li*
AI Lab, ZhongAn Information Technology Service Co., Ltd.
Shanghai, China"
bdf64dd341925ea7b9b3abbb49cab3cf978f8e21,Probable Etiopathogenesis (samprapti) of Autism in Frame of Ayurveda in Relation to Intense World Theory,"Global J Res. Med. Plants & Indigen. Med. | Volume 2, Issue 6 | June 2013 | 448–459
ISSN 2277-4289 | www.gjrmi.com | International, Peer reviewed, Open access, Monthly Online Journal
Review article
PROBABLE ETIOPATHOGENESIS (SAMPRAPTI) OF AUTISM IN FRAME
OF AYURVEDA IN RELATION TO INTENSE WORLD THEORY
Yadav Deepmala1*, Behera Banshidhar2, Kumar Abhimanyu3
Asst.Professor, Dept. of Kaumarbhritya, M.S.M. Institute of Ayurveda, Khanpur kalan, Haryana-131305,
India
Lecturer, Dept. of Dravyaguna, Gaur Brahman Ayurvedic College, Rohtak, Haryana – 124001, India
Director, All India Institute of Ayurveda, Gautampuri, Mathura road, Sarita Vihar, New Delhi-110076,
India
*Corresponding Author: E-mail: Mob +919414893921, +919414458895
Received: 10/05/2013; Revised: 26/05/2013; Accepted: 30/05/2013"
bda61e9bcf02d02f61882790dbbdad8e4fed0986,Face Recognition through Combined SVD and LBP Features,"Face Recognition through Combined SVD and LBP
International Journal of Computer Applications (0975 – 8887)
Volume 88 – No.9, February 2014
Features
Rahul Kumar Mittal
M.Tech. Scholar
BGIET, Sangrur
Punjab (India)
Anupam Garg
Assistant Professor
BGIET, Sangrur
Punjab (India)"
bd13f50b8997d0733169ceba39b6eb1bda3eb1aa,Occlusion Coherence: Detecting and Localizing Occluded Faces,"Occlusion Coherence: Detecting and Localizing Occluded Faces
Golnaz Ghiasi, Charless C. Fowlkes
University of California at Irvine, Irvine, CA 92697"
bd78a853df61d03b7133aea58e45cd27d464c3cf,A Sparse Representation Approach to Facial Expression Recognition Based on LBP plus LFDA,"A Sparse Representation Approach to Facial
Expression Recognition Based on LBP plus LFDA
Ritesh Bora, V.A.Chakkarvar
Computer science and Engineering Department,
Government College of Engineering, Aurangabad [Autonomous]
Station Road, Aurangabad, Maharashtra, India."
bd17d6ba5525dec8762dbaacf6cc3e0cc3f5ff90,Necst: Neural Joint Source-channel Coding,"Under review as a conference paper at ICLR 2019
NECST: NEURAL JOINT SOURCE-CHANNEL CODING
Anonymous authors
Paper under double-blind review"
bd88bb2e4f351352d88ee7375af834360e223498,A Multi - camera video data set for research on High - Definition surveillance,"HDA dataset - DRAFT
A Multi-camera video data set for research on
High-Definition surveillance
Athira Nambiar, Matteo Taiana, Dario Figueira,
Jacinto Nascimento and Alexandre Bernardino
Computer and Robot Vision Lab, Institute for Systems and Robotics
Instituto Superior Técnico
Lisbon, Portugal"
bd2d7c7f0145028e85c102fe52655c2b6c26aeb5,Attribute-based People Search: Lessons Learnt from a Practical Surveillance System,"Attribute-based People Search: Lessons Learnt from a
Practical Surveillance System
Rogerio Feris
IBM Watson
http://rogerioferis.com
Russel Bobbitt
IBM Watson
Lisa Brown
IBM Watson
Sharath Pankanti
IBM Watson"
bd0a6bea1985ece3388b1dae47fa76aab3562d6d,One Deep Music Representation to Rule Them All? : A comparative analysis of different representation learning strategies,"Noname manuscript No.
(will be inserted by the editor)
One Deep Music Representation to Rule Them All?
A comparative analysis of different representation learning strategies
Jaehun Kim · Juli´an Urbano ·
Cynthia C. S. Liem · Alan Hanjalic
Received: date / Accepted: date"
bd2752acf6821282655933d1946f43bb4ac5e901,Flexible Network Binarization with Layer-wise Priority,"Flexible Network Binarization with Layer-wise Priority
Lixue Zhuang*, Yi Xu*, Bingbing Ni*, Hongteng Xu†
Shanghai Jiao Tong University*, Duke University†
{qingliang, xuyi,"
bdbba95e5abc543981fb557f21e3e6551a563b45,Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks,"Vol. 17, No. 2 (2018) 1850008 (15 pages)
#.c The Author(s)
DOI: 10.1142/S1469026818500086
Speeding up the Hyperparameter Optimization of Deep
Convolutional Neural Networks
Tobias Hinz*, Nicolas Navarro-Guerrero†, Sven Magg‡
nd Stefan Wermter§
Knowledge Technology, Department of Informatics
Universit€at Hamburg
Vogt-K€olln-Str. 30, Hamburg 22527, Germany
Received 15 August 2017
Accepted 23 March 2018
Published 18 June 2018
Most learning algorithms require the practitioner to manually set the values of many hyper-
parameters before the learning process can begin. However, with modern algorithms, the
evaluation of a given hyperparameter setting can take a considerable amount of time and the
search space is often very high-dimensional. We suggest using a lower-dimensional represen-
tation of the original data to quickly identify promising areas in the hyperparameter space. This
information can then be used to initialize the optimization algorithm for the original, higher-
dimensional data. We compare this approach with the standard procedure of optimizing the"
d1dfdc107fa5f2c4820570e369cda10ab1661b87,Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation,"Super SloMo: High Quality Estimation of Multiple Intermediate Frames
for Video Interpolation
Huaizu Jiang1
Deqing Sun2
Varun Jampani2
Ming-Hsuan Yang3,2
Erik Learned-Miller1
Jan Kautz2
UMass Amherst
NVIDIA 3UC Merced"
d19df82c5ea644937bf182fabdc0e36e78ea6867,Emotional Facial Expression Recognition from Two Different Feature Domains,"EMOTIONAL FACIAL EXPRESSION RECOGNITION FROM TWO
DIFFERENT FEATURE DOMAINS
Jonghwa Kim and Frank Jung
Institute of Computer Science, University of Augsburg, Germany
Keywords:"
d168c2bd29fcad2083586430dd76f54da69bc8a6,Person Re-Identification by Iterative Re-Weighted Sparse Ranking,"Person Re-Identification by Iterative
Re-Weighted Sparse Ranking
Giuseppe Lisanti, Iacopo Masi, Andrew D. Bagdanov, Member, IEEE, and
Alberto Del Bimbo, Member, IEEE"
d1dae2993bdbb2667d1439ff538ac928c0a593dc,Gamma Correction Technique Based Feature Extraction for Face Recognition System,"International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013
Gamma Correction Technique Based Feature Extraction
for Face Recognition System
B Vinothkumar
P Kumar
Electronics and Communication Engineering
K S Rangasamy College of Technology
Electronics and Communication Engineering
K S Rangasamy College of Technology
Tamilnadu, India
Tamilnadu, India"
d1dd0c714950cbd89f76ec6b039201eadf74cade,Person Re-identification Using Robust Brightness Transfer Functions Based on Multiple Detections,"Person Re-identification Using Robust
Brightness Transfer Functions Based
on Multiple Detections
Amran Bhuiyan(B), Behzad Mirmahboub, Alessandro Perina,
nd Vittorio Murino
Pattern Analysis and Computer Vision (PAVIS),
Istituto Italiano di Tecnologia, Genova, Italy"
d1503151b39038a87acbd9ecce073ddc211a597d,Efficient Semantic Segmentation using Gradual Grouping,"Efficient Semantic Segmentation using Gradual Grouping
Nikitha Vallurupalli1, Sriharsha Annamaneni1, Girish Varma1,
C V Jawahar1, Manu Mathew2, Soyeb Nagori2
Center for Visual Information Technology, Kohli Center on Intelligent Systems, IIIT-Hyderabad, India
Texas Instruments, Bangalore, India"
d1a0425f764ce8847d20d278e4a4267c8258c4dc,3D Human Pose Estimation with Siamese Equivariant Embedding,"D Human Pose Estimation with Siamese Equivariant
Embedding
M´arton V´egesa,∗, Viktor Vargaa, Andr´as L˝orincza
E¨otv¨os Lor´and University, Budapest, Hungary"
d1295a93346411bb833305acc0e092c9e3b2eff1,The eMPaThy iMBalance hyPoThesis oF aUTisM : a TheoReTical aPPRoach To cogniTiVe and eMoTional eMPaThy in aUTisTic deVeloPMenT,"the Psychological record, 2009, 59, 489-510
The eMPaThy iMBalance hyPoThesis oF aUTisM:
TheoReTical aPPRoach To cogniTiVe and
eMoTional eMPaThy in aUTisTic deVeloPMenT
Adam Smith
Dundee, Scotland
There has been a widely held belief that people with autism spectrum disorders
lack empathy. This article examines the empathy imbalance hypothesis (EIH) of
utism. According to this account, people with autism have a deficit of cognitive
empathy but a surfeit of emotional empathy. The behavioral characteristics of
utism might be generated by this imbalance and a susceptibility to empathic
overarousal.  The  EIH  builds  on  the  theory  of  mind  account  and  provides  an
lternative to the extreme-male-brain theory of autism. Empathy surfeit is a re-
urrent theme in autistic narratives, and empirical evidence for the EIH is grow-
ing. A modification of the pictorial emotional Stroop paradigm could facilitate
n experimental test of the EIH.
Autism is a pervasive developmental disorder that continues to fascinate
researchers,  challenge  clinicians,  and  distress  affected  families.  empathy
is  a  set  of  processes  and  outcomes  at  the  heart  of  human  social  behavior.
Fascination with autism is often interwoven with the study of empathy because"
d1e66107eb084ea0ef5a97f3363f8787b8df91ed,Max-Margin Regularization for Reducing Accidentalness in Chamfer Matching,"Max-margin Regularization for Reducing
Accidentalness in Chamfer Matching
Angela Eigenstetter*, Pradeep Yarlagadda* and Bj¨orn Ommer
Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany"
d12c343e60f9cc1a0c6c94c138f38e6bffe22001,Diverse Sampling for Self-Supervised Learning of Semantic Segmentation,"Diverse Sampling for Self-Supervised Learning of Semantic Segmentation
Mohammadreza Mostajabi ∗
Nicholas Kolkin ∗
Toyota Technological Institute at Chicago
{mostajabi, nick.kolkin,
Gregory Shakhnarovich"
d1c103c63d930d3ae7397618f486117a48e35f16,Does gaze direction modulate facial expression processing in children with autism spectrum disorder?,"BIROn - Birkbeck Institutional Research Online
Enabling open access to Birkbeck’s published research output
Does gaze direction modulate facial expression
processing in children with autism spectrum disorder?
Journal Article
http://eprints.bbk.ac.uk/2561
Version: Accepted (Refereed)
Citation:
© 2009 Wiley Blackwell
Publisher version
______________________________________________________________
All articles available through Birkbeck ePrints are protected by intellectual property law, including
opyright law. Any use made of the contents should comply with the relevant law.
______________________________________________________________
Akechi, H.; Senju, A.; Kikuchi, Y.; Tojo, Y.; Osanai, H.; Hasegawa, T.
(2009)
Does gaze direction modulate facial expression processing in children
with autism spectrum disorder?
Deposit Guide
Contact:"
d1f58798db460996501f224fff6cceada08f59f9,Transferrable Representations for Visual Recognition,"Transferrable Representations for Visual Recognition
Jeffrey Donahue
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2017-106
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-106.html
May 14, 2017"
d16c8ac2d194a6e862be0d1c4edf1ca2cdf5dc18,Robust Subspace Approaches to Visual Learning and Recognition DOCTORAL,"Univerza v Ljubljani
Fakulteta za raˇcunalniˇstvo in informatiko
Danijel Skoˇcaj
Robustni pristopi k vizualnemu uˇcenju
in razpoznavanju na osnovi podprostorov
DOKTORSKA DISERTACIJA
Ljubljana, 2003
Mentor: prof. dr. Aleˇs Leonardis"
d1c091bf9402f1caf13892a3fae39326507401be,Speeding up Semantic Segmentation for Autonomous Driving,"Speeding up Semantic Segmentation for Autonomous
Driving
Michael Treml ∗1, José Arjona-Medina∗1, Thomas Unterthiner∗1,
Rupesh Durgesh2, Felix Friedmann2, Peter Schuberth2,
Andreas Mayr1, Martin Heusel1, Markus Hofmarcher1, Michael Widrich1,
Bernhard Nessler1, Sepp Hochreiter1
Institute of Bioinformatics, Johannes Kepler University Linz, Austria
Audi Electronics Venture GmbH, Germany
{treml, arjona, unterthiner, nessler,
{rupesh.durgesh, felix.friedmann,"
d102f18d319d9545588075010f5d10b1ff77f967,Effects of Degradations on Deep Neural Network Architectures,"Effects of Degradations on Deep Neural Network
Architectures
Prasun Roy∗, Subhankar Ghosh∗, Saumik Bhattacharya∗ and Umapada Pal
Indian Statistical Institute Kolkata, India - 700108"
d170adb2c508edaedb731ada8cb995172a839a1f,Cascade of Boolean detector combinations,"Mahkonen et al. EURASIP Journal on Image and Video
Processing  (2018) 2018:61
https://doi.org/10.1186/s13640-018-0303-9
EURASIP Journal on Image
nd Video Processing
RESEARCH
Open Access
Cascade of Boolean detector
ombinations
Katariina Mahkonen*
, Tuomas Virtanen and Joni Kämäräinen"
d1d4c49e764a200bc90113b0ba9c34664d0f9462,"Memo No . 082 May 10 , 2018 Scene Graph Parsing as Dependency Parsing","CBMM Memo No. 082
May 10, 2018
Scene Graph Parsing as Dependency Parsing
Yu-Siang Wang1, Chenxi Liu2, Xiaohui Zeng3, Alan Yuille2
: National Taiwan University
: Johns Hopkins University
: Hong Kong University of Science and Technology"
d1a43737ca8be02d65684cf64ab2331f66947207,IJB – S : IARPA Janus Surveillance Video Benchmark ∗,"IJB–S: IARPA Janus Surveillance Video Benchmark (cid:3)
Nathan D. Kalka y
Stephen Elliott z
Brianna Maze y
Kaleb Hebert y
James A. Duncan y
Julia Bryan z
Kevin O’Connor z
Anil K. Jain x"
d122d66c51606a8157a461b9d7eb8b6af3d819b0,Automated Recognition of Facial Expressions,"Vol-3 Issue-4 2017
IJARIIE-ISSN(O)-2395-4396
AUTOMATED RECOGNITION OF FACIAL
EXPRESSIONS
Pavan S. Ahire, PG Student, Dept. of Computer Engineering, METs Institute of Engineering,
Prof. R. P. Dahake, Dept. of Computer Engineering, METs Institute of  Engineering,
Adgoan,Nashik,Maharashtra.
Adgoan, Nashik, Maharashtra."
d142e74c6a7457e77237cf2a3ded4e20f8894e1a,Human Emotion Estimation from Eeg and Face Using Statistical Features and Svm,"HUMAN EMOTION ESTIMATION FROM
EEG AND FACE USING STATISTICAL
FEATURES AND SVM
Strahil Sokolov1, Yuliyan Velchev2, Svetla Radeva3 and Dimitar Radev4
,3Department of Information Technologies,
University of telecommunications and post, Sofia, Bulgaria
2,4Department of Telecommunications,
University of telecommunications and post, Sofia, Bulgaria"
d1082eff91e8009bf2ce933ac87649c686205195,Pruning of Error Correcting Output Codes by optimization of accuracy–diversity trade off,"(will be inserted by the editor)
Pruning of Error Correcting Output Codes by
Optimization of Accuracy-Diversity Trade off
S¨ureyya ¨Oz¨o˘g¨ur Aky¨uz · Terry
Windeatt · Raymond Smith
Received: date / Accepted: date"
d1bfb6a9182e5712d8aef46b2fe93ef4ad4fe705,Local Color Contrastive Descriptor for Image Classification,"Local Color Contrastive Descriptor for Image
Classification
Sheng Guo, Student Member, IEEE, Weilin Huang, Member, IEEE, and Yu Qiao, Senior Member, IEEE"
d1c0592f4f9f0ff2e14e0591d87539e5141b7361,Mobile Emotion Recognition Engine,"Mobile Emotion Recognition Engine
Alberto Scicali1"
d138270d3c06e85fa2c3da6f953818da4b72313a,An Analytical Framework for Estimating Scale-Out and Scale-Up Power Efficiency of Heterogeneous Manycores,"An Analytical Framework for Estimating
Scale-Out and Scale-Up Power Efficiency
of Heterogeneous Manycores
Jun Ma, Guihai Yan, Member, IEEE, Yinhe Han, Member, IEEE, and Xiaowei Li, Senior Member, IEEE"
d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576,Neural Face Editing with Intrinsic Image Disentangling,"Neural Face Editing with Intrinsic Image Disentangling
Zhixin Shu1 Ersin Yumer2 Sunil Hadap2 Kalyan Sunkavalli2 Eli Shechtman 2 Dimitris Samaras1,3
Stony Brook University 2Adobe Research 3 CentraleSup´elec, Universit´e Paris-Saclay"
d1dc5a8b4d13d2c51eec7bcb29d08f471d3b65dc,Adversarially Occluded Samples for Person Re-identification ( Supplementary Material ) 1 . Improvement of Ranking Results,"Adversarially Occluded Samples for Person Re-identification
Houjing Huang 1
Dangwei Li 1
Zhang Zhang 1
Xiaotang Chen 1
Kaiqi Huang 1
CRIPAC & NLPR, CASIA 2 University of Chinese Academy of Sciences
CAS Center for Excellence in Brain Science and Intelligence Technology
{houjing.huang, dangwei.li, zzhang, xtchen,"
d198b5bc5eae22f7a788729c0ea15b6b60b62f36,Transfer Learning for Estimating Causal Effects using Neural Networks,"Transfer Learning for Estimating Causal Effects
using Neural Networks
Sören R. Künzel∗
UC Berkeley
Varsha Ramakrishnan
UC Berkeley
Bradly C. Stadie∗
UC Berkeley
Nikita Vemuri
UC Berkeley
Jasjeet S. Sekhon
UC Berkeley
Pieter Abbeel
UC Berkeley"
d6dab84451254d7fbb5b9e1d40a7d2a92dec13b3,Enhanced Local Binary Patterns for Automatic Face Recognition,"ENHANCED LOCAL BINARY PATTERNS FOR AUTOMATIC FACE RECOGNITION
Pavel Kr´al1
, Anton´ın Vrba1
Dept. of Computer Science & Engineering 2New Technologies for the Information Society
Faculty of Applied Sciences
University of West Bohemia
Plzeˇn, Czech Republic
Faculty of Applied Sciences
University of West Bohemia
Plzeˇn, Czech Republic"
d6255a0db6f8f157c5c901d758c7a5f36416ab51,Face Recognition Using Gabor Wavelet Transform,"FACE RECOGNITION USING GABOR WAVELET TRANSFORM
A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL SCIENCES
THE MIDDLE EAST TECHNICAL UNIVERSITY
BURCU KEPENEKCI
IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THE DEGREE
MASTER OF SCIENCE
THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
SEPTEMBER 2001"
d69df51cff3d6b9b0625acdcbea27cd2bbf4b9c0,Robust Remote Heart Rate Determination for E-Rehabilitation - A Method that Overcomes Motion and Intensity Artefacts,
d64b24e9b01f4681d92fc29f36e46d94db7b8bb0,Avoiding Extraverts: Pathogen Concern Downregulates Preferences for Extraverted Faces,"See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/305793723
Avoiding	Extraverts:	Pathogen	Concern
Downregulates	Preferences	for	Extraverted
Faces
Article	·	August	2016
DOI:	10.1007/s40806-016-0064-6
CITATIONS
authors,	including:
Mitch	Brown
University	of	Southern	Mississippi
6	PUBLICATIONS			5	CITATIONS
SEE	PROFILE
READS
Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:
Limbal	Rings	View	project
Morality	and	Mate	Preferences	View	project
All	content	following	this	page	was	uploaded	by	Mitch	Brown	on	06	December	2016.
The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document
nd	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately."
d660abfbe5f84c1c49f1e7174eb166b8b23e53c4,"AMIGOS: A dataset for Mood, personality and affect research on Individuals and GrOupS","AMIGOS: A dataset for Mood, personality and
ffect research on Individuals and GrOupS
Nicu Sebe, Senior Member, IEEE, and Ioannis Patras, Senior Member, IEEE"
d689cdb4e535be040316722229e6362de6617f9e,Geometric Deep Particle Filter for Motorcycle Tracking: Development of Intelligent Traffic System in Jakarta,"INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 8, NO. 1, MARCH 2015
GEOMETRIC DEEP PARTICLE FILTER FOR MOTORCYCLE
TRACKING: DEVELOPMENT OF INTELLIGENT TRAFFIC
SYSTEM IN JAKARTA
Alexander A S Gunawan1, Wisnu Jatmiko2
Bina Nusantara University, Mathematics Department,
School of Computer Science, Jakarta, Indonesia
Faculty of Computer Science,Universitas Indonesia, Depok, Indonesia
Submitted: Oct. 4, 2014      Accepted: Jan. 20, 2015        Published: Mar. 1, 2015"
d61578468d267c2d50672077918c1cda9b91429b,Face Image Retrieval Using Pose Specific Set Sparse Feature Representation,"Abdul Afeef N et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.9, September- 2014, pg. 314-323
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IJCSMC, Vol. 3, Issue. 9, September 2014, pg.314 – 323
RESEARCH ARTICLE
Face Image Retrieval Using Pose Specific
Set Sparse Feature Representation
Department of Computer Science, Viswajyothi College of Engineering and Technology Kerala, India
Assistant Professor of Computer Science, Viswajyothi College of Engineering and Technology Kerala, India
Abdul Afeef N1, Sebastian George2"
d6eda0c16d226976506396653d14044c185eaf3e,Toward Multimodal Image-to-Image Translation,"Toward Multimodal Image-to-Image Translation
Jun-Yan Zhu
UC Berkeley
Richard Zhang
UC Berkeley
Deepak Pathak
UC Berkeley
Trevor Darrell
UC Berkeley
Alexei A. Efros
UC Berkeley
Oliver Wang
Adobe Research
Eli Shechtman
Adobe Research"
d687fa99586a9ad229284229f20a157ba2d41aea,Face Recognition Based on Wavelet Packet Coefficients and Radial Basis Function Neural Networks,"Journal of Intelligent Learning Systems and Applications, 2013, 5, 115-122
http://dx.doi.org/10.4236/jilsa.2013.52013 Published Online May 2013 (http://www.scirp.org/journal/jilsa)
Face Recognition Based on Wavelet Packet Coefficients
nd Radial Basis Function Neural Networks
Thangairulappan Kathirvalavakumar1*, Jeyasingh Jebakumari Beulah Vasanthi2
Department of Computer Science, Virudhunagar Hindu Nadars’ Senthikumara Nadar College, Virudhunagar, India; 2Department of
Computer Applications, Ayya Nadar Janaki Ammal College, Sivakasi, India.
Email:
Received December 12th, 2012; revised April 19th, 2013; accepted April 26th, 2013
Copyright © 2013 Thangairulappan Kathirvalavakumar, Jeyasingh Jebakumari Beulah Vasanthi. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any me-
dium, provided the original work is properly cited."
d69e644016042d1032995bc9f51e2d72a1c1cd93,Beyond Trees: Adopting MITI to Learn Rules and Ensemble Classifiers for Multi-Instance Data,"Beyond Trees: Adopting MITI to Learn Rules
nd Ensemble Classifiers for Multi-instance Data
Luke Bjerring and Eibe Frank
Department of Computer Science, University of Waikato"
d6efd1b7b39d91b067488e0c4bf800ce3e3704d8,Visual Analysis of Pedestrian Motion,"Visual Analysis of Pedestrian Motion
PRS Transfer Report
Supervised by Dr Ian Reid
David Ellis
St John’s College
Robotics Research Group
Department of Engineering Science
Michaelmas 2009"
d6a9ea9b40a7377c91c705f4c7f206a669a9eea2,Visual Representations for Fine-grained Categorization,"Visual Representations for Fine-grained
Categorization
Ning Zhang
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2015-244
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-244.html
December 17, 2015"
d671a210990f67eba9b2d3dda8c2cb91575b4a7a,Social Environment Description from Data Collected with a Wearable Device,"Journal of Machine Learning Research ()
Submitted ; Published
Social Environment Description from Data Collected with a
Wearable Device
Pierluigi Casale
Computer Vision Center
Autonomous University of Barcelona
Barcelona, Spain
Editor: Radeva Petia, Pujol Oriol"
d665213b59f2460faf171d3b03ecd9c96d606883,A Multimodal Nonverbal Human-robot Communication System,"VI International Conference on Computational Bioengineering
ICCB 2015
M. Cerrolaza and S.Oller (Eds)
A MULTIMODAL NONVERBAL HUMAN-ROBOT COMMUNICATION
SYSTEM
S. SALEH†*, M. SAHU†, Z. ZAFAR† AND K. BERNS†
Robotics Research Lab. - Dept. of Computer Science
University of Kaiserslautern
Kaiserslautern, Germany
web page: http://agrosy.cs.uni-kl.de
e-mail: {saleh, sahu, zafar,
* Dept. of Computer Science, University of Basrah
Basrah, Iraq
Key words: HRI, Facial Expression Recognition, Nonverbal Communication"
d6683c74c17d4fcc48ce3d9df9df6aea38fd4923,Learning Instance Weights in Multi-Instance Learning,"Learning Instance Weights in
Multi-Instance Learning
James Foulds
This thesis is submitted in partial fulfillment of
the requirements for the degree of
Master of Science
t the
University of Waikato.
Department of Computer Science
Hamilton, New Zealand
February 2007 - February 2008
(cid:13) 2008 James Foulds"
d65b82b862cf1dbba3dee6541358f69849004f30,2.5D Elastic graph matching,"Contents lists available at ScienceDirect
j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c v i u
.5D Elastic graph matching
Stefanos Zafeiriou
, Maria Petrou
Imperial College, Department of Electrical and Electronic Engineering, London, UK
r t i c l e
i n f o
b s t r a c t
Article history:
Received 29 November 2009
Accepted 1 December 2010
Available online 17 March 2011
Keywords:
Elastic graph matching
D face recognition
Multiscale mathematical morphology
Geodesic distances
In this paper, we propose novel elastic graph matching (EGM) algorithms for face recognition assisted by
the availability of 3D facial geometry. More specifically, we conceptually extend the EGM algorithm in"
d6102a7ddb19a185019fd2112d2f29d9258f6dec,Fashion Style Generator,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
GeneratorPatch……Global+…lstyle(2)lstyle(1)lcontent(1)lcontent(2)φθϕsϕcDiscriminatorDGXX(1)X(2)(a) Framework of the training stage(b) Examples of fashion style generationFigure1:Fashionstylegeneratorframeworkoverview.TheinputXconsistsofasetofclothingpatchesX(1)andfullclothingimagesX(2).Thesystemconsistsoftwocomponents:animagetransfor-mationnetworkGservedasfashionstylegenerator,andadiscrimi-natornetworkDcalculatesbothglobalandpatchbasedcontentandstylelosses.Gisaconvolutionalencoderdecodernetworkparam-eterizedbyweights(cid:18).Sixgeneratedshirtswithdifferentstylesbyourmethodareshownasexamples.(Wehighlyrecommendtozoominallthefigureswithcolorversionformoredetails.)recentneuralstyletransferworks[Gatysetal.,2015].Tak-ingVanGogh’s“StarryNight”astheexamplestyleimage,styleisbetweenthelow-levelcolor/texture(e.g.,blueandyellowcolor,roughorsmoothertexture)andthehigh-levelobjects(e.g.,houseandmountain).“Style”isarelativelyab-stractconcept.Fashionstylegenerationhasatleasttwoprac-ticalusages.Designerscouldquicklyseehowtheclothinglookslikeinagivenstyletofacilitatethedesignprocessing.Shopperscouldsynthesizetheclothingimagewiththeidealstyleandapplyclothingretrievaltools[Jiangetal.,2016b]tosearchthesimilaritems.Fashionstylegenerationisrelatedtoexistingneuralstyletransferworks[Gatysetal.,2015;LiandWand,2016a;EfrosandFreeman,2001],buthasitsownchallenges.Infashionstylegeneration,thesyntheticclothingimageshould"
d6bfa9026a563ca109d088bdb0252ccf33b76bc6,Unsupervised Temporal Segmentation of Facial Behaviour,"Unsupervised Temporal Segmentation of Facial Behaviour
Abhishek Kar
Advisors: Dr. Amitabha Mukerjee & Dr. Prithwijit Guha
Department of Computer Science and Engineering, IIT Kanpur"
d6adb54f5d25dda71d157b5d574c70c732fdd722,Feature Map Filtering: Improving Visual Place Recognition with Convolutional Calibration,"Pre-print of article that will appear in Proceedings of the Australasian Conference on Robotics and Automation
018.
Please cite this paper as:
Stephen Hausler, Adam Jacobson, and Michael Milford. Feature Map Filtering: Improving Visual Place Recognition
with Convolutional Calibration. Proceedings of Australasian Conference on Robotics and Automation, 2018.
ibtex:
uthor = {Hausler, Stephen and Jacobson, Adam and Milford, Michael},
title = {Feature Map Filtering: Improving Visual Place Recognition with Convolutional Calibration},
ooktitle = {Proceedings of Australasian Conference on Robotics and Automation (ACRA)},
year = {2018},"
d6dfe23018172d29c36746d24f73bf86e1aaa0a6,Searching Scenes by Abstracting Things,
d65bcbcddec932480c434f0ffa778e429cdd4ee7,Periocular biometrics: When iris recognition fails,"Periocular Biometrics: When Iris Recognition Fails
Samarth Bharadwaj, Himanshu S. Bhatt, Mayank Vatsa and Richa Singh"
d6c7092111a8619ed7a6b01b00c5f75949f137bf,A Novel Feature Extraction Technique for Facial Expression Recognition,"A Novel Feature Extraction Technique for Facial Expression
Recognition
*Mohammad Shahidul Islam1,  Surapong Auwatanamongkol2
1 Department of Computer Science, School of Applied Statistics,
National Institute of Development Administration,
Bangkok, 10240, Thailand
Department of Computer Science, School of Applied Statistics,
National Institute of Development Administration,
Bangkok, 10240, Thailand"
d6ceebb0cde7fb0fbe916472d7b613a2d7d2e1e6,Do faces capture the attention of individuals with Williams syndrome or autism? Evidence from tracking eye movements.,"Do faces capture the attention of individuals with Williams syndrome
or Autism? Evidence from tracking eye movements
Deborah M Riby & Peter J B Hancock
http://dx.doi.org/10.1007/s10803-008-0641-z"
d65f11b44180d9997ad5ba6e6970fe4874891f4f,Unobtrusive emotion sensing and interpretation in smart environment,"Journal of Ambient Intelligence and Smart Environments 7 (2015) 59–83
DOI 10.3233/AIS-140298
IOS Press
Unobtrusive emotion sensing and
interpretation in smart environment
Oleg Starostenko *, Ximena Cortés, J. Afredo Sánchez and Vicente Alarcon-Aquino
Department of Computing, Electronics and Mechatronics, Universidad de las Americas Puebla, Cholula,
Pue. 72810, Mexico"
d6b514a68abff3ab14af9fc0152cd5b28bd0192c,Instance Segmentation by Deep Coloring,"JULY 2018
Instance Segmentation by Deep Coloring
Victor Kulikov, Victor Yurchenko, and Victor Lempitsky"
d64c362b631f0c94b22952e2d0860054f0854358,Offline Handwritten Devanagari Numeral Recognition Using Artificial Neural Network,"International Journals of Advanced Research in
Computer Science and Software Engineering
ISSN: 2277-128X (Volume-7, Issue-8)
Research  Article
August
Offline Handwritten Devanagari Numeral Recognition
Using Artificial Neural Network
P E Ajmire
Associate Professor & Head, Department of Computer Science & Application,  G. S. Science, Arts & Commerce
College, Khamgaon, Maharashtra, India
DOI: 10.23956/ijarcsse/V7I7/0157"
d623428f02e80a689eb58d022237daeae2ae7b9c,Guided depth upsampling for precise mapping of urban environments,"Guided Depth Upsampling for Precise Mapping of Urban Environments
Sascha Wirges1, Bj¨orn Roxin2 , Eike Rehder2, Tilman K¨uhner1 and Martin Lauer2"
d680cfe583fe61e49656cc7b9dbd480c6159cf0b,Pedestrian Detection in Far-Infrared Daytime Images Using a Hierarchical Codebook of SURF,"Sensors 2015, 15, 8570-8594; doi:10.3390/s150408570
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
Pedestrian Detection in Far-Infrared Daytime Images Using a
Hierarchical Codebook of SURF
Bassem Besbes 1, Alexandrina Rogozan 2,*, Adela-Maria Rus 2,3,*, Abdelaziz Bensrhair 2
nd Alberto Broggi 4
Diotasoft, 15 Boulevard Emile Baudot, Massy 91300, France; E-Mail:
LITIS Laboratory, National Institute of Applied Sciences, 76801 Saint-Etienne-du-Rouvray Cedex,
France; E-Mail:
Faculty of Computer Science, Babes-Bolyai University, Kogalniceanu no.1,
Cluj-Napoca RO-400084, Romania
Dipartimento di Ingegneria dell’ Informazione, Universita di Parma, Parco Area delle Scienze,
Parma 181/a 43124, Italy; E-Mail:
* Authors to whom correspondence should be addressed; E-Mails: (A.R.);
(A.-M.R.); Tel.: +33-2-3295-6670 (A.R.); +40-2-6440-5300 (A.-M.R.).
Academic Editor: Felipe Jimenez"
d69b542b3714b5e90c384d39b5ab0c4bf9dd5375,Geometry and Probability for Motion and Action,"IN PARTNERSHIP WITH:
Institut polytechnique de
Grenoble
Université Pierre Mendes-France
(Grenoble)
Université Joseph Fourier
(Grenoble)
Activity Report 2012
Project-Team E-MOTION
Geometry and Probability for Motion and
Action
IN COLLABORATION WITH: Laboratoire d’Informatique de Grenoble (LIG)
RESEARCH CENTER
Grenoble - Rhône-Alpes
THEME
Robotics"
d69ef8b5658fabd0ac092fb2bfd0c9c109574dcc,Neural Class-Specific Regression for face verification,"Neural Class-Specific Regression for face
verification
Guanqun Cao, Alexandros Iosifidis, Moncef Gabbouj"
bcee40c25e8819955263b89a433c735f82755a03,Biologically Inspired Vision for Human-Robot Interaction,"Biologically inspired vision for human-robot
interaction
M. Saleiro, M. Farrajota, K. Terzi´c, S. Krishna, J.M.F. Rodrigues, and J.M.H.
du Buf
Vision Laboratory, LARSyS, University of the Algarve, 8005-139 Faro, Portugal,
{masaleiro, mafarrajota, kterzic, jrodrig,"
bcf7fb98ab0137d8a8b8a952819f5e13ec4648aa,Face Recognition with Single Sample per Class Using Cs-lbp and Gabor Filter,"Journal of Theoretical and Applied Information Technology
31st October 2014. Vol. 68 No.3
© 2005 - 2014 JATIT & LLS. All rights reserved.
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195
FACE RECOGNITION WITH SINGLE SAMPLE PER
CLASS USING CS-LBP AND GABOR FILTER
A.USHA RUBY,
DR.J.GEORGE CHELLIN CHANDRAN
Research Scholar, Department of CSE, Bharath University
Principal, CSI College of Engineering, Ketti
E-mail:   ,"
bc995457cf5f4b2b5ef62106856571588d7d70f2,Comparison of Maximum Likelihood and GAN-based training of Real NVPs,"Comparison of Maximum Likelihood and GAN-based training of Real NVPs
Ivo Danihelka 1 2 Balaji Lakshminarayanan 1 Benigno Uria 1 Daan Wierstra 1 Peter Dayan 3"
bc6de183cd8b2baeebafeefcf40be88468b04b74,Age Group Recognition using Human Facial Images,"Age Group Recognition using Human Facial Images
International Journal of Computer Applications (0975 – 8887)
Volume 126 – No.13, September 2015
Shailesh S. Kulkarni
Dept. of Electronics and Telecommunication
Government College of Engineering,
Aurangabad, Maharashtra, India"
bcf73131c2be397fa2105ac45df3ce1a55c07c2f,Automated markerless extraction of walking people using deformable contour models,"This is a preprint of an article published in Computer Animation and Virtual
Worlds, 15(3-4):399-406, 2004.
This journal may be found at:
http://www.interscience.wiley.com"
bcf19b964e7d1134d00332cf1acf1ee6184aff00,Trajectory-Set Feature for Action Recognition,"IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017
LETTER
Trajectory-Set Feature for Action Recognition
Kenji MATSUI†, Nonmember, Toru TAMAKI†a), Member, Bisser RAYTCHEV†, Nonmember,
nd Kazufumi KANEDA†, Member
SUMMARY We propose a feature for action recognition called
Trajectory-Set (TS), on top of the improved Dense Trajectory (iDT).
The TS feature encodes only trajectories around densely sampled inter-
est points, without any appearance features. Experimental results on the
UCF50 action dataset demonstrates that TS is comparable to state-of-the-
rts, and outperforms iDT; the accuracy of 95.0%, compared to 91.7% by
key words: action recognition, trajectory, improved Dense Trajectory
the two-stream CNN [2] that uses a single frame and a opti-
al flow stack. In their paper stacking trajectories was also
reported but did not perform well, probably the sparseness
of trajectories does not fit to CNN architectures. In contrast,
we take a hand-crafted approach that can be fused later with
CNN outputs.
Introduction
Action recognition has been well studied in the computer"
bc1fa3efa43dfb79f6f8243d29327c8ee06e8a97,Learning object classes with generic knowledge,"ETH Zurich, D-ITET, BIWI
Technical Report No 275
Learning object classes with generic knowledge
Thomas Deselaers, Bogdan Alexe, and Vittorio Ferrari"
bc843c35530e38396e8ba55b8891dbe8324054a8,Group Visual Sentiment Analysis,"Group Visual Sentiment Analysis
Zeshan Hussain, Tariq Patanam and Hardie Cate
June 6, 2016"
bca09d92a25e5cc96df5c8d2eb87e2854cdc02b1,Pose Invariant 3 D Face Authentication based on Gaussian Fields Approach,"To the Graduate Council:
I  am  submitting  herewith  a  thesis  written  by  Venkat  Rao  Ayyagari  entitled  “Pose
Invariant 3D Face Authentication based on Gaussian Fields Approach”. I have examined
the  final  electronic  copy  of  this  thesis  for  form  and  content  and  recommend  that  it  be
ccepted  in  partial  fulfillment  of  the  requirements  for  the  degree  of  Master  of  Science,
with a major in Electrical Engineering.
Mongi A. Abidi
Major Professor
We have read this thesis and
recommend its acceptance:
Andreas Koschan
Seong G. Kong
Accepted for the Council:
Anne Mayhew
Vice Chancellor and Dean of
Graduate Studies
(Original signatures are on file with official student records.)"
bcc172a1051be261afacdd5313619881cbe0f676,A fast face clustering method for indexing applications on mobile phones,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
bc7f431c4c5cecfc7bf95b2f0704d81469f23580,An Intelligent Apparel Recommendation System for Online Shopping Using Style Classification,"I J A B E R, Vol. 13, No. 2, (2015): 671-686
AN INTELLIGENT APPAREL RECOMMENDATION
SYSTEM FOR ONLINE SHOPPING USING STYLE
CLASSIFICATION
C. Perkinian* and P. Vikkraman**"
bc749f0e81eafe9e32d56336750782f45d82609d,Combination of Texture and Geometric Features for Age Estimation in Face Images,
bc15e0ebe7ff84e090aa2d74d753d87906d497f7,The Impact of Preprocessing on Deep Representations for Iris Recognition on Unconstrained Environments,"The Impact of Preprocessing on Deep
Representations for Iris Recognition on
Unconstrained Environments
Luiz A. Zanlorensi∗, Eduardo Luz†, Rayson Laroca∗, Alceu S. Britto Jr.‡, Luiz S. Oliveira∗, David Menotti∗
Department of Informatics, Federal University of Paran´a (UFPR), Curitiba, PR, Brazil
Computing Department, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
Postgraduate Program in Informatics, Pontifical Catholic University of Paran´a (PUCPR), Curitiba, PR, Brazil"
bc4e86b6d2d386805466b822a04ea0c015debfff,Robust 3D Face Recognition from Expression Categorisation,"Cook, Jamie A and Cox, Mark and Chandran, Vinod and Sridharan,
Sridha (2007) Robust 3D Face Recognition from Expression
Categorisation. In Proceedings International Conference on Biometrics
642, pages pp. 271-280, Seoul, Korea.
This is the author-manuscript version of this work - accessed from
http://eprints.qut.edu.au
Copyright 2007 Springer"
bca52740ba679b67a508894e68a0e52f6bf62079,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
bc4537bc5834b41a631d9a807500d199b438fb27,Perceptual Integration Deficits in Autism Spectrum Disorders Are Associated with Reduced Interhemispheric Gamma-Band Coherence.,"6352 • The Journal of Neuroscience, December 16, 2015 • 35(50):16352–16361
Neurobiology of Disease
Perceptual Integration Deficits in Autism Spectrum
Disorders Are Associated with Reduced Interhemispheric
Gamma-Band Coherence
Ina Peiker,1* Nicole David,1* X Till R. Schneider,1 Guido Nolte,1 Daniel Scho¨ttle,2 and XAndreas K. Engel1
Departments of 1Neurophysiology and Pathophysiology and 2Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20246
Hamburg, Germany
The integration of visual details into a holistic percept is essential for object recognition. This integration has been reported as a key deficit
in patients with autism spectrum disorders (ASDs). The weak central coherence account posits an altered disposition to integrate features
into a coherent whole in ASD. Here, we test the hypothesis that such weak perceptual coherence may be reflected in weak neural coherence
cross different cortical sites. We recorded magnetoencephalography from 20 adult human participants with ASD and 20 matched
ontrols, who performed a slit-viewing paradigm, in which objects gradually passed behind a vertical or horizontal slit so that only
fragments of the object were visible at any given moment. Object recognition thus required perceptual integration over time and, in case
of the horizontal slit, also across visual hemifields. ASD participants were selectively impaired in the horizontal slit condition, indicating
specific difficulties in long-range synchronization between the hemispheres. Specifically, the ASD group failed to show condition-related
enhancement of imaginary coherence between the posterior superior temporal sulci in both hemispheres during horizontal slit-viewing
in contrast to controls. Moreover, local synchronization reflected in occipitocerebellar beta-band power was selectively reduced for
horizontal compared with vertical slit-viewing in ASD. Furthermore, we found disturbed connectivity between right posterior superior
temporal sulcus and left cerebellum. Together, our results suggest that perceptual integration deficits co-occur with specific patterns of"
bc8e1c2284008319ee325ff7ea19916726235f55,Autonomic responses to social and nonsocial pictures in adolescents with autism spectrum disorder.,"RESEARCH ARTICLE
Autonomic Responses to Social and Nonsocial Pictures in
Adolescents With Autism Spectrum Disorder
Anneke Louwerse, Joke H. M. Tulen, Jos N. van der Geest, Jan van der Ende, Frank C. Verhulst, and
Kirstin Greaves-Lord
It remains unclear why individuals with autism spectrum disorder (ASD) tend to respond in an atypical manner in social
situations. Investigating autonomic and subjective responses to social vs. nonsocial stimuli may help to reveal underlying
mechanisms of these atypical responses. This study examined autonomic responses (skin conductance level and heart
rate) and subjective responses to social vs. nonsocial pictures in 37 adolescents with an ASD and 36 typically developing
(TD) adolescents. Thirty-six pictures from the International Affective Picture System were presented, divided into six
ategories based on social content (social vs. nonsocial) and pleasantness (pleasant, neutral, and unpleasant). Both in
dolescents with ASD as well as TD adolescents, pictures with a social content resulted in higher skin conductance
responses (SCRs) for pleasant and unpleasant pictures than for neutral pictures. No differences in SCRs were found for
the three nonsocial picture categories. Unpleasant pictures, both with and without a social content, showed more heart
rate deceleration than neutral pictures. Self-reported arousal ratings were influenced by the social and affective content
of a picture. No differences were found between individuals with ASD and TD individuals in their autonomic and
subjective responses to the picture categories. These results suggest that adolescents with ASD do not show atypical
utonomic or subjective responses to pictures with and without a social content. These findings make it less likely that
impairments in social information processing in individuals with ASD can be explained by atypical autonomic responses
to social stimuli. Autism Res 2013, (cid:129)(cid:129): (cid:129)(cid:129)–(cid:129)(cid:129). © 2013 International Society for Autism Research, Wiley Periodicals, Inc."
bc811a66855aae130ca78cd0016fd820db1603ec,Towards three-dimensional face recognition in the real Huibin,"Towards three-dimensional face recognition in the real
Huibin Li
To cite this version:
Huibin Li. Towards three-dimensional face recognition in the real. Other. Ecole Centrale de
Lyon, 2013. English. <NNT : 2013ECDL0037>. <tel-00998798>
HAL Id: tel-00998798
https://tel.archives-ouvertes.fr/tel-00998798
Submitted on 2 Jun 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de
recherche fran¸cais ou ´etrangers, des laboratoires
publics ou priv´es."
bc98027b331c090448492eb9e0b9721e812fac84,"Face Representation Using Combined Method of Gabor Filters, Wavelet Transformation and DCV and Recognition Using RBF","Journal of Intelligent Learning Systems and Applications, 2012, 4, 266-273
http://dx.doi.org/10.4236/jilsa.2012.44027 Published Online November 2012 (http://www.SciRP.org/journal/jilsa)
Face Representation Using Combined Method of Gabor
Filters, Wavelet Transformation and DCV and Recognition
Using RBF
Kathirvalavakumar Thangairulappan1*, Jebakumari Beulah Vasanthi Jeyasingh2
Department of Computer Science, VHNSN College, Virudhunagar, India; 2Department of Computer Applications, ANJA College,
Sivakasi, India.
Email:
Received April 27th, 2012; revised July 19th, 2012; accepted July 26th, 2012"
bcaa5fab589d95890d539a3119657fa253176f0d,"Evaluating the Efficiency of a Night-Time, Middle-Range Infrared Sensor for Applications in Human Detection and Recognition","THE PROBLEM: MID-RANGE FR AT NIGHT
No Active Illumination
NIR Led Illuminator
Night Time 120 meters
eters
Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXIII, edited by Gerald C. Holst, Keith A. Krapels,
Proc. of SPIE Vol. 8355, 83551B · © 2012 SPIE · CCC code: 0277-786X/12/$18 · doi: 10.1117/12.917831
Proc. of SPIE Vol. 8355  83551B-1
From: http://proceedings.spiedigitallibrary.org/ on 04/30/2013 Terms of Use: http://spiedl.org/terms"
bc9af4c2c22a82d2c84ef7c7fcc69073c19b30ab,MoCoGAN: Decomposing Motion and Content for Video Generation,"MoCoGAN: Decomposing Motion and Content for Video Generation
Sergey Tulyakov,
Snap Research
Ming-Yu Liu, Xiaodong Yang,
NVIDIA
Jan Kautz"
bcac3a870501c5510df80c2a5631f371f2f6f74a,Structured Face Hallucination,"#1387
CVPR 2013 Submission #1387. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
#1387
Structured Face Hallucination
Anonymous CVPR submission
Paper ID 1387"
bc4627e1bc3bbe21c46c4011ec4f9bd377ec83a4,Towards recognition of degraded words by probabilistic parsing,"Towards Recognition of Degraded Words by Probabilistic
Parsing
Karthika Mohan
IIIT, Hyderabad
AP, India 500 032
K. J. Jinesh
IIIT, Hyderabad
AP, India 500 032
C. V. Jawahar
IIIT, Hyderabad
AP, India 500 032"
ae419d28ab936cbbc420dcfd1decb16a45afc8a9,Real-time face verification using multiple feature combination and a support vector machine supervisor,
ae8d5be3caea59a21221f02ef04d49a86cb80191,Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks,"Published as a conference paper at ICLR 2018
SKIP RNN: LEARNING TO SKIP STATE UPDATES IN
RECURRENT NEURAL NETWORKS
V´ıctor Campos∗†, Brendan Jou‡, Xavier Gir´o-i-Nieto§, Jordi Torres†, Shih-Fu ChangΓ
Barcelona Supercomputing Center, ‡Google Inc,
§Universitat Polit`ecnica de Catalunya, ΓColumbia University
{victor.campos,"
ae2b2493f35cecf1673eb3913fdce37e037b53a2,Optimal Transport Maps for Distribution Pre- Serving Operations on Latent Spaces of Gener-,"OPTIMAL TRANSPORT MAPS FOR DISTRIBUTION PRE-
SERVING OPERATIONS ON LATENT SPACES OF GENER-
ATIVE MODELS
Eirikur Agustsson
D-ITET, ETH Zurich
Switzerland
Alexander Sage
D-ITET, ETH Zurich
Switzerland
Radu Timofte
D-ITET, ETH Zurich
Merantix GmbH
Luc Van Gool
D-ITET, ETH Zurich
ESAT, KU Leuven"
aeee98c90799cd44dde4046754cff27c8ed28d44,Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review,"Deep convolutional neural networks for brain image analysis on magnetic
resonance imaging: a review
Jose Bernal∗, Kaisar Kushibar, Daniel S. Asfaw, Sergi Valverde, Arnau Oliver, Robert Mart´ı, Xavier Llad´o
Computer Vision and Robotics Institute
Dept. of Computer Architecture and Technology
University of Girona
Ed. P-IV, Av. Lluis Santal´o s/n, 17003 Girona (Spain)"
aeee02b8c8bb749a1203fa634407319dd6874667,VIDEO-SURVEILLANCE IN CLOUD Platform and software aaS for people detection and soft-biometry,"VIDEO-SURVEILLANCE IN CLOUD
Platform and software aaS for people detection and soft-
iometry
R. Cucchiara°,*, A. Prati°,+, R. Vezzani°,*, S. Calderara°,*, C. Grana°,*
°SOFTECH-ICT, *Università di Modena e Reggio Emilia, +Università IUAV di Venezia"
aed5b3b976077ecdcf3f88ffc511f63d9f9e8697,"A Qualitative Comparison of CoQA, SQuAD 2.0 and QuAC","A Qualitative Comparison of CoQA, SQuAD 2.0 and QuAC
Mark Yatskar
Allen Institute for Artificial Intelligence"
aeabcbdff7ab810b961a9f7e4399b6c0421d00cd,TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents,"TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents
Yuexin Ma1,2, Xinge Zhu3, Sibo Zhang1, Ruigang Yang1, Wenping Wang2, Dinesh Manocha4
Baidu Research, Baidu Inc.1, The University of Hong Kong2,
The Chinese University of Hong Kong3, University of Maryland at College Park4"
ae0514be12d200bd9fecf0d834bdcb30288c7a1e,Automatic Opinion Question Generation,"Automatic Opinion Question Generation
Yllias Chali
University of Lethbridge
401 University Drive
Lethbridge, Alberta, T1K 3M4
Tina Baghaee
University of Lethbridge
401 University Drive
Lethbridge, Alberta, T1K 3M4"
ae2cf545565c157813798910401e1da5dc8a6199,Cascade of Boolean detector combinations,"Mahkonen et al. EURASIP Journal on Image and Video
Processing  (2018) 2018:61
https://doi.org/10.1186/s13640-018-0303-9
EURASIP Journal on Image
nd Video Processing
RESEARCH
Open Access
Cascade of Boolean detector
ombinations
Katariina Mahkonen*
, Tuomas Virtanen and Joni Kämäräinen"
ae818858a88299090748446b8662e68628612c65,Analysis of Expressiveness of Portuguese Sign Language Speakers,"FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO
Analysis of Expressiveness of
Portuguese Sign Language Speakers
Maria Inês Coutinho Vigário Rodrigues
MASTER THESIS
Integrated Master in Bioengineering
Supervisor: Luis Filipe Pinto de Almeida Teixeira (PhD)
Co-supervisor: Eduardo José Marques Pereira (Eng.)
June 2014"
aebb9649bc38e878baef082b518fa68f5cda23a5,A Multi - scale TVQI - based Illumination Normalization Model,
ae299fad29ba650fbf1e14c7c95ba8ae32e095f0,Person Re-Identification by Robust Canonical Correlation Analysis,"Person Re-Identification by Robust
Canonical Correlation Analysis
Le An, Songfan Yang, Member, IEEE, and Bir Bhanu, Fellow, IEEE"
ae9ab89c51d264fb7b6b57d37399a7c629836e35,Obtaining Better Image Representations by Combining Complementary Activation Features of Multiple ConvNet Layers for Transfer Learning,"Obtaining Better Image Representations by
Combining Complementary Activation Features of
Multiple ConvNet Layers for Transfer Learning
Jumabek Alikhanov
School of Computer and
Information Engineering
Seunghyun Ko
School of Computer and
Information Engineering
Jo Geun Sik
School of Computer and
Information Engineering
Inha University Incheon, South Korea
Inha University Incheon, South Korea
Inha University Incheon, South Korea
Email:
Email:
Email:"
ae5195c44ef7bff090bb5a17a9fe5f86a8c3b316,Web Scale Image Annotation: Learning to Rank with Joint Word-Image Embeddings,"Web Scale Image Annotation: Learning to Rank with Joint
Word-Image Embeddings"
aeeea6eec2f063c006c13be865cec0c350244e5b,"Induced Disgust, Happiness and Surprise: an Addition to the MMI Facial Expression Database","Induced Disgust, Happiness and Surprise: an Addition to the MMI Facial
Expression Database
Michel F. Valstar, Maja Pantic
Imperial College London / Twente University
Department of Computing / EEMCS
80 Queen’s Gate / Drienerlolaan 5
London / Twente"
ae13485e75f5e7fc9a9659ce960c8b299c7b889b,Sparse Modeling for High - Dimensional Multi - Manifold Data Analysis,"SPARSE MODELING FOR HIGH-DIMENSIONAL
MULTI-MANIFOLD DATA ANALYSIS
Ehsan Elhamifar
A dissertation submitted to The Johns Hopkins University in conformity with the
requirements for the degree of Doctor of Philosophy.
Baltimore, Maryland
October, 2012
(cid:13) Ehsan Elhamifar 2012
All rights reserved"
ae8ed3b0b8043c5af76390751938edfd100fa9cd,An Overview of MultiTask Learning in Deep Neural Networks,"of 21
9 May 2017
An Overview of Multi-Task Learning in Deep
Neural Networks 
Table of contents:
Introduction
Motivation
Two MTL methods for Deep Learning
Hard parameter sharing
Soft parameter sharing
Why does MTL work?
Implicit data augmentation
Attention focusing
Eavesdropping
Representation bias
Regularization
MTL in non-neural models
Block-sparse regularization
http://sebastianruder.com/multi-task/index.html
5/31/17, 9:38 AM"
ae9257f3be9f815db8d72819332372ac59c1316b,Deciphering the enigmatic face: the importance of facial dynamics in interpreting subtle facial expressions.,"P SY CH O L O GIC AL SC I E NC E
Research Article
Deciphering the Enigmatic Face
The Importance of Facial Dynamics in Interpreting Subtle
Facial Expressions
Zara Ambadar,1 Jonathan W. Schooler,2 and Jeffrey F. Cohn1
University of Pittsburgh and 2University of British Columbia, Vancouver, British Columbia, Canada"
ae33dc04adcb83a486517c48078cdd4af7dcc7c7,The adaptative local Hausdorff-distance map as a new dissimilarity measure,"The adaptative local Hausdorff-distance map
s a new dissimilarity measure
´Etienne Baudrier∗, Gilles Millon, Fr´ed´eric Nicolier, Su Ruan
Centre de Recherche en STIC (CReSTIC)
IUT de Troyes, 9, rue de Qu´ebec, 10026 TROYES CEDEX, FRANCE
{e.baudrier, g.millon, f.nicolier,"
ae89b7748d25878c4dc17bdaa39dd63e9d442a0d,On evaluating face tracks in movies,"On evaluating face tracks in movies
Alexey Ozerov, Jean-Ronan Vigouroux, Louis Chevallier, Patrick Pérez
To cite this version:
Alexey Ozerov, Jean-Ronan Vigouroux, Louis Chevallier, Patrick Pérez. On evaluating face tracks
in movies. IEEE International Conference on Image Processing (ICIP 2013), Sep 2013, Melbourne,
Australia. 2013. <hal-00870059>
HAL Id: hal-00870059
https://hal.inria.fr/hal-00870059
Submitted on 4 Oct 2013
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
aeff403079022683b233decda556a6aee3225065,DeepFace: Face Generation using Deep Learning,"DeepFace: Face Generation using Deep Learning
Hardie Cate
Fahim Dalvi
Zeshan Hussain"
ae753fd46a744725424690d22d0d00fb05e53350,Describing Clothing by Semantic Attributes,"Describing Clothing by Semantic Attributes
Anonymous ECCV submission
Paper ID 727"
ae0a0ee1c6e2adcddffebf9b0e429a25b7d9c0e1,"A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms","A Review and Analysis of Eye-Gaze Estimation
Systems, Algorithms and Performance
Evaluation Methods in Consumer Platforms
Anuradha Kar, Student Member, IEEE, Peter Corcoran Fellow, IEEE"
aeec61ef41d55b5c1becfdc00c2e4dbca0e379c0,Automatic Recognition by Gait,"I N V I T E D
P A P E R
Automatic Recognition by Gait
Recognizing people by the way they walk promises to be useful for identifying
individuals from a distance; improved techniques are under development.
By Mark S. Nixon, Member IEEE, and John N. Carter, Member IEEE"
ae8cc8db9e05c79adad03da64a4a9ba0b00f4eb5,Large Scale Local Online Similarity/Distance Learning Framework based on Passive/Aggressive,"International Journal of Machine Learning and Cybernetics
DOI –x
ORI GI NAL    ARTI CLE
Large Scale Local Online Similarity/Distance Learning Framework based on
Passive/Aggressive
Baida Hamdan1, Davood Zabihzadeh*1, Monsefi Reza1
Computer Department, Engineering Faculty, Ferdowsi University of Mashhad (FUM), Mashhad, IRAN
* Corresponding Author"
ae85c822c6aec8b0f67762c625a73a5d08f5060d,Retrieving Similar Styles to Parse Clothing,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2353624
IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. M, NO. N, MONTH YEAR
Retrieving Similar Styles to Parse Clothing
Kota Yamaguchi, Member, IEEE, M. Hadi Kiapour, Student Member, IEEE,
Luis E. Ortiz, and Tamara L. Berg, Member, IEEE"
aed5aecd3f0a07036e570c84c06cd37ab8904acc,The Resiliency of Memorability: A Predictor of Memory Separate from Attention and Priming,"The Resiliency of Memorability: A Predictor of Memory
Separate from Attention and Priming
Wilma A. Bainbridge
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology. Cambridge, MA. USA.
Keywords: Memorability, top-down attention, bottom-up attention, priming, visual search,
spatial cueing, directed forgetting, depth of encoding"
ae87896c38f1871457d811a0588487db0155a833,Attentional allocation of ASD individuals : Searching for a Face - in - the - Crowd,"Attentional allocation of ASD individuals: Searching for a Face-in-the-Crowd
David J. Moore, John Reidy and Lisa Heavey
Department of Psychology, Sociology and Politics,
Sheffield Hallam University
Running Header: Attentional allocation of ASD individuals"
aef3ecc926ed79478f9d1f38c0fec2a29bae9c3b,Counting in High Density Crowd Videos,"Counting in High Density Crowd Videos
Edgar Lopez
University of Texas at El Paso"
aee90db1f66b77113b0a62701deb01ca96b6d9e6,"Discriminant Saliency, the Detection of Suspicious Coincidences, and Applications to Visual Recognition","JUNE 2009
Discriminant Saliency, the Detection
of Suspicious Coincidences,
nd Applications to Visual Recognition
Dashan Gao, Member, IEEE, Sunhyoung Han, Student Member, IEEE, and
Nuno Vasconcelos, Senior Member, IEEE"
d88e3d5ca820cb240de4b662f0a6fd1172a678c7,Image Quality-based Adaptive Illumination Normalisation for Face Recognition,"Harin Sellahewa and Sabah A. Jassim, ""Image quality-based adaptive illumination normalisation for face recognition"",
Proc.  SPIE  7306,  Optics  and  Photonics  in  Global  Homeland  Security  V  and  Biometric  Technology  for  Human
Identification VI, 73061V (May 05, 2009); doi:10.1117/12.819087; http://dx.doi.org/10.1117/12.819087
Copyright 2009 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for
personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for
ommercial purposes, or modification of the content of the paper are prohibited.” (http://spie.org/x1125.xml)"
d84263e22c7535cb1a2a72c88780d5a407bd9673,Stability of Scattering Decoder For Nonlinear Diffractive Imaging,"Stability of Scattering Decoder for Nonlinear Diffractive Imaging
Yu Sun1 and Ulugbek S. Kamilov1,2
Department of Computer Science & Engineering, Washington University in St Louis.
Department of Electrical & Systems Engineering, Washington University in St. Louis"
d80564cea654d11b52c0008891a0fd2988112049,Semi-supervised Conditional GANs,"Semi-supervised Conditional GANs
Kumar Sricharan∗1, Raja Bala1, Matthew Shreve1,
Hui Ding1, Kumar Saketh2, and Jin Sun1
Interactive and Analytics Lab, Palo Alto Research Center, Palo Alto, CA
Verizon Labs, Palo Alto, CA
August 22, 2017"
d827c72d6c9e35066b40bd205bbd71ce487a1c39,Ensemble of Face/eye Detectors for Accurate Automatic Face Detection,"International Journal of Latest Research in Science
Volume 4, Issue 3: Page No.8-18, May-June 2015
http://www.mnkjournals.com/ijlrst.htm
nd Technology           ISSN (Online):2278-5299
ENSEMBLE OF FACE/EYE DETECTORS FOR
ACCURATE AUTOMATIC FACE DETECTION
Loris Nanni, 2Alessandra Lumini, 3Sheryl Brahnam
Department of Information Engineering at the University of Padua, Padua, Italy
DISI, University of Bologna, Cesena, Italy
Computer Information Systems, Missouri State University, USA"
d861c658db2fd03558f44c265c328b53e492383a,Automated face extraction and normalization of 3D Mesh Data,"Automated Face Extraction and Normalization of 3D Mesh Data
Jia Wu1, Raymond Tse2, Linda G. Shapiro1"
d833c48334e906537f21757b6f9fa44da66f6c76,MEMC-Net: Motion Estimation and Motion Compensation Driven Neural Network for Video Interpolation and Enhancement,"MEMC-Net: Motion Estimation and Motion
Compensation Driven Neural Network for
Video Interpolation and Enhancement
Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang"
d8d1fb804d1f4760393c6fd70c9072fa1b39f02c,An Efficient Approach to Onboard Stereo Vision System Pose Estimation,"An Efficient Approach to Onboard Stereo
Vision System Pose Estimation
Angel Domingo Sappa, Member, IEEE, Fadi Dornaika, Daniel Ponsa, David Gerónimo, and Antonio López"
d8abf01fce0d44665949e7a73716fff7731fa6da,Places: An Image Database for Deep Scene Understanding,"Places: An Image Database for Deep Scene
Understanding
Bolei Zhou, Aditya Khosla, Agata Lapedriza, Antonio Torralba and Aude Oliva"
d8b58c5b403dc28437af8244ec812efdfbc6b2e0,MVOR: A Multi-view RGB-D Operating Room Dataset for 2D and 3D Human Pose Estimation,"MVOR: A Multi-view RGB-D Operating Room
Dataset for 2D and 3D Human Pose Estimation
Vinkle Srivastav1, Thibaut Issenhuth1, Abdolrahim Kadkhodamohammadi1,
Michel de Mathelin1, Afshin Gangi1,2, and
Nicolas Padoy1
ICube, University of Strasbourg, CNRS, IHU Strasbourg, France
Radiology Department, University Hospital of Strasbourg, France"
d813ec3a3442f2885b76ac0133c4c5d76f9f8065,Panoptic Studio: A Massively Multiview System for Social Interaction Capture,"Panoptic Studio: A Massively Multiview System
for Social Interaction Capture
Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei Tan, Lin Gui, Sean Banerjee, Timothy Godisart,
Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser Sheikh"
d8f0bda19a345fac81a1d560d7db73f2b4868836,Online Activity Understanding and Labeling in Natural Videos,"UNIVERSITY OF CALIFORNIA
RIVERSIDE
Online Activity Understanding and Labeling in Natural Videos
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Computer Science
Md Mahmudul Hasan
August 2016
Dissertation Committee:
Dr. Amit K. Roy-Chowdhury, Chairperson
Dr. Eamonn Keogh
Dr. Evangelos Christidis
Dr. Christian Shelton"
d809c0ab068861c139a544e5d8eeaa73cc8a3f6b,Monocular Semantic Occupancy Grid Mapping with Convolutional Variational Encoder-Decoder Networks,"Monocular Semantic Occupancy Grid Mapping
with Convolutional Variational Encoder-Decoder Networks
Chenyang Lu1, Ren´e van de Molengraft2, and Gijs Dubbelman1"
d888895cd56d336aa1367fac8072da782bdbc0fb,AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks,"AttnGAN: Fine-Grained Text to Image Generation
with Attentional Generative Adversarial Networks
Tao Xu∗1, Pengchuan Zhang2, Qiuyuan Huang2,
Han Zhang3, Zhe Gan4, Xiaolei Huang1, Xiaodong He2
Lehigh University 2Microsoft Research 3Rutgers University 4Duke University
{tax313, {penzhan, qihua,"
d82b93f848d5442f82154a6011d26df8a9cd00e7,Neural Network Based Age Classification Using Linear Wavelet Transforms,"NEURAL NETWORK BASED AGE CLASSIFICATION USING
LINEAR WAVELET TRANSFORMS
NITHYASHRI JAYARAMAN1 & G.KULANTHAIVEL2
Department of Computer Science & Engineering,
Sathyabama University Old Mamallapuram Road, Chennai, India
Electronics Engineering, National Institute of  Technical Teachers
Training & Research, Taramani, Chennai, India
E-mail :"
d881a59d00971c754e02bfaaf4c48ec6dfbc1343,Neighborhood Sensitive Mapping for Zero-Shot Classification using Independently Learned Semantic Embeddings,"Neighborhood Sensitive Mapping for Zero-Shot
Classification using Independently Learned
Semantic Embeddings
Gaurav Singh1, Fabrizio Silvestri2, and John Shawe-Taylor1
UCL, UK
Yahoo, UK"
d87ccfc42cf6a72821d357aab0990e946918350b,Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search,"Exploiting the Potential of Standard Convolutional Autoencoders
for Image Restoration by Evolutionary Search
Masanori Suganuma 1 2 Mete Ozay 1 Takayuki Okatani 1 2"
d84568d42a02b6d365889451f208f423edb1f0f3,Age Synthesis and Estimation From Face Image Ms,"www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 4 April, 2014 Page No. 5462-5466
Age Synthesis and Estimation From Face Image
Ms. Deepali R. gadbail1, Prof. S.S. Dhande2, Prof.Kanchan M. Pimple3
M s. Deepali R Gadbail,
Computer Science and Engineering Department,
Sipna COET,Amravati.
Prof. S. S. Dhande,
Computer Science and Engineering Department,
Sipna COET,Amravati.
Prof.Kanchan M . Pimple,
IBSS College of engg. & tech.,Amravati"
d83d2fb5403c823287f5889b44c1971f049a1c93,Introducing the sick face,"Motiv Emot
DOI 10.1007/s11031-013-9353-6
O R I G I N A L P A P E R
Introducing the sick face
Sherri C. Widen • Joseph T. Pochedly •
Kerrie Pieloch • James A. Russell
Ó Springer Science+Business Media New York 2013"
d8671247f6188620c6e382ffcd15d3e909647c63,Multicamera human detection and tracking supporting natural interaction with large-scale displays,"DOI 10.1007/s00138-012-0408-6
ORIGINAL PAPER
Multicamera human detection and tracking supporting natural
interaction with large-scale displays
Xenophon Zabulis · Dimitris Grammenos ·
Thomas Sarmis · Konstantinos Tzevanidis ·
Pashalis Padeleris · Panagiotis Koutlemanis ·
Antonis A. Argyros
Received: 8 March 2011 / Revised: 9 January 2012 / Accepted: 17 January 2012
© Springer-Verlag 2012"
d8db46f1775641051d8596dad3d37d1d731558f7,Survey on Deep Learning Techniques for Person Re-Identification Task,
d8b568392970b68794a55c090c4dd2d7f90909d2,PDA Face Recognition System Using Advanced Correlation Filters,"PDA Face  Recognition  System
Using  Advanced  Correlation
Filters
Chee  Kiat  Ng
Advisor:  Prof.  Khosla/Reviere"
d83ae5926b05894fcda0bc89bdc621e4f21272da,Frugal Forests: Learning a Dynamic and Cost Sensitive Feature Extraction Policy for Anytime Activity Classification,"The Thesis committee for Joshua Allen Kelle certifies that this is the approved
version of the following thesis:
Frugal Forests: Learning a Dynamic and Cost Sensitive
Feature Extraction Policy for Anytime Activity Classification
APPROVED BY
SUPERVISING COMMITTEE:
Kristen Grauman, Supervisor
Peter Stone"
d8029237cde893218d21ba551fd127d045ae3422,Eye-Strip based Person Identification based on Non-Subsampled Contourlet Transform,"International Journal of Computer Applications (0975 – 8887)
Volume 121 – No.12, July 2015
Eye-Strip based Person Identification based on
Non-Subsampled Contourlet Transform
Hemprasad Y. Patil
Dept. of ECE
Visvesvaraya National Institute
of Technology, Nagpur, India
Ashwin G. Kothari
Dept. of ECE
Visvesvaraya National Institute
of Technology, Nagpur, India
Kishor M. Bhurchandi
Dept. of ECE
Visvesvaraya National Institute
of Technology, Nagpur, India
transform
sub-band"
d8af6a45eaea68adda8597ae65f91ece152f7b21,Sparse and Dense Data with CNNs: Depth Completion and Semantic Segmentation,"Sparse and Dense Data with CNNs:
Depth Completion and Semantic Segmentation
Maximilian Jaritz1, 2, Raoul de Charette1, Emilie Wirbel2, Xavier Perrotton2, Fawzi Nashashibi1
{maximilian.jaritz, raoul.de-charette,
Inria RITS Team
{emilie.wirbel,
Valeo"
d806790866ab9bad77f60436fe77232db8e0c1ba,Deep Directional Network for Object Tracking,"Article
Deep Directional Network for Object Tracking
Zhaohua Hu 1,2,* and Xiaoyi Shi 1
School of Electronic & Information Engineering, Nanjing University of Information Science & Technology,
Nanjing 210044, China;
Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology,
Nanjing University of Information Science & Technology, Nanjing 210044, China
* Correspondence: Tel.: +86-025-58731196
Received: 10 October 2018; Accepted: 1 November 2018; Published: 5 November 2018"
d82681348489f4f04690e65b9ffe21b68c89b5ff,Cross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination,"ORIGINAL RESEARCH
published: 10 April 2017
doi: 10.3389/fnbot.2017.00019
Cross-Subject EEG Feature Selection
for Emotion Recognition Using
Transfer Recursive Feature
Elimination
Zhong Yin 1*, Yongxiong Wang 1*, Li Liu 1, Wei Zhang 1 and Jianhua Zhang 2
Shanghai Key Lab of Modern Optical System, Engineering Research Center of Optical Instrument and System, Ministry of
Education, University of Shanghai for Science and Technology, Shanghai, China, 2 Department of Automation, East China
University of Science and Technology, Shanghai, China
Using machine-learning methodologies to analyze EEG signals becomes increasingly
ttractive for recognizing human emotions because of the objectivity of physiological
data and the capability of the learning principles on modeling emotion classifiers from
heterogeneous features. However, the conventional subject-specific classifiers may
induce additional burdens to each subject for preparing multiple-session EEG data
s training sets. To this end, we developed a new EEG feature selection approach,
transfer recursive feature elimination (T-RFE), to determine a set of the most robust EEG
indicators with stable geometrical distribution across a group of training subjects and
specific testing subject. A validating set is introduced to independently determine"
d86fabd4498c8feaed80ec342d254fb877fb92f5,Region-Object Relevance-Guided Visual Relationship Detection,"Y. GOUTSU: REGION-OBJECT RELEVANCE-GUIDED VRD
Region-Object Relevance-Guided
Visual Relationship Detection
Yusuke Goutsu
National Institute of Informatics
Tokyo, Japan"
d8e061960423a17748dedbcfe4b6a6918f79c262,Fast Prototyping and Computationally Intensive Experiments,"Armadillo: An Open Source C++ Linear Algebra Library for
Fast Prototyping and Computationally Intensive Experiments
Conrad Sanderson
http://conradsanderson.id.au
Technical Report, NICTA, Australia
http://nicta.com.au
September 2010
(revised December 2011)"
d865c5e85191cfc0da714290d8583a2fb1179fd4,"Learning Hierarchical Space Tiling for Scene Modeling, Parsing and Attribute Tagging","Learning Hierarchical Space Tiling for Scene
Modeling, Parsing and Attribute Tagging
Shuo Wang, Yizhou Wang, and Song-Chun Zhu"
d8f7b26d25a026fe43487b6f77993e11b8b333e0,Photo Indexing and Retrieval based on Content and Context,"PhD Dissertation
International Doctorate School in Information and
Communication Technologies
DISI - University of Trento
Photo Indexing and Retrieval
ased on Content and Context
Mattia Broilo
Advisor:
Prof. Francesco G. B. De Natale
Universit`a degli Studi di Trento
February 2011"
d850aff9d10a01ad5f1d8a1b489fbb3998d0d80e,Recognizing and Segmenting Objects in the Presence of Occlusion and Clutter,"UNIVERSITY OF CALIFORNIA,
IRVINE
Recognizing and Segmenting Objects in the Presence of Occlusion and Clutter
DISSERTATION
submitted in partial satisfaction of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
in Computer Science
Golnaz Ghiasi
Dissertation Committee:
Professor Charless Fowlkes, Chair
Professor Deva Ramanan
Professor Alexander Ihler"
d88eb94d7054d2668b1a8dfa311721f37ae1f059,Straight to the Facts: Learning Knowledge Base Retrieval for Factual Visual Question Answering,"Straight to the Facts: Learning Knowledge Base
Retrieval for Factual Visual Question Answering
Medhini Narasimhan, Alexander G. Schwing
University of Illinois Urbana-Champaign"
d81dbc2960e527e91c066102aabdaf9eb8b15f85,Deep Directed Generative Models with Energy-Based Probability Estimation,"Deep Directed Generative Models
with Energy-Based Probability Estimation
Taesup Kim, Yoshua Bengio∗
Department of Computer Science and Operations Research
Université de Montréal
Montréal, QC, Canada"
d8c04365ed0627a5043996cdd26c1a56b5a630b8,Learning Monocular Depth Estimation with Unsupervised Trinocular Assumptions,"Learning monocular depth estimation with unsupervised trinocular assumptions
Matteo Poggi, Fabio Tosi, Stefano Mattoccia
University of Bologna, Department of Computer Science and Engineering
Viale del Risorgimento 2, Bologna, Italy
{m.poggi, fabio.tosi5,"
d89cfed36ce8ffdb2097c2ba2dac3e2b2501100d,Robust Face Recognition via Multimodal Deep Face Representation,"Robust Face Recognition via Multimodal Deep
Face Representation
Changxing Ding, Student Member, IEEE, Dacheng Tao, Fellow, IEEE"
ab87ab1cf522995510561cd9f494223704f1de91,Human Centric Facial Expression Recognition,"Human Centric Facial Expression Recognition
K. Clawson 1*, L. S. Delicato, 2** and C. Bowerman, 1***
Faculty of Computer Science, University of Sunderland, Sunderland, SR1 3SD, UK
. Faculty of Health, Sciences and Wellbeing, University of Sunderland, SR1 3QR, UK
Facial expression recognition (FER) is an area of active research, both in computer science and in
ehavioural science. Across these domains there is evidence to suggest that humans and machines
find it easier to recognise certain emotions, for example happiness, in comparison to others. Recent
ehavioural studies have explored human perceptions of emotion further, by evaluating the relative
ontribution  of  features  in  the  face  when  evaluating  human  sensitivity  to  emotion.  It  has  been
identified that certain facial regions have more salient features for certain expressions of emotion,
especially when emotions are subtle in nature. For example, it is easier to detect fearful expressions
when the eyes are expressive. Using this observation as a starting point for analysis, we similarly
examine  the  effectiveness with which knowledge  of  facial  feature  saliency  may  be  integrated  into
urrent approaches to automated FER. Specifically, we compare and evaluate the accuracy of ‘full-
face’ versus upper and lower facial area convolutional neural network (CNN) modelling for emotion
recognition in static images, and propose a human centric CNN hierarchy which uses regional image
inputs  to  leverage  current  understanding  of  how  humans  recognise  emotions  across  the  face.
Evaluations  using  the  CK+  dataset  demonstrate  that  our  hierarchy  can  enhance  classification
ccuracy
individual  CNN  architectures,  achieving  overall  true  positive"
ab8f9a6bd8f582501c6b41c0e7179546e21c5e91,Nonparametric Face Verification Using a Novel Face Representation,"Nonparametric Face Verification Using a Novel
Face Representation
Hae Jong Seo, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE,"
ab58a7db32683aea9281c188c756ddf969b4cdbd,Efficient Solvers for Sparse Subspace Clustering,"Efficient Solvers for Sparse Subspace Clustering
Farhad Pourkamali-Anaraki and Stephen Becker"
aba770a7c45e82b2f9de6ea2a12738722566a149,Face Recognition in the Scrambled Domain via Salience-Aware Ensembles of Many Kernels,"Face Recognition in the Scrambled Domain via Salience-Aware
Ensembles of Many Kernels
Jiang, R., Al-Maadeed, S., Bouridane, A., Crookes, D., & Celebi, M. E. (2016). Face Recognition in the
Scrambled Domain via Salience-Aware Ensembles of Many Kernels. IEEE Transactions on Information
Forensics and Security, 11(8), 1807-1817. DOI: 10.1109/TIFS.2016.2555792
Published in:
Document Version:
Peer reviewed version
Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal
Publisher rights
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works.
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.
Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to"
ab8af4cb5243544e38852bb670aafe5a2fd9b3ec,Real-Time Human Detection Using Relational Depth Similarity Features,"Real-Time Human Detection using Relational
Depth Similarity Features
Sho Ikemura, Hironobu Fujiyoshi
Dept. of Computer Science, Chubu University.
Matsumoto 1200, Kasugai, Aichi, 487-8501 Japan.
http://www.vision.cs.chubu.ac.jp"
ab302d79e419348499acbda4a627b67dec89936f,Robust Correlated and Individual Component Analysis,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2014
Robust Correlated and Individual Component
Analysis
Yannis Panagakis, Member, IEEE, Mihalis A. Nicolaou, Member, IEEE,
Stefanos Zafeiriou, Member, IEEE, and Maja Pantic, Fellow, IEEE"
abfcafaa765433b8f5b8be7eae392a8daec54b8e,Facial EMG Responses to Emotional Expressions Are Related to Emotion Perception Ability,"Facial EMG Responses to Emotional Expressions Are
Related to Emotion Perception Ability
Janina Ku¨ necke1*, Andrea Hildebrandt1, Guillermo Recio1,2, Werner Sommer1, Oliver Wilhelm2
Department of Psychology, Humboldt Universita¨t zu Berlin, Berlin, Germany, 2 Department of Psychology, University Ulm, Ulm, Germany"
ab0f9bc35b777eaefff735cb0dd0663f0c34ad31,Semi-supervised Learning of Geospatial Objects through Multi-modal Data Integration,"Semi-Supervised Learning of Geospatial Objects
Through Multi-Modal Data Integration
Yi Yang and Shawn Newsam
Electrical Engineering and Computer Science
University of California, Merced, CA, 95343
Email:"
abc4d51d510cd8222484f7f4f11a739e8bce42ff,On Fast Non-metric Similarity Search by Metric Access Methods,"On Fast Non-metric Similarity Search
y Metric Access Methods
Tom´aˇs Skopal
Charles University in Prague, FMP, Department of Software Engineering,
Malostransk´e n´am. 25, 118 00 Prague 1, Czech Republic"
ab98abfbdfd700c27bee31ca1f8850db72120c5d,Video Event Detection by Exploiting Word Dependencies from Image Captions,"Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 3318–3327, Osaka, Japan, December 11-17 2016."
ab8778793b0f2f06d9e97b6277f3b1125f31432c,Stochastic Models for Face Image Analysis,"Stochastic Models for Face Image Analysis
St(cid:19)ephane Marchand-Maillet and Bernard M(cid:19)erialdo
Department of Multimedia Communications
Institut EURECOM { B.P. 	
	 Sophia-Antipolis { France"
ab989225a55a2ddcd3b60a99672e78e4373c0df1,"Sample, computation vs storage tradeoffs for classification using tensor subspace models","Sample, Computation vs Storage Tradeoffs for
Classification Using Tensor Subspace Models
Mohammadhossein Chaghazardi and Shuchin Aeron, Senior Member, IEEE"
abddbb57258d85b1f3d9789128fd284d30a91e23,A research and education initiative at the MIT Sloan School of Management Network Structure & Information Advantage Paper 235,"A research and education initiative at the MIT
Sloan School of Management
Network Structure & Information Advantage
Paper 235
Sinan Aral
Marshall Van Alstyne
July 2007
For more information,
please visit our website at  http://digital.mit.edu
or contact the Center directly at
or 617-253-7054"
abba22ed4713a5ee5fa91fcf7b8dde58a9b621db,Acquisition of a 3D Audio-Visual Corpus of Affective Speech,"BIWI Technical Report n. 270
Acquisition of a 3D Audio-Visual Corpus of
Affective Speech
Gabriele Fanelli, Juergen Gall, Harald Romsdorfer, Thibaut Weise,
nd Luc Van Gool"
ab69f49fedb6936ce04b2e9d1f161772b2f24b7d,Architecture-aware optimization of an HEVC decoder on asymmetric multicore processors,"(will be inserted by the editor)
Architecture-Aware Optimization of an HEVC decoder on
Asymmetric Multicore Processors
Rafael Rodr´ıguez-S´anchez · Enrique S. Quintana-Ort´ı
Received: date / Revised: date"
ab6776f500ed1ab23b7789599f3a6153cdac84f7,A Survey on Various Facial Expression Techniques,"International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015                                                                                                   1212
ISSN 2229-5518
A Survey on Various Facial Expression
Techniques
Md. Sarfaraz Jalil, Joy Bhattacharya"
ab036048cf90296171ad2bb7265c5a5b7f3252f7,Multimodal Recurrent Neural Networks With Information Transfer Layers for Indoor Scene Labeling,"Multimodal Recurrent Neural Networks with
Information Transfer Layers for Indoor Scene
Labeling
Abrar H. Abdulnabi, Student Member, IEEE, Bing Shuai, Student Member, IEEE,
Zhen Zuo, Student Member, IEEE, Lap-Pui Chau, Fellow, IEEE, and Gang Wang, Senior Member, IEEE"
ab1719f573a6c121d7d7da5053fe5f12de0182e7,Combining visual recognition and computational linguistics : linguistic knowledge for visual recognition and natural language descriptions of visual content,"Combining Visual Recognition
nd Computational Linguistics
Linguistic Knowledge for Visual Recognition
nd Natural Language Descriptions
of Visual Content
Thesis for obtaining the title of
Doctor of Engineering Science
(Dr.-Ing.)
of the Faculty of Natural Science and Technology I
of Saarland University
Marcus Rohrbach, M.Sc.
Saarbrücken
March 2014"
ab559473a01836e72b9fb9393d6e07c5745528f3,cGANs with Projection Discriminator,"Published as a conference paper at ICLR 2018
CGANS WITH PROJECTION DISCRIMINATOR
Takeru Miyato1, Masanori Koyama2
Preferred Networks, Inc. 2Ritsumeikan University"
abe9f3b91fd26fa1b50cd685c0d20debfb372f73,The Pascal Visual Object Classes Challenge: A Retrospective,"(will be inserted by the editor)
The Pascal Visual Object Classes Challenge – a Retrospective
Mark Everingham, S. M. Ali Eslami, Luc Van Gool,
Christopher K. I. Williams, John Winn, Andrew Zisserman
Received: date / Accepted: date"
ab969cfae95f62d68c61830128b35786eb6c84a9,Contents 1 Introduction 2,"Contents1Introduction22Tracking:FundamentalNotions22.1Trackingbydetection........................................22.2TrackingusingFlow........................................22.3Flowmodelsfromkinematicmodels................................22.4TrackingwithProbability......................................23Tracking:Relationsbetween3Dand2D23.1KinematicInferencewithMultipleViews.............................23.2Liftingto3D............................................33.3MultipleModes,RandomizedSearchandHumanTracking....................34Tracking:DataAssociationforHumanTracking54.1DetectingHumans.........................................54.2TrackingbyMatchingRevisited..................................64.3Evaluation..............................................75MotionSynthesisandAnimation95.1Motioncapture...........................................95.2Footskate..............................................95.3ResolvingKinematicAmbiguitieswithExamples.........................95.4MotionSignalProcessing......................................95.5MotionGraphs...........................................95.6MotionPrimitives..........................................105.7EnrichingaMotionCollection...................................105.8MotionfromPhysicalConsiderations...............................105.8.1SimplifiedCharacters....................................105.8.2ModifiedPhysics......................................115.8.3ReducedDimensions....................................115.8.4ModifyingExistingMotions................................116DescribingActivities126.1WhatshouldanActivityRepresentationdo?............................126.1.1NecessaryPropertiesofanActivityRepresentation....................136.1.2WhatDataisAvailable?..................................136.2MiscellaneousMethods.......................................146.2.1ActivityRepresentationMethodsbasedaroundTemporalLogics.............146.2.2ActivityRepresentationMethodsbasedonTemplates...................146.3ActivityRepresentationusingHiddenMarkovModelsandFiniteStateRepresentations.....146.4TheSpeechAnalogy........................................146.4.1FiniteStateTransducers..................................156.4.2WhyshouldweCare?...................................156.5ActivityRecognitionMethodsbasedaroundHMM’s.......................166.6SignLanguageRecognition.....................................176.7Morerecentmaterial........................................171"
ab2b09b65fdc91a711e424524e666fc75aae7a51,Multi-modal Biomarkers to Discriminate Cognitive State *,"Multi-modal Biomarkers to Discriminate Cognitive State*
Thomas F. Quatieri 1, James R. Williamson1, Christopher J. Smalt1,
Joey Perricone, Tejash Patel, Laura Brattain, Brian S. Helfer, Daryush D. Mehta, Jeffrey Palmer
Kristin Heaton2, Marianna Eddy3, Joseph Moran3
MIT Lincoln Laboratory, Lexington, Massachusetts, USA
USARIEM, 3NSRDEC
. Introduction
Multimodal biomarkers based on behavorial, neurophysiolgical, and cognitive measurements have
recently obtained increasing popularity in the detection of cognitive stress- and neurological-based
disorders. Such conditions are significantly and adversely affecting human performance and quality
of life for a large fraction of the world’s population. Example modalities used in detection of these
onditions  include  voice,  facial  expression,  physiology,  eye  tracking,  gait,  and  EEG  analysis.
Toward  the  goal  of  finding  simple,  noninvasive  means  to  detect,  predict  and  monitor  cognitive
stress and neurological conditions, MIT Lincoln Laboratory is developing biomarkers that satisfy
three  criteria.  First,  we  seek  biomarkers  that  reflect  core  components  of  cognitive  status  such  as
working memory capacity, processing speed, attention, and arousal. Second, and as importantly, we
seek  biomarkers  that  reflect  timing  and  coordination  relations  both  within  components  of  each
modality and across different modalities. This is based on the hypothesis that neural coordination
cross different parts of the brain is essential in cognition (Figure 1). An example of timing and
oordination  within  a  modality  is  the  set  of  finely  timed  and  synchronized  physiological"
abb1289cfdc4c23d72d0680c3ec100eae74d4fdb,PatchMatch: A Fast Randomized Matching Algorithm with Application to Image and Video,"PatchMatch: A Fast Randomized Matching
Algorithm with Application to Image and Video
Connelly Barnes
A Dissertation
Presented to the Faculty
of Princeton University
in Candidacy for the Degree
of Doctor of Philosophy
Recommended for Acceptance
y the Department of
Computer Science
Adviser: Adam Finkelstein
May 2011"
ab43c43d5eb2c5bee6de1b25c8bcb8068ab8bcd2,Deep Class-Wise Hashing: Semantics-Preserving Hashing via Class-wise Loss,"Deep Class-Wise Hashing:
Semantics-Preserving Hashing via Class-wise Loss
Xuefei Zhe, Shifeng Chen, Member, IEEE, and Hong Yan, Fellow, IEEE"
ab87dfccb1818bdf0b41d732da1f9335b43b74ae,Structured Dictionary Learning for Classification,"SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING
Structured Dictionary Learning for Classification
Yuanming Suo, Student Member, IEEE, Minh Dao, Student Member, IEEE, Umamahesh Srinivas, Student
Member, IEEE, Vishal Monga, Senior Member, IEEE, and Trac D. Tran, Fellow, IEEE"
abc1ef570bb2d7ea92cbe69e101eefa9a53e1d72,Raisonnement abductif en logique de description exploitant les domaines concrets spatiaux pour l'interprétation d'images,"Raisonnement abductif en logique de
description exploitant les domaines concrets
spatiaux pour l’interprétation d’images
Yifan Yang 1, Jamal Atif 2, Isabelle Bloch 1
. LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
. Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243,
LAMSADE, 75016 Paris, France
RÉSUMÉ. L’interprétation d’images a pour objectif non seulement de détecter et reconnaître des
objets dans une scène mais aussi de fournir une description sémantique tenant compte des in-
formations contextuelles dans toute la scène. Le problème de l’interprétation d’images peut être
formalisé comme un problème de raisonnement abductif, c’est-à-dire comme la recherche de la
meilleure explication en utilisant une base de connaissances. Dans ce travail, nous présentons
une nouvelle approche utilisant une méthode par tableau pour la génération et la sélection
d’explications possibles d’une image donnée lorsque les connaissances, exprimées dans une
logique de description, comportent des concepts décrivant les objets mais aussi les relations
spatiales entre ces objets. La meilleure explication est sélectionnée en exploitant les domaines
oncrets pour évaluer le degré de satisfaction des relations spatiales entre les objets."
abb3df5b61dc7550db96fc112f98fb99a9db8c93,End-to-End Learning of Deep Visual Representations for Image Retrieval,"Noname manuscript No.
(will be inserted by the editor)
End-to-end Learning of Deep Visual Representations
for Image Retrieval
Albert Gordo · Jon Almaz´an · Jerome Revaud · Diane Larlus
Received: date / Accepted: date"
ab450a7968555532d9ea79f81189c0d52f9c5f11,RGB-D Face Recognition in Surveillance Videos,"RGB-D Face Recognition in Surveillance Videos
Anurag Chowdhury
IIIT-D-MTech-CS-GEN-14-002
June 23, 2016
Indraprastha Institute of Information Technology Delhi
New Delhi
Thesis Advisors
Dr. Richa Singh
Dr. Mayank Vatsa
Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science
(cid:13) Chowdhury, 2016
Keywords : RGB-D, Kinect, Face Detection, Face Recognition, Deep Learning"
abeda55a7be0bbe25a25139fb9a3d823215d7536,Understanding Human-Centric Images: From Geometry to Fashion,"UNIVERSITATPOLITÈCNICADECATALUNYAProgramadeDoctorat:AUTOMÀTICA,ROBÒTICAIVISIÓTesiDoctoralUnderstandingHuman-CentricImages:FromGeometrytoFashionEdgarSimoSerraDirectors:FrancescMorenoNoguerCarmeTorrasMay2015"
ab1f98b59fa98216f052ae19adce6fd94ebb800d,"Explaining First Impressions: Modeling, Recognizing, and Explaining Apparent Personality from Videos","Preprint submitted to International Journal of Computer Vision manuscript No.
(will be inserted by the editor)
Explaining First Impressions: Modeling,
Recognizing, and Explaining Apparent Personality
from Videos
Hugo Jair Escalante∗ · Heysem Kaya∗ ·
Albert Ali Salah∗ · Sergio Escalera ·
Ya˘gmur G¨u¸cl¨ut¨urk · Umut G¨u¸cl¨u ·
Xavier Bar´o · Isabelle Guyon · Julio
Jacques Junior · Meysam Madadi ·
Stephane Ayache · Evelyne Viegas ·
Furkan G¨urpınar · Achmadnoer Sukma
Wicaksana · Cynthia C. S. Liem ·
Marcel A. J. van Gerven · Rob van Lier
Received: date / Accepted: date
Means equal contribution by the authors.
Hugo Jair Escalante
INAOE, Mexico and ChaLearn, USA E-mail:
Heysem Kaya
Namık Kemal University, Department of Computer Engineering, Turkey"
abf659847660763c94b44c0baaf9198046a11845,Video Image Object Tracking Algorithm based on Improved Principal Component Analysis,"Video Image Object Tracking Algorithm based
on Improved Principal Component Analysis
. Engineering Technology Research Center of Optoelectronic Technology Appliance, AnHui Tongling Anhui 244000,
. Hefei University of Technology, Hefei Anhui 230009, China
China
Wang Liping 1, 2
dopts
DPCA
lgorithm
to  reduce  dimension  of  object"
ab41364a58b34844b281046c3d8678f7d537a97e,Learning Deep Hierarchical Visual Feature Coding,"Learning Deep Hierarchical Visual Feature Coding
Hanlin Goh, Nicolas Thome, Member, IEEE, Matthieu Cord, Member, IEEE, and Joo-Hwee Lim, Member, IEEE"
ab8fb278db4405f7db08fa59404d9dd22d38bc83,Implicit and Automated Emotional Tagging of Videos,"UNIVERSITÉ DE GENÈVE
Département d'Informatique
FACULTÉ DES SCIENCES
Professeur Thierry Pun
Implicit and Automated Emotional
Tagging of Videos
THÈSE
présenté à la Faculté des sciences de l'Université de Genève
pour obtenir le grade de Docteur ès sciences, mention informatique
Mohammad SOLEYMANI
Téhéran (IRAN)
Thèse No 4368
GENÈVE
Repro-Mail - Université de Genève"
ab03a1656d9e45c80379512161f6c90dfbb0b6b3,Active Learning for Regression Tasks with Expected Model Output Changes,"KÄDING ET AL.: ACTIVE LEARNING FOR REGRESSION TASKS WITH EMOC
Active Learning for Regression Tasks
with Expected Model Output Changes
Computer Vision Group
Friedrich Schiller University Jena
Jena, Germany
Carl Zeiss AG
Jena, Germany
Christoph Käding1
Erik Rodner2
Alexander Freytag2
Oliver Mothes1
Björn Barz1
Joachim Denzler1"
e5bcbfd346121769b674a7ad35e594758de5553f,A Dataset for Lane Instance Segmentation in Urban Environments,"A Dataset for Lane Instance Segmentation in
Urban Environments
Brook Roberts, Sebastian Kaltwang, Sina Samangooei,
Mark Pender-Bare, Konstantinos Tertikas, and John Redford
FiveAI Ltd., Cambridge CB2 1NS, U.K."
e592f6dc3bf1d53044cd59ce4a75fdacd0ecc80d,Hand Vein Infrared Image Segmentation for Biometric Recognition,"Hand Vein Infrared Image Segmentation for Biometric
Recognition
Ignacio Irving Morales-Montiel1, J. Arturo Olvera-López1, Manuel Martín-Ortíz1, and
Eber E. Orozco-Guillén2
Facultad de Ciencias de la Computación
Benemérita Universidad Autónoma de Puebla
Av. San Claudio y 14 sur. Ciudad Universitaria.
Puebla, Pue., Mexico
Mazatlán, Sin., Mexico
Programa de Ingeniería en Informática
Universidad Politécnica de Sinaloa
Carretera Municipal Libre Mazatlán Higueras Km. 3."
e5c4b75cb79aa5155ffd9498b3fcc790eb794e72,Object Recognition using Discriminative Robust Local Binary Pattern,"WWW.IJITECH.ORG
ISSN 2321-8665
Vol.03,Issue.05,
July-2015,
Pages:0700-0706
Object Recognition using Discriminative Robust Local Binary Pattern
T. LAVANYA
, A. SUJATHA
PG Scholar, Dept of DE & CS, Dr.K.V.Subba Reddy Engineering College for Women, AP, India,
Associate Professor, Dept of DE & CS, Dr.K.V.Subba Reddy Engineering College for Women, AP, India,
E-mail:
E-mail:"
e5320955580401d5a5b2ae8b507e8f0b47e08118,Deep Supervision with Intermediate Concepts,"Deep Supervision with Intermediate Concepts
Chi Li, M. Zeeshan Zia, Quoc-Huy Tran, Xiang Yu, Gregory D. Hager, and Manmohan Chandraker"
e5563a0d6a2312c614834dc784b5cc7594362bff,Real-Time Demographic Profiling from Face Imagery with Fisher Vectors,"Noname manuscript No.
(will be inserted by the editor)
Real-Time Demographic Profiling from Face Imagery with
Fisher Vectors
Lorenzo Seidenari · Alessandro Rozza · Alberto Del Bimbo
Received: ... / Accepted: ..."
e524f222a117890126bd9597934d0504adce85ec,Error Correction for Dense Semantic Image Labeling,"Yu-Hui Huang1∗ Xu Jia2∗ Stamatios Georgoulis1
Tinne Tuytelaars2
Luc Van Gool1,3
KU-Leuven/ESAT-PSI, Toyota Motor Europe (TRACE)
ETH/DITET-CVL
KU-Leuven/ESAT-PSI, IMEC"
e5823a9d3e5e33e119576a34cb8aed497af20eea,DocFace+: ID Document to Selfie Matching,"DocFace+: ID Document to Selfie* Matching
Yichun Shi, Student Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
e596a4aedb5cda6f0df35d38549564a0dd5546a7,Public Document Document Evolution Executive Summary,"Project N° IST-2002-507634 - BioSecure
D 9.1.3 – Revision: b2
09 June 2006
Contract Number :
Project Acronym :
Project Title :
Instrument :
Start Date of Project :
Duration :
Deliverable Number :
Title of Deliverable :
Contractual Due Date :
Actual Date of Completion :
IST-2002-507634
BioSecure
Biometrics for Secure Authentication
Network of Excellence
01 June, 2004
6 months
D 9.1.3"
e564268a03b21fa092390db0c11ba1c33d2323f9,Multi-view Stereo with Single-View Semantic Mesh Refinement,"Multi-View Stereo with Single-View Semantic Mesh Refinement
Andrea Romanoni Marco Ciccone
Francesco Visin Matteo Matteucci
{andrea.romanoni, marco.ciccone, francesco.visin,
Politecnico di Milano, Italy"
e5dcec59afdab7c15e3a874e9b602b8fc42b9019,Nonparametric Video Retrieval and Frame Classification using Tiny Videos,"International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)
Proceedings published in International Journal of Computer Applications® (IJCA)
Nonparametric Video Retrieval and Frame Classification
using Tiny Videos
A.K. M. Shanawas Fathima,
PG Student,
Department of CSE
GCE, Tirunelveli.
R. Kanthavel,
Department of CSE,
Government College of Engineering,
Tirunelveli."
e59a68c328c69c294991f87b741a5d4e952defba,NISTIR 7972 Performance Metrics for Evaluating Object and Human Detection and Tracking Systems,"This publication is available free of charge from http://dx.doi.org/10.6028/NIST.IR.7972
NISTIR 7972
Performance Metrics for Evaluating
Object and Human Detection and
Tracking Systems
Afzal Godil
Roger Bostelman
Will Shackleford
Tsai Hong
Michael Shneier
http://dx.doi.org/10.6028/NIST.IR.7972"
e510f2412999399149d8635a83eca89c338a99a1,Face Recognition using Block-Based DCT Feature Extraction,"Journal of Advanced Computer Science and Technology, 1 (4) (2012) 266-283
(cid:13)Science Publishing Corporation
www.sciencepubco.com/index.php/JACST
Face Recognition using Block-Based
DCT Feature Extraction
K Manikantan1, Vaishnavi Govindarajan1,
V V S Sasi Kiran1, S Ramachandran2
Department of Electronics and Communication Engineering,
M S Ramaiah Institute of Technology, Bangalore, Karnataka, India 560054
E-mail:
E-mail:
E-mail:
Department of Electronics and Communication Engineering,
S J B Institute of Technology, Bangalore, Karnataka, India 560060
E-mail:"
e56c4c41bfa5ec2d86c7c9dd631a9a69cdc05e69,Human Activity Recognition Based on Wearable Sensor Data: A Standardization of the State-of-the-Art,"Human Activity Recognition Based on Wearable
Sensor Data: A Standardization of the
State-of-the-Art
Artur Jord˜ao, Antonio C. Nazare Jr., Jessica Sena and William Robson Schwartz
Smart Surveillance Interest Group, Computer Science Department
Universidade Federal de Minas Gerais, Brazil
Email: {arturjordao, antonio.nazare, jessicasena,"
e5604c3f61eb7e8b80bf423f7828d8c1fa0f1d32,Towards Image Understanding from Deep Compression without Decoding,"Published as a conference paper at ICLR 2018
TOWARDS IMAGE UNDERSTANDING FROM
DEEP COMPRESSION WITHOUT DECODING
Robert Torfason
ETH Zurich, Merantix
Fabian Mentzer
ETH Zurich
Eirikur Agustsson
ETH Zurich
Michael Tschannen
ETH Zurich
Radu Timofte
ETH Zurich, Merantix
Luc Van Gool
ETH Zurich, KU Leuven"
e5342233141a1d3858ed99ccd8ca0fead519f58b,Finger print and Palm print based Multibiometric Authentication System with GUI Interface,"ISSN: 2277 – 9043
International Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE)
Volume 2, Issue 2, February 2013
Finger print and Palm print based Multibiometric
Authentication System with GUI Interface
KALAIGNANASELVI.A#1, NARASIMMALOU.T*2
#PG Scholar, Dept. of CSE, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India.
*Assistant Professor, Dept. of CSE, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India."
e52be9a083e621d9ed29c8e9914451a6a327ff59,UvA - DARE ( Digital Academic Repository ) Communication and Automatic Interpretation of Affect from Facial Expressions,"UvA-DARE (Digital Academic Repository)
Communication and Automatic Interpretation of Affect from Facial Expressions
Salah, A.A.; Sebe, N.; Gevers, T.
Published in:
Affective computing and interaction: psychological, cognitive, and neuroscientific perspectives
Link to publication
Citation for published version (APA):
Salah, A. A., Sebe, N., & Gevers, T. (2010). Communication and Automatic Interpretation of Affect from Facial
Expressions. In D. Gökçay, & G. Yildirim (Eds.), Affective computing and interaction: psychological, cognitive,
nd neuroscientific perspectives (pp. 157-183). Hershey, PA: Information Science Reference.
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.
Download date: 12 Sep 2017
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)"
e5d13afe956d8581a69e9dc2d1f43a43f1e2f311,Automatic Facial Feature Extraction for Face Recognition,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,700
08,500
.7 M
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact"
e58434a01c45505995b000f5e631843a2f2ea582,Scale coding bag of deep features for human attribute and action recognition,"Noname manuscript No.
(will be inserted by the editor)
Scale Coding Bag of Deep Features for Human Attribute
nd Action Recognition
Fahad Shahbaz Khan, Joost van de Weijer, Rao Muhammad Anwer,
Andrew D. Bagdanov, Michael Felsberg, Jorma Laaksonen
Received:"
e58f08ad6e0edd567f217ef08de1701a8c29fcc8,Pseudo-task Augmentation: From Deep Multitask Learning to Intratask Sharing - and Back,"Pseudo-task Augmentation: From Deep Multitask
Learning to Intratask Sharing—and Back
Elliot Meyerson 1 2 Risto Miikkulainen 1 2"
e577847c36251dc31282ad57ea969ea8297369be,Face scanning and spontaneous emotion preference in Cornelia de Lange syndrome and Rubinstein-Taybi syndrome,"Crawford et al. Journal of Neurodevelopmental Disorders  (2015) 7:22
DOI 10.1186/s11689-015-9119-4
R ES EAR CH
Face scanning and spontaneous emotion
preference in Cornelia de Lange syndrome
nd Rubinstein-Taybi syndrome
Hayley Crawford1,2*, Joanna Moss2,3, Joseph P. McCleery4, Giles M. Anderson5 and Chris Oliver2
Open Access"
e5799fd239531644ad9270f49a3961d7540ce358,Kinship classification by modeling facial feature heredity,"KINSHIP CLASSIFICATION BY MODELING FACIAL FEATURE HEREDITY
Ruogu Fang1, Andrew C. Gallagher1, Tsuhan Chen1, Alexander Loui2
Dept. of Elec. and Computer Eng., Cornell University 2Eastman Kodak Company"
e5eb7fa8c9a812d402facfe8e4672670541ed108,Performance of PCA Based Semi-supervised Learning in Face Recognition Using MPEG-7 Edge Histogram Descriptor,"Performance of PCA Based Semi-supervised
Learning in Face Recognition Using MPEG-7
Edge Histogram Descriptor
Shafin Rahman, Sheikh Motahar Naim, Abdullah Al Farooq and Md. Monirul Islam
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology(BUET)
Dhaka-1000, Bangladesh
Email: {shafin buet, naim sbh2007,"
e2b8ba13586bb9a96e4813472d1f763d37ead47d,Media Content Access: Image-Based Filtering,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 3, 2018
Media Content Access: Image-Based Filtering
Rehan Ullah Khan1, Ali Alkhalifah2
Information Technology Department
Qassim University, Al-Qassim, KSA"
e2059946b69e0854f21919c1cf13c3f618f48d12,Deep Architectures and Ensembles for Semantic Video Classification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018
Deep Architectures and Ensembles for Semantic
Video Classification
Eng-Jon Ong, Sameed Husain, Mikel Bober-Irizar, Miroslaw Bober∗"
e267c813d8804019fbd8e018171dd05255b10fee,Performance Analysis of Pca Based Techniques for Face Authentication,"Canadian Journal of Pure and Applied Sciences
Vol. 9, No. 1, pp. 3299-3306, February 2015
Online ISSN: 1920-3853; Print ISSN: 1715-9997
Available online at www.cjpas.net
PERFORMANCE ANALYSIS OF PCA BASED TECHNIQUES
FOR FACE AUTHENTICATION
*Krishna Dharavath, Fazal Ahmed Talukdar, Rabul Hussain Laskar
Speech and Image Processing Research Lab.,
Department of Electronics and Communication Engineering
National Institute of Technology Silchar, India"
e2edc7e7a2832e2f6014945afce4f76643cab02c,Universität Augsburg An annotated data set for pose estimation of swimmers,"Universit¨at Augsburg
An annotated data set for pose
estimation of swimmers
Thomas Greif and Rainer Lienhart
Report 2009-18
Januar 2010
Institut f¨ur Informatik
D-86135 Augsburg"
e260847323b48a79bd88dd95a1499cd3053d3645,Reconstructing perceived faces from brain activations with deep adversarial neural decoding,"PDF hosted at the Radboud Repository of the Radboud University
Nijmegen
The following full text is a publisher's version.
For additional information about this publication click this link.
http://hdl.handle.net/2066/179505
Please be advised that this information was generated on 2018-07-04 and may be subject to
hange."
e27ef52c641c2b5100a1b34fd0b819e84a31b4df,SARC3D: A New 3D Body Model for People Tracking and Re-identification,"SARC3D: a new 3D body model for People
Tracking and Re-identification
Davide Baltieri, Roberto Vezzani, and Rita Cucchiara
Dipartimento di Ingegneria dell’Informazione - University of Modena and Reggio
Emilia, Via Vignolese, 905 - 41125 Modena - Italy"
e23a75430f777e982b0715b6f8a048d4bbfea438,Maximum Margin Metric Learning over Discriminative Nullspace for Person Re-identification,"Maximum Margin Metric Learning Over Discriminative
Nullspace for Person Re-identification
T M Feroz Ali1 and Subhasis Chaudhuri1
Indian Institute of Technology Bombay, Mumbai, India"
e2baf990bc60ef0d24b7556d238e40566ad23d2f,Modified Gabor Filter based Vehicle Verification,"International Journal of Computer Applications® (IJCA) (0975 – 8887)
National Conference cum Workshop on Bioinformatics and Computational Biology, NCWBCB- 2014
Modified Gabor Filter based Vehicle Verification
Amrutha Ramachandran
Mtech,AE&C,
Dept. of EC,
NCERC,Kerala.
towards
ollision
voidance
ccess,potential"
e21cdb56c23e2a834a611d51abce545d2e8d01a2,Gender and Identity Classification for a Naive and Evolving System,"Gender and Identity Classification for a Naive and Evolving System
M. Castrill´on-Santana, O. D´eniz-Su´arez, J. Lorenzo-Navarro and M. Hern´andez-Tejera
IUSIANI - Edif. Ctral. del Parque Cient´ıfico Tecnol´ogico
Universidad de Las Palmas de Gran Canaria, Spain"
e295f31df11ec700851c2413b9bba644a91b0629,3D face reconstruction in a binocular passive stereoscopic system using face properties,"D FACE RECONSTRUCTION IN A BINOCULAR PASSIVE STEREOSCOPIC SYSTEM
USING FACE PROPERTIES
Amel AISSAOUI, Jean MARTINET and Chaabane DJERABA
LIFL UMR Lille1-CNRS n 8022, IRCICA, 50 avenue Halley, 59658 Villeneuve d’Ascq, France"
e27acf161f569aa876e46ffae2058bb275f12a60,Interactive learning of heterogeneous visual concepts with local features,"Interactive Learning of Heterogeneous Visual Concepts
with Local Features
Wajih Ouertani
INRIA − IMEDIA project
nd INRA, France
Michel Crucianu
INRIA − IMEDIA project
nd CEDRIC − CNAM, France
Nozha Boujemaa
INRIA − IMEDIA project
78153 Le Chesnay, France"
e2e8db754b1ab4cd8aa07f5c5940f6921a1b7187,Interpretable visual models for human perception-based object retrieval,"Interpretable Visual Models for Human
Perception-Based Object Retrieval
Ahmed Rebai, Alexis Joly, Nozha Boujemaa
To cite this version:
Ahmed Rebai, Alexis Joly, Nozha Boujemaa.
Based Object Retrieval.
trieval, Apr 2011, Trento,
<10.1145/1991996.1992017>. <hal-00642232>
Italy.
Interpretable Visual Models for Human Perception-
ICMR’11 - First ACM International Conference on Multimedia Re-
ACM, pp.21:1–21:8, 2011, <http://www.icmr2011.org/>.
HAL Id: hal-00642232
https://hal.inria.fr/hal-00642232
Submitted on 17 Nov 2011
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or"
e2fc290a245d9f5c545e2e92ee8fcaff4908b97f,Picture-to-Identity linking of social network accounts based on Sensor Pattern Noise,"Picture-to-Identity linking of social network accounts based on
Sensor Pattern Noise
Riccardo Satta∗ and Pasquale Stirparo∗+
Institute for the Protection and Security of the Citizen,
Joint Research Centre (JRC), European Commission, Ispra (VA), Italy
+Royal Institute of Technology (KTH), Stockholm, Sweden
{riccardo.satta,
Keywords:
linking, digital image forensics
social network, Sensor Pattern Noise, identity,"
e2d265f606cd25f1fd72e5ee8b8f4c5127b764df,Real-Time End-to-End Action Detection with Two-Stream Networks,"Real-Time End-to-End Action Detection
with Two-Stream Networks
Alaaeldin El-Nouby∗†, Graham W. Taylor∗†‡
School of Engineering, University of Guelph
Vector Institute for Artificial Intelligence
Canadian Institute for Advanced Research"
e282bf5a679ca4e8b7d9a2ed56d3b40dc440ab53,Referenceless Quality Estimation for Natural Language Generation,"Referenceless Quality Estimation for Natural Language Generation
Ondˇrej Duˇsek 1 Jekaterina Novikova 1 Verena Rieser 1"
e24294adfcdb0334c310823c591f15e8829dc224,Deep Neural Networks and Regression Models for Object Detection and Pose Estimation,
e2279676b01e477b5e7333bab276678f4ad34753,Searching Image with Hash Code Generations,"International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056
Volume: 02 Issue: 05 | Aug-2015                      www.irjet.net                                                               p-ISSN: 2395-0072
SEARCHING IMAGE WITH HASH CODE GENERATIONS
R.Lawanya,*2Mrs.G.Sangeetha Lakshmi, 3Ms.A.Sivasankari
,*2,3Department of Computer Science,DKM College for Women, Vellore,
Tamil Nadu, India.
----------------------------------------------------------------------------------------------------------------------"
e2af85dc41269bc7c50fcf2fb35bfeb75e3d6ee4,xytocin Improves “ Mind-Reading ” in Humans,"PRIORITY COMMUNICATION
Oxytocin Improves “Mind-Reading” in Humans
Gregor Domes, Markus Heinrichs, Andre Michel, Christoph Berger, and Sabine C. Herpertz
Background: The ability to “read the mind” of other individuals, that is, to infer their mental state by interpreting subtle social cues, is
indispensable in human social interaction. The neuropeptide oxytocin plays a central role in social approach behavior in nonhuman
mammals.
Methods: In a double-blind, placebo-controlled, within-subject design, 30 healthy male volunteers were tested for their ability to infer
the affective mental state of others using the Reading the Mind in the Eyes Test (RMET) after intranasal administration of 24 IU oxytocin.
Results: Oxytocin improved performance on the RMET compared with placebo. This effect was pronounced for difficult compared with
easy items.
Conclusions: Our data suggest that oxytocin improves the ability to infer the mental state of others from social cues of the eye region.
Oxytocin might play a role in the pathogenesis of autism spectrum disorder, which is characterized by severe social impairment.
Key Words: Emotion, oxytocin, peptide, social cognition, theory of
T he ability to infer the internal state of another person to
dapt one’s own behavior is a cornerstone of all human
social interactions. Humans have to infer internal states
from external cues such as facial expressions in order to make
sense of or predict another person’s behavior, an ability that is
referred  to  as  “mind-reading”  (Siegal  and  Varley  2002;  Stone  et  al
998).  In  particular,  individuals  with  autism  have  distinct  diffi-"
e2afea1a84a5bdbcb64d5ceadaa2249195e1fd82,DOOM Level Generation Using Generative Adversarial Networks,"DOOM Level Generation using Generative
Adversarial Networks
Edoardo Giacomello
Dipartimento di Elettronica,
Informazione e Bioinformatica
Politecnico di Milano
Pier Luca Lanzi
Dipartimento di Elettronica,
Informazione e Bioinformatica
Politecnico di Milano
Daniele Loiacono
Dipartimento di Elettronica,
Informazione e Bioinformatica
Politecnico di Milano"
e23ed8642a719ff1ab08799257d9566ed3bba403,Unsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks,"Unsupervised Visual Attribute Transfer with
Reconfigurable Generative Adversarial Networks
Taeksoo Kim, Byoungjip Kim, Moonsu Cha, Jiwon Kim
SK T-Brain"
e21c45b14d75545d40ed07896f26ec6f766f6a4b,Fisher GAN,"Fisher GAN
Youssef Mroueh∗, Tom Sercu∗
Equal Contribution
AI Foundations, IBM Research AI
IBM T.J Watson Research Center"
e22cf1ca10c11991c2a43007e37ca652d8f0d814,A Biologically Inspired Visual Working Memory,"Under review as a conference paper at ICLR 2019
A BIOLOGICALLY INSPIRED VISUAL WORKING
MEMORY FOR DEEP NETWORKS
Anonymous authors
Paper under double-blind review"
e21b1c10bee6a984971dcba414c22078dcfd21c2,Recent progress in semantic image segmentation,"Artificial Intelligence Review
https://doi.org/10.1007/s10462-018-9641-3
Recent progress in semantic image segmentation
Xiaolong Liu1 · Zhidong Deng1 · Yuhan Yang2
© The Author(s) 2018"
e2a9b3e9001d57483acbb63dc2cfb91a90d3c12d,"Image worth Evaluation for False Biometric Detection: Submission to Iris, Fingerprint and Face Recognition","Volume 5, Issue 2, February 2015                                  ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
Image worth Evaluation for False Biometric Detection: Submission to
Iris, Fingerprint and Face Recognition
Boggarapu Srinivasulu, 2 Dr. M. Ekambaram Naidu, 3Dr. E. Sreenivasa Reddy
Assistant Professor, Dept of CSE, Mother Theresa Institute of Engineering & Technology
Palamaner, Chittoor Dist, AP, India
Principal & Professor (CSE), TRR Engineering College, Hyderabad, India
Dean& Professor (CSE), Acharya Nagarjuna University, Nagarjunanagar, Guntur, India"
f496235629c02c98ad83b37d3d054ccfd0de0131,Learning Cross-Modal Deep Embeddings for Multi-Object Image Retrieval using Text and Sketch,"Learning Cross-Modal Deep Embeddings for
Multi-Object Image Retrieval using Text and Sketch
Sounak Dey, Anjan Dutta, Suman K. Ghosh, Ernest Valveny, Josep Llad´os
Computer Vision Center, Computer Science Department
Autonomous University of Barcelona
Email: {sdey, adutta, sghosh, ernest,
Barcelona, Spain
Umapada Pal
CVPR Unit
Indian Statistical Institute
Kolkata, India
Email:"
f412d9d7bc7534e7daafa43f8f5eab811e7e4148,Running Head : Anxiety and Emotional Faces in WS 2,"Durham Research Online
Deposited in DRO:
6 December 2014
Version of attached le:
Accepted Version
Peer-review status of attached le:
Peer-reviewed
Citation for published item:
Kirk, H. E. and Hocking, D. R. and Riby, D. M. and Cornish, K. M. (2013) 'Linking social behaviour and
nxiety to attention to emotional faces in Williams syndrome.', Research in developmental disabilities., 34
(12). pp. 4608-4616.
Further information on publisher's website:
http://dx.doi.org/10.1016/j.ridd.2013.09.042
Publisher's copyright statement:
NOTICE: this is the author's version of a work that was accepted for publication in Research in Developmental
Disabilities. Changes resulting from the publishing process, such as peer review, editing, corrections, structural
formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made
to this work since it was submitted for publication. A denitive version was subsequently published in Research in
Developmental Disabilities, 34, 12, December 2013, 10.1016/j.ridd.2013.09.042.
Additional information:"
f442a2f2749f921849e22f37e0480ac04a3c3fec,Critical Features for Face Recognition in Humans and Machines,"Critical Features for Face Recognition in Humans and Machines  Naphtali Abudarham1, Lior Shkiller1, Galit Yovel1,2 1School of Psychological Sciences, 2Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel   Correspondence regarding this manuscript should be addressed to: Galit Yovel  School of Psychological Sciences & Sagol School of Neuroscience Tel Aviv University Tel Aviv, 69978, Israel Email:"
f4b40b3dc27897fdc40f419a42d64fd1ff80cc9d,A Dual-Source Approach for 3D Human Pose Estimation from a Single Image,"SUBMITTED TO COMPUTER VISION AND IMAGE UNDERSTANDING.
A Dual-Source Approach for 3D Human Pose
Estimation from a Single Image
Umar Iqbal*, Andreas Doering*, Hashim Yasin, Björn Krüger, Andreas Weber, and Juergen Gall"
f44af3b10a67fe62fd26eb82dd228a3cdeb980e1,"Understand, Compose and Respond - Answering Visual Questions by a Composition of Abstract Procedures","Understand, Compose and Respond
Understand, Compose and Respond - Answering Visual"
f4f6fc473effb063b7a29aa221c65f64a791d7f4,Facial expression recognition in the wild based on multimodal texture features,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 4/20/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
FacialexpressionrecognitioninthewildbasedonmultimodaltexturefeaturesBoSunLiandongLiGuoyanZhouJunHeBoSun,LiandongLi,GuoyanZhou,JunHe,“Facialexpressionrecognitioninthewildbasedonmultimodaltexturefeatures,”J.Electron.Imaging25(6),061407(2016),doi:10.1117/1.JEI.25.6.061407."
f4ce7c36586c27783a1b0e737c2834f39f9d029d,Advanced non linear dimensionality reduction methods for multidimensional time series : applications to human motion analysis,"Advanced Nonlinear
Dimensionality Reduction
Methods for Multidimensional
Time Series: Application to
Human Motion Analysis
Michał Lewandowski
Submitted in partial fulfilment of the requirements of
Kingston University for the degree of
Doctor of Philosophy
June, 2011"
f4373f5631329f77d85182ec2df6730cbd4686a9,Recognizing Gender from Human Facial Regions using Genetic Algorithm,"Soft Computing manuscript No.
(will be inserted by the editor)
Recognizing Gender from Human Facial Regions using
Genetic Algorithm
Avirup Bhattacharyya · Rajkumar Saini ·
Partha Pratim Roy · Debi Prosad Dogra ·
Samarjit Kar
Received: date / Accepted: date"
f423e2072441925a16d95e7092005abf602b7145,Survey on 2D and 3D Human Pose Recovery,"Survey on 2D and 3D Human Pose
Recovery
Xavier Perez-Sala, Email: a;c,
Sergio Escalera, Email: b;c and
Cecilio Angulo, Email: a
CETpD-UPC Technical Research Center for Dependency Care and
Autonomous Living, Universitat Polit(cid:18)ecnica de Catalunya, Ne(cid:18)apolis, Rambla de
l’Exposici(cid:19)o, 59-69, 08800 Vilanova i la Geltru, Spain
Dept. Mathematics, Universitat de Barcelona, Gran Via de les Corts Catalanes
Computer Vision Center, Campus UAB, Edi(cid:12)ci 0, 08193, Bellaterra, Spain
585, 08007, Barcelona, Spain"
f43327075c17e71ee713ad727aa473230a432a90,Geometry meets semantics for semi-supervised monocular depth estimation,"Geometry meets semantics for semi-supervised
monocular depth estimation
Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi,
Stefano Mattoccia, and Luigi Di Stefano
University of Bologna,
Viale del Risorgimento 2, Bologna, Italy"
f439f9a0bd535eab00cbb93c1fa7083615a08d1a,Procedural Modeling and Physically Based Rendering for Synthetic Data Generation in Automotive Applications,"Procedural Modeling and Physically Based Rendering for Synthetic Data
Generation in Automotive Applications
Apostolia Tsirikoglou1,∗ Joel Kronander1 Magnus Wrenninge2,† Jonas Unger1,‡
Link¨oping University, Sweden
7D Labs
Figure 1: Example images produced using our method for synthetic data generation."
f47404424270f6a20ba1ba8c2211adfba032f405,Identification of Face Age range Group using Neural Network,"International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5, May 2012)
Identification of Face Age range Group using Neural
Network
Sneha Thakur1, Ligendra Verma2
1M.Tech scholar, CSE, RITEE Raipur
2 Reader, MCA dept, RITEE Raipur"
f4b729d218139f1e93cc9d4df05fbf699d2e9d07,Introduction to the Special Issue on Recent Advances in Biometric Systems [Guest Editorial],"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 5, OCTOBER 2007
Guest Editorial
Introduction to the Special Issue on Recent
Advances in Biometric Systems
W E ARE pleased to present 14 papers in this special
issue devoted to recent advances in biometric systems.
A total of 78 papers were submitted for consideration for the
special issue. Those that appear in this special issue result from
careful review process and consideration of timing for the
special issue. Other papers, which were originally submitted for
onsideration for the special issue, may be undergoing major
revisions and resubmission and appear at a later time in a
regular issue of this journal or possibly in some other journal.
In particular, several submissions in the area of iris biometrics
ould not be considered for this special issue due to their
experimental results being based primarily on the CASIA 1
iris image dataset [1].
Papers on a broad variety of topics were submitted to the
special issue. The large active areas of biometrics such as face,
fingerprint, voice, signature, and iris were naturally well repre-"
f43b60a33c585827bfa354d3d49fb148a1c26c3f,Identifying Well-formed Natural Language Questions,"Identifying Well-formed Natural Language Questions
Manaal Faruqui Dipanjan Das
Google AI Language"
f4ebbeb77249d1136c355f5bae30f02961b9a359,Human Computation for Attribute and Attribute Value Acquisition,"Human Computation for Attribute and Attribute Value Acquisition
Edith Law, Burr Settles, Aaron Snook, Harshit Surana, Luis von Ahn, Tom Mitchell
School of Computer Science
Carnegie Melon University"
f445493badf53febbaeab340a4fca98d9e4ab7f7,Do CIFAR-10 Classifiers Generalize to CIFAR-10?,"Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Benjamin Recht
UC Berkeley
Rebecca Roelofs
UC Berkeley
Ludwig Schmidt
Vaishaal Shankar
UC Berkeley
June 4, 2018"
f4808e78bc648f9e1829c83a68a3e8ed4e7cf325,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
f42dca4a4426e5873a981712102aa961be34539a,Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost Optical-Flow Estimation in the Wild,"Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost
Optical-Flow Estimation in the Wild
Nima Sedaghat
University of Freiburg
Germany"
f49f1028052baa1588376a78a9dc64812748555e,Feature Fusion using Extended Jaccard Graph and Stochastic Gradient Descent for Robot,"JOURNAL OF LATEX CLASS FILES
Feature Fusion using Extended Jaccard Graph and
Stochastic Gradient Descent for Robot
Shenglan Liu, Muxin Sun, Wei Wang, Feilong Wang"
f31c9328b5b4678388c19a39064a8056313f7cf4,Two-Stream Multi-Rate Recurrent Neural Network for Video-Based Pedestrian Re-Identification,"IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, AUGUST 201X
Two-Stream Multi-Rate Recurrent Neural
Network for Video-Based Pedestrian
Re-Identification
Zhiqiang Zeng, Zhihui Li*, De Cheng, Huaxiang Zhang, Kun Zhan and Yi Yang"
f3a34525fa7021322f132c80c9517f240cf1e742,Pose and Pathosformel in Aby Warburg's Bilderatlas,"Pose and Pathosformel in Aby Warburg’s
Bilderatlas
Leonardo Impett, Sabine S¨usstrunk
School of Computer and Communication Sciences,
´Ecole F´ed´erale Polytechnique de Lausanne, Switzerland"
f34c85c24661ba9990146737fd557f7508677263,A New Pedestrian Detection Descriptor Based on the Use of Spatial Recurrences,"A New Pedestrian Detection Descriptor
Based on the Use of Spatial Recurrences
Carlos Serra-Toro and V. Javier Traver
Departamento de Lenguajes y Sistemas Inform´aticos &
Institute of New Imaging Technologies,
Universitat Jaume I, 12071 Castell´on, Spain"
f375bc91a5f7b1f2d36e41841ccc22f202be2dcf,Unsupervised Learning of Depth and Ego-Motion from Video,"Unsupervised Learning of Depth and Ego-Motion from Video
Tinghui Zhou∗
UC Berkeley
Matthew Brown
Google
Noah Snavely
Google
David G. Lowe
Google"
f3b3d2c0d1d84a7f7bbaaaecb58457c15a947544,Understanding Grounded Language Learning Agents,"UNDERSTANDING GROUNDED LANGUAGE LEARNING
AGENTS
Felix Hill, Karl Moritz Hermann, Phil Blunsom & Stephen Clark
Deepmind
London
{felixhill, kmh, pblunsom,"
f36647e63a11486ef9cf7a5a1c86a40fda5d408a,CS 229 Final Report: Artistic Style Transfer for Face Portraits,"CS 229 Final Report: Artistic Style Transfer for Face Portraits
Daniel Hsu, Marcus Pan, Chen Zhu
{dwhsu, mpanj,
Dec 16, 2016
Introduction
The goal of our project is to learn the content and style
representations of face portraits, and then to combine
them to produce new pictures. The content features of
face are the features that identify a face, such as the
outline shape. The stylistic features are the artistic char-
cteristics of a certain portrait or painting, such as brush
strokes, or background color. We forward-pass a content
image, and several style images through a CNN to ex-
tract the desired content and style features. Then we
initialize a white noise image, and perform gradient de-
scent on its pixels until it matches the desired style and
ontent features.
vNet. We hope our project can be a supplement to ex-
isting implementations.
Gradient Descent Loss Functions"
f36c3ddd43ea7c2e803694aad89e5fd903715c81,"Biometric quality: a review of fingerprint, iris, and face","Bharadwaj et al. EURASIP Journal on Image and Video Processing 2014, 2014:34
http://jivp.eurasipjournals.com/content/2014/1/34
REVIEW
Open Access
Biometric quality: a review of fingerprint, iris,
nd face
Samarth Bharadwaj, Mayank Vatsa* and Richa Singh"
f3d9e347eadcf0d21cb0e92710bc906b22f2b3e7,"NosePose: a competitive, landmark-free methodology for head pose estimation in the wild","NosePose: a competitive, landmark-free
methodology for head pose estimation in the wild
Fl´avio H. B. Zavan, Antonio C. P. Nascimento, Olga R. P. Bellon and Luciano Silva
IMAGO Research Group - Universidade Federal do Paran´a"
f34a6c1bc9a7872c8dc4c35b678f87bb966ab0ab,"PHOG-Derived Aesthetic Measures Applied to Color Photographs of Artworks, Natural Scenes and Objects","PHOG-Derived Aesthetic Measures Applied
to Color Photographs of Artworks,
Natural Scenes and Objects
Christoph Redies2, Seyed Ali Amirshahi1,2,
Michael Koch1,2, and Joachim Denzler1
Computer Vision Group, Friedrich Schiller University Jena, Germany
http://www.inf-cv.uni-jena.de
Institute of Anatomy I, Friedrich Schiller University,
Jena University Hospital, Germany
http://www.anatomie1.uniklinikum-jena.de"
f33c427dc152c20537d2857bee1dda2287e85860,Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks,
f39b88ac61264e9a33dcdf47722f0d048a8e490f,Interactive Data Integration and Entity Resolution for Exploratory Visual Data Analytics,"(cid:13)Copyright 2015
Kristi Morton"
f3ea181507db292b762aa798da30bc307be95344,Covariance Pooling For Facial Expression Recognition,"Covariance Pooling for Facial Expression Recognition
Computer Vision Lab, ETH Zurich, Switzerland
VISICS, KU Leuven, Belgium
Dinesh Acharya†, Zhiwu Huang†, Danda Pani Paudel†, Luc Van Gool†‡
{acharyad, zhiwu.huang, paudel,"
f3062992cb10107b9d1e3699c8a61d5281886c4b,Foreground Consistent Human Pose Estimation Using Branch and Bound,"Foreground Consistent Human Pose Estimation
Using Branch and Bound(cid:2)
Jens Puwein1, Luca Ballan1, Remo Ziegler2, and Marc Pollefeys1
Department of Computer Science, ETH Zurich, Switzerland
Vizrt"
f3b56b873c48929361c1cada7b18177e3f4d2727,"Development of a N-type GM-PHD Filter for Multiple Target, Multiple Type Visual Tracking","Development of a N-type GM-PHD Filter for
Multiple Target, Multiple Type Visual Tracking
Nathanael L. Baisa , Student Member, IEEE, and Andrew Wallace, Fellow, IET
faced challenges not only in the uncertainty caused by data
ssociation but also in algorithmic complexity that increases
exponentially with the number of targets and measurements.
For instance, the MHT has an exponential complexity with
time and cubic with the number of targets.
To address the problems of increasing complexity, a unified
framework which directly extends single to multiple target
tracking by representing multi-target states and observations
s random finite sets (RFS) was developed by Mahler [7].
This estimates the states and cardinality of an unknown and
time varying number of targets in the scene, and allows for
target birth, death, handling clutter (false alarms), and missing
detections. Mahler [7] proposed to propagate the first-order
moment of the multi-target posterior, called the Probability
Hypothesis Density (PHD), rather than the full multi-target
posterior."
f3dc67bb4cd3601ae9bdb7df4ed5036f525ff21d,Multimodal 2 DCNN action recognition from RGB-D Data with Video Summarization,"Master’s Thesis
Multimodal 2DCNN action recognition from
RGB-D Data with Video Summarization
Vicent Roig Ripoll
Master
Artificial Intelligence
Advisor: Sergio Escalera Guerrero
Co-advisor: Maryam Asadi-Aghbolaghi
October, 2017"
f3ca251ac3b05397ea6d72f2a9a6f0cf619a2a32,Leveraging Weakly Annotated Data for Fashion Image Retrieval and Label Prediction,"Leveraging Weakly Annotated Data for Fashion Image Retrieval and Label
Prediction
Charles Corbi`ere1, Hedi Ben-Younes1,2, Alexandre Ram´e1, and Charles Ollion1
Heuritech, Paris, France
UPMC-LIP6, Paris, France"
f3cf10c84c4665a0b28734f5233d423a65ef1f23,Title Temporal Exemplar-based Bayesian Networks for facialexpression recognition,"Title
Temporal Exemplar-based Bayesian Networks for facial
expression recognition
Author(s)
Shang, L; Chan, KP
Citation
Proceedings - 7Th International Conference On Machine
Learning And Applications, Icmla 2008, 2008, p. 16-22
Issued Date
http://hdl.handle.net/10722/61208
Rights
This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.;
International Conference on Machine Learning and Applications
Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of
this material is permitted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
omponent of this work in other works must be obtained from"
f32db58cbb8319eb8f2cfa2720c810f8410eb569,A software suite for large-scale video- and image-based analytics,"The 8th International Conference on Bioinspired Information and Communications Technologies (BICT2014), pp. 384-385, Boston, December 1-3, 2014
A software suite for large-scale video- and image-based
nalytics
Jasmin Léveillé
Isao Hayashi
Kansai University"
f3f65a8113d6a2dcbc690fd47dfee2dff0f41097,Generating 3D Faces Using Convolutional Mesh Autoencoders,"Generating 3D faces using Convolutional Mesh
Autoencoders
Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J. Black
Max Planck Institute for Intelligent Systems
{aranjan, tbolkart, ssanyal,
T¨ubingen, Germany"
f3b7938de5f178e25a3cf477107c76286c0ad691,Object Detection with Deep Learning: A Review,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2017
Object Detection with Deep Learning: A Review
Zhong-Qiu Zhao, Member, IEEE, Peng Zheng,
Shou-tao Xu, and Xindong Wu, Fellow, IEEE"
ebd36259defde84deb0d4c09695b54befe538ac8,Robust Generalized Low Rank Approximations of Matrices,"RESEARCH ARTICLE
Robust Generalized Low Rank
Approximations of Matrices
Jiarong Shi*, Wei Yang, Xiuyun Zheng
School of Science, Xi'an University of Architecture and Technology, Xi'an, China"
eb526174fa071345ff7b1fad1fad240cd943a6d7,Deeply vulnerable: a study of the robustness of face recognition to presentation attacks,"Deeply Vulnerable – A Study of the Robustness of Face Recognition to
Presentation Attacks
Amir Mohammadi, Sushil Bhattacharjee, and S´ebastien Marcel ∗†"
eb6243b1c9506f9450dab2a09db9c17fc2c2d364,3D Face Recognition system Based on Texture Gabor Features using PCA and Support Vector Machine as a Classifier,"ISSN(Online): 2319-8753
ISSN (Print):   2347-6710
International Journal of Innovative Research in Science,
Engineering and Technology
(An ISO 3297: 2007 Certified Organization)
Vol. 5, Issue 8, August 2016
D Face Recognition system Based on Texture
Gabor Features using PCA and Support
Vector Machine as a Classifier
Rajesh Yadav 1, Dr. Chandra kumarJha 2
Assistant Professor, Department of Computer Science, Gurgaon Institute of Technology &Management, Gurgaon,
Haryana, India1
Associate Professor, Department of Computer Science &Engineering, AIM & ACT, Banasthali University, Jaipur,
Rajasthan, India2"
eb566490cd1aa9338831de8161c6659984e923fd,From Lifestyle Vlogs to Everyday Interactions,"From Lifestyle Vlogs to Everyday Interactions
David F. Fouhey, Wei-cheng Kuo, Alexei A. Efros, Jitendra Malik
EECS Department, UC Berkeley"
eba31ad9871c6dd5c2e7c62a121bbb417dcb1223,Adaptive Ensemble Selection for Face Re-identification under Class Imbalance,"Adaptive Ensemble Selection for Face
Re-Identification Under Class Imbalance(cid:63)
Paulo Radtke1, Eric Granger1, Robert Sabourin1 and Dmitry Gorodnichy2
. Laboratoire d’imagerie, de vision et d’intelligence artificielle
´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montreal, Canada
{eric.granger,
. Science and Engineering Directorate, Canada Border Services Agency
Ottawa, Canada,"
eb9312458f84a366e98bd0a2265747aaed40b1a6,Facial Expression Sequence Synthesis Based on Shape and Texture Fusion Model,"-4244-1437-7/07/$20.00 ©2007 IEEE
IV - 473
ICIP 2007"
eb716dd3dbd0f04e6d89f1703b9975cad62ffb09, Visual Object Category Discovery in Images and Videos,"Copyright
Yong Jae Lee"
ebc2643567b1c614727cd7ecf1d0604972572568,Robust Subspace Estimation Using Low-rank,"ROBUST SUBSPACE ESTIMATION USING LOW-RANK OPTIMIZATION.
THEORY AND APPLICATIONS IN SCENE RECONSTRUCTION, VIDEO
DENOISING, AND ACTIVITY RECOGNITION.
OMAR OREIFEJ
B.S. University of Jordan, 2006
M.S. University of Central Florida, 2009
A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science
t the University of Central Florida
Orlando, Florida
Spring Term
Major Professor: Mubarak Shah"
eb4d2ec77fae67141f6cf74b3ed773997c2c0cf6,A new soft biometric approach for keystroke dynamics based on gender recognition,"Int. J. Information Technology and Management, Vol. 11, Nos. 1/2, 2012
A new soft biometric approach for keystroke
dynamics based on gender recognition
Romain Giot* and Christophe Rosenberger
GREYC Research Lab,
ENSICAEN – Université de Caen Basse Normandie – CNRS,
4000 Caen, France
Fax: +33-231538110
E-mail:
E-mail:
*Corresponding author"
eb4edbec8cb122de07951e3cf54c33fc30dd1c19,Examining the Effects of Supervision for Transfer from Synthetic to Real Driving Domains,"Examining the Effects of Supervision for Transfer from Synthetic to Real
Driving Domains
Vashisht Madhavan"
ebb7cc67df6d90f1c88817b20e7a3baad5dc29b9,Fast algorithms for Higher-order Singular Value Decomposition from incomplete data,"Journal of Computational Mathematics
Vol.xx, No.x, 200x, 1–25.
http://www.global-sci.org/jcm
doi:??
Fast algorithms for Higher-order Singular Value Decomposition
from incomplete data*
Department of Mathematics, University of Alabama, Tuscaloosa, AL
Yangyang Xu
Email:"
ebabf19e66ef1253fda8d39a0569787c65e60a9e,Multi-person Tracking with Sparse Detection and Continuous Segmentation,"Multi-Person Tracking with Sparse Detection and
Continuous Segmentation
Dennis Mitzel1, Esther Horbert1, Andreas Ess2, Bastian Leibe1
UMIC Research Centre RWTH Aachen University, Germany
Computer Vision Laboratory, ETH Zurich, Switzerland"
ebabd1f7bc0274fec88a3dabaf115d3e226f198f,Driver Drowsiness Detection System Based on Feature Representation Learning Using Various Deep Networks,"Driver drowsiness detection system based on feature
representation learning using various deep networks
Sanghyuk Park, Fei Pan, Sunghun Kang and Chang D. Yoo
School of Electrical Engineering, KAIST,
Guseong-dong, Yuseong-gu, Dajeon, Rep. of Korea
{shine0624, feipan, sunghun.kang, cd"
eb48a58b873295d719827e746d51b110f5716d6c,Face Alignment Using K-Cluster Regression Forests With Weighted Splitting,"Face Alignment Using K-cluster Regression Forests
With Weighted Splitting
Marek Kowalski and Jacek Naruniec"
ebd5df2b4105ba04cef4ca334fcb9bfd6ea0430c,Fast Localization of Facial Landmark Points,"Fast Localization of Facial Landmark Points
Nenad Markuˇs*, Miroslav Frljak*, Igor S. Pandˇzi´c*, J¨orgen Ahlberg†, and Robert Forchheimer†
* University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
Link¨oping University, Department of Electrical Engineering, SE-581 83 Link¨oping, Sweden
March 28, 2014"
eb33adf3f8eb5c07b58a1433734ab1fee5d77c93,"Singleton, C. J., Ashwin, C. and Brosnan, M. (2014) Physiological Responses to Social and Nonsocial Stimuli in Neurotypical Adults With High and Low Levels of Autistic Traits:Implications for Understanding Nonsocial Drive in Autism Spectrum","Singleton, C. J., Ashwin, C. and Brosnan, M. (2014) Physiological
Responses to Social and Nonsocial Stimuli in Neurotypical
Adults With High and Low Levels of Autistic Traits:Implications
for Understanding Nonsocial Drive in Autism Spectrum
Disorders. Autism Research, 7 (6). pp. 695-703. ISSN 1939-3792
Link to official URL (if available): http://dx.doi.org/10.1002/aur.1422
Opus: University of Bath Online Publication Store
http://opus.bath.ac.uk/
This version is made available in accordance with publisher policies.
Please cite only the published version using the reference above.
See http://opus.bath.ac.uk/ for usage policies.
Please scroll down to view the document."
eb0e0a40372db32d30ceaefad046b213fac977f4,Scene Understanding Using Back Propagation by Neural Network,"Scene Understanding Using Back Propagation by Neural Network
SCENE UNDERSTANDING USING BACK PROPAGATION BY
NEURAL NETWORK
ARTI TIWARI1 & JAGVIR VERMA2
,2Department of Elex & Telecomm. Engg.Chouksey Engg. College,Bilaspur
intelligent  human-computer"
eb0e5db282f88d47b65f98df70c2e7c78b8647a6,Image Provenance Analysis at Scale,"Image Provenance Analysis at Scale
Daniel Moreira, Aparna Bharati, Student Member, IEEE, Joel Brogan, Student Member, IEEE,
Allan Pinto, Student Member, IEEE, Michael Parowski, Kevin W. Bowyer, Fellow, IEEE,
Patrick J. Flynn, Fellow, IEEE, Anderson Rocha, Senior Member, IEEE,
nd Walter J. Scheirer, Senior Member, IEEE"
eb044760b6502431da6b6f3d5ad11aaab851a1ff,Video Storytelling,"A SUBMISSION TO IEEE TRANSACTIONS ON MULTIMEDIA
Video Storytelling
Junnan Li, Yongkang Wong, Member, IEEE, Qi Zhao, Member, IEEE, Mohan S. Kankanhalli, Fellow, IEEE"
ebf204e0a3e137b6c24e271b0d55fa49a6c52b41,Visual Tracking Using Deep Motion Features,"Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2016
Visual Tracking Using
Deep Motion Features
Susanna Gladh"
c7774fd600630684cc1d6be8313e2935bb198880,Adapting Hausdorff Metrics to Face Detection Systems: A Scale-Normalized Hausdorff Distance Approach,"Adapting Hausdorff metrics to face detection
systems: a scale-normalized Hausdorff distance
pproach
Pablo Suau
Departamento de Ciencia de la Computaci´on e Inteligencia Artificial
Universidad de Alicante, Ap. de correos 99, 03080, Alicante (Spain)"
c74a42afeae520ff6ab280d17bccf0d082ba8de5,The Concept of Comprehensive Data Analysis from Ultra-Wideband Subsystem for Smart City Positioning Purposes,"Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2018                   doi:10.20944/preprints201810.0609.v1
Article
The Concept of Comprehensive Data Analysis from
Ultra-Wideband Subsystem for Smart City
Positioning Purposes
Damian Grzechca *, Krzysztof Hanzel and Krzysztof Paszek
Faculty of Automatic Control, Electronics and Computer Science,
Silesian University of Technology Gliwice, Poland;
*  Correspondence: Tel.: +48-32-237-2717"
c7fff0d0a6312965b269c6180b2112babd40564c,Unsupervised Person Re-identification: Clustering and Fine-tuning,"Unsupervised Person Re-identification:
Clustering and Fine-tuning
Hehe Fan, Liang Zheng and Yi Yang"
c726ea46544968335f1e51be633f15d0cc0f0311,Generalized feature learning and indexing for object localization and recognition,"Generalized Feature Learning and Indexing for Object Localization and
Recognition
Ning Zhou∗
UNC, Charlotte
Anelia Angelova∗
Google Inc
Jianping Fan
UNC, Charlotte"
c7ea9611446817f7b668882061ab11c7e998296c,Towards a Crowd Analytic Framework For Crowd Management in Majid-al-Haram,"Towards a Crowd Analytic Framework For Crowd
Management in Majid-al-Haram
Sultan Daud Khan1,*, Muhammad Tayyab1, Muhammad Khurram Amin1, Akram Nour1,
Anas Basalamah1, Saleh Basalamah1, and Sohaib Ahmad Khan1,2,*
Technology Innovation Center, Wadi Makkah, Makkah Al Mukarramah, Saudi Arabia
Science and Technology Unit, Umm Al Qura University, Makkah Al Mukarramah, Saudi Arabia"
c7e4c7be0d37013de07b6d829a3bf73e1b95ad4e,Dynemo: a Video Database of Natural Facial Expressions of Emotions,"The International Journal of Multimedia & Its Applications (IJMA) Vol.5, No.5, October 2013
DYNEMO: A VIDEO DATABASE OF NATURAL FACIAL
EXPRESSIONS OF EMOTIONS
Anna Tcherkassof1, Damien Dupré1, Brigitte Meillon2, Nadine Mandran2,
Michel Dubois1 and Jean-Michel Adam2
LIP, Univ. Grenoble Alpes, BP 47 - 38040 Grenoble Cedex 9, France
LIG, Univ. Grenoble Alpes, BP 53 - 38041 Grenoble Cedex 9, France"
c757f6ee46208c1c26572265803068f8d837c384,Thermal imaging systems for real-time applications in smart cities,"Aalborg Universitet
Thermal Imaging Systems for Real-Time Applications in Smart Cities
Gade, Rikke; Moeslund, Thomas B.; Nielsen, Søren Zebitz; Skov-Petersen, Hans; Andersen,
Hans Jørgen; Basselbjerg, Kent; Dam, Hans Thorhauge; Jensen, Ole B.; Jørgensen, Anders;
Lahrmann, Harry Spaabæk; Madsen, Tanja Kidholm Osmann; Skouboe, Esben Bala; Povey,
Bo Ø.
Published in:
International Journal of Computer Applications in Technology
DOI (link to publication from Publisher):
Publication date:
Document Version
Accepted author manuscript, peer reviewed version
Link to publication from Aalborg University
Citation for published version (APA):
Gade, R., Moeslund, T. B., Nielsen, S. Z., Skov-Petersen, H., Andersen, H. J., Basselbjerg, K., ... Povey, B. Ø.
(2016). Thermal Imaging Systems for Real-Time Applications in Smart Cities. International Journal of Computer
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research."
c76d143b3fa0d25e21580c583d39ab07fc937e71,Institutionen för systemteknik Department of Electrical Engineering Examensarbete 3 D Position Estimation of a Person of Interest in Multiple Video Sequences : People Detection,"Institutionen för systemteknik
Department of Electrical Engineering
Examensarbete
D Position Estimation of a Person of Interest in
Multiple Video Sequences: People Detection
Examensarbete utfört i Datorseende
vid Tekniska högskolan vid Linköpings universitet
Johannes Markström
LiTH-ISY-EX--13/4721--SE
Linköping 2013
Department of Electrical Engineering
Linköpings universitet
SE-581 83 Linköping, Sweden
Linköpings tekniska högskola
Linköpings universitet
581 83 Linköping"
c7eb127e9cd67d645b9a7f59c03bc73183faefeb,Human Detection in Indoor Environments Using Multiple Visual Cues and a Mobile Robot,"Human Detection in Indoor Environments Using
Multiple Visual Cues and a Mobile Robot
Stefan Pszcz´o(cid:2)lkowski and Alvaro Soto
Pontificia Universidad Catolica de Chile
Santiago 22, Chile"
c70ad19c90491e2de8de686b6a49f9bbe44692c0,Seeing with Humans: Gaze-Assisted Neural Image Captioning,"Seeing with Humans: Gaze-Assisted
Neural Image Captioning
Yusuke Sugano and Andreas Bulling"
c7c405b6fc95ff2ccf2cb5b59942db4343558fc4,Pseudo 2D Hidden Markov Model Based Face Recognition System Using Singular Values Decomposition Coefficients,"Pseudo 2D Hidden Markov Model Based Face Recognition System Using Singular
Values Decomposition Coefficients
Mukundhan Srinivasan
Department of Electronics & Communication Engineering
Alpha College of Engineering
Chennai, TN India
Sabarigirish Vijayakumar
Retail Domain
Tata Consultancy Services (TCS)
Chennai, TN India"
c7de0c85432ad17a284b5b97c4f36c23f506d9d1,RANSAC-Based Training Data Selection for Speaker State Recognition,"INTERSPEECH 2011
RANSAC-based Training Data Selection for Speaker State Recognition
Elif Bozkurt1, Engin Erzin1, C¸ i˘gdem Ero˘glu Erdem2, A.Tanju Erdem3
Multimedia, Vision and Graphics Laboratory, Koc¸ University, Istanbul, Turkey
Department of Electrical and Electronics Engineering, Bahc¸es¸ehir University, Istanbul, Turkey
Department of Electrical and Computer Engineering, ¨Ozye˘gin University, Istanbul, Turkey
ebozkurt,"
c7f63fc2ff20513c6dc233ec3419417b43b39209,Human Detection from Aerial Imagery for Automatic Counting of Shellfish Gatherers,"Human Detection from Aerial Imagery for Automatic Counting of
Shellfish gatherers
Mathieu Laroze, Luc Courtrai and Sébastien Lefèvre
Univ. Bretagne-Sud, UMR 6074 IRISA
{mathieu.laroze, luc.courtrai,
F-56000, Vannes, France
Keywords:
Human Detection, Image Stitching, Aerial Imagery, Image Mosaicing, Patch Classification, Object Detection"
c7f752eea91bf5495a4f6e6a67f14800ec246d08,Exploring the Transfer Learning Aspect of Deep Neural Networks in Facial Information Processing,"EXPLORING THE TRANSFER
LEARNING ASPECT OF DEEP
NEURAL NETWORKS IN FACIAL
INFORMATION PROCESSING
A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF MASTER OF SCIENCE
IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
Crefeda Faviola Rodrigues
School of Computer Science"
c7391b43bd0216daf697fb77906b76c71f5c50e2,Where Should You Attend While Driving?,"Where Should You Attend While Driving?
Simone Calderara
Stefano Alletto
Andrea Palazzi∗
Francesco Solera∗
Rita Cucchiara
University of Modena and Reggio Emilia"
c7d7cf88d2e9f3194aec2121eb19dbfed170dba8,Unconstrained Gaze Estimation Using Random Forest Regression Voting,"Unconstrained Gaze Estimation Using Random Forest
Regression Voting
Amine Kacete, Renaud Séguier, Michel Collobert, Jérôme Royan
To cite this version:
Amine Kacete, Renaud Séguier, Michel Collobert, Jérôme Royan. Unconstrained Gaze Estimation
Using Random Forest Regression Voting. Springer. ACCV 13th Asian Conference on Computer
Vision, Nov 2016, Taipei, Taiwan. <http://www.accv2016.org/>. <hal-01393591>
HAL Id: hal-01393591
https://hal.archives-ouvertes.fr/hal-01393591
Submitted on 7 Nov 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
c758b9c82b603904ba8806e6193c5fefa57e9613,Heterogeneous Face Recognition with CNNs,"Heterogeneous Face Recognition with CNNs
Shreyas Saxena
Jakob Verbeek
INRIA Grenoble, Laboratoire Jean Kuntzmann"
c7ecb2ca791fe23c182a06e7700c4e41f5ffa79d,A Review of Sentiment Analysis in Spanish Una Revisión Sobre el Análisis de Sentimientos en Español,"DOI: http://dx.doi.org/10.18180/tecciencia.2017.22.5
A Review of Sentiment Analysis in Spanish
Una Revisión Sobre el Análisis de Sentimientos en Español
Carlos Henríquez Miranda1*, Jaime Guzmán2
Universidad Autónoma, Barranquilla, Colombia
Universitario Nacional de Colombia, Bogotá, Colombia
Received: 11 Dec 2015
Accepted: 6 Sep 2016
Available Online: 7 Dec 2016"
c7c03324833ba262eeaada0349afa1b5990c1ea7,A Wearable Face Recognition System on Google Glass for Assisting Social Interactions,"A Wearable Face Recognition System on Google
Glass for Assisting Social Interactions
Bappaditya Mandal∗, Chia Shue Ching, Liyuan Li, Vijay Ramaseshan
Chandrasekhar, Cheston Tan Yin Chet and Lim Joo Hwee
Visual Computing Department, Institute for Infocomm Research, Singapore
Email address: (∗Contact author: Bappaditya Mandal);
{scchia, lyli, vijay, cheston-tan,"
c72914e2e999c99753d1d0058c459af69af6662a,CEREALS - Cost-Effective REgion-based Active Learning for Semantic Segmentation,"MACKOWIAK ET AL.: CEREALS
CEREALS – Cost-Effective REgion-based
Active Learning for Semantic Segmentation
Robert Bosch GmbH
Corporate Research - Computer Vision
Robert-Bosch-Straße 200
1139 Hildesheim, DE
Heidelberg Collaboratory for Image
Processing (HCI)
Berliner Straße 43,
69120 Heidelberg, DE
Radek Mackowiak1
Philip Lenz1
Omair Ghori1
Ferran Diego1
Oliver Lange1
Carsten Rother2"
c719a718073128a985c957cdfa3f298706a180e6,Comparative Evaluations of Selected Tracking-by-Detection Approaches,"Comparative Evaluations of Selected
Tracking-by-Detection Approaches
Alhayat Ali Mekonnen, Frédéric Lerasle
To cite this version:
Alhayat Ali Mekonnen, Frédéric Lerasle. Comparative Evaluations of Selected Tracking-by-Detection
Approaches. IEEE Transactions on Circuits and Systems for Video Technology, Institute of Electrical
nd Electronics Engineers, 2018, <10.1109/TCSVT.2018.2817609>. <hal-01815850>
HAL Id: hal-01815850
https://hal.laas.fr/hal-01815850
Submitted on 14 Jun 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
c737e65d7e8696f5a2878ac623c61aeff434f92d,The influences of face inversion and facial expression on sensitivity to eye contact in high-functioning adults with autism spectrum disorders.,"J Autism Dev Disord (2013) 43:2536–2548
DOI 10.1007/s10803-013-1802-2
O R I G I N A L P A P E R
The Influences of Face Inversion and Facial Expression
on Sensitivity to Eye Contact in High-Functioning Adults
with Autism Spectrum Disorders
Mark D. Vida • Daphne Maurer • Andrew J. Calder •
Gillian Rhodes • Jennifer A. Walsh •
Matthew V. Pachai • M. D. Rutherford
Published online: 8 March 2013
Ó Springer Science+Business Media New York 2013"
c7c8d150ece08b12e3abdb6224000c07a6ce7d47,DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification,"DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification
National Laboratory of Pattern Recognition, CASIA
Center for Research on Intelligent Perception and Computing, CASIA
Shu Zhang Ran He Tieniu Tan"
c78fdd080df01fff400a32fb4cc932621926021f,Robust Automatic Facial Expression Detection Method,"Robust Automatic Facial Expression Detection
Method
Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan,
Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan,
Yan Ouyang
China
Nong Sang
China
Email:"
c7742e63579cfea8655606ec6bd9047140efe96a,D and Pseudo-2d Hidden Markov Models for Image Analysis. Theoretical Introduction 1d and Pseudo-2d Hidden Markov Models for Image Analysis. Theoretical Introduction,"D and Pseudo-D Hidden Markov Models
for Image Analysis.
Theoretical Introduction
ephane Marchand-Maillet - Multimedia Communications
Email:
Phone: + .	...	 - Fax: + .	...
Date: November , 
Technical Report RR-		-	 Part A
Condential: No
ecom’s research is partially supported by its industrial members:
Ascom, Cegetel, France Telecom, Hitachi, IBM France, Motorola,
Swisscom, Texas Instruments, and Thomson CSF.
Multimedia Communications
Institut EURECOM  BP 	.
	 Sophia Antipolis  France
T.R. RR-		-	 Part A  November , "
c0e5a471179d2d8c7025febe77a90c3a99c7c9fa,Learning With ℓ1-Graph for Image Analysis,"IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 4, APRIL 2010
Learning With `1-Graph for Image Analysis
Bin Cheng, Jianchao Yang, Student Member, IEEE, Shuicheng Yan, Senior Member, IEEE, Yun Fu, Member, IEEE,
nd Thomas S. Huang, Life Fellow, IEEE"
c0014e048a5d15ddfeffa075a1b819bcb93dd351,Simple and Efficient Visual Gaze Estimation,"Simple and Efficient Visual Gaze Estimation
Roberto Valenti
Nicu Sebe
Intelligent Systems Lab
Amsterdam
Kruislaan 403, 1018SJ
Amsterdam, The Netherlands
Theo Gevers"
c03f48e211ac81c3867c0e787bea3192fcfe323e,Mahalanobis Metric Scoring Learned from Weighted Pairwise Constraints in I-Vector Speaker Recognition System,"INTERSPEECH 2016
September 8–12, 2016, San Francisco, USA
Mahalanobis Metric Scoring Learned from Weighted Pairwise Constraints in
I-vector Speaker Recognition System
Zhenchun Lei1, Yanhong Wan1, Jian Luo1, Yingen Yang1
School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China"
c038beaa228aeec174e5bd52460f0de75e9cccbe,Temporal Segment Networks for Action Recognition in Videos,"Temporal Segment Networks for Action
Recognition in Videos
Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool"
c043f8924717a3023a869777d4c9bee33e607fb5,Emotion Separation Is Completed Early and It Depends on Visual Field Presentation,"Emotion Separation Is Completed Early and It Depends
on Visual Field Presentation
Lichan Liu1,2*, Andreas A. Ioannides1,2
Lab for Human Brain Dynamics, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan, 2 Lab for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia,
Cyprus"
c05a7c72e679745deab9c9d7d481f7b5b9b36bdd,"Naval Postgraduate School Monterey, California Approved for Public Release; Distribution Is Unlimited Biometric Challenges for Future Deployments: a Study of the Impact of Geography, Climate, Culture, and Social Conditions on the Effective Collection of Biometrics","NPS-CS-11-005
NAVAL
POSTGRADUATE
SCHOOL
MONTEREY, CALIFORNIA
BIOMETRIC CHALLENGES FOR FUTURE DEPLOYMENTS:
A STUDY OF THE IMPACT OF GEOGRAPHY, CLIMATE, CULTURE,
AND SOCIAL CONDITIONS ON THE EFFECTIVE
COLLECTION OF BIOMETRICS
Paul C. Clark, Heather S. Gregg, with preface by Cynthia E. Irvine
April 2011
Approved for public release; distribution is unlimited"
c0f17f99c44807762f2a386ac6579c364330e082,A Review on Deep Learning Techniques Applied to Semantic Segmentation,"A Review on Deep Learning Techniques
Applied to Semantic Segmentation
A. Garcia-Garcia, S. Orts-Escolano, S.O. Oprea, V. Villena-Martinez, and J. Garcia-Rodriguez"
c0a0adb7f02d5509969e6107c914f7cc6e9ec881,Semantic Instance Segmentation via Deep Metric Learning,"Semantic Instance Segmentation via Deep Metric Learning
Alireza Fathi∗
Zbigniew Wojna∗
Vivek Rathod∗
Peng Wang†
Sergio Guadarrama∗
Kevin P. Murphy∗
Hyun Oh Song∗"
c08420b1bfa093e89e35e3b8d3a9e3e881f4f563,A Classification Framework for Large-Scale Face Recognition Systems,"Kent Academic Repository
Full text document (pdf)
Citation for published version
Zhou, Ziheng and Deravi, Farzin  (2009) A Classification Framework for Large-Scale Face Recognition
Systems.    In: 3rd IAPR/IEEE International Conference on Biometrics, 2-5 June, University of
Sassari, Italy.
https://doi.org/10.1007/978-3-642-01793-3_35
Link to record in KAR
http://kar.kent.ac.uk/23302/
Document Version
Author's Accepted Manuscript
Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
ontent is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.
Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.
Enquiries"
c03c16668426d8b069e75cb440686e12a9adbcd7,Deep Unsupervised Similarity Learning Using Partially Ordered Sets,"Deep Unsupervised Similarity Learning using Partially Ordered Sets
Miguel A. Bautista∗ , Artsiom Sanakoyeu∗ , Bj¨orn Ommer
Heidelberg Collaboratory for Image Processing
IWR, Heidelberg University, Germany"
c0de99c5f15898e2d28f9946436fec2b831d4eae,ClothCap: seamless 4D clothing capture and retargeting,"ClothCap: Seamless 4D Clothing Capture and Retargeting
GERARD PONS-MOLL∗, Max Planck Institute for Intelligent Systems, Tübingen, Germany
SERGI PUJADES∗, Max Planck Institute for Intelligent Systems, Tübingen, Germany
SONNY HU, Body Labs, New York, NY, USA
MICHAEL J. BLACK, Max Planck Institute for Intelligent Systems, Tübingen, Germany
Fig. 1. ClothCap. From left to right: (1) An example 3D textured scan that is part of a 4D sequence. (2) Our multi-part aligned mesh model, layered over the
ody. (3) The estimated minimally clothed shape (MCS) under the clothing. (4) The body made fatter and dressed in the same clothing. Note that the clothing
dapts in a natural way to the new body shape. (5) This new body shape posed in a new, never seen, pose. This illustrates how ClothCap supports a range of
pplications related to clothing capture, modeling, retargeting, reposing, and try-on.
Dressing virtual avatars and animating them with high quality, visu-
lly plausible, results is a challenging task. Highly realistic physical
simulation of clothing on human bodies in motion is complex: cloth-
ing models are laborious to construct, patterns must be graded so
that they can be sized to different characters, and the physical param-
eters of the cloth must be known. Instead, we propose a data-driven
lothing capture (ClothCap) approach; we capture dynamic clothing
on humans from 4D scans and transform it to more easily dress
virtual avatars.
INTRODUCTION
Designing and simulating realistic clothing is challenging. Previous methods"
c0afa514524a4cf4b1772c1738ceb6989bff1b71,Impact of Tone-mapping Algorithms on Subjective and Objective Face Recognition in HDR Images,"Impact of Tone-mapping Algorithms on Subjective and
Objective Face Recognition in HDR Images
Pavel Korshunov
MMSPG, EPFL
Marco V. Bernardo
Optics Center, UBI
Touradj Ebrahimi
MMSPG, EPFL
António M. G. Pinheiro
Optics Center, UBI"
c08ef9ebf46e5a88c4ee1aa64dac104ddc07bee2,Classification of vehicles for urban traffic scenes,"Classification of Vehicles
for Urban Traffic Scenes
Norbert Erich Buch
Submitted in partial fulfilment of the requirements of
Kingston University for the degree of
Doctor of Philosophy
June, 2010
Collaborating partner:
Traffic Directorate at Transport for London"
c0ff7dc0d575658bf402719c12b676a34271dfcd,A New Incremental Optimal Feature Extraction Method for On-Line Applications,"A New Incremental Optimal Feature Extraction
Method for On-line Applications
Youness Aliyari Ghassabeh, Hamid Abrishami Moghaddam
Electrical Engineering Department, K. N. Toosi University of
Technology, Tehran, Iran"
c02847a04a99a5a6e784ab580907278ee3c12653,Fine Grained Video Classification for Endangered Bird Species Protection,"Fine Grained Video Classification for
Endangered Bird Species Protection
Non-Thesis MS Final Report
Chenyu Wang
.  Introduction
.1 Background
This project is about detecting eagles in videos. Eagles are endangered species at the brim of
extinction since 1980s. With the bans of harmful pesticides, the number of eagles keep increasing.
However, recent studies on golden eagles’ activities in the vicinity of wind turbines have shown
significant number of turbine blade collisions with eagles as the major cause of eagles’ mortality. [1]
This project is a part of a larger research project to build an eagle detection and deterrent system
on wind turbine toward reducing eagles’ mortality. [2] The critical component of this study is a
omputer vision system for eagle detection in videos. The key requirement are that the system should
work in real time and detect eagles at a far distance from the camera (i.e. in low resolution).
There are three different bird species in my dataset - falcon, eagle and seagull. The reason for
involving only these three species is based on the real world situation. Wind turbines are always
installed near coast and mountain hill where falcons and seagulls will be the majority. So my model
will classify the minority eagles out of other bird species during the immigration season and protecting
them by using the deterrent system.
.2 Brief Approach"
c03ef6e94808185c1080ac9b155ac3b159b4f1ec,Learning to Avoid Errors in GANs by Manipulating Input Spaces,"Learning to Avoid Errors in GANs by Manipulating
Input Spaces
Alexander B. Jung
TU Dortmund"
c038186138b76a625500ff84c9dadb18aae29f1c,Learning Implicit Transfer for Person Re-identification,"Learning Implicit Transfer
for Person Re-identi(cid:12)cation
Tamar Avraham, Ilya Gurvich, Michael Lindenbaum, and Shaul Markovitch
Computer science department, Technion - I.I.T., Haifa 32000, Israel."
c02dbf756b9e9e2bed37cb7d295529397cad616a,Semantic Segmentation of RGBD Videos with Recurrent Fully Convolutional Neural Networks,"Semantic Segmentation of RGBD Videos with Recurrent Fully Convolutional
Neural Networks
Ekrem Emre Yurdakul, Y¨ucel Yemez
Computer Engineering Department, Koc¸ University
Istanbul, Turkey"
c082afd5928165ccaf6d419aff5d0456d8ef78f3,Face recognition by fusing binary edge feature and second-order mutual information,"Face Recognition by Fusing Binary Edge Feature and
Second-order Mutual Information
Jiatao Song, Beijing Chen, Wei Wang, Xiaobo Ren
School of Electronic and Information Engineering,
Ningbo University of Technology
Ningbo, China"
c0be23ae7f327f9415e583aee1936b9932c9b58b,Copycat CNN: Stealing Knowledge by Persuading Confession with Random Non-Labeled Data,"NetworkCNNimageslabelsFakeDatasetimages24132labelsTarget NetworkCNNimageslabelsOriginalDatasetFakeDatasetFig.1:Ontheleft,thetargetnetworkistrainedwithanoriginal(confidential)datasetandisservedpubliclyasanAPI,receivingimagesasinputandprovidingclasslabelsasoutput.Ontheright,itispresentedtheprocesstogetstolenlabelsandtocreateafakedataset:randomnaturalimagesaresenttotheAPIandthelabelsareobtained.Afterthat,thecopycatnetworkistrainedusingthisfakedataset.cloud-basedservicestocustomersallowingthemtooffertheirownmodelsasanAPI.Becauseoftheresourcesandmoneyinvestedincreatingthesemodels,itisinthebestinterestofthesecompaniestoprotectthem,i.e.,toavoidthatsomeoneelsecopythem.Someworkshavealreadyinvestigatedthepossibilityofcopyingmodelsbyqueryingthemasablack-box.In[1],forexample,theauthorsshowedhowtoperformmodelextractionattackstocopyanequivalentornear-equivalentmachinelearningmodel(decisiontree,logisticregression,SVM,andmultilayerperceptron),i.e.,onethatachievescloseto100%agreementonaninputspaceofinterest.In[2],theauthorsevaluatedtheprocessofcopyingaNaiveBayesandSVMclassifierinthecontextoftextclassification.Bothworksfocusedongeneralclassifiersandnotondeepneuralnetworksthatrequirelargeamountsofdatatobetrainedleavingthequestionofwhetherdeepmodelscanbeeasilycopied.Althoughthesecondusesdeeplearningtostealtheclassifiers,itdoesnottrytouseDNNstostealfromdeepmodels.Additionally,theseworksfocusoncopyingbyqueryingwithproblemdomaindata.Inrecentyears,researchershavebeenexploringsomeintriguingpropertiesofdeepneuralnetworks[3],[4].More©2018IEEE.Personaluseofthismaterialispermitted.PermissionfromIEEEmustbeobtainedforallotheruses,inanycurrentorfuturemedia,includingreprinting/republishingthismaterialforadvertisingorpromotionalpurposes,creatingnewcollectiveworks,forresaleorredistributiontoserversorlists,orreuseofanycopyrightedcomponentofthisworkinotherworks."
c0c8d720658374cc1ffd6116554a615e846c74b5,Modeling Multimodal Clues in a Hybrid Deep Learning Framework for Video Classification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Modeling Multimodal Clues in a Hybrid Deep
Learning Framework for Video Classification
Yu-Gang Jiang, Zuxuan Wu, Jinhui Tang, Zechao Li, Xiangyang Xue, Shih-Fu Chang"
c06447df3e50ec451240205cefa0708caee8ab8c,Picture it in your mind: generating high level visual representations from textual descriptions,"Picture It In Your Mind: Generating High Level Visual
Representations From Textual Descriptions
Fabio Carrara
ISTI-CNR
via G. Moruzzi, 1
56124 Pisa, Italy
Andrea Esuli
ISTI-CNR
via G. Moruzzi, 1
56124 Pisa, Italy
Tiziano Fagni
ISTI-CNR
via G. Moruzzi, 1
56124 Pisa, Italy
Fabrizio Falchi
ISTI-CNR
via G. Moruzzi, 1
56124 Pisa, Italy
Alejandro Moreo
Fernández"
c0e9d06383442d89426808d723ca04586db91747,Cascaded SR-GAN for Scale-Adaptive Low Resolution Person Re-identification,Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
c04fec95a448f9b01dd4399b3a5a365f67448bdf,From Image Sequence to Frontal Image: Reconstruction of the Unknown Face A Forensic Case,"From Image Sequence to Frontal Image:
Reconstruction of the Unknown Face
A Forensic Case
Christiaan van Dam"
c0d21722d83c126af4175add38ffc893a33ee01e,Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor,"Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor
Wongun Choi
NEC Laboratories America
0080 N. Wolfe Rd, Cupertino, CA, USA"
eee8a37a12506ff5df72c402ccc3d59216321346,Volume C,"Uredniki:
dr. Tomaž Erjavec
Odsek za tehnologije znanja
Institut »Jožef Stefan«, Ljubljana
dr. Jerneja Žganec Gros
Alpineon d.o.o, Ljubljana
Založnik: Institut »Jožef Stefan«, Ljubljana
Tisk: Birografika BORI d.o.o.
Priprava zbornika: Mitja Lasič
Oblikovanje naslovnice: dr. Damjan Demšar
Tiskano iz predloga avtorjev
Naklada:  50
Ljubljana, oktober 2008
Konferenco IS 2008 sofinancirata
Ministrstvo za visoko šolstvo, znanost in tehnologijo
Institut »Jožef Stefan«
Informacijska družba
ISSN 1581-9973
CIP - Kataložni zapis o publikaciji
Narodna in univerzitetna knjižnica, Ljubljana"
eea77e2a891e49e65d4bed54c1b24411f33203a3,Exploring Guide Context in City Scenario Using Color and Gradient Features,"The Open Construction and Building Technology Journal, 2015, 9, 177-181
Open Access
Exploring  Guide  Context  in  City  Scenario  Using  Color  and  Gradient
Features
Send Orders for Reprints to
Zhuo Bian*
Art Academy of Northeast Agriculture University, Harbin 150001, China"
ee4fd1a1df6a01e7dabe82090b1024e2eb6d78a1,Effective Emotional Classification Combining Facial Classifiers and User Assessment,"Effective Emotional Classification Combining Facial
Classifiers and User Assessment
Isabelle Hupont1, Sandra Baldassarri2, Rafael Del Hoyo1, and Eva Cerezo2
Instituto Tecnológico de Aragón, Zaragoza (Spain)
Departamento de Informática e Ingeniería de Sistemas,
Instituto de Investigación en Ingeniería de Aragón, Universidad de Zaragoza (Spain)"
ee87aa52d9642607d86f011c0d7326c4bdc63121,Automatic Detection of Facial Midline as a Guide for Facial Feature Extraction,"Automatic Detection of Facial Midline
s a Guide for Facial Feature Extraction
Nozomi Nakao, Wataru Ohyama, Tetsushi Wakabayashi and Fumitaka Kimura
Graduate School of Engineering, Mie University
577 Kurimamachiya-cho, Tsu-shi, Mie, 5148507, Japan"
eed25d9b5b5b28e8454a359d54c9de5a05cc4682,Context-aware home monitoring system for Parkinson ' s disease patients : ambient and wearable sensing for freezing of gait detection,"Context-aware Home Monitoring System
for Parkinson’s Disease Patients
Ambient and Wearable Sensing for Freezing of Gait Detection
B(cid:2456)(cid:2459)(cid:2450)(cid:2460) T(cid:2442)(cid:2452)(cid:2442)(cid:20)(cid:2444)"
eeec69e910430bebe3808773f5a6a155d77059a0,Multi-shot Pedestrian Re-identification via Sequential Decision Making,"Multi-shot Pedestrian Re-identification via Sequential Decision Making
Jianfu Zhang1, Naiyan Wang2 and Liqing Zhang1
Shanghai Jiao Tong University∗, 2TuSimple"
ee18e29a2b998eddb7f6663bb07891bfc7262248,Local Linear Discriminant Analysis Framework Using Sample Neighbors,"Local Linear Discriminant Analysis Framework
Using Sample Neighbors
Zizhu Fan, Yong Xu, Member, IEEE, and David Zhang, Fellow, IEEE"
ee3a905ec8cd2e62dc642fad33d6f5f8516968a8,It depends: Approach and avoidance reactions to emotional expressions are influenced by the contrast emotions presented in the task.,"tapraid5/zfn-xhp/zfn-xhp/zfn00515/zfn3313d15z
xppws S⫽1
8/4/15
5:44 Art: 2014-0213
APA NLM
Journal of Experimental Psychology:
Human Perception and Performance
015, Vol. 41, No. 5, 000
0096-1523/15/$12.00
© 2015 American Psychological Association
http://dx.doi.org/10.1037/xhp0000130
It Depends: Approach and Avoidance Reactions to Emotional Expressions
re Influenced by the Contrast Emotions Presented in the Task
AQ: au
Andrea Paulus and Dirk Wentura
Saarland University
Studies examining approach and avoidance reactions to emotional expressions have yielded conflicting
results. For example, expressions of anger have been reported to elicit approach reactions in some studies
ut avoidance reactions in others. Nonetheless, the results were often explained by the same general
underlying process, namely the influence that the social message signaled by the expression has on"
eefb8768f60c17d76fe156b55b8a00555eb40f4d,Subspace Scores for Feature Selection in Computer Vision,"Subspace Scores for Feature Selection in Computer Vision
Cameron Musco
Christopher Musco"
ee463f1f72a7e007bae274d2d42cd2e5d817e751,Automatically Extracting Qualia Relations for the Rich Event Ontology,"Automatically Extracting Qualia Relations for the Rich Event Ontology
Ghazaleh Kazeminejad1, Claire Bonial2, Susan Windisch Brown1 and Martha Palmer1
{ghazaleh.kazeminejad, susan.brown,
University of Colorado Boulder, 2U.S. Army Research Lab"
eed1dd2a5959647896e73d129272cb7c3a2e145c,The Elements of Fashion Style,"INPUTSTYLE DOCUMENTTOP ITEMS“             ”I need an outfit for a beach wedding that I'm going to early this summer. I'm so excited -- it's going to be warm and exotic and tropical... I want my outfit to look effortless, breezy, flowy, like I’m floating over the sand! Oh, and obviously no white! For a tropical spot, I think my outfit should be bright and"
ee92d36d72075048a7c8b2af5cc1720c7bace6dd,Face recognition using mixtures of principal components,"FACE RECOGNITION USING MIXTURES OF PRINCIPAL COMPONENTS
Deepak S. Turaga and Tsuhan Chen
Video and Display Processing
Philips Research USA
Briarcliff Manor, NY 10510"
ee335fb785c332b1ac43565b007461002616f1e0,Processing Large Amounts of Images on Hadoop with OpenCV,"Processing Large Amounts of Images
on Hadoop with OpenCV
Timofei Epanchintsev1,2 and Andrey Sozykin1,2
IMM UB RAS, Yekaterinburg, Russia,
Ural Federal University, Yekaterinburg, Russia"
eebe66c4d1a41b3c7830846306044c8f3fe0d350,Domain adaptation networks for noisy image classification,"Faculty of Electrical Engineering, Mathematics and Computer Science
Department of Intelligent Systems
Domain adaptation
networks for noisy image
lassification
Master Thesis
Chengqiu Zhang
Committee:
Supervisors:
Dr. Jan van Gemert
Prof. Martha Larson
Dr. Silvia-Laura Pintea Dr. Jan van Gemert
Dr. Ildiko Suveg
Dr. Marco Loog
Dr. Silvia-Laura Pintea
Dr. Adriana Gonzalez
Eindhoven, Aug 2017"
ee9385efb66ee0b1bee31c1632141729bb7fb6f5,Numerical simplification for bloat control and analysis of building blocks in genetic programming,"Noname manuscript No.
(will be inserted by the editor)
Numerical Simplification for Bloat Control and Analysis of
Building Blocks in Genetic Programming
David Kinzett · Mark Johnston · Mengjie Zhang
the date of receipt and acceptance should be inserted later"
eedfb384a5e42511013b33104f4cd3149432bd9e,Multimodal probabilistic person tracking and identification in smart spaces,"Multimodal Probabilistic Person
Tracking and Identification
in Smart Spaces
zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
der Fakultät für Informatik
der Universität Fridericiana zu Karlsruhe (TH)
genehmigte
Dissertation
Keni Bernardin
us Karlsruhe
Tag der mündlichen Prüfung: 20.11.2009
Erster Gutachter:
Zweiter Gutachter:
Prof. Dr. A. Waibel
Prof. Dr. R. Stiefelhagen"
c9f3a5fe33782dd486cb32d9667fba0514711f04,Face and Expression Recognition Using Local Directional Number Pattern,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358
Face and Expression Recognition Using Local
Directional Number Pattern
Gopu Prasoona1, Dasu Vaman Ravi Prasad2
Computer Science, CVSR College of Engineering, Venkatapur, RR dist, India
Computer Science and Engineering, CVSR College of Engineering, Venkatapur, RR dist, India
refers
to digital"
c91103e6612fa7e664ccbc3ed1b0b5deac865b02,Automatic Facial Expression Recognition Using Statistical-Like Moments,"Automatic facial expression recognition using
statistical-like moments
Roberto D’Ambrosio, Giulio Iannello, and Paolo Soda
{r.dambrosio, g.iannello,
Integrated Research Center, Universit`a Campus Bio-Medico di Roma,
Via Alvaro del Portillo, 00128 Roma, Italy"
c92e701c908908bda407f12edf6984b283e8c258,Where Should You Attend While Driving?,"Where Should You Attend While Driving?
Simone Calderara
Stefano Alletto
Andrea Palazzi∗
Francesco Solera∗
Rita Cucchiara
University of Modena and Reggio Emilia"
c90b109301244e59771fec431a8d50a78e395956,Alternative face models for 3D face registration,"Alternative face models for 3D face registration
Albert Ali Salah, Ne¸se Aly¨uz, Lale Akarun
Bo˘gazi¸ci University, 34342 Bebek, ˙Istanbul, Turkey"
c9876861cc0e33fffe8c3ce7484ae27d3b2eeb75,A Corpus for Analyzing Linguistic and Paralinguistic Features in Multi-Speaker Spontaneous Conversations – EVA Corpus,"A Corpus for Analyzing Linguistic and Paralinguistic Features in
Multi-Speaker Spontaneous Conversations – EVA Corpus
IZIDOR MLAKAR, ZDRAVKO KAČIČ, MATEJ ROJC
Faculty of Electrical Engineering and Computer Science, University of Maribor
SLOVENIA"
c9c3ba7bebee553490a9ddbc6840292ed5aed90b,SCHOOL OF COMPUTER ENGINEERING PhD Confirmation Report on Object Detection in Real Images,"SCHOOL OF COMPUTER ENGINEERING
PhD Confirmation Report
Object Detection in Real Images
Submitted by: Dilip Kumar Prasad
Research Student (PhD)
School of Computer Engineering
E-mail:
Supervisor:     Dr. Maylor K. H. Leung
Associate Professor,
School of Computer Engineering
E-mail:
August 2010"
c933c4bef57be3585abb13bacb74aca29588a6ac,People Detection in Color and Infrared Video Using HOG and Linear SVM,"People Detection in Color and Infrared Video
using HOG and Linear SVM
Pablo Tribaldos1, Juan Serrano-Cuerda1, Mar´ıa T. L´opez1;2,
Antonio Fern´andez-Caballero1;2, and Roberto J. L´opez-Sastre3
Instituto de Investigaci(cid:19)on en Inform(cid:19)atica de Albacete (I3A), 02071-Albacete, Spain
Universidad de Castilla-La Mancha, Departamento de Sistemas Inform(cid:19)aticos,
02071-Albacete, Spain
Universidad de Alcal(cid:19)a, Dpto. de Teor(cid:19)(cid:16)a de la se~nal y Comunicaciones,
8805-Alcal(cid:19)a de Henares (Madrid), Spain"
c9b90cf9cdd901bd3072d6dfd8ddc523c55944b1,Adversarial Generator-Encoder Networks,"Adversarial Generator-Encoder Networks
Dmitry Ulyanov 1 2 Andrea Vedaldi 3 Victor Lempitsky 1"
c94c2cf52fef0503c09268c7d1faee60465ee08e,BenchIP: Benchmarking Intelligence Processors,"BENCHIP: Benchmarking Intelligence
Processors
Jinhua Tao1, Zidong Du1,2, Qi Guo1,2, Huiying Lan1, Lei Zhang1
Shengyuan Zhou1, Lingjie Xu3, Cong Liu4, Haifeng Liu5, Shan Tang6
Allen Rush7,Willian Chen7, Shaoli Liu1,2, Yunji Chen1, Tianshi Chen1,2
ICT CAS,2Cambricon,3Alibaba Infrastructure Service, Alibaba Group
IFLYTEK,5JD,6RDA Microelectronics,7AMD"
c9d7219d54eccb9e49b72044d805e103fe17ba80,Towards Information-Seeking Agents,"Under review as a conference paper at ICLR 2017
TOWARDS INFORMATION-SEEKING AGENTS
Philip Bachman∗
phil.bachman
Alessandro Sordoni∗
lessandro.sordoni
Adam Trischler
dam.trischler
Maluuba Research
Montréal, QC, Canada"
c95c30fb990576704f2ccb3dc3335aaf43208856,CS231A Project report,"CS231A Project report
Cecile Foret
March 19, 2014."
c95d8b9bddd76b8c83c8745747e8a33feedf3941,Image Ordinal Classification and Understanding: Grid Dropout with Masking Label,"label:(1, 0, 1, 0, 1, 1, 1, 1, 1)Masking label:(0, 1, 1, 1, 0, 1, 1, 1, 1)Entire imageInput imageNeuron dropout’s gradCAMGrid dropout’s gradCAMFig.1.Above:imageordinalclassificationwithrandomlyblackoutpatches.Itiseasyforhumantorecognizetheageregardlessofthemissingpatches.Themaskinglabelisalsousefultoimageclassification.Bottom:griddropout’sgrad-CAMisbetterthanthatofneurondropout.Thatistosay,griddropoutcanhelplearningfeaturerepresentation.problem[1].Withtheproliferationofconvolutionalneuralnetwork(CNN),workshavebeencarriedoutonordinalclas-sificationwithCNN[1][2][3].Thoughgoodperformanceshavebeenloggedwithmoderndeeplearningapproaches,therearetwoproblemsinimageordinalclassification.Ononehand,theamountofordinaltrainingdataisverylim-itedwhichprohibitstrainingcomplexmodelsproperly,andtomakemattersworse,collectinglargetrainingdatasetwithordinallabelisdifficult,evenharderthanlabellinggenericdataset.Therefore,insufficienttrainingdataincreasestheriskofoverfitting.Ontheotherhand,lessstudiesareconductedtounderstandwhatdeepmodelshavelearnedonordinaldata978-1-5386-1737-3/18/$31.00c(cid:13)2018IEEE"
c924137ca87e8b4e1557465405744f8b639b16fc,Seeding Deep Learning using Wireless Localization,"ADDRESSING TRAINING BIAS VIA AUTOMATED IMAGE ANNOTATION
Zhujun Xiao 1 Yanzi Zhu 2 Yuxin Chen 1 Ben Y. Zhao 1 Junchen Jiang 1 Haitao Zheng 1"
c936b9a958a67cdd5665b923569d9d786c934029,Software Specification Document For,"Software Specification
Document
Crowd_Count++
Version 1.0
November 2015
Juan Mejia      Michael Safdieh      Rosario Antunez
Prepared by:"
c9bbf31afbec278ca735e91cf5e9c70dd3aa41a4,Enhancing 3D Face Recognition By Mimics Segmentation,"Enhancing 3D Face Recognition By Mimics Segmentation
Boulbaba Ben Amor, Mohsen Ardabilian, and Liming Chen
MI Department, LIRIS Laboratory, CNRS 5205
Ecole Centrale de Lyon, 36 av. Guy de Collongue, 69134 Lyon , France
{Boulbaba.Ben-Amor, Mohsen.Ardabilian,"
c94ae3d1c029a70cabdab906fe1460d84fd42acd,"Comparison of wavelet, Gabor and curvelet transform for face recognition","Optica Applicata, Vol. XLI, No. 1, 2011
Comparison of wavelet, Gabor and curvelet
transform for face recognition
JIULONG ZHANG, YINGHUI WANG, ZHIYU ZHANG, CHUNLI XIA
Computer Science and Engineering School, Xian University of Technology,
Xi'an, 710048, P.R. China
There has been much research about using Gabor wavelet for face recognition. Other multiscale
geometrical tools, such as curvelet and contourlet, have also been used for face recognition, thus
it is interesting to know which method performs best, especially under illumination and expression
hanges.  In  this  paper,  we  make  a  systematic  comparison  of  wavelet,  Gabor  and  curvelet  for
recognition,  and  find  the  best  subband  irrelevant  to  expression  and  illumination  changes.  We
ombine the multiscale analysis with subspace decomposition as our algorithm. Experiments show
that for expression changes, the properties of the coarse layer of curvelet and wavelet are very
good. Whilst for illumination changes, the low frequency parts of the two methods are similarly
influenced, but the detail coefficients of curvelet and the high frequency of wavelet work fine with
PCA, with the former outperforming the latter. When these two factors change simultaneously,
the detail layer of curvelet is better relative to the others.
Keywords: wavelet transform, Gabor wavelet, curvelet transform, face recognition, multiscale analysis.
. Introduction
Among the so many popular methods for face recognition, the wavelet transform is"
c9311a0c5045d86a617bd05a5cc269f44e81508d,Accurate Eye Centre Localisation by Means of Gradients,"ACCURATE EYE CENTRE LOCALISATION BY MEANS OF
GRADIENTS
Institute for Neuro- and Bioinformatics, University of L¨ubeck, Ratzeburger Allee 160, D-23538 L¨ubeck, Germany
Pattern Recognition Company GmbH, Innovations Campus L¨ubeck, Maria-Goeppert-Strasse 1, D-23562 L¨ubeck, Germany
{timm,
Fabian Timm and Erhardt Barth
Keywords:"
c99a23a5bb5d5b10098395f59e9f8f79c79a75bd,Prediction Using Audience Chat Reactions,"Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 972–978
Copenhagen, Denmark, September 7–11, 2017. c(cid:13)2017 Association for Computational Linguistics"
c93996cb126589b30c04bf1256c97a4431c0e8b6,Robustness Analysis of Pedestrian Detectors for Surveillance,"Robustness Analysis of Pedestrian Detectors
for Surveillance
Yuming Fang, Senior Memmber, IEEE, Guanqun Ding, Yuan Yuan, Weisi Lin, Fellow, IEEE,
nd Haiwen Liu, Senior Memmber, IEEE"
c9b139b78e5337580047138d7fc2dff3b8fcf31f,Offline Face Recognition System Based on Gabor- Fisher Descriptors and Hidden Markov Models,"Offline Face Recognition System Based on Gabor-
Fisher Descriptors and Hidden Markov Models
Zineb Elgarrai1, Othmane Elmeslouhi2, Mustapha Kardouchi3, Hakim Allali1, Sid-Ahmed Selouani4
FST of Hassan 1st University Settat /LAVETTE Laboratory,
FPO of Ibnou Zohr University /LabSIE Laboratory
Université de Moncton /Département d’Informatique,
Université de Moncton/Département de Gestion de l’Information"
c97774191be232678a45d343a25fcc0c96c065e7,Co-Training of Audio and Video Representations from Self-Supervised Temporal Synchronization,"Co-Training of Audio and Video Representations from
Self-Supervised Temporal Synchronization
Undergraduate Thesis
written by
Bruno Korbar
under the supervision of Professor Lorenzo Torresani and Du Tran, and
submitted to the Committee as a culminating experience for the degree of
Bachelor of Arts in Computer Science
t Dartmouth College.
Date of the public presentation: Members of the Thesis Committee:
May 29, 2018
Prof Lorenzo Torresani
Prof Saeed Hassanpour
Prof Venkatramanan Siva Subrahmanian
Dartmouth Computer Science Technical Report TR2018-849"
fc04a50379e08ddde501816eb1f9560c36d01a39,Image Pre-processing Using OpenCV Library on MORPH-II Face Database,"Image Pre-processing Using OpenCV Library on MORPH-II Face Database
B. Yip, R. Towner, T. Kling, C. Chen, and Y. Wang"
fc1e37fb16006b62848def92a51434fc74a2431a,A Comprehensive Analysis of Deep Regression,"DRAFT
A Comprehensive Analysis of Deep Regression
St´ephane Lathuili`ere, Pablo Mesejo, Xavier Alameda-Pineda, Member IEEE, and Radu Horaud"
fc7627e57269e7035e4d56105358211076fe4f04,The Association of Quantitative Facial Color Features with Cold Pattern in Traditional East Asian Medicine,"Hindawi
Evidence-Based Complementary and Alternative Medicine
Volume 2017, Article ID 9284856, 9 pages
https://doi.org/10.1155/2017/9284856
Research Article
The Association of Quantitative Facial Color Features with
Cold Pattern in Traditional East Asian Medicine
Sujeong Mun, Ilkoo Ahn, and Siwoo Lee
Mibyeong Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
Correspondence should be addressed to Siwoo Lee;
Received 30 June 2017; Accepted 13 September 2017; Published 17 October 2017
Academic Editor: Kenji Watanabe
Copyright © 2017 Sujeong Mun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction. Facial diagnosis is a major component of the diagnostic method in traditional East Asian medicine. We investigated
the association of quantitative facial color features with cold pattern using a fully automated facial color parameterization system.
Methods. The facial color parameters of 64 participants were obtained from digital photographs using an automatic color correction
nd color parameter calculation system. Cold pattern severity was evaluated using a questionnaire. Results. The 𝑎∗ values of the
whole face, lower cheek, and chin were negatively associated with cold pattern score (CPS) (whole face: 𝐵 = −1.048, 𝑃 = 0.021;
lower cheek: 𝐵 = −0.494, 𝑃 = 0.007; chin: 𝐵 = −0.640, 𝑃 = 0.031), while 𝑏∗ value of the lower cheek was positively associated"
fc50c9392fd23b6c88915177c6ae904a498aacea,Scaling Egocentric Vision: The EPIC-KITCHENS Dataset,"Scaling Egocentric Vision:
The EPIC-KITCHENS Dataset
Dima Damen1, Hazel Doughty1, Giovanni Maria Farinella2, Sanja Fidler3,
Antonino Furnari2, Evangelos Kazakos1, Davide Moltisanti1,
Jonathan Munro1, Toby Perrett1, Will Price1, and Michael Wray1
Uni. of Bristol, UK 2Uni. of Catania, Italy,
Uni. of Toronto, Canada"
fc30d7dbf4c3cdd377d8cd4e7eeabd5d73814b8f,Multiple Object Tracking by Efficient Graph Partitioning,"Multiple Object Tracking
y Ef‌f‌icient Graph Partitioning
Ratnesh Kumar, Guillaume Charpiat, Monique Thonnat
STARS Team, INRIA, Sophia Antipolis, France"
fcd3d69b418d56ae6800a421c8b89ef363418665,Effects of Aging over Facial Feature Analysis and Face Recognition,"Effects of Aging over Facial Feature Analysis and Face
Recognition
Bilgin Esme & Bulent Sankur
Bogaziçi Un. Electronics Eng. Dept. March 2010"
fcd77f3ca6b40aad6edbd1dab9681d201f85f365,Machine Learning Based Attacks and Defenses in Computer Security: Towards Privacy and Utility Balance in Sensor Environments,"(cid:13)Copyright 2014
Miro Enev"
fc3e097ea7dd5daa7d314ecebe7faad9af5e62fb,Variational Inference and Model Selection with Generalized Evidence Bounds,"Variational Inference and Model Selection
with Generalized Evidence Bounds
Chenyang Tao * Liqun Chen * Ruiyi Zhang Ricardo Henao Lawrence Carin"
fc068f7f8a3b2921ec4f3246e9b6c6015165df9a,Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline),"Beyond Part Models: Person Retrieval with Refined Part Pooling
(and A Strong Convolutional Baseline)
Yifan Sun†, Liang Zheng‡, Yi Yang‡, Qi Tian§, Shengjin Wang†∗
Tsinghua University ‡University of Technology Sydney §University of Texas at San Antonio
{liangzheng06,"
fcc6fd9b243474cd96d5a7f4a974f0ef85e7ddf7,InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity,"Improving Face Attribute Detection with Race and Gender Diversity
InclusiveFaceNet:
Hee Jung Ryu 1 Hartwig Adam * 1 Margaret Mitchell * 1"
fc64f43cdcf4898b15ddce8b441d2ab9daa324f0,Gabor Filter-based Face Recognition Technique,"THE PUBLISHING HOUSE
OF THE ROMANIAN ACADEMY
PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
Volume 11, Number 3/2010, pp. 277–283
GABOR FILTER-BASED FACE RECOGNITION TECHNIQUE
Tudor BARBU
Institute of Computer Science, Romanian Academy, Iaşi, Romania
E-mail:
We propose a novel human face recognition approach in this paper, based on two-dimensional Gabor
filtering and supervised classification. The feature extraction technique proposed in this article uses
D  Gabor  filter  banks  and  produces  robust  3D  face  feature  vectors.  A  supervised  classifier,  using
minimum average distances, is developed for these vectors. The recognition process is completed by a
threshold-based  face  verification  method,  also  provided.  A  high  facial  recognition  rate  is  obtained
using  our  technique.  Some  experiments,  whose  satisfactory  results  prove  the  effectiveness  of  this
recognition approach, are also described in the paper.
Key words: Face recognition; Face identification; Feature vector; 2D Gabor filter; Supervised classification;
Face verification.
. INTRODUCTION
This  article  approaches  an  important  biometric  domain,  which  is  human  face  recognition.  Face
represents  a  physiological  biometric  identifier  that  is  widely  used  in  person  recognition.  During  the  past"
fc74e14a3195fdf91157d5ea86d35c576fcf01d6,Detection and Handling of Occlusion in an Object Detection System,"Detection and Handling of Occlusion in an
Object Detection System
R.M.G. Op het Velda, R.G.J. Wijnhovenb, Y. Bondarauc and Peter H.N. de Withd
,bViNotion B.V., Horsten 1, 5612 AX, Eindhoven, The Netherlands;
,c,dEindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands"
fc27c2c8a2486f5918451fbef198f46b5bf45d2c,Robust Real-Time Multi-View Eye Tracking,"IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, 2018
Robust Real-Time Multi-View Eye Tracking
Nuri Murat Arar, Student Member, IEEE, and Jean-Philippe Thiran, Senior Member, IEEE"
fc73090889036a0e42ea40827ac835cd5e135b16,Deep Learning based Large Scale Visual Recommendation and Search for E-Commerce,"Deep Learning based Large Scale Visual Recommendation and
Search for E-Commerce
Devashish Shankar, Sujay Narumanchi, Ananya H A,
Pramod Kompalli, Krishnendu Chaudhury
Flipkart Internet Pvt. Ltd.,
Bengaluru, India."
fcb64ef4421cebb80eb33f62c7726f339eb2bb62,Deep View-Aware Metric Learning for Person Re-Identification,Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
fcf8bb1bf2b7e3f71fb337ca3fcf3d9cf18daa46,Feature Selection via Sparse Approximation for Face Recognition,"MANUSCRIPT SUBMITTED TO IEEE TRANS. PATTERN ANAL. MACH. INTELL., JULY 2010
Feature Selection via Sparse Approximation for
Face Recognition
Yixiong Liang, Lei Wang, Yao Xiang, and Beiji Zou"
fcd9221f8ef306155f59817a3b0bdae05e9e0ae2,GEFeWS: A Hybrid Genetic-Based Feature Weighting and Selection Algorithm for Multi-Biometric Recognition,"GEFeWS: A Hybrid Genetic-Based Feature Weighting and
Selection Algorithm for Multi-Biometric Recognition
Aniesha Alford+, Khary Popplewell#, Gerry Dozier#, Kelvin Bryant#, John Kelly+,
Josh Adams#, Tamirat Abegaz^, and Joseph Shelton#
Center for Advanced Studies in Identity Sciences
+Electrical and Computer Engineering Department,
#Computer Science Department
^Computational Science and Engineering Department
North Carolina A & T State University
601 E Market St., Greensboro, NC  27411"
fcabf1c0f4a26431d4df95ddeec2b1dff9b3e928,Semantic Segmentation using Adversarial Networks,
fcbf808bdf140442cddf0710defb2766c2d25c30,Unsupervised Semantic Action Discovery from Video Collections,"IJCV manuscript No.
(will be inserted by the editor)
Unsupervised Semantic Action Discovery from Video
Collections
Ozan Sener · Amir Roshan Zamir · Chenxia Wu · Silvio Savarese ·
Ashutosh Saxena
Received: date / Accepted: date"
fd51665efe2520a55aa58b2f1863a3bd9870529f,Understanding Compressive Adversarial Privacy,"Understanding Compressive Adversarial Privacy
Xiao Chen, Peter Kairouz, Ram Rajagopal"
fd4ac1da699885f71970588f84316589b7d8317b,Supervised Descent Method for Solving Nonlinear Least Squares Problems in Computer Vision,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007
Supervised Descent Method
for Solving Nonlinear Least Squares
Problems in Computer Vision
Xuehan Xiong, and Fernando De la Torre"
fde3f34a1accadb73269e4beef487611f682b781,"Before A Computer Can Draw, It Must First Learn To See","Before A Computer Can Draw, It Must First Learn To See
Derrall Heath and Dan Ventura
Computer Science Department
Brigham Young University
Provo, UT 84602 USA"
fdf533eeb1306ba418b09210387833bdf27bb756,Exploiting Unrelated Tasks in Multi-Task Learning,
fdb956c7705b7f57f56f944a0f3f4ede1d6f77fa,Does Fast Fashion Increase the Demand for Premium Brands ?,"Does Fast Fashion Increase the Demand for Premium Brands?
A Structural Analysis
Zijun	(June)	Shi1,	Param	Vir	Singh,	Dokyun	Lee,	Kannan	Srinivasan
(Preliminary	draft.	Please	do	not	cite	without	the	authors’	permission.)"
fdda5852f2cffc871fd40b0cb1aa14cea54cd7e3,Im2Flow: Motion Hallucination from Static Images for Action Recognition,"Im2Flow: Motion Hallucination from Static Images for Action Recognition
Ruohan Gao
UT Austin
Bo Xiong
UT Austin
Kristen Grauman
UT Austin"
fd1b917476b114919de0ae1b6a4b96a52a410c20,A Memory Based Face Recognition Method,"A Memory Based Face Recognition Method
Alex Pappachen James
B. Tech. (Hons), M. Tech.
Grif‌f‌ith School of Engineering
Science, Environment, Engineering and Technology
Grif‌f‌ith University
Submitted in fulfilment of the requirements of the degree of
Doctor of Philosophy
November 2008"
fdfaf46910012c7cdf72bba12e802a318b5bef5a,Computerized Face Recognition in Renaissance Portrait Art,"Computerized Face Recognition in Renaissance
Portrait Art
Ramya Srinivasan, Conrad Rudolph and Amit Roy-Chowdhury"
fd4c46bfd3bb00ed93b0bb5b28ef0336f59f0c15,Expressing Emotions through Vibration for Perception and Control,"Expressing Emotions through Vibration
for Perception and Control
Shafiq ur Réhman
Doctoral Thesis, April 2010
Department of Applied Physics and Electronics
Umeå University, Sweden
UNIVERSITETSSERVICEProfil & CopyshopÖppettider:Måndag - fredag 10-16Tel. 786 52 00 alt 070-640 52 01Universumhuset"
fd6d2e4f939b8d804a6b5908bded8f1ad2563e38,Stabilizing GAN Training with Multiple Random Projections,"Stabilizing GAN Training with
Multiple Random Projections
Behnam Neyshabur Srinadh Bhojanapalli Ayan Chakrabarti
Toyota Technological Institute at Chicago
6045 S. Kenwood Ave., Chicago, IL 60637"
fdbe7c520568d9a32048270d2c87113c635dc7e6,Live Stream Oriented Age and Gender Estimation using Boosted LBP Histograms Comparisons,"Live Stream Oriented Age and Gender Estimation using Boosted LBP
Histograms Comparisons
LAMIA, University of the French West Indies and Guiana, Campus de Fouillole, BP 250, 97157 Pointe `a Pitre, France
Lionel Prevost1, Philippe Phothisane2 and Erwan Bigorgne2
Eikeo, 11 rue L´eon Jouhaux, 75010 Paris, France
Keywords:
Face Analysis, Boosting, Gender Estimation, Age Estimation."
fd0a1a2ecf69a6c1a6efcb18b8f23e4d5402f601,"ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events","ExtremeWeather: A large-scale climate dataset for
semi-supervised detection, localization, and
understanding of extreme weather events
Evan Racah1,2, Christopher Beckham1,3, Tegan Maharaj1,3,
Samira Ebrahimi Kahou4, Prabhat2, Christopher Pal1,3
MILA, Université de Montréal,
Lawrence Berkeley National Lab, Berkeley, CA,
École Polytechnique de Montréal,
Microsoft Maluuba,"
fd67b9812fa4aef6c5dfb633df4406105cdb4e8f,Zero-Shot Learning with Generative Latent Prototype Model,"Zero-Shot Learning with Generative Latent
Prototype Model
Yanan Li, Student Member, IEEE, Donghui Wang, Member, IEEE"
fdca08416bdadda91ae977db7d503e8610dd744f,ICT - 2009 . 7 . 1 KSERA Project 2010 - 248085,"ICT-2009.7.1
KSERA Project
010-248085
Deliverable D3.1
Deliverable D3.1
Human Robot Interaction
Human Robot Interaction
8 October 2010
Public Document
The KSERA project (http://www.ksera
KSERA project (http://www.ksera-project.eu) has received funding from the European Commission
project.eu) has received funding from the European Commission
under the 7th Framework Programme (FP7) for Research and Technological Development under grant
under the 7th Framework Programme (FP7) for Research and Technological Development under grant
under the 7th Framework Programme (FP7) for Research and Technological Development under grant
greement n°2010-248085."
fd4537b92ab9fa7c653e9e5b9c4f815914a498c0,One-Sided Unsupervised Domain Mapping,
fdf31db5aa8cf8a7f9ac84fcc7b0949e8e000a41,MODELING FASHION Anonymous ICME submission,"MODELING FASHION
Anonymous ICME submission"
fd8bb112b197e23183feeb6d1f4506d180caa4fc,Fashion Clothes Matching Scheme Learned from Fashionista ’ S Suggestions in Microblog,"FASHION CLOTHES MATCHING SCHEME LEARNED FROM FASHIONISTA’S
SUGGESTIONS IN MICROBLOG
Guangyu Gao1, Yihang Zhang1, Songyang Du2
School of Software, Beijing Institute of Technology. Beijing 100081, China
Beijing Special Vehicle Research Institute. Beijing 100072, China"
fd96432675911a702b8a4ce857b7c8619498bf9f,Improved Face Detection and Alignment using Cascade Deep Convolutional Network,"Improved Face Detection and Alignment using Cascade
Deep Convolutional Network
Weilin Cong†, Sanyuan Zhao†, Hui Tian‡, and Jianbing Shen†
Beijing Key Laboratory of Intelligent Information Technology, School of
Computer Science,Beijing Institute of Technology, Beijing 100081, P.R.China
China Mobile Research Institute, Xuanwu Men West Street, Beijing"
fdd94d77377df6e55d14e41a28141dc241d8b5d6,Current Status and Future Prospects of Clinical Psychology: Toward a Scientifically Principled Approach to Mental and Behavioral Health Care.,"Current Status and Future Prospects of Clinical Psychology: Toward a Scientifically
Principled Approach to Mental and Behavioral Health Care
Author(s): Timothy B. Baker, Richard M. McFall and  Varda Shoham
Source: Psychological Science in the Public Interest, Vol. 9, No. 2 (November 2008), pp. 67-
Published by: Sage Publications, Inc. on behalf of the Association for Psychological Science
Stable URL: http://www.jstor.org/stable/20697320
Accessed: 07-02-2017 15:41 UTC
REFERENCES
Linked references are available on JSTOR for this article:
http://www.jstor.org/stable/20697320?seq=1&cid=pdf-reference#references_tab_contents
You may need to log in to JSTOR to access the linked references.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted
digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about
JSTOR, please contact
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
http://about.jstor.org/terms
Sage Publications, Inc., Association for Psychological Science are collaborating with JSTOR to
digitize, preserve and extend access to Psychological Science in the Public Interest
This content downloaded from 129.133.179.122 on Tue, 07 Feb 2017 15:41:42 UTC
All use subject to http://about.jstor.org/terms"
fd0e1fecf7e72318a4c53463fd5650720df40281,End-to-End Comparative Attention Networks for Person Re-Identification,"End-to-End Comparative Attention Networks for
Person Re-identification
Hao Liu, Jiashi Feng, Meibin Qi, Jianguo Jiang and Shuicheng Yan, Fellow, IEEE"
fd4f9955ec28b63443039cb9d4e15bae796defe4,Predictably Angry - Facial Cues Provide a Credible Signal of Destructive Behavior,"Predictably Angry
Facial cues provide a credible signal of destructive behavior
Boris van Leeuwen1, Charles N. Noussair2, Theo Offerman3,
Sigrid Suetens4, Matthijs van Veelen5, and Jeroen van de Ven6
November 2016"
fdb33141005ca1b208a725796732ab10a9c37d75,A connectionist computational method for face recognition,"Int.J.Appl. Math. Comput.Sci.,2016,Vol. 26,No. 2,451–465
DOI: 10.1515/amcs-2016-0032
A CONNECTIONIST COMPUTATIONAL METHOD FOR FACE RECOGNITION
FRANCISCO A. PUJOL a, HIGINIO MORA a,∗
, JOS ´E A. GIRONA-SELVA a
Department of Computer Technology
University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
e-mail:
In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced.
First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial
graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of
the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining
each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and
the recognition process are performed by using a similarity function that takes into account both the geometric and texture
information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our
proposal when compared with other state-of the-art methods.
Keywords: pattern recognition, face recognition, neural networks, self-organizing maps.
Introduction
libraries,
In recent years, there has been intensive research carried"
fd23502287ae4ca8db63e4e5080c359610398be5,Real-Time Pedestrian Detection with Deep Network Cascades,"ANGELOVA ET AL.: REAL-TIME PEDESTRIAN DETECTION WITH DEEP CASCADES
Real-Time Pedestrian Detection With Deep
Network Cascades
Anelia Angelova1
Alex Krizhevsky1
Vincent Vanhoucke1
Abhijit Ogale2
Dave Ferguson2
Google Research
600 Amphitheatre Parkway
Mountain View, CA, USA
Google X
600 Amphitheatre Parkway
Mountain View, CA, USA"
fd9286f0e465deffad59123f46fa4f66cb15c3e4,Learning Answer Embeddings for Visual Question Answering,"Learning Answer Embeddings for Visual Question Answering
Hexiang Hu∗
U. of Southern California
Los Angeles, CA
Wei-Lun Chao∗
Los Angeles, CA
U. of Southern California
U. of Southern California
Fei Sha
Los Angeles, CA"
fd8b1715ad34858bf8650ac549c4249d86edbb7c,Paper Title (use style: paper title),"International Association of Scientific Innovation and Research (IASIR)
(An Association Unifying the Sciences, Engineering, and Applied Research)
ISSN (Print): 2279-0063
ISSN (Online): 2279-0071
International Journal of Software and Web Sciences (IJSWS)
www.iasir.net
A survey of techniques for human segmentation from static images
Ms.Ashwini T. Magar, Prof.J.V.Shinde
Late G.N.Sapkal College of Engineering,
Computer Engineering Department, Nashik,
University of Pune, India.
__________________________________________________________________________________________"
fde0180735699ea31f6c001c71eae507848b190f,Face Detection and Sex Identification from Color Images using AdaBoost with SVM based Component Classifier,"International Journal of Computer Applications (0975 – 8887)
Volume 76– No.3, August 2013
Face Detection and Sex Identification from Color Images
using AdaBoost with SVM based Component Classifier
Tonmoy Das
Lecturer, Department of EEE
University of Information
Technology and Sciences
(UITS)
Dhaka, Bangladesh
Manamatha Sarnaker
B.Sc. in EEE
International University of
Business Agriculture and
Technology (IUBAT)
Dhaka-1230, Bangladesh
Md. Hafizur Rahman
Lecturer, Department of EEE
International University of
Business Agriculture and"
fd615118fb290a8e3883e1f75390de8a6c68bfde,Joint Face Alignment with Non-parametric Shape Models,"Joint Face Alignment with Non-Parametric
Shape Models
Brandon M. Smith and Li Zhang
University of Wisconsin – Madison
http://www.cs.wisc.edu/~lizhang/projects/joint-align/"
fdc60fe4654b5efe0752acabef0ec6258062be0f,Multi-Sensor Fusion Adopted 2-D Laser Rangefinder and Camera for Pedestrian Detection,"2nd ITS World Congress, Bordeaux, France, 5–9 October 2015
Paper number ITS-1576
Multi-Sensor Fusion Adopted 2-D Laser Rangefinder and Camera
for Pedestrian Detection
Kuo-Ching Chang*, Chi-Kuo Chen, Pao-Kai Tseng
Automotive Research & Testing Center, Taiwan
+886-4-7811222 Ext. 2323,"
fd069af1ede370625703f7984e52f282fcd6342e,Guided Feature Transformation (GFT): A Neural Language Grounding Module for Embodied Agents,"Guided Feature Transformation (GFT): A Neural
Language Grounding Module for Embodied Agents
Haonan Yu†, Xiaochen Lian†, Haichao Zhang†, and Wei Xu‡
Baidu Research, Sunnyvale CA USA
Horizon Robotics, Cupertino CA USA"
fdee0cf79e9a2695857afeee6526352918c9f315,Quantization for Rapid Deployment of Deep Neural Networks,"Quantization for Rapid Deployment of Deep Neural Networks
Jun Haeng Lee∗, Sangwon Ha∗, Saerom Choi, Won-Jo Lee, Seungwon Lee
Samsung Advanced Institute of Technology
Samsung-ro 130, Suwon-si, Republic of Korea
{junhaeng2.lee,"
fdaf65b314faee97220162980e76dbc8f32db9d6,Face recognition using both visible light image and near-infrared image and a deep network,"Accepted Manuscript
Face recognition using both visible light image and near-infrared image and a deep
network
Kai Guo, Shuai Wu, Yong Xu
Reference:
S2468-2322(17)30014-8
0.1016/j.trit.2017.03.001
TRIT 41
To appear in:
CAAI Transactions on Intelligence Technology
Received Date: 30 January 2017
Accepted Date: 28 March 2017
Please cite this article as: K. Guo, S. Wu, Y. Xu, Face recognition using both visible light image and
near-infrared image and a deep network, CAAI Transactions on Intelligence Technology (2017), doi:
0.1016/j.trit.2017.03.001.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
opyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain."
f218df397afb1f070ee093bb9a19616f61b562c4,A Neural Network Model of Face Detection for Active Vision Implementation,"International Journal of Modern Engineering Research (IJMER)
www.ijmer.com              Vol. 2, Issue. 5, Sept.-Oct. 2012 pp-2969-2974               ISSN: 2249-6645
A Neural Network Model of Face Detection for Active Vision
Implementation
Yasuomi D. Sato*, ** Yasutaka Kuriya*
* Department of Brain Science and Engineering, Graduate School for Life Science and Systems Engineering, Kyushu
** Frankfurt Institute for Advanced Studies (FIAS), Goethe University Frankfurt, Germany
Institute of Technology, Japan
impaired"
f22058a3003cee6b17c6c25c8a635a653e78614c,Multimodal Attention in Recurrent Neural Networks for Visual Question Answering,"Global Journal of Computer Science and Technology: D
Neural & Artificial Intelligence
Volume 17   Issue 1 Version 1.0 Year 2017
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350
Multimodal  Attention  in  Recurrent  Neural  Networks  for  Visual
Question Answering
By Lorena Kodra & Elinda Kajo Meçe
Polytechnic University of Tirana"
f26d34d8a8d082ce2c81937f61c28f3769c38372,Probability of Seeing Increases Saccadic Readiness,"Probability of Seeing Increases Saccadic Readiness
The´ re` se Collins*
Laboratoire Psychologie de la Perception, Universite´ Paris Descartes & CNRS, Paris, France"
f2efc85f9e20840c591b4590fd9ed202f727546a,Distributed signature fusion for person re-identification,"Distributed Signature Fusion for
Person Re-Identification
Niki Martinel
University of Udine
Udine, Italy
Christian Micheloni
University of Udine
Udine, Italy
Claudio Piciarelli
University of Udine
Udine, Italy"
f2889f3ab8e330e1ba6b23d493f8d727f49a9bc8,Recent Advances in Neural Program Synthesis,"Recent Advances in Neural Program Synthesis
Neel Kant
Machine Learning at Berkeley
UC Berkeley"
f26a8dcfbaf9f46c021c41a3545fcfa845660c47,Human Pose Regression by Combining Indirect Part Detection and Contextual Information,"Human Pose Regression by Combining Indirect Part Detection and Contextual
Information
Diogo C. Luvizon
Hedi Tabia
ETIS Lab., UMR 8051, Universit´e Paris Seine,
Universit´e Cergy-Pontoise, ENSEA, CNRS.
{diogo.luvizon, hedi.tabia,
David Picard"
f2bccfb12c1546bdf73b11904ac44b1cfa130072,RoarNet: A Robust 3D Object Detection based on RegiOn Approximation Refinement,"RoarNet: A Robust 3D Object Detection based on
RegiOn Approximation Refinement
Kiwoo Shin∗†, Youngwook Paul Kwon∗‡ and Masayoshi Tomizuka†"
f2b2d50d6ca72666bab34e0f101ae1b18b434925,High-Fidelity Monocular Face Reconstruction based on an Unsupervised Model-based Face Autoencoder.,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
High-Fidelity Monocular Face Reconstruction based on an
Unsupervised Model-based Face Autoencoder
Ayush Tewari, Michael Zollh¨ofer, Florian Bernard, Pablo Garrido,
Hyeongwoo Kim, Patrick P´erez, and Christian Theobalt
(Invited Paper)"
f29aae30c2cb4c73a3c814408ee5692e22176329,Pairwise Relational Networks using Local Appearance Features for Face Recognition,"Pairwise Relational Networks using Local
Appearance Features for Face Recognition
Bong-Nam Kang
Yonghyun Kim, Daijin Kim
Department of Creative IT Engineering
Department of Computer Science and Engineering
POSTECH, Korea
POSTECH, Korea"
f2b95f135b95c3df4f6ebe6015098a2e1667711d,Weakly Supervised Object Localization Using Things and Stuff Transfer,"Weakly Supervised Object Localization Using Things and Stuff Transfer
Miaojing Shi1,2
Holger Caesar1
University of Edinburgh 2Tencent Youtu Lab
Vittorio Ferrari1"
f2e9494d0dca9fb6b274107032781d435a508de6,Title of Dissertation : UNCONSTRAINED FACE RECOGNITION,
f2877cdbffb0c9a4de1f562099d2f0597bcfec0b,"COGNIMUSE: a multimodal video database annotated with saliency, events, semantics and emotion with application to summarization","Zlatintsi et al. EURASIP Journal on Image and Video Processing  (2017) 2017:54
DOI 10.1186/s13640-017-0194-1
EURASIP Journal on Image
nd Video Processing
RESEARCH
Open Access
COGNIMUSE: a multimodal video
database annotated with saliency, events,
semantics and emotion with application to
summarization
Athanasia Zlatintsi1*
Niki Efthymiou1, Katerina Pastra4, Alexandros Potamianos1 and Petros Maragos1
, Petros Koutras1, Georgios Evangelopoulos2, Nikolaos Malandrakis3,"
f20f93a5b2291283c0e40bd0418927efb06acb6a,A Tale of Two Encodings : Comparing Bag-of-Words and Word 2 vec for VQA,"A Tale of Two Encodings: Comparing Bag-of-Words and Word2vec for VQA
Berthy Feng
Princeton University ’19
Divya Thuremella
Princeton University ’18"
f2a7f9bd040aa8ea87672d38606a84c31163e171,Human Action Recognition without Human,"Human Action Recognition without Human
Yun He, Soma Shirakabe, Yutaka Satoh, Hirokatsu Kataoka
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Ibaraki, Japan
{yun.he, shirakabe-s, yu.satou,"
f2d95a5b29986a6a28746b30adfa43497b27ff02,Global Self-Similarity and Saliency Measures Based on Sparse Representations for Classification of Objects and Spatio-temporal Sequences,"Global Self-Similarity and Saliency Measures Based on
Sparse Representations for Classification of Objects and
Spatio-temporal Sequences.
A DISSERTATION
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL
OF THE UNIVERSITY OF MINNESOTA
Guruprasad Somasundaram
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
Doctor of Philosophy
Nikolaos Papanikolopoulos
November, 2012"
f2b79ae191fc03a93ed50eea773279f67c8351e1,Annotating Images with Suggestions - User Study of a Tagging System,"Annotating images with suggestions — user
study of a tagging system
Michal Hradiˇs, Martin Kol´aˇr, Aleˇs L´an´ık, Jiˇr´ı Kr´al, Pavel Zemˇc´ık and Pavel
Smrˇz
Faculty of Information Technology
VUT — Brno University of Technology
Brno Czech Republic"
f23d4ed760a35fbfaeab47efde3d876c1818d3d1,Dynamicity and Durability in Scalable Visual Instance Search,"Dynamicity and Durability in Scalable Visual Instance Search
Herwig Lejsek∗
Videntifier Technologies, Iceland
Björn Þór Jónsson†
Reykjavík University, Iceland
ITU Copenhagen, Denmark
Laurent Amsaleg
IRISA–CNRS, France
Friðrik Heiðar Ásmundsson∗
Videntifier Technologies, Iceland"
f20e0eefd007bc310d2a753ba526d33a8aba812c,Accurate and robust face recognition from RGB-D images with a deep learning approach,"Lee et al.:  RGB-D FACE RECOGNITION WITH A DEEP LEARNING APPROACH
Accurate and robust face recognition from
RGB-D images with a deep learning
pproach
Yuancheng Lee
http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=150
Jiancong Chen
http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=153
Ching-Wei Tseng
http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=156
Computer Vision Lab,
Department of
Computer Science,
National Tsing Hua
University,
Hsinchu, Taiwan
Shang-Hong Lai
http://www.cs.nthu.edu.tw/~lai/"
f231046d5f5d87e2ca5fae88f41e8d74964e8f4f,Perceived Age Estimation from Face Images,"We are IntechOpen,
the first native scientific
publisher of Open Access books
,350
08,000
.7 M
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
f22a7a7a8cdd323270d1f8173c0289d61981dc73,Face Recognition System Using Wavelet Normalization,"ISSN(Online): 2319-8753
ISSN (Print):   2347-6710
International Journal of Innovative Research in Science,
Engineering and Technology
(An ISO 3297: 2007 Certified Organization)
Vol. 4, Issue 12, December 2015
Face Recognition System Using
Wavelet Normalization
R.Anitha 1, S.Ramila 2
Assistant Professor, Dept. of CSE, Sri Krishna College of Technology, Coimbatore, India 1
Assistant Professor, Dept. of CSE, Sri Krishna College of Technology, Coimbatore, India 2"
f202c78e58d33a65c19183414ad0ee91be440d61,Investigating the Influence of Biological Sex on the Behavioral and Neural Basis of Face Recognition,"New Research
Sensory and Motor Systems
Investigating the Influence of Biological Sex on
the Behavioral and Neural Basis of Face
Recognition
K. Suzanne Scherf,1,2 Daniel B. Elbich,1 and Natalie V. Motta-Mena1
DOI:http://dx.doi.org/10.1523/ENEURO.0104-17.2017
Department of Psychology, Pennsylvania State University, University Park, PA 16802, and 2Department of
Neuroscience, Pennsylvania State University, University Park, PA 16802"
f2b547b0bbda1478cbecbd5c184c3c42c3db7e3c,Semi-parametric Image Synthesis,
f565ac8e175e4659fadd3b5b6507ebac2d90a2b7,Interpretable Visual Question Answering by Reasoning on Dependency Trees,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX
Interpretable Visual Question Answering by
Reasoning on Dependency Trees
Qingxing Cao, Xiaodan Liang, Bailin Li and Liang Lin"
f59ac278349083a50871822ea08172258030265a,Large-Scale Fiber Tracking Through Sparsely Sampled Image Sequences of Composite Materials,"Large-Scale Fiber Tracking Through Sparsely
Sampled Image Sequences of Composite Materials
Youjie Zhou, Student Member, IEEE, Hongkai Yu, Student Member, IEEE, Jeff Simmons, Member, IEEE,
Craig P. Przybyla, and Song Wang, Senior Member, IEEE
nd accurate"
f5c99652c4c89e56156faf2bed361a15de6162d5,Towards Large-Scale Multimedia Retrieval Enriched by Knowledge about Human Interpretation Retrospective Survey,"Noname manuscript No.
(will be inserted by the editor)
Towards Large-Scale Multimedia Retrieval Enriched
y Knowledge about Human Interpretation
Retrospective Survey
Kimiaki Shirahama · Marcin Grzegorzek
Received: date / Accepted: date"
f56edb6f2bf4f5bc9d54284289212b8d4a437c1b,Detection and Localization of Texture-less Objects with Deep Neural Networks,"Bachelor Thesis
Czech
Technical
University
in Prague
Faculty of Electrical Engineering
Department of Cybernetics
Detection and Localization of Texture-less
Objects with Deep Neural Networks
Pavel Haluza
Supervisor: Ing. Tomáš Hodaň
May 2017"
f5050ffebf973d4d848049dcf661891acd950b82,"Face and object discrimination in autism, and relationship to IQ and age.","J Autism Dev Disord
DOI 10.1007/s10803-013-1955-z
O R I G I N A L P A P E R
Face and Object Discrimination in Autism, and Relationship to IQ
nd Age
Pamela M. Pallett • Shereen J. Cohen •
Karen R. Dobkins
Ó Springer Science+Business Media New York 2013
faces, yet"
f553f8022b1417bc7420523220924b04e3f27b8e,Finding your Lookalike: Measuring Face Similarity Rather than Face Identity,"Finding your Lookalike:
Measuring Face Similarity Rather than Face Identity
Amir Sadovnik, Wassim Gharbi, Thanh Vu
Lafayette College
Easton, PA
Andrew Gallagher
Google Research
Mountain View, CA"
f580b0e1020ad67bdbb11e8d99a59c21a8df1e7d,Compressed Sensing using Generative Models,"Compressed Sensing using Generative Models
Ashish Bora∗
Ajil Jalal†
Eric Price‡
Alexandros G. Dimakis§"
f5770dd225501ff3764f9023f19a76fad28127d4,Real Time Online Facial Expression Transfer with Single Video Camera,"Real Time Online Facial Expression Transfer
with Single Video Camera"
f51771c6cd9061acc9c468e7b44d5d3b6c552b32,Discriminative Dictionaries and Projections for Visual Classification,
f5c83679b73ab59c2ada2b72610acdd63669b226,2d-3d Pose Invariant Face Recognition System for Multimedia Applications,"D-3D POSE INVARIANT FACE RECOGNITION
SYSTEM FOR MULTIMEDIA APPLICATIONS
Authors:
Antonio Rama1, Francesc Tarrés1
Jürgen Rurainsky2
{tonirama,
Department of Signal Theory and Communications
Universitat Politècnica de Catalunya (UPC)
Image Processing Department
Fraunhofer Institute for Telecommunications
Heinrich-Hertz-Institut (HHI)
Automatic  Face  recognition  of  people  is  a  challenging  problem  which  has  re-
eived much attention during the recent years due to its potential multimedia ap-
plications in different fields such as 3D videoconference, security applications or
video indexing. However, there is no technique that provides a robust solution to
ll  situations  and  different  applications,  yet.  Face  recognition  includes  a  set  of
hallenges like expression variations, occlusions of facial parts, similar identities,
resolution of the acquired images, aging of the subjects and many others. Among
ll these challenges, most of the face recognition techniques have evolved in order
to overcome two main problems: illumination and pose variation. Either of these"
f5a52b69dde106cb69cb7c35dd8ca23071966876,Nonparametric Scene Parsing via Label Transfer,"Nonparametric Scene Parsing
via Label Transfer
Ce Liu, Member, IEEE, Jenny Yuen, Student Member, IEEE, and
Antonio Torralba, Member, IEEE"
f558a3812106764fb1af854a02da080cc42c197f,Amygdala volume and nonverbal social impairment in adolescent and adult males with autism.,"ORIGINAL ARTICLE
Amygdala Volume and Nonverbal Social Impairment
in Adolescent and Adult Males With Autism
Brendon M. Nacewicz, BS; Kim M. Dalton, PhD; Tom Johnstone, PhD; Micah T. Long, BS; Emelia M. McAuliff, BS;
Terrence R. Oakes, PhD; Andrew L. Alexander, PhD; Richard J. Davidson, PhD
Background: Autism is a syndrome of unknown cause,
marked by abnormal development of social behavior. At-
tempts to link pathological features of the amygdala, which
plays a key role in emotional processing, to autism have
shown little consensus.
Objective: To evaluate amygdala volume in individu-
ls with autism spectrum disorders and its relationship
to laboratory measures of social behavior to examine
whether variations in amygdala structure relate to symp-
tom severity.
Design: We conducted 2 cross-sectional studies of amyg-
dala volume, measured blind to diagnosis on high-
resolution, anatomical magnetic resonance images. Par-
ticipants were 54 males aged 8 to 25 years, including 23
with autism and 5 with Asperger syndrome or pervasive"
f558af209dd4c48e4b2f551b01065a6435c3ef33,An Enhanced Attribute Reranking Design for Web Image Search,"International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 23 Issue 1 –JUNE 2016.
AN ENHANCED ATTRIBUTE
RERANKING DESIGN FOR WEB IMAGE
SEARCH
Sai Tejaswi Dasari#1 and G K Kishore Babu*2
#Student,Cse, CIET, Lam,Guntur, India
* Assistant Professort,Cse, CIET, Lam,Guntur , India"
f5083b4e28e42a2da7bafd2a742ab8e21c12559f,Deep Learning for Automated Image Classification of Seismic Damage to Built Infrastructure,"Eleventh U.S. National Conference on Earthquake Engineering
Integrating Science, Engineering & Policy
June 25-29, 2018
Los Angeles, California
DEEP LEARNING FOR AUTOMATED
IMAGE CLASSIFICATION OF SEISMIC
DAMAGE TO BUILT INFRASTRUCTURE
B. Patterson1 , G. Leone1, M. Pantoja1, and A. Behrouzi2"
f5adb841e30eb635b91e95c03575f3b8767c9ed5,Learning Optimal Parameters For Multi-target Tracking,"WANG, FOWLKES: LEARNING MULTI-TARGET TRACKING
Learning Optimal Parameters
For Multi-target Tracking
Shaofei Wang
Charless Fowlkes
Dept of Computer Science
University of California
Irvine, CA, USA"
e378ce25579f3676ca50c8f6454e92a886b9e4d7,Robust Video Super-Resolution with Learned Temporal Dynamics,"Robust Video Super-Resolution with Learned Temporal Dynamics
Ding Liu1 Zhaowen Wang2 Yuchen Fan1 Xianming Liu3
Zhangyang Wang4 Shiyu Chang5 Thomas Huang1
University of Illinois at Urbana-Champaign 2Adobe Research
Facebook 4Texas A&M University 5IBM Research"
e393a038d520a073b9835df7a3ff104ad610c552,Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks,"Automatic temporal segment
detection via bilateral long short-
term memory recurrent neural
networks
Bo Sun
Siming Cao
Jun He
Lejun Yu
Liandong Li
Bo Sun, Siming Cao, Jun He, Lejun Yu, Liandong Li, “Automatic temporal segment
detection via bilateral long short-term memory recurrent neural networks,” J.
Electron. Imaging 26(2), 020501 (2017), doi: 10.1117/1.JEI.26.2.020501.
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/03/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx"
e312e7657cb98cf03d3b2bf8b21b0ff75fbd4613,No 272 2 D Articulated Human Pose Estimation and Retrieval in ( Almost ) Unconstrained Still Images,"ETH Zurich, D-ITET, BIWI
Technical Report No 272
D Articulated Human Pose Estimation and Retrieval in (Almost)
Unconstrained Still Images
M. Eichner, M. Marin-Jimenez, A. Zisserman, V. Ferrari"
e3f2e337d4470545398cc6753a54c21debf9c37b,Potential Contrast – A New Image Quality Measure,"Potential Contrast – A New Image Quality Measure
Arie Shaus, Shira Faigenbaum-Golovin, Barak Sober, Eli Turkel, Eli Piasetzky; Tel Aviv University; Tel Aviv, Israel"
e3b0caa1ff9067665e349a2480b057e2afdbc41f,Interactive Effects of Obvious and Ambiguous Social Categories on Perceptions of Leadership: When Double-Minority Status May Be Beneficial.,"702373 PSPXXX10.1177/0146167217702373Personality and Social Psychology BulletinWilson et al.
research-article2017
Article
Interactive Effects of Obvious and
Ambiguous Social Categories on
Perceptions of Leadership: When
Double-Minority Status May
Be Beneficial
Personality and Social
Psychology Bulletin
017, Vol. 43(6) 888 –900
© 2017 by the Society for Personality
nd Social Psychology, Inc
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0146167217702373
https://doi.org/10.1177/0146167217702373
journals.sagepub.com/home/pspb
John Paul Wilson1, Jessica D. Remedios2, and Nicholas O. Rule3"
e315959d6e806c8fbfc91f072c322fb26ce0862b,An Efficient Face Recognition System Based on Sub-Window Extraction Algorithm,"An Efficient Face Recognition System Based on Sub-Window
International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-1, Issue-6, January 2012
Extraction Algorithm
Manish Gupta, Govind sharma"
e39d1345a5aef8a5ee32c0a774de877b903de50c,Unsupervised Learning of Semantics of Object Detections for Scene Categorization,"Unsupervised Learning of Semantics of Object
Detections for Scene Categorization
Grégoire Mesnil, Salah Rifai, Antoine Bordes, Xavier Glorot, Yoshua Bengio
nd Pascal Vincent"
e38c93bb8f7ee103eba4b78443d94f55a63bdf08,Extracting Pathlets From Weak Tracking Data ∗,"Extracting Pathlets From Weak Tracking Data∗
Kevin Streib
James W. Davis
Dept. of Computer Science and Engineering
Ohio State University, Columbus, OH 43210"
e33b1833b2d0cd7b0450b22b96a567a59c9e4685,Attribute Discovery via Predictable Discriminative Binary Codes,"Attribute Discovery via
Predictable Discriminative Binary Codes
Mohammad Rastegari†
Ali Farhadi‡
David Forsyth†
University of Illinois at Urbana Champagin
Carnegi Mellon University
http://vision.ri.cmu.edu/projects/dbc/dbc.html"
e3f63d12be07c743e7590957f4ed38b06cd98aba,A Novel Approach to Face Detection Algorithm,"A Novel Approach to Face Detection Algorithm
{tag}                                                                       {/tag}
International Journal of Computer Applications
© 2011 by IJCA Journal
Number 2 - Article 4
Year of Publication: 2011
Authors:
Pritam Singh
A.S. Thoke
Kesari Verma
10.5120/3537-4836"
e3c420b29b8590442decd330ef70494c2209f149,Learning a Part-Based Pedestrian Detector in a Virtual World,"Learning a Part-based Pedestrian Detector in Virtual
World
Jiaolong Xu, David V´azquez, Antonio M. L´opez Member, IEEE, Javier Mar´ın and Daniel Ponsa"
e39a0834122e08ba28e7b411db896d0fdbbad9ba,Maximum Likelihood Estimation of Depth Maps Using Photometric Stereo,"Maximum Likelihood Estimation of Depth Maps
Using Photometric Stereo
Adam P. Harrison, Student Member, IEEE, and Dileepan Joseph, Member, IEEE"
e30dc2abac4ecc48aa51863858f6f60c7afdf82a,Facial Signs and Psycho-physical Status Estimation for Well-being Assessment,"Facial Signs and Psycho-physical Status Estimation for Well-being
Assessment
F. Chiarugi, G. Iatraki, E. Christinaki, D. Manousos, G. Giannakakis, M. Pediaditis,
A. Pampouchidou, K. Marias and M. Tsiknakis
Computational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas,
{chiarugi, giatraki, echrist, mandim, ggian, mped, pampouch, kmarias,
70013 Vasilika Vouton, Heraklion, Crete, Greece
Keywords:
Facial Expression, Stress, Anxiety, Feature Selection, Well-being Evaluation, FACS, FAPS, Classification."
e3b40ffd57a676aef377ef463849fd6b9a3d3b5d,Morphable hundred-core heterogeneous architecture for energy-aware computation,"Received on 16th April 2014
Revised on 23rd June 2014
Accepted on 7th August 2014
doi: 10.1049/iet-cdt.2014.0078
www.ietdl.org
ISSN 1751-8601
Morphable hundred-core heterogeneous architecture
for energy-aware computation
Nuno Neves, Henrique Mendes, Ricardo Jorge Chaves, Pedro Tomás, Nuno Roma
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol, 9, 1000-029 Lisboa, Portugal
E-mail:"
e3e44385a71a52fd483c58eb3cdf8d03960c0b70,A Hierarchical Graphical Model for Recognizing Human Actions and Interactions in Video,"Copyright
Sangho Park"
e3582dffe5f3466cc5bc9d736934306c551ab33c,AttGAN: Facial Attribute Editing by Only Changing What You Want,"SUBMITTED MANUSCRIPT TO IEEE TRANSACTIONS ON IMAGE PROCESSING
AttGAN: Facial Attribute Editing by
Only Changing What You Want
Zhenliang He, Wangmeng Zuo, Senior Member, IEEE, Meina Kan, Member, IEEE,
Shiguang Shan, Senior Member, IEEE, and Xilin Chen, Fellow, IEEE
i.e.,"
e3b92cc14f2c33bfdc07b794292a30384f8d0ad1,Local Segmentation for Pedestrian Tracking in Dense Crowds,"Local Segmentation for Pedestrian Tracking in
Dense Crowds
Clement Creusot
Toshiba RDC, Kawasaki, Japan,
http://clementcreusot.com/pedestrian"
e3bbdd6efc906f6ae17e5b1d62497420991b977d,Visual Explanation by High-Level Abduction: On Answer-Set Programming Driven Reasoning about Moving Objects,"Visual Explanation by High-Level Abduction
On Answer-Set Programming Driven Reasoning about Moving Objects
Jakob Suchan1, Mehul Bhatt1,2, Przemysław Wał˛ega3, and Carl Schultz4
Cognitive Vision – www.cognitive-vision.org
EASE CRC – http://ease-crc.org
HCC Lab., University of Bremen, Germany, 2MPI Lab., Örebro University, Sweden
University of Warsaw, Poland, and 4Aarhus University, Denmark"
e3f0c5a51d6c5085fbcb64d872d7db438da27474,Ubiquitously Supervised Subspace Learning,"Ubiquitously Supervised Subspace Learning
Jianchao Yang, Student Member, IEEE, Shuicheng Yan, Member, IEEE, and Thomas S. Huang, Life Fellow, IEEE"
e39f9565903a9701657ce3ade94c37d8a12f702e,Audio-Visual Scene Analysis with Self-Supervised Multisensory Features,"Audio-Visual Scene Analysis with
Self-Supervised Multisensory Features
Andrew Owens Alexei A. Efros
UC Berkeley"
e39af9fb267c9deb81f9c73bbd71f5674b4358c0,Conceptualizing and Measuring Well-Being Using Statistical Semantics and Numerical Rating Scales,"Conceptualizing and Measuring Well-Being Using Statistical Semantics and Numerical
Rating Scales
Kjell, Oscar
Published: 2018-03-01
Document Version
Publisher's PDF, also known as Version of record
Link to publication
Citation for published version (APA):
Kjell, O. (2018). Conceptualizing and Measuring Well-Being Using Statistical Semantics and Numerical Rating
Scales Lund
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
nd/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal
LUND UNIVERSITYPO Box 117221 00 Lund+46 46-222 00 00"
e31f24b92a19aeb9a7611a9ca09223c8f5238ae1,Expression Empowered ResiDen Network for Facial Action Unit Detection,"RESIDEN: RESIDUE FLOW IN DENSENET
Expression Empowered ResiDen Network
for Facial Action Unit Detection
Shreyank Jyoti
Abhinav Dhall
Learning Affect and Semantic Image
nalysIs (LASII) Group,
Indian Institute of Technology Ropar
Punjab, India"
e3917d6935586b90baae18d938295e5b089b5c62,Face localization and authentication using color and depth images,"Face Localization and Authentication
Using Color and Depth Images
Filareti Tsalakanidou, Sotiris Malassiotis, and Michael G. Strintzis, Fellow, IEEE"
e3144f39f473e238374dd4005c8b83e19764ae9e,Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost Optical-Flow Estimation in the Wild,"Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost
Optical-Flow Estimation in the Wild
Nima Sedaghat
University of Freiburg
Germany"
e38709a2ec162a6f2a2fa3b4b6463e752267b154,Super-resolution for Face Recognition Based on Correlated Features and Nonlinear Mappings,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE
ICASSP 2010"
e309632d479b8f59e615d0f3c4bc69938361d187,Deep Learning for Imbalance Data Classification using Class Expert Generative Adversarial Network,"Deep Learning for Imbalance Data Classification using Class Expert
Generative Adversarial Network
Fannya, Tjeng Wawan Cenggoroa,b
Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia 11480
Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia 11480"
e3c5c5623af4b1a1f719cac24850dcaa6a304bd5,Training Effective Node Classifiers for Cascade Classification,"ppearing in Int. J. Comput. Vis.; content may change prior to final publication.
Training Effective Node Classifiers for Cascade
Classification
Chunhua Shen · Peng Wang · Sakrapee Paisitkriangkrai ·
Anton van den Hengel
December 2012"
e3660a13fcd75cf876a6ce355c2c1a578cfb57cb,2DHMM-Based Face Recognition Method,"DHMM-BASED FACE RECOGNITION
METHOD
Janusz Bobulski1
Czestochowa University of Technology
Institute of Computer and Information Science
Dabrowskiego Street 73, 42-200 Czestochowa, Poland
Summary. So far many methods of recognizing the face arose, each has the merits
nd demerits. Among these methods are methods based on Hidden Markov models,
nd their advantage is the high ef‌f‌iciency. However, the traditional HMM uses one-
dimensional data, which is not a good solution for image processing, because the
images are two-dimensional. Transforming the image in a one-dimensional feature
vector, we remove some of the information that can be used for identification. The
rticle presents the full ergodic 2D-HMM and applied for face identification.
Introduction
Face recognition has great potentials in many applications dealing with unco-
operative subjects, in which the full power of face recognition being a passive
iometric technique can be implemented and utilised. Face recognition has
een an active area of research in image processing and computer vision due
to its extensive range of prospective applications relating to biometrics, infor-
mation security, video surveillance, law enforcement, identity authentication,"
cf77d2e7411814b30aca203376709b12a0eb3e08,Obtaining Better Image Representations by Combining Complementary Activation Features of Multiple ConvNet Layers for Transfer Learning,"Obtaining Better Image Representations by
Combining Complementary Activation Features of
Multiple ConvNet Layers for Transfer Learning
Jumabek Alikhanov
School of Computer and
Information Engineering
Seunghyun Ko
School of Computer and
Information Engineering
Jo Geun Sik
School of Computer and
Information Engineering
Inha University Incheon, South Korea
Inha University Incheon, South Korea
Inha University Incheon, South Korea
Email:
Email:
Email:"
cf98c333c8d7d5870c1ce5538bb0c3de3de16657,Panoptic Segmentation,"Panoptic Segmentation
Alexander Kirillov1,2 Kaiming He1 Ross Girshick1 Carsten Rother2
Piotr Doll´ar1
Facebook AI Research (FAIR)
HCI/IWR, Heidelberg University, Germany"
cf40951840bfa9b8721d722e9422c73e3a6fbf59,Real-time Appearance-based Person Re-identification Over Multiple KinectTM Cameras,"Real-time appearance-based person re-identification
over multiple KinectTMcameras
Riccardo Satta, Federico Pala, Giorgio Fumera and Fabio Roli
Department of Electrical and Electronic Engineering, University of Cagliari, Italy
{riccardo.satta, fumera,
Keywords:
Video surveillance, Person Re-identification, Kinect"
cf280435c471ee099148c4eb9eb2e106ccb2b218,HoME: a Household Multimodal Environment,"HoME: a Household Multimodal Environment
Simon Brodeur1, Ethan Perez2,3∗, Ankesh Anand2∗, Florian Golemo2,4∗,
Luca Celotti1, Florian Strub2,5, Jean Rouat1, Hugo Larochelle6,7, Aaron Courville2,7
Université de Sherbrooke, 2MILA, Université de Montréal, 3Rice University, 4INRIA Bordeaux,
5Univ. Lille, Inria, UMR 9189 - CRIStAL, 6Google Brain, 7CIFAR Fellow
{simon.brodeur, luca.celotti,
{florian.golemo,
{ankesh.anand,"
cfc22c35ad191cf9d70f4a3655840748b0e1322c,Real-Time Dense Mapping for Self-driving Vehicles using Fisheye Cameras,"Real-Time Dense Mapping
for Self-Driving Vehicles using Fisheye Cameras
Zhaopeng Cui1, Lionel Heng2, Ye Chuan Yeo2, Andreas Geiger3, Marc Pollefeys1,4, and Torsten Sattler1"
cfcf66e4b22dc7671a5941e94e9d4afae75ba2f8,The Cramer Distance as a Solution to Biased Wasserstein Gradients,"The Cramer Distance as a Solution to Biased
Wasserstein Gradients
Marc G. Bellemare1, Ivo Danihelka1,3, Will Dabney1, Shakir Mohamed1
Balaji Lakshminarayanan1, Stephan Hoyer2, Rémi Munos1
Google DeepMind, London UK, 2Google
CoMPLEX, Computer Science, UCL"
cfffae38fe34e29d47e6deccfd259788176dc213,Training bookcowgrass flower ? ? water sky doggrass water boat water chair road ? cow grass chair grass dog building ?,"TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, DECEMBER 2012
Matrix Completion for Weakly-supervised
Multi-label Image Classification
Ricardo Cabral, Fernando De la Torre, João P. Costeira, Alexandre Bernardino"
cfd4004054399f3a5f536df71f9b9987f060f434,Person Recognition in Social Media Photos,"Person Recognition in Personal Photo Collections
Seong Joon Oh,Rodrigo Benenson, Mario Fritz, and Bernt Schiele, Fellow, IEEE"
cf216fcd4cf537e53b9ed4f46e59c445e845cfc5,Nonnegative Restricted Boltzmann Machines for Parts-based Representations Discovery and Predictive Model Stabilization,"Noname manuscript No.
(will be inserted by the editor)
Nonnegative Restricted Boltzmann Machines for
Parts-based Representations Discovery and
Predictive Model Stabilization
Tu Dinh Nguyen, Truyen Tran, Dinh
Phung, Svetha Venkatesh
the date of receipt and acceptance should be inserted later"
cf8f5cad6aa87a6364f6b5dd985116b902050acf,Slack and Margin Rescaling as Convex Extensions of Supermodular Functions,"Slack and Margin Rescaling as Convex Extensions of
Supermodular Functions
Matthew B. Blaschko
Center for Processing Speech & Images
Departement Elektrotechniek, KU Leuven
Kasteelpark Arenberg 10
001 Leuven, Belgium"
cfd933f71f4a69625390819b7645598867900eab,Person Authentication Using Face And Palm Vein: A Survey Of Recognition And Fusion Techniques,"INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 03                       55
ISSN 2347-4289
Person Authentication Using Face And Palm Vein:
A Survey Of Recognition And Fusion Techniques
Preethi M, Dhanashree Vaidya, Dr. S. Kar, Dr. A. M. Sapkal, Dr. Madhuri A. Joshi
Dept. of Electronics and Telecommunication, College of Engineering, Pune, India,
Image Processing & Machine Vision Section, Electronics & Instrumentation Services Division, BARC
Email:"
cf2a313b039b8adfee2a14ca5e81f2f5da52b0f2,Learning Fashion Traits with Label Uncertainty,"Learning Fashion Traits with Label Uncertainty
Gal Levi
Eli Alshan
Assaf Neuberger
Amazon Lab 126
Herzliya, Israel 4672560
Amazon Lab 126
Herzliya, Israel 4672560
Amazon Lab 126
Herzliya, Israel 4672560
Sharon Alpert
Amazon Lab 126
Herzliya, Israel 4672560
Eduard Oks
Amazon Lab 126
Herzliya, Israel 4672560"
cf65c5cfa2a2b0370407810479f179f5fbe88fb1,Multi-Modal Biometrics: An Overview,"Multi-Modal Biometrics: An Overview
Kevin W. Bowyer,1 K. I. Chang,1 P. Yan,1 P. J. Flynn,1 E. Hansley,2 S. Sarkar2
. Computer Science and Engineering / University of Notre Dame / Notre Dame, IN 46556 USA
. Computer Science and Engineering / University of South Florida / Tampa, FL 33620 USA"
cf875336d5a196ce0981e2e2ae9602580f3f6243,"7 What 1 S It Mean for a Computer to ""have"" Emotions?","7  What 1
Rosalind W. Picard
It Mean for a Computer to  ""Have""  Emotions?
There  is a  lot  of  talk  about  giving machines  emotions,  some  of
it fluff. Recently at a large technical meeting, a researcher stood up
nd talked of how a Bamey stuffed animal [the purple dinosaur for
kids) ""has  emotions.""  He did not define what he meant by this, but
fter  repeating  it several  times,  it became  apparent  that  children
ttributed  emotions  to  Barney,  and that  Barney  had  deliberately
expressive behaviors that would  encourage the  kids to think. Bar-
ney had emotions. But kids have  attributed  emotions to  dolls and
stuffed animals for as long a s  we  know; and most of  my technical
olleagues would agree that such toys have never had and still do
not have emotions. What is different now that prompts a researcher
to make such a claim? Is the computational plush an example of  a
omputer that really does have emotions?
If  not Barney, then what would  be  an example  of  a  computa-
tional system that has emotions? I am not a philosopher, and this
paper will not be  a  discussion  of  the meaning  of  this question in
ny philosophical sense. However, as an engineer I am interested"
cfd8c66e71e98410f564babeb1c5fd6f77182c55,Comparative Study of Coarse Head Pose Estimation,"Comparative Study of Coarse Head Pose Estimation
Lisa M. Brown and Ying-Li Tian
IBM T.J. Watson Research Center
Hawthorne, NY 10532"
cfbb2d32586b58f5681e459afd236380acd86e28,Improving alignment of faces for recognition,"Improving Alignment of Faces for Recognition
Md. Kamrul Hasan
Christopher J. Pal
D´epartement de g´enie informatique et g´enie logiciel
´Ecole Polytechnique de Montr´eal,
D´epartement de g´enie informatique et g´enie logiciel
´Ecole Polytechnique de Montr´eal,
Qu´ebec, Canada
Qu´ebec, Canada"
cfa92e17809e8d20ebc73b4e531a1b106d02b38c,Parametric classification with soft labels using the evidential EM algorithm: linear discriminant analysis versus logistic regression,"Advances in Data Analysis and Classification manuscript No.
(will be inserted by the editor)
Parametric Classification with Soft Labels using the
Evidential EM Algorithm
Linear Discriminant Analysis vs. Logistic Regression
Benjamin Quost · Thierry Denœux ·
Shoumei Li
Received: date / Accepted: date"
cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150,Detection of emotions from video in non-controlled environment. (Détection des émotions à partir de vidéos dans un environnement non contrôlé),"Detection of emotions from video in non-controlled
environment
Rizwan Ahmed Khan
To cite this version:
Rizwan Ahmed Khan. Detection of emotions from video in non-controlled environment. Image
Processing. Universit´e Claude Bernard - Lyon I, 2013. English. <NNT : 2013LYO10227>.
<tel-01166539v2>
HAL Id: tel-01166539
https://tel.archives-ouvertes.fr/tel-01166539v2
Submitted on 23 Jun 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
cffc94574c8796cbd8234422a979e57e67eca7b5,Multiracial Children's and Adults' Categorizations of Multiracial Individuals.,"Journal of Cognition and Development
ISSN: 1524-8372 (Print) 1532-7647 (Online) Journal homepage: http://www.tandfonline.com/loi/hjcd20
Multiracial Children’s and Adults’ Categorizations
of Multiracial Individuals
Steven O. Roberts & Susan A. Gelman
To cite this article: Steven O. Roberts & Susan A. Gelman (2017) Multiracial Children’s and
Adults’ Categorizations of Multiracial Individuals, Journal of Cognition and Development, 18:1,
-15, DOI: 10.1080/15248372.2015.1086772
To link to this article:  http://dx.doi.org/10.1080/15248372.2015.1086772
Accepted author version posted online: 23
Feb 2016.
Published online: 23 Feb 2016.
Submit your article to this journal
Article views: 75
View related articles
View Crossmark data
Citing articles: 2 View citing articles
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=hjcd20
Download by: [University of Michigan]"
cf009a6b02fbef514a4bac9695a928080ceac764,COLUMBUS: Feature Selection on Data Analytics Systems,"COLUMBUS: Feature Selection on Data Analytics Systems
Arun Kumar
Pradap Konda
Christopher R´e
February 28, 2013"
cf7e6d057e6ef01904770be3dfc9da29f9c1e197,An Adaptive Detection Method of Multiple Faces,"TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol.12, No.4, April 2014, pp. 2743 ~ 2752
DOI: http://dx.doi.org/10.11591/telkomnika.v12i4.4368
An Adaptive Detection Method of Multiple Faces
      2743
China West Normal University, No. 1 Shida Road, Computer School, Nanchong, China
*Corresponding author, e-mail:
Wei Li"
cf7b4fa0a8b58473b94496f353f3c8d0f9531b71,Recognition of 3 D Frontal Face Images Using Local Ternary Patterns and MLDA Algorithm,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358
Recognition of 3D Frontal Face Images Using Local
Ternary Patterns and MLDA Algorithm
Dr. T. Karthikeyan1, T. K. Sumathi2
Associate Professor, PSG College of Arts & Science, Coimbatore
Research Scholar, Karpagam University, Coimbatore
identification"
cfc9056155bf32648448b588a752f694b4e8249c,Combining Contrast Information and Local Binary Patterns for Gender Classification,"Combining Contrast Information and Local
Binary Patterns for Gender Classification
Juha Ylioinas, Abdenour Hadid, and Matti Pietik¨ainen
Machine Vision Group, PO Box 4500,
FI-90014 University of Oulu, Finland"
cfdc632adcb799dba14af6a8339ca761725abf0a,Probabilistic Formulations of Regression with Mixed Guidance,"Probabilistic Formulations of Regression with Mixed
Guidance
Aubrey Gress, Ian Davidson University of California, Davis"
cfbfcf538c1c9bbf170a524995098fe4aacde374,Symmetric generalized low rank approximations of matrices,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
cfc30ce53bfc204b8764ebb764a029a8d0ad01f4,Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization,"Regularizing Deep Neural Networks by Noise:
Its Interpretation and Optimization
Hyeonwoo Noh
Tackgeun You
Dept. of Computer Science and Engineering, POSTECH, Korea
Jonghwan Mun
Bohyung Han"
cf6527d8d42a9958eea7d8d1f90ea4c86d591408,Convolutional Neural Network-Based Classification of Driver’s Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors,"Article
Convolutional Neural Network-Based Classification
of Driver’s Emotion during Aggressive and Smooth
Driving Using Multi-Modal Camera Sensors
Kwan Woo Lee, Hyo Sik Yoon, Jong Min Song and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; (K.W.L.); (H.S.Y.);
(J.M.S.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 20 February 2018; Accepted: 21 March 2018; Published: 23 March 2018"
cf74dceae075bde213d2aafad115d2afc893c21b,Master's Thesis : Deep Learning for Visual Recognition,"Master’s Thesis
Deep Learning for Visual Recognition
Supervised by Nicolas Thome and Matthieu Cord
Remi Cadene
Wednesday 7th September, 2016"
cf805d478aeb53520c0ab4fcdc9307d093c21e52,Finding Tiny Faces in the Wild with Generative Adversarial Network,"Finding Tiny Faces in the Wild with Generative Adversarial Network
Yancheng Bai1
Yongqiang Zhang1
Mingli Ding2
Bernard Ghanem1
Visual Computing Center, King Abdullah University of Science and Technology (KAUST)
School of Electrical Engineering and Automation, Harbin Institute of Technology (HIT)
Institute of Software, Chinese Academy of Sciences (CAS)
{zhangyongqiang,
Figure1. The detection results of tiny faces in the wild. (a) is the original low-resolution blurry face, (b) is the result of
re-sizing directly by a bi-linear kernel, (c) is the generated image by the super-resolution method, and our result (d) is learned
y the super-resolution (×4 upscaling) and refinement network simultaneously. Best viewed in color and zoomed in."
cf103f2fe5595a55f918ecbd9119800f4747fc8e,Human recognition based on ear shape images using PCA-Wavelets and different classification methods,"Human recognition based on ear shape images using
PCA-Wavelets and different classification methods
Ali Mahmoud Mayya1* and Mariam Mohammad Saii
PhD student, Computer Engineering, Tishreen University, Syria"
cf86616b5a35d5ee777585196736dfafbb9853b5,Learning Multiscale Active Facial Patches for Expression Analysis,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Learning Multiscale Active Facial Patches for
Expression Analysis
Lin Zhong, Qingshan Liu, Peng Yang, Junzhou Huang, and Dimitris N. Metaxas, Senior Member, IEEE"
cabe652bb3b150f35db9db1434cec69f081c4a60,Towards Scene Understanding: Deep and Layered Recognition and Heuristic Parsing of Objects,"Towards Scene Understanding: Deep and Layered Recognition
nd Heuristic Parsing of Objects
Dissertation Submitted to
Xi’an Jiaotong University
In partial fulfillment of the requirement
for the degree of
Doctor of Engineering Science
Yang Wu
(Control Science and Engineering)
Supervisor: Prof. Nanning Zheng
May 2010"
cacd51221c592012bf2d9e4894178c1c1fa307ca,Face and Expression Recognition Techniques: A Review,"ISSN: 2277-3754
ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)
Volume 4, Issue 11, May 2015
Face and Expression Recognition Techniques: A
Review
Advanced Communication & Signal Processing Laboratory, Department of Electronics & Communication
engineering, Government College of Engineering Kannur, Kerala, India.
Rishin C. K, Aswani Pookkudi, A. Ranjith Ram"
ca0363d29e790f80f924cedaf93cb42308365b3d,Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines,"Facial Expression Recognition in Image Sequences
using Geometric Deformation Features and Support
Vector Machines
Irene Kotsiay and Ioannis Pitasy,Senior Member IEEE
yAristotle University of Thessaloniki
Department of Informatics
Box 451
54124 Thessaloniki, Greece
email:"
cae87d5a724507e06f6d8178cfbec043db854fe3,Bayesian Nonparametric Latent Feature Models,"Bayesian Nonparametric Latent Feature Models
Kurt Miller
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2011-78
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-78.html
June 28, 2011"
cac3bf3ceba79e6a6c8e51eb44c6862b81661f85,Learning Data-Driven Representations for Robust Monocular Computer Vision Applications,"Learning Data-Driven Representations for
Robust Monocular Computer Vision
Applications
Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer.-nat.)
Dipl.-math. Christian Joachim Herdtweck
vorgelegt von
us Stuttgart
Tübingen"
cad52d74c1a21043f851ae14c924ac689e197d1f,From Ego to Nos-Vision: Detecting Social Relationships in First-Person Views,"From Ego to Nos-vision:
Detecting Social Relationships in First-Person Views
Stefano Alletto, Giuseppe Serra, Simone Calderara, Francesco Solera and Rita Cucchiara
Universit`a degli Studi di Modena e Reggio Emilia
Via Vignolese 905, 41125 Modena - Italy"
ca6b2b75db9ff8444744df9149601a4ef2beefd4,MirBot: A Multimodal Interactive Image Retrieval System,"MirBot: A multimodal interactive
image retrieval system
Antonio Pertusa, Antonio-Javier Gallego, and Marisa Bernabeu
DLSI, University of Alicante
http://www.dlsi.ua.es"
cad24ba99c7b6834faf6f5be820dd65f1a755b29,"Understanding hand-object manipulation by modeling the contextual relationship between actions, grasp types and object attributes","Understanding hand-object
manipulation by modeling the
ontextual relationship between actions,
grasp types and object attributes
Minjie Cai1, Kris M. Kitani2 and Yoichi Sato1
Journal Title
XX(X):1–14
(cid:13)The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/"
cadba72aa3e95d6dcf0acac828401ddda7ed8924,Algorithms and VLSI Architectures for Low-Power Mobile Face Verification,"THÈSE PRÉSENTÉE À LA FACULTÉ DES SCIENCES
POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES
Algorithms and VLSI Architectures
for Low-Power Mobile Face Verification
Jean-Luc Nagel
Acceptée sur proposition du jury:
Prof. F. Pellandini, directeur de thèse
PD Dr. M. Ansorge, co-directeur de thèse
Prof. P.-A. Farine, rapporteur
Dr. C. Piguet, rapporteur
Soutenue le 2 juin 2005
INSTITUT DE MICROTECHNIQUE
UNIVERSITÉ DE NEUCHÂTEL"
ca1db9dc493a045e3fadf8d8209eaa4311bbdc70,Effective Image Retrieval via Multilinear Multi-index Fusion,"JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, JUNE 2017
Effective Image Retrieval via Multilinear
Multi-index Fusion
Zhizhong Zhang, Yuan Xie, Member, IEEE, Wensheng Zhang, Qi Tian, Fellow, IEEE,"
cab372bc3824780cce20d9dd1c22d4df39ed081a,"DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs","DeepLab: Semantic Image Segmentation with
Deep Convolutional Nets, Atrous Convolution,
nd Fully Connected CRFs
Liang-Chieh Chen, George Papandreou, Senior Member, IEEE, Iasonas Kokkinos, Member, IEEE,
Kevin Murphy, and Alan L. Yuille, Fellow, IEEE"
ca37eda56b9ee53610c66951ee7ca66a35d0a846,Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection,"Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection
Xiaojun Chang1,2, Yi Yang1, Alexander G. Hauptmann2, Eric P. Xing3 and Yao-Liang Yu3∗
Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney.
Language Technologies Institute, Carnegie Mellon University.
Machine Learning Department, Carnegie Mellon University.
{cxj273, {alex, epxing,"
ca400e0c7a739ce5555b2e3eccccbcea65e71b11,Neural Mechanisms of Emotion Regulation in Autism Spectrum Disorder.,"J Autism Dev Disord
DOI 10.1007/s10803-015-2359-z
S I : E M O T I O N R E G U L A T I O N A N D P S Y C H I A T R I C C O M O R B I D I T Y I N A S D
Neural Mechanisms of Emotion Regulation in Autism Spectrum
Disorder
J. Anthony Richey • Cara R. Damiano • Antoinette Sabatino • Alison Rittenberg •
Chris Petty • Josh Bizzell • James Voyvodic • Aaron S. Heller • Marika C. Coffman •
Moria Smoski • Richard J. Davidson • Gabriel S. Dichter
Ó Springer Science+Business Media New York 2015
ccount of"
ca8b529e389381c8b51ddf83788b7a3eafb8f859,Efficient CNN Implementation for Eye-Gaze Estimation on Low-Power/Low-Quality Consumer Imaging Systems,"Efficient CNN Implementation for Eye-Gaze
Estimation on Low-Power/Low-Quality Consumer
Imaging Systems
Joseph Lemley, Student Member, IEEE, Anuradha Kar, Student Member, IEEE, Alexandru
Drimbarean, Member, IEEE, and Peter Corcoran, Fellow, IEEE"
ca754b826476b3e4083a0a6fbac3ac39b494fd43,Supporting data-driven I/O on GPUs using GPUfs,"Supporting data-driven I/O on GPUs using GPUfs
Sagi Shahar
Mark Silberstein
Technion - Israel Institute of Technology
Technion - Israel Institute of Technology
Computations on large data sets necessarily involve file
ccesses, but current GPUs cannot access a host file system
directly because they lack file system access support. There-
fore, an application developer needs to coordinate GPU ac-
esses to secondary storage via explicit application-level
management code running on a CPU. This code performs
file accesses on GPU’s behalf and manages low level data
transfers to/from GPU memory. Furthermore, all the data
that a GPU may need must be resident in the GPU mem-
ory prior to computations, and it is the responsibility of a
GPU developer to ensure that this is the case. As a result, all
the potential GPU accesses to data must be known before the
GPU execution starts. This requirement impedes the use of
GPUs to run data processing algorithms with irregular data
ccess pattern on large datasets."
ca581cd5bd0cecf346f2bc47f4b67bfee31b9da1,"Providing Fairness in Heterogeneous Multicores with a Predictive, Adaptive Scheduler","Providing Fairness in Heterogeneous Multicores with a Predictive, Adaptive
Scheduler
Saeid Barati
University of Chicago
Henry Hoffmann
University of Chicago"
ca606186715e84d270fc9052af8500fe23befbda,"Using subclass discriminant analysis, fuzzy integral and symlet decomposition for face recognition","Using Subclass Discriminant Analysis, Fuzzy Integral and Symlet Decomposition for
Face Recognition
Seyed Mohammad Seyedzade
Department of Electrical Engineering,
Iran Univ. of Science and Technology,
Narmak, Tehran, Iran
Email:
Sattar Mirzakuchaki
Amir Tahmasbi
Department of Electrical Engineering,
Iran Univ. of Science and Technology,
Department of Electrical Engineering,
Iran Univ. of Science and Technology,
Narmak, Tehran, Iran
Email:
Narmak, Tehran, Iran
Email:"
ca494a2f20c267210a677ed9c509c4570f420fdf,Learning to Globally Edit Images with Textual Description,"Learning to Globally Edit Images
with Textual Description
Hai Wang † Jason D. Williams ‡ Sing Bing Kang §"
cad7845e9668884caf4842b14983ec0e45bbbc75,Urban Tracker: Multiple object tracking in urban mixed traffic,"Urban Tracker: Multiple Object Tracking in Urban Mixed Traffic
Jean-Philippe Jodoin, Guillaume-Alexandre Bilodeau
LITIV lab., Dept. of computer & software eng.
´Ecole Polytechnique de Montr´eal
Montr´eal, QC, Canada
Nicolas Saunier
Dept. of civil, geo. and mining eng.
´Ecole Polytechnique de Montr´eal
Montr´eal, QC, Canada"
e4896772d51a66b743e0d072d53cf26f6b61fc75,Automated Identification of Trampoline Skills Using Computer Vision Extracted Pose Estimation,"Automated Identification of Trampoline Skills
Using Computer Vision Extracted Pose Estimation
Paul W. Connolly, Guenole C. Silvestre and Chris J. Bleakley
School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland."
e4bf70e818e507b54f7d94856fecc42cc9e0f73d,Face Recognition under Varying Blur in an Unconstrained Environment,"IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308
FACE RECOGNITION UNDER VARYING BLUR IN AN
UNCONSTRAINED ENVIRONMENT
Anubha Pearline.S1, Hemalatha.M2
M.Tech, Information Technology,Madras Institute of Technology, TamilNadu,India,
Assistant Professor, Information Technology,Madras Institute of Technology, TamilNadu,India, email:,"
e4485930357db8248543eb78ce3bc9f32050694e,Drawn to danger: trait anger predicts automatic approach behaviour to angry faces.,"Cognition and Emotion
ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20
Drawn to danger: trait anger predicts automatic
pproach behaviour to angry faces
Lotte Veenstra, Iris K. Schneider, Brad J. Bushman & Sander L. Koole
To cite this article: Lotte Veenstra, Iris K. Schneider, Brad J. Bushman & Sander L. Koole (2016):
Drawn to danger: trait anger predicts automatic approach behaviour to angry faces, Cognition
nd Emotion, DOI: 10.1080/02699931.2016.1150256
To link to this article:  http://dx.doi.org/10.1080/02699931.2016.1150256
Published online: 19 Feb 2016.
Submit your article to this journal
Article views: 39
View related articles
View Crossmark data
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=pcem20
Download by: [Vrije Universiteit Amsterdam]
Date: 04 April 2016, At: 13:19"
e4d2cc8fe567e8e1f2e0c5eb751ff9e9361346c0,ALTERED BRAIN ACTIVITY IN AUTISTIC CHILDREN VERSUS HEALTHY CONTROLS WHILE PERFORMING SIMPLE TASKS USING fMRI,"Copyright Warning & Restrictions
The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.
Under certain conditions specified in the law, libraries and
rchives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,
This institution reserves the right to refuse to accept a
opying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.
Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation
Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen"
e4d33362b4f99ab77fd6ceaafa183c087c79faea,Design and implementation of a high performance pedestrian detection,"June 23-26, 2013, Gold Coast, Australia
978-1-4673-2754-1/13/$31.00 ©2013 Crown"
e4a05b1a478a2aeb6c0b1a4a42f8bdb4f97122f6,Quality Fusion Rule for Face Recognition in Video,"Quality Fusion Rule for Face Recognition in Video
Chao Wang, Yongping Li, and Xinyu Ao
The center for Advanced Detection and Instrumentation, Shanghai Institute of Applied Physics,
Chinese Academy of Science, 201800 Shanghai, China"
e4501da190012623d5048d57b7e650de27643b8d,Learning Actionlet Ensemble for 3D Human Action Recognition,"Chapter 2
Learning Actionlet Ensemble for 3D Human
Action Recognition"
e4a1b46b5c639d433d21b34b788df8d81b518729,Side Information for Face Completion: a Robust PCA Approach,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Side Information for Face Completion: a Robust
PCA Approach
Niannan Xue, Student Member, IEEE, Jiankang Deng, Student Member,IEEE,
Shiyang Cheng, Student Member,IEEE, Yannis Panagakis, Member,IEEE,
nd Stefanos Zafeiriou, Member, IEEE"
e4c81c56966a763e021938be392718686ba9135e,Bio-Inspired Architecture for Clustering into Natural and Non-Natural Facial Expressions,",100+OPEN ACCESS BOOKS103,000+INTERNATIONALAUTHORS AND EDITORS106+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Visual Cortex - Current Status and PerspectivesDownloaded from: http://www.intechopen.com/books/visual-cortex-current-status-and-perspectivesPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at"
e4d08ef1b4350c7e03bdfb716200370c2ea87a6a,A novel approach for face recognition using fused GMDH-based networks,"The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018                                                            369
A Novel Approach for Face Recognition Using
Fused GMDH-Based Networks
El-Sayed El-Alfy1, Zubair Baig2, and Radwan Abdel-Aal1
College of Computer Sciences and Engineering, King Fahd University of Petroleum and Minerals, KSA
School of Science and Security Research Institute, Edith Cowan University, Australia"
e4e95b8bca585a15f13ef1ab4f48a884cd6ecfcc,Face Recognition with Independent Component Based Super-resolution,"Face Recognition with Independent Component Based
Super-resolution
Osman Gokhan Sezer†,a, Yucel Altunbasakb, Aytul Ercila
Faculty of Engineering and Natural Sciences, Sabanci Univ., Istanbul, Turkiye, 34956
School of Elec. and Comp. Eng. , Georgia Inst. of Tech., Atlanta, GA, USA, 30332-0250"
e4cbe39daed8700a1d6f4a25a3a98645c4f231d0,A nonconvex formulation for low rank subspace clustering: algorithms and convergence analysis,"Comput Optim Appl (2018) 70:395–418
https://doi.org/10.1007/s10589-018-0002-6
A nonconvex formulation for low rank subspace
lustering: algorithms and convergence analysis
Hao Jiang1 · Daniel P. Robinson1
René Vidal1 · Chong You1
Received: 14 July 2017 / Published online: 27 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018"
e46732f0c818b059420f68162363c9d1a9dc5395,Geometric and Physical Constraints for Head Plane Crowd Density Estimation in Videos,"Geometric and Physical Constraints for
Head Plane Crowd Density Estimation in Videos
Weizhe Liu(cid:63) Krzysztof Lis Mathieu Salzmann
Pascal Fua
Computer Vision Laboratory, ´Ecole Polytechnique F´ed´erale de Lausanne
{weizhe.liu, krzysztof.lis, mathieu.salzmann,
(EPFL)"
e42e7735f94a8f498ef0bf790ab43a668f904848,Low-Latency Detec on and Tracking of Aircra in Very High-Resolu on Video Feeds,"Linköping University | Department of Computer and Information Science
Master thesis, 30 ECTS | Datateknik
018 | LIU-IDA/LITH-EX-A--18/022--SE
Low-Latency Detec(cid:415)on and
Tracking of Aircra(cid:332) in Very
High-Resolu(cid:415)on Video Feeds
Låglatent detek(cid:415)on och spårning av flygplan i högupplösta
videokällor
Jarle Mathiesen
Supervisor : Magnus Bång
Examiner : Erik Berglund
Linköpings universitet
SE–581 83 Linköping
+46 13 28 10 00 , www.liu.se"
e43ea078749d1f9b8254e0c3df4c51ba2f4eebd5,Facial Expression Recognition Based on Constrained Local Models and Support Vector Machines,"Facial Expression Recognition Based on Constrained
Local Models and Support Vector Machines
Nikolay Neshov1, Ivo Draganov2, Agata Manolova3"
e45bcda905b897513f4cff9e5c0a5bf475674a02,"Domain Stylization: A Strong, Simple Baseline for Synthetic to Real Image Domain Adaptation","Domain Stylization: A Strong, Simple Baseline for
Synthetic to Real Image Domain Adaptation
Aysegul Dundar, Ming-Yu Liu, Ting-Chun Wang, John Zedlewski, Jan Kautz
NVIDIA"
e48fa574960b23ba65b7ff1a732cc521213b5120,Mining Automatically Estimated Poses from Video Recordings of Top Athletes,"Mining Automatically Estimated Poses from Video Recordings
of Top Athletes
Rainer Lienhart∗
University of Augsburg
uni-augsburg.de
Moritz Einfalt
University of Augsburg
uni-augsburg.de
Dan Zecha
University of Augsburg"
e4c2f8e4aace8cb851cb74478a63d9111ca550ae,Distributed One-class Learning,"DISTRIBUTED ONE-CLASS LEARNING
Ali Shahin Shamsabadi(cid:63), Hamed Haddadi†, Andrea Cavallaro(cid:63)
(cid:63)Queen Mary University of London,†Imperial College London"
e41e1e4d9e578c29bf648e7098c466935b50f1a9,A Generative Model for Simultaneous Estimation of Human Body Shape and Pixel-Level Segmentation,"A Generative Model for Simultaneous
Estimation of Human Body Shape and
Pixel-level Segmentation
Ingmar Rauschert and Robert T. Collins
Pennsylvania State University,
University Park, 16802 PA, USA"
e443cb55dcc54de848e9f0c11a6194568a875011,From passive to interactive object learning and recognition through self-identification on a humanoid robot,"From passive to interactive object learning and
recognition through self-identification on a humanoid
robot
Natalia Lyubova, Serena Ivaldi, David Filliat
To cite this version:
Natalia Lyubova, Serena Ivaldi, David Filliat. From passive to interactive object learning and
recognition through self-identification on a humanoid robot. Autonomous Robots, Springer
Verlag, 2015, pp.23. .
HAL Id: hal-01166110
https://hal.archives-ouvertes.fr/hal-01166110
Submitted on 22 Jun 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,"
e44d8409bb5233bd1822555bf85095a80e27fd49,Spatio-temporal interaction model for crowd video analysis,"Spatio-temporal interaction model for crowd video analysis
Indian Institute of Technology Bombay
Indian Institute of Technology Bombay
Neha Bhargava
India
Subhasis Chaudhuri
India"
e40007540c4813c81bc8b54dda4dd6f6c21deaa8,3d Face Recognition Using Patch Geodesic Derivative Pattern,"International Journal of  Smart Electrical Engineering, Vol.2, No.3, Summer 2013                   ISSN:  2251-9246
pp.127:132
D Face Recognition using Patch Geodesic Derivative Pattern"
e475e857b2f5574eb626e7e01be47b416deff268,Facial Emotion Recognition Using Nonparametric Weighted Feature Extraction and Fuzzy Classifier,"Facial Emotion Recognition Using Nonparametric
Weighted Feature Extraction and Fuzzy Classifier
Maryam Imani and Gholam Ali Montazer"
e4391993f5270bdbc621b8d01702f626fba36fc2,Head Pose Estimation Using Multi-scale Gaussian Derivatives,"Author manuscript, published in ""18th Scandinavian Conference on Image Analysis (2013)""
DOI : 10.1007/978-3-642-38886-6_31"
e4d8ba577cabcb67b4e9e1260573aea708574886,Um Sistema De Recomendaç˜ao Inteligente Baseado Em V ´ Idio Aulas Para Educaç˜ao a Distˆancia an Intelligent Recommendation System Based on Video Lectures for Distance Education (revelation),"UM SISTEMA DE RECOMENDAC¸ ˜AO INTELIGENTE BASEADO EM V´IDIO
AULAS PARA EDUCAC¸ ˜AO A DIST ˆANCIA
Gaspare Giuliano Elias Bruno
Tese de Doutorado apresentada ao Programa
de P´os-gradua¸c˜ao em Engenharia de Sistemas e
Computa¸c˜ao, COPPE, da Universidade Federal
do Rio de Janeiro, como parte dos requisitos
necess´arios `a obten¸c˜ao do t´ıtulo de Doutor em
Engenharia de Sistemas e Computa¸c˜ao.
Orientadores: Edmundo Albuquerque de
Souza e Silva
Rosa Maria Meri Le˜ao
Rio de Janeiro
Janeiro de 2016"
e467f7e2434ca74bdd4b19808a6b3d78b8c5ba1a,Feature Construction Using Evolution-COnstructed Features for General Object Recognition,"Feature Construction Using Evolution-COnstructed Features
for General Object Recognition
Kirt Dwayne Lillywhite
A dissertation submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
Dah-Jye Lee, Chair
James K Archibald
Bryan S. Morse
Dan A. Ventura
Brent E. Nelson
Department of Electrical and Computer Engineering
Brigham Young University
April 2012
Copyright c(cid:13) 2012 Kirt Dwayne Lillywhite
All Rights Reserved"
e4d90019c312ed87a236a11374caeea9cc4e6940,Comparison Comparison PCA Train GMM Feature Reduction Classify GMM Threshold,"COVER SHEET
Cook, Jamie and Chandran, Vinod and Sridharan, Sridha and Fookes, Clinton (2004) Face
Recognition from 3D Data using Iterative Closest Point Algorithm and Gaussian Mixture Models.
In Proceedings 3D Data Processing, Visualisation and Transmission, Thessaloniki, Greece.
Accessed from  http://eprints.qut.edu.au
Copyright 2004 the authors."
e4abc40f79f86dbc06f5af1df314c67681dedc51,Head Detection with Depth Images in the Wild,"Head Detection with Depth Images in the Wild
Diego Ballotta, Guido Borghi, Roberto Vezzani and Rita Cucchiara
Department of Engineering ”Enzo Ferrari”
University of Modena and Reggio Emilia, Italy
Keywords:
Head Detection, Head Localization, Depth Maps, Convolutional Neural Network"
e4d0e87d0bd6ead4ccd39fc5b6c62287560bac5b,Implicit video multi-emotion tagging by exploiting multi-expression relations,"Implicit Video Multi-Emotion Tagging by Exploiting Multi-Expression
Relations
Zhilei Liu, Shangfei Wang*, Zhaoyu Wang and Qiang Ji"
e48432872be1e0449f50c6807b274d57c87a641f,Human Body Extraction from Single Images Using Images Processing Techniques,"Human Body Extraction from Single Images Using Images
Processing Techniques
T.Ravichandra Babu
Associate Professor & HOD,
Department of ECE,
Katravath Rajendhar
PG Scholar-SSP,
Department of ECE,
Krishnamurthy Institute of Technology and
Krishnamurthy Institute of Technology and
Engineering.
Engineering.
that  can
images
to  cope  with"
e48e94959c4ce799fc61f3f4aa8a209c00be8d7f,Design of an Efficient Real-Time Algorithm Using Reduced Feature Dimension for Recognition of Speed Limit Signs,"Hindawi Publishing Corporation
The Scientific World Journal
Volume 2013, Article ID 135614, 6 pages
http://dx.doi.org/10.1155/2013/135614
Research Article
Design of an Efficient Real-Time Algorithm Using Reduced
Feature Dimension for Recognition of Speed Limit Signs
Hanmin Cho,1 Seungwha Han,2 and Sun-Young Hwang1
Department of Electronic Engineering, Sogang University, Seoul 121-742, Republic of Korea
Samsung Techwin R&D Center, Security Solution Division, 701 Sampyeong-dong, Bundang-gu, Seongnam-si,
Gyeonggi 463-400, Republic of Korea
Correspondence should be addressed to Sun-Young Hwang;
Received 28 August 2013; Accepted 1 October 2013
Academic Editors: P. Daponte, M. Nappi, and N. Nishchal
Copyright © 2013 Hanmin Cho et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
We propose a real-time algorithm for recognition of speed limit signs from a moving vehicle. Linear Discriminant Analysis (LDA)
required for classification is performed by using Discrete Cosine Transform (DCT) coefficients. To reduce feature dimension in
LDA, DCT coefficients are selected by a devised discriminant function derived from information obtained by training. Binarization
nd thinning are performed on a Region of Interest (ROI) obtained by preprocessing a detected ROI prior to DCT for further"
e496d6be415038de1636bbe8202cac9c1cea9dbe,Facial Expression Recognition in Older Adults using Deep Machine Learning,"Facial Expression Recognition in Older Adults using
Deep Machine Learning
Andrea Caroppo, Alessandro Leone and Pietro Siciliano
National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce,
Italy"
e43cc682453cf3874785584fca813665878adaa7,Face Recognition using Local Derivative Pattern Face Descriptor,"www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 10 October, 2014 Page No.8830-8834
Face Recognition using Local Derivative Pattern Face
Descriptor
Pranita R. Chavan1,  Dr. Dnyandeo J. Pete2
Department of Electronics and Telecommunication
Datta Meghe College of Engineering
Airoli, Navi Mumbai, India 1,2
Mob: 99206746061
Mob: 99870353142"
fec6648b4154fc7e0892c74f98898f0b51036dfe,"A Generic Face Processing Framework: Technologies, Analyses and Applications","A Generic Face Processing
Framework: Technologies,
Analyses and Applications
JANG Kim-fung
A Thesis Submitted in Partial Ful(cid:12)lment
of the Requirements for the Degree of
Master of Philosophy
Computer Science and Engineering
Supervised by
Prof. Michael R. Lyu
(cid:13)The Chinese University of Hong Kong
July 2003
The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in
proposed publication must seek copyright release from the Dean of the
Graduate School."
fea0a5ed1bc83dd1b545a5d75db2e37a69489ac9,Enhancing Recommender Systems for TV by Face Recognition,"Enhancing Recommender Systems for TV by Face Recognition
Toon De Pessemier, Damien Verlee and Luc Martens
iMinds - Ghent University, Technologiepark 15, B-9052 Ghent, Belgium
{toon.depessemier,
Keywords:
Recommender System, Face Recognition, Face Detection, TV, Emotion Detection."
fecce467b42856eadb8dd0c08674d9381f52efab,The Role of Shape in Visual Recognition,"The Role of Shape in Visual Recognition
Bj¨orn Ommer"
fe4986bbb10f3417372a02fed1218acb5162ddec,Classification model of arousal and valence mental states by EEG signals analysis and Brodmann correlations,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 6, 2015
Classification model of arousal and valence mental
states by EEG signals analysis and Brodmann
orrelations
Adrian  Rodriguez  Aguin˜aga  and  Miguel  Angel  Lo´pez  Ram´ırez
Instituto  Tecnolo´gico  de  Tijuana
Calzada  del  Tecnolo´gico  S/N,  Toma´s  Aquino,  22414
Tijuana,  B.C.  Me´xico
Mar´ıa  del  Rosario  Baltazar  Flores
Instituto  Tecnolo´gico  de  Leo´n
Av.  Tecnolo´gico  S/N
Industrial  Julia´n  de  Obrego´n,  37290
Leo´n,  Gto.  Me´xico"
fe9c460d5ca625402aa4d6dd308d15a40e1010fa,Neural Architecture for Temporal Emotion Classification,"Neural Architecture for Temporal Emotion
Classification
Roland Schweiger, Pierre Bayerl, and Heiko Neumann
Universit¨at Ulm, Neuroinformatik, Germany"
fec9fb202906e6f136ae92c3a3540b2a84257c4e,Automatic Facial Feature Detection for Facial Expression Recognition,"AUTOMATIC FACIAL FEATURE DETECTION FOR FACIAL
EXPRESSION RECOGNITION
Taner Danisman, Marius Bilasco, Nacim Ihaddadene and Chabane Djeraba
LIFL - UMR CNRS 8022, University of Science and Technology of Lille, Villeneuve d'Ascq, France
Keywords:
Facial Feature Detection, Emotion Recognition, Eye Detection, Mouth Corner Detection."
fe01e1099dc2ce02158de607be993f9fc8aade57,Aerial LaneNet: Lane Marking Semantic Segmentation in Aerial Imagery using Wavelet-Enhanced Cost-sensitive Symmetric Fully Convolutional Neural Networks,"Aerial LaneNet: Lane Marking Semantic
Segmentation in Aerial Imagery using
Wavelet-Enhanced Cost-sensitive Symmetric Fully
Convolutional Neural Networks
Seyed Majid Azimi, Peter Fischer, Marco Körner, and Peter Reinartz"
fec5c0100c72d7c1c823a91dc146ecd5e98e77ff,Coherence criterion for region labelling and description,"Coherence criterion for region labelling and
description
Hichem Houissa
INRIA Rocquencourt
Domaine de Voluceau
Nozha Boujemaa
INRIA Rocquencourt
Domaine de Voluceau
Email:
Email:"
fe7f5c7da203c48aa1a9a2468aae55c6e0053df9,Interactive Text2Pickup Network for Natural Language based Human-Robot Collaboration,"Interactive Text2Pickup Network for Natural Language based
Human-Robot Collaboration
Hyemin Ahn, Sungjoon Choi, Nuri Kim, Geonho Cha, and Songhwai Oh"
fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5,Performance Evaluation of Gabor Wavelet Features for Face Representation and Recognition,"IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)
Volume 6, Issue 2, Ver. I (Mar. -Apr. 2016), PP 47-53
e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197
www.iosrjournals.org
Performance Evaluation of Gabor Wavelet Features for Face
Representation and Recognition
M. E. Ashalatha1, Mallikarjun S. Holi2
Dept. of Biomedical Engineering, Bapuji Institute of Engineering & Technology Davanagere, Karnataka,India
Dept. of Electronics and Instrumentation Engineering, University B.D.T.College of Engineering, Visvesvaraya
Technological University,  Davanagere, Karnataka, India"
fea0895326b663bf72be89151a751362db8ae881,Homocentric Hypersphere Feature Embedding for Person Re-identification,"Homocentric Hypersphere Feature Embedding for
Person Re-identification
Wangmeng Xiang, Jianqiang Huang, Xianbiao Qi, Xiansheng Hua, Fellow, IEEE and Lei Zhang, Fellow, IEEE"
feb4bcd20de6ce4f9503ef01c87390e662538c15,Monocular Depth Estimation with Augmented Ordinal Depth Relationships,"Monocular Depth Estimation with Augmented
Ordinal Depth Relationships
Yuanzhouhan Cao, Tianqi Zhao, Ke Xian, Chunhua Shen, Zhiguo Cao"
fef89593599b78db7d133fc6893519b3ee8ff8d2,3D Face recognition by ICP-based shape matching,"D Face recognition by ICP-based shape matching
Boulbaba Ben Amor1, Karima Ouji1, Mohsen Ardabilian1, Liming Chen1
LIRIS Lab, Lyon Research Center for Images and Intelligent Information Systems, UMR 5205 CNRS
Centrale Lyon, France"
fe466e84fa2e838adc3c37ee327cd68004ae08fe,MUTAN: Multimodal Tucker Fusion for Visual Question Answering,"MUTAN: Multimodal Tucker Fusion for Visual Question Answering
Hedi Ben-younes 1,2 *
R´emi Cadene 1*
Matthieu Cord 1
Nicolas Thome 3
Sorbonne Universit´es, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu, 75005 Paris
Heuritech, 248 rue du Faubourg Saint-Antoine, 75012 Paris
Conservatoire National des Arts et M´etiers"
fe41550ed350df4cd731a5df3dca5b0ea13511db,Compact Generalized Non-local Network,"Compact Generalized Non-local Network
Kaiyu Yue1,3 Ming Sun1 Yuchen Yuan1 Feng Zhou2 Errui Ding1 Fuxin Xu3
Baidu VIS 2Baidu Research
Central South University
{yuekaiyu, sunming05, yuanyuchen02, zhoufeng09,"
feaedb6766f42e867aab7f1a33ba4d7ddacfc7aa,UvA-DARE ( Digital Academic Repository ) Tag-based Video Retrieval by Embedding Semantic Content in a Continuous Word,"UvA-DARE (Digital Academic Repository)
Tag-based Video Retrieval by Embedding Semantic Content in a Continuous Word
Space
Agharwal, A.; Kovvuri, R.; Nevatia, R.; Snoek, C.G.M.
Published in:
016 IEEE Winter Conference on Applications of Computer Vision: WACV 2016: Lake Placid, New York, USA,
7-10 March 2016
0.1109/WACV.2016.7477706
Link to publication
Citation for published version (APA):
Agharwal, A., Kovvuri, R., Nevatia, R., & Snoek, C. G. M. (2016). Tag-based Video Retrieval by Embedding
Semantic Content in a Continuous Word Space. In 2016 IEEE Winter Conference on Applications of Computer
Vision: WACV 2016: Lake Placid, New York, USA, 7-10 March 2016 (pp. 1354-1361). Piscataway, NJ: Institute
of Electrical and Electronic Engineers. DOI: 10.1109/WACV.2016.7477706
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask"
fe030b87e3c985c9dedab130949e2868e3e5e7d5,Explaining Neural Networks Semantically,"Under review as a conference paper at ICLR 2019
EXPLAINING NEURAL NETWORKS SEMANTICALLY
AND QUANTITATIVELY
Anonymous authors
Paper under double-blind review"
fea83550a21f4b41057b031ac338170bacda8805,Learning a Metric Embedding for Face Recognition using the Multibatch Method,"Learning a Metric Embedding
for Face Recognition
using the Multibatch Method
Oren Tadmor
Yonatan Wexler
Tal Rosenwein
Shai Shalev-Shwartz
Amnon Shashua
Orcam Ltd., Jerusalem, Israel"
fe005c5036ad646051cc779aafb63534bda14f06,The Hand Vein Pattern Used as a Biometric Feature,"The Hand Vein Pattern Used as a Biometric Feature
Master Literature Thesis
Annemarie Nadort
Amsterdam - May 2007"
fe35639349a87808481e64f9cbea065339063154,Understanding deep learning via backtracking and deconvolution,"Fang  J Big Data  (2017) 4:40
DOI 10.1186/s40537-017-0101-8
METHODOLOGY
Understanding deep learning
via backtracking and deconvolution
Open Access
Xing Fang*
*Correspondence:
School of Information
Technology, Illinois State
University, Normal, IL, USA"
febb6454a3bfbc76f4c7934854d377ac15666215,Improving the Accuracy of Face Annotation in Social Network,"International Journal of Computer Applications (0975 – 8887)
Volume 182 – No. 14, September 2018
Improving the Accuracy of Face Annotation in Social
Network
C. Jayaramulu
Research Scholar
individual
Dayananda Sagar University, Bangalore
photographs."
fed9e971e042b40cc659aca6e338d79dc1d4b59c,Grouping-by-id: Guarding against Adversar-,"Under review as a conference paper at ICLR 2018
GROUPING-BY-ID: GUARDING AGAINST ADVERSAR-
IAL DOMAIN SHIFTS
Anonymous authors
Paper under double-blind review"
fe8b2b2a2ace6d6af28dc0f1d63400554c8c675d,Random walk distances in data clustering and applications,"Adv Data Anal Classif (2013) 7:83–108
DOI 10.1007/s11634-013-0125-7
REGULAR ARTICLE
Random walk distances in data clustering
nd applications
Sijia Liu · Anastasios Matzavinos ·
Sunder Sethuraman
Received: 28 September 2011 / Revised: 24 May 2012 / Accepted: 30 September 2012 /
Published online: 6 March 2013
© Springer-Verlag Berlin Heidelberg 2013"
fe0c51fd41cb2d5afa1bc1900bbbadb38a0de139,Bayesian face recognition using 2D Gaussian-Hermite moments,"Rahman et al. EURASIP Journal on Image and Video Processing  (2015) 2015:35
DOI 10.1186/s13640-015-0090-5
RESEARCH
Open Access
Bayesian face recognition using 2D
Gaussian-Hermite moments
S. M. Mahbubur Rahman1*, Shahana Parvin Lata2 and Tamanna Howlader2"
c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3d,Modeling for part-based visual object detection based on local features,"Modeling for part-based visual object
detection based on local features
Von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik
der Rheinisch-Westf¨alischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines Doktors
der Ingenieurwissenschaften genehmigte Dissertation
vorgelegt von
Diplom-Ingenieur
Mark Asbach
us Neuss
Berichter:
Univ.-Prof. Dr.-Ing. Jens-Rainer Ohm
Univ.-Prof. Dr.-Ing. Til Aach
Tag der m¨undlichen Pr¨ufung: 28. September 2011
Diese Dissertation ist auf den Internetseiten der
Hochschulbibliothek online verf¨ugbar."
c85aa12331bdeaba06d4c3e44b969e6060c3310c,Ensemble of Part Detectors for Simultaneous Classification and Localization,"Ensemble of Part Detectors for Simultaneous
Classification and Localization
Xiaopeng Zhang, Hongkai Xiong, Senior Member, IEEE, Weiyao Lin, Qi Tian, Fellow, IEEE"
c86e6ed734d3aa967deae00df003557b6e937d3d,Generative Adversarial Networks with Decoder-Encoder Output Noise,"Generative Adversarial Networks with
Decoder-Encoder Output Noise
Guoqiang Zhong, Member, IEEE, Wei Gao, Yongbin Liu, Youzhao Yang
onditional distribution of their neighbors. In [32], Portilla and
Simoncelli proposed a parametric texture model based on joint
statistics, which uses a decomposition method that is called
steerable pyramid decomposition to decompose the texture
of images. An example-based super-resolution algorithm [11]
was proposed in 2002, which uses a Markov network to model
the spatial relationship between the pixels of an image. A
scene completion algorithm [16] was proposed in 2007, which
pplied a semantic scene match technique. These traditional
lgorithms can be applied to particular image generation tasks,
such as texture synthesis and super-resolution. Their common
haracteristic is that they predict the images pixel by pixel
rather than generate an image as a whole, and the basic idea
of them is to make an interpolation according to the existing
part of the images. Here, the problem is, given a set of images,
an we generate totally new images with the same distribution
of the given ones?"
c8a4b4fe5ff2ace9ab9171a9a24064b5a91207a3,Locating facial landmarks with binary map cross-correlations,"LOCATING FACIAL LANDMARKS WITH BINARY MAP CROSS-CORRELATIONS
J´er´emie Nicolle
K´evin Bailly
Vincent Rapp
Mohamed Chetouani
Univ. Pierre & Marie Curie, ISIR - CNRS UMR 7222, F-75005, Paris - France
{nicolle, bailly, rapp,"
c84ca95638893700d8f806e844984a5b2c50b5e3,Automatic Facial Expression Recognition Using 3D Faces,"Paper 071, ENG 101
Automatic Facial Expression Recognition Using 3D Faces
Chao Li, Antonio Soares
Florida A&M University
hao.li,"
c8f035510b72b84c21430a887ed03c8836eeddc2,Optical-inertial Synchronization of MoCap Suit with Single Camera Setup for Reliable Position Tracking,
c8f216dbd43dda14783677f44bb336c92211cd46,Synthesis from 3 D Mesh Sequences Driven by Combined Speech Features,"VISUAL SPEECH SYNTHESIS FROM 3D MESH SEQUENCES DRIVEN BY COMBINED
SPEECH FEATURES
Felix Kuhnke and J¨orn Ostermann
Institut f¨ur Informationsverarbeitung, Leibniz Universit¨at Hannover, Germany"
c866a2afc871910e3282fd9498dce4ab20f6a332,Surveillance Face Recognition Challenge,"Noname manuscript No.
(will be inserted by the editor)
Surveillance Face Recognition Challenge
Zhiyi Cheng · Xiatian Zhu · Shaogang Gong
Received: date / Accepted: date"
c8dcb7b3c5ed43e61b90b50fedc76568d8e30675,Guarding against Adversarial Domain Shifts,"Under review as a conference paper at ICLR 2018
GUARDING AGAINST ADVERSARIAL DOMAIN SHIFTS
WITH COUNTERFACTUAL REGULARIZATION
Anonymous authors
Paper under double-blind review"
c84233f854bbed17c22ba0df6048cbb1dd4d3248,Exploring Locally Rigid Discriminative Patches for Learning Relative Attributes,"Y. VERMA, C. V. JAWAHAR: EXPLORING PATCHES FOR RELATIVE ATTRIBUTES
Exploring Locally Rigid Discriminative
Patches for Learning Relative Attributes
Yashaswi Verma
http://researchweb.iiit.ac.in/~yashaswi.verma/
C. V. Jawahar
http://www.iiit.ac.in/~jawahar/
IIIT-Hyderabad, India
http://cvit.iiit.ac.in"
c840d85f6dce0fb69fb6113923f17e1e314c6134,Disparity Sliding Window: Object Proposals From Disparity Images,"Disparity Sliding Window: Object Proposals From Disparity Images
Julian M¨uller1, Andreas Fregin2 and Klaus Dietmayer1"
c8fc65c83473c633e2bf1c13031ccd10617cc8a2,Every Object Tells a Story,"Every Object Tells a Story
James Pustejovsky
Computer Science Department
Brandeis University
Waltham, MA 02453
Nikhil Krishnaswamy
Computer Science Department
Brandeis University
Waltham, MA 02453"
c896946612069f162864edfbecf5c1a8a077ed79,The Image Multi Feature Retrieval based on SVM Semantic Classification,"International Journal of Hybrid Information Technology
Vol.9, No.3 (2016), pp. 291-300
http://dx.doi.org/10.14257/ijhit.2016.9.3.27
The Image Multi Feature Retrieval based on SVM Semantic
Classification
Che Chang1,2*, Yu Xiaoyang1 and Bai Yamei3
. Measuring and Control Technology and Instrumentations,Harbin University of
Science and Technology, Harbin, China
. School of Engineering,Harbin University, Harbin, China
. School of  Electronic and Information Engineering,Harbin Huade University
Harbin, China
E-mail:"
c8ebe4c7d884c468d572a1ccf8583ac912215088,Emotion Dysregulation and Anxiety in Adults with ASD: Does Social Motivation Play a Role?,"J Autism Dev Disord
DOI 10.1007/s10803-015-2567-6
S . I . : A S D I N A D U L T H O O D : C O M O R B I D I T Y A N D I N T E R V E N T I O N
Emotion Dysregulation and Anxiety in Adults with ASD: Does
Social Motivation Play a Role?
Deanna Swain1
• Angela Scarpa1
• Susan White1
• Elizabeth Laugeson2
Ó Springer Science+Business Media New York 2015"
c8855bebdaa985dfc4c1a07e5f74a0e29787e47e,Multi-label Object Attribute Classification using a Convolutional Neural Network,"Multi-label Object Attribute Classification using
Convolutional Neural Network
Soubarna Banik, Mikko Lauri, Simone Frintrop
Department of Informatics, Universit¨at Hamburg"
c81ee278d27423fd16c1a114dcae486687ee27ff,Search Based Face Annotation Using Weakly Labeled Facial Images,"Search Based Face Annotation Using Weakly
Labeled Facial Images
Shital Shinde1, Archana Chaugule2
Computer Department, Savitribai Phule Pune University
D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18
Mahatma Phulenagar, 120/2 Mahaganpati soc, Chinchwad, Pune-19, MH, India
D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University
DYPIET, Pimpri, Pune-18, MH, India"
c867caf3f29abb2f3fd5c4c7e98e5f551a70be25,DeLS-3D: Deep Localization and Segmentation with a 3D Semantic Map,"DeLS-3D: Deep Localization and Segmentation with a 3D Semantic Map
Peng Wang, Ruigang Yang, Binbin Cao, Wei Xu, Yuanqing Lin
Baidu Research
National Engineering Laboratory for Deep Learning Technology and Applications
{wangpeng54, yangruigang, caobinbin, wei.xu,"
c81326a1ecb7e71ae38a665779b8d959d3938d1a,A Novel Neural Network Model Specified for Representing Logical Relations,"A Novel Neural Network Model Specified for Representing Logical
Relations
Gang Wang
With computers to handle more and more complicated things in variable environments, it becomes an urgent requirement that
the artificial intelligence has the ability of automatic judging and deciding according to numerous specific conditions so as to deal
with the complicated and variable cases. ANNs inspired by brain is a good candidate. However, most of current numeric ANNs are
not good at representing logical relations because these models still try to represent logical relations in the form of ratio based on
functional approximation. On the other hand, researchers have been trying to design novel neural network models to make neural
network model represent logical relations. In this work, a novel neural network model specified for representing logical relations is
proposed and applied. New neurons and multiple kinds of links are defined. Inhibitory links are introduced besides exciting links.
Different from current numeric ANNs, one end of an inhibitory link connects an exciting link rather than a neuron. Inhibitory
model can simulate the operations of Boolean logic gates, and construct complex logical relations with the advantages of simpler
neural network structures than recent works in this area. This work provides some ideas to make neural networks represent logical
relations more directly and efficiently, and the model could be used as the complement to current numeric ANN to deal with logical
issues and expand the application areas of ANN.
Index Terms—Brain-inspired computing, logical representation, neural network structure, inhibitory link.
I. INTRODUCTION
With computers to handle more and more complicated
things in variable environments like driverless car and ad-
vanced medical diagnosis expert system, higher artificial intel-"
c8ee4812c32b0ad4e26d53b99e1514514bbcaf14,A NEaT Design for Reliable and Scalable Network Stacks,"A NEaT Design for Reliable and Scalable
Network Stacks
Tomas Hruby
Cristiano Giuffrida
Lionel Sambuc
Herbert Bos
Andrew S. Tanenbaum
Vrije Universiteit Amsterdam"
c8bcd8e0b2ab6cc00a565efbcf904235c33ac2dc,Unsupervised Person Image Synthesis in Arbitrary Poses,"Unsupervised Person Image Synthesis in Arbitrary Poses
Albert Pumarola
Antonio Agudo
Alberto Sanfeliu
Francesc Moreno-Noguer
Institut de Rob`otica i Inform`atica Industrial (CSIC-UPC)
08028, Barcelona, Spain
Figure 1: Given an original image of a person (left) and a desired body pose defined by a 2D skeleton (bottom-row), our
model generates new photo-realistic images of the person under that pose (top-row). The main contribution of our work is to
train this generative model with unlabeled data."
c83a05de1b4b20f7cd7cd872863ba2e66ada4d3f,A Deep Learning Perspective on the Origin of Facial Expressions,"BREUER, KIMMEL: A DEEP LEARNING PERSPECTIVE ON FACIAL EXPRESSIONS
A Deep Learning Perspective on the Origin
of Facial Expressions
Ran Breuer
Ron Kimmel
Department of Computer Science
Technion - Israel Institute of Technology
Technion City, Haifa, Israel
Figure 1: Demonstration of the filter visualization process."
c8e32484bbbc63908080284790edafc4b66008d2,Suivi par ré-identification dans un réseau de caméras à champs disjoints,"Suivi par r´e-identification dans un r´eseau de cam´eras `a
hamps disjoints
Boris Meden, Patrick Sayd, Fr´ed´eric Lerasle
To cite this version:
Boris Meden, Patrick Sayd, Fr´ed´eric Lerasle. Suivi par r´e-identification dans un r´eseau de
am´eras `a champs disjoints. RFIA 2012 (Reconnaissance des Formes et Intelligence Artificielle),
Jan 2012, Lyon, France. pp.978-2-9539515-2-3, 2012.
HAL Id: hal-00656507
https://hal.archives-ouvertes.fr/hal-00656507
Submitted on 17 Jan 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
c813413fc84be33d7c4ccdd4a1f025ccc73a77bd,Discriminative Bayesian Active Shape Models,"Discriminative Bayesian Active Shape Models
Pedro Martins, Rui Caseiro, Jo˜ao F. Henriques, Jorge Batista
Institute of Systems and Robotics - University of Coimbra, Portugal"
c81b303005459285a5864ea4de71f77025cd5be5,Norm-Induced Entropies for Decision Forests,"Norm-induced entropies for decision forests
Christoph Lassner
Rainer Lienhart
Multimedia Computing and Computer Vision Lab, University of Augsburg"
c8adbe00b5661ab9b3726d01c6842c0d72c8d997,Deep Architectures for Face Attributes,"Deep Architectures for Face Attributes
Tobi Baumgartner, Jack Culpepper
Computer Vision and Machine Learning Group, Flickr, Yahoo,
{tobi,"
fb04a8cb4b573d6b565a5b0c369d775e6bfb04f1,Title of dissertation : LOOKING AT PEOPLE USING PARTIAL LEAST SQUARES,
fb4c3b2f893baa1fbf8d16da2e09aa9868c61a7a,Decoupled Weight Decay Regularization,"Under review as a conference paper at ICLR 2019
DECOUPLED WEIGHT DECAY REGULARIZATION
Anonymous authors
Paper under double-blind review"
fb4545782d9df65d484009558e1824538030bbb1,"Learning Visual Patterns: Imposing Order on Objects, Trajectories and Networks",
fbbccf0454c84bea1fd5c5a1dcd9fd7bba301a44,Face Detection Using Gradient Vector Flow,"Proceedings of  the Second International Conference on Machine Learning and Cybernetics, Wan, 2-5 November 2003
FACE DETECTION USING GRADIENT VECTOR FLOW
MAYANK VATSA,  RICHA SINCH, P. GUPTA
Department of Computer Science & Engineering Indian Institute of Technology Kanpur
Kanpur INDIA, 208016
E-MAIL: (mayankv, richas, pg} cse.iitk.ac.in"
fbf196d83a41d57dfe577b3a54b1b7fa06666e3b,Extreme Learning Machine for Large-Scale Action Recognition,"Extreme Learning Machine for Large-Scale
Action Recognition
G¨ul Varol and Albert Ali Salah
Department of Computer Engineering, Bo˘gazi¸ci University, Turkey"
fbd7d591e6eecb9a947e377d5b1a865a9f86a11f,Consensual and Privacy-Preserving Sharing of Multi-Subject and Interdependent Data,"Consensual and Privacy-Preserving Sharing of
Multi-Subject and Interdependent Data
Alexandra-Mihaela Olteanu
EPFL, UNIL–HEC Lausanne
K´evin Huguenin
UNIL–HEC Lausanne
Italo Dacosta
Jean-Pierre Hubaux"
fb3af250a2ff85145519fea9ece7187452d02a50,The WILDTRACK Multi-Camera Person Dataset,"The WILDTRACK Multi-Camera Person
Dataset
Tatjana Chavdarova1, Pierre Baqu´e2, St´ephane Bouquet2,
Andrii Maksai2, Cijo Jose1, Louis Lettry3,
Pascal Fua2, Luc Van Gool3 and Fran¸cois Fleuret1
Machine Learning group, Idiap Research Institute & ´Ecole
Polytechnique F´ed´erale de Lausanne
CVLab, ´Ecole Polytechnique F´ed´erale de Lausanne
Computer Vision Lab, ETH Zurich"
fbd781143a3f4c9d03c227cfbd1f528d658195ce,A Gender Recognition Experiment on the CASIA Gait Database Dealing with Its Imbalanced Nature,"A GENDER RECOGNITION EXPERIMENT ON THE CASIA GAIT
DATABASE DEALING WITH ITS IMBALANCED NATURE
Ra´ul Mart´ın-F´elez, Ram´on A. Mollineda and J. Salvador S´anchez
Institute of New Imaging Technologies (INIT) and Dept. Llenguatges i Sistemes Inform`atics
Universitat Jaume I. Av. Sos Baynat s/n, 12071, Castell´o de la Plana, Spain
{martinr, mollined,
Keywords:
Gender recognition, Gait analysis, Class imbalance problem, Human silhouette, Appearance-based method."
fbd047862ea869973ecf8fc35ae090ca00ff06d8,Literature review of fingerprint quality assessment and its evaluation,"A Literature Review of Fingerprint Quality Assessment
nd Its Evaluation
Zhigang Yao, Jean-Marie Le Bars, Christophe Charrier, Christophe
Rosenberger
To cite this version:
Zhigang Yao, Jean-Marie Le Bars, Christophe Charrier, Christophe Rosenberger. A Literature Review
of Fingerprint Quality Assessment and Its Evaluation.
IET journal on Biometrics, 2016. <hal-
01269240>
HAL Id: hal-01269240
https://hal.archives-ouvertes.fr/hal-01269240
Submitted on 5 Feb 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents"
fbb6e707c8a5f189d8ad416597e23671b884448b,Altered gaze following during live interaction in infants at risk for autism: an eye tracking study,"Thorup et al. Molecular Autism  (2016) 7:12
DOI 10.1186/s13229-016-0069-9
R ES EAR CH
Altered gaze following during live
interaction in infants at risk for autism:
n eye tracking study
Emilia Thorup1*, Pär Nyström1, Gustaf Gredebäck1, Sven Bölte3,2, Terje Falck-Ytter3,1 and The EASE Team
Open Access"
fb95fb1e0bf99347a69f76c9fd65e039024e73b7,Photograph Based Pair-matching Recognition of Human Faces,"World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:5, No:12, 2011
Photograph Base
sed Pair-matching Recogn
gnition of
Human Faces
Min Y
n Yao, Kota Aoki, and Hiroshi Nagahashi
(cid:1)"
fbc93b13b8a6a5e4ed11310ce4da3be0b7541da8,Real-time Pedestrian Detection in a Truck's Blind Spot Camera,"Real-time pedestrian detection in a truck’s blind spot camera
Kristof Van Beeck1,2 and Toon Goedem´e1,2
EAVISE, Campus De Nayer - KU Leuven, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
ESAT-PSI, KU Leuven, Kasteel Arenbergpark 10, 3100 Heverlee, Belgium
{kristof.vanbeeck,
Keywords:
Pedestrian detection, Tracking, Real-time, Computer vision, Active safety systems"
fbf20dc3367864462d7630aad81c436e50d1cd60,Iterative Bayesian Learning for Crowdsourced Regression,"Iterative Bayesian Learning for Crowdsourced Regression
Jungseul Ok∗, Sewoong Oh∗, Yunhun Jang †, Jinwoo Shin†, and Yung Yi†
October 9, 2018"
fbb304770d33f44006d134906481208ad087ce63,Visual Self-Localization with Tiny Images,"Visual Self-Localization with Tiny Images
Marius Hofmeister, Sara Erhard and Andreas Zell
University of T¨ubingen, Department of Computer Science, Sand 1, 72076 T¨ubingen"
fbd17af24e86fe487e28f99ba3e402dd6cfcd16a,Towards Detailed Recognition of Visual Categories,"Research Statement: Towards Detailed Recognition of Visual Categories
Subhransu Maji
As humans, we have a remarkable ability to perceive the world around us in minute detail purely
from the light that is reflected off it – we can estimate material and metric properties of objects, localize
people in images, describe what they are doing, and even identify them. Automatic methods for such
detailed recognition of images are essential for most human-centric applications and large scale analysis
of the content of media collections for market research, advertisement, and social studies. For example,
in order to shop for shoes in an on-line catalogue, a system should be able to understand the style of a
shoe, the length of its heels, or the shininess of its material. In order to support visual demographics
nalysis for advertisement, a system should be able to not only identify the people in a scene, but also
to understand what kind (style and brand) of clothes they are wearing, whether they are wearing any
ccessories, and so on.
Despite several successes, such detailed recognition is beyond the current computer vision systems.
This is a challenging task, and to make progress we have to make advances on several fronts. We need
etter representations of visual categories that can enable fine-grained reasoning about their properties,
s well as machine learning methods that can leverage ‘big-data’ to learn such representations. In order
to enable benchmarks for evaluating recognition tasks and to guide learning and inference in models
that solve challenging problems, we need to develop better ways of human-computer interaction. My
research touches upon several such themes in the intersection of computer vision, machine learning, and
human-computer interaction including:"
fba464cb8e3eff455fe80e8fb6d3547768efba2f,Survey Paper on Emotion Recognition,"International Journal of Engineering and Applied Sciences (IJEAS)
ISSN: 2394-3661, Volume-3, Issue-2, February 2016
Survey Paper on Emotion Recognition
Prachi Shukla, Sandeep Patil"
fb66546a16751810754430286fe4c636e4411ca4,Complementary feature sets for optimal face recognition,"Singh et al. EURASIP Journal on Image and Video Processing 2014, 2014:35
http://jivp.eurasipjournals.com/content/2014/1/35
R ES EAR CH
Complementary feature sets for optimal face
recognition
Chandan Singh1, Neerja Mittal2* and Ekta Walia3
Open Access"
fb2379346def4846ac24bc41349e7cac7c1e7243,ClusterNet: 3D Instance Segmentation in RGB-D Images,"ClusterNet: 3D Instance Segmentation in RGB-D Images
Lin Shao, Ye Tian, and Jeannette Bohg"
fbb9cdd699baf86e9d616b259ada02449c2322ca,Active Testing: An Efficient and Robust Framework for Estimating Accuracy,"Active Testing: An Efficient and Robust Framework for Estimating Accuracy.
Phuc Nguyen 1 Deva Ramanan 2 Charless Fowlkes 1"
fb748a6953e72ad6d508109f8d809c25570ff07b,"The ""Eye Avoidance"" Hypothesis of Autism Face Processing.","NIH Public Access
Author Manuscript
J Autism Dev Disord. Author manuscript; available in PMC 2015 April 23.
The “eye avoidance” hypothesis of autism face processing
James W. Tanaka1 and Andrew Sung2
Department of Psychology, University of Victoria, British Columbia
Department of Special Education and Leadership Studies, University of Victoria, British
Columbia"
fb1732a1476798c42a0123aaf127036bf8daef09,LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone,"Article
LightDenseYOLO: A Fast and Accurate Marker
Tracker for Autonomous UAV Landing by Visible
Light Camera Sensor on Drone
Phong Ha Nguyen, Muhammad Arsalan, Ja Hyung Koo, Rizwan Ali Naqvi, Noi Quang Truong
nd Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul
00-715, Korea; (P.H.N.); (M.A.); (J.H.K.);
(R.A.N.); (N.Q.T.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 3 May 2018; Accepted: 22 May 2018; Published: 24 May 2018"
fbb2f81fc00ee0f257d4aa79bbef8cad5000ac59,Reading Hidden Emotions: Spontaneous Micro-expression Spotting and Recognition,"Reading Hidden Emotions: Spontaneous
Micro-expression Spotting and Recognition
Xiaobai Li, Student Member, IEEE, Xiaopeng Hong, Member, IEEE, Antti Moilanen, Xiaohua Huang, Student
Member, IEEE, Tomas Pfister, Guoying Zhao, Senior Member, IEEE, and Matti Pietik¨ainen, Fellow, IEEE"
fb82681ac5d3487bd8e52dbb3d1fa220eeac855e,1 Network Notebook,"CONNECTIONS
VOLUME IV, NUMBER 2
Summer 1981
CONTENTS
NETWORK NOTEBOOK
MEETING CALENDAR
RESEARCH REPORTS
Social Networks :
A Beginner's Bookshelf
Linton C . Freeman (California-Irvine)
Summary of Research on Informant Accuracy in Network Data,
nd on the Reverse Small World Problem
H . Russell Bernard (Florida), Peter D . Killworth (Cambridge)
& Lee Sailer (Pittsburgh)
Russell's Paradox (Part II)
Linton C . Freeman (California-Irvine)
Goedel's Spoof :
A Reply to Freeman
Peter D . Killworth (Cambridge) & H . Russell Bernard (Florida)
The Norwegian Connection :"
fb76adeff0309ff4c8de4d0b413a8e3a637774d0,client2vec: Towards Systematic Baselines for Banking Applications,"lient2vec: Towards Systematic Baselines for Banking
Applications
Leonardo Baldassini
BBVA Data & Analytics
Jose Antonio Rodr´ıguez Serrano
BBVA Data & Analytics"
fb9ad920809669c1b1455cc26dbd900d8e719e61,3 D Gaze Estimation from Remote RGB-D Sensors THÈSE,"D Gaze Estimation from Remote RGB-D Sensors
THÈSE NO 6680 (2015)
PRÉSENTÉE LE 9 OCTOBRE 2015
À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE L'IDIAP
PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES
Kenneth Alberto FUNES MORA
cceptée sur proposition du jury:
Prof. K. Aminian, président du jury
Dr J.-M. Odobez,   directeur de thèse
Prof. L.-Ph. Morency, rapporteur
Prof. D. Witzner Hansen, rapporteur
Dr R. Boulic, rapporteur
Suisse"
ed28e8367fcb7df7e51963add9e2d85b46e2d5d6,A Novel Approach of Face Recognition Using Convolutional Neural Networks with Auto Encoder,"International J. of Engg. Research & Indu. Appls. (IJERIA).
ISSN 0974-1518, Vol.9, No. III (December 2016), pp.23-42
A NOVEL APPROACH OF FACE RECOGNITION USING
CONVOLUTIONAL NEURAL  NETWORKS WITH AUTO
ENCODER
T. SYED AKHEEL1 AND DR. S. A. K JILANI2
Research Scholar, Dept. of Electronics & Communication Engineering,
Rayalaseema University Kurnool, Andhra Pradesh.
2 Research Supervisor, Professor, Dept. of Electronics & Communication Engineering,
Madanapalle Institute of Technology & Science, Madanapalle, Andhra Pradesh."
ed732b3a1f8fe733686a35688b090f426d018f9b,Dual-Process Theories in Social Cognitive Neuroscience,"This article was originally published in Brain Mapping: An Encyclopedic
Reference, published by Elsevier, and the attached copy is provided by
Elsevier for the author's benefit and for the benefit of the author's institution,
for non-commercial research and educational use including without limitation
use in instruction at your institution, sending it to specific colleagues who you
know, and providing a copy to your institution’s administrator.
All other uses, reproduction and distribution, including without limitation
ommercial reprints, selling or licensing copies or access, or posting on open
internet sites, your personal or institution’s website or repository, are
prohibited. For exceptions, permission may be sought for such use through
Elsevier's permissions site at:
http://www.elsevier.com/locate/permissionusematerial
Spunt R.P. (2015) Dual-Process Theories in Social Cognitive Neuroscience. In:
Arthur W. Toga, editor. Brain Mapping: An Encyclopedic Reference, vol. 3, pp.
11-215. Academic Press: Elsevier."
ed6003db58b67f1dfac654868b437efcef6e2ccb,Restricted Isometry Property of Gaussian Random Projection for Finite Set of Subspaces,"Restricted Isometry Property of Gaussian Random Projection
for Finite Set of Subspaces
Gen Li and Yuantao Gu∗
submitted April 7, 2017, revised August 11, 2017, accepted November 8, 2017"
ed9967868fcca2ec38402d2bb3e6946b8e554472,Efficient Eye Location for Biomedical Imaging using Two-level Classifier Scheme,"International Journal of Control, Automation, and Systems, vol. 6, no. 6, pp. 828-835, December 2008
Efficient Eye Location for Biomedical Imaging using Two-level Classifier
Scheme
Mi Young Nam, Xi Wang, and Phill Kyu Rhee*"
edc5c359ed0fc24a3e85628f57fde59cd9b26dd4,Search Space Optimization and False Alarm Rejection Face Detection Framework,"Journal of Theoretical and Applied Information Technology
30th September 2015. Vol.79. No.3
© 2005 - 2015 JATIT & LLS. All rights reserved.
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195
SEARCH SPACE OPTIMIZATION AND FALSE ALARM
REJECTION FACE DETECTION FRAMEWORK
ALI SHARIFARA, 2MOHD SHAFRY MOHD RAHIM, 3 HAMED SAYYADI,
FARHAD NAVABIFAR
,2, Department of Computer Graphics and Multimedia, Faculty of Computing University Technology
Malaysia (UTM).81310 Skudai Johor, Malaysia.
Department of Computer Systems and Communications, Faculty of Computing University Technology
Malaysia (UTM), 81310 Skudai Johor, Malaysia.
Department of Computer Engineering Mobarakeh Branch-Islamic Azad University, Mobarakeh, Esfahan,
E-mail:
Iran."
ed07fa6df6a8fc27015d25717c9f730dc9eede84,of the 19 th Workshop on the Semantics and Pragmatics of Dialogue,"SEMDIAL 2015
goDIAL
Proceedings of the 19th Workshop on
the Semantics and Pragmatics of Dialogue
Christine Howes and Staffan Larsson (eds.)
Gothenburg, 24–26 August 2015"
ed08ac6da6f8ead590b390b1d14e8a9b97370794,An Efficient Approach for 3D Face Recognition Using ANN Based Classifiers,"ISSN(Online): 2320-9801
ISSN (Print):  2320-9798
International Journal of Innovative Research in Computer
nd Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol. 3, Issue 9, September 2015
An Efficient Approach for 3D Face
Recognition Using ANN Based Classifiers
Vaibhav M. Pathak1, Suhas S.Satonkar2, Dr.Prakash B.Khanale3
Assistant Professor, Dept. of C.S., Shri Shivaji College, Parbhani, M.S, India1
Assistant Professor, Dept. of C.S., Arts, Commerce and Science College, Gangakhed, M.S, India2
Associate Professor, Dept. of C.S., Dnyanopasak College Parbhani, M.S, India3"
ed3c4d2d28faaccbaef876a7daaecc3cccadb48f,3D Human Pose Estimation from a Single Image via Distance Matrix Regression,"D Human Pose Estimation from a Single Image via Distance Matrix Regression
Institut de Rob`otica i Inform`atica Industrial (CSIC-UPC), 08028, Barcelona, Spain
Francesc Moreno-Noguer"
edf074a5eb3a1f71cc710ccc42849dceb27e3531,Towards real-time unsupervised monocular depth estimation on CPU,"Towards real-time unsupervised monocular depth estimation on CPU
Matteo Poggi1, Filippo Aleotti2, Fabio Tosi1, Stefano Mattoccia1"
ed6801362ab442097e7f753f163b9e9c0584b257,Learning Based 2D to 3D Conversion with Input Image Denoising,"International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 – 0882
Volume 4, Issue 5, May 2015
Learning Based 2D to 3D Conversion with Input Image Denoising
Divya K.P.1, Sneha K.2, Nafla C.N.3
(Department of CSE, RCET, Akkikkvu, Thrissur)
(Asst. Professor, Department of CSE, RCET, Akkikkvu, Thrissur)
(Department of CSE, RCET, Akkikkvu, Thrissur)"
edef98d2b021464576d8d28690d29f5431fd5828,Pixel-Level Alignment of Facial Images for High Accuracy Recognition Using Ensemble of Patches,"Pixel-Level Alignment of Facial Images
for High Accuracy Recognition
Using Ensemble of Patches
Hoda Mohammadzade, Amirhossein Sayyafan, Benyamin Ghojogh"
ed38d22cd5558d1abb40b477027d52ff7b6d09db,Title of thesis : SIMULTANEOUS MULTI - VIEW FACE TRACKING AND RECOGNITION IN VIDEO USING PARTICLE FILTERING,
edceeaa885f3eb29761580095059f8a34be8408b,SitNet: Discrete Similarity Transfer Network for Zero-shot Hashing,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
ModelSimilar?Figure1:Zero-shothashing.Thehashingmodeltrainedwithseenconceptsshouldgeneralizewellontheunseenconcepts.supervisedhashinglikeSupervisedDiscreteHashing[Shenetal.,2015a].Withthesupervisedinformationlikesemanticsimilaritymatrixorclasslabels,thesupervisedapproachesachievesuperiorretrievalperformancebecausetheintrinsicsemanticpropertyinthedataisbetterexplored.Recentlythedeepconvolutionalneuralnetwork(CN-N)hasachievedgreatsuccessinmanycomputervisiontasks,likeimageclassification[Heetal.,2016]andfacerecognition[Wenetal.,2016].InspiredbyCNN’spower-fulfeatureextractionability,someworkshaveattemptedtobuildhashingmodelsbasedonCNN[Laietal.,2015;Liuetal.,2016;Xiaetal.,2014]haveappeared.Theyre-quirethehashcodesproducedbythelastfullyconnectedlay-ertopreservethesimilaritygivenbythesupervisedinfor-mation.ItisdemonstratedthattheimageretrievalaccuracyissignificantlyimprovedbyCNN-basedhashingapproachescomparedwiththenon-CNNones[Liuetal.,2016].Itshouldbenoticedthattheexistinghashingapproachesmainlyfocusontheclose-setretrieval,i.e.,theconceptsofpossibletestingsamples(bothdatabasesamplesandquerysamples)arewithinthetrainingset.However,theexplosivegrowthofWebimagesviolatesthissettingbecausethenewconceptsabouttheimagesmayemergerapidly.Itisexpen-sivetoannotatesufficienttrainingdataforthenewconcept-stimely,andalso,impracticaltoretrainthehashingmodelwhereastheretrievalsystemmeetsanewconcept.Asillus-tratedinFigure1,theexistingapproachesperformwellontheseenconceptsbecausetheyaregivencorrectguidance,buttheymayeasilyfailontheunseenconceptsthattheynev-ermeetbeforesuchasthe“dicycle”whichisakindofvehicle"
edcf668846a3aaf55120aef0c806854936208b3d,Human Recognition in RGBD Combining Object Detectors and Conditional Random Fields,
ed90a9d379f6412a1580e7eda5cb91640000dc42,Highly Efficient 8-bit Low Precision Inference of Convolutional Neural Networks with IntelCaffe,"Highly Efficient 8-bit Low Precision Inference of
Convolutional Neural Networks with IntelCaffe
Jiong Gong, Haihao Shen, Guoming Zhang, Xiaoli Liu, Shane Li, Ge Jin, Niharika Maheshwari,
Evarist Fomenko, Eden Segal
{jiong.gong, haihao.shen, guoming.zhang, xiaoli.liu, li.shane, ge.jin, niharika.maheshwari, evarist.m.fomenko,
Intel Corporation"
ed5519a03f52e47047079da2e0c480eb8c4a9805,An Evaluation of Trajectory Prediction Approaches and Notes on the TrajNet Benchmark,"An Evaluation of Trajectory Prediction Approaches and
Notes on the TrajNet Benchmark.
Stefan Becker ∗, Ronny Hug ∗, Wolfgang H¨ubner and Michael Arens
Fraunhofer Institute for Optronics, System Technologies, and Image Exploitation IOSB
Gutleuthausstr. 1, 76275 Ettlingen, Germany"
eda20a2f33d0f6db44a2e7d060efad3caa6621e0,"Classification with Global, Local and Shared Features","Classification with Global, Local and Shared
Features
Hakan Bilen1, Vinay P. Namboodiri2, Luc J. Van Gool1,3
ESAT-PSI/IBBT,VISICS/KU Leuven, Belgium
Alcatel-Lucent Bell Labs, Antwerp, Belgium
Computer Vision Laboratory, BIWI/ETH Z¨urich, Switzerland"
ed04e161c953d345bcf5b910991d7566f7c486f7,Mirror my emotions! Combining facial expression analysis and synthesis on a robot,"Combining facial expression analysis and synthesis on a
Mirror my emotions!
robot
Stefan Sosnowski1 and Christoph Mayer2 and Kolja K¨uhnlenz3 and Bernd Radig4"
edbfbcebb14234b438d90d6dcd9b667e9071952d,Learning Fashion Compatibility with Bidirectional LSTMs,"A.B.C.D.?Task 1: Fill in the blankTask 2: Outfit generation given texts or imagesWhat to dress for a biz meeting?(a)(b)Task 3: Compatibility predictionScore: 0.7Figure1:Wefocusonthreetasksoffashionrecommenda-tion.Task1:recommendingafashionitemthatmatchesthestyleofanexistingset.Task2:generatinganoutfitbasedonusers’text/imageinputs.Task3:predictingthecompatibil-ityofanoutfit.conductedonautomaticfashionanalysisinthemultimediacom-munity.However,mostofthemfocusonclothingparsing[9,26],clothingrecognition[12],orclothingretrieval[10].Although,thereareafewworksthatinvestigatedfashionrecommendation[6,8,10],theyeitherfailtoconsiderthecompositionofitemstoformanout-fit[10]oronlysupportoneofthetworecommendationcategoriesdiscussedabove[6,8].Inaddition,itisdesirablethatrecommenda-tionscantakemultimodalinputsfromusers.Forexample,ausercanprovidekeywordslike“business”,oranimageofabusinessshirt,oracombinationofimagesandtext,togenerateacollec-tionoffashionitemsforabusinessoccasion.However,nopriorapproachsupportsmultimodalinputsforrecommendation.Keytofashionrecommendationismodelingthecompatibilityoffashionitems.Wecontendthatacompatibleoutfit(asshowninFigure3)shouldhavetwokeyproperties:(1)itemsintheout-fitshouldbevisuallycompatibleandsharesimilarstyle;(2)these"
ed2420d0fc7087d61633bd9a5b2907d1c2de1810,Facial symmetry evaluation from high – density scanned data,
eddb1a126eafecad2cead01c6c3bb4b88120d78a,Applications of a Graph Theoretic Based Clustering Framework in Computer Vision and Pattern Recognition,"DEPARTMENT DESIGN AND PLANNING IN COMPLEX ENVIRONMENTS
DOTTORATO DI RICERCA IN NUOVE TECNOLOGIE, INFORMAZIONE TERRITORIO E
UNIVERSIT‘A IUAV DI VENEZIA
AMBIENTE, XXX CICLO
APPLICATIONS OF A GRAPH THEORETIC BASED
CLUSTERING FRAMEWORK IN COMPUTER VISION AND
PATTERN RECOGNITION
Doctoral Dissertation of:
Yonatan Tariku Tesfaye
Supervisor:
Prof. Andrea Prati
The Chair of the Doctoral Program:
Prof. Fabio Peron"
ed6a47f0e2e621d8420082ba1d0078189d76352f,3d Facial Expression Intensity Measurement Analysis,"Proceedings of the 6th International Conference on Computing and Informatics, ICOCI 2017
5-27April, 2017 Kuala Lumpur. Universiti Utara Malaysia (http://www.uum.edu.my )
Paper No.
How to cite this paper:
Alicia Cheong Chiek Ying, Hamimah Ujir, & Irwandi Hipiny. (2017). 3D facial expression intensity measurement
nalysis in Zulikha, J. & N. H. Zakaria (Eds.), Proceedings of the 6th International Conference of Computing &
Informatics (pp 43-48). Sintok: School of Computing.
D FACIAL EXPRESSION INTENSITY MEASUREMENT
ANALYSIS
Alicia Cheong Chiek Ying1, Hamimah Ujir2and Irwandi Hipiny3
Sarawak Information Systems Sdn. Bhd. (SAINS),
Universiti Malaysia Sarawak,
Universiti Malaysia Sarawak,"
ed02b45d05e58803596891d660837c21be70a0af,Entity type modeling for multi-document summarization : generating descriptive summaries of geo-located entities,"Entity Type Modeling for Multi-Document
Summarization: Generating Descriptive Summaries of
Geo-Located Entities
Ahmet Aker
A thesis submitted in fulfilment of requirements for the degree of
Doctor of Philosophy
Department of Computer Science
University of Sheffield
November 2013"
c1d2d12ade031d57f8d6a0333cbe8a772d752e01,Convex optimization techniques for the efficient recovery of a sparsely corrupted low-rank matrix,"Journal of Math-for-Industry, Vol.2(2010B-5), pp.147–156
Convex optimization techniques for the ef‌f‌icient recovery of a sparsely
orrupted low-rank matrix
Silvia Gandy and Isao Yamada
Received on August 10, 2010 / Revised on August 31, 2010"
c1c34a3ab7815af1b9bcaf2822e4b9da8505f915,Image transmorphing with JPEG,"IMAGE TRANSMORPHING WITH JPEG
Lin Yuan and Touradj Ebrahimi
Multimedia Signal Processing Group, EPFL, Lausanne, Switzerland"
c158009b33989c6677f1daa3f5926887c9471c5e,Controlling Complex Systems and Developing Dynamic Technology,"Electronic Thesis and Dissertations
Peer Reviewed
Title:
Controlling Complex Systems and Developing Dynamic Technology
Author:
Avizienis, Audrius Victor
Acceptance Date:
Series:
UCLA Electronic Theses and Dissertations
Degree:
Ph.D., Chemistry 0153UCLA
Advisor(s):
Gimzewski, James K
Committee:
Kodambaka, Suneel, Baugh, Delroy A
Permalink:
https://escholarship.org/uc/item/35c10822"
c18d80d00f2a7107bfe780eeec21b51a634ea925,Computational perspectives on the other-race effect,"This article was downloaded by: [The University of Texas at Dallas], [Alice
O'Toole]
On: 25 July 2013, At: 12:46
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,
Visual Cognition
Publication details, including instructions for authors
nd subscription information:
http://www.tandfonline.com/loi/pvis20
Computational perspectives on
the other-race effect
Alice J. O'Toole a & Vaidehi Natu a
School of Behavioural and Brain Sciences , University
of Texas at Dallas , Richardson , TX , USA
Published online: 14 Jun 2013.
To cite this article: Visual Cognition (2013): Computational perspectives on the other-
race effect, Visual Cognition, DOI: 10.1080/13506285.2013.803505
To link to this article:  http://dx.doi.org/10.1080/13506285.2013.803505
PLEASE SCROLL DOWN FOR ARTICLE"
c19ed5102ecd953d5c78d5a0b87eaa51658e07d8,Recovering Accurate 3D Human Pose in the Wild Using IMUs and a Moving Camera,"Recovering Accurate 3D Human Pose in The
Wild Using IMUs and a Moving Camera
Timo von Marcard1, Roberto Henschel1, Michael J. Black2, Bodo Rosenhahn1,
nd Gerard Pons-Moll3
Leibniz Universit¨at Hannover, Germany
MPI for Intelligent Systems, T¨ubingen, Germany
MPI for Informatics, Saarland Informatics Campus, Germany"
c1b2668186fcd01b3c0e93a9a0a68e3eb88a09ab,Eliminating the Blind Spot: Adapting 3D Object Detection and Monocular Depth Estimation to 360 ^\circ ∘ Panoramic Imagery,"Eliminating the Blind Spot: Adapting 3D Object
Detection and Monocular Depth Estimation to
60◦ Panoramic Imagery
Gr´egoire Payen de La Garanderie, Amir Atapour Abarghouei,
nd Toby P. Breckon
Department of Computer Science
Durham University"
c1c8ea4b2118095bea55cf6b51c36dbf95cc7f2c,Learning 3D Segment Descriptors for Place Recognition,"Learning 3D Segment Descriptors for Place Recognition
Andrei Cramariuc
Renaud Dubé
Hannes Sommer
Roland Siegwart
Igor Gilitschenski∗"
c160bcbc8f0517a97e46042c84343bf3f0477478,A Dynamic Approach and a New Dataset for Hand-detection in First Person Vision,"A Dynamic Approach and a New Dataset for
Hand-Detection in First Person Vision.
Alejandro Betancourt1,2, Pietro Morerio1, Emilia I. Barakova2, Lucio Marcenaro1,
Matthias Rauterberg2, Carlo S. Regazzoni1
Department of Naval, Electric, Electronic and Telecommunications Engineering - University
Designed Intelligence Group, Department of Industrial Design - Eindhoven University of
Technology, The Netherlands.
of Genoa, Italy."
c165003060eeb01e05800a5ee4cd327f1e0bf5e3,SDC-Net: Video Prediction Using Spatially-Displaced Convolution,"SDC-Net: Video prediction using
spatially-displaced convolution
Fitsum A. Reda, Guilin Liu, Kevin J. Shih, Robert Kirby, Jon Barker,
David Tarjan, Andrew Tao, and Bryan Catanzaro
Nvidia Corporation, Santa Clara CA 95051, USA
Fig. 1. Frame prediction on a YouTube video frame featuring a panning camera. Left
to right: Ground-truth, MCNet [34] result, and our SDC-Net result. The SDC-Net
predicted frame is sharper and preserves fine image details, while color distortion and
lurriness is seen in the tree and text in MCNet’s predicted frame."
c19845c84abc9e3afe17003fdcd545ed020d0624,A face biometric benchmarking review and characterisation,"A Face Biometric
Benchmarking Review and
Characterisation
Sandra Mau
Senior Research Engineer
NICTA Advanced Surveillance
BeFIT workshop – ICCV 2011"
c10a15e52c85654db9c9343ae1dd892a2ac4a279,Learning the Relative Importance of Objects from Tagged Images for Retrieval and Cross-Modal Search,"Int J Comput Vis (2012) 100:134–153
DOI 10.1007/s11263-011-0494-3
Learning the Relative Importance of Objects from Tagged Images
for Retrieval and Cross-Modal Search
Sung Ju Hwang · Kristen Grauman
Received: 16 December 2010 / Accepted: 23 August 2011 / Published online: 18 October 2011
© Springer Science+Business Media, LLC 2011"
c1059a702f53c44bb26d3313964e811adf01d9b4,Low and mid-level features for target detection in satellite images,"ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)
Volume 2, Issue 2, February 2013
Low and mid-level features for target detection in satellite images
Rajani.D.C"
c1bbcdf3b5901e3378a89808b07e53a502c295f0,Allostasis and the human brain: Integrating models of stress from the social and life sciences.,"Psychol Rev. Author manuscript; available in PMC 2011 January 1.
Published in final edited form as:
Psychol Rev. 2010 January; 117(1): 134–174.
doi:  10.1037/a0017773
Allostasis and the human brain: Integrating models of stress from the social and life sciences
Barbara L. Ganzel, Pamela A. Morris, and Elaine Wethington
Author information ► Copyright and License information ►
The publisher's final edited version of this article is available at Psychol Rev
See other articles in PMC that cite the published article."
c1dfabe36a4db26bf378417985a6aacb0f769735,Describing Visual Scene through EigenMaps,"Journal of Computer Vision and Image Processing, NWPJ-201109-50
Describing Visual Scene through EigenMaps
Shizhi Chen, Student Member, IEEE, and YingLi Tian, Senior Member, IEEE"
c175381a6b84ebd0a920ff44ccdccabd98bdfb94,Paper on Retrieval Magnets for Facial Duplication by Search Based Face Annotation,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358
A Review Paper on Retrieval Magnets for Facial
Duplication by Search Based Face Annotation
Deepika B. Patil1, Ayesha Butalia 2
P.G. Student, Department of Computer Engineering, GMRCEM, Wagholi, Pune, India,
Professor, Department of Computer Engineering, GMRCEM, Wagholi, Pune, India,"
c1ff88493721af1940df0d00bcfeefaa14f1711f,Subspace Regression: Predicting a Subspace from one Sample,"#1369
CVPR 2010 Submission #1369. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
#1369
Subspace Regression: Predicting a Subspace from one Sample
Anonymous CVPR submission
Paper ID 1369"
c1100efda7c00d3181a6a065ab1474c2f864e267,Video visual analytics,"Video Visual Analytics
Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart
genehmigte Abhandlung
zur Erlangung der Würde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)
Vorgelegt von
Markus Johannes Höferlin
us Herrenberg
Hauptberichter: Prof. Dr. Daniel Weiskopf
Mitberichter:
Prof. Dr. Gunther Heidemann
Prof. Min Chen, BSc, PhD, FBCS, FEG, FLSW
Tag der mündlichen Prüfung: 27. Mai 2013
Visualisierungsinstitut
der Universität Stuttgart"
c132a6e869cd171e403784c172961471733dce31,In-vehicle Pedestrian Detection Using Stereo Vision Technology,"IN-VEHICLE PEDESTRIAN DETECTION USING STEREO VISION
TECHNOLOGY
Wei Zhang, Ph.D., P.E.
Highway Research Engineer, Office of Safety Research & Development, HRDS-10
Federal Highway Administration
6300 Georgetown Pike, McLean, VA 22101, USA, e-mail:
Submitted to the 3rd International Conference on Road Safety and Simulation, September 14-16,
011, Indianapolis, USA"
c16bae6b2e578df2cba8e436e02bdeda281c2743,Tensor Discriminant Color Space for Face Recognition,"Tensor Discriminant Color Space for Face
Recognition
Su-Jing Wang, Jian Yang, Member, IEEE, Na Zhang, and Chun-Guang Zhou*"
c11eb653746afa8148dc9153780a4584ea529d28,Global and Local Consistent Wavelet-domain Age Synthesis,"Global and Local Consistent Wavelet-domain Age
Synthesis
Peipei Li†, Yibo Hu†, Ran He Member, IEEE and Zhenan Sun Member, IEEE"
c1b971cd7263e788e114cf8c4aa076a2e170990f,Establishing the fundamentals for an elephant early warning and monitoring system,"Establishing the fundamentals for an elephant
early warning and monitoring system
Zeppelzauer and Stoeger
Zeppelzauer and Stoeger  BMC Res Notes  (2015) 8:409
DOI 10.1186/s13104-015-1370-y"
c1ebbdb47cb6a0ed49c4d1cf39d7565060e6a7ee,Robust Facial Landmark Localization Based on Texture and Pose Correlated Initialization,"Robust Facial Landmark Localization Based on
Yiyun Pan, Junwei Zhou, Member, IEEE, Yongsheng Gao, Senior Member, IEEE, Shengwu Xiong"
c175f1666f3444e407660c5935a05b2a53f346f0,Modifying the Memorability of Face,"Modifying the Memorability of Face Photographs
The MIT Faculty has made this article openly available. Please share
how this access benefits you.  Your story matters.
Citation
As Published
Publisher
Version
Accessed
Citable Link
Terms of Use
Detailed Terms
Khosla, Aditya, Wilma A. Bainbridge, Antonio Torralba, and Aude
Oliva. “Modifying the Memorability of Face Photographs.” 2013
IEEE International Conference on Computer Vision (December
013).
http://dx.doi.org/10.1109/ICCV.2013.397
Institute of Electrical and Electronics Engineers (IEEE)
Author's final manuscript
Mon Nov 05 02:44:57 EST 2018
http://hdl.handle.net/1721.1/90986"
c1c3e32ecf6da8e1372fab7d504cb8cd2c86fd93,Face recognition based on artificial immune networks and principal component analysis with single training image per person,"Face recognition based on artificial immune networks and principal
omponent analysis with single training image per person
, Department of Mechanical Engineering, Tatung University, Taiwan, ROC,
Guan-Chun Luh"
c1087c588960dd7c00a2b5feed57fbdb70d066f1,Quantifying cortical surface asymmetry via logistic discriminant analysis,"Quantifying Cortical Surface Asymmetry
via Logistic Discriminant Analysis
Moo K. Chung1,2, Daniel J. Kelley2, Kim M. Dalton2, Richard J. Davidon2,3
Department of Biostatistics and Medical Informatics
Waisman Laboratory for Brain Imaging and Behavior
Department of Psychology and Psychiatry
University of Wisconsin, Madison, WI 53706, USA"
c1130d5c7bb1311e04cffbaf2bf6cbe734adc2ac,DFNet: Semantic Segmentation on Panoramic Images with Dynamic Loss Weights and Residual Fusion Block,"DFNet: Semantic Segmentation on Panoramic Images with Dynamic Loss
Weights and Residual Fusion Block
Wei Jiang, Yan Wu∗
technique, moreover,"
c1bd99083098cf8dbfed8d25514755bc5356bc06,Fly Page (This sheet is left blank and not counted) GENERALIZED DISCRIMINANT ANALYSIS IN CONTENT-BASED IMAGE RETRIEVAL APPROVED BY SUPERVISING,"Fly Page
(This sheet is left blank and not counted)"
c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290,Unconstrained face identification with multi-scale block-based correlation,"Unconstrained face identification with multi-scale block-based
orrelation
Gaston, J., MIng, J., & Crookes, D. (2016). Unconstrained face identification with multi-scale block-based
orrelation. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (pp. 1477-1481). [978-1-5090-4117-6/17] Institute of Electrical and Electronics Engineers (IEEE).
Published in:
Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
Document Version:
Peer reviewed version
Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal
Publisher rights
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.
Take down policy"
c68ec931585847b37cde9f910f40b2091a662e83,A Comparative Evaluation of Dotted Raster-Stereography and Feature-Based Techniques for Automated Face Recognition,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 6, 2018
A Comparative Evaluation of Dotted Raster-
Stereography and Feature-Based Techniques for
Automated Face Recognition
Muhammad Wasim
S. Talha Ahsan
Department of Computer Science
Department of Electrical Engineering
Usman Institute of Technology
Usman Institute of Technology
Karachi, Pakistan
Karachi, Pakistan
Lubaid Ahmed, Syed Faisal Ali,
Fauzan Saeed
Department of Computer Science
Usman Institute of Technology
Karachi, Pakistan
feature-based
system.  The"
c696c9bbe27434cb6279223a79b17535cd6e88c8,Facial Expression Recognition with Pyramid Gabor Features and Complete Kernel Fisher Linear Discriminant Analysis,"International Journal of Information Technology    Vol.11   No.9  2005
Discriminant Analysis
Facial Expression Recognition with Pyramid Gabor
Features and Complete Kernel Fisher Linear
Duan-Duan Yang1, Lian-Wen Jin1, Jun-Xun Yin1, Li-Xin Zhen2, Jian-Cheng Huang2
School of Electronic and Information Engineering, South China
University of Technology, Guangzhou, 510640, P.R.China
{ddyang,
Motorola China Research Center, Shanghai, 210000, P.R.China
{Li-Xin.Zhen,"
c6d6193c8f611331c8178c3857f9ef92607a4507,A Study on Using Mid-Wave Infrared Images for Face Recognition,"Sensing Technologies for Global Health, Military Medicine, Disaster Response, and Environmental Monitoring II; and
Biometric Technology for Human Identification IX, edited by Sárka O. Southern, et al., Proc. of SPIE Vol. 8371, 83711K
© 2012 SPIE · CCC code: 0277-786X/12/$18 · doi: 10.1117/12.918899
Proc. of SPIE Vol. 8371  83711K-1
From: http://spiedigitallibrary.org/ on 04/30/2013 Terms of Use: http://spiedl.org/terms"
c610888cadcf2aa45e7367f43e42eaa7a586652e,Fast Convergence for Object Detection by Learning how to Combine Error Functions,"(cid:13) 2018 IEEE.
Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new
ollective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in
other works.
Accepted version."
c614450c9b1d89d5fda23a54dbf6a27a4b821ac0,Face Image Retrieval of Efficient Sparse Code words and Multiple Attribute in Binning Image,"Vol.60: e17160480, January-December 2017
http://dx.doi.org/10.1590/1678-4324-2017160480
ISSN 1678-4324 Online Edition
Engineering,Technology and Techniques
BRAZILIAN ARCHIVES OF
BIOLOGY AND TECHNOLOGY
A N   I N T E R N A T I O N A L   J O U R N A L
Face  Image  Retrieval  of  Efficient  Sparse  Code  words  and
Multiple Attribute in Binning Image
Suchitra S1*.
Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India."
c6c3cee8adacff8a63ab84dc847141315e874400,Disentangling by Factorising,"Disentangling by Factorising
Hyunjik Kim 1 2 Andriy Mnih 1"
c6f3399edb73cfba1248aec964630c8d54a9c534,A comparison of CNN-based face and head detectors for real-time video surveillance applications,"A Comparison of CNN-based Face and Head Detectors for
Real-Time Video Surveillance Applications
Le Thanh Nguyen-Meidine1, Eric Granger 1, Madhu Kiran1 and Louis-Antoine Blais-Morin2
´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montreal, Canada
Genetec Inc., Montreal, Canada"
c62c4e5d8243da6bc1fde64097b2ab8971e6e51f,"A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning","JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017
A Unified approach for Conventional Zero-shot,
Generalized Zero-shot and Few-shot Learning
Shafin Rahman, Salman H. Khan and Fatih Porikli"
c636cd6eba286357fe807c0ca4b02c3b9b7b5619,Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization,"Training Deep Networks with Synthetic Data:
Bridging the Reality Gap by Domain Randomization
Jonathan Tremblay∗
Aayush Prakash∗
David Acuna∗†
Mark Brophy∗
Varun Jampani
Cem Anil†
Thang To
Eric Cameracci
Shaad Boochoon
Stan Birchfield
NVIDIA
also University of Toronto
{jtremblay,aayushp,dacunamarrer,markb,vjampani,"
c600e985ae3af9143b41271abd040a1c1e89177e,Nonparametric Video Retrieval and Frame Classification using Tiny Videos,"Nonparametric Video Retrieval and Frame Classification using Tiny Videos
{tag}                                                        {/tag}
IJCA Proceedings on International Conference in
Recent trends in Computational Methods, Communication and Controls (ICON3C 2012)
© 2012 by IJCA Journal
ICON3C - Number 3
Year of Publication: 2012
Authors:
A. K.  M.  Shanawas Fathima
R.  Kanthavel
{bibtex}icon3c1024.bib{/bibtex}"
c694b397a3a0950cd20699a687fe6c8a3173b107,Explaining autism spectrum disorders: central coherence vs. predictive coding theories.,"J Neurophysiol 112: 2669 –2671, 2014.
First published May 28, 2014; doi:10.1152/jn.00242.2014.
Neuro Forum
Explaining autism spectrum disorders: central coherence vs. predictive coding
theories
Jason S. Chan and Marcus J. Naumer
Institute of Medical Psychology, Goethe-University, Frankfurt, Germany
Submitted 27 March 2014; accepted in final form 23 May 2014
Chan JS, Naumer MJ. Explaining autism spectrum disorders: central
oherence vs. predictive coding theories. J Neurophysiol 112: 2669–2671,
014. First published May 28, 2014; doi:10.1152/jn.00242.2014.—In this
rticle, we review a recent paper by Stevenson et al. (J Neurosci 34:
691–697, 2014). This paper illustrates the need to present different forms of
stimuli in order to characterize the perceptual abilities of people with autism
spectrum disorder (ASD). Furthermore, we will discuss their behavioral
results and offer an opposing viewpoint to the suggested neuronal drivers of
utism spectrum disorder; multisensory integration; temporal binding
window
THE DIFFERENCE in propagation time between an auditory and a
visual stimulus can be substantial, depending on the distance"
c6d5d47513d6a7a1b0b92b33efda3f2a866d34ad,Characterizing International Travel Behavior from Geotagged Photos: A Case Study of Flickr,"RESEARCH ARTICLE
Characterizing International Travel Behavior
from Geotagged Photos: A Case Study of
Flickr
Yihong Yuan*, Monica Medel
Department of Geography, Texas State University, San Marcos, Texas, 78666, United States of America"
c679fd4e29597c64e5921fad796183ae30db8396,LG ] 5 M ar 2 01 6 A Latent-Variable Grid Model,"A Latent-Variable Grid Model
Rajasekaran Masatran
Computer Science and Engineering, Indian Institute of Technology Madras
FREESHELL · ORG"
c6638c7c1ec7b8fd5cdba039536fb44d12cff5c2,Towards a Development of Augmented Reality for Jewellery App,"Revati Mukesh Raspayle et al, International Journal of Computer Science and Mobile Computing, Vol.5 Issue.6, June- 2016, pg. 129-137
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IMPACT FACTOR: 5.258
IJCSMC, Vol. 5, Issue. 6, June 2016, pg.129 – 137
Towards a Development of Augmented
Reality for Jewellery App
Er. Revati Mukesh Raspayle1, Prof. Kavita Kelkar2
¹Student (M.Tech) CSE, Mumbai University, Computer Engineering, K.J SOMAIYA COE Vidyavihar,
²Assistant Professor, Mumbai University, Computer Engineering, K.J SOMAIYA COE Vidyavihar,
Mumbai 400077, India
Mumbai 400077, India"
c693c578d783323d130d642bd04d391aac7e8f81,Semantic Pyramids for Gender and Action Recognition,"Semantic Pyramids for Gender and Action
Recognition
Fahad Shahbaz Khan, Joost van de Weijer, Rao Muhammad Anwer, Michael Felsberg, Carlo Gatta"
c6badb2cc1191f9dd5e5bea7df75a76349176d01,Densely tracking sequences of 3D face scans,"Densely tracking sequences of 3D face scans
Huaxiong DING
Ecole Centrale de LYON
Liming Chen
Ecole Centrale de LYON"
c6c086748474dcda06d773891848aa1472de3560,Activity Recognition Based on a Magnitude-Orientation Stream Network,"Activity Recognition based on a
Magnitude-Orientation Stream Network
Carlos Caetano, Victor H. C. de Melo, Jefersson A. dos Santos, William Robson Schwartz
Smart Surveillance Interest Group, Department of Computer Science
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil"
c6eb026d3a0081f4cb5cde16d3170f8ecf8ce706,Face Recognition: From Traditional to Deep Learning Methods,"Face Recognition: From Traditional to Deep
Learning Methods
Daniel S´aez Trigueros, Li Meng
School of Engineering and Technology
University of Hertfordshire
Hatfield AL10 9AB, UK
Margaret Hartnett
GBG plc
London E14 9QD, UK"
c6ffa09c4a6cacbbd3c41c8ae7a728b0de6e10b6,Feature extraction using constrained maximum variance mapping,"This article appeared in a journal published by Elsevier. The attached
opy is furnished to the author for internal non-commercial research
nd education use, including for instruction at the authors institution
nd sharing with colleagues.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.
In most cases authors are permitted to post their version of the
rticle (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information
regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:
http://www.elsevier.com/copyright"
c6fdbdbbbc7642daae22df0b7812e78d0647afb3,Unsupervised feature learning with C-SVDDNet,"Unsupervised Feature Learning with C-SVDDNet
Dong Wang and Xiaoyang Tan"
c6dab0aba7045f078313a4186cd507ff8eb8ce32,Atypical disengagement from faces and its modulation by the control of eye fixation in children with autism spectrum disorder.,"BIROn - Birkbeck Institutional Research Online
Enabling open access to Birkbeck’s published research output
Atypical disengagement from faces and its modulation
y the control of eye fixation in children with Autism
Spectrum Disorder
Journal Article
http://eprints.bbk.ac.uk/4677
Version: Accepted (Refereed)
Citation:
© 2011 Springer
Publisher  version
______________________________________________________________
All articles available through Birkbeck ePrints are protected by intellectual property law, including
opyright law. Any  use made of the contents should comply with the relevant law.
______________________________________________________________
Kikuchi, Y.; Senju, A.; Akechi, H.; Tojo, Y.; Osanai, H.; Hasegawa, T.
(2011)
Atypical disengagement from faces and its modulation by the control of
eye fixation in children with Autism Spectrum Disorder
Deposit Guide"
c6260f83e86dd4d1ece92e528422ecc6e36c13ef,Siamese networks for generating adversarial examples,"Siamese networks for generating adversarial examples
Mandar Kulkarni
Data Scientist
Schlumberger"
c62c07de196e95eaaf614fb150a4fa4ce49588b4,SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation,Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
c607572fd2594ca83f732c9790fd590da9e69eb1,Comparative Evaluation of Deep Architectures for Face Recognition in Unconstrained Environment ( FRUE ),"Comparative Evaluation of Deep Architectures for Face
Recognition in Unconstrained Environment (FRUE)
Deeksha Gupta
Department of Computer Science and Applications,
MCM DAV College for Women, Chandigarh, (India)"
ec90d333588421764dff55658a73bbd3ea3016d2,Protocol for Systematic Literature Review of Face Recognition in Uncontrolled Environment,"Research Article
Protocol for Systematic Literature Review of Face
Recognition in Uncontrolled Environment
Faizan Ullah, Sabir Shah, Dilawar Shah, Abdusalam, Shujaat Ali
Department of Computer Science, Bacha Khan University, Charsadda, KPK, Pakistan"
ec1e03ec72186224b93b2611ff873656ed4d2f74,D Reconstruction of “ Inthe-Wild ” Faces in Images and Videos,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
D Reconstruction of “In-the-Wild” Faces in
Images and Videos
James Booth, Anastasios Roussos, Evangelos Ververas, Epameinondas Anton-
kos, Stylianos Ploumpis, Yannis Panagakis, and Stefanos Zafeiriou"
ec89c5f2f5acce23b0d05736cd9f32d4ca6dc382,Body Actions Change the Appearance of Facial Expressions,"Body Actions Change the Appearance of Facial
Expressions
Carlo Fantoni1,2*, Walter Gerbino1
Department of Life Sciences, Psychology Unit ‘‘Gaetano Kanizsa’’, University of Trieste, Trieste, Italy, 2 Center for Neuroscience and Cognitive Istituto
Italiano di Tecnologia, Rovereto, Italy"
ec9e8d69b67bcb2814b538091fa288b6bdbb990f,GURLS: a Toolbox for Regularized Least Squares Learning,"Computer Science and ArtificialIntelligence LaboratoryTechnical Reportmassachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.eduMIT-CSAIL-TR-2012-003CBCL-306January 31, 2012GURLS: a Toolbox for Regularized Least Squares LearningAndrea Tacchetti, Pavan S. Mallapragada, Matteo Santoro, and Lorenzo Rosasco"
ece31d41b4da5457d570c04d22f19fcd026776b6,Learning Deep Disentangled Embeddings with the F-Statistic Loss,"Learning Deep Disentangled Embeddings
With the F-Statistic Loss
Karl Ridgeway
University of Colorado
Boulder, Colorado
Department of Computer Science
Department of Computer Science
Michael C. Mozer
University of Colorado
Boulder, Colorado"
ec2027c2dd93e4ee8316cc0b3069e8abfdcc2ecf,Latent Variable PixelCNNs for Natural Image Modeling,"Latent Variable PixelCNNs for Natural Image Modeling
Alexander Kolesnikov 1 Christoph H. Lampert 1"
ec7a545ba99542b2b74340d2e863590e4f450bb7,Sparse Subspace Clustering by Orthogonal Matching Pursuit,"Sparse Subspace Clustering by Orthogonal Matching Pursuit
Center for Imaging Science, Johns Hopkins University, Baltimore, MD, 21218, USA
Chong You
nd Ren´e Vidal"
ec443db55db1a6721387b2054b94f6df020994ae,Weakly Supervised Visual Dictionary Learning by Harnessing Image Attributes,"Weakly Supervised Visual Dictionary Learning
y Harnessing Image Attributes
Yue Gao, Senior Member, IEEE, Rongrong Ji, Senior Member, IEEE, Wei Liu, Member, IEEE,
Qionghai Dai, Senior Member, IEEE, and Gang Hua, Senior Member, IEEE"
ec25f39fa6b4ef4529981a1ae051086e93642d27,Deformable Part Models are Convolutional Neural Networks Tech report,"Deformable Part Models are Convolutional Neural Networks
Tech report
Ross Girshick Forrest Iandola Trevor Darrell
Jitendra Malik
UC Berkeley"
ec12f805a48004a90e0057c7b844d8119cb21b4a,Distance-Based Descriptors and Their Application in the Task of Object Detection,"Distance-Based Descriptors and Their
Application in the Task of Object Detection
Radovan Fusek(B) and Eduard Sojka
Department of Computer Science, Technical University of Ostrava, FEECS,
7. Listopadu 15, 708 33 Ostrava-Poruba, Czech Republic"
eca9b9dd665556423278b85f79e1d589009a7ea7,Person Re-Identi fi cation by Robust Canonical Correlation Analysis,"IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 8, AUGUST 2015
Person Re-Identification by Robust
Canonical Correlation Analysis
Le An, Songfan Yang, Member, IEEE, and Bir Bhanu, Fellow, IEEE"
ecf2ba5ea183a6be63b57543a19dd41e8017daaf,Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching,"Cooperative Learning of Energy-Based Model and Latent Variable Model via
MCMC Teaching
Jianwen Xie 1,2, Yang Lu 1,3, Ruiqi Gao 1, Ying Nian Wu 1
Department of Statistics, University of California, Los Angeles, USA
Hikvision Research America
Amazon RSML (Retail System Machine Learning) Group"
ec1223c8fc16751dd577d3418f61d44a139c7dc3,Group Influences on Engaging Self-Control: Children Delay Gratification and Value It More When Their In-Group Delays and Their Out-Group Doesn't.,"RUNNING HEAD: GROUP INFLUENCES ON SELF-CONTROL
Group Influences on Engaging Self-control: Children Delay Gratification and Value It More
When Their In-Group Delays and Their Out-Group Doesn’t
Sabine Doebel* and Yuko Munakata
Department of Psychology and Neuroscience, University of Colorado Boulder
*Corresponding author"
ecd0a2e55f456b69243d1278fee15d8dbfc98c28,Heterogeneous Multicores: When Slower is Faster,"Heterogeneous Multicores: When Slower is Faster
Tomas Hruby
Herbert Bos
The Network Institute, VU University Amsterdam
Andrew S. Tanenbaum"
ecc09ab9c61dc3a3a15f55332f63bccbf443f291,Cross-Domain Deep Face Matching for Real Banking Security Systems,"Cross-Domain Deep Face Matching for Real
Banking Security Systems
Johnatan S. Oliveira1,∗, Gustavo B. Souza2,∗, Anderson R. Rocha3, Fl´avio E. Deus1 and Aparecido N. Marana4
Department of Electrical Engineering, University of Bras´ılia (UnB), Bras´ılia, Brazil.
Department of Computing, Federal University of S˜ao Carlos (UFSCar), S˜ao Carlos, Brazil.
Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil.
Department of Computing, S˜ao Paulo State University (Unesp), Bauru, Brazil.
E-mails: {jow,
Equal contributors."
ec54000c6c0e660dd99051bdbd7aed2988e27ab8,Two in One: Joint Pose Estimation and Face Recognition with Pca,"TWO IN ONE: JOINT POSE ESTIMATION AND FACE RECOGNITION WITH P2CA1
Francesc Tarres*, Antonio Rama*
{tarres,
Davide Onofrio+, Stefano Tubaro+
{d.onofrio,
*Dept. Teoria del Senyal i Comunicacions - Universitat Politècnica de Catalunya, Barcelona, Spain
+Dipartimento di Elettronica e Informazione - Politecnico di Milano, Meiland, Italy"
ecf4690ddd3ad26f9cd1749d16ef1aa06d391f92,Does Exposure to Hostile Environments Predict Enhanced Emotion Detection?,"PDF hosted at the Radboud Repository of the Radboud University
Nijmegen
The following full text is a publisher's version.
For additional information about this publication click this link.
http://hdl.handle.net/2066/191999
Please be advised that this information was generated on 2018-06-28 and may be subject to
hange."
ecdf8e5393eead0b63c5bc4fbe426db5a70574eb,Linear Subspace Learning for Facial Expression Analysis,"Linear Subspace Learning for
Facial Expression Analysis
Caifeng Shan
Philips Research
The Netherlands
. Introduction
Facial  expression,  resulting  from  movements  of  the  facial  muscles,  is  one  of  the  most
powerful, natural, and immediate means for human beings to communicate their emotions
nd intentions. Some examples of facial expressions are shown in Fig. 1. Darwin (1872) was
the  first  to  describe  in  detail  the  specific  facial  expressions  associated  with  emotions  in
nimals  and  humans;  he  argued  that  all  mammals  show  emotions  reliably  in  their  faces.
Psychological  studies  (Mehrabian,  1968;  Ambady  &  Rosenthal,  1992)  indicate  that  facial
expressions, with other non-verbal cues, play a major and fundamental role in face-to-face
ommunication.
Fig. 1. Facial expressions of George W. Bush.
Machine  analysis  of  facial  expressions,  enabling  computers  to  analyze  and  interpret  facial
expressions  as  humans  do,  has  many  important  applications  including  intelligent  human-
omputer  interaction,  computer  animation,  surveillance  and  security,  medical  diagnosis,
law  enforcement,  and  awareness  system  (Shan,  2007).  Driven  by  its  potential  applications
nd  theoretical  interests  of  cognitive  and  psychological  scientists,  automatic  facial"
ec6855acd0871d3e000872a5dd89db97c1554e18,Contrasting emotion processing and executive functioning in attention-deficit/hyperactivity disorder and bipolar disorder.,"016, Vol. 130, No. 5, 531–543
0735-7044/16/$12.00
© 2016 American Psychological Association
http://dx.doi.org/10.1037/bne0000158
Contrasting Emotion Processing and Executive Functioning in
Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder
Stephen Soncin, Donald C. Brien, and Brian C. Coe
Queen’s University
Queen’s University and Hotel Dieu Hospital, Kingston,
Alina Marin
Ontario, Canada
Douglas P. Munoz
Queen’s University
Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) are highly comorbid and
share executive function and emotion processing deficits, complicating diagnoses despite distinct clinical
features. We compared performance on an oculomotor task that assessed these processes to capture subtle
differences between ADHD and BD. The interaction between emotion processing and executive func-
tioning may be informative because, although these processes overlap anatomically, certain regions that
re compromised in each network are different in ADHD and BD. Adults, aged 18 – 62, with ADHD (n ⫽
2), BD (n ⫽ 20), and healthy controls (n ⫽ 21) performed an interleaved pro- and antisaccade task"
ec4af4a6e89d61c05dcdf89f7f5d0a404bed4027,Bodily action penetrates affective perception.,"Bodily action penetrates affective
perception
Carlo Fantoni, Sara Rigutti and Walter Gerbino
Department of Life Sciences, Psychology Unit “Gaetano Kanizsa,” University of Trieste, Trieste, Italy"
ec0104286c96707f57df26b4f0a4f49b774c486b,An Ensemble CNN2ELM for Age Estimation,"An Ensemble CNN2ELM for Age Estimation
Mingxing Duan , Kenli Li, Senior Member, IEEE, and Keqin Li, Fellow, IEEE"
ecbaa92c289f4f5ff9a57b19a2725036a92311f5,Focused Evaluation for Image Description with Binary Forced-Choice Tasks,"Proceedings of the 5th Workshop on Vision and Language, pages 19–28,
Berlin, Germany, August 12 2016. c(cid:13)2016 Association for Computational Linguistics"
ec91c6d6235f31c751b03489d7b1d472dfc9da26,Face Database Retrieval Using Pseudo 2D Hidden Markov Models,"Face Database Retrieval Using Pseudo 2D Hidden Markov Models
Fraunhofer Institute for Media Communication IMK
Stefan Eickeler
Schloss Birlinghoven
53754 Sankt Augustin, Germany"
ec3621e900cc50afd067584bb1246a8b4e338fa8,Structured Triplet Learning with POS-Tag Guided Attention for Visual Question Answering,"Structured Triplet Learning with POS-tag Guided Attention
for Visual Question Answering
Zhe Wang1 Xiaoyi Liu2 Liangjian Chen1 Limin Wang3 Yu Qiao4 Xiaohui Xie1 Charless Fowlkes1
Dept. of CS, UC Irvine
Microsoft
CVL, ETH Zurich
SIAT, CAS"
ec7d418ddf95d231b2afc70ed8c94d0764abec61,Knowledge Transfer Using Latent Variable Models,"Copyright
Ayan Acharya"
4edc7f27d4512b69be54abfc6b9876e5b00725ab,Facial Expression Recognition using Convolutional Neural Networks: State of the Art,"Facial Expression Recognition using
Convolutional Neural Networks: State of the Art
Christopher Pramerdorfer, Martin Kampel
Computer Vision Lab, TU Wien
Vienna, Austria
Email:"
4e1d7bad6cde28e65b12c5824b1016859e1ae704,Enhanced Face Recognition Using Discrete Cosine Transform,"Enhanced Face Recognition Using Discrete
Cosine Transform
Zahraddeen Sufyanu, Member, IAENG, Fatma S. Mohamad, Abdulganiyu A. Yusuf, and Mustafa B.
Mamat"
4efb08fcd652c60764b6fd278cee132b71c612a1,Pixel Deconvolutional Networks,"PIXEL DECONVOLUTIONAL NETWORKS
Hongyang Gao
Washington State University
Hao Yuan
Washington State University
Zhengyang Wang
Washington State University
Shuiwang Ji
Washington State University"
4e32fbb58154e878dd2fd4b06398f85636fd0cf4,A Hierarchical Matcher using Local Classifier Chains,"A Hierarchical Matcher using Local Classifier Chains
L. Zhang and I.A. Kakadiaris
Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204"
4eca3e3c4876fc7ec81224d4ec2f159c9e7c72c3,Facial recognition using new LBP representations,
4ea6954b47baec061fa3f3e1228833eba7be07f9,Multi-pseudo Regularized Label for Generated Data in Person Re-Identification.,"Multi-pseudo Regularized Label for Generated Data
in Person Re-Identification
Yan Huang, Jingsong Xu, Qiang Wu, Member, IEEE Zhedong Zheng, Zhaoxiang Zhang, Senior Member, IEEE
nd Jian Zhang, Senior Member, IEEE"
4ea53e76246afae94758c1528002808374b75cfa,A Review of Scholastic Examination and Models for Face Recognition and Retrieval in Video,"Lasbela, U. J.Sci. Techl., vol.IV , pp. 57-70, 2015
Review ARTICLE
A Review of Scholastic  Examination and  Models for Face Recognition
ISSN 2306-8256
nd Retrieval in Video
Varsha Sachdeva1, Junaid Baber2, Maheen Bakhtyar2, Muzamil Bokhari3, Imran Ali4
Department of Computer Science, SBK Women’s University, Quetta, Balochistan
Department of CS and IT, University of Balochistan, Quetta
Department of Physics, University of Balochistan, Quetta
Institute of Biochemistry, University of Balochistan, Quetta"
4e97b53926d997f451139f74ec1601bbef125599,Discriminative Regularization for Generative Models,"Discriminative Regularization for Generative Models
Alex Lamb, Vincent Dumoulin and Aaron Courville
Montreal Institute for Learning Algorithms, Universit´e de Montr´eal"
4e5698894946680e4d6e766346355b2dc1959819,Cross-pose Facial Expression Recognition,Cross-pose Facial Expression Recognition
4ec3c7fa51d823a43b3808c7c6baa2e153104bdf,Neuron Pruning for Compressing Deep Networks using Maxout Architectures,"Neuron Pruning for Compressing Deep
Networks using Maxout Architectures
Fernando Moya Rueda, Rene Grzeszick, Gernot A. Fink
TU Dortmund University
Department of Computer Science"
4e27fec1703408d524d6b7ed805cdb6cba6ca132,SSD-Sface: Single shot multibox detector for small faces,"SSD-Sface: Single shot multibox detector for small faces
C. Thuis"
4e6c9be0b646d60390fe3f72ce5aeb0136222a10,Long-Term Temporal Convolutions for Action Recognition,"Long-term Temporal Convolutions
for Action Recognition
G¨ul Varol, Ivan Laptev, and Cordelia Schmid, Fellow, IEEE"
4ec4392246a7760d189cd6ea48a81664cd2fe4bf,GPU Accelerated ACF Detector,
4ebf84c6389e842e90c39850f0152671ba7fa0dc,Adversarial Attribute-Image Person Re-identification,"Adversarial Attribute-Image Person Re-identification
Zhou Yin, Wei-Shi Zheng, Ancong Wu, Hong-Xing Yu, Hai Wan, Xiaowei Guo, Feiyue
Huang, Jianhuang Lai
For reference of this work, please cite:
Adversarial Attribute-Image Person Re-identification
Zhou Yin, Wei-Shi Zheng, Ancong Wu, Hong-Xing Yu, Hai Wan, Xiaowei Guo, Feiyue Huang, Jianhuang
Lai, IJCAI, 2018
title={Adversarial Attribute-Image Person Re-identification},
uthor={Zhou Yin, Wei-Shi Zheng, Ancong Wu, Hong-Xing Yu, Hai Wan, Xiaowei Guo, Feiyue Huang,
Jianhuang Lai},
journal={ International Joint Conference on Artificial Intelligence},
year={2018}"
4e82908e6482d973c280deb79c254631a60f1631,Improving Efficiency and Scalability in Visual Surveillance Applications,
4eaaefc53fd61d27b9ce310c188fe76003a341bd,Assessing Generative Models via Precision and Recall,"Assessing Generative Models via Precision and Recall
Mehdi S. M. Sajjadi∗
MPI for Intelligent Systems,
Max Planck ETH Center
for Learning Systems
Olivier Bachem
Google Brain
Mario Lucic
Google Brain
Olivier Bousquet
Google Brain
Sylvain Gelly
Google Brain"
4eb0b82b294f601510cd965adcf0e8c386cbaf22,Face Detection for Augmented Reality Application Using Boosting-based Techniques,"Face Detection for Augmented Reality Application
Using Boosting-based Techniques
Youssef  Hbali1, Lahoucine Ballihi2, Mohammed  Sadgal1, El Fazziki Abdelaziz1
Cadi Ayyad University. B.P. 2390, Avenue Prince My Abdellah, Marrakech, Morocco
LRIT-CNRST URAC 29, Mohammed V University In Rabat, Faculty of Sciences Rabat, Morocco"
4ed0be0b5d67cff63461ba79f2a7928d652cf310,Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey,"JOURNAL OF LATEX CLASS FILES, VOL. PP, AUGUST 2017
Threat of Adversarial Attacks on Deep Learning
in Computer Vision: A Survey
ACKNOWLEDGEMENTS: The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey
quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers
to make the survey more comprehensive. This research was supported by ARC grant DP160101458.
Naveed Akhtar and Ajmal Mian"
4e25cd4e40494aa5073fcfbef7506336b84152f4,"Independent Component Analysis, Principal Component Analysis and Rough Sets in Face Recognition","Independent Component Analysis, Principal
Component Analysis and Rough Sets in Face
Recognition
Roman W. ´Swiniarski1 and Andrzej Skowron2
Department of Mathematical and Computer Sciences
San Diego State University
5500 Campanile Drive San Diego, CA 92182, USA
Institute of Computer Science, Polish Academy of Sciences
Ordona 21, 01-237 Warsaw, Poland
Institute of Mathematics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland"
4e608c77043f56b0abfb2760fb2fd2516b5412b0,Spectral Face Recognition Using Orthogonal Subspace Bases,
4ef0a6817a7736c5641dc52cbc62737e2e063420,Study of Face Recognition Techniques,"International Journal of Advanced Computer Research (ISSN (Print): 2249-7277   ISSN (Online): 2277-7970)
Volume-4 Number-4 Issue-17 December-2014
Study of Face Recognition Techniques
Sangeeta Kaushik1*, R. B. Dubey2 and Abhimanyu Madan3
Received: 10-November-2014; Revised: 18-December-2014; Accepted: 23-December-2014
©2014 ACCENTS"
4e71e03d4122aad182ad51ab187d4b55b41fc957,Clustering-Based Discriminant Analysis for Eye Detection,"Clustering-Based Discriminant Analysis
for Eye Detection
Shuo Chen and Chengjun Liu
paper
three
proposes"
4ee380e444063f9b948a2fd82e5c11b97a570ad1,Operating system support to an online hardware-software co-design scheduler for heterogeneous multicore architectures,"Universidade de São Paulo
Biblioteca Digital da Produção Intelectual - BDPI
Departamento de Sistemas de Computação - ICMC/SSC
Comunicações em Eventos - ICMC/SSC
014-08-20
Operating system support to an online
hardware-software co-design scheduler for
heterogeneous multicore architectures
IEEE International Conference on Embedded and Real-Time Computing Systems and Applications,
0th, 2014, Chongqing.
http://www.producao.usp.br/handle/BDPI/48567
Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo"
4e33798e364826af1241d28d57977bec9a579709,Active learning with version spaces for object detection,"Active learning with version spaces for object detection 1
Soumya Roy 2
Vinay P. Namboodiri 2
Arijit Biswas 3"
4eb22856671b9340e5ae532a021be62b9d31c9bc,The Minority Glass Ceiling Hypothesis: Exploring Reasons and Remedies for the Underrepresentation of Racial-ethnic Minorities in Leadership Positions,"THE MINORITY GLASS CEILING HYPOTHESIS:
EXPLORING REASONS AND REMEDIES FOR THE
UNDERREPRESENTATION OF RACIAL-ETHNIC MINORITIES IN
LEADERSHIP POSITIONS
Seval Gündemir"
4e3c07283334a9b90dac011033fa2403bcf3c473,A novel feature selection method and its application,"J Intell Inf Syst (2013) 41:235–268
DOI 10.1007/s10844-013-0243-x
A novel feature selection method and its application
Bing Li· Tommy W. S. Chow· Di Huang
Received: 11 April 2012 / Revised: 8 March 2013 / Accepted: 11 March 2013 /
Published online: 4 April 2013
© Springer Science+Business Media New York 2013"
4e613c9342d6e90f7af5fd3f246c6d82a33fe98d,Estimating Human Pose in Images,"Estimating Human Pose in Images
Navraj Singh
December 11, 2009
Introduction
This project attempts to improve the performance of an existing method of estimating the pose of humans in still images.
Tasks such as object detection and classification have received much attention already in the literature. However, sometimes we are
interested in more detailed aspects of objects like pose. This is a challenging task due to the large variety of poses an object can
take in a variety of settings. For human pose estimation, aspects such as clothing, occlusion of body parts, etc. make the task even
harder.
The approaches taken up in the literature to solve this problem focus on either a top-down approach, bottom-up approach,
or a hybrid of the two. The top-down approach involves comparing test images with stored examples of humans in various poses
using some similarity measure. This approach might require a very large set of examples of human poses. The bottom-up approach,
on the other hand, uses low level human body part detectors and in some manner assembles the information to predict the entire
ody pose. This project attempts to build upon a mostly bottom-up approach, called LOOPS (Localizing Object Outlines using
Probabilistic Shape), that was developed in [1] by G. Heitz, et al. in Prof. Daphne Koller's group. Specifically, we investigate the
onstruction and incorporation of a skin detector into the LOOPS pipeline, and a couple of pairwise features in the appearance
model.  The   overall   improvement   in   the   localization   is   negligible,   with   some   improvement   in   head   localization.  Since   the
improvements considered are within the framework of LOOPS, a brief overview of the LOOPS method is discussed next.
Brief Overview of the LOOPS method as applied to humans
The main random variables defined in the LOOPS method, described in detail in [1], are the locations of a set of key"
4ecd459aa4b4590bdc552e07b6d0bbe132fb1fcf,Learning of Graph Compressed Dictionaries for Sparse Representation Classification,"Learning of Graph Compressed Dictionaries for Sparse
Representation Classification
Farshad Nourbakhsh and Eric Granger
Laboratoire d’imagerie de vision et d’intelligence artificielle
´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montr´eal, Canada
Keywords:
Matrix Factorization, Graph Compression, Dictionary Learning, Sparse Representation Classification,
Clustering, Face Recognition, Video Surveillance"
4ee87ed965e78adb1035a5322350afac9ca901f5,Multi-target tracking of time-varying spatial patterns,"Multi-Target Tracking of Time-varying Spatial Patterns
Jingchen Liu1
Yanxi Liu1,2
Department of Computer Science and Engineering
Department of Electrical Engineering
The Pennsylvania State University
University Park, PA 16802, USA
{jingchen,"
4e4a47e2d285e55f3d0b6d449d6b9893615db5cd,Use of l2/3-norm Sparse Representation for Facial Expression Recognition,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358
Use of ℓ2/3-norm Sparse Representation for Facial
Expression Recognition
Sandeep Rangari1, Sandeep Gonnade2
MATS University, MATS School of Engineering and Technology, Arang, Raipur, India
MATS University, MATS School of Engineering and Technology, Arang, Raipur, India
three
to  discriminate
represents  emotion,"
4e0e49c280acbff8ae394b2443fcff1afb9bdce6,Automatic Learning of Gait Signatures for People Identification,"Automatic learning of gait signatures for people identification
F.M. Castro
Univ. of Malaga
fcastro<at>uma.es
M.J. Mar´ın-Jim´enez
Univ. of Cordoba
mjmarin<at>uco.es
N. Guil
Univ. of Malaga
nguil<at>uma.es
N. P´erez de la Blanca
Univ. of Granada
nicolas<at>ugr.es"
4e61f3dc6aa7994613a3708e823aadd478c73f5f,Generating Discriminative Object Proposals via Submodular Ranking,"Generating Discriminative Object Proposals via Submodular Ranking
Yangmuzi Zhang∗, Zhuolin Jiang†, Xi Chen∗, and Larry S. Davis∗
University of Maryland at College Park, MD
Raytheon BBN Technologies, USA
Email:"
4eb600aa4071b9a73da49e5374d6e22ca46eaba6,Understanding bag-of-words model: a statistical framework,"Noname manuscript No.
(will be inserted by the editor)
Understanding Bag-of-Words Model: A Statistical Framework
Yin Zhang ⋅ Rong Jin ⋅ Zhi-Hua Zhou
Received: date / Accepted: date"
4e8206dd2e163c6a139bfd0ec3adf410e7b78c4a,A Multi-scale Boosted Detector for Efficient and Robust Gesture Recognition,"A Multi-scale Boosted Detector for Ef‌f‌icient and
Robust Gesture Recognition
Camille Monnier, Stan German, Andrey Ost
Charles River Analytics
Cambridge, MA, USA"
4e12080616da4b540c8f79db2dd1b654cd8345ce,Pose-Driven Deep Models for Person Re-Identification,"Pose-Driven Deep Models for Person
Re-Identification
Masters thesis of
Andreas Eberle
At the faculty of Computer Science
Institute for Anthropomatics and Robotics
Reviewer:
Second reviewer:
Advisors:
Prof. Dr.-Ing. Rainer Stiefelhagen
Prof. Dr.-Ing. Jürgen Beyerer
Dr.-Ing. Saquib Sarfraz
Dipl.-Inform. Arne Schumann
Duration: 31. August 2017 –
8. February 2018
KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association
www.kit.edu"
20a432a065a06f088d96965f43d0055675f0a6c1,The Effects of Regularization on Learning Facial Expressions with Convolutional Neural Networks,"In: Proc. of the 25th Int. Conference on Artificial Neural Networks (ICANN)
Part II, LNCS 9887, pp. 80-87, Barcelona, Spain, September 2016
The final publication is available at Springer via
http://dx.doi.org//10.1007/978-3-319-44781-0_10
The Effects of Regularization on Learning Facial
Expressions with Convolutional Neural Networks
Tobias Hinz, Pablo Barros, and Stefan Wermter
University of Hamburg Department of Computer Science,
Vogt-Koelln-Strasse 30, 22527 Hamburg, Germany
http://www.informatik.uni-hamburg.de/WTM"
20a3ce81e7ddc1a121f4b13e439c4cbfb01adfba,Sparse-MVRVMs Tree for Fast and Accurate Head Pose Estimation in the Wild,"Sparse-MVRVMs Tree for Fast and Accurate
Head Pose Estimation in the Wild
Mohamed Selim, Alain Pagani, and Didier Stricker
Augmented Vision Research Group,
German Research Center for Artificial Intelligence (DFKI),
Tripstaddterstr. 122, 67663 Kaiserslautern, Germany
Technical University of Kaiserslautern
http://www.av.dfki.de"
2057837e059a1dde8c6c4c0587e652b79c04780a,Learning to Recognize Novel Objects in One Shot through Human-Robot Interactions in Natural Language Dialogues,"Learning to Recognize Novel Objects in One Shot through Human-Robot
Interactions in Natural Language Dialogues
Thomas Williams
Matthias Scheutz
Evan Krause
HRI Laboratory
Tufts University
00 Boston Ave
Medford, MA 02155, USA
Michael Zillich
Inst. for Automation and Control
Technical University Vienna
Gusshausstr 27-29/E376
040 Vienna, Austria
HRI Laboratory
Tufts University
00 Boston Ave
HRI Laboratory
Tufts University
00 Boston Ave"
2004afb2276a169cdb1f33b2610c5218a1e47332,Deep Convolutional Neural Network Used in Single Sample per Person Face Recognition,"Hindawi
Computational Intelligence and Neuroscience
Volume 2018, Article ID 3803627, 11 pages
https://doi.org/10.1155/2018/3803627
Research Article
Deep Convolutional Neural Network Used in Single Sample per
Person Face Recognition
Junying Zeng , Xiaoxiao Zhao , Junying Gan , Chaoyun Mai
nd Fan Wang
, Yikui Zhai,
School of Information Engineering, Wuyi University, Jiangmen 529020, China
Correspondence should be addressed to Xiaoxiao Zhao;
Received 27 November 2017; Revised 23 May 2018; Accepted 26 July 2018; Published 23 August 2018
Academic Editor: Jos´e Alfredo Hern´andez-P´erez
Copyright © 2018 Junying Zeng et al. 0is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Face recognition (FR) with single sample per person (SSPP) is a challenge in computer vision. Since there is only one sample to be
trained, it makes facial variation such as pose, illumination, and disguise dif‌f‌icult to be predicted. To overcome this problem, this paper
proposes a scheme combined traditional and deep learning (TDL) method to process the task. First, it proposes an expanding sample
method based on traditional approach. Compared with other expanding sample methods, the method can be used easily and"
2084e54505cfe4fd81005167b1b11d10b5f837d1,Person Re-Identification by Discriminative Selection in Video,"Person Re-Identification by Discriminative Selection in Video Ranking
Wang, T; Gong, S; Zhu, X; Wang, S
•(cid:9)“The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-319-
0593-2_45”
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/11432
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
20e504782951e0c2979d9aec88c76334f7505393,Robust LSTM-Autoencoders for Face De-Occlusion in the Wild,"Robust LSTM-Autoencoders for Face De-Occlusion
in the Wild
Fang Zhao, Jiashi Feng, Jian Zhao, Wenhan Yang, Shuicheng Yan"
209324c152fa8fab9f3553ccb62b693b5b10fb4d,Visual Genome Crowdsourced Visual Knowledge Representations a Thesis Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Masters of Science,"CROWDSOURCED VISUAL KNOWLEDGE REPRESENTATIONS
VISUAL GENOME
A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTERS OF SCIENCE
Ranjay Krishna
March 2016"
20a052963f2c46aff817f34a09c396c44b3e46da,Visually Grounded Meaning Representations,"Visually Grounded Meaning Representations
Carina Silberer, Member, IEEE, Vittorio Ferrari, Member, IEEE, Mirella Lapata, Member, IEEE"
20e783a2df0486cd1c8b6b59fc76220f5718b304,Stereo-based Pedestrian Detection Using Two-stage Classifiers,"4-26
MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN
Stereo-based Pedestrian Detection Using Two-stage Classifiers
Manabu Nishiyama, Akihito Seki, Tomoki Watanabe
Corporate Research and Development Center, Toshiba Corporation
, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582, Japan"
202cbc83c22a9c7b3d878cc1bed1c5cf152eb6fb,Learning Embeddings for Product Visual Search with Triplet Loss and Online Sampling,"Learning Embeddings for Product Visual Search with
Triplet Loss and Online Sampling
Eric Dodds, Huy Nguyen, Simao Herdade, Jack Culpepper, Andrew Kae, Pierre Garrigues
{eric.mcvoy.dodds, huyng, sherdade, jackcul, andrewkae,
Yahoo Research"
208e903211ddc62b997afb5a1bd3c2c43e0e69ee,Real-Time Action Detection in Video Surveillance using Sub-Action Descriptor with Multi-CNN,"Real-Time Action Detection in Video Surveillance using Sub-Action
Descriptor with Multi-CNN
Cheng-Bin Jin*, Shengzhe Li†, and Hakil Kim*
*Inha University, Incheon, Korea
Visionin Inc., Incheon, Korea"
20ade100a320cc761c23971d2734388bfe79f7c5,Subspace Clustering via Good Neighbors,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Subspace Clustering via Good Neighbors
Jufeng Yang, Jie Liang, Kai Wang, Ming-Hsuan Yang"
202d8d93b7b747cdbd6e24e5a919640f8d16298a,Face Classification via Sparse Approximation,"Face Classification via Sparse Approximation
Elena Battini S˝onmez1, Bulent Sankur2 and Songul Albayrak3
Computer Science Department, Bilgi University, Dolapdere, Istanbul, TR
Electric and Electronic Engineering Department, Bo¯gazici University, Istanbul, TR
Computer Engineering Department, Yıldız Teknik University, Istanbul, TR"
205b34b6035aa7b23d89f1aed2850b1d3780de35,Log-domain polynomial filters for illumination-robust face recognition,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
Shenzhen Key Lab. of Information Sci&Tech,
♯Nagaoka University of Technology, Japan
RECOGNITION
. INTRODUCTION"
200f68f899f0bf72dd2c49ba2b4a5027e0291531,Efficient Activity Detection in Untrimmed Video with Max-Subgraph Search,"Efficient Activity Detection in Untrimmed Video
with Max-Subgraph Search
Chao Yeh Chen and Kristen Grauman"
20e64f44ce2977a4dc5099fce6f73842613f0865,"Ridge Regression, Hubness, and Zero-Shot Learning","Ridge Regression, Hubness, and Zero-Shot Learning(cid:63)
Yutaro Shigeto1, Ikumi Suzuki2, Kazuo Hara3, Masashi Shimbo1, and
Yuji Matsumoto1
Nara Institute of Science and Technology, Ikoma, Nara, Japan
The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
National Institute of Genetics, Mishima, Shizuoka, Japan"
2049ca79ce94ddfe0cc3d39bf770f580a740f3ac,Activity analysis : finding explanations for sets of events,ActivityAnalysis:FindingExplanationsforSetsofEventsbyDimaJamalAlDamenSubmittedinaccordancewiththerequirementsforthedegreeofDoctorofPhilosophy.TheUniversityofLeedsSchoolofComputingSeptember2009Thecandidateconfirmsthattheworksubmittedisherownandthattheappropriatecredithasbeengivenwherereferencehasbeenmadetotheworkofothers.Thiscopyhasbeensuppliedontheunderstandingthatitiscopyrightmaterialandthatnoquotationfromthethesismaybepublishedwithoutproperacknowledgement.
20a6de85d7d5f445dfaba90ab2e33879142023fc,Autonomous Vehicles that Interact with Pedestrians: A Survey of Theory and Practice,"THIS WORK HAS BEEN SUBMITTED TO THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS.
Autonomous Vehicles that Interact with Pedestrians:
A Survey of Theory and Practice
Amir Rasouli and John K. Tsotsos"
20f9a09defe5b02b98c464ca6df36b3b6358f60b,The State-of-the-Art in Visual Object Tracking,Volume 36 Number 3 September 2012
20c59a55795eaa4f2629cc83fb556dc8c5bcfc1f,Modeling and visual recognition of human actions and interactions,"Modeling and visual recognition of human actions and
interactions
Ivan Laptev
To cite this version:
Ivan Laptev. Modeling and visual recognition of human actions and interactions. Computer Vision and
Pattern Recognition [cs.CV]. Ecole Normale Supérieure de Paris - ENS Paris, 2013. <tel-01064540>
HAL Id: tel-01064540
https://tel.archives-ouvertes.fr/tel-01064540
Submitted on 16 Sep 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
20e210bb6b1d3e637e2b2674aeead3fad8c2c70e,Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer,"Published as a conference paper at ICLR 2017
PAYING MORE ATTENTION TO ATTENTION:
IMPROVING THE PERFORMANCE OF CONVOLUTIONAL
NEURAL NETWORKS VIA ATTENTION TRANSFER
Sergey Zagoruyko, Nikos Komodakis
Universit´e Paris-Est, ´Ecole des Ponts ParisTech
Paris, France"
20e903faf8e2e656a89d983541b15f2e0d614eeb,Image to Image Translation for Domain Adaptation,"Image to Image Translation for Domain Adaptation
Zak Murez1,2
Soheil Kolouri2 David Kriegman1 Ravi Ramamoorthi1 Kyungnam Kim2
University of California, San Diego; 2 HRL Laboratories, LLC;"
200f1a55c5974c4cac243bed3131ac5a9338840d,Human Computation for Object Detection,"May 09, 2013
TR Number: UCSC-SOE-15-03
Human Computation for Object Detection
Rajan Vaish1, Sascha T. Ishikawa1, Sheng Lundquist2, Reid Porter2, James Davis1
University of California at Santa Cruz1, Los Alamos National Laboratory2
{rvaish, stishika,  {slundquist,"
204db062f4952ce446cbb28fbc40d4a7f4424b03,Systematic evaluation of super-resolution using classification,"SYSTEMATIC EVALUATION OF
SUPER-RESOLUTION USING CLASSIFICATION
Vinay P. Namboodiri1, Vincent De Smet1 and Luc Van Gool1,2
ESAT-PSI/IBBT, K.U.Leuven, Belgium
Computer Vision Laboratory, BIWI/ETH Z¨urich, Switzerland"
203fcd66c043e44fefd783b8f54105f0a577fc25,Analyzing Content and Customer Engagement in Social Media with Deep Learning,"Analyzing Content and Customer Engagement in
Social Media with Deep Learning
(The bulk of this work was done by a student.)"
20f272f4bdf562aa8b4dae84b67cfafa34a00738,Periocular biometrics: An emerging technology for unconstrained scenarios,"Periocular Biometrics:
An Emerging Technology for Unconstrained
Scenarios
Gil Santos and Hugo Proenc¸a
IT - Instituto de Telecomunicac¸ ˜oes
Universidade da Beira Interior
Covilh˜a, Portugal
Email:"
20100323ec5c32ae91add8e866d891a78f1a2bbe,Unsupervised Object Discovery and Tracking in Video Collections,"Unsupervised Object Discovery and Tracking in Video Collections
Suha Kwak1,∗
Minsu Cho1,∗
Ivan Laptev1,∗
Jean Ponce2,∗
Cordelia Schmid1,†
Inria
´Ecole Normale Sup´erieure / PSL Research University"
20717f1cb12ab208458c0f2505b237d8f061f97a,Learning Classifiers from Synthetic Data Using a Multichannel Autoencoder,"Learning Classifiers from Synthetic Data Using a
Multichannel Autoencoder
Xi Zhang, Yanwei Fu, Andi Zang, Leonid Sigal, Gady Agam"
2067ab35379381f05acaa7406a30d0ee02c0b8cc,Directional Statistics-based Deep Metric Learning for Image Classification and Retrieval,"Directional Statistics-based Deep Metric Learning
for Image Classification and Retrieval
Xuefei Zhe, Shifeng Chen, and Hong Yan, Fellow, IEEE"
2059d2fecfa61ddc648be61c0cbc9bc1ad8a9f5b,Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression,"TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 4, APRIL 2015
Co-Localization of Audio Sources in Images Using
Binaural Features and Locally-Linear Regression
Antoine Deleforge∗ Radu Horaud∗ Yoav Y. Schechner‡ Laurent Girin∗†
INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France
Univ. Grenoble Alpes, GIPSA-Lab, France
Dept. Electrical Eng., Technion-Israel Inst. of Technology, Haifa, Israel"
20b8a76e988e796f0f225876a69842f6839e4c98,Real-time Gender Recognition for Uncontrolled Environment of Real-life Images,"REAL-TIME GENDER RECOGNITION FOR UNCONTROLLED
ENVIRONMENT OF REAL-LIFE IMAGES
Duan-Yu Chen and Kuan-Yi Lin
Department of Electrical Engineering, Yuan-Ze University, Taiwan
Keywords:
Gender recognition, Uncontrolled environment, Real-life images."
202a923504ea81e94c06a81581539b893b461ee5,YELP: masking sound-based opportunistic attacks in zero-effort deauthentication,"YELP: Masking Sound-based Opportunistic A(cid:130)acks in
Zero-E(cid:128)ort Deauthentication
University of Alabama at Birmingham
University of Alabama at Birmingham
University of Alabama at Birmingham
Prakash Shrestha
S Abhishek Anand
Nitesh Saxena"
20111924fbf616a13d37823cd8712a9c6b458cd6,Linear Regression Line based Partial Face Recognition,"International Journal of Computer Applications (0975 – 8887)
Volume 130 – No.11, November2015
Linear Regression Line based Partial Face Recognition
Naveena M.
Department of Studies in
Computer Science,
Manasagagothri,
Mysore.
G. Hemantha Kumar
Department of Studies in
Computer Science,
Manasagagothri,
Mysore.
P. Nagabhushan
Department of Studies in
Computer Science,
Manasagagothri,
Mysore.
images.  In"
2056ba48e687d619c0ce69d0be323d48c5b90701,Similarity Mapping with Enhanced Siamese Network for Multi-Object Tracking,"Similarity Mapping with Enhanced Siamese Network
for Multi-Object Tracking
Minyoung Kim
Cupertino, CA
Stefano Alletto
Modena, MO
Panasonic Silicon Valley Laboratory
University of Modena and Reggio Emilia
Panasonic Silicon Valley Laboratory
Luca Rigazio
Cupertino, CA"
20eaa3ebe2b6e1aff7c4585733c9fb0cfc941919,Image similarity using Deep CNN and Curriculum Learning,"Image similarity using Deep CNN and Curriculum Learning
Srikar Appalaraju
Vineet Chaoji
Amazon Development Centre (India) Pvt. Ltd.
Image similarity involves fetching similar looking images given a reference image. Our solution called SimNet, is a deep
Siamese network which is trained on pairs of positive and negative images using a novel online pair mining strategy inspired
y Curriculum learning. We also created a multi-scale CNN, where the final image embedding is a joint representation of
top as well as lower layer embedding’s. We go on to show that this multi-scale Siamese network is better at capturing fine
grained image similarities than traditional CNN’s.
Keywords — Multi-scale CNN, Siamese network, Curriculum learning, Transfer learning.
I.  INTRODUCTION
The  ability  to  find  a  similar  set  of  images  for  a  given
image  has  multiple  uses-cases  from  visual  search  to
duplicate  product  detection  to  domain  specific  image
lustering. Our approach called SimNet, tries to identify
similar images for a new image using multi-scale Siamese
network. Fig. 1 shows examples of image samples from
CIFAR10 [39] on which SimNet is trained on.
Fig. 1 examples of CIFAR 10 images. Task is - given a new image
ut belonging to one of the 10 categories, find similar set of images."
20532b1f80b509f2332b6cfc0126c0f80f438f10,A Deep Matrix Factorization Method for Learning Attribute Representations,"A deep matrix factorization method for learning
ttribute representations
George Trigeorgis, Konstantinos Bousmalis, Student Member, IEEE, Stefanos Zafeiriou, Member, IEEE
Bj¨orn W. Schuller, Senior member, IEEE"
205af28b4fcd6b569d0241bb6b255edb325965a4,Facial expression recognition and tracking for intelligent human-robot interaction,"Intel Serv Robotics (2008) 1:143–157
DOI 10.1007/s11370-007-0014-z
SPECIAL ISSUE
Facial expression recognition and tracking for intelligent human-robot
interaction
Y. Yang · S. S. Ge · T. H. Lee · C. Wang
Received: 27 June 2007 / Accepted: 6 December 2007 / Published online: 23 January 2008
© Springer-Verlag 2008"
20928315086a49e0cdea0ec66f2e78e9c564f794,Person Detection for Indoor Videosurveillance Using Spatio-temporal Integral Features,"Person Detection for Indoor Videosurveillance
using Spatio-Temporal Integral Features
Adrien Descamps1, Cyril Carincotte2, and Bernard Gosselin1
TCTS Lab, University of Mons, Mons, Belgium
Multitel ASBL, 2 Rue Pierre et Marie Curie, Mons, Belgium"
203abfcc3df8de6606cf34fa32cf225627f52d00,Learning Robot Vision for Assisted Living,"Robotic Vision:
Technologies for Machine
Learning and Vision Applications
José García-Rodríguez
University of Alicante, Spain
Miguel Cazorla
University of Alicante, Spain"
20260d36506911e04ad1efed1e60b06bfc178d52,Deep 3D face identification,"Deep 3D Face Identification
Donghyun Kim
Matthias Hernandez
Jongmoo Choi
G´erard Medioni
USC Institute for Robotics and Intelligent Systems (IRIS)
Unversity of Southern California
{kim207, mthernan, jongmooc,"
20a0b23741824a17c577376fdd0cf40101af5880,Learning to Track for Spatio-Temporal Action Localization,"Learning to track for spatio-temporal action localization
Philippe Weinzaepfela
Zaid Harchaouia,b
NYU
Inria∗
Cordelia Schmida"
18bca470bf51f5cc42148cd7e34fa58280be8eb2,Face Expressional Recognition using Geometry and Behavioral Traits,"IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009
Face Expressional Recognition using Geometry and Behavioral
Traits
J. K. Kani Mozhi, Sr. Lect / Dept. of MCA, K. S. Rangasamy College of Technology, Tiruchengode. India.
J. K. Kani Mozhi 1 and Dr. R. S. D. Wahida Banu 2
Dr. R. S. D. Wahida Banu, Prof. & Head / Dept. of ECE, Govt. College of Engg., Salem, India.
recognition"
18c72175ddbb7d5956d180b65a96005c100f6014,From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 6,
JUNE 2001
From Few to Many: Illumination Cone
Models for Face Recognition under
Variable Lighting and Pose
Athinodoros S. Georghiades, Student Member, IEEE, Peter N. Belhumeur, Member, IEEE, and
David J. Kriegman, Senior Member, IEEE"
18636347b8741d321980e8f91a44ee054b051574,Facial marks: Soft biometric for face recognition,"978-1-4244-5654-3/09/$26.00 ©2009 IEEE
ICIP 2009"
18ab703c9959fbea7ad253a4062eb705b245552c,Efficient trajectory extraction and parameter learning for data-driven crowd simulation,"Efficient Trajectory Extraction and Parameter Learning for Data-Driven
Crowd Simulation
Aniket Bera∗
Sujeong Kim†
Dinesh Manocha‡
The University of North Carolina at Chapel Hill"
181045164df86c72923906aed93d7f2f987bce6c,Rheinisch-westfälische Technische Hochschule Aachen,"RHEINISCH-WESTFÄLISCHE TECHNISCHE
HOCHSCHULE AACHEN
KNOWLEDGE-BASED SYSTEMS GROUP
PROF. GERHARD LAKEMEYER, PH. D.
Detection and Recognition of Human
Faces using Random Forests for a
Mobile Robot
MASTER OF SCIENCE THESIS
VAISHAK BELLE
MATRICULATION NUMBER: 26 86 51
SUPERVISOR:
SECOND SUPERVISOR:
PROF. GERHARD LAKEMEYER, PH. D.
PROF. ENRICO BLANZIERI, PH. D.
ADVISERS:
STEFAN SCHIFFER, THOMAS DESELAERS"
18d5b0d421332c9321920b07e0e8ac4a240e5f1f,Collaborative Representation Classification Ensemble for Face Recognition,"Collaborative Representation Classification
Ensemble for Face Recognition
Xiao Chao Qu, Suah Kim, Run Cui and Hyoung Joong Kim"
18269fcaba9feba85552b039a9052cd67e6d9c8b,Emotional facial sensing and multimodal fusion in a continuous 2D affective space,"J Ambient Intell Human Comput (2012) 3:31–46
DOI 10.1007/s12652-011-0087-6
O R I G I N A L R E S E A R C H
Emotional facial sensing and multimodal fusion in a continuous
D affective space
Eva Cerezo • Isabelle Hupont • Sandra Baldassarri •
Sergio Ballano
Received: 3 February 2011 / Accepted: 24 September 2011 / Published online: 30 October 2011
Ó Springer-Verlag 2011"
18ccd8bd64b50c1b6a83a71792fd808da7076bc9,Object detection and segmentation from joint embedding of parts and pixels,"Object Detection and Segmentation
from Joint Embedding of Parts and Pixels
Michael Maire1, Stella X. Yu2, Pietro Perona1
California Institute of Technology - Pasadena, CA 91125
Boston College - Chestnut Hill, MA 02467"
18d51a366ce2b2068e061721f43cb798177b4bb7,Looking into your eyes: observed pupil size influences approach-avoidance responses.,"Cognition and Emotion
ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20
Looking into your eyes: observed pupil size
influences approach-avoidance responses
Marco Brambilla, Marco Biella & Mariska E. Kret
To cite this article: Marco Brambilla, Marco Biella & Mariska E. Kret (2018): Looking into your
eyes: observed pupil size influences approach-avoidance responses, Cognition and Emotion, DOI:
0.1080/02699931.2018.1472554
To link to this article:  https://doi.org/10.1080/02699931.2018.1472554
View supplementary material
Published online: 11 May 2018.
Submit your article to this journal
View related articles
View Crossmark data
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=pcem20"
18c4a0e82fdddda2530b7281ad567abc0373a89f,Automatic Subspace Learning via Principal Coefficients Embedding,"Automatic Subspace Learning via Principal
Coefficients Embedding
Xi Peng, Jiwen Lu, Senior Member, IEEE, Zhang Yi, Fellow, IEEE and Rui Yan, Member, IEEE,"
18cc17c06e34baaa3e196db07e20facdbb17026d,Describing Videos by Exploiting Temporal Structure,"Describing Videos by Exploiting Temporal Structure
Li Yao
Universit´e de Montr´eal
Atousa Torabi
Universit´e de Montr´eal
Kyunghyun Cho
Universit´e de Montr´eal
Nicolas Ballas
Universit´e de Montr´eal
Christopher Pal
´Ecole Polytechnique de Montr´eal
Hugo Larochelle
Universit´e de Sherbrooke
Aaron Courville
Universit´e de Montr´eal"
1885acea0d24e7b953485f78ec57b2f04e946eaf,Combining Local and Global Features for 3D Face Tracking,"Combining Local and Global Features for 3D Face Tracking
Pengfei Xiong, Guoqing Li, Yuhang Sun
Megvii (face++) Research
{xiongpengfei, liguoqing,"
1868aeb7f13e64ebc78869b371ef321572d6167f,Weakly Supervised Automatic Annotation of Pedestrian Bounding Boxes,"Weakly Supervised Automatic Annotation of Pedestrian Bounding Boxes
David V´azquez1, Jiaolong Xu1, Sebastian Ramos1, Antonio M. L´opez1,2 and Daniel Ponsa1,2
Computer Vision Center
Dept. of Computer Science
Autonomous University of Barcelona
08193 Bellaterra, Barcelona, Spain
{dvazquez, jiaolong, sramosp, antonio,"
18d4210a5bb56e92045ef0637208685abaaca6a5,GIANT: geo-informative attributes for location recognition and exploration,"GIANT: Geo-Informative Attributes for
locatioN recogniTion and exploration
National Lab of Pattern Recognition, Institute of Automation, CAS, Beijing 100190, China
China-Singapore Institute of Digital Media, Singapore, 139951, Singapore
Quan Fang1,2, Jitao Sang1,2, Changsheng Xu1,2
{qfang, jtsang,"
18de899c853120a1a2cd502ebc3e970b92e1882f,Age Regression from Soft Aligned Face Images Using Low Computational Resources,"Age regression from soft aligned face images
using low computational resources
Juan Bekios-Calfa1, Jos´e M. Buenaposada2, and Luis Baumela3
Dept. de Ingenier´ıa de Sistemas y Computaci´on, Universidad Cat´olica del Norte
Av. Angamos 0610, Antofagasta, Chile
Dept. de Ciencias de la Computaci´on, Universidad Rey Juan Carlos
Calle Tulip´an s/n, 28933, M´ostoles, Spain
Dept. de Inteligencia Artificial, Universidad Polit´ecnica de Madrid
Campus Montegancedo s/n, 28660 Boadilla del Monte, Spain"
18a849b1f336e3c3b7c0ee311c9ccde582d7214f,"Efficiently Scaling up Crowdsourced Video Annotation A Set of Best Practices for High Quality, Economical Video Labeling","Int J Comput Vis
DOI 10.1007/s11263-012-0564-1
Efficiently Scaling up Crowdsourced Video Annotation
A Set of Best Practices for High Quality, Economical Video Labeling
Carl Vondrick · Donald Patterson · Deva Ramanan
Received: 31 October 2011 / Accepted: 20 August 2012
© Springer Science+Business Media, LLC 2012"
18cd79f3c93b74d856bff6da92bfc87be1109f80,A N a Pplication to H Uman F Ace P Hoto - S Ketch S Ynthesis and R Ecognition,"International Journal of Advances in Engineering & Technology, May 2012.
©IJAET                                                                                                          ISSN: 2231-1963
AN APPLICATION TO HUMAN FACE PHOTO-SKETCH
SYNTHESIS AND RECOGNITION
Amit R. Sharma and 2Prakash. R. Devale
Student and 2Professor & Head,
Department of Information Tech., Bharti Vidyapeeth Deemed University, Pune, India"
189355bff03076cc5bddaa11239626051931144d,Learning Representations for Automatic Colorization,"Learning Representations for Automatic Colorization
Gustav Larsson1, Michael Maire2, and Gregory Shakhnarovich2
University of Chicago
Toyota Technological Institute at Chicago"
18fe745e0840b7b086fb7d14850a95ebbd5ae57b,Evaluation and Acceleration of High-Throughput Fixed-Point Object Detection on FPGAs,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
Evaluation and Acceleration of High-Throughput
Fixed-Point Object Detection on FPGAs
Xiaoyin Ma, Student Member, IEEE, Walid A. Najjar, Fellow, IEEE, Amit K. Roy-Chowdhury, Sr. Member, IEEE"
1856e71437886af2366b620bcfe4caf891425f7b,Analyzing the Distribution of a Large-Scale Character Pattern Set Using Relative Neighborhood Graph,"Analyzing the Distribution of
Large-scale Character Pattern Set
Using Relative Neighborhood Graph
Masanori Goto(cid:3), Ryosuke Ishiday, Yaokai Fengy and Seiichi Uchiday
(cid:3)GLORY LTD., Hyogo, Japan
Email:
yKyushu University, Fukuoka, Japan
Email:"
1883387726897d94b663cc4de4df88e5c31df285,Measures of Effective Video Tracking,"Measures of effective video tracking
Tahir Nawaz, Fabio Poiesi, Andrea Cavallaro"
18a7edd0bfe5a3d6ceb4d2053081e479cfa1e920,Transductive Kernel Map Learning and its Application to Image Annotation,"TRANSDUCTIVE LEARNING, KERNEL MAP, IMAGE ANNOTATION: BMVC SUBMISSION 1
Transductive Kernel Map Learning
nd its Application to Image Annotation
Dinh-Phong Vo
Hichem Sahbi
LTCI CNRS Telecom ParisTech
6 rue Barrault, 75013, Paris, France"
1886b6d9c303135c5fbdc33e5f401e7fc4da6da4,Knowledge Guided Disambiguation for Large-Scale Scene Classification With Multi-Resolution CNNs,"Knowledge Guided Disambiguation for Large-Scale
Scene Classification with Multi-Resolution CNNs
Limin Wang, Sheng Guo, Weilin Huang, Member, IEEE, Yuanjun Xiong, and Yu Qiao, Senior Member, IEEE"
1888bf50fd140767352158c0ad5748b501563833,A Guided Tour of Face Processing,"PA R T 1
THE BASICS"
18babfe4c7230522527a068654eeea10b1a827fd,Discriminative Label Propagation for Multi-object Tracking with Sporadic Appearance Features,"Discriminative Label Propagation for Multi-Object Tracking with Sporadic
Appearance Features
Amit Kumar K.C. and Christophe De Vleeschouwer
ISPGroup, ELEN Department, ICTEAM Institute
Universit´e catholique de Louvain
Louvain-la-Neuve, B-1348, Belgium
{amit.kc,"
1819d9a9099dafc987dd236c2174945e7922be13,Eigenfeature Regularization and Extraction in Face Recognition,"Eigenfeature Regularization and Extraction
in Face Recognition
Xudong Jiang, Senior Member, IEEE, Bappaditya Mandal, and Alex Kot, Fellow, IEEE"
183ad3409a53914247affc599b33af38d94937be,A Latent-Variable Lattice Model,"An Inertial Latent-Variable Sequence Model
Rajasekaran Masatran
Indian Institute of Technology Madras, Chennai, TN, India
MASATRAN AT FREESHELL.ORG"
18f348d56a2ff1c0904685ce8b6818b84867b7a4,ML-o-scope: a diagnostic visualization system for deep machine learning pipelines,"ML-o-scope: a diagnostic visualization system for
deep machine learning pipelines
Daniel Bruckner
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2014-99
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-99.html
May 16, 2014"
18d7684c6b96caf51adb519738720eceb1b13050,Hidden Relationships: Bayesian Estimation With Partial Knowledge,"Hidden Relationships:
Bayesian Estimation with Partial Knowledge
Tomer Michaeli and Yonina C. Eldar, Senior Member, IEEE
the joint probability function of"
18a4399b8afb460cbd4de2225f39ed23a95336d6,HMS-Net: Hierarchical Multi-scale Sparsity-invariant Network for Sparse Depth Completion,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
HMS-Net: Hierarchical Multi-scale
Sparsity-invariant Network for Sparse Depth
Completion
Zixuan Huang, Junming Fan, Shuai Yi, Xiaogang Wang, Senior Member, IEEE,
Hongsheng Li, Member, IEEE"
18727c3f4ada0cec9e5914340cc672d0554d7784,"3-D Face Detection, Landmark Localization, and Registration Using a Point Distribution Model","D face detection, landmark localization and
registration using a Point Distribution Model
Prathap Nair*, Student Member, IEEE, and Andrea Cavallaro, Member, IEEE"
18001ed8ce46cf9df5574b1e360550ed9401cd76,Sentic blending: Scalable multimodal fusion for the continuous interpretation of semantics and sentics,"Sentic Blending:
Scalable Multimodal Fusion for the Continuous
Interpretation of Semantics and Sentics
Erik Cambria, Member, IEEE, Newton Howard, Member, IEEE,
Jane Hsu, Member, IEEE, and Amir Hussain, Senior Member, IEEE"
18aae0f20fdc6aab093c72c81005247d2cbc8512,Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination,"Bayesian CP Factorization of Incomplete
Tensors with Automatic Rank Determination
Qibin Zhao, Member, IEEE, Liqing Zhang, Member, IEEE, and Andrzej Cichocki Fellow, IEEE"
18233c55982050292ba7f6a5462c0e7576c3398d,Face Recognition using Eye Distance and PCA Approaches,"Face Recognition using Eye Distance and PCA
Approaches
Ripal Patel , Nidhi Rathod , Ami Shah , Mayur Sevak
Electronics & Telecommunication Department,
BVM Engineering College.
Vallabh Vidyanagar-388120, Gujarat, India"
180cf5ab4e021e64b9bf08f2ffc4a4712acd9a30,Multi-view anchor graph hashing,"MULTI-VIEW ANCHOR GRAPH HASHING
Saehoon Kim1 and Seungjin Choi1,2
Department of Computer Science and Engineering, POSTECH, Korea
Division of IT Convergence Engineering, POSTECH, Korea
{kshkawa,"
185360fe1d024a3313042805ee201a75eac50131,Person De-Identification in Videos,"Person De-Identification in Videos
Prachi Agrawal and P. J. Narayanan"
1824b1ccace464ba275ccc86619feaa89018c0ad,One millisecond face alignment with an ensemble of regression trees,"One Millisecond Face Alignment with an Ensemble of Regression Trees
Vahid Kazemi and Josephine Sullivan
KTH, Royal Institute of Technology
Computer Vision and Active Perception Lab
Teknikringen 14, Stockholm, Sweden"
18858cc936947fc96b5c06bbe3c6c2faa5614540,Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification,"Proceedings of Machine Learning Research 81:1–15, 2018
Conference on Fairness, Accountability, and Transparency
Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification∗
Joy Buolamwini
MIT Media Lab 75 Amherst St. Cambridge, MA 02139
Timnit Gebru
Microsoft Research 641 Avenue of the Americas, New York, NY 10011
Editors: Sorelle A. Friedler and Christo Wilson"
2783efc96a0d59473e4236ccf1db6ed7e958839e,An Overview of Multi-Task Learning in Deep Neural Networks,"An Overview of Multi-Task Learning
in Deep Neural Networks∗
Sebastian Ruder
Insight Centre for Data Analytics, NUI Galway
Aylien Ltd., Dublin"
27e97b67a8401def58eb41b4b00d3dfb0e4ad1a8,Knowledge Based Face Detection Using Fusion Features,"International Journal of Computer Engineering and Applications, ICCSTAR-2016, Special Issue,
May.16
Knowledge Based Face Detection Using Fusion Features.
Savitri Kulkarni
Assistant Professor,Department of CSE
City Engineering College,
2Annapurna N S
UG Student (B.E) Department of CSE
City Engineering College,"
2704959c75a2e6741867ae18f11fa822fa544c74,Hierarchical Convex NMF for Clustering Massive Data,"JMLR: Workshop and Conference Proceedings 13: 253-268
nd Asian Conference on Machine Learning (ACML2010), Tokyo, Japan, Nov. 8–10, 2010.
Hierarchical Convex NMF for Clustering Massive Data
Kristian Kersting
Mirwaes Wahabzada
Knowledge Discovery Department
Fraunhofer IAIS, Schloss Birlinghoven
53754 Sankt Augustin, Germany
Christian Thurau
Christian Bauckhage
Vision and Social Media Group
Fraunhofer IAIS, Schloss Birlinghoven
53754 Sankt Augustin, Germany
Editor: Masashi Sugiyama and Qiang Yang"
275ad26b7e4d7847f7ad4eedda65f327007a9452,Query-by-Example Image Retrieval using Visual Dependency Representations,"Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 109–120, Dublin, Ireland, August 23-29 2014."
27fda2c61f3fe1f74e18bd11555df7751d178bca,Real-time 3D head pose and facial landmark estimation from depth images using triangular surface patch features,"Real-time 3D Head Pose and Facial Landmark Estimation from Depth Images
Using Triangular Surface Patch Features
Chavdar Papazov
Tim K. Marks
Michael Jones
Mitsubishi Electric Research Laboratories (MERL)
01 Broadway, Cambridge, MA 02139"
27a0a7837f9114143717fc63294a6500565294c2,Face Recognition in Unconstrained Environments: A Comparative Study,"Face Recognition in Unconstrained Environments: A
Comparative Study
Rodrigo Verschae, Javier Ruiz-Del-Solar, Mauricio Correa
To cite this version:
Rodrigo Verschae, Javier Ruiz-Del-Solar, Mauricio Correa. Face Recognition in Unconstrained
Environments: A Comparative Study: . Workshop on Faces in ’Real-Life’ Images: Detection,
Alignment, and Recognition, Oct 2008, Marseille, France. 2008. <inria-00326730>
HAL Id: inria-00326730
https://hal.inria.fr/inria-00326730
Submitted on 5 Oct 2008
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
27421586a04584d38dd961b37d0ca85408acfe59,Large brains in autism: the challenge of pervasive abnormality.,"Large Brains in Autism:
The Challenge of Pervasive Abnormality
MARTHA R. HERBERT
Pediatric Neurology, Center for Morphometric Analysis
Massachusetts General Hospital
REVIEW I
The most replicated finding in autism neuroanatomy—a tendency to unusually large brains—has seemed
paradoxical in relation to the specificity of the abnormalities in three behavioral domains that define autism.
We now know a range of things about this phenomenon, including that brains in autism have a growth spurt
shortly  after  birth  and  then  slow  in  growth  a  few  short  years  afterward,  that  only  younger  but  not  older
rains are larger in autism than in controls, that white matter contributes disproportionately to this volume
increase and in a nonuniform pattern suggesting postnatal pathology, that functional connectivity among
regions of autistic brains is diminished, and that neuroinflammation (including microgliosis and astrogliosis)
ppears to be present in autistic brain tissue from childhood through adulthood. Alongside these pervasive
rain  tissue  and  functional  abnormalities,  there  have  arisen  theories  of  pervasive  or  widespread  neural
information  processing  or  signal  coordination  abnormalities  (such  as  weak  central  coherence,  impaired
omplex processing, and underconnectivity), which are argued to underlie the specific observable behav-
ioral features of autism. This convergence of findings and models suggests that a systems- and chronic
disease–based  reformulation  of  function  and  pathophysiology  in  autism  needs  to  be  considered,  and
it  opens  the  possibility  for  new  treatment  targets.  NEUROSCIENTIST  11(5):417–440;  2005.  DOI:"
2792e5d569b94406ca28f86c9999f569a3d60c6d,Illumination Multiplexing within Fundamental Limits,"Illumination Multiplexing within Fundamental Limits
Netanel Ratner
Yoav Y. Schechner
Department of Electrical Engineering
Technion - Israel Institute of Technology
Haifa 32000, ISRAEL"
276dbb667a66c23545534caa80be483222db7769,An Introduction to Image-based 3D Surface Reconstruction and a Survey of Photometric Stereo Methods,"D Res. 2, 03(2011)4
0.1007/3DRes.03(2011)4
DR REVIEW                                                            w
An  Introduction  to  Image-based  3D  Surface  Reconstruction  and  a
Survey of Photometric Stereo Methods
Steffen Herbort • Christian Wöhler
introduction
image-based  3D
techniques.  Then  we  describe
Received: 21Feburary 2011 / Revised: 20 March 2011 / Accepted: 11 May 2011
© 3D Research Center, Kwangwoon University and Springer 2011"
270733d986a1eb72efda847b4b55bc6ba9686df4,Recognizing Facial Expressions Using Model-Based Image Interpretation,"We are IntechOpen,
the first native scientific
publisher of Open Access books
,350
08,000
.7 M
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
27a4bbd7bc90ad118f15c61bb30079d6e6bff78e,3D Deformable Super-Resolution for Multi-Camera 3D Face Scanning,"J Math Imaging Vis
DOI 10.1007/s10851-012-0399-y
D Deformable Super-Resolution for Multi-Camera 3D Face
Scanning
Karima Ouji · Mohsen Ardabilian · Liming Chen ·
Faouzi Ghorbel
© Springer Science+Business Media New York 2012"
277096c5e536784da9856ac083a972715ce9f9c3,Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction,"Article
Gender Recognition from Human-Body Images
Using Visible-Light and Thermal Camera Videos
Based on a Convolutional Neural Network for
Image Feature Extraction
Dat Tien Nguyen, Ki Wan Kim, Hyung Gil Hong, Ja Hyung Koo, Min Cheol Kim and
Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; (D.T.N.); (K.W.K.);
(H.G.H.); (J.H.K.); (M.C.K.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Academic Editor: Joonki Paik
Received: 31 January 2017; Accepted: 18 March 2017; Published: 20 March 2017"
27169761aeab311a428a9dd964c7e34950a62a6b,Face Recognition Using 3D Head Scan Data Based on Procrustes Distance,"International Journal of the Physical Sciences Vol. 5(13), pp. 2020 -2029, 18 October, 2010
Available online at http://www.academicjournals.org/IJPS
ISSN 1992 - 1950 ©2010 Academic Journals
Full Length Research Paper
Face recognition using 3D head scan data based on
Ahmed Mostayed1, Sikyung Kim1, Mohammad Mynuddin Gani Mazumder1* and Se Jin Park2
Procrustes distance
Department of Electrical Engineering, Kongju National University, South Korea.
Korean Research Institute of Standards and Science (KRISS), Korea.
Accepted 6 July, 2010
Recently,  face  recognition  has  attracted  significant  attention  from  the  researchers  and  scientists  in
various  fields  of  research,  such  as  biomedical  informatics,  pattern  recognition,  vision,  etc  due  its
pplications in commercially available systems, defense and security purpose. In this paper a practical
method  for  face  reorganization  utilizing  head  cross  section  data  based  on  Procrustes  analysis  is
proposed. This proposed method relies on shape signatures of the contours extracted from face data.
The shape signatures are created by calculating the centroid distance of the boundary points, which is
translation  and  rotation  invariant  signature.  The  shape  signatures  for  a  selected  region  of  interest
(ROI)  are  used  as  feature  vectors  and  authentication  is  done  using  them.  After  extracting  feature
vectors  a  comparison  analysis  is  performed  utilizing  Procrustes  distance  to  differentiate  their  face
pattern from each other. The proposed scheme attains an equal error rate (EER) of 4.563% for the 400"
272ac22c670fd0c7c3f1b4ca02e925ff22dd4b27,Articulated part-based model for joint object detection and pose estimation,"Articulated Part-based Model for Joint Object Detection and Pose Estimation
Dept. of Electrical and Computer Engineering, University of Michigan at Ann Arbor, USA
Min Sun
Silvio Savarese
COARSE
LEVEL"
27ae7c8c650ffef74c465640f423d9008014e1ca,Dimensionality Reduction with Adaptive Approximation,"TobepublishedintheProceedingsofIEEEICME2007,Beijing,China
DIMENSIONALITY REDUCTION WITH ADAPTIVE APPROXIMATION
Effrosyni Kokiopoulou and Pascal Frossard
Ecole Polytechnique F´ed´erale de Lausanne (EPFL)
Signal Processing Institute - ITS
CH- 1015 Lausanne, Switzerland"
27b87bdee46964757b83b5afb4184e438cad6b1b,Sequence searching with deep-learnt depth for condition- and viewpoint-invariant route-based place recognition,"Sequence Searching with Deep-learnt Depth for Condition- and Viewpoint-
invariant Route-based Place Recognition
Michael Milford, Stephanie Lowry, Niko
Sunderhauf, Sareh Shirazi, Edward Pepperell,
Ben Upcroft
Queensland University of Technology Australia
Australian Centre for Robotic Vision"
27173d0b9bb5ce3a75d05e4dbd8f063375f24bb5,Effect of Different Occlusion on Facial Expressions Recognition,"Ankita Vyas  Int. Journal of Engineering Research and Applications                               www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.40-44
RESEARCH ARTICLE
OPEN ACCESS
Effect of Different Occlusion on Facial Expressions Recognition
Ankita Vyas*, Ramchand Hablani**
*(Department of Computer Science, RGPV University, Indore)
** (Department of Computer Science, RGPV University, Indore)"
27f1fd71538ba420c63aa4c74704718a0633b22a,Multimodal News Article Analysis,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
2785c5769489825671a6138fdf0537fcd444038a,A Deep Cascade Network for Unaligned Face Attribute Classification,"A Deep Cascade Network for Unaligned Face Attribute Classification
Hui Ding,1 Hao Zhou,2 Shaohua Kevin Zhou,3 Rama Chellappa4
,2,4University of Maryland, College Park
Siemens Healthineers, New Jersey"
27187d4c36f71d08898a53dfda0e81df11b25f21,Worst Case Linear Discriminant Analysis as Scalable Semidefinite Feasibility Problems,"MANUSCRIPT
Worst-Case Linear Discriminant Analysis as
Scalable Semidefinite Feasibility Problems
Hui Li, Chunhua Shen, Anton van den Hengel, Qinfeng Shi"
2725a68be6bc677bd435c19664569ecd45c52d7a,DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers,"DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers
Amir Ghodrati1∗, Ali Diba1∗, Marco Pedersoli2†‡, Tinne Tuytelaars1, Luc Van Gool1,3
KU Leuven, ESAT-PSI, iMinds
Inria
CVL, ETH Zurich"
273b973092a4491974d173cc5258c74aede692cc,Monocular Long-Term Target Following on UAVs,"Monocular Long-term Target Following on UAVs
Rui Li ∗
Minjian Pang†
Cong Zhao ‡
Guyue Zhou ‡
Lu Fang †§"
2770b095613d4395045942dc60e6c560e882f887,GridFace: Face Rectification via Learning Local Homography Transformations,"GridFace: Face Rectification via Learning Local
Homography Transformations
Erjin Zhou, Zhimin Cao, and Jian Sun
Face++, Megvii Inc."
27cccf992f54966feb2ab4831fab628334c742d8,"Facial Expression Recognition by Statistical, Spatial Features and using Decision Tree","International Journal of Computer Applications (0975 – 8887)
Volume 64– No.18, February 2013
Facial Expression Recognition by Statistical, Spatial
Features and using Decision Tree
Nazil Perveen
Assistant Professor
CSIT Department
GGV BIlaspur, Chhattisgarh
India
Darshan Kumar
Assistant Professor
Electronics (ECE) Department
JECRC Jaipur, Rajasthan India
IshanBhardwaj
Student of Ph.D.
Electrical Department
NIT Raipur, Chhattisgarh India"
27f9b43737e234cefb3c5cd72324a36cbe61ee3c,Sparse Manifold Clustering and Embedding,"Sparse Manifold Clustering and Embedding
Ehsan Elhamifar
Center for Imaging Science
Johns Hopkins University
Ren´e Vidal
Center for Imaging Science
Johns Hopkins University"
27f8b01e628f20ebfcb58d14ea40573d351bbaad,Events based Multimedia Indexing and Retrieval,"DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School
Events based Multimedia Indexing
nd Retrieval
Kashif Ahmad
SUBMITTED TO THE DEPARTMENT OF
INFORMATION ENGINEERING AND COMPUTER SCIENCE (DISI)
IN THE PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
DOCTOR OF PHILOSOPHY
Advisor:
Examiners: Prof. Marco Carli, Universit`a degli Studi di Roma Tre, Italy
Prof. Nicola Conci, Universit`a degli Studi di Trento, Italy
Prof. Pietro Zanuttigh, Universit`a degli Studi di Padova, Italy
Prof. Giulia Boato, Universit`a degli Studi di Trento, Italy
December 2017"
27c978bdb9de3a5135349976fdbc514ff547dcab,Multi-Objective Stochastic Optimization by Co-Direct Sequential Simulation for History Matching of Oil Reservoirs,"Multi-Objective Stochastic Optimization by Co-Direct Sequential
Simulation for History Matching of Oil Reservoirs
Jo˜ao Daniel Trigo Pereira Carneiro∗
under the supervision of Am´ılcar de Oliveira Soares†
Dep. Mines, IST, Lisbon, Portugal
December 2010"
2799d53ca80d67f104bef207a667fa12b4c59d62,Multiple-Person Tracking for a Mobile Robot Using Stereo,"MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN
Multiple-Person Tracking for a Mobile Robot using Stereo
Junji Satake
Jun Miura
Toyohashi University of Technology
-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
{satake,"
27ae95d9ad6492511296360ba0618f5d0565cf9e,Person re-Identification over distributed spaces and time,"Person re-Identification over distributed spaces and time
Prosser, Bryan James
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/jspui/handle/123456789/2513
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
276d35fef150f61adf53270eb6e50625022d4e7f,The ACRV picking benchmark: A robotic shelf picking benchmark to foster reproducible research,"A Robotic Shelf Picking Benchmark to Foster Reproducible Research
The ACRV Picking Benchmark:
J¨urgen Leitner1,2, Adam W. Tow1,2, Niko S¨underhauf1,2, Jake E. Dean2, Joseph W. Durham3, Matthew
Cooper2, Markus Eich1,2, Christopher Lehnert2, Ruben Mangels2, Christopher McCool2, Peter T. Kujala1,2,
Lachlan Nicholson2, Trung Pham1,4, James Sergeant1,2, Fangyi Zhang1,2, Ben Upcroft1,2, and Peter Corke1,2."
27183d23f50884a0e06b978acf9ad77dbcbfb112,Autonomous indoor helicopter flight using a single onboard camera,"The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA
978-1-4244-3804-4/09/$25.00 ©2009 IEEE"
2757ff9bba677e7bceaa4802d85cc6f872618583,From basis components to complex structural patterns,"FROM BASIS COMPONENTS TO COMPLEX STRUCTURAL PATTERNS
Anh Huy Phan‡, Andrzej Cichocki‡∗, Petr Tichavsk´y•†, Rafal Zdunek§ and Sidney Lehky‡⋆
Brain Science Institute, RIKEN, Wakoshi, Japan
•Institute of Information Theory and Automation, Prague, Czech Republic
§Wroclaw University of Technology, Poland
⋆Computational Neurobiology Lab, The Salk Institute, USA"
27448716366bed56515c1b32579daf224165861e,Deep Multi-camera People Detection,"Deep Multi-Camera People Detection
Tatjana Chavdarova and Franc¸ois Fleuret
Idiap Research Institute and
´Ecole Polytechnique F´ed´erale de Lausanne
Email:"
277cadfadc4550fc781be7df8cb4ec89e54b793e,Autonomous Real-time Vehicle Detection from a Medium-Level UAV,"Autonomous Real-time Vehicle Detection from a
Medium-Level UAV
Toby P. Breckon, Stuart E. Barnes, Marcin L. Eichner and Ken Wahren"
27b1670e1b91ab983b7b1ecfe9eb5e6ba951e0ba,Comparison between k-nn and svm method for speech emotion recognition,"Comparison between k-nn and svm method
for speech emotion recognition
Muzaffar Khan, Tirupati Goskula, Mohmmed Nasiruddin ,Ruhina Quazi
Anjuman College of Engineering & Technology ,Sadar, Nagpur, India"
27ee8482c376ef282d5eb2e673ab042f5ded99d7,Scale Normalization for the Distance Maps AAM,"Scale Normalization for the Distance Maps AAM.
Denis GIRI, Maxime ROSENWALD, Benjamin VILLENEUVE, Sylvain LE GALLOU and Renaud S ´EGUIER
Email: {denis.giri, maxime.rosenwald, benjamin.villeneuve, sylvain.legallou,
Avenue de la boulaie, BP 81127,
5 511 Cesson-S´evign´e, France
Sup´elec, IETR-SCEE Team"
2734b3a6345396499b2b7c6cc1b43fc7e9b375ee,Full-System Simulation of big.LITTLE Multicore Architecture for Performance and Energy Exploration,"Full-System Simulation of big.LITTLE Multicore
Architecture for Performance and Energy
Exploration
Anastasiia Butko, Florent Bruguier, Abdoulaye Gamati´e,
Gilles Sassatelli, David Novo, Lionel Torres and Michel Robert
LIRMM (CNRS and University of Montpellier)
Montpellier, France
Email:"
4b4106614c1d553365bad75d7866bff0de6056ed,Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions,"Unconstrained Facial Images: Database for Face
Recognition under Real-world Conditions⋆
Ladislav Lenc1,2 and Pavel Kr´al1,2
Dept. of Computer Science & Engineering
University of West Bohemia
Plzeˇn, Czech Republic
NTIS - New Technologies for the Information Society
University of West Bohemia
Plzeˇn, Czech Republic"
4b90f2e4f421dd9198d4c52cd3371643acddf1f9,Detecting planar surface using a light-field camera with application to distinguishing real scenes from printed photos,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
´Ecole Polytechnique F´ed´erale de Lausanne
School of Computer and Communication Sciences
AudioVisual Communications Laboratory
. INTRODUCTION
Alireza Ghasemi
Martin Vetterli"
4b57456642e1d21f2bda05aea586b7f419d309ce,Disposable Ties and the Urban Poor,"Disposable Ties and the Urban Poor
Author(s): Matthew Desmond
Reviewed work(s):
Source: American Journal of Sociology, Vol. 117, No. 5 (March 2012), pp. 1295-1335
Published by: The University of Chicago Press
Stable URL: http://www.jstor.org/stable/10.1086/663574 .
Accessed: 17/08/2012 17:34
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
ontent in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact
The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to
American Journal of Sociology.
http://www.jstor.org"
4bb83b00e7b8eb27ad04d4bb80499e91fc471a07,Emotion related structures in large image databases,"Emotion Related Structures in Large Image Databases
Martin Solli
ITN, Linköping University
SE-60174 Norrköping, Sweden
Reiner Lenz
ITN, Linköping University
SE-60174 Norrköping, Sweden"
4b37efd3987c1e625b063a6998bd6b282c844915,End-to-end Convolutional Network for Saliency Prediction,"End-to-end Convolutional Network for Saliency Prediction
Junting Pan and Xavier Gir´o-i-Nieto
Universitat Politecnica de Catalunya (UPC)
Barcelona, Catalonia/Spain"
4b89cf7197922ee9418ae93896586c990e0d2867,Unsupervised Discovery of Action Classes,"LATEX Author Guidelines for CVPR Proceedings
First Author
Institution1
Institution1 address"
4b69bbb6dc2959ea3d2e911ed45c6298dc531490,Deep Mixture of Experts via Shallow Embedding,"TAFE-Net: Task-Aware Feature Embeddings for
Efficient Learning and Inference
Xin Wang Fisher Yu Ruth Wang Trevor Darrell
EECS Department, UC Berkeley
Joseph E. Gonzalez"
4b042eb64ddb8991c0e63fff02b1c51c378a8f58,Leveraging Massive User Contributions for Knowledge Extraction,"Chapter 16
Leveraging Massive User Contributions for
Knowledge Extraction
Spiros Nikolopoulos, Elisavet Chatzilari, Eirini Giannakidou,
Symeon Papadopoulos, Ioannis Kompatsiaris, and Athena Vakali"
4b5dd0a1b866f928734bc36afd597adca20a7ec1,Detector ensembles for face recognition in video surveillance,"Detector Ensembles for Face Recognition in Video Surveillance
Christophe Pagano, Eric Granger, Robert Sabourin and Dmitry O. Gorodnichy"
4b6eb9117c1b7833c8c6b95ecad427f8f994f023,Robust Depth-Based Person Re-Identification,"Robust Depth-based Person Re-identification
Ancong Wu, Wei-Shi Zheng, Jian-Huang Lai
Code is available at the project page:
http://isee.sysu.edu.cn/∼wuancong/ProjectDepthReID.htm
For reference of this work, please cite:
Ancong Wu, Wei-Shi Zheng,
Person Re-identification.
(DOI:10.1109/TIP.2017.2675201)
Jian-Huang Lai. Robust Depth-based
title={Robust Depth-based Person Re-identification},
uthor={Wu, Ancong and Zheng, Wei-Shi and Lai, Jianhuang},
(DOI:10.1109/TIP.2017.2675201)},
year={2017}"
4b8762d7637868b6ba0c97c95b2d4949d103ecdc,The OU-ISIR Gait Database Comprising the Large Population Dataset and Performance Evaluation of Gait Recognition,"The OU-ISIR Gait Database Comprising the Large
Population Dataset and Performance Evaluation of
Gait Recognition
Haruyuki Iwama, Mayu Okumura, Yasushi Makihara, and Yasushi Yagi, Member, IEEE
the world’s"
4ba1cf65eb86aba729192d2f0fe2cd064ac346cf,One-Shot Person Re-identification with a Consumer Depth Camera,"One-Shot Person Re-Identification with a
Consumer Depth Camera
Matteo Munaro, Andrea Fossati, Alberto Basso, Emanuele Menegatti and Luc Van"
4b1fc77a54e9daece9f11ec881a2ec40919337b7,Fusion of LBP and HOG using multiple kernel learning for infrared face recognition,"Fusion of LBP and HOG Using Multiple Kernel
Learning for Infrared Face Recognition
Zhihua Xie, Peng Jiang, Shuai Zhang
Key Lab of Optic-Electronic and Communication
Jiangxi Sciences and Technology Normal University
Nanchang, Jiangxi Province, China
limitation
(LBP)  has"
4b6ea82fa73d2137c884ad43f7865d88b24ff01d,How deep should be the depth of convolutional neural networks: a backyard dog case study,"How deep should be the depth of convolutional neural
networks: a backyard dog case study
Alexander N. Gorban, Evgeny M. Mirkes, Ivan Y. Tukin
University of Leicester, Leicester LE1 7RH, UK"
4b7dc1e99b0b34022aec2bde1a13481f28f62030,Person Re-Identification Based on Weighted Indexing Structures,"Person Re-Identification based on Weighted
Indexing Structures
Cristianne R. S. Dutra, Matheus Castro Rocha, and William Robson Schwartz
Department of Computer Science, Universidade Federal de Minas Gerais
Belo Horizonte, Minas Gerais, Brazil, 31270-901
rocha"
4b9b39bbdac95e24773789f1bb543149116cdc37,Region-Of-Interest Retrieval in Brain MR Images,"Technical Note PR-TN 2008/00905
Issued: 12/2008
Region-Of-Interest Retrieval in Brain MR
Images
D. Unay; A. Ekin
Philips Research Europe
Unclassified
 Koninklijke Philips Electronics N.V. 2008"
4b04247c7f22410681b6aab053d9655cf7f3f888,Robust Face Recognition by Constrained Part-based Alignment,"Robust Face Recognition by Constrained Part-based
Alignment
Yuting Zhang, Kui Jia, Yueming Wang, Gang Pan, Tsung-Han Chan, Yi Ma"
4b60e45b6803e2e155f25a2270a28be9f8bec130,Attribute based object identification,"Attribute Based Object Identification
Yuyin Sun, Liefeng Bo and Dieter Fox"
4b48e912a17c79ac95d6a60afed8238c9ab9e553,Minimum Margin Loss for Deep Face Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Minimum Margin Loss for Deep Face Recognition
Xin Wei, Student Member, IEEE, Hui Wang, Member, IEEE, Bryan Scotney, and Huan Wan"
4b0893bf71e4e13529cefb286c78b166a9491552,Estimating orientation in tracking individuals of flying swarms,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
4b5eeea5dd8bd69331bd4bd4c66098b125888dea,Human Activity Recognition Using Conditional Random Fields and Privileged Information,"Human Activity Recognition Using Conditional
Random Fields and Privileged Information
DOCTORAL THESIS
submitted to
the designated by the General Assembly Composition of the
Department of Computer Science & Engineering Inquiry
Committee
Michalis Vrigkas
in partial fulfillment of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
February 2016"
4bde15a51413fafa04193e72c15e132e7716d8a6,Performance Study of Fusion in Multimodal Biometric Verification using Ear and Iris Features,"International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)
Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)
Performance Study of Fusion in Multimodal Biometric
Verification using Ear and Iris Features
Poornima.S
Department of IT, SSN College of Engineering
Chennai, India."
4b4763303a15a4c6313bfb386756437f394a0129,Explicit Inductive Bias for Transfer Learning with Convolutional Networks,"Explicit Inductive Bias for Transfer Learning with Convolutional Networks
Xuhong LI 1 Yves GRANDVALET 1 Franck DAVOINE 1"
4b8ce1bfedb285d8d609d1059dd0183420d63671,Transductive Multi-View Zero-Shot Learning,"Transductive Multi-view Zero-Shot Learning
Yanwei Fu, Timothy M. Hospedales, Tao Xiang and Shaogang Gong"
4be03fd3a76b07125cd39777a6875ee59d9889bd,Content-based analysis for accessing audiovisual archives: Alternatives for concept-based indexing and search,"CONTENT-BASED ANALYSIS FOR ACCESSING AUDIOVISUAL ARCHIVES:
ALTERNATIVES FOR CONCEPT-BASED INDEXING AND SEARCH
Tinne Tuytelaars
ESAT/PSI - IBBT
KU Leuven, Belgium"
4baf3b165489122a1f8b574240c2a7fa9b6a7a14,Composite Statistical Inference for Semantic Segmentation,"Composite Statistical Inference for Semantic Segmentation
Fuxin Li(1), Joao Carreira(2), Guy Lebanon(1), Cristian Sminchisescu(3)
(1) Georgia Institute of Technology. (2) ISR - University of Coimbra. (3) Lund University"
4bc67489bbe634271f8fde73a851d7a59946ed36,Wide area motion capture using an array of consumer grade structured light depthsensors,"Mälardalen University
School of Innovation, Design and Engineering
Bachelor thesis in Computer science
Wide area motion capture using an array of
onsumer grade structured light depth
sensors
Author:
Karl Arvidsson
Supervisor:
Afshin Ameri
Examiner:
Baran Çürüklü
October 20, 2015"
4be63e7891180e28085d03bb992abbc5104ac446,Adapting a Pedestrian Detector by Boosting LDA Exemplar Classifiers,"Adapting a Pedestrian Detector by Boosting LDA Exemplar Classifiers
Jiaolong Xu1, David V´azquez1, Sebastian Ramos1, Antonio M. L´opez1,2 and Daniel Ponsa1,2
Computer Vision Center
Dept. of Computer Science
Autonomous University of Barcelona
08193 Bellaterra, Barcelona, Spain
{jiaolong, dvazquez, sramosp, antonio,"
4b7d5b17c0daa35f682417c32e80022c6645dc7f,Fine-Grained Object Recognition and Zero-Shot Learning in Remote Sensing Imagery,"Fine-Grained Object Recognition and Zero-Shot
Learning in Remote Sensing Imagery
Gencer Sumbul, Ramazan Gokberk Cinbis, and Selim Aksoy, Senior Member, IEEE
learning (ZSL)"
4bfdbe2ffc6311c8a297355422d914cb666b358a,"On Boosting, Tug of War, and Lexicographic Programming","On Boosting, Tug of War, and Lexicographic
Programming
Shounak Datta, Sayak Nag, and Swagatam Das, Senior Member, IEEE"
4bfe7037b2d92215aeb5e116988ade7e6733a6b9,Frontal contributions to face processing differences in autism: evidence from fMRI of inverted face processing.,"Journal of the International Neuropsychological Society (2008), 14, 922–932.
Copyright © 2008 INS. Published by Cambridge University Press. Printed in the USA.
doi:10.10170S135561770808140X
SYMPOSIUM
Frontal contributions to face processing differences
in autism: Evidence from fMRI of inverted
face processing
SUSAN Y. BOOKHEIMER,1,2 A. TING WANG,3 ASHLEY SCOTT,1 MARIAN SIGMAN,1,2
nd MIRELLA DAPRETTO 1
Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles,
Los Angeles, California
Department of Psychology, University of California Los Angeles, Los Angeles, California
Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
(Received January 8, 2008; Final Revision August 9, 2008; Accepted August 11, 2008)"
4b0111182ace7443f060a64754ca23b2fc7e1d77,Face Recognition by Super-Resolved 3D Models From Consumer Depth Cameras,"Face Recognition by Super-Resolved 3D Models
From Consumer Depth Cameras
Stefano Berretti, Pietro Pala, Senior Member, IEEE, and Alberto del Bimbo, Member, IEEE
the impact of"
11943efec248fcac57ff6913424e230d0a02e977,Auxiliary Tasks in Multi-task Learning,"Auxiliary Tasks in Multi-task Learning
Lukas Liebel
Marco Körner
Computer Vision Research Group, Chair of Remote Sensing Technology
Technical University of Munich, Germany
{lukas.liebel,
Multi-task convolutional neural networks (CNNs) have shown impressive results for certain combinations of tasks, such
s single-image depth estimation (SIDE) and semantic segmentation. This is achieved by pushing the network towards
learning a robust representation that generalizes well to different atomic tasks. We extend this concept by adding
uxiliary tasks, which are of minor relevance for the application, to the set of learned tasks. As a kind of additional
regularization, they are expected to boost the performance of the ultimately desired main tasks. To study the proposed
pproach, we picked vision-based road scene understanding (RSU) as an exemplary application. Since multi-task
learning requires specialized datasets, particularly when using extensive sets of tasks, we provide a multi-modal dataset
for multi-task RSU, called synMT. More than 2.5 · 105 synthetic images, annotated with 21 different labels, were
cquired from the video game Grand Theft Auto V (GTA V). Our proposed deep multi-task CNN architecture was
trained on various combination of tasks using synMT. The experiments confirmed that auxiliary tasks can indeed boost
network performance, both in terms of final results and training time.
Introduction
Various applications require solving several atomic tasks from
the computer vision domain using a single image as input. Such"
1178beb48d666d7fc41b2d476f6a92450c0726c0,Challenges in Multi-modal Gesture Recognition,"Journal of Machine Learning Research 17 (2016) 1-54
Submitted 11/14; Revised 1/16; Published 4/16
Challenges in multimodal gesture recognition
Sergio Escalera
Computer Vision Center UAB and University of Barcelona
Vassilis Athitsos
University of Texas
Isabelle Guyon
ChaLearn, Berkeley, California
Editors: Zhuowen Tu"
1152b88194214d4ea0f85b727f4b120915ad8056,Exploiting feature dynamics for active object recognition,"Exploiting Feature Dynamics for Active
Object Recognition
Philipp Robbel and Deb Roy
MIT Media Laboratory
Cambridge, MA 02139, USA"
11f7f939b6fcce51bdd8f3e5ecbcf5b59a0108f5,Rolling Riemannian Manifolds to Solve the Multi-class Classification Problem,"Rolling Riemannian Manifolds to Solve the Multi-class Classification Problem
Rui Caseiro1, Pedro Martins1, João F. Henriques1, Fátima Silva Leite1,2, and Jorge Batista1
Institute of Systems and Robotics - University of Coimbra, Portugal
Department of Mathematics - University of Coimbra, Portugal ,
{ruicaseiro, pedromartins, henriques,"
111ff5420111751454a2f4f55b7bb75d837ed5f4,Automatic Annotation of Structured Facts in Images,"Proceedings of the 5th Workshop on Vision and Language, pages 1–9,
Berlin, Germany, August 12 2016. c(cid:13)2016 Association for Computational Linguistics"
11b00a4be68e9622d7b4698aca84da85aca3e288,Modeling Social Interactions in Real Work Environments,"Modeling Social Interactions in Real Work Environments
Salvatore Vanini
SUPSI-DTI
via Cantonale
6928 Manno, Switzerland
Silvia Giordano
SUPSI-DTI
via Cantonale
6928 Manno, Switzerland
Dario Gallucci
SUPSI-DTI
via Cantonale
6928 Manno, Switzerland
Kamini Garg
SUPSI-DTI
via Cantonale
6928 Manno, Switzerland
Victoria Mirata
FFHS-IFeL
Überlandstrasse 12"
115724ce1ce9422dad095b301c7d096498ad50d3,The E2E Dataset: New Challenges For End-to-End Generation,"Saarbr¨ucken, Germany, 15-17 August 2017. c(cid:13)2017 Association for Computational Linguistics
Proceedings of the SIGDIAL 2017 Conference, pages 201–206,"
11f73583ba373487967225ae4797d723ff367c1c,"End-to-end, sequence-to-sequence probabilistic visual odometry through deep neural networks","Article
End-to-end, sequence-to-sequence
probabilistic visual odometry through
deep neural networks
The International Journal of
Robotics Research
© The Author(s) 2017
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364917734298
journals.sagepub.com/home/ijr
Sen Wang1,2, Ronald Clark3, Hongkai Wen4 and Niki Trigoni2"
11691f1e7c9dbcbd6dfd256ba7ac710581552baa,SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos,"SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos
Silvio Giancola, Mohieddine Amine, Tarek Dghaily, Bernard Ghanem
King Abdullah University of Science and Technology (KAUST), Saudi Arabia"
11bfc54a64ca69786323551bbf88b85b216ae486,Exploring the Facial Expression Perception-Production Link Using Real-Time Automated Facial Expression Recognition,"Exploring the Facial Expression
Perception-Production Link Using Real-Time
Automated Facial Expression Recognition
David M. Deriso1, Josh Susskind1, Jim Tanaka2, Piotr Winkielman3,
John Herrington4, Robert Schultz4, and Marian Bartlett1
Machine Perception Laboratory, University of California, San Diego
Department of Psychology, University of Victoria
Department of Psychology, University of California, San Diego
Center for Autism Research, Children’s Hospital of Philadelphia"
11155ee686bfb675816a2acdf5a8ddf06e67b65f,EmoDetect – Smart Emotion Detection from Facial Expressions,"EmoDetect – Smart Emotion Detection from Facial Expressions
Rishabh Animesh
Skand Hurkat
Abhinandan Majumdar
Aayush Saxena
ra523
sh953
m2352
s2825"
1149c6ac37ae2310fe6be1feb6e7e18336552d95,"Classification of Face Images for Gender, Age, Facial Expression, and Identity","Proc. Int. Conf. on Artificial Neural Networks (ICANN’05), Warsaw, LNCS 3696, vol. I, pp. 569-574, Springer Verlag 2005
Classification of Face Images for Gender, Age,
Facial Expression, and Identity1
Torsten Wilhelm, Hans-Joachim B¨ohme, and Horst-Michael Gross
Department of Neuroinformatics and Cognitive Robotics
Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany"
11f17191bf74c80ad0b16b9f404df6d03f7c8814,Recognition of Visually Perceived Compositional Human Actions by Multiple Spatio-Temporal Scales Recurrent Neural Networks,"Recognition of Visually Perceived Compositional
Human Actions by Multiple Spatio-Temporal Scales
Recurrent Neural Networks
Haanvid Lee, Minju Jung, and Jun Tani"
11467733103a3e58ae88cb238f620cf6cafd4420,Learning of Graphical Models and Efficient Inference for Object Class Recognition,"Learning of Graphical Models and Ef‌f‌icient
Inference for Object Class Recognition
Martin Bergtholdt, J¨org Kappes, and Christoph Schn¨orr
Computer Vision, Graphics, and Pattern Recognition Group
Department of Mathematics and Computer Science
University of Mannheim, 68131 Mannheim, Germany"
11a34bda2daecad5f7c1caa309897cc9cc334480,Person re-identification using view-dependent score-level fusion of gait and color features,"1st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan
978-4-9906441-1-6 ©2012 IAPR"
1172ce24f6e9242b9c26c84c6aa89a72ed8203d0,Find your own way: Weakly-supervised segmentation of path proposals for urban autonomy,"Find Your Own Way: Weakly-Supervised Segmentation of Path
Proposals for Urban Autonomy
Dan Barnes, Will Maddern and Ingmar Posner"
11be33019f591214c8f79dbcb24a50d8f7fa5c95,Salgan 360 : Visual Saliency Prediction on 360 Degree Images with Generative Adversarial Networks,"SALGAN360: VISUAL SALIENCY PREDICTION ON 360 DEGREE IMAGES WITH
GENERATIVE ADVERSARIAL NETWORKS
Fang-Yi Chao, Lu Zhang, Wassim Hamidouche, Olivier Deforges
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, F-35000 Rennes, France
{fang-yi.chao, lu.ge, wassim.hamidouche,"
1169f3386a49daccbe199cccb518238a0130a537,"Analyzing Complex Events and Human Actions in ""in-the-wild"" Videos",
1151a81118368e7596843b8db2508e4974fd7435,A Testbed for Cross-Dataset Analysis,"A Testbed for Cross-Dataset Analysis
Tatiana Tommasi and Tinne Tuytelaars
ESAT-PSI/VISICS - iMinds, KU Leuven, Belgium"
1119b4b038fd7d1d337d4aee232dea6c56f20cf1,A Sparse Embedding and Least Variance Encoding Approach to Hashing,"A Sparse Embedding and Least Variance Encoding
Approach to Hashing
Xiaofeng Zhu, Lei Zhang, Member, IEEE, Zi Huang"
116261c74ad54646f7d1d6be38cb9930f1bf44f6,3D Twins and Expression Challenge,"D Twins and
Expression Challenge
Vipin Vijayan, Kevin W. Bowyer, and Patrick J. Flynn."
1198572784788a6d2c44c149886d4e42858d49e4,Learning Discriminative Features using Encoder-Decoder type Deep Neural Nets,"Learning Discriminative Features using Encoder/Decoder type Deep
Neural Nets
Vishwajeet Singh1, Killamsetti Ravi Kumar2, K Eswaran3
ALPES, Bolarum, Hyderabad 500010,
ALPES, Bolarum, Hyderabad 500010,
SNIST, Ghatkesar, Hyderabad 501301,"
11ed823555aabf7e32df5b09a04111a686f8ebb6,Learning visual dictionaries and decision lists for object recognition,"CONFIDENTIAL. Limited circulation. For review only.
Preprint submitted to 19th International Conference on Pattern Recognition.
Received April 10, 2008."
1183db5f409e8498d1a0f542703f908275a6dc34,Robust Visual Tracking and Vehicle Classification via Sparse Representation,"Robust Visual Tracking and Vehicle
Classification via Sparse Representation
Xue Mei and Haibin Ling, Member, IEEE"
111f2f1255fa9e5a82753bf5b3f2f0974e87f86d,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
11fe6d45aa2b33c2ec10d9786a71c15ec4d3dca8,Tied Factor Analysis for Face Recognition across Large Pose Differences,"JUNE 2008
Tied Factor Analysis for Face Recognition
cross Large Pose Differences
Simon J.D. Prince, Member, IEEE, James H. Elder, Member, IEEE,
Jonathan Warrell, Member, IEEE, and Fatima M. Felisberti"
1134a6be0f469ff2c8caab266bbdacf482f32179,Facial Expression Identification Using Four-bit Co- Occurrence Matrixfeatures and K-nn Classifier,"IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308
FACIAL EXPRESSION IDENTIFICATION USING FOUR-BIT CO-
OCCURRENCE MATRIXFEATURES AND K-NN CLASSIFIER
Bonagiri  C S K Sunil Kumar1, V Bala Shankar2, Pullela S V V S R Kumar3
,2,3 Department of Computer Science & Engineering, Aditya College of Engineering, Surampalem, East Godavari
District, Andhra Pradesh, India"
11d9bee72759e23f19117fc8cbb60b487e8ac79e,Benchmark Visual Question Answer Models by using Focus Map,"Benchmark Visual Question Answer Models by using Focus Map
Wenda Qiu
Yueyang Xianzang
Zhekai Zhang
Shanghai Jiaotong University"
1131088237aacddcc078547b4455e8572c61766b,Object Referring in Videos with Language and Human Gaze,"Object Referring in Videos with Language and Human Gaze
Arun Balajee Vasudevan1, Dengxin Dai1, Luc Van Gool1,2
ETH Zurich1
KU Leuven 2"
111a9645ad0108ad472b2f3b243ed3d942e7ff16,Facial Expression Classification Using Combined Neural Networks,"Facial Expression Classification Using
Combined Neural Networks
Rafael V. Santos, Marley M.B.R. Vellasco, Raul Q. Feitosa, Ricardo Tanscheit
DEE/PUC-Rio, Marquês de São Vicente 225, Rio de Janeiro – RJ - Brazil"
11d04269aa147450f37215beb3ae44207daf3511,Using Visual Context and Region Semantics for High-Level Concept Detection,"Using Visual Context and Region Semantics for
High-Level Concept Detection
Phivos Mylonas, Member, IEEE, Evaggelos Spyrou, Student Member, IEEE, Yannis Avrithis, Member, IEEE, and
Stefanos Kollias, Member, IEEE"
11a7c4aadb47753c8d30cbda4ab347c361e4c66a,How to collect high quality segmentations: use human or computer drawn object boundaries?,"Boston University Computer Science Technical Report No. BUCS-TR-2013-20
How to Collect High Quality Segmentations: Use Human or Computer Drawn
Object Boundaries?
Danna Gurari, Zheng Wu, Brett Isenberg, Chentian Zhang, Alberto Purwada, Joyce Y. Wong, Margrit Betke"
11f732fe8f127c393cc8404ee8db2b3e85dd3d59,Disentangling Latent Factors with Whitening,"DISENTANGLING LATENT FACTORS WITH WHITENING
Sangchul Hahn, Heeyoul Choi
School of Information Technology
{schahn21,
Handong Global University
Pohang, South Korea"
111d0b588f3abbbea85d50a28c0506f74161e091,Facial Expression Recognition from Visual Information using Curvelet Transform,"International Journal of Computer Applications (0975 – 8887)
Volume 134 – No.10, January 2016
Facial Expression Recognition from Visual Information
using Curvelet Transform
Pratiksha Singh
Surabhi Group of Institution Bhopal
systems.  Further  applications"
1120e88663a38ed05120af378f57ecf557660160,Generic Object Crowd Tracking by Multi-Task Learning,"LUOETAL.:GENERICOBJECTCROWDTRACKINGBYMULTI-TASKLEARNING
Generic Object Crowd Tracking by
Multi-Task Learning
Wenhan Luo
http://www.iis.ee.ic.ac.uk/~whluo
Tae-Kyun Kim
http://www.iis.ee.ic.ac.uk/~tkkim
Department of Electrical and Electronic
Engineering, Imperial College,
London, UK"
11feb48d2c4c8f8a5ed9054d49e7a13b0f75f2af,Feature Representation and Extraction for Image Search and Video Retrieval,"Chapter 1
Feature Representation and Extraction for
Image Search and Video Retrieval
Qingfeng Liu, Yukhe Lavinia, Abhishek Verma, Joyoung Lee, Lazar Spasovic, and
Chengjun Liu"
7d92d82eae23fe872e8d29116ae22cbd0b15abce,Joint Image Clustering and Labeling by Matrix Factorization,"Joint Image Clustering and Labeling
y Matrix Factorization
Seunghoon Hong, Jonghyun Choi, Jan Feyereisl, Bohyung Han, Larry S. Davis"
7d98dcd15e28bcc57c9c59b7401fa4a5fdaa632b,Face Appearance Factorization for Expression Analysis and Synthesis,"FACE APPEARANCE FACTORIZATION FOR EXPRESSION ANALYSIS AND SYNTHESIS
Bouchra Abboud, Franck Davoine
Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne.
BP 20529, 60205 COMPIEGNE Cedex, FRANCE.
E-mail:"
7dce05b7765541b3fb49a144fb39db331c14fdd1,Modélisation et suivi des déformations faciales : applications à la description des expressions du visage dans le contexte de la langue des signes,"Modélisation et suivi des déformations faciales :
pplications à la description des expressions du visage
dans le contexte de la langue des signes
Hugo Mercier
To cite this version:
Hugo Mercier. Modélisation et suivi des déformations faciales : applications à la description des
expressions du visage dans le contexte de la langue des signes.
Interface homme-machine [cs.HC].
Université Paul Sabatier - Toulouse III, 2007. Français. <tel-00185084>
HAL Id: tel-00185084
https://tel.archives-ouvertes.fr/tel-00185084
Submitted on 5 Nov 2007
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents"
7da961cb039b1a01cad9b78d93bdfe2a69ed3ccf,Hierarchical Gaussian Descriptors with Application to Person Re-Identification,"Hierarchical Gaussian Descriptors with
Application to Person Re-Identification
Tetsu Matsukawa, Member, IEEE, Takahiro Okabe, Member, IEEE,
Einoshin Suzuki, Non Member, IEEE and Yoichi Sato, Member, IEEE"
7d7cfc8dc71967f93c2b5ec611747e63c06e1aa1,Crowd Counting and Profiling: Methodology and Evaluation,"Crowd Counting and Profiling: Methodology
nd Evaluation
Chen Change Loy, Ke Chen, Shaogang Gong, and Tao Xiang"
7d6539d637f919fa20a9261e03aedcf59f92598e,Improving Cross-Resolution Face Matching Using Ensemble-Based Co-Transfer Learning,"Improving Cross-resolution Face Matching using
Ensemble based Co-Transfer Learning
Himanshu S. Bhatt, Student Member, IEEE, Richa Singh, Senior Member, IEEE, Mayank Vatsa, Senior
Member, IEEE, and Nalini K. Ratha, Fellow, IEEE"
7dfedb083fadb6822c07be82233588c31f37317c,FPGA-based IP cores implementation for face recognition using dynamic partial reconfiguration,"J Real-Time Image Proc (2013) 8:327–340
DOI 10.1007/s11554-011-0221-x
S P E C I A L I S S U E
FPGA-based IP cores implementation for face
recognition using dynamic partial reconfiguration
Afandi Ahmad • Abbes Amira • Paul Nicholl •
Benjamin Krill
Received: 8 October 2010 / Accepted: 22 August 2011 / Published online: 14 September 2011
Ó Springer-Verlag 2011"
7dba0e39bb059103e10fb81bce2fe831f520fb38,Articulated human pose estimation in natural images,"Articulated Human Pose Estimation
in Natural Images
Samuel Alan Johnson
Submitted in accordance with the requirements
for the degree of Doctor of Philosophy.
The University of Leeds
School of Computing
October 2012"
7db00be42ded44f87f23661c49913f9d64107983,2d Face Recognition: an Experimental and Reproducible Research Survey,"D FACE RECOGNITION: AN
EXPERIMENTAL AND REPRODUCIBLE
RESEARCH SURVEY
Manuel Günther        Laurent El Shafey
Sébastien Marcel
Idiap-RR-13-2017
APRIL 2017
Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12   www.idiap.ch"
7d5a83495c4eff62c98c3fd27d0992850611b2bd,Enhanced Performance of Consensus Fault-tolerant Schemes for Decentralized 363 Unmanned Autonomous Vehicle System —,"Proceedings of the Pakistan Academy of Sciences:
A. Physical and Computational Sciences 53 (4): 363–372 (2016)
Copyright © Pakistan Academy of Sciences
ISSN: 2518-4245 (print), 2518-4253 (online)
Pakistan Academy of Sciences
Research Article
Enhanced Performance of Consensus Fault-tolerant Schemes for
Decentralized Unmanned Autonomous Vehicle System
Naeem Khan*, Aitzaz Ali, and Wasi Ullah
Campus, Pakistan
*Electrical Engineering Department, University of Engineering and Technology Peshawar, Bannu"
7d7f60e41dd9cb84ac5754d59e5a8b418fc7a685,Image Caption Generator Based On Deep Neural Networks,"Image Caption Generator Based On Deep Neural Networks
Jianhui Chen
CPSC 503
CS Department
Wenqiang Dong
CPSC 503
CS Department
Minchen Li
CPSC 540
CS Department"
7dab6fbf42f82f0f5730fc902f72c3fb628ef2f0,An Unsupervised Approach to Solving Inverse Problems using Generative Adversarial Networks,"An Unsupervised Approach to Solving Inverse
Problems using Generative Adversarial Networks
Rushil Anirudh
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Jayaraman J. Thiagarajan
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Bhavya Kailkhura
Timo Bremer
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory"
7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22,Labeled Faces in the Wild: A Survey,"Labeled Faces in the Wild: A Survey
Erik Learned-Miller, Gary Huang, Aruni RoyChowdhury, Haoxiang Li, Gang Hua"
7d73adcee255469aadc5e926066f71c93f51a1a5,Face alignment by deep convolutional network with adaptive learning rate,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
7de028e5c878b56057559bfbd57f1ce6482ec282,An Architecture for Agile Machine Learning in Real-Time Applications,"An Architecture for Agile Machine Learning
in Real-Time Applications
Johann Schleier-Smith
San Francisco, CA 94111
if(we) Inc.
848 Battery St."
7d6132a884d2b154059c461e107c7a8c41603ef7,Exploring Multi-Branch and High-Level Semantic Networks for Improving Pedestrian Detection,"Exploring Multi-Branch and High-Level Semantic
Networks for Improving Pedestrian Detection
Jiale Cao, Yanwei Pang, Senior Member, IEEE, and Xuelong Li, Fellow, IEEE"
7d9fe410f24142d2057695ee1d6015fb1d347d4a,Facial Expression Feature Extraction Based on FastLBP,"Facial Expression Feature Extraction Based on
FastLBP
Computer and Information Engineering Department of Beijing Technology and Business University, Beijing, China
Ya Zheng
Email:
Computer and Information Engineering Department of Beijing Technology and Business University, Beijing, China
Email:
Xiuxin Chen, Chongchong Yu and Cheng Gao
facial  expression"
7d9dbef9bacf1257e942121f82c3f411f2a78fff,Machine Learning Performance on Face Expression Recognition using Filtered Backprojection in DCT-PCA Domain,"Machine Learning Performance on Face Expression Recognition
using Filtered Backprojection in DCT-PCA Domain.
Ongalo Pheobe1, Huang DongJun2 and Richard Rimiru3
1 School of Information Science and Engineering, Central South University
Changsha, Hunan, 410083, PR China
School of Information Science and Engineering, Central South University
Changsha, Hunan, 410083, PR China
School of Information Science and Engineering, Central South University
Changsha, Hunan, 410083, PR China"
7d841607ce29ff4a75734ffbf569431425d8342f,Bimodal 2D-3D face recognition using a two-stage fusion strategy,"Bimodal 2D-3D face recognition using a two-stage fusion
strategy
Amel AISSAOUI1 and Jean MARTINET2
University of Science and Technologies
Houari Boumediene
Algiers, Algeria
Email:
CRIStAL
Lille 1 University
Villeneuve d’Ascq, France
Email:"
7dffe7498c67e9451db2d04bb8408f376ae86992,LEAR-INRIA submission for the THUMOS workshop,"LEAR-INRIA submission for the THUMOS workshop
Heng Wang and Cordelia Schmid
LEAR, INRIA, France"
7d057676c9ba7b313adf0b191f64eb26ac2f9dd6,Variability in postnatal sex hormones due to the use of oral contraception and the phase of menstrual cycle influenced brain,"SEX DIFFERENCES AND THE ROLE OF SEX
HORMONES IN FACE DEVELOPMENT AND FACE
PROCESSING
Klára Marečková, MSc.
Thesis submitted to the University of Nottingham for the degree of
Doctor of Philosophy
JULY 2013"
7dd654ac5e775fa1fa585e257565455ae8832caf,Deep Pictorial Gaze Estimation,"Deep Pictorial Gaze Estimation
Seonwook Park, Adrian Spurr, and Otmar Hilliges
AIT Lab, Department of Computer Science, ETH Zurich"
7d3dd33950f4a1be56eb88c0791263b3e3a6deee,Object Counts! Bringing Explicit Detections Back into Image Captioning,"Object Counts! Bringing Explicit Detections Back into Image Captioning
Josiah Wang, Pranava Madhyastha and Lucia Specia
{j.k.wang, p.madhyastha,
Department of Computer Science
University of Sheffield, UK"
7d3f6dd220bec883a44596ddec9b1f0ed4f6aca2,Linear Regression for Face Recognition,"Linear Regression for Face Recognition
Imran Naseem,
Roberto Togneri, Senior Member, IEEE, and
Mohammed Bennamoun"
7d30939e2d6f8b980910f4eeca5338d072f5ecb6,A Pylon Model for Semantic Segmentation,"A Pylon Model for Semantic Segmentation
Victor Lempitsky
Andrea Vedaldi
Visual Geometry Group, University of Oxford∗
Andrew Zisserman"
7df103807902f45824329ab9b2a558b8baf950b2,Precise Localization in High-Definition Road Maps for Urban Regions,"Precise Localization in High-Definition Road Maps for Urban Regions
Fabian Poggenhans1, Niels Ole Salscheider1 and Christoph Stiller2"
294163a4126b3a886bf62ab896865ce3fc1147a8,Group Sparse Non-negative Matrix Factorization for Multi-Manifold Learning,BMVC 2011 http://dx.doi.org/10.5244/C.25.56
29ce6b54a87432dc8371f3761a9568eb3c5593b0,Age Sensitivity of Face Recognition Algorithms,"Kent Academic Repository
Full text document (pdf)
Citation for published version
Yassin, DK H. PHM and Hoque, Sanaul and Deravi, Farzin  (2013) Age Sensitivity of Face Recognition
pp. 12-15.
https://doi.org/10.1109/EST.2013.8
Link to record in KAR
http://kar.kent.ac.uk/43222/
Document Version
Author's Accepted Manuscript
Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
ontent is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.
Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.
Enquiries
For any further enquiries regarding the licence status of this document, please contact:"
295266d09fde8f85e6e577b5181cbc73a1594b6b,Parallel effects of processing fluency and positive affect on familiarity-based recognition decisions for faces,"ORIGINAL RESEARCH ARTICLE
published: 22 April 2014
doi: 10.3389/fpsyg.2014.00328
Parallel effects of processing fluency and positive affect on
familiarity-based recognition decisions for faces
Devin Duke*, Chris M. Fiacconi and Stefan Köhler*
Department of Psychology, Brain and Mind Institute, Western University, London, ON, Canada
Edited by:
Kevin Bradley Clark, Veterans Affairs
Greater Los Angeles Healthcare
System, USA
Reviewed by:
Bernhard Hommel, Leiden
University, Netherlands
Sascha Topolinski, Universität
Würzburg, Germany
*Correspondence:
Devin Duke and Stefan Köhler,
Department of Psychology, Brain
nd Mind Institute, Western"
299ca90452aa8a7dd517de3ff3c9bf224d5100c7,Dynamic Scene Classification Using Redundant Spatial Scenelets,"Dynamic Scene Classification Using Redundant
Spatial Scenelets
Liang Du and Haibin Ling, Member, IEEE"
29a6cbf089a8d916b563e02480a1844909754bcf,"The rules of implicit evaluation by race, religion, and age.","The Rules of Implicit Evaluation by Race, Religion, and Age
Axt JR, Ebersole CR, Nosek BA.
014; 25(9):1804-1815
ARTICLE IDENTIFIERS
DOI: 10.1177/0956797614543801
PMID: 25079218
PMCID: not available
JOURNAL IDENTIFIERS
LCCN: not available
pISSN: 0956-7976
eISSN: 1467-9280
OCLC ID: not available
CONS ID: not available
US National Library of Medicine ID: not available
This article was identified from a query of the SafetyLit database.
Powered by TCPDF (www.tcpdf.org)"
295d978cf47c873936ad774169cac651ea5f3c96,Monocular Depth Prediction using Generative Adversarial Networks,"018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
Monocular Depth Prediction using Generative Adversarial Networks
Arun CS Kumar
Suchendra M. Bhandarkar
The University of Georgia
Mukta Prasad
Trinity College Dublin"
2933da06df9e47da8e855266f5ff50e03c0ccd27,Combination of RGB-D Features for Head and Upper Body Orientation Classification,"Combination of RGB-D Features for Head and Upper
Body Orientation Classification
Laurent Fitte-Duval, Alhayat Ali Mekonnen, Frédéric Lerasle
To cite this version:
Laurent Fitte-Duval, Alhayat Ali Mekonnen, Frédéric Lerasle. Combination of RGB-D Features for
Head and Upper Body Orientation Classification. Advanced Concepts for Intelligent Vision Systems
, Oct 2016, Lecce, Italy. 2016. <hal-01763125>
HAL Id: hal-01763125
https://hal.laas.fr/hal-01763125
Submitted on 10 Apr 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
292c4bd6fa516393e9c8c5f1dae5afe0bb0ece35,Interacting Multiview Tracker,"Interacting Multiview Tracker
Ju Hong Yoon, Ming-Hsuan Yang, Senior Member, IEEE, and Kuk-Jin Yoon"
292eba47ef77495d2613373642b8372d03f7062b,Deep Secure Encoding: An Application to Face Recognition,"Deep Secure Encoding: An Application to Face Recognition
Rohit Pandey
Yingbo Zhou
Venu Govindaraju"
296afa5f7e99fc16df47f961c9539347732f7b13,GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks,"GradNorm: Gradient Normalization for Adaptive
Loss Balancing in Deep Multitask Networks
Zhao Chen 1 Vijay Badrinarayanan 1 Chen-Yu Lee 1 Andrew Rabinovich 1"
29e96ec163cb12cd5bd33bdf3d32181c136abaf9,Regularized Locality Preserving Projections with Two-Dimensional Discretized Laplacian Smoothing,"Report No. UIUCDCS-R-2006-2748
UILU-ENG-2006-1788
Regularized Locality Preserving Projections with Two-Dimensional
Discretized Laplacian Smoothing
Deng Cai, Xiaofei He, and Jiawei Han
July 2006"
29933de38d72a0941d763b7ac5a480e733ef74a2,Open Set Logo Detection and Retrieval,"Open Set Logo Detection and Retrieval
Andras T¨uzk¨o1, Christian Herrmann1,2, Daniel Manger1, J¨urgen Beyerer1,2
Fraunhofer IOSB, Karlsruhe, Germany
Karlsruhe Institute of Technology KIT, Vision and Fusion Lab, Karlsruhe, Germany
Keywords:
Logo Detection, Logo Retrieval, Logo Dataset, Trademark Retrieval, Open Set Retrieval, Deep Learning."
290c8196341bbac80efc8c89af5fc60e1b8c80e6,Learning deep representations by mutual information estimation and maximization,"Learning deep representations by mutual information
estimation and maximization
R Devon Hjelm
MSR Montreal, MILA, UdeM, IVADO
Alex Fedorov
MRN, UNM
Samuel Lavoie-Marchildon
MILA, UdeM
Karan Grewal
U Toronto
Phil Bachman
MSR Montreal
Adam Trischler
MSR Montreal
Yoshua Bengio
MILA, UdeM, IVADO, CIFAR"
29e793271370c1f9f5ac03d7b1e70d1efa10577c,Face Recognition Based on Multi-classifierWeighted Optimization and Sparse Representation,"International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol.6, No.5 (2013), pp.423-436
http://dx.doi.org/10.14257/ijsip.2013.6.5.37
Face Recognition Based on Multi-classifierWeighted Optimization
nd Sparse Representation
Deng Nan1, Zhengguang Xu2 and ShengQin Bian3
,2,3Institute of control science and engineering,
University of Science and Technology Beijing
,2,330 Xueyuan Road, Haidian District, Beijing 100083 P. R.China"
294eef6848403520016bb2c93bfb71b3c75c73fa,Extension of Robust Principal Component Analysis for Incremental Face Recognition,"Extension of Robust Principal Component Analysis for Incremental Face
Recognition
Ha¨ıfa Nakouri and Mohamed Limam
Institut Sup´erieur de Gestion, LARODEC Laboratory
University of Tunis, Tunis, Tunisia
Keywords:
Image alignment, Robust Principal Component Analysis, Incremental RPCA."
29c23c7d5d70aef54168ba20dccdd14f570901a3,Duplicate Discovery on 2 Billion Internet Images,"Duplicate Discovery on 2 Billion Internet Images
Xin-Jing Wang, Lei Zhang
Microsoft Research Asia
5 Danling Street, Beijing, China
fxjwang,"
29c7dfbbba7a74e9aafb6a6919629b0a7f576530,Automatic Facial Expression Analysis and Emotional Classification,"Automatic Facial Expression Analysis and Emotional
Classification
Robert Fischer
Submitted to the Department of Math and Natural Sciences
in partial fulfillment of the requirements for the degree of a
Diplomingenieur der Optotechnik und Bildverarbeitung (FH)
(Diplom Engineer of Photonics and Image Processing)
t the
UNIVERSITY OF APPLIED SCIENCE DARMSTADT (FHD)
Accomplished and written at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT)
October 2004
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Math and Natural Sciences
October 30, 2004
Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dr. Harald Scharfenberg
Professor at FHD
Thesis Supervisor
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ."
292c6b743ff50757b8230395c4a001f210283a34,Fast violence detection in video,"Fast Violence Detection in Video
O. Deniz1, I. Serrano1, G. Bueno1 and T-K. Kim2
VISILAB group, University of Castilla-La Mancha, E.T.S.I.Industriales, Avda. Camilo Jose Cela s.n, 13071 Spain
Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London SW7 2AZ, UK.
{oscar.deniz, ismael.serrano,
Keywords:
ction recognition, violence detection, fight detection"
293ca770a66313c9427dc71cf86bef7e1b94f2d9,Steerable part models,"Steerable Part Models
Hamed Pirsiavash Deva Ramanan
Department of Computer Science, University of California, Irvine"
29a46aed79df53a1984ee755bed4c8ba2ae94040,Multiple Object Tracking Using K-Shortest Paths Optimization,"Multiple Object Tracking using
K-Shortest Paths Optimization
J´erˆome Berclaz, Franc¸ois Fleuret, Engin T¨uretken, and Pascal Fua, Senior Member, IEEE"
29cf7937a1c1848c24b294569d50a2f7122de51b,MarioQA: Answering Questions by Watching Gameplay Videos,"MarioQA: Answering Questions by Watching Gameplay Videos
Jonghwan Mun*
Bohyung Han
Paul Hongsuck Seo*
Ilchae Jung
Department of Computer Science and Engineering, POSTECH, Korea
{choco1916, hsseo, chey0313,"
29b1a44d1e1ffa05c2bf7f4be931c5045f427718,Review on Generic Object Recognition Techniques : Challenges and Opportunities,"International Journal of Advanced Research in Engineering and Technology
(IJARET)
Volume 6, Issue 12, Dec 2015, pp. 104-133, Article ID: IJARET_06_12_010
Available online at
http://www.iaeme.com/IJARET/issues.asp?JType=IJARET&VType=6&IType=12
ISSN Print: 0976-6480 and ISSN Online: 0976-6499
© IAEME Publication
REVIEW ON GENERIC OBJECT
RECOGNITION TECHNIQUES:
CHALLENGES AND OPPORTUNITIES
Prof. Deepika Shukla
Comp. Science and Engineering Department,
Institute of Technology, Nirma University, Ahmedabad, India
Apurva Desai
Department of Computer Science and Information Technology,
VNSGU, Surat India"
294d1fa4e1315e1cf7cc50be2370d24cc6363a41,A modular non-negative matrix factorization for parts-based object recognition using subspace representation,"008 SPIE Digital Library -- Subscriber Archive Copy
Processing: Machine Vision Applications, edited by Kurt S. Niel, David Fofi, Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6813, 68130C, © 2008 SPIE-IS&T · 0277-786X/08/$18SPIE-IS&T/ Vol. 6813  68130C-1"
29d414bfde0dfb1478b2bdf67617597dd2d57fc6,Perfect histogram matching PCA for face recognition,"Multidim Syst Sign Process (2010) 21:213–229
DOI 10.1007/s11045-009-0099-y
Perfect histogram matching PCA for face recognition
Ana-Maria Sevcenco · Wu-Sheng Lu
Received: 10 August 2009 / Revised: 21 November 2009 / Accepted: 29 December 2009 /
Published online: 14 January 2010
© Springer Science+Business Media, LLC 2010"
29c5a44e01d1126505471b2ab46163d598c871c7,Improving Landmark Localization with Semi-Supervised Learning,"Improving Landmark Localization with Semi-Supervised Learning
Sina Honari1∗, Pavlo Molchanov2, Stephen Tyree2, Pascal Vincent1,4,5, Christopher Pal1,3, Jan Kautz2
MILA-University of Montreal, 2NVIDIA, 3Ecole Polytechnique of Montreal, 4CIFAR, 5Facebook AI Research.
{honaris,
{pmolchanov, styree,"
29230bbb447b39b7fc3de7cb34b313cc3afe0504,Face Detection and Recognition Using Maximum Likelihood Classifiers on Gabor Graphs,"SPI-J068 00721
International Journal of Pattern Recognition
nd Artificial Intelligence
Vol. 23, No. 3 (2009) 433–461
(cid:1) World Scientific Publishing Company
FACE DETECTION AND RECOGNITION USING MAXIMUM
LIKELIHOOD CLASSIFIERS ON GABOR GRAPHS
MANUEL G ¨UNTHER and ROLF P. W ¨URTZ
Institut f¨ur Neuroinformatik
Ruhr-Universit¨at Bochum
D–44780 Bochum, Germany
We present an integrated face recognition system that combines a Maximum Likelihood
(ML) estimator with Gabor graphs for face detection under varying scale and in-plane
rotation and matching as well as a Bayesian intrapersonal/extrapersonal classifier (BIC)
on graph similarities for face recognition. We have tested a variety of similarity functions
nd achieved verification rates (at FAR 0.1%) of 90.5% on expression-variation and 95.8%
on size-varying frontal images within the CAS-PEAL database. Performing Experiment 1
of FRGC ver2.0, the method achieved a verification rate of 72%.
Keywords: Face recognition; Maximum Likelihood estimators; Gabor graphs.
. Introduction"
2939169aed69aa2626c5774d9b20e62c905e479b,Fast Exact HyperGraph Matching with Dynamic Programming for Spatio-Temporal Data,"Fast Exact Hyper-Graph Matching with Dynamic
Programming for Spatio-Temporal Data
Oya Celiktutan, Christian Wolf, Bülent Sankur, Eric Lombardi
To cite this version:
Oya Celiktutan, Christian Wolf, Bülent Sankur, Eric Lombardi. Fast Exact Hyper-Graph Matching
with Dynamic Programming for Spatio-Temporal Data. Journal of Mathematical Imaging and Vision,
Springer Verlag, 2015, 51, pp.1-21. <hal-01151755>
HAL Id: hal-01151755
https://hal.archives-ouvertes.fr/hal-01151755
Submitted on 13 May 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
29107badb19e7c5c89f57f81f50df08422e53304,Automatic localisation and segmentation of the Left Ventricle in Cardiac Ultrasound Images,"MASTER THESIS
Automatic localisation and
segmentation of the Left Ventricle in
Cardiac Ultrasound Images
Presented by:
Esther PUYOL
IG 3A F4B and MR 2A SISEA
013/2014
Supervisor:
Paolo PIRO
Academic supervisor:
Guy CAZUGUEL
MEDISYS - PHILIPS RESEARCH PARIS
Company:
University:
TELECOM BRETAGNE
7th March - 12th September 2014"
29113ed00421953e0ddc4fa6784eaba60f05e801,Automatic Track Creation and Deletion Framework for Face Tracking,"IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.2, February 2015
Automatic Track Creation and Deletion Framework for Face
Tracking
Dept. of Information and Communication, St.Xavier’s Catholic College of Engineering, Nagercoil, Tamilnadu, India.
Renimol T G, Anto Kumar R.P"
290136947fd44879d914085ee51d8a4f433765fa,On a taxonomy of facial features,"On a Taxonomy of Facial Features
Brendan Klare and Anil K. Jain"
2957715e96a18dbb5ed5c36b92050ec375214aa6,InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity,"Improving Face Attribute Detection with Race and Gender Diversity
InclusiveFaceNet:
Hee Jung Ryu 1 Hartwig Adam * 1 Margaret Mitchell * 1"
29dbb9492292b574f7bfd8629d6801d3136887b7,Towards Autonomous Situation Awareness,"Towards Autonomous Situation Awareness
Nikhil Naikal
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2014-124
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-124.html
May 21, 2014"
29b3f9f0fb821883a3c3bccbf0337c242c3b8a64,Transfer Learning for Video Recognition with Scarce Training Data,"Transfer Learning for Video Recognition
with Scarce Training Data
for Deep Convolutional Neural Network
Yu-Chuan Su, Tzu-Hsuan Chiu, Chun-Yen Yeh, Hsin-Fu Huang, Winston H. Hsu"
29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d,SCface – surveillance cameras face database,"Multimed Tools Appl (2011) 51:863–879
DOI 10.1007/s11042-009-0417-2
SCface – surveillance cameras face database
Mislav Grgic & Kresimir Delac & Sonja Grgic
Published online: 30 October 2009
# Springer Science + Business Media, LLC 2009"
299af7d4fe6da8ac0b390e3ce45c48f7a8b5bb37,"Attribute And-Or Grammar for Joint Parsing of Human Attributes, Part and Pose","Attribute And-Or Grammar for Joint Parsing of
Human Attributes, Part and Pose
Seyoung Park, Bruce Xiaohan Nie and Song-Chun Zhu"
29633712a36c3efc77ce3a9844a2e9a029daf310,AdaBoost for Parking Lot Occupation Detection,"AdaBoost for Parking Lot Occupation
Detection
Radovan Fusek1, Karel Mozdˇreˇn1, Milan ˇSurkala1 and Eduard Sojka1"
29619496c688f8400a90fef79b4fa756967ed0f7,Head Gesture Recognition: A Literature Review,"International Conference on Innovative Research in Engineering, Science, Management and Humanities (ICIRESMH-2017)
t (IETE) Institution of Electronics and Telecommunication Engineers, Lodhi Road, Delhi, India
on 19th February 2017
ISBN: 978-81-932712-5-4
Head Gesture Recognition: A Literature Review
Er. Rushikesh T. Bankar
Ph. D Scholar,
Department of Electronics Engineering,
G. H. Raisoni College of Engineering,
Nagpur, India.
Dr. Suresh S. Salankar
Dean SAC & Professor,
Department of E&TC Engineering,
G. H. Raisoni College of Engineering,
Nagpur, India."
2965d092ed72822432c547830fa557794ae7e27b,Improving Representation and Classification of Image and Video Data for Surveillance Applications,"Improving Representation and Classification of Image and
Video Data for Surveillance Applications
Andres Sanin
BSc(Biol), MSc(Biol), MSc(CompSc)
A thesis submitted for the degree of Doctor of Philosophy at
The University of Queensland in 2012
School of Information Technology and Electrical Engineering"
29bd7de310438c2b9d8b6e7eb7df662079934747,Semantic Scene Mapping with Spatio-temporal Deep Neural Network for Robotic Applications,"Cogn Comput
https://doi.org/10.1007/s12559-017-9526-9
Semantic Scene Mapping with Spatio-temporal Deep Neural
Network for Robotic Applications
Ruihao Li1
· Dongbing Gu1 · Qiang Liu1 · Zhiqiang Long2 · Huosheng Hu1
Received: 25 September 2017 / Accepted: 31 October 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017"
29c6b06ac98dbdaf25e4cc9a05b4ab314923cccd,Assessment of the communicative and coordination skills of children with Autism Spectrum Disorders and typically developing children using social signal processing,"Research  in  Autism  Spectrum  Disorders  7  (2013)  741–756
Contents  lists  available  at  SciVerse  ScienceDirect
Research  in  Autism  Spectrum  Disorders
J o u r  n a l  h o m e p a g e :  h t  t p : / / e e s . e l s e v i e r . c o m / R A  S D / d e f a u l t . a s p
Assessment  of  the  communicative  and  coordination  skills  of
hildren  with  Autism  Spectrum  Disorders  and  typically
developing  children  using  social  signal  processing
Emilie  Delaherche a,  Mohamed  Chetouani a,  Fabienne  Bigouret b,c,  Jean  Xavier c,
Monique  Plaza a,  David  Cohen a,c,*
Institute  of  Intelligent  Systems  and  Robotics,  University  Pierre  and  Marie  Curie,  75005  Paris,  France
University  of  Paris  8,  93526  Saint-Denis,  France
Department  of  Child  and  Adolescent  Psychiatry,  Hoˆpital  de  la  Pitie´-Salpeˆtrie`re,  University  Pierre  and  Marie  Curie,  75013  Paris,  France
A  R  T  I  C  L  E
I  N  F  O
A  B  S  T  R  A  C  T
Article  history:
Received  27  November  2012
Received  in  revised  form  5  February  2013
Accepted  8  February  2013
Keywords:"
29ca8ddf79d4cd1dc20cc8160a6d3326933e943f,Pragmatic descriptions of perceptual stimuli,"Proceedings of the Student Research Workshop at the 15th Conference of the European Chapter of the Association for Computational Linguistics,
pages 1–10, Valencia, Spain, April 3-7 2017. c(cid:13)2017 Association for Computational Linguistics"
2921719b57544cfe5d0a1614d5ae81710ba804fa,Face Recognition Enhancement Based on Image File Formats and Wavelet De - noising,"Face Recognition Enhancement Based on Image
File Formats and Wavelet De-noising
Isra’a Abdul-Ameer Abdul-Jabbar, Jieqing Tan, and Zhengfeng Hou"
2914a20df10f3bb55c5d4764ece85101c1a3e5a8,User interest profiling using tracking-free coarse gaze estimation,"User Interest Profiling Using
Tracking-free Coarse Gaze Estimation
Federico Bartoli, Giuseppe Lisanti, Lorenzo Seidenari, Alberto Del Bimbo
Media Integration and Communication Center
Universit`a degli Studi di Firenze
Firenze, Italy"
291be6e3027575287c24f4363e4bf7a8b415d4c1,MSER-Based Real-Time Text Detection and Tracking,"To appear in the proceedings of the 2014 International Conference on Pattern Recognition.
MSER-based Real-Time Text Detection and Tracking
Llu´ıs G´omez and Dimosthenis Karatzas
Computer Vision Center
Universitat Aut`onoma de Barcelona
Email:"
29a013b2faace976f2c532533bd6ab4178ccd348,Hierarchical Manifold Learning With Applications to Supervised Classification for High-Resolution Remotely Sensed Images,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Hierarchical Manifold Learning With Applications
to Supervised Classification for High-Resolution
Remotely Sensed Images
Hong-Bing Huang, Hong Huo, and Tao Fang"
29756b6b16d7b06ea211f21cdaeacad94533e8b4,Thresholding Approach based on GPU for Facial Expression Recognition,"Thresholding Approach based on GPU for Facial
Expression Recognition
Jesús García-Ramírez1, J. Arturo Olvera-López1, Ivan Olmos-Pineda1, Georgina
Flores-Becerra2, Adolfo Aguilar-Rico2
Benemérita Universidad Autónoma de Puebla, Faculty of Computer Science, Puebla, México
Instituto Tecnológico de Puebla, Puebla, México"
293193d24d5c4d2975e836034bbb2329b71c4fe7,Building a Corpus of Facial Expressions for Learning-Centered Emotions,"Building a Corpus of Facial Expressions
for Learning-Centered Emotions
María Lucía Barrón-Estrada, Ramón Zatarain-Cabada,
Bianca Giovanna Aispuro-Medina, Elvia Minerva Valencia-Rodríguez,
Ana Cecilia Lara-Barrera
Instituto Tecnológico de Culiacán, Culiacán, Sinaloa,
Mexico
{lbarron, rzatarain, m06170904, m95170906, m15171452}"
294bd7eb5dc24052237669cdd7b4675144e22306,Automatic Face Annotation,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Automatic Face Annotation
Ashna Shajahan
M.Tech Student, Dept. of Computer Science & Engineering, Mount Zion College of Engineering, Pathanamthitta, Kerala, India"
296502c6370cabd2b7e38e71cfc757d2e5fa2199,Detection of Deep Network Generated Images Using Disparities in Color Components,"Detection of Deep Network Generated Images
Using Disparities in Color Components
Haodong Li, Bin Li, Shunquan Tan, Jiwu Huang"
2988f24908e912259d7a34c84b0edaf7ea50e2b3,A Model of Brightness Variations Due to Illumination Changes and Non-rigid Motion Using Spherical Harmonics,"A Model of Brightness Variations Due to
Illumination Changes and Non-rigid Motion
Using Spherical Harmonics
Jos´e M. Buenaposada
Alessio Del Bue
Dep. Ciencias de la Computaci´on,
U. Rey Juan Carlos, Spain
http://www.dia.fi.upm.es/~pcr
Inst. for Systems and Robotics
Inst. Superior T´ecnico, Portugal
http://www.isr.ist.utl.pt/~adb
Enrique Mu˜noz
Facultad de Inform´atica,
U. Complutense de Madrid, Spain
Luis Baumela
Dep. de Inteligencia Artificial,
U. Polit´ecnica de Madrid, Spain
http://www.dia.fi.upm.es/~pcr
http://www.dia.fi.upm.es/~pcr"
29d591806cdc6ef0d580e4a21f32e5ad9d09d148,Large scale image annotation: learning to rank with joint word-image embeddings,"Large Scale Image Annotation:
Learning to Rank with Joint Word-Image
Embeddings
Jason Weston1, Samy Bengio1, and Nicolas Usunier2
Google, USA
Universit´e Paris 6, LIP6, France"
29f46586c95af2fa6326724c867aa88b55b5400e,Failure Prediction for Autonomous Driving,"Failure Prediction for Autonomous Driving
Simon Hecker1, Dengxin Dai1, and Luc Van Gool1,2"
7c9d8593cdf2f8ba9f27906b2b5827b145631a0b,MsCGAN: Multi-scale Conditional Generative Adversarial Networks for Person Image Generation,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2018
MsCGAN: Multi-scale Conditional Generative
Adversarial Networks for Person Image
Generation
Wei Tang∗, Teng Li †, Fudong Nian‡, Meng Wang§
† Anhui University, HeFei, China
Hefei University, HeFei, China
§ Hefei University of Technology, HeFei, China"
7c4864065f4e107cb5be49a8dba8cf7d94b8340f,Multi-target Tracking by Lagrangian Relaxation to Min-cost Network Flow,"Multi-target Tracking by Lagrangian Relaxation to Min-Cost Network Flow
Asad A. Butt and Robert T. Collins
The Pennsylvania State University, University Park, PA. 16802, USA"
7c1db13ae2c62d1f860fd2664885c9c93a28cab8,Multistage Particle Windows for Fast and Accurate Object Detection,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Multi-Stage Particle Windows for Fast and
Accurate Object Detection
Giovanni Gualdi, Andrea Prati, Member, IEEE, and Rita Cucchiara, Member, IEEE"
7cee802e083c5e1731ee50e731f23c9b12da7d36,2^B3^C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional Networks,"B3C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional
Networks
Vandit Gajjar
Department of Electronics and Communication Engineering and
Computer Vision Group, L. D. College of Engineering, Ahmedabad, India"
7c47da191f935811f269f9ba3c59556c48282e80,Robust eye centers localization with zero-crossing encoded image projections,"Robust Eye Centers Localization
with Zero–Crossing Encoded Image Projections
Laura Florea
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313
Corneliu Florea
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313
Constantin Vertan
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313"
7cee2a2bee27657e6599b13f9ed6536d5f46fd0a,A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery,"Article
A Semantic Labeling Approach for Accurate Weed
Mapping of High Resolution UAV Imagery
Huasheng Huang 1,2,†, Yubin Lan 1,2,†, Jizhong Deng 1,2,*, Aqing Yang 3, Xiaoling Deng 2,3,
Lei Zhang 2,4 and Sheng Wen 2,5
College of Engineering, South China Agricultural University, Wushan Road, Guangzhou 510642, China;
(H.H.); (Y.L.)
National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide
Spraying Technology, Wushan Road, Guangzhou 510642, China; (X.D.);
(L.Z.); (S.W.)
College of Electronic Engineering, South China Agricultural University, Wushan Road, Guangzhou 516042,
China;
College of Agriculture, South China Agricultural University, Wushan Road, Guangzhou 516042, China
Engineering Fundamental Teaching and Training Center, South China Agricultural University,
Wushan Road, Guangzhou 510642, China
* Correspondence: Tel.: +86-20-8528-8201
These authors contributed equally to this work and should be considered as co-first authors.
Received: 13 May 2018; Accepted: 27 June 2018; Published: 1 July 2018"
7c25a4b2eaa7bf0bc4e0bd239f05d6c0d4cb3431,Fast Appearance-based Person Re-identification and Retrieval Using Dissimilarity Representations,"Fast Appearance-based Person Re-identification
nd Retrieval Using Dissimilarity
Representations
Riccardo Satta, Giorgio Fumera, and Fabio Roli
Dept. of Electrical and Electronic Engineering, University of Cagliari
Piazza d’Armi, 09123 Cagliari, Italy
e-mail: {satta, fumera,
WWW: http://prag.diee.unica.it"
7c45b5824645ba6d96beec17ca8ecfb22dfcdd7f,News Image Annotation on a Large Parallel Text-image Corpus,"News image annotation on a large parallel text-image corpus
Pierre Tirilly, Vincent Claveau, Patrick Gros
Universit´e de Rennes 1/IRISA, CNRS/IRISA, INRIA Rennes-Bretagne Atlantique
Campus de Beaulieu
5042 Rennes Cedex, France"
7c18965f5573020f32b151a08178ee4906b5bf4c,Recursive Coarse-to-Fine Localization for Fast Object Detection,"Recursive Coarse-to-Fine Localization
for fast Object Detection
Marco Pedersoli, Jordi Gonz`alez, Andrew D. Bagdanov, and Juan J. Villanueva
Dept. Ci`encies de la Computaci´o & Centre de Visi´o per Computador,
Edifici O, Campus UAB 08193 Bellaterra (Cerdanyola) Barcelona, Spain"
7c0a6824b556696ad7bdc6623d742687655852db,MPCA+MDA: A novel approach for face recognition based on tensor objects,"8th Telecommunications forum TELFOR 2010
Serbia, Belgrade, November 23-25, 2010.
MPCA+DATER: A Novel Approach for Face
Recognition Based on Tensor Objects
Ali. A. Shams Baboli, Member, IEEE, G. Rezai-rad, Member, IEEE, Aref. Shams Baboli"
7c95449a5712aac7e8c9a66d131f83a038bb7caa,This is an author produced version of Facial first impressions from another angle: How social judgements are influenced by changeable and invariant facial properties. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/102935/,"This is an author produced version of Facial first impressions from another angle: How
social judgements are influenced by changeable and invariant facial properties.
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/102935/
Article:
Sutherland, Clare, Young, Andrew William orcid.org/0000-0002-1202-6297 and Gillian,
Rhodes (2017) Facial first impressions from another angle: How social judgements are
influenced by changeable and invariant facial properties. British journal of psychology. pp.
97-415. ISSN 0007-1269
https://doi.org/10.1111/bjop.12206
promoting access to
White Rose research papers
http://eprints.whiterose.ac.uk/"
7caca02d3c61271d22c43580677acb6d52b23503,What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?,"IJCV VISI manuscript No.
(will be inserted by the editor)
What Makes Good Synthetic Training Data for Learning
Disparity and Optical Flow Estimation?
Nikolaus Mayer · Eddy Ilg · Philipp Fischer · Caner Hazirbas · Daniel
Cremers · Alexey Dosovitskiy · Thomas Brox
Received: date / Accepted: date"
7c3e09e0bd992d3f4670ffacb4ec3a911141c51f,Transferring Object-Scene Convolutional Neural Networks for Event Recognition in Still Images,"Noname manuscript No.
(will be inserted by the editor)
Transferring Object-Scene Convolutional Neural Networks for
Event Recognition in Still Images
Limin Wang · Zhe Wang · Yu Qiao · Luc Van Gool
Received: date / Accepted: date"
7c98c27f4be40a7675ba9c85179ce72d12593a7a,Training Bit Fully Convolutional Network for Fast Semantic Segmentation,"Training Bit Fully Convolutional Network for Fast Semantic Segmentation
He Wen and Shuchang Zhou and Zhe Liang and Yuxiang Zhang and Dieqiao Feng and Xinyu Zhou and Cong Yao
{wenhe, zsc, liangzhe, zyx, fdq, zxy,
Megvii Inc."
7c7b0550ec41e97fcfc635feffe2e53624471c59,"Head, Eye, and Hand Patterns for Driver Activity Recognition","051-4651/14 $31.00 © 2014 IEEE
DOI 10.1109/ICPR.2014.124"
7c8d57ca9cbefd1c2b3f4d45ab6791adba2d6bb4,Two-Stage Hashing for Fast Document Retrieval,"Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 495–500,
Baltimore, Maryland, USA, June 23-25 2014. c(cid:13)2014 Association for Computational Linguistics"
7c119e6bdada2882baca232da76c35ae9b5277f8,Facial expression recognition using embedded Hidden Markov Model,"Facial Expression Recognition Using Embedded
Hidden Markov Model
Languang He, Xuan Wang, Member, IEEE, Chenglong Yu, Member, IEEE, Kun Wu
Intelligence Computing Research Center
HIT Shenzhen Graduate School
Shenzhen, China
{telent, wangxuan, ycl, wukun}"
7cd5d849212c294c452be009ff465ca7d3d923c8,A Brief Survey of Face Recognition Techniques,"(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:4)(cid:4)(cid:5)(cid:5)(cid:6)(cid:6)(cid:7)(cid:7)(cid:1)(cid:1)(cid:8)(cid:8)(cid:1)(cid:1)(cid:9)(cid:9)(cid:1)(cid:1)(cid:10)(cid:10)(cid:5)(cid:5)(cid:6)(cid:6)(cid:11)(cid:11)(cid:7)(cid:7)(cid:12)(cid:12)(cid:1)(cid:1)(cid:13)(cid:13)(cid:1)(cid:1)(cid:14)(cid:14)(cid:15)(cid:15)(cid:12)(cid:12)(cid:16)(cid:16)(cid:17)(cid:17)(cid:1)(cid:1)(cid:13)(cid:13)(cid:18)(cid:18)(cid:19)(cid:19)(cid:20)(cid:20)(cid:1)(cid:1)(cid:21)(cid:21)(cid:1)(cid:1)(cid:22)(cid:22)(cid:7)(cid:7)(cid:23)(cid:23)(cid:24)(cid:24)(cid:1)(cid:1)(cid:13)(cid:13)(cid:18)(cid:18)(cid:19)(cid:19)(cid:20)(cid:20)(cid:1)(cid:1)(cid:23)(cid:23)(cid:23)(cid:23)(cid:25)(cid:25)(cid:1)(cid:1)(cid:13)(cid:13)(cid:18)(cid:18)(cid:21)(cid:21)(cid:26)(cid:26)(cid:27)(cid:27)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)
(cid:15)(cid:15)(cid:28)(cid:28)(cid:15)(cid:15)(cid:29)(cid:29)(cid:4)(cid:4)(cid:15)(cid:15)(cid:11)(cid:11)(cid:4)(cid:4)(cid:7)(cid:7)(cid:1)(cid:1)(cid:3)(cid:3)(cid:30)(cid:30)(cid:4)(cid:4)(cid:29)(cid:29)(cid:30)(cid:30)(cid:7)(cid:7)(cid:1)(cid:1)(cid:15)(cid:15)(cid:24)(cid:24)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:31)(cid:31)(cid:31)(cid:31)(cid:31)(cid:31)(cid:25)(cid:25)(cid:16)(cid:16)  !!(cid:3)(cid:3)(cid:5)(cid:5)(cid:12)(cid:12)(cid:30)(cid:30)(cid:15)(cid:15)(cid:4)(cid:4)    (cid:25)(cid:25)(cid:16)(cid:16)(cid:3)(cid:3)(cid:6)(cid:6)(cid:1)
(cid:1)
(cid:1)
AA  BBrriieeff  SSuurrvveeyy  ooff  FFaaccee  RReeccooggnniittiioonn  TTeecchhnniiqquueess
Nilam B. Goswami, Pinal Patel, Chirag I. Patel, Parth Parekh
Post Graduation, CE and IT department, Government Engineering College, Gandhinagar, India"
7c8adb2fa156b119a1f576652c39fb06e4e19675,Ordinal Regression using Noisy Pairwise Comparisons for Body Mass Index Range Estimation,"Ordinal Regression using Noisy Pairwise Comparisons for Body Mass Index
Range Estimation
Luisa F. Polan´ıa
Dongning Wang
Glenn M. Fung
American Family Insurance, Strategic Data & Analytics, Madison, WI
{lpolania, dwang1,"
7c25ed788da1f5f61d8d1da23dd319dfb4e5ac2d,Human-In-The-Loop Person Re-Identification,"Human-In-The-Loop Person Re-Identification
Hanxiao Wang, Shaogang Gong, Xiatian Zhu, and Tao Xiang"
7c26559e7269679ef52a85d02c6ff7000c2387d2,Towards a Development of a Learners’ Ratified Acceptance of Multi-biometrics Intentions Model (RAMIM): Initial Empirical Results,"Yair Levy, Michelle M. Ramim
Towards a Development of a Learners’ Ratified
Acceptance of Multi-biometrics Intentions Model
(RAMIM): Initial Empirical Results
Graduate School of Computer and Information
H. Wayne Huizenga School of Business and
Nova Southeastern University, USA
Nova Southeastern University, USA
Yair Levy
Sciences
Michelle M. Ramim
Entrepreneurship
implemented  as"
7c9a65f18f7feb473e993077d087d4806578214e,SpringerLink - Zeitschriftenbeitrag,"SpringerLink - Zeitschriftenbeitrag
http://www.springerlink.com/content/93hr862660nl1164/?p=abe5352...
Deutsch
Deutsch
Vorherige Beitrag    Nächste Beitrag
Beitrag markieren
In den Warenkorb legen
Zu gespeicherten Artikeln
hinzufügen
Permissions & Reprints
Diesen Artikel empfehlen
Ergebnisse
finden
Erweiterte Suche
im gesamten Inhalt
in dieser Zeitschrift
in diesem Heft
Diesen Beitrag exportieren
Diesen Beitrag exportieren als RIS
| Text"
7c0f7d47da05a41e8671b059ade70dd2df7070db,Face Recognition and Feature Detection Using Artificial Neural Networks and ANFIS,"International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 5, Issue 7, July 2015)
Face Recognition and Feature Detection Using Artificial
Neural Networks and ANFIS
Sanjay Kumar Dekate1, Dr. Anupam Shukla2
Research Scholar, Dr. C. V. Raman University, Bilaspur, India
Professor, ABV-IIITM, Gwalior, India"
7c0ffae3acb0fd0a14ff66b6d474229aa16c53ab,Covariance Descriptor Multiple Object Tracking and Re-identification with Colorspace Evaluation,"Covariance Descriptor Multiple Object Tracking
nd Re-Identification with Colorspace
Evaluation
Andr´es Romero, Mich`ele Gouiff´es and Lionel Lacassagne
Institut d’´El´ectronique Fondamentale, UMR 8622, Universit´e Paris-Sud XI, Bˆatiment
660, rue Noetzlin, Plateau du Moulon, 91400 Orsay"
7c1e1c767f7911a390d49bed4f73952df8445936,Non-Rigid Object Detection with LocalInterleaved Sequential Alignment (LISA),"NON-RIGID OBJECT DETECTION WITH LOCAL INTERLEAVED SEQUENTIAL ALIGNMENT (LISA)
Non-Rigid Object Detection with Local
Interleaved Sequential Alignment (LISA)
Karel Zimmermann, Member, IEEE,, David Hurych, Member, IEEE,
nd Tom´aˇs Svoboda, Member, IEEE"
7cf579088e0456d04b531da385002825ca6314e2,Emotion Detection on TV Show Transcripts with Sequence-based Convolutional Neural Networks,"Emotion Detection on TV Show Transcripts with
Sequence-based Convolutional Neural Networks
Sayyed M. Zahiri
Jinho D. Choi
Mathematics and Computer Science
Mathematics and Computer Science
Emory University
Atlanta, GA 30322, USA
Emory University
Atlanta, GA 30322, USA"
7c349932a3d083466da58ab1674129600b12b81c,Leveraging Multiple Features for Image Retrieval and Matching,
16e2e9e4741795c004d15e95532b07943d3a3242,CPS: 3D Compositional Part Segmentation through Grasping,"CPS: 3D Compositional Part Segmentation through Grasping
Safoura Rezapour Lakani
University of Innsbruck
Innsbruck, Austria
Mirela Popa
University of Innsbruck
Innsbruck, Austria
Antonio J. Rodr´ıguez-S´anchez
University of Innsbruck
Innsbruck, Austria
Justus Piater
University of Innsbruck
Innsbruck, Austria"
162403e189d1b8463952fa4f18a291241275c354,Action Recognition with Spatio-Temporal Visual Attention on Skeleton Image Sequences,"Action Recognition with Spatio-Temporal
Visual Attention on Skeleton Image Sequences
Zhengyuan Yang, Student Member, IEEE, Yuncheng Li, Jianchao Yang, Member, IEEE,
nd Jiebo Luo, Fellow, IEEE
With a strong ability of modeling sequential data, Recur-
rent Neural Networks (RNN) with Long Short-Term Memory
(LSTM) neurons outperform the previous hand-crafted feature
ased methods [9], [10]. Each skeleton frame is converted into
feature vector and the whole sequence is fed into the RNN.
Despite the strong ability in modeling temporal sequences,
RNN structures lack the ability to efficiently learn the spatial
relations between the joints. To better use spatial information,
hierarchical structure is proposed in [11], [12] that feeds
the joints into the network as several pre-defined body part
groups. However,
limit
the effectiveness of representing spatial relations. A spatio-
temporal 2D LSTM (ST-LSTM) network [13] is proposed
to learn the spatial and temporal relations simultaneously.
Furthermore, a two-stream RNN structure [14] is proposed to"
160259f98a6ec4ec3e3557de5e6ac5fa7f2e7f2b,Discriminant multi-label manifold embedding for facial Action Unit detection,"Discriminant Multi-Label Manifold Embedding for Facial Action Unit
Detection
Signal Procesing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland
Anıl Y¨uce, Hua Gao and Jean-Philippe Thiran"
16fdc3829dc8322a26eac46e93703000005f3d6d,An occlusion reasoning scheme for monocular pedestrian tracking in dynamic scenes,"An Occlusion Reasoning Scheme for Monocular
Pedestrian Tracking in Dynamic Scenes
Sourav Garg and Swagat Kumar
Innovation Lab
Tata Consultancy Services
New Delhi, India 201301
Email:
Rajesh Ratnakaram and Prithwijit Guha
Department of Electronics and Electrical Engineering
Indian Institute of Technology Guwahati
Guwahati, Assam, India 781039
Email:"
16671b2dc89367ce4ed2a9c241246a0cec9ec10e,Detecting the Number of Clusters in n-Way Probabilistic Clustering,"Detecting the Number of Clusters
in n-Way Probabilistic Clustering
Zhaoshui He, Andrzej Cichocki, Senior Member, IEEE,
Shengli Xie, Senior Member, IEEE, and Kyuwan Choi"
16bd796687ca17ac7ca28d28d856b324186628ba,Face Recognition and Verification Using Photometric Stereo: The Photoface Database and a Comprehensive Evaluation,"Face Recognition and Verification Using
Photometric Stereo: The Photoface Database
nd a Comprehensive Evaluation
Stefanos Zafeiriou, Member, IEEE, Gary A. Atkinson, Mark F. Hansen, William A. P. Smith, Member, IEEE,
Vasileios Argyriou, Member, IEEE, Maria Petrou, Senior Member, IEEE, Melvyn L. Smith, and Lyndon N. Smith"
16395b40e19cbc6d5b82543039ffff2a06363845,Action Recognition in Video Using Sparse Coding and Relative Features,"Action Recognition in Video Using Sparse Coding and Relative Features
Anal´ı Alfaro
Domingo Mery
Alvaro Soto
P. Universidad Catolica de Chile
P. Universidad Catolica de Chile
P. Universidad Catolica de Chile
Santiago, Chile
Santiago, Chile
Santiago, Chile"
16e577820999e584c787ec611f55746cf9147518,Cross-Domain Person Reidentification Using Domain Adaptation Ranking SVMs,"Cross-Domain Person Re-Identification Using
Domain Adaptation Ranking SVMs
Andy J Ma, Jiawei Li, Pong C Yuen, Senior Member, IEEE, and Ping Li
label"
1696f6861c208b6a7cac95fbeba524867ad3e8d6,Using deep learning to quantify the beauty of outdoor places,"Downloaded from
http://rsos.royalsocietypublishing.org/
on September 4, 2017
rsos.royalsocietypublishing.org
Research
Cite this article: Seresinhe CI, Preis T, Moat
HS. 2017 Using deep learning to quantify the
eauty of outdoor places. R. Soc. open sci.
: 170170.
http://dx.doi.org/10.1098/rsos.170170
Received: 23 February 2017
Accepted: 19 June 2017
Subject Category:
Computer science
Subject Areas:
environmental science/computer modelling
nd simulation
Keywords:
environmental aesthetics, well-being,
onvolutional neural networks, deep learning,"
16d1e29b588fd26f5f0ac8038110f7b8500a1ec9,$L_0$ Regularized Stationary-Time Estimation for Crowd Analysis,"L0 Regularized Stationary-Time Estimation
for Crowd Analysis
Shuai Yi, Xiaogang Wang, Member, IEEE, Cewu Lu, Member, IEEE,
Jiaya Jia, Senior Member, IEEE, and Hongsheng Li"
16da7c95c218e9e97eea7734d6c243e8b825196d,A stable and accurate multi-reference representation for surfaces of R<sup>3</sup>: Application to 3D faces description,"A stable and accurate multi-reference representation for surfaces of
R3: Application to 3D faces description
Wieme Gadacha1, Faouzi Ghorbel1
CRISTAL laboratory, GRIFT research group
National School of Computer Sciences (NSCS), La Manouba 2010, Tunisia"
1685ac0f9fedd83a178a2f64f25155fb37998d8f,Human tracking using wearable sensors in the pocket,"Human Tracking using Wearable Sensors in the
Pocket
Wenchao Jiang
Department of Computer Science
Zhaozheng Yin
Department of Computer Science
Missouri University of Science and Technology
Missouri University of Science and Technology"
166f42f66c5e6dd959548acfb97dc77a36013639,Bilevel Model-Based Discriminative Dictionary Learning for Recognition,"Bilevel Model-Based Discriminative Dictionary
Learning for Recognition
Pan Zhou, Chao Zhang, Member, IEEE, and Zhouchen Lin, Senior Member, IEEE"
16c884be18016cc07aec0ef7e914622a1a9fb59d,Exploiting Multimodal Data for Image Understanding,"UNIVERSITÉ DE GRENOBLE
No attribué par la bibliothèque
THÈSE
pour obtenir le grade de
DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques et Informatique
préparée au Laboratoire Jean Kuntzmann
dans le cadre de l’École Doctorale Mathématiques,
Sciences et Technologies de l’Information, Informatique
présentée et soutenue publiquement
Matthieu Guillaumin
le 27 septembre 2010
Exploiting Multimodal Data for Image Understanding
Données multimodales pour l’analyse d’image
Directeurs de thèse : Cordelia Schmid et Jakob Verbeek
M. Éric Gaussier
M. Antonio Torralba
Mme Tinne Tuytelaars Katholieke Universiteit Leuven
M. Mark Everingham University of Leeds
Mme Cordelia Schmid"
16aec3ee9a97162b85b1d51c3c5ce73a472e74b8,Application of Selective Search to Pose estimation,"Application of Selective Search to Pose estimation
Ujwal Krothapalli
Department of Electrical and
Computer Engineering
Virginia Tech
Blacksburg, Virginia 24061"
16c855aea9789e2b7a77f35dc4181efc93dec69c,Exploiting Sum of Submodular Structure for Inference in Very High Order MRF-MAP Problems,"SUBMITTED TO IEEE TPAMI
Exploiting Sum of Submodular Structure for
Inference in Very High Order MRF-MAP
Problems
Ishant Shanu Surbhi Goel Chetan Arora Parag Singla"
163738c0f74ec82ab670a868a051edb732543b6e,Image alignment with rotation manifolds built on sparse geometric expansions,"Image alignment with rotation manifolds built
on sparse geometric expansions
Effrosyni Kokiopoulou and Pascal Frossard
Ecole Polytechnique F´ed´erale de Lausanne (EPFL)
Signal Processing Institute - ITS
CH- 1015 Lausanne, Switzerland"
1630e839bc23811e340bdadad3c55b6723db361d,Exploiting relationship between attributes for improved face verification,"SONG, TAN, CHEN: EXPLOITING RELATIONSHIP BETWEEN ATTRIBUTES
Exploiting Relationship between Attributes for
Improved Face Verification
Fengyi Song
Xiaoyang Tan
Songcan Chen
Department of Computer Science and
Technology, Nanjing University of Aero-
nautics and Astronautics, Nanjing 210016,
P.R. China"
160ab0e879f4451fa4df88cd567508150894ba9d,Cross Dataset Person Re-identification,"Cross Dataset Person Re-identification
Yang Hu, Dong Yi, Shengcai Liao, Zhen Lei, Stan Z. Li(cid:63)
Center for Biometrics and Security Research
National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences (CASIA)
95 Zhongguancun East Road, 100190, Beijing, China
{yhu, dong.yi, scliao, zlei,"
16597862a1df1a983c439e82e0462424f538bb48,Personalized Saliency and its Prediction,
166b5bdea1f4f850af5b045a953d6de74bc18d1e,Best of both worlds: Human-machine collaboration for object annotation,"Best of both worlds: human-machine collaboration for object annotation
Olga Russakovsky1, Li-Jia Li2, Li Fei-Fei1
Stanford University. 2Snapchat (this work was done while at Yahoo! Labs).
The long-standing goal of localizing every object in an image remains
elusive. Manually annotating objects is quite expensive despite crowd en-
gineering innovations. Current automatic object detectors can accurately
detect at most a few objects per image. This paper brings together the latest
dvancements in object detection and in crowd engineering into a principled
framework for accurately and efficiently localizing objects in images.
The input to the system is an image to annotate and a set of annotation
onstraints: (1) desired utility of labeling, which is a generalization of the
number of labeled objects, (2) desired precision of the labeling and/or (3)
the budget, which is the human cost of the labeling. Our system automati-
ally solicits feedback from human workers (“users”) to annotate the image
subject to these constraints, as illustrated in Figure 1. The output is a set of
object annotations, informed by humans and computer vision.
One important decision is which questions to pose to the human label-
ers. In computer vision with human-in-the-loop approaches, human inter-
vention has ranged from binary question-and-answer [1] to attribute-based
feedback [4] to free-form object annotation [6]. Binary questions are not"
161c9ef7114bda7c5a60a29ee4a3161b0a76e676,Low Rank Approximation and Decomposition of Large Matrices Using Error Correcting Codes,"Low rank approximation and decomposition of
large matrices using error correcting codes
Shashanka Ubaru, Arya Mazumdar Senior Member, IEEE, and Yousef Saad"
16286fb0f14f6a7a1acc10fcd28b3ac43f12f3eb,"All Smiles are Not Created Equal: Morphology and Timing of Smiles Perceived as Amused, Polite, and Embarrassed/Nervous.","J Nonverbal Behav
DOI 10.1007/s10919-008-0059-5
O R I G I N A L P A P E R
All Smiles are Not Created Equal: Morphology
nd Timing of Smiles Perceived as Amused, Polite,
nd Embarrassed/Nervous
Zara Ambadar Æ Jeffrey F. Cohn Æ Lawrence Ian Reed
Ó Springer Science+Business Media, LLC 2008"
165d966940dcccf9c9976ebffcabe72d66996b05,Semi-Supervised Nonlinear Hashing Using Bootstrap Sequential Projection Learning,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Semi-supervised Nonlinear Hashing Using
Bootstrap Sequential Projection Learning
Chenxia Wu, Jianke Zhu, Deng Cai, Chun Chen, and Jiajun Bu"
1697a4188b9f75ff5324eb9957b8317f459bbf59,Dual-tree fast exact max-kernel search,"Dual-Tree Fast Exact Max-Kernel Search
Ryan R. Curtin and Parikshit Ram
December 11, 2013"
16e8d439fbcf8311efea7b0baeb1a5340272b396,Stereo and LIDAR Fusion based Detection of Humans and Other Obstacles in Farming Scenarios,
166186e551b75c9b5adcc9218f0727b73f5de899,Automatic Age and Gender Recognition in Human Face Image Dataset using Convolutional Neural Network System,"Volume 4, Issue 2, February 2016
International Journal of Advance Research in
Computer Science and Management Studies
Research Article / Survey Paper / Case Study
Available online at: www.ijarcsms.com
ISSN: 2321-7782 (Online)
Automatic Age and Gender Recognition in Human Face Image
Dataset using Convolutional Neural Network System
Subhani Shaik1
Assoc. Prof & Head of the Department
Department of CSE,
Anto A. Micheal2
Associate Professor
Department of CSE,
St.Mary’s Group of Institutions Guntur
St.Mary’s Group of Institutions Guntur
Chebrolu(V&M),Guntur(Dt),
Andhra Pradesh - India
Chebrolu(V&M),Guntur(Dt),
Andhra Pradesh - India"
16d9b983796ffcd151bdb8e75fc7eb2e31230809,GazeDirector: Fully Articulated Eye Gaze Redirection in Video,"EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer
(Guest Editors)
Volume 37 (2018), Number 2
GazeDirector: Fully Articulated Eye Gaze Redirection in Video
ID: paper1004"
165abb6fdbadae997135feec447fc825edb31c6c,Dimensionality Reduction with Simultaneous Sparse Approximations,"SCHOOL OF ENGINEERING - STI
SIGNAL PROCESSING INSTITUTE
EffrosyniKokiopoulouandPascalFrossard
CH-1015 LAUSANNE
Telephone: +41216932601
Telefax: +41216937600
e-mail:
ÉCOLE   POLYTECHNIQUE(cid:13)
FÉDÉRALE DE LAUSANNE
DIMENSIONALITY REDUCTION WITH
SIMULTANEOUS SPARSE APPROXIMATIONS
Effrosyni Kokiopoulou and Pascal Frossard
Swiss Federal Institute of Technology Lausanne (EPFL)
Signal Processing Institute Technical Report
TR-ITS-2006.010
October 21st, 2006
Part of this work has been submitted to IEEE TMM.
This work has been supported by the Swiss NSF, under grants PP-002-68737, and NCCR IM2."
162c33a2ec8ece0dc96e42d5a86dc3fedcf8cd5e,Large-Scale Classification by an Approximate Least Squares One-Class Support Vector Machine Ensemble,"Mygdalis, V., Iosifidis, A., Tefas, A., & Pitas, I. (2016). Large-Scale
Classification by an Approximate Least Squares One-Class Support Vector
of a meeting held 20-22 August 2015, Helsinki, Finland (Vol. 2, pp. 6-10).
Institute of Electrical and Electronics Engineers (IEEE). DOI:
0.1109/Trustcom.2015.555
Peer reviewed version
Link to published version (if available):
0.1109/Trustcom.2015.555
Link to publication record in Explore Bristol Research
PDF-document
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms"
16e8b0a1e8451d5f697b94c0c2b32a00abee1d52,UMB-DB: A database of partially occluded 3D faces,"UMB-DB
A Database of Partially Occluded 3D Faces
Alessandro Colombo
Claudio Cusano
Raimondo Schettini
Universit`a degli Studi di Milano-Bicocca
3 November 2011"
16bd481fb66259df9c4c22b54797d8e8adc910fc,Robustifying Descriptor Instability Using Fisher Vectors,"Robustifying Descriptor Instability
using Fisher Vectors
Ivo Everts, Jan C. van Gemert, Thomas Mensink, Theo Gevers, Member, IEEE"
1654fadee3e70d744a4eb231932b87c41c1e3ae5,Survey on Emotional Body Gesture Recognition,"JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 201X
Survey on Emotional Body Gesture Recognition
Fatemeh Noroozi, Ciprian Adrian Corneanu, Dorota Kami´nska, Tomasz Sapi´nski, Sergio Escalera,
nd Gholamreza Anbarjafari,"
161eb9ecc119952c137959e87a796da0f3c62cd1,Eye tracking in early autism research,"Falck-Ytter et al. Journal of Neurodevelopmental Disorders 2013, 5:28
http://www.jneurodevdisorders.com/content/5/1/28
R EV I E W
Eye tracking in early autism research
Terje Falck-Ytter1,2*, Sven Bölte1,3 and Gustaf Gredebäck2
Open Access"
16647dc1bc87ba1e7b8bcd7e1ea8ccebcfe20fa5,Psychometric properties of reaction time based experimental paradigms measuring anxiety-related information-processing biases in children,"PDF hosted at the Radboud Repository of the Radboud University
Nijmegen
The following full text is a publisher's version.
For additional information about this publication click this link.
http://repository.ubn.ru.nl/handle/2066/126858
Please be advised that this information was generated on 2018-10-16 and may be subject to
hange."
1670729d1edc9bc6103ee823f1137d302be41397,Patch-based Object Recognition Using Discriminatively Trained Gaussian Mixtures,"Patch-based Object Recognition Using
Discriminatively Trained Gaussian Mixtures
Andre Hegerath, Thomas Deselaers, and Hermann Ney
Human Language Technology and Pattern Recognition Group,
RWTH Aachen University – D-52056 Aachen, Germany
{hegerath, deselaers,"
16bfd904f5a76bb52d5cd8a25721277047a02e89,Blindfold Baselines for Embodied QA,"Blindfold Baselines for Embodied QA
Ankesh Anand1 Eugene Belilovsky1 Kyle Kastner1 Hugo Larochelle2,1 Aaron Courville1,3
Mila
Google Brain 3CIFAR Fellow"
161eb88031f382e6a1d630cd9a1b9c4bc6b47652,Automatic facial expression recognition using features of salient facial patches,"Automatic Facial Expression Recognition
Using Features of Salient Facial Patches
S L Happy and Aurobinda Routray"
16f48e8b7f1f6c03c888e3f4664ce3fa1261296b,Steganographic Generative Adversarial Networks,"Steganographic Generative Adversarial Networks
Denis Volkhonskiy1,2,3, Ivan Nazarov1,2, Boris Borisenko3 and Evgeny Burnaev1,2,3
Skolkovo Institute of Science and Technology
The Institute for Information Transmission Problems RAS (Kharkevich Institute)
National Research University Higher School of Economics (HSE)"
4209783b0cab1f22341f0600eed4512155b1dee6,Accurate and Efficient Similarity Search for Large Scale Face Recognition,"Accurate and Efficient Similarity Search for Large Scale Face Recognition
Ce Qi
Zhizhong Liu
Fei Su"
42e3dac0df30d754c7c7dab9e1bb94990034a90d,PANDA: Pose Aligned Networks for Deep Attribute Modeling,"PANDA: Pose Aligned Networks for Deep Attribute Modeling
Ning Zhang1,2, Manohar Paluri1, Marc’Aurelio Ranzato1, Trevor Darrell2, Lubomir Bourdev1
EECS, UC Berkeley
{mano, ranzato,
Facebook AI Research
{nzhang,"
422fc05b3ef72e96c87b9aa4190efa7c7fb8c170,Preprocessing Technique for Face Recognition Applications under Varying Illumination Conditions,"Global Journal of Computer Science and Technology
Graphics & Vision
Volume 12 Issue 11 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350
Preprocessing  Technique  for  Face  Recognition  Applications
under Varying Illumination Conditions
By S.Anila & Dr.N.Devarajan
Sri Ramakrishna Institute of Technology, Coimbatore-10, Tamil Nadu, India"
42c645df49106b68a71abe757ac13245db4be394,A New Method of Illumination Normalization for Robust Face Recognition,"A New Method of Illumination Normalization
for Robust Face Recognition
Young Kyung Park, Bu Cheon Min, and Joong Kyu Kim
School of Information and Communication Engineering, SungKyunKwan University.
00, Chun-Chun-Dong, Chang-An-Ku, Suwon, Korea 440-746
{multipym,"
4244d3340304b114e5c00e7b5797d2338a5c2b82,Face Recognition Using Local Texture Feature,"International Journal of Computer Engineering and Applications,
Volume XII, Issue I, Jan. 18, www.ijcea.com ISSN 2321-3469
FACE RECOGNITION USING LOCAL TEXTURE FEATURE
Pavan.M 1, Sayed Aftab Ahamed 2
Dept. of Information Science & engineering, J.N.N.C.E
Shimoga, Karnataka, India"
429b8d5bb05e1a580fad0222b9e9496985465e40,"See No Evil, Say No Evil: Description Generation from Densely Labeled Images","Proceedings of the Third Joint Conference on Lexical and Computational Semantics (*SEM 2014), pages 110–120,
Dublin, Ireland, August 23-24 2014.
(Count:3) Isa: ride, vehicle,… Doing: parking,… Has: steering wheel,… Attrib: black, shiny,… children (Count:2) Isa: kids, children … Doing: biking, riding … Has: pants, bike … Attrib: young, small … bike (Count:1) Isa: bike, bicycle,… Doing: playing,… Has: chain, pedal,… Attrib: silver, white,… women(Count:3) Isa: girls, models,… Doing: smiling,...  Has: shorts, bags,… Attrib: young, tan,… purses(Count:3) Isa: accessory,… Doing: containing,… Has: body, straps,… Attrib: black, soft,… sidewalk(Count:1) Isa: sidewalk, street,… Doing: laying,… Has: stone, cracks,… Attrib: flat, wide,… woman(Count:1) Isa: person, female,… Doing: pointing,… Has: nose, legs,… Attrib: tall, skinny,… tree(Count:1) Isa: plant,… Doing: growing,… Has: branches,… Attrib: tall, green,… kids(Count:5) Isa: group, teens,… Doing: walking,… Has: shoes, bags,… Attrib: young,… Fiveyoungpeopleonthestreet,twosharingabicycle.Severalyoungpeoplearewalkingnearparkedvehicles.Threegirlswithlargehandbagswalkingdownthesidewalk.Threewomenwalkdownacitystreet,asseenfromabove.Threeyoungwomanwalkingdownasidewalklookingup.Figure1:Anannotatedimagewithhumangeneratedsen-tencedescriptions.Eachboundingpolygonencompassesoneormoreobjectsandisassociatedwithacountandtextla-bels.Thisimagehas9highlevelobjectsannotatedwithover250textuallabels.tomuchofthevisualcontentneededtogeneratecomplete,human-likesentences.Inthispaper,weinsteadstudygenerationwithmorecompletevisualsupport,asprovidedbyhu-manannotations,allowingustodevelopmorecomprehensivemodelsthanpreviouslyconsid-ered.Suchmodelshavethedualbenefitof(1)providingnewinsightsintohowtoconstructmorehuman-likesentencesand(2)allowingustoper-formexperimentsthatsystematicallystudythecontributionofdifferentvisualcuesingeneration,suggestingwhichautomaticdetectorswouldbemostbeneficialforgeneration.Inanefforttoapproximaterelativelycompletevisualrecognition,wecollectedmanuallylabeledrepresentationsofobjects,parts,attributesandac-tivitiesforabenchmarkcaptiongenerationdatasetthatincludesimagespairedwithhumanauthored"
421387011b5cdd2cb4a1fdf04728d350741a0ac1,Incidental memory for faces in children with different genetic subtypes of Prader-Willi syndrome,"Social Cognitive and Affective Neuroscience, 2017, 918–927
doi: 10.1093/scan/nsx013
Advance Access Publication Date: 17 February 2017
Original article
Incidental memory for faces in children with different
genetic subtypes of Prader-Willi syndrome
Alexandra P. Key,1,2 and Elisabeth M. Dykens1,3
Vanderbilt Kennedy Center for Research on Human Development, 2Department of Hearing and Speech
Sciences, Vanderbilt University Medical Center, and 3Department of Psychology and Human Development,
Vanderbilt University, Nashville, TN 37203, USA
Correspondence should be addressed to Alexandra P. Key, Vanderbilt Kennedy Center, Peabody Box 74, Vanderbilt University, Nashville, TN 37203, USA.
E-mail:"
42f4653f0693f16e087e4b913407d9b0278154c9,3D Human Action Recognition with Siamese-LSTM Based Deep Metric Learning,"D Human Action Recognition with Siamese-
LSTM Based Deep Metric Learning
VisLab, Department of Computer Engineering, Gebze Technical University, Kocaeli, Turkey
Seyma Yucer and Yusuf Sinan Akgul
Email: {syucer,"
42afe5fd3f7b1d286a20e9306c6bc8624265f658,Face Detection Using the 3×3 Block Rank Patterns of Gradient Magnitude Images,"Signal & Image Processing : An International Journal (SIPIJ) Vol.4, No.5, October 2013
FACE DETECTION USING THE 3×3 BLOCK RANK
PATTERNS OF GRADIENT MAGNITUDE IMAGES
Kang-Seo Park, Young-Gon Kim, and Rae-Hong Park
Department of Electronic Engineering, School of Engineering, Sogang University,
5 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea"
4213502d0f226b9845b00c2882851ba4c57742ab,Does Rabbit Antithymocyte Globulin (Thymoglobuline®) Have a Role in Avoiding Delayed Graft Function in the Modern Era of Kidney Transplantation?,"Hindawi
Journal of Transplantation
Volume 2018, Article ID 4524837, 11 pages
https://doi.org/10.1155/2018/4524837
Review Article
Does Rabbit Antithymocyte Globulin (ThymoglobulineD)
Have a Role in Avoiding Delayed Graft Function in the Modern
Era of Kidney Transplantation?
Lluís Guirado
Department of Renal Transplantation, Fundaci´o Puigvert, Barcelona, Spain
Correspondence should be addressed to Llu´ıs Guirado;
Received 12 April 2018; Accepted 20 June 2018; Published 12 July 2018
Academic Editor: Andreas Zuckermann
Copyright © 2018 Llu´ıs Guirado. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Delayed graft function (DGF) increases the risk of graft loss by up to 40%, and recent developments in kidney donation have
increased the risk of its occurrence. Lowering the risk of DGF, however, is challenging due to a complicated etiology in which
ischemia-reperfusion injury (IRI) leads to acute tubular necrosis. Among various strategies explored, the choice of induction
therapy is one consideration. Rabbit antithymocyte globulin (rATG [Thymoglobuline]) has complex immunomodulatory effects
that are relevant to DGF. In addition to a rapid and profound T-cell depletion, rATG inhibits leukocyte migration and adhesion."
4265269bc894caa97efbfcfe5b83da7413f86a30,Asymmetric Tri-training for Unsupervised Domain Adaptation,"Asymmetric Tri-training for Unsupervised Domain Adaptation
Kuniaki Saito 1 Yoshitaka Ushiku 1 Tatsuya Harada 1"
42f8ef9d5ebf969a7e2b4d1eef4b332db562e5d4,Which Training Methods for GANs do actually Converge?,"Which Training Methods for GANs do actually Converge?
Lars Mescheder 1 Andreas Geiger 1 2 Sebastian Nowozin 3"
42cc8637a5e7b8203722ba0dca995814f6dfd525,PETS 2016: Dataset and Challenge,"PETS 2016: Dataset and Challenge
Luis Patino*, Tom Cane**, Alain Vallee*** and James Ferryman*
*University of Reading, Computational Vision Group, Reading RG6 6AY, United Kingdom,
{j.l.patinovilchis,
**BMT Group Ltd., Teddington TW11 8LZ. United Kingdom,
***SAGEM, 92659 Boulogne-Billancourt, France,"
4212a93f011aa47c6344c0cdc3e991740d8c7c04,Zero-Shot Kernel Learning,"Zero-Shot Kernel Learning
Hongguang Zhang∗,2,1
Piotr Koniusz∗,1,2
Data61/CSIRO, 2Australian National University
nu.edu.au2}"
426b47af132293e9ffe6071a3ede59cfdc1aa3fb,Promoting social behavior with oxytocin in high-functioning autism spectrum disorders.,"Promoting social behavior with oxytocin in high-
functioning autism spectrum disorders
Elissar Andaria, Jean-René Duhamela, Tiziana Zallab, Evelyn Herbrechtb, Marion Leboyerb, and Angela Sirigua,1
Centre de Neuroscience Cognitive, Unité Mixte de Recherche 5229, Centre National de la Recherche Scientifique, 69675 Bron, France; and bInstitut National
de la Santé et de la Recherche Médicale U 841, Department of Psychiatry, Hôpital Chenevier-Mondor, 94000 Créteil, France
Edited by Leslie G. Ungerleider, National Institute of Mental Health, Bethesda, MD, and approved January 7, 2010 (received for review September 8, 2009)
Social adaptation requires specific cognitive and emotional compe-
tences. Individuals with high-functioning autism or with Asperger
syndrome cannot understand or engage in social situations despite
preserved intellectual abilities. Recently, it has been suggested that
oxytocin, a hormone known to promote mother-infant bonds, may
e implicated in the social deficit of autism. We investigated the
ehavioral effects of oxytocin in 13 subjects with autism.
simulated ball game where participants interacted with fictitious
partners, we found that after oxytocin inhalation, patients
exhibited stronger interactions with the most socially cooperative
partner and reported enhanced feelings of trust and preference.
Also, during free viewing of pictures of faces, oxytocin selectively
increased patients’ gazing time on the socially informative region of
the face, namely the eyes. Thus, under oxytocin, patients respond"
423e8cc1a7501066b7e0e5bb1beb5b9592337023,Accurate eye center localization using Snakuscule,"Accurate Eye Center Localization using Snakuscule
Abhinav Tripathi
Microsoft Research India
Edward Cutrell
Microsoft Research India
Sanyam Garg
Microsoft Research India"
42cc9ea3da1277b1f19dff3d8007c6cbc0bb9830,Coordinated Local Metric Learning,"Coordinated Local Metric Learning
Shreyas Saxena
Jakob Verbeek
Inria∗"
42350e28d11e33641775bef4c7b41a2c3437e4fd,Multilinear Discriminant Analysis for Face Recognition,"Multilinear Discriminant Analysis
for Face Recognition
Shuicheng Yan, Member, IEEE, Dong Xu, Qiang Yang, Senior Member, IEEE, Lei Zhang, Member, IEEE,
Xiaoou Tang, Senior Member, IEEE, and Hong-Jiang Zhang, Fellow, IEEE"
42e793b1dd6669b74ad106071c432aa5015b8631,How do people think about interdependence? A multidimensional model of subjective outcome interdependence.,"tapraid5/z2g-perpsy/z2g-perpsy/z2g99917/z2g4623d17z
xppws S⫽1
8/10/17
:53 Art: 2016-0710
APA NLM
017, Vol. 0, No. 999, 000
0022-3514/17/$12.00
© 2017 American Psychological Association
http://dx.doi.org/10.1037/pspp0000166
How Do People Think About Interdependence? A Multidimensional Model
of Subjective Outcome Interdependence
Fabiola H. Gerpott, Daniel Balliet,
Simon Columbus, and Catherine Molho
Vrije Universiteit Amsterdam
Reinout E. de Vries
Vrije Universiteit Amsterdam and University of Twente
Interdependence is a fundamental characteristic of social interactions. Interdependence Theory states that
6 dimensions describe differences between social situations. Here we examine if these 6 dimensions
describe how people think about their interdependence with others in a situation. We find that people (in
situ and ex situ) can reliably differentiate situations according to 5, but not 6, dimensions of interde-"
42e155ea109eae773dadf74d713485be83fca105,Sparse reconstruction of facial expressions with localized gabor moments,
423aacfe7467961e32f012bc6de10d636ebc0236,Breaking the interactive bottleneck in multi-class classification with active selection and binary feedback,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Breaking the Interactive Bottleneck in
Multi-Class Classification with Active
Selection and Binary Feedback
Ajay Joshi, Fatih Porikli, Nikolaos Papanikolopoulos
TR2010-037
July 2010"
42b56c77e4b154364763d4024baa8129da75151f,Deep Detection of People and their Mobility Aids for a Hospital Robot,"Deep Detection of People and their Mobility Aids for a Hospital Robot
Andres Vasquez
Marina Kollmitz
Andreas Eitel
Wolfram Burgard"
4297deda7ea77fb90de2509c763738584b2353de,Beyond one billion time series: indexing and mining very large time series collections with $$i$$ SAX2+,"Knowl Inf Syst
DOI 10.1007/s10115-012-0606-6
REGULAR PAPER
Beyond one billion time series: indexing and mining very
large time series collections with iSAX2+
Alessandro Camerra · Jin Shieh · Themis Palpanas ·
Thanawin Rakthanmanon · Eamonn Keogh
Received: 23 March 2012 / Revised: 23 September 2012 / Accepted: 28 December 2012
© Springer-Verlag London 2013"
423e0f595365640b653c1195749e01394cbcd937,Web-Scale Responsive Visual Search at Bing,"Web-Scale Responsive Visual Search at Bing
Houdong Hu, Yan Wang, Linjun Yang, Pavel Komlev, Li Huang,
Xi (Stephen) Chen, Jiapei Huang, Ye Wu, Meenaz Merchant, Arun Sacheti
Microsoft
Redmond, Washington"
424e918134ed7c70fa73450bd6af1bd982071a27,Final Report : Localized object detection with Convolutional Neural Networks,"Final Report: Localized object detection with Convolutional
Computer Vision
Neural Networks
Bardia Doosti
Vijay Hareesh Avula
May 5, 2016"
428e42f8d5cbffc068e2e5fe8f697c9c9ee113a9,Deep Multimodal Subspace Clustering Networks,"IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. X, SEPTEMBER 21, 2018
Deep Multimodal Subspace Clustering Networks
Mahdi Abavisani, Student Member, IEEE and Vishal M. Patel, Senior Member, IEEE"
42d8a6b1ef5acaaf4640a8974c6f99d60b56090c,Markerless Motion Capture of Multiple Characters Using Multiview Image Segmentation,"SUBMIT TO IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, AUGUST 2012
Markerless Motion Capture of Multiple Characters
Using Multi-view Image Segmentation
Yebin Liu, Juergen Gall Member, IEEE, Carsten Stoll, Qionghai Dai Senior Member, IEEE,
Hans-Peter Seidel, and Christian Theobalt"
4270460b8bc5299bd6eaf821d5685c6442ea179a,"Partial Similarity of Objects, or How to Compare a Centaur to a Horse","Int J Comput Vis (2009) 84: 163–183
DOI 10.1007/s11263-008-0147-3
Partial Similarity of Objects, or How to Compare a Centaur
to a Horse
Alexander M. Bronstein · Michael M. Bronstein · Alfred
M. Bruckstein · Ron Kimmel
Received: 30 September 2007 / Accepted: 3 June 2008 / Published online: 26 July 2008
© Springer Science+Business Media, LLC 2008"
426840ccf74bbd8b087cf357efdb80ecc85ea2ab,Reduced Analytic Dependency Modeling: Robust Fusion for Visual Recognition,"Noname manuscript No.
(will be inserted by the editor)
Reduced Analytic Dependency Modeling: Robust Fusion for Visual
Recognition
Andy J Ma · Pong C Yuen
Received: date / Accepted: date"
422d352a7d26fef692a3cd24466bfb5b4526efea,Pedestrian interaction in tracking: the social force model and global optimization methods,"Pedestrian interaction in tracking: the social
force model and global optimization methods
Laura Leal-Taix´e and Bodo Rosenhahn"
429d4848d03d2243cc6a1b03695406a6de1a7abd,"Face Recognition based on Logarithmic Fusion of SVD and KT Ramachandra A C , Raja K B , Venugopal K R , L M Patnaik","Face Recognition based on Logarithmic Fusion
International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-2, Issue-3, July 2012
of SVD and KT
Ramachandra A C, Raja K B, Venugopal K R, L M Patnaik"
42ab6c438bf5a6e0e74cc2dd9192a12f2406ca33,Nonlinear Dimensionality Reduction by Manifold Unfolding,"Nonlinear Dimensionality Reduction
y Manifold Unfolding
Pooyan Khajehpour Tadavani
A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
Computer Science
Waterloo, Ontario, Canada, 2013
(cid:13) Pooyan Khajehpour Tadavani 2013"
4273a9d1605a69ac66440352b92ebeb230fd34f6,Simple Test Procedure for Image-Based Biometric Veri cation Systems,"SimpleTestProcedureforImage-BasedBiometric
Veri(cid:12)cationSystems
C.L.Wilson,R.M.McCabe
InformationTechnologyLaboratory
NationalInstituteofStandardsandTechnology
Gaithersburg,MD"
42dc36550912bc40f7faa195c60ff6ffc04e7cd6,Visible and Infrared Face Identification via Sparse Representation,"Hindawi Publishing Corporation
ISRN Machine Vision
Volume 2013, Article ID 579126, 10 pages
http://dx.doi.org/10.1155/2013/579126
Research Article
Visible and Infrared Face Identification via
Sparse Representation
Pierre Buyssens1 and Marinette Revenu2
LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France
GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar´echal Juin,
4050 Caen, France
Correspondence should be addressed to Pierre Buyssens;
Received 4 April 2013; Accepted 27 April 2013
Academic Editors: O. Ghita, D. Hernandez, Z. Hou, M. La Cascia, and J. M. Tavares
Copyright © 2013 P. Buyssens and M. Revenu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
ited.
We present a facial recognition technique based on facial sparse representation. A dictionary is learned from data, and patches
extracted from a face are decomposed in a sparse manner onto this dictionary. We particularly focus on the design of dictionaries
that play a crucial role in the final identification rates. Applied to various databases and modalities, we show that this approach"
42e0d7fe2039b075ac2372d883fa994eb0a68b48,Learning human actions in video,"Learning human actions in video
Alexander Klaser
To cite this version:
Alexander Klaser. Learning human actions in video. Modeling and Simulation. Institut Na-
tional Polytechnique de Grenoble - INPG, 2010. English. <tel-00514814>
HAL Id: tel-00514814
https://tel.archives-ouvertes.fr/tel-00514814
Submitted on 3 Sep 2010
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de
recherche fran¸cais ou ´etrangers, des laboratoires
publics ou priv´es."
424e52158b43e40f356af7eafb35c91a9e13db30,"Impact Factor : 3 . 449 ( ISRA ) , Impact Factor : 2 .","[Randive, 4(1): January, 2015]
ISSN: 2277-9655
Scientific Journal Impact Factor: 3.449
(ISRA), Impact Factor: 2.114
IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY
AN INNOVATIVE APPROACH FOR PLASTIC SURGERY FACE RECOGNITION-A
Mahendra P. Randive *, Prof. Umesh W. Hore
REVIEW
*Student of M.E. Department of Electronics & Telecommunication Engineering, P. R. Patil College of
Engineering, Amravati Maharashtra – India."
42ecfc3221c2e1377e6ff849afb705ecd056b6ff,Pose Invariant Face Recognition Under Arbitrary Unknown Lighting Using Spherical Harmonics,"Pose Invariant Face Recognition under Arbitrary
Unknown Lighting using Spherical Harmonics
Lei Zhang and Dimitris Samaras
Department of Computer Science,
SUNY at Stony Brook, NY, 11790
{lzhang,"
421955c6d2f7a5ffafaf154a329a525e21bbd6d3,Evolutionary Pursuit and Its Application to Face Recognition,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 6,
JUNE 2000
Evolutionary Pursuit and Its
Application to Face Recognition
Chengjun Liu, Member, IEEE, and Harry Wechsler, Fellow, IEEE"
42832bcb36ee3f69327c38d0d17e6e2a73aaa2a6,SUN Database: Exploring a Large Collection of Scene Categories,"Int J Comput Vis
DOI 10.1007/s11263-014-0748-y
SUN Database: Exploring a Large Collection of Scene Categories
Jianxiong Xiao · Krista A. Ehinger · James Hays ·
Antonio Torralba · Aude Oliva
Received: 9 June 2013 / Accepted: 2 July 2014
© Springer Science+Business Media New York 2014"
423cfa55a14cd92ada32245b416b587ef9c29308,Visually-Grounded Bayesian Word Learning,"Visually-Grounded Bayesian Word Learning
Yangqing Jia
Joshua Abbott
Joseph Austerweil
Thomas Griffiths
Trevor Darrell
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2012-202
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-202.html
October 17, 2012"
4263630a35c5ee34ccf9dbd81c0541d92d0c7d5b,Shape Variation-Based Frieze Pattern for Robust Gait Recognition,"Shape Variation-Based Frieze Pattern for Robust Gait Recognition
Seungkyu Lee*                    Yanxi Liu*                     Robert Collins
Dept. of Computer Science and Eng. *Dept. of Electrical Eng.
The Penn State University"
42df75080e14d32332b39ee5d91e83da8a914e34,Illumination Compensation Using Oriented Local Histogram Equalization and its Application to Face Recognition,"Illumination Compensation Using Oriented
Local Histogram Equalization and
Its Application to Face Recognition
Ping-Han Lee, Szu-Wei Wu, and Yi-Ping Hung"
421b3a33ec70af2d733310f6c83ad713a314951d,Using nasal curves matching for expression robust 3D nose recognition,"Emambakhsh, M., Evans, A. and Smith, M. (2013) Using nasal curves
matching for expression robust 3D nose recognition. In: IEEE Con-
ference on Biometrics: Theory, Applications and Systems (BTAS2013),
Washington DC, USA, September 29th - October 2, 2013. Available
from: http://eprints.uwe.ac.uk/20812
We recommend you cite the published version.
The publisher’s URL is:
http://eprints.uwe.ac.uk/20812/
Refereed: Yes
(no note)
Disclaimer
UWE has obtained warranties from all depositors as to their title in the material
deposited and as to their right to deposit such material.
UWE makes no representation or warranties of commercial utility, title, or fit-
ness for a particular purpose or any other warranty, express or implied in respect
of any material deposited.
UWE makes no representation that the use of the materials will not infringe
ny patent, copyright, trademark or other property or proprietary rights.
UWE accepts no liability for any infringement of intellectual property rights
in any material deposited but will remove such material from public view pend-"
896e2776174dcb86d311789ab83a266151d0595b,A Novel Performance Evaluation Methodology for Single-Target Trackers,"A Novel Performance Evaluation Methodology
for Single-Target Trackers
Matej Kristan, Member, IEEE, Jiri Matas, Aleˇs Leonardis, Member, IEEE, Tom´aˇs Voj´ıˇr,
Roman Pflugfelder, Gustavo Fern´andez, Georg Nebehay, Fatih Porikli and
Luka ˇCehovin Member, IEEE,"
89945b7cd614310ebae05b8deed0533a9998d212,Divide-and-Conquer Method for L1 Norm Matrix Factorization in the Presence of Outliers and Missing Data,"Divide-and-Conquer Method for L1 Norm Matrix
Factorization in the Presence of Outliers and
Missing Data
Deyu Meng and Zongben Xu"
89c84628b6f63554eec13830851a5d03d740261a,Image Enhancement and Automated Target Recognition Techniques for Underwater Electro-Optic Imagery,"Image Enhancement and Automated Target Recognition
Techniques for Underwater Electro-Optic Imagery
Thomas Giddings (PI), Cetin Savkli and Joseph Shirron
Metron, Inc.
1911 Freedom Dr., Suite 800
Reston, VA 20190
phone: (703) 437-2428   fax: (703) 787-3518    email:
Contract Number N00014-07-C-0351
http:www.metsci.com
LONG TERM GOALS
The long-term goal of this project is to provide a flexible, accurate and extensible automated target
recognition (ATR) system for use with a variety of imaging and non-imaging sensors.  Such an ATR
system, once it achieves a high level of performance, can relieve human operators from the tedious
usiness of pouring over vast quantities of mostly mundane data, calling the operator in only when the
omputer assessment involves an unacceptable level of  ambiguity. The ATR system will provide most
leading edge algorithms for detection, segmentation, and classification while incorporating many novel
lgorithms that we are developing at Metron.  To address one of the most critical challenges in ATR
technology, the system will also provide powerful feature extraction routines designed for specific
pplications of current interest.
OBJECTIVES"
89c51f73ec5ebd1c2a9000123deaf628acf3cdd8,Face Recognition Based on Nonlinear Feature Approach Eimad,"American Journal of Applied Sciences 5 (5): 574-580, 2008
ISSN 1546-9239
© 2008 Science Publications
Face Recognition Based on Nonlinear Feature Approach
Eimad E.A. Abusham, 1Andrew T.B. Jin, 1Wong E. Kiong and 2G. Debashis
Faculty of Information Science and Technology,
Faculty of Engineering and Technology, Multimedia University (Melaka Campus),
Jalan Ayer Keroh Lama, 75450 Bukit Beruang, Melaka, Malaysia"
89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199,Application of an Improved Mean Shift Algorithm in Real-time Facial Expression Recognition,"Application of an Improved Mean Shift Algorithm
in Real-time Facial Expression Recognition
School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008,china
School of Electrical and Information Engineering, Hunan University of Technology, Hunan, Zhuzhou, 412008,china
School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008,china
Zhao-yi PENG
Yu ZHOU
Yan-hui  ZHU
Email:
Zhi-qiang WEN
Email:
School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008,china
facial
real-time
expression"
893239f17dc2d17183410d8a98b0440d98fa2679,UvA-DARE ( Digital Academic Repository ) Expression-Invariant Age Estimation,"UvA-DARE (Digital Academic Repository)
Expression-Invariant Age Estimation
Alnajar, F.; Lou, Z.; Alvarez Lopez, J.M.; Gevers, T.
Published in:
Proceedings of the British Machine Vision Conference 2014
0.5244/C.28.14
Link to publication
Citation for published version (APA):
Alnajar, F., Lou, Z., Alvarez, J., & Gevers, T. (2014). Expression-Invariant Age Estimation. In M. Valstar, A.
French, & T. Pridmore (Eds.), Proceedings of the British Machine Vision Conference 2014 (pp. 14.1-14.11).
BMVA Press. DOI: 10.5244/C.28.14
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.
Download date: 04 Aug 2017"
89f9225a7223133fa687e1c44bb758c3567f4f26,F3-F: A System Theoretic Approach to Robust Detection Of Potential Threats from Video,"F3-F: A System Theoretic Approach to Robust
Detection Of Potential Threats from Video"
8966af6a8049192556e9c9356886a135595c19b8,Temporally Coherent CRP: A Bayesian Non-Parametric Approach for Clustering Tracklets with applications to Person Discovery in Videos,"Temporally Coherent CRP: A Bayesian Non-Parametric Approach for
Clustering Tracklets with applications to Person Discovery in Videos
Adway Mitra∗
Soma Biswas†
Chiranjib Bhattacharyya‡"
8949563597276246f9f480d4b38b3b7851fd5495,Toward Efficient and Robust Large-scale Structure-from-motion Systems,"TOWARD EFFICIENT AND ROBUST LARGE-SCALE
STRUCTURE-FROM-MOTION SYSTEMS
Jared S. Heinly
A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of
Computer Science.
Chapel Hill
Approved by:
Jan-Michael Frahm
Enrique Dunn
Alexander C. Berg
Marc Niethammer
Sameer Agarwal"
8913a5b7ed91c5f6dec95349fbc6919deee4fc75,BigBIRD: A large-scale 3D database of object instances,"BigBIRD: A Large-Scale 3D Database of Object Instances
Arjun Singh, James Sha, Karthik S. Narayan, Tudor Achim, Pieter Abbeel"
89d3a57f663976a9ac5e9cdad01267c1fc1a7e06,Neural Class-Specific Regression for face verification,"Neural Class-Specific Regression for face
verification
Guanqun Cao, Alexandros Iosifidis, Moncef Gabbouj"
89a245eae1e7eda7aa8e360c0cdb4bf6a72da225,A Survey of Pedestrian Detection in Video,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 10, 2014
A Survey of Pedestrian Detection in Video
Achmad Solichin
Department of Informatics
Budi Luhur University
Jakarta, Indonesia
Agus Harjoko
Agfianto Eko Putra
Dept. of Computer Science and
Dept. of Computer Science and
Electronics Gadjah Mada University
Electronics Gadjah Mada University
Yogyakarta, Indonesia
Yogyakarta, Indonesia"
8948e9dce2dfaeb1d93ce146fab5364b6cd342c9,Dual Attention Network for Scene Segmentation,"Dual Attention Network for Scene Segmentation
Jun Fu, Jing Liu, Haijie Tian, Zhiwei Fang, Hanqing Lu
{jun.fu, jliu, zhiwei.fang,
CASIA IVA"
89bc311df99ad0127383a9149d1684dfd8a5aa34,Towards ontology driven learning of visual concept detectors,"Towards ontology driven learning of
visual concept detectors
Sanchit ARORA, Chuck CHO, Paul FITZPATRICK, Franc¸ois SCHARFFE 1
Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA"
8935ffe454758e2e5def0b5190de6e28c350b3b8,Learning to Reconstruct Face Geometries Research,"Learning to Reconstruct Face
Geometries
Elad Richardson
Technion - Computer Science Department - M.Sc. Thesis  MSC-2017-11 - 2017"
8961677300a9ee30ca51e1a3cf9815b4a162265b,Deep Representation Learning with Part Loss for Person Re-Identification,"Deep Representation Learning with Part Loss for Person Re-Identification
Hantao Yao, Shiliang Zhang, Yongdong Zhang, Jintao Li, Qi Tian"
89f44f756c230e104cdf2ec0152d5f015586399c,Wide-area Based Traffic Situation Detection at an Ungated Level Crossing,"M. Junghans, et al., Int. J. of Safety and Security Eng., Vol. 6, No. 2 (2016) 383–393
WIDE-AREA BASED TRAFFIC SITUATION DETECTION
AT AN UNGATED LEVEL CROSSING
M. JUNGHANS, A. LEICH, K. KOZEMPEL, H. SAUL & S. KNAKE-LANGHORST
Institute of Transportation Systems, German Aerospace Center (DLR), Berlin, Germany."
89e324b9c64a800e57ad82eddecc03f2cc0b7cc5,Long-Term Identity-Aware Multi-Person Tracking for Surveillance Video Summarization,"Long-Term Identity-Aware Multi-Person Tracking
for Surveillance Video Summarization
Shoou-I Yu, Yi Yang, Xuanchong Li, and Alexander G. Hauptmann"
89174737423d87258d3b9d5a660236a0bb66a470,On the usage of Sensor Pattern Noise for Picture-to-Identity linking through social network accounts,"On the usage of Sensor Pattern Noise for Picture-to-Identity linking
through social network accounts
Riccardo Satta1 and Pasquale Stirparo1,2
Institute for the Protection and Security of the Citizen
Joint Research Centre (JRC), European Commission, Ispra (VA), Italy
Royal Institute of Technology (KTH), Stockholm, Sweden
{riccardo.satta,
Keywords:
social network, account, Sensor Pattern Noise, identity, linking, digital image forensics, multimedia forensics"
8929e704b6af7f09ad027714b75972cb9df57483,Image Inpainting for Irregular Holes Using Partial Convolutions,
894f1e924dfb8dfb843c42835fa79e386ac07383,Dimensional emotion recognition using visual and textual cues,"Dimensional emotion recognition using visual and textual cues
Pedro M. Ferreira1, Diogo Pernes2, Kelwin Fernandes1, Ana Rebelo3 and Jaime S. Cardoso1"
898a66979c7e8b53a10fd58ac51fbfdb6e6e6e7c,Dynamic vs. Static Recognition of Facial Expressions,"Dynamic vs. Static Recognition of Facial
Expressions
No Author Given
No Institute Given"
89d590d7013433304aae1c97debd257b8dd801fa,Outdoor Human Motion Capture by Simultaneous Optimization of Pose and Camera Parameters,"Volume xx (200y), Number z, pp. 1–13
Outdoor Human Motion Capture by Simultaneous
Optimization of Pose and Camera Parameters
A. Elhayek C. Stoll K. I. Kim and C. Theobalt
Max-Planck-Institute for Informatics, Saarbrücken, Germany
Figure 1: Examples of multi-person tracking with moving cameras. (Left two images) two actors, and two moving and 3 static
ameras (Soccer1). (Right two images) One actor, and three moving and two static cameras (Walk2)."
89d7cc9bbcd2fdc4f4434d153ecb83764242227b,Face-Name Graph Matching For The Personalities In Movie Screen,"Einstein.J, DivyaBaskaran / International Journal of Engineering Research and Applications
(IJERA)             ISSN: 2248-9622           www.ijera.com
Vol. 3, Issue 2, March -April 2013, pp.351-355
Face-Name Graph Matching For The Personalities In Movie
Screen
*(Asst. Professor, Dept. of IT, VelTech HighTech Dr. Rangarajan Dr.Sakunthala Engineering College,
Einstein.J*, DivyaBaskaran**
** (Final Year Student, M.Tech IT, Vel Tech Dr. RR &Dr. SR Technical University, Chennai.)
Chennai.)"
890103cb8d3d869298421da817d0a181487ec79a,Learning the Hierarchical Parts of Objects by Deep Non-Smooth Nonnegative Matrix Factorization,"Learning the Hierarchical Parts of Objects by Deep
Non-Smooth Nonnegative Matrix Factorization
Jinshi Yu, Guoxu Zhou, Andrzej Cichocki
IEEE Fellow, and Shengli Xie IEEE Senior Member"
89358e65aec4d6665098c7dbbe3975296cc7a2fc,Discriminative Feature Based Algorithm for Detecting And Classifying Frames In Image Sequences,"M. A. A Victoria et al. Int. Journal of Engineering Research and Applications               www.ijera.com
Vol. 3, Issue 5, Sep-Oct 2013, pp.446-450
RESEARCH ARTICLE                                                                               OPEN ACCESS
Discriminative Feature Based Algorithm for Detecting And
Classifying Frames In Image Sequences
M. Antony Arockia Victoria, R. Sahaya Jeya Sutha
B.E,M.E. Assistant Professor, Department of MCA, Dr.Sivanthi Aditanar College of Engineering,
MCA,M.Phil. Assistant Professor, Department of MCA, Dr. Sivanthi Aditanar College of Engineering"
8954d46e1d7a11b20b2c688e5fb8bce4901650d6,Looking at movies and cartoons: eye-tracking evidence from Williams syndrome and autism.,"Looking at Movies and Cartoons: Eye-tracking evidence from Williams syndrome
nd Autism
Deborah M Riby and Peter J B Hancock
Journal of Intellectual Disability Research
http://dx.doi.org/10.1111/j.1365-2788.2008.01142.x"
89d02ceae9e972eca633ae6ff9da9ee8a85fb171,Using Explanations to Improve Ensembling of Visual Question Answering Systems,"In Proceedings of the IJCAI 2017 Workshop on Explainable Artificial
Intelligence (XAI), pp. 43-47, Melbourne, Australia, August 2017."
89742f28108330f97df94df98f73b459b02ca33d,Query Specific Semantic Signature for Improved Web Image Re - Ranking,"International Journal of Engineering and Technical Research (IJETR)
ISSN: 2321-0869, Volume-3, Issue-3, March 2015
Query Specific Semantic Signature for Improved
Web Image Re-Ranking
Joshith.K, S.Krishnamoorthi"
89475b4d09e541e09becb9aa134c8de117725205,Automatic Analysis of Facial Expressions Based on Deep Covariance Trajectories,"Automatic Analysis of Facial Expressions Based on
Deep Covariance Trajectories
Naima Otberdout, Member, IEEE, Anis Kacem, Member, IEEE, Mohamed Daoudi, Senior, IEEE,
Lahoucine Ballihi, Member, IEEE, and Stefano Berretti, Senior, IEEE"
891b10c4b3b92ca30c9b93170ec9abd71f6099c4,2 New Statement for Structured Output Regression Problems,"Facial landmark detection using structured output deep
neural networks
Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien
Adam∗2
LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France
LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France.
September 24, 2015"
455943924a98593655ae7197ee3835b9f6a3b778,Visual SLAM for Automated Driving: Exploring the Applications of Deep Learning,"Visual SLAM for Automated Driving:
Exploring the Applications of Deep Learning
Stefan Milz, Georg Arbeiter, Christian Witt
Valeo Schalter und Sensoren GmbH
Bassam Abdallah
Valeo Vision, Bobigny
stefan.milz, georg.arbeiter,
Senthil Yogamani
Valeo Vision Systems, Ireland"
45379046c6c1311dfa6d8e1941b3e2c7971ca2bc,An alternating direction and projection algorithm for structure-enforced matrix factorization,"Noname manuscript No.
(will be inserted by the editor)
An Alternating Direction and Projection Algorithm
for Structure-enforced Matrix Factorization
Lijun Xu · Bo Yu · Yin Zhang
Received: date / Accepted: date"
4572725e98f3e1b6f258c03643d74b69982aa39a,Semantic Cluster Unary Loss for Efficient Deep Hashing,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Semantic Cluster Unary Loss for Efficient Deep
Hashing
Shifeng Zhang, Jianmin Li, and Bo Zhang
hashing [15], [22], [27], [32], [38], [54] and semi-supervised
hashing [43]. Experiments convey that hashcodes learned by
(semi-)supervised hashing methods contain more semantic
information than those learned by the unsupervised ones."
45ede580b1e402aae6832256586211a47c53afe3,Biometric Application: Texture and Shape Based 3d Face Recognition,"BIOMETRIC APPLICATION: TEXTURE AND SHAPE BASED 3D FACE
RECOGNITION
P.Manju Bala1
Senior Assistant professor,
A.Kalaiselvi2
Assistant Professor,
Department of Computer Science and Engineering,
Department of Computer Science and Engineering,
IFET College of Engineering,
Villupuram."
451bf4124ec8a55b9112cf9cc167d304fa004924,Modelling State of Interaction from Head Poses for Social Human-Robot Interaction,"Modelling State of Interaction from Head Poses
for Social Human-Robot Interaction
Andre Gaschler
fortiss GmbH
Guerickstr. 25
80805 München, Germany
Ingmar Kessler
fortiss GmbH
Guerickstr. 25
80805 München, Germany
Kerstin Huth
Universität Bielefeld
Universitätsstr. 25
3615 Bielefeld, Germany
Jan de Ruiter
Universität Bielefeld
Universitätsstr. 25
3615 Bielefeld, Germany
ielefeld.de
Manuel Giuliani"
45aefa11101129862e323958b62505700bc281ae,Unsupervised learning in generative models of occlusion,"Unsupervised Learning in Generative
Models of Occlusion
Dissertation
zur Erlangung des Doktorgrades
der Naturwissenschaften
vorgelegt beim Fachbereich Physik
der Johann Wolfgang Goethe-Universität
in Frankfurt am Main
Marc Henniges
us Frankfurt am Main
Frankfurt (2012)
(D 30)"
45c340c8e79077a5340387cfff8ed7615efa20fd,Assessment of the Emotional States of Students during e-Learning,
457abee61182a320b301d73ecceff00d055f596e,Face Recognition Using Line Edge Map,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6,
JUNE 2002
Face Recognition Using Line Edge Map
Yongsheng Gao, Member, IEEE, and Maylor K.H. Leung, Member, IEEE"
450e9f80a273df2cdaafd9ae3a9ff149950cc834,Human Pose Estimation using Histograms of Edge Directions,"Human Pose Estimation
using Histograms of Edge Directions
Andrès Koetsier
University of Twente HMI Department"
45e7ddd5248977ba8ec61be111db912a4387d62f,Adversarial Learning of Structure-Aware Fully Convolutional Networks for Landmark Localization,"CHEN ET AL.: ADVERSARIAL POSENET
Adversarial Learning of Structure-Aware Fully
Convolutional Networks for Landmark
Localization
Yu Chen1, Chunhua Shen2, Hao Chen2, Xiu-Shen Wei3, Lingqiao Liu2 and Jian Yang1"
45f884c4c3bcdabdca46ee0e3794ce1631b9c558,Vision-based assessment of parkinsonism and levodopa-induced dyskinesia with pose estimation,"Vision-Based Assessment of Parkinsonism and
Levodopa-Induced Dyskinesia with Deep
Learning Pose Estimation
Michael H. Li, Tiago A. Mestre, Susan H. Fox, Babak Taati*"
4526992d4de4da2c5fae7a5ceaad6b65441adf9d,System for Medical Mask Detection in the Operating Room Through Facial Attributes,"System for Medical Mask Detection
in the Operating Room Through
Facial Attributes
A. Nieto-Rodr´ıguez, M. Mucientes(B), and V.M. Brea
Center for Research in Information Technologies (CiTIUS),
University of Santiago de Compostela, Santiago de Compostela, Spain"
45efd6c2dd4ca19eed38ceeb7c2c5568231451e1,Comparative Analysis of Statistical Approach for Face Recognition,"Comparative Analysis of Statistical Approach
for Face Recognition
S.Pradnya1, M.Riyajoddin2, M.Janga Reddy3
CMR Institute of Technology, Hyderabad, (India)"
4560491820e0ee49736aea9b81d57c3939a69e12,Investigating the Impact of Data Volume and Domain Similarity on Transfer Learning Applications,"Investigating the Impact of Data Volume and
Domain Similarity on Transfer Learning
Applications
Michael Bernico, Yuntao Li, and Dingchao Zhang
State Farm Insurance, Bloomington IL 61710, USA,"
4571626d4d71c0d11928eb99a3c8b10955a74afe,Geometry Guided Adversarial Facial Expression Synthesis,"Geometry Guided Adversarial Facial Expression Synthesis
Lingxiao Song1,2
Zhihe Lu1,3 Ran He1,2,3
Zhenan Sun1,2
Tieniu Tan1,2,3
National Laboratory of Pattern Recognition, CASIA
Center for Research on Intelligent Perception and Computing, CASIA
Center for Excellence in Brain Science and Intelligence Technology, CAS"
451d777ee33833a3b5eb6ba5292fae162c6d265f,Exploiting Feature Correlations by Brownian Statistics for People Detection and Recognition,"TRANSACTIONS ON CYBERNETICS
Exploiting Feature Correlations by Brownian
Statistics for People Detection and Recognition
Sławomir B ˛ak1, Marco San Biagio2, Ratnesh Kumar1, Vittorio Murino2 and François Brémond1
STARS Lab, INRIA Sophia Antipolis Méditerranée, Sophia Antipolis, 06902 Valbonne, France
Pattern Analysis and Computer Vision (PAVIS), IIT IStituto Italiano di Tecnologia, 16163 Genova, Italy
Characterizing an image region by its feature inter-correlations is a modern trend in computer vision. In this paper, we introduce
new image descriptor that can be seen as a natural extension of a covariance descriptor with the advantage of capturing nonlinear
nd non-monotone dependencies. Inspired from the recent advances in mathematical statistics of Brownian motion, we can express
highly complex structural information in a compact and computationally efficient manner. We show that our Brownian covariance
descriptor can capture richer image characteristics than the covariance descriptor. Additionally, a detailed analysis of the Brownian
manifold reveals that in opposite to the classical covariance descriptor, the proposed descriptor lies in a relatively flat manifold,
which can be treated as a Euclidean. This brings significant boost in the efficiency of the descriptor. The effectiveness and the
generality of our approach is validated on two challenging vision tasks, pedestrian classification and person re-identification. The
experiments are carried out on multiple datasets achieving promising results.
Index Terms—brownian descriptor, covariance descriptor, pedestrian detection, re-identification.
I. INTRODUCTION
D ESIGNING proper image descriptors is a crucial step
in computer vision applications, including scene detec-
tion, target tracking and object recognition. A good descrip-"
45e81d04d01ef1db78a04ef7a9472fd4cd6de84c,Variational learning of finite Beta-Liouville mixture models using component splitting,"Variational Learning of Finite Beta-Liouville Mixture Models Using
Component Splitting
Wentao Fan and Nizar Bouguila"
4583d7d1d76dfe18e86e91f7438ce1a03cdcf68f,"""3D Face"": Biometric Template Protection for 3D Face Recognition","\3D Face"": Biometric Template Protection for
D Face Recognition
E.J.C. Kelkboom, B. G(cid:127)okberk, T.A.M. Kevenaar, A.H.M. Akkermans, and M.
van der Veen
Philips Research, High-Tech Campus 34, 5656AE, Eindhoven
femile.kelkboom, berk.gokberk, tom.kevenaar, ton.h.akkermans,"
454ec30d0a491800458a52a5aa655eb76a28f4f5,3-D Object Recognition Using 2-D Views,"-D Object Recognition Using 2-D Views
Wenjing Li, Member, IEEE, George Bebis, Member, IEEE, and Nikolaos G. Bourbakis, Fellow, IEEE"
45bedfcb562e48a64436ea3131bc91098eb93dab,Incremental update of biometric models in face-based video surveillance,"Incremental Update of Biometric Models in
Face-Based Video Surveillance
Miguel De-la-Torre∗†, Eric Granger∗, Paulo V. W. Radtke∗, Robert Sabourin∗, Dmitry O. Gorodnichy‡
´Ecole de technologie sup´erieure, Montr´eal, Canada
Centro Universitario de Los Valles, Universidad de Guadalajara, Ameca, M´exico
Science and Engineering Directorate, Canada Border Services Agency, Ottawa, Canada"
4534d78f8beb8aad409f7bfcd857ec7f19247715,Transformation-Based Models of Video Sequences,"Under review as a conference paper at ICLR 2017
TRANSFORMATION-BASED MODELS OF VIDEO
SEQUENCES
Joost van Amersfoort ∗, Anitha Kannan, Marc’Aurelio Ranzato,
Arthur Szlam, Du Tran & Soumith Chintala
Facebook AI Research
{akannan, ranzato, aszlam, trandu,"
453e311c6de1285cd5ea6d93fd78a636eac0ba82,Multi patches 3D facial representation for person authentication using AdaBoost,"Multi patches 3D facial representation for Person
Authentication using AdaBoost
Lahoucine Ballihi, Boulbaba Ben Amor, Mohamed Daoudi, Anuj Srivastava
To cite this version:
Lahoucine Ballihi, Boulbaba Ben Amor, Mohamed Daoudi, Anuj Srivastava. Multi patches 3D facial
representation for Person Authentication using AdaBoost. I/V Communications and Mobile Network
(ISVC), 2010 5th International Symposium on, Sep 2010, Rabat, Morocco. pp.1-4, 2010. <hal-
00665904>
HAL Id: hal-00665904
https://hal.archives-ouvertes.fr/hal-00665904
Submitted on 3 Feb 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,"
459e840ec58ef5ffcee60f49a94424eb503e8982,One-shot Face Recognition by Promoting Underrepresented Classes,"One-shot Face Recognition by Promoting Underrepresented Classes
Yandong Guo, Lei Zhang
Microsoft
One Microsoft Way, Redmond, Washington, United States
{yandong.guo,"
45954ed44b99edc5f0d1100a1ea33d856602d78a,Retinal Vessel Segmentation under Extreme Low Annotation: A Generative Adversarial Network Approach,"Retinal Vessel Segmentation under Extreme Low
Annotation: A Generative Adversarial Network
Approach
Avisek Lahiri*, Vineet Jain*, Arnab Mondal*, and Prabir Kumar Biswas, Senior Member, IEEE"
451c42da244edcb1088e3c09d0f14c064ed9077e,Using subclasses in discriminant non-negative subspace learning for facial expression recognition,"© EURASIP, 2011  -  ISSN 2076-1465
9th European Signal Processing Conference (EUSIPCO 2011)
INTRODUCTION"
456ccc8bbb538037ff00fabf25afb2aceb39149e,Computational Aspects of the Hausdorff Distance in Unbounded Dimension,"Journal of Computational Geometry
COMPUTATIONAL ASPECTS OF THE HAUSDORFF DISTANCE
IN UNBOUNDED DIMENSION
Stefan K¨onig∗"
4568063b7efb66801e67856b3f572069e774ad33,Correspondence driven adaptation for human profile recognition,"Correspondence Driven Adaptation for Human Profile Recognition
Ming Yang1, Shenghuo Zhu1, Fengjun Lv2, Kai Yu1
NEC Laboratories America, Inc.
Huawei Technologies (USA)
Cupertino, CA 95014
Santa Clara, CA 95050"
45c4514ca2b7903b4c8f43e396bce73f014b72be,Parallel Feature Extraction through Preserving Global and Discriminative Property for Kernel-Based Image Classification,"Journal of Information Hiding and Multimedia Signal Processing
Ubiquitous International
(cid:13)2015 ISSN 2073-4212
Volume 6, Number 5, September 2015
Parallel Feature Extraction through Preserving
Global and Discriminative Property for Kernel-Based
Image Classification
Xun-Fei Liu, and Xiang-Xian Zhu
Department of Electrical Engineering
Suzhou Institute of Industrial Technology
Suzhou, 215104, China
Received May, 2015; revised June, 2015"
4563cbfbdba1779fc598081071ae40be021cb81d,Adversarial Attacks on Variational Autoencoders,"Adversarial Attacks on Variational Autoencoders
George Gondim-Ribeiro, Pedro Tabacof, and Eduardo Valle
RECOD Lab. — DCA / School of Electrical and Computer Engineering (FEEC)
University of Campinas (Unicamp)
Campinas, SP, Brazil
{gribeiro, tabacof,"
4541f3ee510b593243ff9a66d3586ef9125c2931,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
458e44d20f7a85a0ce378b48a41febb16383c075,Tracking Interacting Objects in Image Sequences,"Tracking Interacting Objects in Image Sequences
THÈSE NO 6632 (2015)
PRÉSENTÉE LE 3 JUILLET 2015
À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE VISION PAR ORDINATEUR
PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES
Xinchao WANG
cceptée sur proposition du jury:
Prof. W. Gerstner, président du jury
Prof. P. Fua,   directeur de thèse
Prof. J. Sullivan, rapporteuse
Prof. P. Dillenbourg, rapporteur
Prof. S. Roth, rapporteur
Suisse"
456f00e213e03058a056069fa75c34929cf7d4e9,Detecting ground control points via convolutional neural network for stereo matching,"Noname manuscript No.
(will be inserted by the editor)
Detecting Ground Control Points via Convolutional Neural Network for
Stereo Matching
Zhun Zhong · Songzhi Su · Donglin Cao · Shaozi Li
Received: date / Accepted: date"
4599b9d9a379385a3d31681696d2523beeb0e9c1,LG ] 8 F eb 2 01 6 A Latent-Variable Grid Model,"A Latent-Variable Grid Model
Rajasekaran Masatran
Computer Science and Engineering, Indian Institute of Technology Madras
FREESHELL · ORG"
45e459462a80af03e1bb51a178648c10c4250925,LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning,"LCrowdV: Generating Labeled Videos for
Simulation-based Crowd Behavior Learning
Ernest Cheung1, Tsan Kwong Wong1, Aniket Bera1, Xiaogang Wang2, and
Dinesh Manocha1
The University of North Carolina at Chapel Hill"
458677de7910a5455283a2be99f776a834449f61,Face Image Retrieval Using Facial Attributes By K-Means,"Face Image Retrieval Using Facial Attributes By
K-Means
[1]I.Sudha,  [2]V.Saradha, [3]M.Tamilselvi, [4]D.Vennila
[1]AP, Department of CSE ,[2][3][4] B.Tech(CSE)
Achariya college of Engineering Technology-
Puducherry"
45a6333fc701d14aab19f9e2efd59fe7b0e89fec,Dataset Creation for Gesture Recognition,"HAND POSTURE DATASET CREATION FOR GESTURE
RECOGNITION
Luis Anton-Canalis
Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria
Campus Universitario de Tafira, 35017 Gran Canaria, Spain
Elena Sanchez-Nielsen
Departamento de E.I.O. y Computacion
8271 Universidad de La Laguna, Spain
Keywords:
Image understanding, Gesture recognition, Hand dataset."
4562272025a5bcdb321408116c699798a7997847,Leveraging RGB-D Data: Adaptive fusion and domain adaptation for object detection,"Leveraging RGB-D Data: Adaptive Fusion and
Domain Adaptation for Object Detection
Luciano Spinello and Kai O. Arras
Social Robotics Lab, University of Freiburg, Germany
{spinello,"
457d3ca924afc21719d19175caf285aa575d1c90,Analyzing Structured Scenarios by Tracking People and Their Limbs,
45e2aa7706fcedcbb2d93304a9824fe762b8b3b0,DAC-SDC Low Power Object Detection Challenge for UAV Applications,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018
DAC-SDC Low Power Object Detection
Challenge for UAV Applications
Xiaowei Xu, Member, IEEE, Xinyi Zhang, Student Member, IEEE, Bei Yu, Senior Member, IEEE, Xiaobo
Sharon Hu, Fellow, IEEE, Christopher Rowen, Fellow, IEEE, Jingtong Hu, Member, IEEE, and Yiyu
Shi, Senior Member, IEEE"
456983805a8781d6429bed1ed66dc9f3902767af,Seeing with Humans: Gaze-Assisted Neural Image Captioning,"Seeing with Humans: Gaze-Assisted
Neural Image Captioning
Yusuke Sugano and Andreas Bulling"
45ca696076e9c073e6cf699766f808899589bc88,Aalborg Universitet Thermal Tracking of Sports Players,"Aalborg Universitet
Thermal Tracking of Sports Players
Gade, Rikke; Moeslund, Thomas B.
Published in:
Sensors
DOI (link to publication from Publisher):
0.3390/s140813679
Publication date:
Document Version
Publisher's PDF, also known as Version of record
Link to publication from Aalborg University
Citation for published version (APA):
Gade, R., & Moeslund, T. B. (2014). Thermal Tracking of Sports Players. Sensors, 14(8), 13679-13691. DOI:
0.3390/s140813679
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?"
458713d5c1dd8ff95865302e51f0f8df22204d91,A Review on Face Recognition Using Different Pre- Processing Methods in Images Captured under Various Illumination and Posing Conditions,
1f98daf89f9a3dba655f0a4eb4164118ea6226ef,"Parallel k-Means Image Segmentation Using Sort, Scan and Connected Components on a GPU","The original publication is available at: www.springerlink.com
Parallel k-Means Image Segmentation Using
Sort, Scan & Connected Components on a GPU
Michael Backer, Jan T¨unnermann, and B¨arbel Mertsching
GET Lab, University of Paderborn, Pohlweg 47-49, 33098 Paderborn, Germany
{backer, tuennermann,
http://getwww.upb.de"
1ffe20eb32dbc4fa85ac7844178937bba97f4bf0,Face Clustering: Representation and Pairwise Constraints,"Face Clustering: Representation and Pairwise
Constraints
Yichun Shi, Student Member, IEEE, Charles Otto, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
1ff616ae8b61f8167f2d626b7c1a36e018b23e94,Learning with Parsimony for Large Scale Object Detection and Discovery,"Learning with Parsimony for Large Scale Object
Detection and Discovery
Hyun Oh Song
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2014-148
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-148.html
August 12, 2014"
1f7cd3343f4b6b0f936c94e3a45c477c014e2b5c,3D Human Pose Estimation on a Configurable Bed from a Pressure Image,"D Human Pose Estimation on a Configurable Bed from a Pressure Image
Henry M. Clever*, Ariel Kapusta, Daehyung Park, Zackory Erickson, Yash Chitalia, Charles C. Kemp"
1f8304f4b51033d2671147b33bb4e51b9a1e16fe,Beyond Trees: MAP Inference in MRFs via Outer-Planar Decomposition,"Noname manuscript No.
(will be inserted by the editor)
Beyond Trees:
MAP Inference in MRFs via Outer-Planar Decomposition
Dhruv Batra · Andrew C. Gallagher · Devi Parikh · Tsuhan Chen
Received: date / Accepted: date"
1f9ae272bb4151817866511bd970bffb22981a49,An Iterative Regression Approach for Face Pose Estimation from RGB Images,"An Iterative Regression Approach for Face Pose Estima-
tion from RGB Images
Wenye He
This paper presents a iterative optimization method, explicit shape regression, for face pose
detection and localization. The regression function is learnt to find out the entire facial shape
nd minimize the alignment errors. A cascaded learning framework is employed to enhance
shape constraint during detection. A combination of a two-level boosted regression, shape
performance. In this paper, we have explain the advantage of ESR for deformable object like
face pose estimation and reveal its generic applications of the method. In the experiment,
we compare the results with different work and demonstrate the accuracy and robustness in
different scenarios.
Introduction
Pose estimation is an important problem in computer vision, and has enabled many practical ap-
plication from face expression 1 to activity tracking 2. Researchers design a new algorithm called
explicit shape regression (ESR) to find out face alignment from a picture 3. Figure 1 shows how
the system uses ESR to learn a shape of a human face image. A simple way to identify a face is to
find out facial landmarks like eyes, nose, mouth and chin. The researchers define a face shape S
nd S is composed of Nf p facial landmarks. Therefore, they get S = [x1, y1, ..., xNf p, yNf p]T . The
objective of the researchers is to estimate a shape S of a face image. The way to know the accuracy"
1f2f712253a68cd9f8172de19297e35cec7919dd,Vision System of Facial Robot SHFR- III for Human-robot Interaction,
1f8eefd6dd2f20fd78a67dfdfe33022c6f9981d6,Unsupervised Features for Facial Expression Intensity Estimation over Time,
1fef45786e707e6b9b8517b0403e596ecbdea6a5,Sketch-based manga retrieval using manga109 dataset,"JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012
Sketch-based Manga Retrieval
using Manga109 Dataset
Yusuke Matsui, Member, IEEE, Kota Ito, Yuji Aramaki, Toshihiko Yamasaki, Member, IEEE,
nd Kiyoharu Aizawa, Senior Member, IEEE,"
1fc249ec69b3e23856b42a4e591c59ac60d77118,Evaluation of a 3D-aided pose invariant 2D face recognition system,"Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System
Xiang Xu, Ha A. Le, Pengfei Dou, Yuhang Wu, Ioannis A. Kakadiaris
{xxu18, hale4, pdou, ywu35,
Computational Biomedicine Lab
800 Calhoun Rd. Houston, TX, USA"
1f4aa1d14bb99e152dd1c7ac3cfd5afa8f6a012f,Learning Discriminative Part Detectors for Image Classification and Cosegmentation,"Learning Discriminative Part Detectors for Image Classification and
Cosegmentation
Jian Sun
Jean Ponce
Xi’an Jiaotong University, INRIA, ∗
´Ecole Normale Sup´erieure, *
This is a preliminary version accepted for publication to ICCV 2013"
1fbb66a9407470e1da332c4ef69cdc34e169a3d7,A Baseline for General Music Object Detection with Deep Learning,"Article
A Baseline for General Music Object Detection with
Deep Learning
Alexander Pacha 1,*
, Jan Hajiˇc, Jr. 2 and Jorge Calvo-Zaragoza 3
Institute for Visual Computing and Human-Centered Technology, TU Wien, 1040 Wien, Austria
Institute of Formal and Applied Linguistics, Charles University, 116 36 Staré Mˇesto, Czech Republic;
PRHLT Research Center, Universitat Politècnica de València, 46022 València, Spain;
* Correspondence:
Received: 31 July 2018; Accepted: 26 August 2018; Published: 29 August 2018"
1fbde67e87890e5d45864e66edb86136fbdbe20e,The Action Similarity Labeling Challenge,"The Action Similarity Labeling Challenge
Orit Kliper-Gross, Tal Hassner, and
Lior Wolf, Member, IEEE"
1ff057f2fb8258bd5359cded950a3627bd8ee1f4,Low-rank embedding for semisupervised face classification,"Low-Rank Embedding for Semisupervised Face Classification
Gaurav Srivastava, Ming Shao and Yun Fu∗"
1f41a96589c5b5cee4a55fc7c2ce33e1854b09d6,Demographic Estimation from Face Images: Human vs. Machine Performance,"Demographic Estimation from Face Images:
Human vs. Machine Performance
Hu Han, Member, IEEE, Charles Otto, Student Member, IEEE, Xiaoming Liu, Member, IEEE
nd Anil K. Jain, Fellow, IEEE"
1f35f0400d6d112e3b27231d0d9241258efd782d,Learning to Rank Using High-Order Information,"Learning to Rank Using High-Order Information
Puneet Kumar Dokania1, Aseem Behl2, C.V. Jawahar2, and M. Pawan Kumar1
Ecole Centrale de Paris
INRIA Saclay, France
IIIT Hyderabad, India"
1fcd7978c6956fd9a0d752ecc9f5ac1a1b2896e9,Impact of Face Registration Errors on Recognition,"Impact of Face Registration Errors on Recognition
E. Rentzeperis, A. Stergiou, A. Pnevmatikakis and L. Polymenakos
Athens Information Technology, Autonomic and Grid Computing,
Markopoulou Ave., 19002 Peania, Greece
{eren, aste, apne,
http://www.ait.edu.gr/research/RG1/overview.asp"
1f5e47ad5490a63c7bea79000999b711055fbf2a,Aggregated Channels Network for Real-Time Pedestrian Detection,"Aggregated Channels Network for Real-Time Pedestrian Detection
Farzin Ghorban1,2, Javier Marín3, Yu Su2, Alessandro Colombo2, Anton Kummert1
Universität Wuppertal, 2Delphi Deutschland, 3Massachusetts Institute of Technology"
1f5c409e9b6aec60003b5d4534373f9b07ff8443,Saliency Weighted Features for Person Re-identification,"Saliency Weighted Features for Person
Re-Identification
Niki Martinel, Christian Micheloni and Gian Luca Foresti
Department of Mathematics and Computer Science
University of Udine - 33100, Udine, Italy"
1fc952fef09d63c61b9b8828f872b7a018eefac1,QUEST: Quadriletral Senary bit Pattern for Facial Expression Recognition,"ACCEPTED IN SMC IEEE CONFERENCE 2018 (PAPER ID: 13628)
QUEST:Quadriletral Senary bit Pattern for Facial
Expression Recognition
Monu Verma1
Prafulla Saxena2
S. K. Vipparthi3
Gridhari Singh4
Dept. of Computer Science and Engineering, Malaviya national Institute of Technology, Jaipur, India
improves"
1f65cbc7894323a85f2964d05ae937070e70e43b,Eliminating Background-bias for Robust Person Re-identification,"Eliminating Background-bias for Robust Person Re-identification
Maoqing Tian1, Shuai Yi1, Hongsheng Li2, Shihua Li3,
Xuesen Zhang1, Jianping Shi1, Junjie Yan1, Xiaogang Wang2
SenseTime Research, 2 Chinese University of Hong Kong, 3 Shenzhen Municipal Public Security Bureau"
1f4fff64adef5ec6ae21e8647d5a042bf71d64d9,Human detection in surveillance videos and its applications - a review,"Paul et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:176
http://asp.eurasipjournals.com/content/2013/1/176
R EV I E W
Human detection in surveillance videos and its
pplications - a review
Manoranjan Paul*, Shah M E Haque and Subrata Chakraborty
Open Access"
1f18708439ba1dadd81568e102216731d44340d5,Sparse Quantization for Patch Description,"Sparse Quantization for Patch Description
Xavier Boix
Michael Gygli
Gemma Roig
Luc Van Gool
Computer Vision Lab, ETH Zurich, Switzerland"
1f8e44593eb335c2253d0f22f7f9dc1025af8c0d,Fine-Tuning Regression Forests Votes for Object Alignment in the Wild,"Fine-tuning regression forests votes for object alignment in the wild.
Yang, H; Patras, I
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/22607
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
1f6dd0ff2e8493b81e3699b520193198d4eed4e6,Shaogang Gong Part I Features and Representations 1 Discriminative Image Descriptors for Person Re-identification . . . . . 25 7 One-shot Person Re-identification with a Consumer Depth Camera . 163 List of Contributors the Re-identification Challenge,"Shaogang Gong
Marco Cristani
Shuicheng Yan
Chen Change Loy (Eds.)
PERSON RE-IDENTIFICATION
October 10, 2013
Springer"
1fa9c5af78b3ca04476f4ee6910684dc19008f5e,Supplementary Material : Cross-Dataset Adaptation for Visual Question Answering,"Supplementary Material:
Cross-Dataset Adaptation for Visual Question Answering
Wei-Lun Chao∗
U. of Southern California
Los Angeles, CA
Hexiang Hu∗
Los Angeles, CA
U. of Southern California
U. of Southern California
Fei Sha
Los Angeles, CA
We provide contents omitted in the main text.
• Section 1: details on Name that dataset! (Sect. 3.2 of
the main text).
• Section 2: details on the proposed domain adaptation
lgorithm (Sect. 4.2 and 4.3 of the main text).
• Section 3: details on the experimental setup (Sect. 5.2
of the main text).
• Section 4: additional experimental results (Sect. 5.3
nd 5.4 of the main text)."
1fed6a571d9f688e18960e560d9441f5c5e3e2bd,Scalable Active Learning for Multiclass Image Classification,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Scalable Active Learning for Multi-Class
Image Classification
Joshi, A.J.; Porikli, F.; Papanikolopoulos, N.
TR2012-026
January 2012"
1f436aa4e68274037fff44e6cfbcd0a1ee3f60df,Tell and Predict: Kernel Classifier Prediction for Unseen Visual Classes from Unstructured Text Descriptions,"Tell and Predict: Kernel Classifier Prediction for Unseen Visual Classes
from Unstructured Text Descriptions
Mohamed Elhoseiny, Ahmed Elgammal, Babak Saleh"
1fd8c71a8859da611a8fde1cbb2bba1c7cf00b4c,EYEDIAP: a database for the development and evaluation of gaze estimation algorithms from RGB and RGB-D cameras,"This paper was presented at the 2014 Symposium on Eye Tracking Research & Applications 2014
EYEDIAP: A Database for the Development and Evaluation of Gaze Estimation
Algorithms from RGB and RGB-D Cameras
Kenneth Alberto Funes Mora1,2, Florent Monay1 and Jean-Marc Odobez1,2
Idiap Research Institute 2 ´Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Switzerland
{kfunes, monay,"
1fe74d637bc5e7d95abcd18b6967e51461fd8cdd,On the Dynamic Selection of Biometric Fusion Algorithms,"On the Dynamic Selection of Biometric Fusion
Algorithms
Mayank Vatsa, Member, IEEE, Richa Singh, Member, IEEE, Afzel Noore, Member, IEEE, and
Arun Ross, Member, IEEE"
1fb2082d3f772933b586cca65af2099512b9c68b,Comparison of Spectral-Only and Spectral/Spatial Face Recognition for Personal Identity Verification,"Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 943602, 6 pages
doi:10.1155/2009/943602
Research Article
Comparison of Spectral-Only and Spectral/Spatial Face
Recognition for Personal Identity Verification
Zhihong Pan,1 Glenn Healey,2 and Bruce Tromberg3
Galileo Group Inc., 100 Rialto Place Suite 737, Melbourne, FL 32901, USA
Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
Beckman Laser Institute, 1002 East Health Sciences Road, Irvine, CA 92612, USA
Correspondence should be addressed to Zhihong Pan,
Received 29 September 2008; Revised 22 February 2009; Accepted 8 April 2009
Recommended by Kevin Bowyer
Face recognition based on spatial features has been widely used for personal identity verification for security-related applications.
Recently, near-infrared spectral reflectance properties of local facial regions have been shown to be suf‌f‌icient discriminants for
ccurate face recognition. In this paper, we compare the performance of the spectral method with face recognition using the
eigenface method on single-band images extracted from the same hyperspectral image set. We also consider methods that use
multiple original and PCA-transformed bands. Lastly, an innovative spectral eigenface method which uses both spatial and spectral
features is proposed to improve the quality of the spectral features and to reduce the expense of the computation. The algorithms"
1f614a97e16671c091b1bcd1a33e1280822b53db,Tracking People's Hands and Feet Using Mixed Network AND/OR Search,"DRAFT FOR TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Tracking people’s hands and feet using mixed
network AND/OR search
Vlad I. Morariu, Member, IEEE, David Harwood, Member, IEEE,
nd Larry S. Davis, Fellow, IEEE"
1f94734847c15fa1da68d4222973950d6b683c9e,Embedding Label Structures for Fine-Grained Feature Representation,"Embedding Label Structures for Fine-Grained Feature Representation
Xiaofan Zhang
UNC Charlotte
Charlotte, NC 28223
Feng Zhou
NEC Lab America
Cupertino, CA 95014
Yuanqing Lin
NEC Lab America
Cupertino, CA 95014
Shaoting Zhang
UNC Charlotte
Charlotte, NC 28223"
1ff89bd94d8a21b7ca4bf844e2d366f854822918,Robust Online Multi-object Tracking by Maximum a Posteriori Estimation with Sequential Trajectory Prior,"Robust Online Multi-object Tracking
y Maximum a Posteriori Estimation
with Sequential Trajectory Prior
Min Yang(B), Mingtao Pei, Jiajun Shen, and Yunde Jia
Beijing Laboratory of Intelligent Information Technology, School of Computer
Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China"
1fff309330f85146134e49e0022ac61ac60506a9,Data-Driven Sparse Sensor Placement for Reconstruction,"Data-Driven Sparse Sensor Placement for Reconstruction
Krithika Manohar∗, Bingni W. Brunton, J. Nathan Kutz, and Steven L. Brunton
Corresponding author:"
1f69fa423b076e19dc2ccf6bc9013f09ae39133c,Multimodal Dialogs (MMD): A large-scale dataset for studying multimodal domain-aware conversations,"Towards Building Large Scale Multimodal Domain-Aware Conversation Systems
Amrita Saha1,2
Mitesh M. Khapra2
Karthik Sankaranarayanan1
IBM Research AI
I.I.T. Madras, India"
1f8f0abfe4689aa93f2f6cc7ec4fd4c6adc2c2d6,Semantic Instance Segmentation with a Discriminative Loss Function,"Semantic Instance Segmentation with a Discriminative Loss Function
Bert De Brabandere∗
Davy Neven∗
ESAT-PSI, KU Leuven
Luc Van Gool"
1fd54172f7388cd83ed78ff9165519296de5cf20,Changing the Image Memorability: From Basic Photo Editing to GANs,"Changing the Image Memorability: From Basic Photo Editing to GANs
Oleksii Sidorov
The Norwegian Colour and Visual Computing Laboratory, NTNU
Gjovik, Norway
Figure 1: Modification of memorability using the proposed algorithm. All the results were generated without any human intervention.
“What” and “how” to change were learned by the model from experimental data."
1f82eebadc3ffa41820ad1a0f53770247fc96dcd,Using Trajectories derived by Dense Optical Flows as a Spatial Component in Background Subtraction,"Using Trajectories derived by Dense Optical Flows as a
Spatial Component in Background Subtraction
Martin Radolko
University of Rostock
nd Fraunhofer IGD
Joachim-Jungius 11
Rostock 18059
r.fraunhofer.de
Fahimeh Farhadifard
University of Rostock
nd Fraunhofer IGD
Joachim-Jungius 11
Rostock 18059
r.fraunhofer.de"
1f3370e2e6381408efe11e69ab12586bd6f74dc8,Feature Selection Library (MATLAB Toolbox),"Feature Selection Techniques for Classification:
A widely applicable code library
Giorgio Roffo
University of Verona,
Department of Computer Science"
1f2c99bf032868ce520b9c5586a0c20051367b60,A Study of The Illumination Cones Method for Face Recognition Under Variable Illumination T.J. Chin and D. Suter A Study of The Illumination Cones Method for Face Recognition Under Variable Illumination,"Department of Electrical
Computer Systems Engineering
Technical Report
MECSE-7-2004
A Study of The Illumination Cones Method for Face
Recognition Under Variable Illumination
T.J. Chin and D. Suter"
1f53ca209f982500069fed73efe2345358eff79e,Pedestrian Detection with Deep Convolutional Neural Network,"Pedestrian Detection with Deep Convolutional
Neural Network
Xiaogang Chen, Pengxu Wei, Wei Ke, Qixiang Ye, Jianbin Jiao
School of Electronic,Electrical and Communication Engineering, University of
Chinese Academy of Science, Beijing, China"
1f8d539885f78e1a9d1314e952f3099e71676a5b,Audio-Visual Speaker Diarization Based on Spatiotemporal Bayesian Fusion,"Audio-Visual Speaker Diarization Based on
Spatiotemporal Bayesian Fusion
Israel D. Gebru, Sil`eye Ba, Xiaofei Li and Radu Horaud"
1f7cf2df2fa7719c9db3fe57a0f01d65f08a9a8f,How social exclusion modulates social information processing: A behavioural dissociation between facial expressions and gaze direction,"RESEARCH ARTICLE
How social exclusion modulates social
information processing: A behavioural
dissociation between facial expressions and
gaze direction
Francesco Bossi1,2*, Marcello Gallucci1,2, Paola Ricciardelli1,2
Department of Psychology, University of Milan – Bicocca, Milan, Italy, 2 NeuroMI: Milan Center for
Neuroscience, Milan, Italy"
73a7ccf0facccd8943f7e54d19478f2bef9b7dab,Number 16,"Number 16
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 132
Number 16
Year of Publication: 2015
Authors:
Pronaya Prosun Das, Taskeed Jabid, S.M. Shariar Mahamud
10.5120/ijca2015907690
{bibtex}2015907690.bib{/bibtex}"
73f467b4358ac1cafb57f58e902c1cab5b15c590,Combination of Dimensionality Reduction Techniques for Face Image Retrieval: A Review,"ISSN 0976 3724                                                                                                                                  47
Combination of Dimensionality Reduction Techniques for Face
Image Retrieval: A Review
Fousiya K.K 1, Jahfar Ali P 2
M.Tech Scholar, MES College of Engineering, Kuttippuram,
Kerala
Asst. Professor, MES College of Engineering, Kuttippuram,
Kerala"
7323b594d3a8508f809e276aa2d224c4e7ec5a80,An Experimental Evaluation of Covariates Effects on Unconstrained Face Verification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
An Experimental Evaluation of Covariates
Effects on Unconstrained Face Verification
Boyu Lu, Student Member, IEEE, Jun-Cheng Chen, Member, IEEE, Carlos D Castillo, Member, IEEE
nd Rama Chellappa, Fellow, IEEE"
732e8d8f5717f8802426e1b9debc18a8361c1782,Unimodal Probability Distributions for Deep Ordinal Classification,"Unimodal Probability Distributions for Deep Ordinal Classification
Christopher Beckham 1 Christopher Pal 1"
73351b313df89572afe1332625044f7e5dd0ce06,High-level Feature Learning by Ensemble Projection for Image Classification with Limited Annotations I,"High-level Feature Learning by Ensemble Projection for Image
Classification with Limited Annotations $
Dengxin Dai∗, Luc Van Gool
Computer Vision Lab, ETH Z¨urich, CH-8092, Switzerland"
73c72161969a070b3caa40d4f075ba501a1b994b,Expression-Invariant 3D Face Recognition Using Patched Geodesic Texture Transform,"Expression-Invariant 3D Face Recognition using Patched
Geodesic Texture Transform
Author
Hajati, Farshid, Raie, Abolghasem, Gao, Yongsheng
Published
Conference Title
Proceedings 2010 Digital Image Computing: Techniques and Applications DICTA 2010
https://doi.org/10.1109/DICTA.2010.52
Copyright Statement
© 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/
republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.
Downloaded from
http://hdl.handle.net/10072/37733
Link to published version
http://dicta2010.conference.nicta.com.au/
Griffith Research Online
https://research-repository.griffith.edu.au"
73764fa9bed84ad2c932dc8089ace7fa8fa7c1d3,"Disparity Statistics for Pedestrian Detection: Combining Appearance, Motion and Stereo","Disparity Statistics for Pedestrian Detection:
Combining Appearance, Motion and Stereo
Stefan Walk1, Konrad Schindler1,2, and Bernt Schiele1,3
Computer Science Department, TU Darmstadt
Photogrammetry and Remote Sensing Group, ETH Z¨urich
MPI Informatics, Saarbr¨ucken"
73ed64803d6f2c49f01cffef8e6be8fc9b5273b8,Cooking in the kitchen: Recognizing and Segmenting Human Activities in Videos,"Noname manuscript No.
(will be inserted by the editor)
Cooking in the kitchen: Recognizing and Segmenting Human
Activities in Videos
Hilde Kuehne · Juergen Gall · Thomas Serre
Received: date / Accepted: date"
73bbbfac7b144f835840fe7f7b5139283bf4f3f1,Do we spontaneously form stable trustworthiness impressions from facial appearance?,"ATTITUDES AND SOCIAL COGNITION
Do We Spontaneously Form Stable Trustworthiness Impressions From
Facial Appearance?
André Klapper
Radboud University
Ron Dotsch
Utrecht University and Radboud University
Iris van Rooij and Daniël H. J. Wigboldus
Radboud University
It is widely assumed among psychologists that people spontaneously form trustworthiness impressions of
newly encountered people from their facial appearance. However, most existing studies directly or
indirectly induced an impression formation goal, which means that the existing empirical support for
spontaneous facial trustworthiness impressions remains insufficient. In particular, it remains an open
question whether trustworthiness from facial appearance is encoded in memory. Using the ‘who said
what’ paradigm, we indirectly measured to what extent people encoded the trustworthiness of observed
faces. The results of 4 studies demonstrated a reliable tendency toward trustworthiness encoding. This
was shown under conditions of varying context-relevance, and salience of trustworthiness. Moreover,
evidence for this tendency was obtained using both (experimentally controlled) artificial and (naturalistic
varying) real faces. Taken together, these results suggest that there is a spontaneous tendency to form
relatively stable trustworthiness impressions from facial appearance, which is relatively independent of"
73713880d4d1ec4c8f4608a94f67ea9e9f9a97a5,Visual query attributes suggestion,"Visual Query Attributes Suggestion
Jingwen Bian
National University of
Singapore, Singapore
Zheng-Jun Zha
National University of
Singapore, Singapore
Hanwang Zhang
National University of
Singapore, Singapore
Qi Tian
University of Texas at San
Antonio, USA"
73fa81d2b01c81c6ede71d046f9101440884e604,Fuzzy Based Texton Binary Shape Matrix (FTBSM) for Texture Classification,"Global Journal of Computer Science and Technology
Graphics & Vision
Volume 12 Issue 15 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350
Fuzzy  Based  Texton  Binary  Shape  Matrix  (FTBSM)  for  Texture
Classification
By P.Chandra Sekhar Reddy & B.Eswara Reddy
Jntua College of Engineering, Anantapur, A.P, India"
73c13ba142588f45aaa92805fe75ca2691ac981b,A Comparative Study of Social Scene Parsing Strategies between Children with and without Autism Spectrum Disorder,"96                                                                                  Jul 2016 Vol 9 No.3                                    North American Journal of Medicine and Science
Original Research
A Comparative Study of Social Scene Parsing
Strategies between Children with and
without Autism Spectrum Disorder
Chen Song;1 Aosen Wang;1 Kathy Ralabate Doody, PhD;2* Michelle Hartley-
McAndrew, MD;3 Jana Mertz, MBA;4 Feng Lin, PhD;1 Wenyao Xu, PhD1
Computer Science and Engineering, SUNY, University at Buffalo, Buffalo NY
Exceptional Education, SUNY, Buffalo State, Buffalo, NY
Jacobs School of Medicine and Biomedical Sciences, SUNY, University at Buffalo Women and Children's Hospital of Buffalo, Buffalo, NY
Children’s Guild Foundation Autism Spectrum Disorder Center, Women and Children’s Hospital of Buffalo, Buffalo, NY
Autism  spectrum  disorder  (ASD)  is  a  complex  developmental  disability  characterized  by  deficits  in  social
interaction. Gaze behavior is of great interest because it reveals the parsing strategy the participant uses to
chieve social content. The legacy features in gaze fixation, such as time and area-of-interest, however, cannot
omprehensively reveal the way the participant may cognize the social scene. In this work, we investigate the
dynamic components within the gaze behavior of children with ASD upon the carefully-selected social scene.
A cohort of child participants (n = 51) were recruited between 2 and 10 years. The results suggest significant
differences in the social scene parsing strategies of children with ASD, giving added insight into the way they
may decode and interpret the social scenarios.
[N A J Med Sci. 2016;9(3):96-103.   DOI:  10.7156/najms.2016.0903096]"
73d8fafee6be9d4fa789ece2192f259199f00e60,3D Face Recognition Using Radon Transform and Factorial Discriminant Analysis (FDA),"Volume 3, Issue 7, July 2013                                    ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
D Face Recognition Using Radon Transform and Factorial
Discriminant Analysis (FDA)
P. S. Hiremath , Manjunatha Hiremath
Department of Computer Science
Gulbarga University, Gulbarga-585106
Karnataka, India."
735c38361d77e707ac48f0d040493c65ca559d3c,Machine Learning for Simplifying the Use of Cardiac Image Databases. (Apprentissage automatique pour simplifier l'utilisation de banques d'images cardiaques),"N°:  2009 ENAM XXXX
École doctorale n° 84 :
Sciences et technologies de l’information et de la communication
Doctorat ParisTech
T H È S E
pour obtenir le grade de docteur délivré par
l’École nationale supérieure des mines de Paris
Spécialité “ Contrôle, optimisation et prospective ”
présentée et soutenue publiquement par
Ján MARGETA
le 14 Décembre 2015
Apprentissage automatique pour simplifier
l’utilisation de banques d’images cardiaques
Machine Learning for Simplifying
the Use of Cardiac Image Databases
Directeurs de thèse : Nicholas AYACHE et Antonio CRIMINISI
M. Patrick CLARYSSE, DR, Creatis, CNRS, INSA Lyon
M. Bjoern MENZE, Professeur, ImageBioComp Group, TU München
M. Hervé DELINGETTE, DR, Asclepios Research Project, Inria Sophia Antipolis
M. Antonio CRIMINISI, Chercheur principal, MLP Group, Microsoft Research Cambridge"
7306d42ca158d40436cc5167e651d7ebfa6b89c1,Transductive Zero-Shot Action Recognition by Word-Vector Embedding,"Noname manuscript No.
(will be inserted by the editor)
Transductive Zero-Shot Action Recognition by
Word-Vector Embedding
Xun Xu · Timothy Hospedales · Shaogang Gong
Received: date / Accepted: date"
73200504c7381c48c900894455995b9188676cd5,Weakly-Supervised Image Annotation and Segmentation with Objects and Attributes,"Weakly-Supervised Image Annotation and
Segmentation with Objects and Attributes
Zhiyuan Shi, Yongxin Yang, Timothy M. Hospedales, Tao Xiang"
734cdda4a4de2a635404e4c6b61f1b2edb3f501d,Automatic landmark point detection and tracking for human facial expressions,"Tie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8
http://jivp.eurasipjournals.com/content/2013/1/8
R ES EAR CH
Open Access
Automatic landmark point detection and tracking
for human facial expressions
Yun Tie* and Ling Guan"
7373c4a23684e2613f441f2236ed02e3f9942dd4,Feature extraction through Binary Pattern of Phase Congruency for facial expression recognition,"This document is downloaded from DR-NTU, Nanyang Technological
University Library, Singapore.
Title
Feature extraction through binary pattern of phase
ongruency for facial expression recognition
Author(s)
Shojaeilangari, Seyedehsamaneh; Yau, Wei-Yun; Li, Jun;
Teoh, Eam Khwang
Citation
Shojaeilangari, S., Yau, W. Y., Li, J., & Teoh, E. K.
(2012). Feature extraction through binary pattern of
phase congruency for facial expression recognition. 12th
International Conference on Control Automation Robotics
& Vision (ICARCV), 166-170.
http://hdl.handle.net/10220/18012
Rights
© 2012 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other
uses, in any current or future media, including
reprinting/republishing this material for advertising or"
732686d799d760ccca8ad47b49a8308b1ab381fb,Teachers’ differing classroom behaviors: The role of emotional sensitivity and cultural tolerance,"Running head: TEACHERS’ DIFFERING BEHAVIORS
Graduate School of Psychology
RESEARCH MASTER’S PSYCHOLOGY THESıS REPORT
Teachers’ differing classroom behaviors:
The role of emotional sensitivity and cultural tolerance
Ceren Su Abacıoğlu
Supervisor: prof. dr. Agneta Fischer
Second supervisor: dr. Disa Sauter
External Supervisor: prof. dr. Monique Volman
Research Master’s, Social Psychology
Ethics Committee Reference Code: 2016-SP-7084"
73599349402bf8f0d97f51862d11d128cdba44ef,Affective analysis of videos: detecting emotional content in real-life scenarios,"Affective Analysis of Videos:
Detecting Emotional Content in Real-Life Scenarios
vorgelegt von
Master of Science
Esra Acar Celik
geb. in Afyonkarahisar
Von der Fakultät IV – Elektrotechnik und Informatik –
der Technischen Universität Berlin
zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften
– Dr.-Ing. –
genehmigte Dissertation
Promotionsausschuss:
Vorsitzender:
Berichter:
Berichter:
Berichter:
Prof. Dr. Thomas Wiegand
Prof. Dr. Dr. h.c. Sahin Albayrak
Prof. Dr. Adnan Yazıcı"
73a4fe5072a30c132e8a0a18384caae4c112f198,What is typical is good: the influence of face typicality on perceived trustworthiness.,"554955 PSSXXX10.1177/0956797614554955Sofer et al.What Is Typical Is Good
research-article2014
Research Article
What Is Typical Is Good: The Influence
of Face Typicality on Perceived
Trustworthiness
015, Vol. 26(1) 39 –47
© The Author(s) 2014
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0956797614554955
pss.sagepub.com
Carmel Sofer1,2, Ron Dotsch2,3, Daniel H. J. Wigboldus2, and
Alexander Todorov1,2
Department of Psychology, Princeton University; 2Behavioural Science Institute, Radboud University
Nijmegen; and 3Department of Psychology, Utrecht University"
73704242a548e8725926762faf7333e5598d0228,Surveillance of Super-Extended Objects : Bimodal Approach,"World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering
Vol:8, No:9, 2014
Surveillance of Super-Extended Objects: Bimodal
Approach
Andrey V. Timofeev, Dmitry Egorov"
73866bdb723841da93b6ad93afe3d72817e2b377,Dense and Low-Rank Gaussian CRFs Using Deep Embeddings,"Dense and Low-Rank Gaussian CRFs Using Deep Embeddings
Siddhartha Chandra1
Nicolas Usunier2
Iasonas Kokkinos2
INRIA GALEN, CentraleSup´elec
Facebook AI Research, Paris"
73fbdd57270b9f91f2e24989178e264f2d2eb7ae,Kernel linear regression for low resolution face recognition under variable illumination,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
738d5a6491ae0fef5d2debc17f951534061cf6f8,Advances in Learning Visual Saliency: From Image Primitives to Semantic Contents,"Chapter 14
Advances in Learning Visual Saliency:
From Image Primitives to Semantic Contents
Qi Zhao and Christof Koch"
73d57e2c855c39b4ff06f2d7394ab4ea35f597d4,First Order Generative Adversarial Networks,"First Order Generative Adversarial Networks
Calvin Seward 1 2 Thomas Unterthiner 2 Urs Bergmann 1 Nikolay Jetchev 1 Sepp Hochreiter 2"
73052a2bf7b41b7be2447fadc13c29be1d994708,Pedestrian tracking using probability fields and a movement feature space 1,"Pedestrian tracking using probability fields and a movement feature space 1
Pablo Negri a & Damián Garayalde b
Universidad Argentina de la Empresa (UADE). CONICET. Buenos Aires, Argentina.
Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina.
Received: April 18th, 2016. Received in revised form: November 1rd, 2016. Accepted: December 2nd, 2016."
73ec2d5a6b4bee0f268b793ff646330507497e38,Is an Image Worth More than a Thousand Words? On the Fine-Grain Semantic Differences between Visual and Linguistic Representations,"Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 2807–2817, Osaka, Japan, December 11-17 2016."
73be334ecc48751269443b0db2629086125e69f5,Robust Face Recognition under Difficult Lighting Conditions,"International Journal of Technological Exploration and Learning (IJTEL)
Volume 1 Issue 1 (August 2012)
Robust Face Recognition under Difficult Lighting
Conditions
S.S. Ghatge1,V.V. Dixit2
Department of Electronics &Telecomunication1, 2
Sinhgad College of Engineering1, 2
University of Pune, India1, 2"
731840289e35c61c6e21ae18f2da2751bd8e2f20,Event-related potential (ERP) correlates of face processing in verbal children with autism spectrum disorders (ASD) and their first-degree relatives: a family study,"Sysoeva et al. Molecular Autism  (2018) 9:41
https://doi.org/10.1186/s13229-018-0220-x
Open Access
R ES EAR CH
Event-related potential (ERP) correlates of
face processing in verbal children with
utism spectrum disorders (ASD) and their
first-degree relatives: a family study
Olga V. Sysoeva1,2, John N. Constantino1*
nd Andrey P. Anokhin1"
73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c,Unsupervised Learning of Object Landmarks by Factorized Spatial Embeddings,"imagesViewpoint factorizationLearned landmarksFigure1.Wepresentanovelmethodthatcanlearnviewpointin-variantlandmarkswithoutanysupervision.Themethodusesaprocessofviewpointfactorizationwhichlearnsadeeplandmarkdetectorcompatiblewithimagedeformations.Itcanbeappliedtorigidanddeformableobjectsandobjectcategories.terns.Achievingadeeperunderstandingofobjectsrequiresmodelingtheirintrinsicviewpoint-independentstructure.Oftenthisstructureisdefinedmanuallybyspecifyingen-titiessuchaslandmarks,parts,andskeletons.Givensuffi-cientmanualannotations,itispossibletoteachdeepneuralnetworksandothermodelstorecognizesuchstructuresinimages.However,theproblemoflearningsuchstructureswithoutmanualsupervisionremainslargelyopen.Inthispaper,wecontributeanewapproachtolearnviewpoint-independentrepresentationsofobjectsfromim-ageswithoutmanualsupervision(fig.1).Weformulatethistaskasafactorizationproblem,wheretheeffectsofimagedeformations,forexamplearisingfromaviewpointchange,areexplainedbythemotionofareferenceframeattachedtotheobjectandindependentoftheviewpoint.Afterdescribingthegeneralprinciple(sec.3.1),wein-1"
87cab840df202609bfcfb5a9ee3293e61c7c85db,Vision based victim detection from unmanned aerial vehicles,"Vision Based Victim Detection from Unmanned Aerial Vehicles
Mykhaylo Andriluka1, Paul Schnitzspan1, Johannes Meyer2, Stefan Kohlbrecher1,
Karen Petersen1, Oskar von Stryk1, Stefan Roth1, and Bernt Schiele1,3
Department of Computer Science, TU Darmstadt
Department of Mechanical Engineering, TU Darmstadt
MPI Informatics, Saarbr¨ucken"
874082164d9ab9fced08b9890c009b91a2e846f1,Understanding Convolution for Semantic Segmentation,"Understanding Convolution for Semantic Segmentation
Panqu Wang1, Pengfei Chen1, Ye Yuan2, Ding Liu3, Zehua Huang1, Xiaodi Hou1, Garrison Cottrell4
TuSimple, 2Carnegie Mellon University, 3University of Illinois Urbana-Champaign, 4UC San Diego"
87c2806f1fd20287f00b43dab07822ab13035169,Verfahren zur Analyse von Ähnlichkeit im Ortsbereich,"Matthias Fiedler
Verfahren zur Analyse von Ähnlichkeit im Ortsbereich"
87ad56e06d48fa9b30e2915473c488c1b4b7e6ae,Learn from experience: probabilistic prediction of perception performance to avoid failure,"Article
Learn from experience: probabilistic
prediction of perception performance to
void failure
The International Journal of
Robotics Research
© The Author(s) 2017
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364917730603
journals.sagepub.com/home/ijr
Corina Gur˘au1, Dushyant Rao1, Chi Hay Tong2, and Ingmar Posner1"
8765f22fbcdcf610a08b01db01edc4b8cc67d082,Probability Models for Open Set Recognition,"for  all  other  uses,
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained
including
reprinting/republishing  this  material  for  advertising  or  promotional  purposes,  creating
new  collective  works,  for  resale  or  redistribution  to  servers  or  lists,  or  reuse  of  any
opyrighted component of this work in other works.
in  any  current  or
future  media,
Pre-print of article that will appear in T-PAMI."
8796f2d54afb0e5c924101f54d469a1d54d5775d,Illumination Invariant Face Recognition Using Fuzzy LDA and FFNN,"Journal of Signal and Information Processing, 2012, 3, 45-50
http://dx.doi.org/10.4236/jsip.2012.31007 Published Online February 2012 (http://www.SciRP.org/journal/jsip)
Illumination Invariant Face Recognition Using Fuzzy LDA
nd FFNN
Behzad Bozorgtabar, Hamed Azami, Farzad Noorian
School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.
Email:
Received October 20th, 2011; revised November 24th, 2011; accepted December 10th, 2011"
87f285782d755eb85d8922840e67ed9602cfd6b9,Incorporating Boltzmann Machine Priors for Semantic Labeling in Images and Videos,"INCORPORATING BOLTZMANN MACHINE PRIORS
FOR SEMANTIC LABELING IN IMAGES AND VIDEOS
A Dissertation Presented
ANDREW KAE
Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of
DOCTOR OF PHILOSOPHY
May 2014
Computer Science"
871f5f1114949e3ddb1bca0982086cc806ce84a8,Discriminative learning of apparel features,"Discriminative Learning of Apparel Features
Rasmus Rothe1, Marko Ristin1, Matthias Dantone1, and Luc Van Gool1,2
Computer Vision Laboratory, D-ITET, ETH Z¨urich, Switzerland
ESAT - PSI / IBBT, K.U. Leuven, Belgium"
8722ab37a03336f832e4098224cb63cd02cdfe0a,Face recognition with 3 D face asymmetry,"Face recognition with 3D face asymmetry
Janusz Bobulski
Czestochowa University of Technology
Institute of Computer and Information Sciences
Dabrowskiego 73, 42-200, Czestochowa, Poland
Summary. Using of 3D images for the identification was in a field of the interest
of many researchers which developed a few methods offering good results. However,
there are few techniques exploiting the 3D asymmetry amongst these methods. We
propose fast algorithm for rough extraction face asymmetry that is used to 3D
face recognition with hidden Markov models. This paper presents conception of fast
method for determine 3D face asymmetry. The research results indicate that face
recognition with 3D face asymmetry may be used in biometrics systems.
Introduction
Biometrics systems use individual and unique biological features of person
for user identification. The most popular features are: fingerprint, iris, voice,
palm print, face image et al. Most of them are not accepted by users, because
they feel under surveillance or as criminals. Others, in turn, are characterized
y problems with the acquisition of biometric pattern and require closeness
to the reader. Among the biometric methods popular technique is to identify
people on the basis of the face image, the advantage is the ease of obtaining"
87bee0e68dfc86b714f0107860d600fffdaf7996,Automated 3D Face Reconstruction from Multiple Images Using Quality Measures,"Automated 3D Face Reconstruction from Multiple Images
using Quality Measures
Marcel Piotraschke and Volker Blanz
Institute for Vision and Graphics, University of Siegen, Germany"
878f70f6abb83f5158ca0bacfc2bacd49b1886b1,Aligning Artificial Neural Networks to the Brain Yields Shallow Recurrent Architec- Tures,"Under review as a conference paper at ICLR 2019
ALIGNING ARTIFICIAL NEURAL NETWORKS TO THE
BRAIN YIELDS SHALLOW RECURRENT ARCHITEC-
TURES
Anonymous authors
Paper under double-blind review"
87da8bd9eb2fff2d77809c8bee3bed8c93cb5b4b,A Generative Model For Zero Shot Learning Using Conditional Variational Autoencoders,"A Generative Model For Zero Shot Learning
Using Conditional Variational Autoencoders
Ashish Mishra1 , Shiva Krishna Reddy1, Anurag Mittal, and Hema A Murthy
Indian Institute of Technology Madras"
878169be6e2c87df2d8a1266e9e37de63b524ae7,Image interpretation above and below the object level.,"CBMM Memo No. 089
May 10, 2018
Image interpretation above and below the object level
Guy Ben-Yosef, Shimon Ullman"
87363751b8e3d51a002dea6d32df553ee5315cb7,Fine-grained sketch-based image retrieval: The role of part-aware attributes,"Fine-Grained Sketch-Based Image Retrieval: The Role of Part-Aware Attributes
Ke Li1&2
Kaiyue Pang1&2
Yi-Zhe Song2
Timothy Hospedales2
Honggang Zhang1
School of Electronic Engineering and Computer Science Queen Mary University of London.
Beijing University of Posts and Telecommunications.
Yichuan Hu1"
877d083b2a3a75cc1bb25f770a9c5684bf5f6f44,Learning to Hash with Binary Reconstructive Embeddings,"Learning to Hash with Binary Reconstructive
Embeddings
Brian Kulis and Trevor Darrell
UC Berkeley EECS and ICSI
Berkeley, CA"
87bba3f4292727091027b7888b5d8f364425344d,End-to-End Learning of Driving Models with Surround-View Cameras and Route Planners,"End-to-End Learning of Driving Models with
Surround-View Cameras and Route Planners
Simon Hecker1, Dengxin Dai1, and Luc Van Gool1,2
ETH Zurich, Zurich, Switzerland
KU Leuven, Leuven, Belgium"
877aff9bd05de7e9d82587b0e6f1cda28fd33171,Long-Term Visual Localization Using Semantically Segmented Images,"Long-term Visual Localization using Semantically Segmented Images
Erik Stenborg1,2 Carl Toft1 and Lars Hammarstrand1"
878301453e3d5cb1a1f7828002ea00f59cbeab06,Faceness-Net: Face Detection through Deep Facial Part Responses,"Faceness-Net: Face Detection through
Deep Facial Part Responses
Shuo Yang, Ping Luo, Chen Change Loy, Senior Member, IEEE and Xiaoou Tang, Fellow, IEEE"
87e592ee1a7e2d34e6b115da08700a1ae02e9355,Deep Pictorial Gaze Estimation,"Deep Pictorial Gaze Estimation
Seonwook Park, Adrian Spurr, and Otmar Hilliges
AIT Lab, Department of Computer Science, ETH Zurich"
87bdafbcf3569c06eef4a397beffc451f5101f94,Facial expression: An under-utilised tool for the assessment of welfare in mammals.,"published February 8, 2017
Review article
Facial expression: An under-utilised tool for
the assessment of welfare in mammals1
Kris A. Descovich1,2,3, Jennifer Wathan4, Matthew C. Leach5, Hannah M. Buchanan-Smith1,
Paul Flecknell6, David Farningham7 and Sarah-Jane Vick1
Psychology, Faculty of Natural Sciences, University of Stirling; 2Environmental and Animal Sciences, Unitec Institute of
Technology; 3Centre for Animal Welfare and Ethics, University of Queensland; 4School of Psychology, University of Sussex,
United Kingdom; 5School of Agriculture, Food & Rural Development, University of Newcastle; 6Comparative Biology
Centre, University of Newcastle; 7Centre for Macaques, Medical Research Council
Summary
Animal welfare is a key issue for industries that use or impact upon animals. The accurate identification of welfare
states is particularly relevant to the field of bioscience, where the 3Rs framework encourages refinement of
experimental procedures involving animal models. The assessment and improvement of welfare states in animals
is reliant on reliable and valid measurement tools. Behavioural measures (activity, attention, posture and
vocalisation) are frequently used because they are immediate and non-invasive, however no single indicator can
yield a complete picture of the internal state of an animal. Facial expressions are extensively studied in humans
s a measure of psychological and emotional experiences but are infrequently used in animal studies, with the
exception of emerging research on pain behaviour. In this review, we discuss current evidence for facial
representations of underlying affective states, and how communicative or functional expressions can be useful"
8765f312e35bba0650aa769b59da7e8fac9e98aa,A Cognitively-Motivated Framework for Partial Face Recognition in Unconstrained Scenarios,"Sensors 2015, 15, 1903-1924; doi:10.3390/s150101903
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
A Cognitively-Motivated Framework for Partial Face
Recognition in Unconstrained Scenarios
João C. Monteiro * and Jaime S. Cardoso
INESC TEC and Faculdade de Engenharia, Universidade do Porto, Campus da FEUP,
Rua Dr. Roberto Frias, n 378, 4200-465 Porto, Portugal; E-Mail:
* Author to whom correspondence should be addressed; E-Mail:
Tel.: +351-22-209-4299.
Academic Editor: Vittorio M.N. Passaro
Received: 24 November 2014 / Accepted: 7 January 2015 / Published: 16 January 2015"
87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5,Spatio-temporal Maximum Average Correlation Height Templates in Action Recognition and Video Summarization,"SPATIO-TEMPORAL MAXIMUM AVERAGE CORRELATION
HEIGHT TEMPLATES IN ACTION RECOGNITION AND VIDEO
SUMMARIZATION
MIKEL RODRIGUEZ
B.A. Earlham College, Richmond Indiana
M.S. University of Central Florida
A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science
t the University of Central Florida
Orlando, Florida
Summer Term
Major Professor: Mubarak Shah"
87c6ba55b0f817de4504e39dbb201842ae102c9f,Three Dimensional Face Recognition Using Iso-Geodesic and Iso-Depth Curves,"Three Dimensional Face Recognition Using Iso-Geodesic and Iso-Depth
Curves
Sina Jahanbin, Hyohoon Choi, Yang Liu, Alan C. Bovik"
87bb183d8be0c2b4cfceb9ee158fee4bbf3e19fd,Craniofacial Image Analysis,"Craniofacial Image Analysis
Ezgi Mercan, Indriyati Atmosukarto, Jia Wu, Shu Liang and Linda G. Shapiro"
87f0a779ce4e060e3e076df3cc651e0f3f01b2ae,Bimodal Biometric Person Identification System Under Perturbations,"Bimodal Biometric Person Identification System
Under Perturbations
Miguel Carrasco1, Luis Pizarro2, and Domingo Mery1
Pontificia Universidad Cat´olica de Chile
Av. Vicu˜na Mackenna 4860(143), Santiago, Chile
Mathematical Image Analysis Group
Faculty of Mathematics and Computer Science
Saarland University, Bldg. E11, 66041 Saarbr¨ucken, Germany"
8064d7a28c763ec37a840450d729f23428ad8f8b,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
80265d7c9fe6a948dd8c975bd4d696fb7ba099c9,Face Recognition Based on Human Visual Perception Theories and Unsupervised ANN,"Face Recognition Based on
Human Visual Perception Theories and
Unsupervised ANN
Mario I. Chacon M. and Pablo Rivas P.
Chihuahua Institute of Technology
Mexico
. Introduction
The  face  recognition  problem  has  been  faced  for  more  than  30  years.  Although  a  lot  of
research has been done, much more research is and will be required in order to end up with
robust  face  recognition  system  with  a  potential  close  to  human  performance.  Currently
face  recognition  systems,  FRS,  report  high  performance  levels,  however  achievement  of
00% of correct recognition is still a challenge. Even more, if the FRS must work on non-
ooperative  environment  its  performance  may  decrease  dramatically.  Non-cooperative
environments  are  characterized  by  changes  on;  pose,  illumination,  facial  expression.
Therefore  FRS  for  non-cooperative  environment  represents  an  attractive  challenge  to
researchers working on the face recognition area.
Most  of  the  work  presented  in  the  literature  dealing  with  the  face  recognition  problem
follows an engineering approach that in some cases do not incorporate information from a
psychological or  neuroscience  perspective. It  is  our  interest  in  this  material,  to  show  how
information from the psychological and neuroscience areas may contribute in the solution of"
809e25da311366bfd684228e16184737d948eef6,Supplementary material for : Learning Finer-class Networks for Universal Representations,"GIRARD ET AL.: SUPPLEMENTARY FOR FINER-CLASS NETWORKS
Supplementary material for: Learning
Finer-class Networks for Universal
Representations
Julien Girard12
Youssef Tamaazousti123
Hervé Le Borgne2
Céline Hudelot3
Both authors contributed equally.
CEA LIST
Vision Laboratory,
Gif-sur-Yvette, France.
CentraleSupélec,
MICS Laboratory,
Châtenay-Malabry, France."
8006219efb6ab76754616b0e8b7778dcfb46603d,Contributions to large-scale learning for image classification. (Contributions à l'apprentissage grande échelle pour la classification d'images),"CONTRIBUTIONSTOLARGE-SCALELEARNINGFORIMAGECLASSIFICATIONZeynepAkataPhDThesisl’´EcoleDoctoraleMath´ematiques,SciencesetTechnologiesdel’Information,InformatiquedeGrenoble"
8010636454316faf1a09202542af040ffd04fefa,"Performance Parameter Analysis of Face Recognition Based On Fuzzy C-Means Clustering , Shape and Corner Detection","Minj Salen Kujur et al Int. Journal of Engineering Research and Applications              www.ijera.com
ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.515-520
RESEARCH ARTICLE                                                                               OPEN ACCESS
Performance Parameter Analysis of Face Recognition Based On
Fuzzy C-Means Clustering, Shape and Corner Detection
Minj Salen Kujur1, Prof. Prashant Jain2
Department of Electronics & Communication Engineering college Jabalpur"
804b4c1b553d9d7bae70d55bf8767c603c1a09e3,Subspace clustering with a learned dimensionality reduction projection,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
800cbbe16be0f7cb921842d54967c9a94eaa2a65,Multimodal Recognition of Emotions Multimodal Recognition of Emotions,"MULTIMODAL RECOGNITION OF
EMOTIONS"
80135ed7e34ac1dcc7f858f880edc699a920bf53,Efficient Action and Event Recognition in Videos Using Extreme Learning Machines,"EFFICIENT ACTION AND EVENT RECOGNITION IN VIDEOS USING
EXTREME LEARNING MACHINES
G¨ul Varol
B.S., Computer Engineering, Bo˘gazi¸ci University, 2013
Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science
Graduate Program in Computer Engineering
Bo˘gazi¸ci University"
8032a89ba67e2b35e2789983426842f688c49a93,Matching-Constrained Active Contours,"Matching-Constrained Active Contours
Junyan Wang*, Member, IEEE, Kap Luk Chan, Member, IEEE"
801a80f7a18fccb2e8068996a73aee2cf04ae460,Optimal transport maps for distribution preserving operations on latent spaces of Generative Models,"OPTIMAL TRANSPORT MAPS FOR DISTRIBUTION PRE-
SERVING OPERATIONS ON LATENT SPACES OF GENER-
ATIVE MODELS
Eirikur Agustsson
D-ITET, ETH Zurich
Switzerland
Alexander Sage
D-ITET, ETH Zurich
Switzerland
Radu Timofte
D-ITET, ETH Zurich
Merantix GmbH
Luc Van Gool
D-ITET, ETH Zurich
ESAT, KU Leuven"
807913b776bc5039cd3f195841419e55979ec7c7,Recreation of spontaneous non-verbal behavior on a synthetic agent EVA,"Roboti c.s. d.o.o, 2Faculty of Electrical Engineering and Computer Science, University of Maribor
IZIDOR MLAKAR, 2MATEJ ROJC
Recreation of spontaneous non-verbal behavior on a synthetic agent
Tržaška cesta 23, 2Smetanova ulica 17
SLOVENIA
systematic
sequencing"
8031dd2c6583d8681fdd85bdae4371c7c745713f,Generative adversarial models for people attribute recognition in surveillance,"Generative Adversarial Models for People Attribute Recognition in Surveillance
Matteo Fabbri
Simone Calderara
Rita Cucchiara
University of Modena and Reggio Emilia
via Vivarelli 10 Modena 41125 Italy"
803c92a3f0815dbf97e30c4ee9450fd005586e1a,Max-Mahalanobis Linear Discriminant Analysis Networks,"Max-Mahalanobis Linear Discriminant Analysis Networks
Tianyu Pang 1 Chao Du 1 Jun Zhu 1"
802ecaabffbece0dc2c31d44b693967c683fc5ff,Faster RER-CNN: application to the detection of vehicles in aerial images,"Faster RER-CNN: application to the detection of
vehicles in aerial images
Jean Ogier du Terrail(1,2), Fr´ed´eric Jurie(1)
(1)Normandie Univ, UNICAEN, ENSICAEN, CNRS
(2)Safran Electronics and Defense
September 21, 2018"
801b0ae343a11a15fd7abc5720831afea6f0a61d,Similarity Learning with Listwise Ranking for Person Re-Identification,"SIMILARITY LEARNING WITH LISTWISE
RANKING FOR PERSON RE-IDENTIFICATION
Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla
Baskurt
To cite this version:
Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla Baskurt. SIMILARITY
LEARNING WITH LISTWISE RANKING FOR PERSON RE-IDENTIFICATION. International
onference on image processing, Oct 2018, Athenes, Greece. <hal-01895355>
HAL Id: hal-01895355
https://hal.archives-ouvertes.fr/hal-01895355
Submitted on 15 Oct 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,"
805c77bd351fc98d6acbee68b73af915c5cb6776,Overview of the ImageCLEF 2012 Scalable Web Image Annotation Task,"Overview of the ImageCLEF 2012 Scalable Web
Image Annotation Task
Mauricio Villegas and Roberto Paredes
Institut Tecnol`ogic d’Inform`atica
Universitat Polit`ecnica de Val`encia
Cam´ı de Vera s/n, 46022 Val`encia, Spain"
80c8d143e7f61761f39baec5b6dfb8faeb814be9,Local Directional Pattern based Fuzzy Co- occurrence Matrix Features for Face recognition,"Local Directional Pattern based Fuzzy Co-
occurrence Matrix Features for Face recognition
Dr. P Chandra Sekhar Reddy
Professor, CSE Dept.
Gokaraju Rangaraju Institute of Engineering and Technology, Hyd."
80345fbb6bb6bcc5ab1a7adcc7979a0262b8a923,Soft Biometrics for a Socially Assistive Robotic Platform,"Research Article
Pierluigi Carcagnì*, Dario Cazzato, Marco Del Coco, Pier Luigi Mazzeo, Marco Leo, and
Cosimo Distante
Soft Biometrics for a Socially Assistive Robotic
Platform
Open Access"
80a6bb337b8fdc17bffb8038f3b1467d01204375,Subspace LDA Methods for Solving the Small Sample Size Problem in Face Recognition,"Proceedings of the International Conference on Computer and Information Science and Technology
Ottawa, Ontario, Canada, May 11 – 12, 2015
Paper No. 126
Subspace LDA Methods for Solving the Small Sample Size
Problem in Face Recognition
Ching-Ting Huang, Chaur-Chin Chen
Department of Computer Science/National Tsing Hua University
01 KwanFu Rd., Sec. 2, Hsinchu, Taiwan"
80510c47d7fad872b18d865f3957568dc512780c,Occlusion Invariant 3D Face Recognition with UMB – DB and BOSPHORUS Databases,"International Journal of Computer Applications (0975 – 8887)
National Conference on Advances in Computing (NCAC 2015)
Occlusion Invariant 3D Face Recognition with UMB – DB
nd BOSPHORUS Databases
G.E.S. R.H. Sapat College of Engineering, Nashik
G.E.S. R.H. Sapat College of Engineering, Nashik
H. Y. Patil, PhD
Assistant Professor (Dept. of E&TC),
Maharashtra
Charushila R. Singh
M.E. student (Dept. of E&TC),
Maharashtra"
80c8f02c945c1dbbec31983164c1e4e0b742c44a,Cohort of LSTM and lexicon verification for handwriting recognition with gigantic lexicon,"Cohort of LSTM and lexicon verification for
handwriting recognition with gigantic lexicon
Bruno STUNERa,∗, Cl´ement CHATELAINa, Thierry PAQUETa
Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen, LITIS, 76000 Rouen, France"
80097a879fceff2a9a955bf7613b0d3bfa68dc23,Active Self-Paced Learning for Cost-Effective and Progressive Face Identification,"Active Self-Paced Learning for Cost-Effective and
Progressive Face Identification
Liang Lin, Keze Wang, Deyu Meng, Wangmeng Zuo, and Lei Zhang"
748260579dc2fb789335a88ae3f63c114795d047,Action and Interaction Recognition in First-Person Videos,"Action and Interaction Recognition in First-person videos
Sanath Narayan
Dept. of Electrical Engg.,
IISc, Bangalore
Mohan S. Kankanhalli
School of Computing,
NUS, Singapore
Kalpathi R. Ramakrishnan
Dept. of Electrical Engg.,
IISc, Bangalore"
7484911e00afec5c08e7b83f3a1259d60035d77f,In Your Face: Startle to Emotional Facial Expressions Depends on Face Direction,"Article
In Your Face: Startle to
Emotional Facial Expressions
Depends on Face Direction
i-Perception
January-February 2017, 1–13
! The Author(s) 2017
DOI: 10.1177/2041669517694396
journals.sagepub.com/home/ipe
Ole A˚ sli, Henriette Michalsen and Morten Øvervoll
Department of Psychology, University of Tromsø—The Arctic University
of Norway, Tromsø, Norway"
747e9b36c5a1b0b8a9572da0ab416ddd1e1d2d33,Data Augmentation for Visual Question Answering,"Proceedings of The 10th International Natural Language Generation conference, pages 198–202,
Santiago de Compostela, Spain, September 4-7 2017. c(cid:13)2017 Association for Computational Linguistics"
74408cfd748ad5553cba8ab64e5f83da14875ae8,Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation and Evaluation,"Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation
nd Evaluation"
74a1e28dd2c03076124282482074e10bb02bc643,Coulomb Gans: Provably Optimal Nash Equi-,"Under review as a conference paper at ICLR 2018
COULOMB GANS: PROVABLY OPTIMAL NASH EQUI-
LIBRIA VIA POTENTIAL FIELDS
Anonymous authors
Paper under double-blind review"
74671fd8dd510db4abdcb93864fb5d5f77c878a0,Real-Time Viola-Jones Face Detection in a Web Browser,"Real-Time Viola-Jones
Face Detection in a
Web Browser
Theo Ephraim - Tristan Himmelman - Kaleem Siddiqi
McGill University - School of Computer Science
Centre For Intelligent Machines (CIM)
http://flashfacedetection.com"
74dbe6e0486e417a108923295c80551b6d759dbe,An HMM based Model for Prediction of Emotional Composition of a Facial Expression using both Significant and Insignificant Action Units and Associated Gender Differences,"International Journal of Computer Applications (0975 – 8887)
Volume 45– No.11, May 2012
An HMM based Model for Prediction of Emotional
Composition of a Facial Expression using both
Significant and Insignificant Action Units and
Associated Gender Differences
Suvashis Das
Koichi Yamada
Department of Management and Information
Department of Management and Information
Systems Science
603-1 Kamitomioka, Nagaoka
Niigata, Japan
Systems Science
603-1 Kamitomioka, Nagaoka
Niigata, Japan"
74032e526edb45bc6c79cb5576e69486e72a316d,Animated 3D Human Models for Use in Person Recognition Experiments,"Animated 3D Human Models for Use in Person Recognition Experiments
Jean M. Vettel1,2,3, Justin Kantner1,2, Matthew Jaswa4, Michael Miller2
U.S. Army Research Laboratory, 2University of California, Santa Barbara, 3University of
Pennsylvania, 4DCS Corporation
Jean M Vettel
U.S. Army Research Laboratory
59 Mulberry Point Road
Aberdeen Proving Ground, MD 21005
10.278.7431"
747c25bff37b96def96dc039cc13f8a7f42dbbc7,EmoNets: Multimodal deep learning approaches for emotion recognition in video,"EmoNets: Multimodal deep learning approaches for emotion
recognition in video
Samira Ebrahimi Kahou · Xavier Bouthillier · Pascal Lamblin · Caglar Gulcehre ·
Vincent Michalski · Kishore Konda · S´ebastien Jean · Pierre Froumenty · Yann
Dauphin · Nicolas Boulanger-Lewandowski · Raul Chandias Ferrari · Mehdi Mirza ·
David Warde-Farley · Aaron Courville · Pascal Vincent · Roland Memisevic ·
Christopher Pal · Yoshua Bengio"
74e6110466306f41f703d84bb3d136ba414b1998,Face Recognition System under Varying Lighting Conditions,"IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 14, Issue 3 (Sep. - Oct. 2013), PP 79-88
www.iosrjournals.org
Face Recognition System under Varying Lighting Conditions
P.Kalaiselvi1, S.Nithya2
(Asst. Professor, Department of ECE, NSN College of Engineering and Technology, Karur, Tamilnadu, India)
(Asst. Professor, Department of ECE, NSN College of Engineering and Technology, Karur, Tamilnadu, India)"
744fa8062d0ae1a11b79592f0cd3fef133807a03,Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification.,"Aalborg Universitet
Deep Pain
Rodriguez, Pau; Cucurull, Guillem; Gonzàlez, Jordi; M. Gonfaus, Josep ; Nasrollahi, Kamal;
Moeslund, Thomas B.; Xavier Roca, F.
Published in:
I E E E Transactions on Cybernetics
DOI (link to publication from Publisher):
0.1109/TCYB.2017.2662199
Publication date:
Document Version
Accepted author manuscript, peer reviewed version
Link to publication from Aalborg University
Citation for published version (APA):
Rodriguez, P., Cucurull, G., Gonzàlez, J., M. Gonfaus, J., Nasrollahi, K., Moeslund, T. B., & Xavier Roca, F.
(2017). Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification. I E E E
Transactions on Cybernetics, 1-11. DOI: 10.1109/TCYB.2017.2662199
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research."
74f21f2edfa985280be63f8a01aa00541f3a5625,People Groping by Spatio-Temporal Features of Trajectories,"4-13
MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN
People Groping by Spatio-Temporal Features of Trajectories
Asami Okada†, Yusuke Moriguchi†, Norimichi Ukita†,
nd Norihiro Hagita†‡
Nara Institute od Science and Technology
Advanced Telecommunications Research Institute International
e-mail"
747b15ecd9a9e28bbd733527c59e5dd0aa5de7a1,Learning Visual Features from Large Weakly Supervised Data,"Learning Visual Features from Large Weakly Supervised Data
Armand Joulin∗
Laurens van der Maaten∗
Allan Jabri
Nicolas Vasilache
Facebook AI Research
770 Broadway, New York NY 10003"
743e582c3e70c6ec07094887ce8dae7248b970ad,Face Recognition based on Deep Neural Network,"International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol.8, No.10 (2015), pp.29-38
http://dx.doi.org/10.14257/ijsip.2015.8.10.04
Face Recognition based on Deep Neural Network
Li Xinhua,Yu Qian
Shandong Women’s University"
74b0095944c6e29837c208307a67116ebe1231c8,Manifold learning using Euclidean k-nearest neighbor graphs [image processing examples],"beindependentandidenticallydis-tributed(i.i.d.)randomvectorswithvaluesinacompactsubsetof.The(-)nearestneighborofinisgivenby!""$%&(*,.%13575where575istheusualEuclidean(<=)distanceinbe-tweenvectorand.Forgeneralinteger?,the-nearestneighborofapointisdefinedinasimilarway.The-NNgraphputsanedgebetweeneachpointinandits-nearestneighbors.LetBCDBCDFHbethesetof-nearestneighborsofin.Thetotaledgelengthofthe-NNgraphisdefinedas:<JDCFHMN
M%&QRS1575J(1)whereVWXisapowerweightingconstant.2.1.ConvergencetoExtrinsicZ-EntropyThe-NNedgelengthliesinthelargeclassoffunctionalscalledcontinuousquasi-additiveEuclideanfunctionals[7].Othergraphsinthisclassincludetheminimalspanningtree,theminimalmatch-inggraphorthetravelingsalesmantouramongothers.Thesefunc-tionalshaveremarkableasymptoticbehaviorasincreases:Theorem1([7,Theorem8.3])Let
bei.i.d.randomvectorswithvaluesinacompactsubsetofandLebesgueden-sity\.Let]?_,aVb]anddefineZF]7VHf].Then,withprobability(w.p.)gh""jk<JDCFHmoDJDCp\mFrHtr(2)whereoDJDCisaconstantindependentof\.Furthermore,themeanlengthuv<JDCFHwfmconvergestothesamelimit.Thequantitythatdeterminesthelimit(2)inTheorem1istheex-trinsicR´enyiZ-entropyofthemultivariateLebesguedensity\:yz{mF\H7Zg!pz{\mFrHtr(3)III - 9880-7803-8484-9/04/$20.00 ©2004 IEEEICASSP 2004(cid:224)"
74156a11c2997517061df5629be78428e1f09cbd,"Preparatory coordination of head, eyes and hands: Experimental study at intersections","Cancún Center, Cancún, México, December 4-8, 2016
978-1-5090-4846-5/16/$31.00 ©2016 IEEE"
74cbb3acfc401a397c9a4e151ff8e3ecf5ea76d0,Egocentric Video Description based on Temporally-Linked Sequences,"Egocentric Video Description based on Temporally-Linked Sequences
Marc Bola˜nosa,b, ´Alvaro Perisc, Francisco Casacubertac, Sergi Solera, Petia Radevaa,b
Universitat de Barcelona, Barcelona, Spain
Computer Vision Center, Bellaterra, Spain
PRHLT Research Center, Universitat Polit`ecnica de Val`encia, Val`encia, Spain"
74410df341f44f5c915d97725ce396a862d44a7b,Shadow extraction and application in pedestrian detection,"Wang and Yagi EURASIP Journal on Image and Video Processing 2014, 2014:12
http://jivp.eurasipjournals.com/content/2014/1/12
RESEARCH
Open Access
Shadow extraction and application in
pedestrian detection
Junqiu Wang1* and Yasushi Yagi2"
749d605dd12a4af58de1fae6f5ef5e65eb06540e,Multi-Task Video Captioning with Video and Entailment Generation,"Multi-Task Video Captioning with Video and Entailment Generation
Ramakanth Pasunuru and Mohit Bansal
UNC Chapel Hill
{ram,"
749382d19bfe9fb8d0c5e94d0c9b0a63ab531cb7,A Modular Framework to Detect and Analyze Faces for Audience Measurement Systems,"A Modular Framework to Detect and Analyze Faces for
Audience Measurement Systems
Andreas Ernst, Tobias Ruf, Christian Kueblbeck
Fraunhofer Institute for Integrated Circuits IIS
Department Electronic Imaging
Am Wolfsmantel 33, 91058 Erlangen, Germany
{andreas.ernst, tobias.ruf,"
74c19438c78a136677a7cb9004c53684a4ae56ff,RESOUND: Towards Action Recognition Without Representation Bias,"RESOUND: Towards Action Recognition
without Representation Bias
Yingwei Li, Yi Li, and Nuno Vasconcelos
UC San Diego"
74618fb4ce8ce0209db85cc6069fe64b1f268ff4,Rendering and animating expressive caricatures,"Rendering and Animating Expressive
Caricatures
Mohammad Obaid* t, Ramakrishnan
Mukundan
*HITLab New Zealand,
University
of Canterbury,
t, and Mark Billinghurst*
Christchurch,
New Zealand
tComputer
Science
nd Software Engineering
Email: {mohammad.obaid,
Dept., University
of Canterbury,
New Zealand
stylized
nd control
on the generated caricature."
745ec003b7fbeb52aecd00c41ac889fcd4d88bcd,Guiding Intelligent Surveillance System by learning-by-synthesis gaze estimation,"Pattern Recognition Letters
journal homepage: www.elsevier.com
Guiding Intelligent Surveillance System by learning-by-synthesis gaze estimation
Tongtong Zhaoa, Yuxiao Yana, Jinjia Penga, Zetian Mia, Xianping Fua,∗∗
Information Science and Technology College, Dalian Maritime University, Dalian, China."
74eae724ef197f2822fb7f3029c63014625ce1ca,Feature Extraction based on Local Directional Pattern with SVM Decision-level Fusion for Facial Expression Recognition,"International Journal of Bio-Science and Bio-Technology
Vol. 5, No. 2, April, 2013
Feature Extraction based on Local Directional Pattern with SVM
Decision-level Fusion for Facial Expression Recognition
Juxiang Zhou1, Tianwei Xu1,2 and Jianhou Gan1
Key Laboratory of Education Informalization for Nationalities, Ministry of
Education, Yunnan Normal University, Kunming, China
College of Information, Yunnan Normal University, Kunming, China"
744fe47157477235032f7bb3777800f9f2f45e52,"Progressive Growing of GANs for Improved Quality, Stability, and Variation","Published as a conference paper at ICLR 2018
PROGRESSIVE GROWING OF GANS FOR IMPROVED
QUALITY, STABILITY, AND VARIATION
Tero Karras
NVIDIA
Samuli Laine
NVIDIA
Timo Aila
NVIDIA
Jaakko Lehtinen
NVIDIA and Aalto University"
74d4224989b5937ee6c97eec1955e64ab0699f57,Facial Emotional Classifier For Natural Interaction,"Electronic Letters on Computer Vision and Image Analysis 7(4):1-12, 2008
Facial Emotional Classifier For Natural Interaction
Isabelle Hupont, Eva Cerezo, Sandra Baldassarri
Departamento de Informática e Ingeniería de Sistemas,
Instituto de Investigación en Ingeniería de Aragón, Universidad de Zaragoza (Spain)
Received 29th  November 2007,  Revised 26th February 2008,  Accepted 3rd June 2008
{478953, ecerezo,"
7480d8739eb7ab97c12c14e75658e5444b852e9f,MLBoost Revisited: A Faster Metric Learning Algorithm for Identity-Based Face Retrieval,"NEGREL ET AL.: REVISITED MLBOOST FOR FACE RETRIEVAL
MLBoost Revisited: A Faster Metric
Learning Algorithm for Identity-Based Face
Retrieval
Romain Negrel
Alexis Lechervy
Frederic Jurie
Normandie Univ, UNICAEN,
ENSICAEN, CNRS
France"
747ca08cbf258da8d2b89ba31f24bdb17d7132bb,Tall and skinny QR factorizations in MapReduce architectures,"Tall and Skinny QR factorizations
in MapReduce architectures
Paul G. Constantine
Sandia National Laboratories∗
Albuquerque, NM
David F. Gleich
Sandia National Laboratories∗
Livermore, CA"
7411761e789ccb1da80984472f5df5cb084e8ba3,Towards Scene Understanding with Detailed 3D Object Representations,"Towards Scene Understanding with Detailed 3D Object Representations
M. Zeeshan Zia1, Michael Stark2, and Konrad Schindler1
Photogrammetry and Remote Sensing, ETH Z¨urich, Switzerland
Stanford University and Max Planck Institute for Informatics"
74ba4ab407b90592ffdf884a20e10006d2223015,Partial Face Detection in the Mobile Domain,"Partial Face Detection in the Mobile Domain
Upal Mahbub, Student Member, IEEE, Sayantan Sarkar, Student Member, IEEE,
nd Rama Chellappa, Fellow, IEEE"
7405ed035d1a4b9787b78e5566340a98fe4b63a0,Self-Expressive Decompositions for Matrix Approximation and Clustering,"Self-Expressive Decompositions for
Matrix Approximation and Clustering
Eva L. Dyer, Member, IEEE, Tom A. Goldstein, Member, IEEE, Raajen Patel, Student Member, IEEE,
Konrad P. K¨ording, and Richard G. Baraniuk, Fellow, IEEE"
744db9bd550bf5e109d44c2edabffec28c867b91,FX e-Makeup for Muscle Based Interaction,"FX e-Makeup for Muscle Based Interaction
Katia Canepa Vega1, Abel Arrieta2, Felipe Esteves3, and Hugo Fuks1
Department of Informatics, PUC-Rio, Rio de Janeiro, Brazil
Department of Mechanical Engineering, PUC-Rio, Rio de Janeiro, Brazil
Department of Administration, PUC-Rio, Rio de Janeiro, Brazil"
74325f3d9aea3a810fe4eab8863d1a48c099de11,Regression-Based Image Alignment for General Object Categories,"Regression-Based Image Alignment
for General Object Categories
Hilton Bristow1 and Simon Lucey2
Queensland University of Technology (QUT)
Brisbane QLD 4000, Australia
Carnegie Mellon University (CMU)
Pittsburgh PA 15289, USA"
7478c2351c75183527f258aecce6931be9c9d624,Periodic Variance Maximization using Generalized Eigenvalue Decomposition applied to Remote Photoplethysmography estimation,"Periodic Variance Maximization using Generalized Eigenvalue
Decomposition applied to Remote Photoplethysmography estimation
Richard Macwan, Serge Bobbia, Yannick Benezeth, Julien Dubois, Alamin Mansouri
LE2I EA7508, Arts et M´etiers
Univ. Bourgogne Franche-Comt´e
{richard.macwan, serge.bobbia, yannick.benezeth, julien.dubois,"
744d23991a2c48d146781405e299e9b3cc14b731,Aging Face Recognition: A Hierarchical Learning Model Based on Local Patterns Selection,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2535284, IEEE
Transactions on Image Processing
Aging Face Recognition: A Hierarchical Learning
Model Based on Local Patterns Selection
Zhifeng Li, Senior Member, IEEE, Dihong Gong, Xuelong Li, Fellow, IEEE, and Dacheng Tao, Fellow, IEEE"
1a45ddaf43bcd49d261abb4a27977a952b5fff12,LDOP: Local Directional Order Pattern for Robust Face Retrieval,"LDOP: Local Directional Order Pattern for Robust
Face Retrieval
Shiv Ram Dubey, Member, IEEE, and Snehasis Mukherjee, Member, IEEE"
1a849b694f2d68c3536ed849ed78c82e979d64d5,This is a repository copy of Symmetric Shape Morphing for 3 D Face and Head Modelling,"This is a repository copy of Symmetric Shape Morphing for 3D Face and Head Modelling.
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/131760/
Version: Accepted Version
Proceedings Paper:
Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634, Smith, William Alfred
Peter orcid.org/0000-0002-6047-0413 et al. (1 more author) (2018) Symmetric Shape
Morphing for 3D Face and Head Modelling. In: The 13th IEEE Conference on Automatic
Face and Gesture Recognition. IEEE .
Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.
Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing including the URL of the record and the reason for the withdrawal request.
https://eprints.whiterose.ac.uk/"
1ab7d8da096c418c0bf93de14d128eb008a92db4,Towards three-dimensional face recognition in the real Huibin,"Towards three-dimensional face recognition in the real
Huibin Li
To cite this version:
Huibin Li. Towards three-dimensional face recognition in the real. Other. Ecole Centrale de
Lyon, 2013. English. <NNT : 2013ECDL0037>. <tel-00998798>
HAL Id: tel-00998798
https://tel.archives-ouvertes.fr/tel-00998798
Submitted on 2 Jun 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de
recherche fran¸cais ou ´etrangers, des laboratoires
publics ou priv´es."
1a7243913d9b8c6855b1eb3bb6566f2f1041d50a,Articulated clinician detection using 3D pictorial structures on RGB-D data,"Articulated Clinician Detection Using 3D Pictorial
Structures on RGB-D Data
Abdolrahim Kadkhodamohammadi, Afshin Gangi, Michel de Mathelin and Nicolas Padoy"
1a878e4667fe55170252e3f41d38ddf85c87fcaf,Discriminative Machine Learning with Structure,"Discriminative Machine Learning with Structure
Simon Lacoste-Julien
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2010-4
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-4.html
January 12, 2010"
1a03716411e72722f853b904a83d9c15a0d737a3,Using color texture sparsity for facial expression recognition,"Using Color Texture Sparsity for Facial Expression
Recognition
Seung Ho Lee, Hyungil Kim,
Korea Advanced
Department
Institute
of Electrical
of Science
of Korea
Republic
Daejeon,
nd Y ong Man Ro
Engineering
nd Technology
Department
Engineering
Konstantinos
of Electrical
University
N. Plataniotis"
1ae3a26a985fe525b23f080a9e1041ecff0509ad,A Comparative Study of Statistical Conversion of Face to Voice Based on Their Subjective Impressions,"Interspeech 2018
-6 September 2018, Hyderabad
0.21437/Interspeech.2018-2005"
1a41831a3d7b0e0df688fb6d4f861176cef97136,A Biological Model of Object Recognition with Feature Learning,"massachusetts institute of technology — artificial intelligence laboratory
A Biological Model of Object
Recognition with Feature Learning
Jennifer Louie
AI Technical Report 2003-009
CBCL Memo 227
June 2003
© 2 0 0 3   m a s s a c h u s e t t s   i n s t i t u t e   o f
t e c h n o l o g y, c a m b r i d g e , m a   0 2 1 3 9   u s a   —   w w w. a i . m i t . e d u"
1a9e0bf9f7a9495bcdf1aeb214ccc9df9f2a9030,Challenges and Opportunities The Main Memory System : Challenges and Opportunities,"특집원고Ⅰ
The Main Memory System: Challenges and Opportunities
Carnegie Mellon University  Onur Mutlu・Justin Meza・Lavanya Subramanian
The  memory  system  is  a  fundamental  performance  and
energy  bottleneck  in  almost  all  computing  systems.  Recent
system  design,  application,  and  technology  trends  that
require more capacity, bandwidth, efficiency, and predictability
out  of  the  memory  system  make  it  an  even  more  important
system  bottleneck.  At  the  same  time,  DRAM  technology
is  experiencing  difficult    technology  scaling  challenges
that  make  the  maintenance  and  enhancement  of  its  capacity,
energy-efficiency,  and  reliability  significantly  more  costly
with  conventional  techniques.
In  this  article,  after  describing  the  demands  and  challenges
faced  by  the  memory  system,  we  examine  some  promising
research  and  design  directions  to  overcome  challenges  posed
y  memory  scaling.  Specifically,  we  describe  three  major
new  research  challenges  and  solution  directions:  1)  enabling
new  DRAM  architectures,  functions,  interfaces,  and  better
integration  of  the  DRAM  and  the  rest  of  the  system  (an"
1a6b2972506d7d85100552bee99ce2b267e30d41,Learning Optimal Embedded Cascades,"Learning Optimal Embedded Cascades
Mohammad Javad Saberian and Nuno Vasconcelos, Senior Member, IEEE"
1a3f7b9fc451b54110aaebae56c65413c620f6e2,Multilevel Linear Dimensionality Reduction for Data Analysis using Nearest-Neighbor Graphs,"Multilevel Linear Dimensionality Reduction for Data
Analysis using Nearest-Neighbor Graphs∗
Sophia Sakellaridi
Department of Computer
Science and Engineering
University of Minnesota;
Minneapolis, MN 55455
Haw-ren Fang
Department of Computer
Science and Engineering
University of Minnesota;
Minneapolis, MN 55455
Yousef Saad
Department of Computer
Science and Engineering
University of Minnesota;
Minneapolis, MN 55455"
1ae19084d2cd53c70d7e44d419df32560e417fb9,The Canadian experience using the expanded criteria donor classification for allocating deceased donor kidneys for transplantation,"Young et al. Canadian Journal of Kidney Health and Disease  (2016) 3:15
DOI 10.1186/s40697-016-0106-9
Open Access
O R I G I N AL R ES EA R C H AR TI C L E
The Canadian experience using the
expanded criteria donor classification for
llocating deceased donor kidneys for
transplantation
Ann Young1, Stephanie N. Dixon2, Greg A. Knoll2,3, Amit X. Garg2,4, Charmaine E. Lok1,2,6, Ngan N. Lam5
nd S. Joseph Kim1,2,6*"
1a5151b4205ab27b1c76f98964debbfc11b124d5,Self Paced Deep Learning for Weakly Supervised Object Detection,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Self Paced Deep Learning for Weakly
Supervised Object Detection
Enver Sangineto†, Moin Nabi†, Dubravko Culibrk and Nicu Sebe,"
1a515f0b852c2e93272677dbf6ecb05c7be0ea2e,Reduced serotonin receptor subtypes in a limbic and a neocortical region in autism.,"RESEARCH ARTICLE
Reduced Serotonin Receptor Subtypes in a Limbic and a Neocortical
Region in Autism
Adrian Oblak, Terrell T. Gibbs, and Gene J. Blatt
Autism is a behaviorally defined, neurological disorder with symptom onset before the age of 3. Abnormalities in
social-emotional behaviors are a core deficit in autism, and are characterized by impaired reciprocal–social interaction,
lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform
gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors.
Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5-HT) is one of the
earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal
migration. Abnormalities in 5-HT systems have been implicated in several psychiatric disorders, including autism, as
evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known
regarding peripheral 5-HT in autism, there is emerging evidence that 5-HT systems in the central nervous system,
including various 5-HT receptor subtypes and transporters, are affected in autism. The present study demonstrated
significant reductions in 5-HT1A receptor-binding density in superficial and deep layers of the PCC and FG, and in the
density of 5-HT2A receptors in superficial layers of the PCC and FG. A significant reduction in the density of serotonin
transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of
the PCC and superficial layers of the FG. This study provides potential substrates for decreased 5-HT modulation/
innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or
existing pharmacotherapies. Autism Res 2013, 6: 571–583. © 2013 International Society for Autism Research, Wiley"
1a6c3c37c2e62b21ebc0f3533686dde4d0103b3f,Implementation of Partial Face Recognition using Directional Binary Code,"International Journal of Linguistics and Computational Applications (IJLCA)                          ISSN 2394-6385 (Print)
Volume 4, Issue 1, January – March 2017                                                                                   ISSN 2394-6393 (Online)
Implementation of Partial Face Recognition
using Directional Binary Code
N.Pavithra #1, A.Sivapriya*2, K.Hemalatha*3 , D.Lakshmi*4
,2,3Final Year, Department of Computer Science and Engineering, PanimalarInstitute of Technology,
Assistant Professor, Department of Computer Science and Engineering, PanimalarInstitute of Technology, Tamilnadu, India,
faith
is  proposed.  It
face  alignment  and"
1a3eee980a2252bb092666cf15dd1301fa84860e,PCA Gaussianization for image processing,"PCA GAUSSIANIZATION FOR IMAGE PROCESSING
Valero Laparra, Gustavo Camps-Valls and Jes´us Malo
Image Processing Laboratory (IPL), Universitat de Val`encia
Catedr´atico A. Escardino - 46980 Paterna, Val`encia, Spain"
1a382d4e436e3e4f3d735f6e34ba2bc61e30838e,Fusion of Multispectral Data Through Illumination-aware Deep Neural Networks for Pedestrian Detection,
1a8a2539cffba25ed9a7f2b869ebb737276ccee1,Pros and Cons of GAN Evaluation Measures,"Pros and Cons of GAN Evaluation Measures
Ali Borji"
1ad823bf77c691f1d2b572799f8a8c572d941118,Précis of “Towards The Deep Model : Understanding Visual Recognition Through Computational Models”,"implement
the system.
Précis of “Towards ​The Deep Model
: Understanding Visual
Recognition Through Computational Models”
Panqu Wang
Introduction
Vision, due to its significance in surviving and socializing, is one of the most important and
extensively studied sensory functions in the human brain. In order to fully understand visual
information processing, or more specifically, visual recognition, David Marr proposed the
Tri-level Hypothesis [29], in that three levels of the system should be studied: the computational
goal of the system, the internal representation or the algorithm the system uses to achieve the
goal, and the neural substrates that
is well-known that visual
recognition in the human brain is implemented by the ventral visual pathway [32], which
receives visual information from the retina and goes through a layered structure including V1
(also known as the primary visual cortex), V2, V4, before reaching the inferior temporal cortex
(IT). The topographic mapping between the retina and the human visual cortex follows a
log-polar transformation, in which the Cartesian coordinates of the retina are transformed to
polar coordinates (polar angle and eccentricity) in the human visual cortex. From V1 to V4, each"
1abf6491d1b0f6e8af137869a01843931996a562,ParseNet: Looking Wider to See Better,"ParseNet: Looking Wider to See Better
Wei Liu
UNC Chapel Hill
Andrew Rabinovich
MagicLeap Inc.
Alexander C. Berg
UNC Chapel Hill"
1a031378cf1d2b9088a200d9715d87db8a1bf041,D Eep D Ictionary L Earning : S Ynergizing R E - Construction and C Lassification,"Workshop track - ICLR 2018
DEEP DICTIONARY LEARNING: SYNERGIZING RE-
CONSTRUCTION AND CLASSIFICATION
Shahin Mahdizadehaghdam, Ashkan Panahi, Hamid Krim & Liyi Dai"
1afd481036d57320bf52d784a22dcb07b1ca95e2,Automated Content Metadata Extraction Services Based on MPEG Standards,"The Computer Journal Advance Access published December 6, 2012
© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email:
doi:10.1093/comjnl/bxs146
Automated Content Metadata Extraction
Services Based on MPEG Standards
D.C. Gibbon∗, Z. Liu, A. Basso and B. Shahraray
AT&T Labs Research, Middletown, NJ, USA
Corresponding author:
This paper is concerned with the generation, acquisition, standardized representation and transport
of video metadata. The use of MPEG standards in the design and development of interoperable
media architectures and web services is discussed. A high-level discussion of several algorithms
for metadata extraction is presented. Some architectural and algorithmic issues encountered when
designing services for real-time processing of video streams, as opposed to traditional offline media
processing, are addressed. A prototype real-time video analysis system for generating MPEG-7
Audiovisual Description Profile from MPEG-2 transport stream encapsulated video is presented.
Such a capability can enable a range of new services such as content-based personalization of live
roadcasts given that the MPEG-7 based data models fit in well with specifications for advanced
television services such as TV-Anytime andAlliance for Telecommunications Industry Solutions IPTV
Interoperability Forum."
1a7e385d2aa041ca8931784fb7664e9905194565,Sentiment Analysis Using Social Multimedia,"Chapter 2
Sentiment Analysis Using Social
Multimedia
Jianbo Yuan, Quanzeng You and Jiebo Luo"
1ad88221f308bf9f36775650f880f32d91ce929a,Learning a Recurrent Residual Fusion Network for Multimodal Matching,"Learning a Recurrent Residual Fusion Network for Multimodal Matching
Yu Liu
Yanming Guo
Erwin M. Bakker
Michael S. Lew
LIACS Media Lab, Leiden University, Leiden, The Netherlands
{y.liu, y.guo, e.m.bakker,"
1a0912bb76777469295bb2c059faee907e7f3258,Mask R-CNN,"Mask R-CNN
Kaiming He Georgia Gkioxari
Piotr Doll´ar Ross Girshick
Facebook AI Research (FAIR)"
1afe9919ddb2b245e21b610fa96037724bcdf648,SceneNet: A Perceptual Ontology for Scene Understanding,"SceneNet: A Perceptual Ontology for Scene
Understanding
Ilan Kadar and Ohad Ben-Shahar
Ben-Gurion University of the Negev"
1a9a192b700c080c7887e5862c1ec578012f9ed1,Discriminant Subspace Analysis for Face Recognition with Small Number of Training Samples,"IEEE TRANSACTIONS ON SYSTEM, MAN AND CYBERNETICS, PART B
Discriminant Subspace Analysis for Face
Recognition with Small Number of Training
Samples
Hui Kong, Xuchun Li, Matthew Turk, and Chandra Kambhamettu"
1abdf07ce2fca11a26222dedd581b68b141af3f2,Face Recognition Aiding Historical Photographs Indexing Using a Two-Stage Training Scheme and an Enhanced Distance Measure,"Face Recognition Aiding Historical Photographs Indexing
Using a Two-stage Training Scheme and an Enhanced Distance Measure
Ana Paula Brand˜ao Lopes1,2, Camillo Jorge Santos Oliveira1,3, Arnaldo de Albuquerque Ara´ujo1
Computer Science Department – Federal University of Minas Gerais
Av. Antˆonio Carlos, 6627, Pampulha, CEP 31270–901, Belo Horizonte, MG, Brazil
Exact and Technological Sciences Department – State University of Santa Cruz
Rodovia Ilh´eus-Itabuna, km 16 – Pavilh˜ao Jorge Amado, CEP 45600-000, Ilh´eus, BA, Brazil
Informatics Department – Pontifical Catholic University of Minas Gerais
Rua Rio Comprido, 4.580 - CEP 32.010-025, Contagem, MG, Brazil,
{paula, camillo,"
1a2431e3b35a4a4794dc38ef16e9eec2996114a1,Automated Face Recognition: Challenges and Solutions,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
1a8ccc23ed73db64748e31c61c69fe23c48a2bb1,Extensive Facial Landmark Localization with Coarse-to-Fine Convolutional Network Cascade,"Extensive Facial Landmark Localization
with Coarse-to-fine Convolutional Network Cascade
Erjin Zhou Haoqiang Fan Zhimin Cao Yuning Jiang Qi Yin
Megvii Inc."
1afe5d933b58b4dd982a559cc6ec1d17959239de,Enhanced canonical correlation analysis with local density for cross-domain visual classification,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
1a86620ea59816564db30fe0ae94cc422c5266e3,Can 3D Pose be Learned from 2D Projections Alone?,"Can 3D Pose be Learned from
D Projections Alone?
Dylan Drover, Rohith MV, Ching-Hang Chen,
Amit Agrawal, Ambrish Tyagi, and Cong Phuoc Huynh
Amazon Lab126 Inc., Sunnyvale, CA, USA
{droverd, kurohith, chinghc, aaagrawa,
mbrisht,"
1ad97cce5fa8e9c2e001f53f6f3202bddcefba22,Grassmann Averages for Scalable Robust PCA,"Grassmann Averages for Scalable Robust PCA
Aasa Feragen
DIKU and MPIs T¨ubingen∗
Denmark and Germany
Søren Hauberg
DTU Compute∗
Lyngby, Denmark"
1a219e7bcd8f30f886a1f24a8c05bc26bef83ff9,Crowd Counting with Density Adaption Networks,"Crowd Counting with Density Adaption Networks
Li Wang, Weiyuan Shao, Yao Lu, Hao Ye, Jian Pu, Yingbin Zheng"
1a1ed320882c00c94d9f738b7b14eadd941376ed,Extracting Human Face Similarity Judgments: Pairs or Triplets?,"Extracting Human Face Similarity Judgments: Pairs or Triplets?
Linjie Li1, Vicente Malave2, Amanda Song2, and Angela J. Yu2
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA"
1a1955920ee36d58265fe17100ca451d899e8372,A Local Feature based on Lagrangian Measures for Violent Video Classification,"Best Paper Award, IET 6th International Conference on Imaging for Crime Prevention and Detection, 2015
A Local Feature based on Lagrangian Measures for Violent Video
Classification
Tobias Senst, Volker Eiselein, Thomas Sikora
Communication Systems Group, Technische Universität Berlin, Germany
Keywords: violent video detection,
recognition, lagrangian measures, lagrangian framework
local feature, action"
1a9997d8421d577a728f6ac119d4b14a3f46402c,Using Tectogrammatical Annotation for Studying Actors and Actions in Sallust ’ s Bellum Catilinae,"The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018 5–28
Using Tectogrammatical Annotation for Studying
Actors and Actions in Sallust’s Bellum Catilinae
Berta González Saavedra,a Marco Passarottib
Dep. de Filología Clásica, Universidad Autónoma de Madrid, Spain
CIRCSE Research Centre. Università Cattolica del Sacro Cuore, Milan, Italy"
1a6d748365dbf3b17f2db371a30469478ee7b142,DeepID-Net: Object Detection with Deformable Part Based Convolutional Neural Networks,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2587642, IEEE
Transactions on Pattern Analysis and Machine Intelligence
IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE
DeepID-Net: Object Detection with Deformable
Part Based Convolutional Neural Networks
Wanli Ouyang*, Member, IEEE, Xingyu Zeng*, Student Member, IEEE,
Xiaogang Wang, Member, IEEE,Shi Qiu Member, IEEE, Ping Luo, Member, IEEE,
Yonglong Tian Student Member, IEEE, Hongsheng Li, Member, IEEE, Shuo Yang Student Member, IEEE,
Zhe Wang, Student Member, IEEE, Hongyang Li, Kun Wang, Junjie Yan,
Chen-Change Loy, Member, IEEE, Xiaoou Tang, Fellow, IEEE"
1a54a8b0c7b3fc5a21c6d33656690585c46ca08b,Fast Feature Pyramids for Object Detection,"Fast Feature Pyramids for Object Detection
Piotr Doll´ar, Ron Appel, Serge Belongie, and Pietro Perona"
1a51bc5f9f12f6794297a426739350ae57c87731,Image classification with CNN-based Fisher vector coding,"Kent Academic Repository
Full text document (pdf)
Citation for published version
Song, Yan and Hong, Xinhai and McLoughlin, Ian Vince and Dai, Li-Rong  (2017) Image Classification
with CNN-based Fisher Vector Coding.    In: IEEE International Conference on Visual Communications
nd Image Processing 2016, 27-30 Nov 2016, Chengdu, Sichuan, China.
https://doi.org/10.1109/VCIP.2016.7805494
Link to record in KAR
http://kar.kent.ac.uk/57115/
Document Version
Author's Accepted Manuscript
Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
ontent is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.
Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.
Enquiries"
1aa52a25c2967b8bc228268c9ab5a96a32d2189b,Visual Fashion-Product Search at SK Planet,"Visual Fashion-Product Search at SK Planet
Taewan Kim, Seyeoung Kim, Sangil Na, Hayoon Kim, Moonki Kim, Byoung-Ki Jeon
Machine Intelligence Lab.
SK Planet, SeongNam City, South Korea"
1a0b09e7e9182a68fc457bb888536b9023f6c9fd,Multi-affinity spectral clustering,"MULTI-AFFINITY SPECTRAL CLUSTERING
Hsin-Chien Huang(cid:63)†
Yung-Yu Chuang(cid:63)
Chu-Song Chen†
(cid:63)National Taiwan University
Academia Sinica"
1a7a2221fed183b6431e29a014539e45d95f0804,Person Identification Using Text and Image Data,"Person Identification Using Text and Image Data
David S. Bolme, J. Ross Beveridge and Adele E. Howe
Computer Science Department
Colorado State Univeristy
Fort Collins, Colorado 80523"
1a5b39a4b29afc5d2a3cd49087ae23c6838eca2b,Competitive Game Designs for Improving the Cost Effectiveness of Crowdsourcing,"Competitive Game Designs for Improving the Cost
Effectiveness of Crowdsourcing
Markus Rokicki, Sergiu Chelaru, Sergej Zerr, Stefan Siersdorfer
L3S Research Center, Hannover, Germany"
28bd795c580ca24f40dc82cd01d9d277749d2661,Site-adaptation methods for face recognition,"Site-adaptation methods for face recognition
Jilin Tu and Xiaoming Liu and Peter Tu"
28209a6ef1de7c10ec13717eba8bad7c2f4feba7,Deep Representation of Facial Geometric and Photometric Attributes for Automatic 3D Facial Expression Recognition,"Deep Representation of Facial Geometric and
Photometric Attributes for Automatic 3D Facial
Expression Recognition
Huibin Li, Jian Sun∗, Dong Wang, Zongben Xu, and Liming Chen"
28e9ae07540e3709e7a3a6242f636f893ba557e6,Learning to Select Pre-Trained Deep Representations with Bayesian Evidence Framework,"Learning to Select Pre-trained Deep Representations with
Bayesian Evidence Framework
Yong-Deok Kim∗1
Taewoong Jang∗2 Bohyung Han3
Seungjin Choi3
Software R&D Center, Device Solutions, Samsung Electronics, Korea
Department of Computer Science and Engineering, POSTECH, Korea
Stradvision Inc., Korea"
286eb053f55e45ad5d0490c1c18f6d80381dfb4b,Block-Sparse Recovery via Convex Optimization,"Block-Sparse Recovery via Convex Optimization
Ehsan Elhamifar, Student Member, IEEE, and Ren´e Vidal, Senior Member, IEEE"
287795991fad3c61d6058352879c7d7ae1fdd2b6,Biometrics Security: Facial Marks Detection from the Low Quality Images,"International Journal of Computer Applications (0975 – 8887)
Volume 66– No.8, March 2013
Biometrics Security: Facial Marks Detection from the
Low Quality Images
nd  facial  marks  are  detected  using  LoG  with  morphological
operator.  This  method  though  was  not  enough  to  detect  the
facial  marks  from  the  low  quality  images  [7].  But,  facial
marks  have  been  used  to  speed  up  the  retrieval  process  in
order to differentiate the human faces [15].
Ziaul Haque Choudhury                                                      K.M.Mehata
B.S.Abdur Rahman University                                                     B.S.Abdur Rahman University
Dept. Of Information Technology                                        Dept. Of Computer Science & Engineering
Chennai, India                                                                               Chennai, India"
282578039c767f3d393529565cae6be56fda6242,Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes,"Augmented Reality Meets Computer Vision : Efficient Data Generation for
Urban Driving Scenes
Hassan Abu Alhaija1
Siva Karthik Mustikovela1
Lars Mescheder2 Andreas Geiger2,3 Carsten Rother1
Computer Vision Lab, TU Dresden
Autonomous Vision Group, MPI for Intelligent Systems T¨ubingen
Computer Vision and Geometry Group, ETH Z¨urich"
285faa4cc54ef9b1834128705e0f96ad17b61e0b,SIFT Flow: Dense Correspondence across Scenes and Its Applications,"SIFT Flow: Dense Correspondence across
Scenes and its Applications
Ce Liu, Member, IEEE, Jenny Yuen, Student Member, IEEE, and Antonio Torralba, Member, IEEE"
28d7029cfb73bcb4ad1997f3779c183972a406b4,Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification,"Discriminative Nonlinear Analysis Operator
Learning: When Cosparse Model Meets Image
Classification
Zaidao Wen, Biao Hou, Member, IEEE, and Licheng Jiao, Senior Member, IEEE"
280d59fa99ead5929ebcde85407bba34b1fcfb59,Online Nonnegative Matrix Factorization With Outliers,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
28126d165f73c2a18600a9b0440f5e80191d52d9,Clock-Modeled Ternary Spatial Relations for Visual Scene Analysis,"Clock-Modeled Ternary Spatial Relations
for Visual Scene Analysis
Joanna Isabelle Olszewska
School of Computing and Engineering, University of Huddersfield
Queensgate, Huddersfield, HD1 3DH, United Kingdom"
287c5be2610e1c61798851feb32b88c424acfbf9,Hierarchical Co-Attention for Visual Question Answering,"Hierarchical Co-Attention for Visual Question Answering
Jiasen Lu, Jianwei Yang, Dhruv Batra, Devi Parikh
Virginia Tech
{jiasenlu, jw2yang, dbatra,"
28f9cf85ebbff86207e1f6067880bb23daff0878,Prime Object Proposals with Randomized Prim's Algorithm,"Prime Object Proposals with Randomized Prim’s Algorithm
Santiago Manen1
Matthieu Guillaumin1
Luc Van Gool1,2
Computer Vision Laboratory
ESAT - PSI / IBBT
{smanenfr, guillaumin,
ETH Zurich
K.U. Leuven"
286ea63b1b5df1b8b67718f25b47357ec3168e97,Human parsing using stochastic and-or grammars and rich appearances,"Human Parsing using Stochastic And-Or
Grammars and Rich Appearances
Brandon Rothrock and Song-Chun Zhu
UCLA Dept. of Computer Science
Thursday, November 17, 11"
284be8be0c6bedc36dfe43229bc84345ab0aedc2,Faster Training of Mask R-CNN by Focusing on Instance Boundaries,"Faster Training of Mask R-CNN by Focusing on Instance Boundaries$
Roland S. Zimmermanna,b,1, Julien N. Siemsa,c,2
BMW Car IT GmbH, Lise-Meitner-Straße 14, 89081 Ulm, Germany
Georg-August University of G¨ottingen, Friedrich-Hund-Platz 1, 37077 G¨ottingen, Germany
Albert Ludwig University of Freiburg, Fahnenbergplatz, 79085 Freiburg im Breisgau, Germany"
28f53ec7732299fa946ed3fc27bf691a6ab5c60c,Spatial as Deep: Spatial CNN for Traffic Scene Understanding,"Spatial As Deep: Spatial CNN for Traffic Scene Understanding
Xingang Pan1, Jianping Shi2, Ping Luo1, Xiaogang Wang1, and Xiaoou Tang1
{px117, pluo,
The Chinese University of Hong Kong 2SenseTime Group Limited"
283550fce0fdc0876db5df533625dffdfcd8d099,Fairness-aware scheduling on single-ISA heterogeneous multi-cores,"Fairness-Aware Scheduling on
Single-ISA Heterogeneous Multi-Cores
Kenzo Van Craeynest†◦
Ghent University, Belgium
Shoaib Akram†
Wim Heirman†◦
◦ExaScience Lab, Belgium
Aamer Jaleel‡
Lieven Eeckhout†
VSSAD, Intel Corporation
(e.g.,"
28cd46a078e8fad370b1aba34762a874374513a5,"cvpaper.challenge in 2016: Futuristic Computer Vision through 1, 600 Papers Survey","CVPAPER.CHALLENGE IN 2016, JULY 2017
vpaper.challenge in 2016: Futuristic Computer
Vision through 1,600 Papers Survey
Hirokatsu Kataoka, Soma Shirak-
be, Yun He, Shunya Ueta, Teppei Suzuki, Kaori Abe, Asako Kanezaki, Shin’ichiro
Morita, Toshiyuki Yabe, Yoshihiro Kanehara, Hiroya Yatsuyanagi, Shinya Maruyama, Ryosuke Taka-
sawa, Masataka Fuchida, Yudai Miyashita, Kazushige Okayasu, Yuta Matsuzaki"
28daa489dace2d2f040dcdbbd2d4ab919b046254,2D/3D Pose Estimation and Action Recognition using Multitask Deep Learning,"D/3D Pose Estimation and Action Recognition using Multitask Deep Learning
ETIS UMR 8051, Paris Seine University, ENSEA, CNRS, F-95000, Cergy, France
Sorbonne Universit´e, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris, France
Diogo C. Luvizon1, David Picard1,2, Hedi Tabia1
{diogo.luvizon, picard,"
2805daf3795e4e153d79dbecfe88b830ddc068d3,Articulated human motion tracking with foreground learning,"ARTICULATED HUMAN MOTION TRACKING WITH FOREGROUND LEARNING
Aichun Zhu1, Hichem Snoussi1, Abel Cherouat2
ICD - LM2S - Universit´e de Technologie de Troyes (UTT) - UMR STMR CNRS
ICD - GAMMA3 - Universit´e de Technologie de Troyes (UTT) - UMR STMR CNRS
2 rue Marie Curie - CS 42060 - 10004 Troyes cedex - France
E-mail :{aichun.zhu, hichem.snoussi,"
280d45fb813e75622b7c584ee7fba70066245871,Visual Tracking with Online Incremental Deep Learning and Particle Filter,"International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol.8, No.12 (2015), pp.107-120
http://dx.doi.org/10.14257/ijsip.2015.8.12.12
Visual Tracking with Online Incremental Deep Learning and
Particle Filter
Shuai Cheng 1, Yonggang Cao3,1, Junxi Sun2 and Guangwen Liu1*
School of Electronic Information Engineering, Changchun University of Science
School of Computer Science and information Technology, Northeast Normal
nd Technology, Changchun, China
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of
University, Changchun, China
Sciences, Changchun, China"
2803a7e8e6057d4e9462b37b258e670df61a742d,The Conference on Empirical Methods in Natural Language Processing Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing,"EMNLP2017TheConferenceonEmpiricalMethodsinNaturalLanguageProcessingProceedingsofthe2ndWorkshoponStructuredPredictionforNaturalLanguageProcessingSeptember9-11,2017Copenhagen,Denmark"
28795f32b324eb3601e9a8c1ce93335691e120f3,CliqueCNN: Deep Unsupervised Exemplar Learning,"CliqueCNN: Deep Unsupervised Exemplar Learning
Miguel A. Bautista∗, Artsiom Sanakoyeu∗, Ekaterina Sutter, Björn Ommer
Heidelberg Collaboratory for Image Processing
IWR, Heidelberg University, Germany"
28103f6c09fd64c90a738076b0681400d4d31c9f,Color Invariants for Person Reidentification,"Color Invariants for Person
Re-Identification
Igor Kviatkovsky
Technion - Computer Science Department - M.Sc. Thesis  MSC-2012-03 - 2012"
2891ceceaf586e4ae013d932978074ff0a06801f,Joint statistical analysis of images and keywords with applications in semantic image enhancement,"Joint Statistical Analysis of Images and Keywords with
Applications in Semantic Image Enhancement
Albrecht Lindner
School of Computer and
Communication Sciences
EPFL, Switzerland
Nicolas Bonnier
Océ Print Logic Technologies
Créteil, France
Appu Shaji
School of Computer and
Communication Sciences
EPFL, Switzerland
Sabine Süsstrunk
School of Computer and
Communication Sciences
EPFL, Switzerland"
28d65e4d72638983fbc723b102d78b10587c06aa,Low Resolution Sparse Binary Face Patterns,
28b6adbc5ef790413431cdb2f512432862778b3b,Security and Surveillance,"Security and Surveillance
Shaogang Gong and Chen Change Loy and Tao Xiang"
286c1e0b34ee6d40706ca6a02604420a192204e7,An overview of NuDetective Forensic Tool and its usage to combat child pornography in Brazil,"An overview of NuDetective Forensic Tool and its usage
to combat child pornography in Brazil
Pedro Monteiro da Silva Eleuterio and Mateus de Castro Polastro
Brazilian Federal Police"
28b5b5f20ad584e560cd9fb4d81b0a22279b2e7b,A New Fuzzy Stacked Generalization Technique and Analysis of its Performance,"A New Fuzzy Stacked Generalization Technique
nd Analysis of its Performance
Mete Ozay, Student Member, IEEE, Fatos T. Yarman Vural, Member, IEEE"
28c24f16e20c83c747f2aca8232f2cb6614905f5,The Role of Face Parts in Gender Recognition,"The Role of Face Parts in Gender Recognition
Yasmina Andreu and Ram´on A. Mollineda
Dept. Llenguatges i Sistemes Inform`atics
Universitat Jaume I. Castell´o de la Plana, Spain"
283181a2173b485726664edc6fe73f0465387629,Random Temporal Skipping for Multirate Video Analysis,"Random Temporal Skipping for Multirate Video
Analysis
Yi Zhu1 and Shawn Newsam1
University of California at Merced, Merced CA 95343, USA"
28bc378a6b76142df8762cd3f80f737ca2b79208,Understanding Objects in Detail with Fine-Grained Attributes,"Understanding Objects in Detail with Fine-grained Attributes
Andrea Vedaldi1
Siddharth Mahendran2
Stavros Tsogkas3
Subhransu Maji4
Ross Girshick5
Juho Kannala6
Esa Rahtu6
Matthew B. Blaschko3
David Weiss7
Ben Taskar8
Naomi Saphra2
Sammy Mohamed9
Iasonas Kokkinos3
Karen Simonyan1"
2814d558b4d7425b5dae6b3dbbf5f4a08650fcb1,A joint estimation of head and body orientation cues in surveillance video,"A Joint Estimation of Head and Body Orientation Cues in Surveillance Video
Cheng Chen
Alexandre Heili
Jean-Marc Odobez
Idiap Research Institute – CH-1920, Martigny, Switzerland∗"
28e77337bcb88e37d36f5660709a53e71377a2a8,5 Discriminative Cluster Analysis,",250+OPEN ACCESS BOOKS106,000+INTERNATIONALAUTHORS AND EDITORS112+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Theory and Novel Applications of Machine LearningDownloaded from:http://www.intechopen.com/books/theory_and_novel_applications_of_machine_learningPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at"
2842cebee2793c9b4f503895a32b328b7781b60e,BWIBots: A platform for bridging the gap between AI and human-robot interaction research,"Article
BWIBots: A platform for bridging the
gap between AI and human–robot
interaction research
The International Journal of
Robotics Research
© The Author(s) 2017
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364916688949
journals.sagepub.com/home/ijr
Piyush Khandelwal1, Shiqi Zhang1,2, Jivko Sinapov1, Matteo Leonetti1,3, Jesse Thomason1,
Fangkai Yang4, Ilaria Gori5, Maxwell Svetlik1, Priyanka Khante1, Vladimir Lifschitz1,
J. K. Aggarwal5, Raymond Mooney1 and Peter Stone1"
28af8e1a3cb3a158f8a642c8493fcfb207743d0a,Better Image Segmentation by Exploiting Dense Semantic Predictions,"Better Image Segmentation by Exploiting Dense
Semantic Predictions
Qiyang Zhao, Lewis D Griffin
Beihang University & UCL"
2864c8df356b1b915e16bb285bda64bfd7396f74,3D Face Reconstruction from Stereo: A Model Based Approach,"-4244-1437-7/07/$20.00 ©2007 IEEE
III - 65
ICIP 2007"
2848cde23fe32c30980183f33b6a2c2ce7526726,Three-Dimensional Model-Based Human Detection in Crowded Scenes,"Title
Three-dimensional model-based human detection in crowded
scenes
Author(s)
Wang, L; Yung, NHC
Citation
v. 13 n. 2, p. 691-703
Issued Date
http://hdl.handle.net/10722/155766
Rights
Copyright © IEEE.; ©20xx IEEE. Personal use of this material is
permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new
ollective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.; This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives
.0 International License."
287afb29b5aef6255a5882418b87e6b41cc9b29d,Nude Detection in Video Using Bag-of-Visual-Features,"Nude Detection in Video using Bag-of-Visual-Features
Ana Paula B. Lopes∗†, Sandra E. F. de Avila∗, Anderson N. A. Peixoto∗,
Rodrigo S. Oliveira∗, Marcelo de M. Coelho∗‡ and Arnaldo de A. Ara´ujo∗
Computer Science Department, Federal University of Minas Gerais – UFMG
Exact and Technological Sciences Department, State University of Santa Cruz – UESC
1270–010, Belo Horizonte, MG, Brazil
5662–000, Ilh´eus, BA, Brazil
Preparatory School of Air Cadets – EPCAR
6205–900, Barbacena, MG, Brazil
{paula, sandra, andenap, rsilva, mcoelho,"
28bcf31f794dc27f73eb248e5a1b2c3294b3ec9d,Improved Combination of LBP plus LFDA for Facial Expression Recognition using SRC,"International Journal of Computer Applications (0975 – 8887)
Volume 96– No.13, June 2014
Improved Combination of LBP plus LFDA for Facial
Expression Recognition using SRC
Ritesh Bora
Research Scholar, CSE Department,
Government College of Engineering, Aurangabad
human
facial
expression
recognition"
288bddfabe739b32721df62d821632e3dafed06a,Robust multi-image based blind face hallucination,"Robust Multi-Image Based Blind Face Hallucination
Yonggang Jin, 2Christos-Savvas Bouganis
University of Bristol. 2Imperial College London.
1.56 0.73
3.15 0.80
3.61 0.82
3.32 0.80
3.98 0.83
3.63 0.82
PCA-Init
PCA-Est
PCA-GT
MPPCA-Est MPPCA-GT
Methods
Blurring
Trans.
9.67
Initial
9.52
[1, 5]"
2830fb5282de23d7784b4b4bc37065d27839a412,Poselets: Body part detectors trained using 3D human pose annotations,"Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations ∗
Lubomir Bourdev1,2 and Jitendra Malik1
EECS, U.C. Berkeley, Berkeley, CA 94720
Adobe Systems, Inc., 345 Park Ave, San Jose, CA 95110"
28fe6e785b32afdcd2c366c9240a661091b850cf,Facial Expression Recognition using Patch based Gabor Features,"International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 – No.7, March 2016 – www.ijais.org
Facial Expression Recognition using Patch based Gabor
Features
Electronics & Telecommunication Engg
Electronics & Telecommunication Engg
St. Francis Institute of Technology
St. Francis Institute of Technology
Vaqar Ansari
Department
Mumbai, India
Anju Chandran
Department
Mumbai, India"
28e1c113b1b57e0731c189d28e404cea3bddf260,Template based Mole Detection for Face,"is  used
recognition"
28c9198d30447ffe9c96176805c1cd81615d98c8,No evidence that a range of artificial monitoring cues influence online donations to charity in an MTurk sample,"rsos.royalsocietypublishing.org
Research
Cite this article: Saunders TJ, Taylor AH,
Atkinson QD. 2016 No evidence that a range of
rtificial monitoring cues influence online
donations to charity in an MTurk sample.
R. Soc. open sci. 3: 150710.
http://dx.doi.org/10.1098/rsos.150710
Received: 22 December 2015
Accepted: 13 September 2016
Subject Category:
Psychology and cognitive neuroscience
Subject Areas:
ehaviour/psychology/evolution
Keywords:
prosociality, eye images, charity donation,
reputation, online behaviour
Author for correspondence:
Quentin D. Atkinson
e-mail:"
284b5dafe6d8d7552794ccd2efb4eabb12dc3512,Efficient and accurate inversion of multiple scattering with deep learning,"Efficient and accurate inversion of multiple scattering with deep learning
Yu Sun1, Zhihao Xia1, and Ulugbek S. Kamilov1,2,∗
Department of Computer Science and Engineering, Washington University in St. Louis, MO 63130, USA.
Department of Electrical and Systems Engineering, Washington University in St. Louis, MO 63130, USA.
email:"
28446fa9d9ac0468cc715594a6dcc0ac5d9288a5,Semantic Instance Segmentation for Autonomous Driving Bert,"Semantic Instance Segmentation for Autonomous Driving
Bert De Brabandere
Davy Neven
Luc Van Gool
ESAT-PSI, KU Leuven"
2866cbeb25551257683cf28f33d829932be651fe,A Two-Step Learning Method For Detecting Landmarks on Faces From Different Domains,"In Proceedings of the 2018 IEEE International Conference on Image Processing (ICIP)
The final publication is available at: http://dx.doi.org/10.1109/ICIP.2018.8451026
A TWO-STEP LEARNING METHOD FOR DETECTING LANDMARKS
ON FACES FROM DIFFERENT DOMAINS
Bruna Vieira Frade
Erickson R. Nascimento
Universidade Federal de Minas Gerais (UFMG), Brazil
{brunafrade,"
28589357a7631581e55ec6db3cde2e24e4789482,Involuntary processing of social dominance cues from bimodal face-voice displays.,"Cognition and Emotion
ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20
Involuntary processing of social dominance cues
from bimodal face-voice displays
Virginie Peschard, Pierre Philippot & Eva Gilboa-Schechtman
To cite this article: Virginie Peschard, Pierre Philippot & Eva Gilboa-Schechtman (2016):
Involuntary processing of social dominance cues from bimodal face-voice displays, Cognition and
Emotion, DOI: 10.1080/02699931.2016.1266304
To link to this article:  http://dx.doi.org/10.1080/02699931.2016.1266304
Published online: 21 Dec 2016.
Submit your article to this journal
Article views: 33
View related articles
View Crossmark data
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=pcem20
Download by: [UCL Service Central des Bibliothèques]
Date: 25 April 2017, At: 23:38"
281be1be2f0ecce173e3678a7e87419f0815e016,Studies of Plain-to-Rolled Fingerprint Matching Using the NIST Algorithmic Test Bed (ATB),"Studies of Plain-to-Rolled Fingerprint
Matching Using the NIST
Algorithmic Test Bed (ATB)
NISTIR 7112
Stephen S. Wood
Charles L. Wilson
April 2004"
28eceb438da0b841bbd3d02684dbfa263838ed60,Photographic Image Synthesis with Cascaded Refinement Networks,"Photographic Image Synthesis with Cascaded Refinement Networks
Qifeng Chen† ‡
Vladlen Koltun†
(a) Input semantic layouts
(b) Synthesized images
Figure 1. Given a pixelwise semantic layout, the presented model synthesizes an image that conforms to this layout. (a) Semantic layouts
from the Cityscapes dataset of urban scenes; semantic classes are coded by color. (b) Images synthesized by our model for these layouts.
The layouts shown here and throughout the paper are from the validation set and depict scenes from new cities that were never seen during
training. Best viewed on the screen."
28f5f8dc2f2f9f2a4e49024fe6aa7e9a63b23ab0,Vision-based bicycle detection and tracking using a deformable part model and an EKF algorithm,"Vision-based Bicycle Detection and Tracking using a Deformable Part
Model and an EKF Algorithm
Hyunggi Cho, Paul E. Rybski and Wende Zhang"
28aa89b2c827e5dd65969a5930a0520fdd4a3dc7,Characterization and Classification of Faces across Age Progression,
283b3160f02db64759259b4eb39dd54c4969d6f8,ActivityNet: A large-scale video benchmark for human activity understanding,"ActivityNet: A Large-Scale Video Benchmark for Human Activity
Understanding
Fabian Caba Heilbron1,2, Victor Escorcia1,2, Bernard Ghanem2 and Juan Carlos Niebles1
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
Universidad del Norte, Colombia"
28b061b5c7f88f48ca5839bc8f1c1bdb1e6adc68,Predicting User Annoyance Using Visual Attributes,"Predicting User Annoyance Using Visual Attributes
Gordon Christie
Virginia Tech
Amar Parkash
Goibibo
Ujwal Krothapalli
Virginia Tech
Devi Parikh
Virginia Tech"
28f1f6cbe07b117387e2b07c11e7ac9c4ef8cf95,A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data,"Article
A Machine Learning Approach to Pedestrian
Detection for Autonomous Vehicles Using
High-Definition 3D Range Data
Pedro J. Navarro *,†, Carlos Fernández †, Raúl Borraz † and Diego Alonso †
División de Sistemas en Ingeniería Electrónica (DSIE), Universidad Politécnica de Cartagena,
Campus Muralla del Mar, s/n, Cartagena 30202, Spain; (C.F.);
(R.B.); (D.A.)
* Correspondence: Tel.: +34-968-32-6546
These authors contributed equally to this work.
Academic Editor: Felipe Jimenez
Received: 31 October 2016; Accepted: 15 December 2016; Published: 23 December 2016"
1701ee9e9518a055e82e79f6425645c4797c19de,Supervised Hashing Using Graph Cuts and Boosted Decision Trees,"APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015
Supervised Hashing Using Graph Cuts and
Boosted Decision Trees
Guosheng Lin, Chunhua Shen, Anton van den Hengel"
17a85799c59c13f07d4b4d7cf9d7c7986475d01c,Extending Procrustes Analysis: Building Multi-view 2-D Models from 3-D Human Shape Samples,"ADVERTIMENT.  La  consulta  d’aquesta  tesi  queda  condicionada  a  l’acceptació  de  les  següents
ondicions  d'ús:  La  difusió  d’aquesta  tesi  per  mitjà  del  servei  TDX  (www.tesisenxarxa.net)  ha
estat  autoritzada  pels  titulars  dels  drets  de  propietat  intel·lectual  únicament  per  a  usos  privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació  del  seu  contingut  en  una  finestra  o  marc  aliè  a  TDX  (framing).  Aquesta  reserva  de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
ondiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
on finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta  reserva  de  derechos  afecta  tanto  al  resumen  de  presentación  de  la  tesis  como  a  sus
ontenidos.  En  la  utilización  o  cita  de  partes  de  la  tesis  es  obligado  indicar  el  nombre  de  la
persona autora.
WARNING.  On  having  consulted  this  thesis  you’re  accepting  the  following  use  conditions:
Spreading  this  thesis  by  the  TDX  (www.tesisenxarxa.net)  service  has  been  authorized  by  the
titular of the intellectual property rights only for private uses placed in investigation and teaching"
174ddb6379b91a0e799e9988d0e522a5af18f91d,ChatPainter: Improving Text to Image Generation using Dialogue,"ChatPainter: Improving Text to Image Generation using Dialogue
Shikhar Sharma 1 Dendi Suhubdy 2 3 Vincent Michalski 2 3 1 Samira Ebrahimi Kahou 1 Yoshua Bengio 2 3"
17c62bff70eb0919864f111df4930062aded729a,Encoding Spatial Context in Local Image Descriptors,"Universit¨at des Saarlandes
Max-Planck-Institut f¨ur Informatik
Encoding Spatial Context in
Local Image Descriptors
Masterarbeit im Fach Informatik
Master’s Thesis in Computer Science
von / by
Dushyant Mehta
ngefertigt unter der Leitung von / supervised by
Dr. Roland Angst
etreut von / advised by
Dr. Roland Angst
egutachtet von / reviewers
Dr. Roland Angst
Prof. Dr. Joachim Weickert
Saarbr¨ucken, February 28, 2016"
17dea513763c57dcd0e62085045fb5be6770c600,"Dynamic thread mapping for high-performance, power-efficient heterogeneous many-core systems","Summary: Dynamic Thread Mapping for High-Performance, Power-Efficient
Heterogeneous Many-core Systems
Guangshuo Liu, Jinpyo Park, Diana Marculescu
I. OVERVIEW
throughput
for  maximizing
This  paper  investigates  about  the  problem  of  dynamic  thread
mapping  in  heterogeneous  many-core  systems  via  an  efficient
lgorithm that maximizes performance under power constraints.
The  approach  is  to  formulate  the  mapping  problem  as  a  0-1
integer  linear  program  (ILP),  given  any  numbers  of  threads,
ores  and  type  of  cores.  An  iterative  O(n2/m)  heuristic-based
lgorithm  for  solving  the  0-1  ILP  thread  mapping  is  proposed,
thereby providing, a novel scalable approach for effective thread
mapping
on  many-core
heterogeneous systems.
The paper considers multi-threaded workloads and assumes that
each  core  runs  at  most  one  thread  at  a  time  thereby  supporting
single  threaded  execution,  without  simultaneous  multithreading"
1748867e04ba16673ec5231f6a2ca0ae03835658,Fast Exact Search in Hamming Space With Multi-Index Hashing,"Fast Exact Search in Hamming Space
with Multi-Index Hashing
Mohammad Norouzi, Ali Punjani, David J. Fleet,
{norouzi, alipunjani,"
17cf838720f7892dbe567129dcf3f7a982e0b56e,Global-Local Face Upsampling Network,"Global-Local Face Upsampling Network
Oncel Tuzel
Yuichi Taguchi
John R. Hershey
Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA"
17257fc03b611315ae49bd53d229188b889002e6,Hard Negative Mining for Metric Learning Based Zero-Shot Classification,"Hard Negative Mining for
Metric Learning Based Zero-Shot Classification
Maxime Bucher1,2, St´ephane Herbin1, Fr´ed´eric Jurie2
ONERA - The French Aerospace Lab, Palaiseau, France
Normandie Univ, UNICAEN, ENSICAEN, CNRS, Caen, France"
178a82e3a0541fa75c6a11350be5bded133a59fd,BioHDD: a dataset for studying biometric identification on heavily degraded data,"Techset Composition Ltd, Salisbury
{IEE}BMT/Articles/Pagination/BMT20140045.3d
www.ietdl.org
Received on 15th July 2014
Revised on 17th September 2014
Accepted on 23rd September 2014
doi: 10.1049/iet-bmt.2014.0045
ISSN 2047-4938
BioHDD: a dataset for studying biometric
identification on heavily degraded data
Gil Santos1, Paulo T. Fiadeiro2, Hugo Proença1
Department of Computer Science, IT – Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal
Department of Physics, Remote Sensing Unit – Optics, Optometry and Vision Sciences Group, University of Beira Interior,
Covilhã, Portugal
E-mail:"
171d7762137725839fe5292901fe90d91b74811d,SLAM Algorithm by using Global Appearance of Omnidirectional Images,
174cd8e98f17b3f5bda1c8e16cb39e3dec800f74,Multi-scale Context Intertwining for Semantic Segmentation,"Multi-Scale Context Intertwining
for Semantic Segmentation
Di Lin1, Yuanfeng Ji1, Dani Lischinski2, Daniel Cohen-Or1,3, and Hui Huang1(cid:63)
Shenzhen University 2The Hebrew University of Jerusalem 3Tel Aviv University"
17c0094c68d6efd19b80287c51d228fa50750f46,An efficient partial face detection method using AlexNet CNN,"SSRG International Journal of Electronics and Communication Engineering - (ICRTECITA-2017) - Special Issue - March 2017
An efficient partial face detection method using
AlexNet CNN
Prof Mr.Sivalingam.T, S.Kabilan ,
Dhanabal.M ,Arun.R ,Chandrabhagavan.K
V.S.B Engineering College,Karur"
177c48590469c62d430cf74fee7b5bd28bfbbc1d,Articulated Motion Learning via Visual and Lingual Signals,"Learning Articulated Motion Models from Visual and Lingual Signals
Zhengyang Wu
Georgia Tech
Atlanta, GA 30332
Mohit Bansal
TTI-Chicago
Chicago, IL 60637
Matthew R. Walter
TTI-Chicago
Chicago, IL 60637"
1740a0732e8e308f5dd395313313cc3289666f13,Preference-Aware View Recommendation System for Cameras Based on Bag of Aesthetics-Preserving Features,"Transactions on Multimedia
Page 22 of 32
Preference-Aware View Recommendation System
for Cameras Based on Bag of
Aesthetics-Preserving Features
Hsiao-Hang Su, Tse-Wei Chen, Member, IEEE, Chieh-Chi Kao, Winston H. Hsu, Member, IEEE,
nd Shao-Yi Chien*, Member, IEEE"
17ff59bb388b155f613f7566ba7cd71ec780cdec,Asymmetric Sparse Kernel Approximations for Large-Scale Visual Search,"Asymmetric sparse kernel approximations
for large-scale visual search
Damek Davis
University of California
Los Angeles, CA 90095
Jonathan Balzer
University of California
Los Angeles, CA 90095
Stefano Soatto
University of California
Los Angeles, CA 90095"
17dd242e6d7afb5d7fafcf9f8e8b201573ce4b89,An Extensive Review on Spectral Imaging in Biometric Systems: Challenges and Advancements,"An Extensive Review on Spectral Imaging in Biometric Systems: Challenges &
Advancements
Rumaisah Munira,∗, Rizwan Ahmed Khana,b,∗∗
Faculty of IT, Barrett Hodgson University, Karachi, Pakistan.
LIRIS, Universite Claude Bernard Lyon1, France."
17635e22a73da3ff60a72715b7dd8837de6fee89,The ABBA study – approach bias modification in bulimia nervosa and binge eating disorder: study protocol for a randomised controlled trial,"Brockmeyer et al. Trials  (2016) 17:466
DOI 10.1186/s13063-016-1596-6
ST UD Y P R O T O C O L
Open Access
The ABBA study – approach bias
modification in bulimia nervosa and binge
eating disorder: study protocol for a
randomised controlled trial
Timo Brockmeyer1,2*, Ulrike Schmidt2 and Hans-Christoph Friederich1,3"
17daa9ddaf524de914e7440157fc0314db171884,Data driven analysis of faces from images,"Data Driven Analysis
of Faces from Images
Dissertation zur Erlangung des Grades „Doktor der Ingenieurwissenschaften (Dr.-Ing.)”
der Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes
Kristina Scherbaum
8.05.2013
Universität des Saarlandes | Max-Planck-Institut für Informatik
Saarbrücken – Germany"
17a995680482183f3463d2e01dd4c113ebb31608,Structured Label Inference for Visual Understanding,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z
Structured Label Inference for
Visual Understanding
Nelson Nauata, Hexiang Hu, Guang-Tong Zhou, Zhiwei Deng,
Zicheng Liao and Greg Mori"
17a9db524ddbeb5577a94924c2a7cca048dd19f9,Object Recognition with Multi-Scale Pyramidal Pooling Networks,"Object Recognition with Multi-Scale Pyramidal
Pooling Networks
Jonathan Masci1, Ueli Meier1, Gabriel Fricout2, and J¨urgen Schmidhuber1
IDSIA – USI – SUPSI, Manno – Lugano, Switzerland,
http://idsia.ch/~masci/
ArcelorMittal, Maizi`eres Research, Measurement and Control Dept., France"
17db741725b9f8406f69b27a117e99bee1a9a323,Person Re-identification with a Body Orientation-Specific Convolutional Neural Network,"Person Re-identification with a Body
Orientation-Specific Convolutional Neural Network
Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla
Baskurt
To cite this version:
Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla Baskurt. Person Re-
identification with a Body Orientation-Specific Convolutional Neural Network. Advanced Concepts
for Intelligent Vision systems, Sep 2018, Poitiers, France. <hal-01895374>
HAL Id: hal-01895374
https://hal.archives-ouvertes.fr/hal-01895374
Submitted on 15 Oct 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,"
1742ffea0e1051b37f22773613f10f69d2e4ed2c,Interactive Mirror for Smart Home,
174b6d661b96840e27cd9435c2dbb8e538b2c8a6,Progressive Representation Adaptation for Weakly Supervised Object Localization,"Progressive Representation Adaptation for
Weakly Supervised Object Localization
Dong Li, Jia-Bin Huang, Yali Li, Shengjin Wang(cid:63) and Ming-Hsuan Yang"
17d84ca10607442a405f3c4c8b4572bdd79801c2,Expression robust 3D face recognition via mesh-based histograms of multiple order surface differential quantities,"EXPRESSION ROBUST 3D FACE RECOGNITION VIA MESH-BASED HISTOGRAMS OF
MULTIPLE ORDER SURFACE DIFFERENTIAL QUANTITIES
Huibin Li1,2, Di Huang1,2, Pierre Lemaire1,2, Jean-Marie Morvan1,3,4, Liming Chen1,2
Universit´e de Lyon, CNRS
Ecole Centrale de Lyon, LIRIS UMR5205, F-69134, Lyon, France
Universit´e Lyon 1, Institut Camille Jordan,
3 blvd du 11 Novembre 1918, F-69622 Villeurbanne - Cedex, France
King Abdullah University of Science and Technology, GMSV Research Center,
Bldg 1, Thuwal 23955-6900, Saudi Arabia"
17ad76ef00d4cb584389682ca6b138a8bdc9a2da,Continuous Multimodal Emotion Recognition Approach for AVEC 2017,"Continuous Multimodal Emotion Recognition
Approach for AVEC 2017
Narotam Singh*, Nittin Singh†, Abhinav Dhall‡
Department of Computer Science and Engineering, Indian Institute of Technology Ropar
Email:
India"
174930cac7174257515a189cd3ecfdd80ee7dd54,Multi-view Face Detection Using Deep Convolutional Neural Networks,"Multi-view Face Detection Using Deep Convolutional
Neural Networks
Sachin Sudhakar Farfade
Yahoo
Mohammad Saberian
inc.com
Yahoo
Li-Jia Li
Yahoo"
1750db78b7394b8fb6f6f949d68f7c24d28d934f,Detecting Facial Retouching Using Supervised Deep Learning,"Detecting Facial Retouching Using Supervised
Deep Learning
Aparna Bharati, Richa Singh, Senior Member, IEEE, Mayank Vatsa, Senior Member, IEEE, Kevin W.
Bowyer, Fellow, IEEE"
17e769ef3d86e74c21f2616c7f7a6f20a4e2fbaa,Bag of Machine Learning Concepts for Visual Concept Recognition in Images,"Bag of Machine Learning Concepts for
Visual Concept Recognition in Images
vorgelegt vom
Diplom-Mathematiker
Alexander Binder
us Berlin
von der Fakult¨at IV – Elektrotechnik und Informatik
der Technischen Universit¨at Berlin
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
– Dr. rer. nat. –
genehmigte Dissertation
Promotionsausschuss:
Vorsitzender:
. Gutachter:
. Gutachter:
. Gutachter:
Prof. Dr. Olaf Hellwich
Prof. Dr. Klaus-Robert M¨uller
Prof. Dr. Volker Tresp"
173657da03e3249f4e47457d360ab83b3cefbe63,HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report,"HKU-Face: A Large Scale Dataset for
Deep Face Recognition
Final Report
Haicheng Wang
035140108
COMP4801 Final Year Project
Project Code: 17007"
177cbeb83c3a0868b9a5c75cd74edf4b972cba80,Exact Primitives for Time Series Data Mining,"UNIVERSITY OF CALIFORNIA
RIVERSIDE
Exact Primitives for Time Series Data Mining
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Computer Science
Abdullah Al Mueen
March 2012
Dissertation Committee:
Dr. Eamonn Keogh, Chairperson
Dr. Vassilis Tsotras
Dr. Stefano Lonardi"
7b0e81249159686337ca2cfe81662123906b6b26,An Automatic Eye Detection Method for Gray Intensity Facial Images,"IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org
An Automatic Eye Detection Method for Gray Intensity Facial
Images
M. Hassaballah1,2 , Kenji Murakami1, Shun Ido1
Department of Computer Science, Ehime University, 790-8577, Japan
Department of Mathematics, Faculty of Science, South Valley University, Qena, 83523, Egypt"
7be6fe8c58ca12974c563689b7230b933dfca432,Design of Radial Basis Function Network as Classifier in Face Recognition Using Eigenfaces,"SBRN’98 – Simpósio Brasileiro de Redes Neurais, Belo Horizonte, Minas Gerais, dezembro de 1998.
Design of Radial Basis Function Network as Classifier in Face Recognition Using
Eigenfaces
Carlos Eduardo Thomaz
Raul Queiroz Feitosa
Álvaro Veiga
PUC RJ- Pontifícia Universidade Católica do Rio de Janeiro
Departamento de Engenharia Elétrica
Rua Marquês de São Vicente, 225, 22453-900 Rio de Janeiro, RJ, Brasil"
7bd6d0bca27ff68621acd10d6d1709f084f97602,Learning to Detect and Track Visible and Occluded Body Joints in a Virtual World,"Learning to Detect and Track Visible and
Occluded Body Joints in a Virtual World
Matteo Fabbri(cid:63), Fabio Lanzi(cid:63), Simone Calderara(cid:63), Andrea Palazzi, Roberto
Vezzani, and Rita Cucchiara
Department of Engineering “Enzo Ferrari”
University of Modena and Reggio Emilia, Italy"
7bbaa09c9e318da4370a83b126bcdb214e7f8428,"FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing and HPC","FaaSter, Better, Cheaper: The Prospect of
Serverless Scientific Computing and HPC
Josef Spillner1, Cristian Mateos2, and David A. Monge3
Zurich University of Applied Sciences, School of Engineering
Service Prototyping Lab (blog.zhaw.ch/icclab/), 8401 Winterthur, Switzerland
ISISTAN Research Institute - CONICET - UNICEN
Campus Universitario, Paraje Arroyo Seco, Tandil (7000), Buenos Aires, Argentina
ITIC Research Institute, National University of Cuyo
Padre Jorge Contreras 1300, M5502JMA Mendoza, Argentina"
7b8aa3ebeae17e5266dac23e87f603a5d5f7b1e3,Open Set Logo Detection and Retrieval,"Open Set Logo Detection and Retrieval
Andras T¨uzk¨o1, Christian Herrmann1,2, Daniel Manger1, J¨urgen Beyerer1,2
Fraunhofer IOSB, Karlsruhe, Germany
Karlsruhe Institute of Technology KIT, Vision and Fusion Lab, Karlsruhe, Germany
Keywords:
Logo Detection, Logo Retrieval, Logo Dataset, Trademark Retrieval, Open Set Retrieval, Deep Learning."
7b1af8cc9c2c43fa9d528bcfb05142d714df3700,"Modeling Shape, Appearance and Motion for Human Movement Analysis",
7b6f0c4b22aee0cb4987cba9df121d4076fac5a5,On Learning 3D Face Morphable Model from In-the-wild Images,"On Learning 3D Face Morphable Model
from In-the-wild Images
Luan Tran, and Xiaoming Liu, Member, IEEE"
7b9a5d9d7386d47c51cb473f6338988bd6e9f2b1,An Individual-Specific Strategy for Management of Reference Data in Adaptive Ensembles for Person Re-Identification,"An Individual-Specific Strategy for Management of Reference Data
in Adaptive Ensembles for Person Re-Identification
Miguel De-la-Torre*†, Eric Granger*, Robert Sabourin*, Dmitry O. Gorodnichy‡
* ´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montr´eal, Canada,
Centro Universitario de Los Valles, Universidad de Guadalajara, Ameca, M´exico
Science and Engineering Directorate, Canada Border Services Agency, Ottawa, Canada,
Keywords: Multi-Classifier Systems; Adaptive Biometrics; Face
Recognition; Video Surveillance; Person Re-Identification"
7ba6ac1b769ad7098037c07a5b7399fe9d97fcc8,Moving Object Detection in Heterogeneous Conditions in Embedded Systems,"Article
Moving Object Detection in Heterogeneous
Conditions in Embedded Systems
Alessandro Garbo and Stefano Quer *
Dipartimento di Automatica ed Informatica, Politecnico di Torino, 10129 Torino, Italy;
* Correspondence: Tel.: +39-011-090-7076
Received: 25 May 2017; Accepted: 27 June 2017; Published: 1 July 2017"
7b9961094d3e664fc76b12211f06e12c47a7e77d,Bridging biometrics and forensics,"Bridging Biometrics and Forensics
Yanjun Yan and Lisa Ann Osadciw
EECS, Syracuse University, Syracuse, NY, USA
{yayan,"
7b67c38a6f49e02c03e1cea98146a506f607b0d7,Using Facial Symmetry to Handle Pose Variations in Real-World 3D Face Recognition,"Using Facial Symmetry to Handle Pose
Variations in Real-World 3D Face Recognition
Georgios Passalis1,2, Panagiotis Perakis1,2, Theoharis Theoharis1,2
nd Ioannis A. Kakadiaris2, Senior Member, IEEE"
7b9b3794f79f87ca8a048d86954e0a72a5f97758,Passing an Enhanced Turing Test - Interacting with Lifelike Computer Representations of Specific Individuals,"DOI 10.1515/jisys-2013-0016      Journal of Intelligent Systems 2013; 22(4): 365–415
Avelino J. Gonzalez*, Jason Leigh, Ronald F. DeMara, Andrew
Johnson, Steven Jones, Sangyoon Lee, Victor Hung, Luc
Renambot, Carlos Leon-Barth, Maxine Brown, Miguel Elvir,
James Hollister and Steven Kobosko
Passing an Enhanced Turing Test –
Interacting with Lifelike Computer
Representations of Specific Individuals"
7bce4f4e85a3bfcd6bfb3b173b2769b064fce0ed,A Psychologically-Inspired Match-Score Fusion Model for Video-Based Facial Expression Recognition,"A Psychologically-Inspired Match-Score Fusion Model
for Video-Based Facial Expression Recognition
Albert Cruz, Bir Bhanu, Songfan Yang,
VISLab, EBUII-216, University of California Riverside,
Riverside, California, USA, 92521-0425
{acruz, bhanu,"
7b8e9c50f74ce6ca66a8ab61fb18ca31d26cf13f,Nonlinear Channels Aggregation Networks for Deep Action Recognition,"Under review as a conference paper at ICLR 2019
Nonlinear Channels Aggregation Networks
for Deep Action Recognition
Anonymous authors
Paper under double-blind review"
7b0f1fc93fb24630eb598330e13f7b839fb46cce,Learning to Find Eye Region Landmarks for Remote Gaze Estimation in Unconstrained Settings,"Learning to Find Eye Region Landmarks for Remote Gaze
Estimation in Unconstrained Settings
Seonwook Park
ETH Zurich
Xucong Zhang
MPI for Informatics
Andreas Bulling
MPI for Informatics
Otmar Hilliges
ETH Zurich"
7bdcd85efd1e3ce14b7934ff642b76f017419751,Learning Discriminant Face Descriptor,"Learning Discriminant Face Descriptor
Zhen Lei, Member, IEEE, Matti Pietika¨ inen, Fellow, IEEE, and Stan Z. Li, Fellow, IEEE"
7b47ca13af16bdc1f4b88e9b68dd3ea52d959199,Online nonparametric discriminant analysis for incremental subspace learning and recognition,"Pattern Anal Applic (2008) 11:259–268
DOI 10.1007/s10044-008-0131-0
T H E O R E T I C A L A D V A N C E S
Online nonparametric discriminant analysis for incremental
subspace learning and recognition
B. Raducanu Æ J. Vitria`
Received: 15 December 2006 / Accepted: 20 January 2008 / Published online: 24 July 2008
Ó Springer-Verlag London Limited 2008"
7bcd98ee2df3d14eae7bbed713208cb7da7b5db0,Unsupervised data association for metric learning in the context of multi-shot person re-identification,"Unsupervised data association for Metric Learning in the context of Multi-shot
Person Re-identification
Furqan M. Khan, Francois Bremond
INRIA Sophia Antipolis-Mediterrannee
004 Route des Lucioles, Sophia Antipolis Cedex, France
{furqan.khan |"
7b66dababebd800e95d23a1fde299d44a52e98ed,Dual Recurrent Attention Units for Visual Question Answering,"Under review for Computer Vision and Image Understanding
DRAU: Dual Recurrent Attention Units for Visual Question Answering
Ahmed Osmana,, Wojciech Sameka,
Fraunhofer Heinrich Hertz Institute, Einsteinufer 37, Berlin 10587, Germany"
7b331c80a91acf3616afd88e78801ac55c874f43,Multiple Player Tracking in Sports Video: A Dual-Mode Two-Way Bayesian Inference Approach With Progressive Observation Modeling,"Multiple Player Tracking in Sports Video: A
Dual-Mode Two-Way Bayesian Inference Approach
With Progressive Observation Modeling
Junliang Xing, Student Member, IEEE, Haizhou Ai, Senior Member, IEEE, Liwei Liu, and
Shihong Lao, Member, IEEE"
7b9ebcc8b9c05ef661182fe73438b7725584817d,Restoring effects of oxytocin on the attentional preference for faces in autism,"Citation: Transl Psychiatry (2017) 7, e1097; doi:10.1038/tp.2017.67
www.nature.com/tp
ORIGINAL ARTICLE
Restoring effects of oxytocin on the attentional preference
for faces in autism
M Kanat1,2, I Spenthof1,3, A Riedel4, LT van Elst2,4, M Heinrichs1,2 and G Domes1,2,3
Reduced attentional preference for faces and symptoms of social anxiety are common in autism spectrum disorders (ASDs). The
neuropeptide oxytocin triggers anxiolytic functions and enhances eye gaze, facial emotion recognition and neural correlates of face
processing in ASD. Here we investigated whether a single dose of oxytocin increases attention to faces in ASD. As a secondary
question, we explored the influence of social anxiety on these effects. We tested for oxytocin’s effects on attention to neutral faces
s compared to houses in a sample of 29 autistic individuals and 30 control participants using a dot-probe paradigm with two
different presentation times (100 or 500 ms). A single dose of 24 IU oxytocin was administered in a randomized, double-blind
placebo-controlled, cross-over design. Under placebo, ASD individuals paid less attention to faces presented for 500 ms than did
ontrols. Oxytocin administration increased the allocation of attention toward faces in ASD to a level observed in controls.
Secondary analyses revealed that these oxytocin effects primarily occurred in ASD individuals with high levels of social anxiety who
were characterized by attentional avoidance of faces under placebo. Our results confirm a positive influence of intranasal oxytocin
on social attention processes in ASD. Further, they suggest that oxytocin may in particular restore the attentional preference for
facial information in ASD individuals with high social anxiety. We conclude that oxytocin’s anxiolytic properties may partially
ccount for its positive effects on socio-cognitive functioning in ASD, such as enhanced eye gaze and facial emotion recognition.
Translational Psychiatry (2017) 7, e1097; doi:10.1038/tp.2017.67; published online 18 April 2017"
7b3b7769c3ccbdf7c7e2c73db13a4d32bf93d21f,"On the design and evaluation of robust head pose for visual user interfaces: algorithms, databases, and comparisons","On the Design and Evaluation of Robust Head Pose for
Visual User Interfaces: Algorithms, Databases, and
Comparisons
Sujitha Martin
Laboratory of Intelligent and
Safe Automobiles
UCSD - La Jolla, CA, USA
Ashish Tawari
Laboratory of Intelligent and
Safe Automobiles
UCSD - La Jolla, CA, USA
Erik Murphy-Chutorian
Laboratory of Intelligent and
Safe Automobiles
UCSD - La Jolla, CA, USA
Shinko Y. Cheng
Laboratory of Intelligent and
Safe Automobiles
UCSD - La Jolla, CA, USA
Mohan Trivedi"
7b358ed87f39a12d737070dc22b4c547ce378648,Color Features for Boosted Pedestrian Detection,"Institutionen för systemteknik
Department of Electrical Engineering
Examensarbete
Color Features for Boosted Pedestrian Detection
Examensarbete utfört i Datorseende
vid Tekniska högskolan vid Linköpings universitet
Niklas Hansson
LiTH-ISY-EX--15/4899--SE
Linköping 2015
Department of Electrical Engineering
Linköpings universitet
SE-581 83 Linköping, Sweden
Linköpings tekniska högskola
Linköpings universitet
581 83 Linköping"
7b2e0c87aece7ff1404ef2034d4c5674770301b2,Discriminative Feature Learning with Foreground Attention for Person Re-Identification,"Discriminative Feature Learning with Foreground
Attention for Person Re-Identification
Sanping Zhou, Jinjun Wang, Deyu Meng, Yudong Liang, Yihong Gong, Nanning Zheng"
7b522c5d6d2d0699c4183a543b8e65b1a66d9e74,Understanding Critical Factors in Appearance-Based Gender Categorization,"Understanding Critical Factors in
Appearance-based Gender Categorization
Enrico Grosso, Andrea Lagorio, Luca Pulina, and Massimo Tistarelli
POLCOMING – University of Sassari
Viale Mancini, 5 – 07100 Sassari, Italy"
7b07a87ff71b85f3493d1944034a960917b8482f,Alternating BackPropagation for Generator Network,"Alternating Back-Propagation for Generator Network
Tian Han†, Yang Lu†, Song-Chun Zhu, and Ying Nian Wu
Department of Statistics, University of California, Los Angeles, USA"
7b95bd44db15f7cf20bfc051c353841f3fcea383,Low-Complexity Face Recognition using a Multilevel DWT and Two States of Continuous HMM to recognize Noisy Images,"Low-Complexity Face Recognition using a
Multilevel DWT and Two States of
Continuous HMM to recognize Noisy
Images
Hameed R. Farhan1, Mahmuod H. Al-Muifraje2, Thamir R. Saeed2
Department of Electrical and Electronic Engineering, University of Kerbala, Kerbala, Iraq
Department of Electrical Engineering, University of Technology, Baghdad, Iraq"
7b83867b7f79cbfbfc71996bcf07fe7ee7a7600c,Object detection through search with a foveated visual system,"Object Detection Through Exploration With A
Foveated Visual Field
Emre Akbas, Miguel P. Eckstein"
8f9fa03690428cde478f1a27d4773f78d857b88f,Visual Recognition using Embedded Feature Selection for Curvature Self-Similarity,"Visual Recognition using Embedded Feature
Selection for Curvature Self-Similarity
Angela Eigenstetter
HCI & IWR, University of Heidelberg
Bj¨orn Ommer
HCI & IWR, University of Heidelberg"
8f6d05b8f9860c33c7b1a5d704694ed628db66c7,Non-linear dimensionality reduction and sparse representation models for facial analysis. (Réduction de la dimension non-linéaire et modèles de la représentations parcimonieuse pour l'analyse du visage),"Non-linear dimensionality reduction and sparse
representation models for facial analysis
Yuyao Zhang
To cite this version:
Yuyao Zhang. Non-linear dimensionality reduction and sparse representation models for facial analysis.
Medical Imaging. INSA de Lyon, 2014. English. <NNT : 2014ISAL0019>. <tel-01127217>
HAL Id: tel-01127217
https://tel.archives-ouvertes.fr/tel-01127217
Submitted on 7 Mar 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
8f05c4c1b3c1ad31ec95ccb87bca24a884b5ad4c,Overhead Detection: Beyond 8-bits and RGB,"Overhead Detection: Beyond 8-bits and RGB
Eliza Mace1
Keith Manville1
Monica Barbu-McInnis1
Michael Laielli2
Matthew Klaric2
Samuel Dooley2
MITRE,
NGA,"
8f772d9ce324b2ef5857d6e0b2a420bc93961196,Facial Landmark Point Localization using Coarse-to-Fine Deep Recurrent Neural Network,"MAHPOD et al.: CFDRNN
Facial Landmark Point Localization using
Coarse-to-Fine Deep Recurrent Neural Network
Shahar Mahpod, Rig Das, Emanuele Maiorana, Yosi Keller, and Patrizio Campisi,"
8fdfd4c5039cf7d70470a2a3ac52bfd229bcd4e2,Pushing the Limits of Radiology with Joint Modeling of Visual and Textual Information,"Pushing the Limits of Radiology with Joint Modeling of Visual and
Textual Information
Department of Computing, Macquarie University1
Sonit Singh1,2
DATA61, CSIRO2
Sydney, Australia"
8fda2f6b85c7e34d3e23927e501a4b4f7fc15b2a,Feature Selection with Annealing for Big Data Learning,"Feature Selection with Annealing for Big Data
Learning
Adrian Barbu, Yiyuan She, Liangjing Ding, Gary Gramajo"
8fbe68810cbc53521395829620060cf9558231cc,Learning Discriminant Person-Specific Facial Models Using Expandable Graphs,"Learning Discriminant Person-Specific
Facial Models Using Expandable Graphs
Stefanos Zafeiriou, Anastasios Tefas, Member, IEEE, and Ioannis Pitas, Fellow, IEEE"
8fa3478aaf8e1f94e849d7ffbd12146946badaba,Attributes for Classifier Feedback,"Attributes for Classifier Feedback
Amar Parkash1 and Devi Parikh2
Indraprastha Institute of Information Technology (Delhi, India)
Toyota Technological Institute (Chicago, US)"
8ff3c7b46ab36f1d01e96681baf512859cc80a4d,Dynamics of alpha oscillations elucidate facial affect recognition in schizophrenia.,"Dynamics of alpha oscillations elucidate facial affect
recognition in schizophrenia
Tzvetan G. Popov & Brigitte S. Rockstroh & Petia Popova &
Almut M. Carolus & Gregory A. Miller"
8f9c37f351a91ed416baa8b6cdb4022b231b9085,Generative Adversarial Style Transfer Networks for Face Aging,"Generative Adversarial Style Transfer Networks for Face Aging
Sveinn Palsson
D-ITET, ETH Zurich
Eirikur Agustsson
D-ITET, ETH Zurich"
8f8c0243816f16a21dea1c20b5c81bc223088594,Local Directional Number Based Classification and Recognition of Expressions Using Subspace Methods,
8f98e1e041e7d3e27397c268e85e815065329d2d,Hierarchical feed forward models for robust object recognition,"Hierarchical Feed-Forward Models for
Robust Object Recognition
Ingo Bax
Der Technischen Fakult¨at der Universit¨at Bielefeld vorgelegt zur Erlangung
des akademischen Grades Doktor der Ingenieurwissenschaften"
8fc21217ee89c505930b540b716b11bab89d3bcd,Memory Efficient Nonuniform Quantization for Deep Convolutional Neural Network,"Memory Efficient Nonuniform Quantization for
Deep Convolutional Neural Network
Fangxuan Sun and Jun Lin"
8f5566fa00f8c79f4720e14084489e784688ab0b,The role of the amygdala in atypical gaze on emotional faces in autism spectrum disorders.,"The Journal of Neuroscience, July 11, 2012 • 32(28):9469 –9476 • 9469
Behavioral/Systems/Cognitive
The Role of the Amygdala in Atypical Gaze on Emotional
Faces in Autism Spectrum Disorders
Dorit Kliemann,1,2,3,4 Isabel Dziobek,2,3 Alexander Hatri,1,2,3 Ju¨rgen Baudewig,2,3 and Hauke R. Heekeren1,2,3,4
Department of Education and Psychology, 2Cluster of Excellence “Languages of Emotion,” and 3Dahlem Institute for Neuroimaging of Emotion (D.I.N.E),
Freie Universita¨t Berlin, 14195 Berlin, Germany, and 4Max Planck Institute for Human Development, 14195 Berlin, Germany
Reduced focus toward the eyes is a characteristic of atypical gaze on emotional faces in autism spectrum disorders (ASD). Along with the
typical gaze, aberrant amygdala activity during face processing compared with neurotypically developed (NT) participants has been
repeatedly reported in ASD. It remains unclear whether the previously reported dysfunctional amygdalar response patterns in ASD
support an active avoidance of direct eye contact or rather a lack of social attention. Using a recently introduced emotion classification
task, we investigated eye movements and changes in blood oxygen level-dependent (BOLD) signal in the amygdala with a 3T MRI scanner
in 16 autistic and 17 control adult human participants. By modulating the initial fixation position on faces, we investigated changes
triggered by the eyes compared with the mouth. Between-group interaction effects revealed different patterns of gaze and amygdalar
BOLD changes in ASD and NT: Individuals with ASD gazed more often away from than toward the eyes, compared with the NT group,
which showed the reversed tendency. An interaction contrast of group and initial fixation position further yielded a significant cluster of
mygdala activity. Extracted parameter estimates showed greater response to eyes fixation in ASD, whereas the NT group showed an
increase for mouth fixation.
The differing patterns of amygdala activity in combination with differing patterns of gaze behavior between groups triggered by direct
eye contact and mouth fixation, suggest a dysfunctional profile of the amygdala in ASD involving an interplay of both eye-avoidance"
8fb849fe51fbf4b56393cfef26397caef2a22fb0,Public Document Agreed Plans for Open Source Reference Software Document Evolution Executive Summary,"Project N° IST-2002-507634 - BioSecure
D2.2.1 – Revision: b3
2 March 2005
Contract Number :
Project Acronym :
Project Title :
Instrument :
Start Date of Project :
Duration :
Deliverable Number :
Title of Deliverable :
Contractual Due Date :
Actual Date of Completion :
IST-2002-507634
BioSecure
Biometrics for Secure Authentication
Network of Excellence
01 June, 2004
6 months
D2.2.1"
8f2e83f6d70b9e161ad714fee79ed6d23ae2a93f,Image Intelligent Detection Based on the Gabor Wavelet and the Neural Network,"Article
Image Intelligent Detection Based on the Gabor
Wavelet and the Neural Network
Yajun Xu 1, Fengmei Liang 1,*, Gang Zhang 1 and Huifang Xu 2
College of Information Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
(Y.X.); (G.Z.)
Daqin Railway Co. Ltd., Taiyuan Railway Administration, Taiyuan 030013, China;
* Correspondence: Tel.: +86-186-0341-0966
Academic Editor: Angel Garrido
Received: 21 September 2016; Accepted: 11 November 2016; Published: 15 November 2016"
8f3e3f0f97844d3bfd9e9ec566ac7a54f6931b09,"A Survey on Human Emotion Recognition Approaches, Databases and Applications","Electronic Letters on Computer Vision and Image Analysis 14(2):24-44; 2015
A Survey on Human Emotion Recognition Approaches,
Databases and Applications
C.Vinola*, K.Vimaladevi†
* Department of Computer Science and Engineering, Francis Xavier Engineering College, Tirunelveli,Tamilnadu,India
Department of Computer Science and Engineering, P.S.R Engineering College, Sivakasi, Tamilnadu,India
Received 7th Aug 2015; accepted 30th Nov 2015"
8fc730d22f33d08be927e5449f359dc15b5c3503,Measuring and modeling the perception of natural and unconstrained gaze in humans and machines,"CBMM Memo No. 059
November 28, 2016
Measuring and modeling the perception of natural
nd unconstrained gaze in humans and machines
Daniel Harari*, Tao Gao*, Nancy Kanwisher, Joshua Tenenbaum, Shimon
Ullman"
8f89aed13cb3555b56fccd715753f9ea72f27f05,Attended End-to-end Architecture for Age Estimation from Facial Expression Videos,"Attended End-to-end Architecture for Age
Estimation from Facial Expression Videos
Wenjie Pei, Hamdi Dibeklio˘glu, Member, IEEE, Tadas Baltruˇsaitis and David M.J. Tax"
8fcdeda0c2f4e265e2180eb5ed39f6548ae3ba99,A Generic Middle Layer for Image Understanding,"UNIVERSIT ¨AT HAMBURG
A Generic Middle Layer for Image
Understanding
Kasim Terzi´c
Doktorarbeit
Fakult¨at f¨ur Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik"
8fe7354a92b4c74c22dc0a253dfe7320487d22ab,Literature Survey on Sparse Representation for Neural Network Based Face Detection and Recognition,"Circuits and Systems: An International Journal (CSIJ), Vol. 1, No.2, April 2014
LITERATURE SURVEY ON SPARSE
REPRESENTATION FOR NEURAL
NETWORK BASED FACE DETECTION AND
RECOGNITION
Raviraj Mane,Poorva Agrawal,
Nisha Auti CS Department SIT, Pune"
8fe43144c0ff36ffefca869eec0a63e71ca02049,1D correlation filter based class-dependence feature analysis for face recognition,"This article appeared in a journal published by Elsevier. The attached
opy is furnished to the author for internal non-commercial research
nd education use, including for instruction at the authors institution
nd sharing with colleagues.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.
In most cases authors are permitted to post their version of the
rticle (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information
regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:
http://www.elsevier.com/copyright"
8f4c8a80e94a883356ee4c4425324dac5457661a,Noise Robust Face Image Super-Resolution Through Smooth Sparse Representation,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Noise Robust Face Image Super-Resolution
Through Smooth Sparse Representation
Junjun Jiang, Member, IEEE, Jiayi Ma, Member, IEEE, Chen Chen, Xinwei Jiang, and Zheng Wang"
8fd9c22b00bd8c0bcdbd182e17694046f245335f,Recognizing Facial Expressions in Videos,"Recognizing Facial Expressions in Videos
Lin Su, Matthew Balazsi"
8f2e594f55ca1b1675d8bfef25922c97109cb599,An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses,"Social Cognitive and Affective Neuroscience, 2017, 695–705
doi: 10.1093/scan/nsw179
Advance Access Publication Date: 22 December 2016
Original article
An evil face? Verbal evaluative multi-CS conditioning
enhances face-evoked mid-latency magnetoencephalo-
graphic responses
Markus Jungho¨ fer,1,2 Maimu Alissa Rehbein,1,2 Julius Maitzen,1
Sebastian Schindler,3,4 and Johanna Kissler3,4
Institute for Biomagnetism and Biosignalanalysis, University Hospital Mu¨ nster, Mu¨ nster D-48149, Germany,
Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Mu¨ nster, Mu¨ nster D-48151,
Germany, 3Department of Psychology, Affective Neuropsychology Unit and 4Center of Excellence Cognitive
Interaction Technology (CITEC), University of Bielefeld, Bielefeld D-33501, Germany
Correspondence should be addressed to Johanna Kissler, Department of Psychology, Affective Neuropsychology Unit, University of Bielefeld, Bielefeld
D-33501, Germany. E-mail:"
8f0c11a3332c434af11c01ee11ff7c492c7968da,Domain Adaptive Faster R-CNN for Object Detection in the Wild,"Domain Adaptive Faster R-CNN for Object Detection in the Wild
Yuhua Chen1 Wen Li1 Christos Sakaridis1 Dengxin Dai1
Luc Van Gool1,2
Computer Vision Lab, ETH Zurich
VISICS, ESAT/PSI, KU Leuven"
8a12ee3c98b76d99531d5965f15bb77a10ec2569,Holistic Face Recognition through Multivariate Analysis and Genetic Algorithms,"Holistic Face Recognition through Multivariate Analysis and Genetic
Algorithms"
8a4119c2898f611a6ffa0b4b72acf322d1b455b1,A Diagram is Worth a Dozen Images,"A Diagram Is Worth A Dozen Images
Aniruddha Kembhavi†, Mike Salvato†(cid:63), Eric Kolve†(cid:63), Minjoon Seo§,
Hannaneh Hajishirzi§, Ali Farhadi†§
Allen Institute for Artificial Intelligence, §University of Washington"
8a91cb96dd520ba3e1f883aa6d57d4d716c5d1c8,Low Cost Eye Tracking: The Current Panorama,"Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 8680541, 14 pages
http://dx.doi.org/10.1155/2016/8680541
Review Article
Low Cost Eye Tracking: The Current Panorama
Onur Ferhat1,2 and Fernando Vilariño1,2
Computer Vision Center, Edifici O, Campus UAB, 08193 Bellaterra, Spain
Computer Science Department, Universitat Aut`onoma de Barcelona, Edifici Q, Campus UAB, 08193 Bellaterra, Spain
Correspondence should be addressed to Onur Ferhat;
Received 27 November 2015; Accepted 18 February 2016
Academic Editor: Ying Wei
Copyright © 2016 O. Ferhat and F. Vilari˜no. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
ited.
Despite the availability of accurate, commercial gaze tracker devices working with infrared (IR) technology, visible light gaze
tracking constitutes an interesting alternative by allowing scalability and removing hardware requirements. Over the last years, this
field has seen examples of research showing performance comparable to the IR alternatives. In this work, we survey the previous
work on remote, visible light gaze trackers and analyze the explored techniques from various perspectives such as calibration
strategies, head pose invariance, and gaze estimation techniques. We also provide information on related aspects of research such"
8a29378973987bdb040f35349d1c5a86a538c0fc,Hierarchical Temporal Memory Using Memristor Networks: A Survey,"Hierarchical Temporal Memory using Memristor
Networks: A Survey
Olga Krestinskaya, Graduate Student Member, IEEE, Irina Dolzhikova, Graduate Student Member, IEEE, and
Alex Pappachen James, Senior Member, IEEE"
8a14dfe0e11e03505db9c0d84bce96f165223cae,Learning from Demonstration in the Wild,"Learning from Demonstration in the Wild
Feryal Behbahani1, Kyriacos Shiarlis1, Xi Chen1, Vitaly Kurin1,2, Sudhanshu Kasewa1,2, Ciprian Stirbu1,2,
Jo˜ao Gomes1, Supratik Paul1,2, Frans A. Oliehoek1,3, Jo˜ao Messias1, Shimon Whiteson1,2"
8a382f000f98cdab7f7b79e543c75c6b8f93b6f9,Learning Semantic Image Representations at a Large Scale,"Learning Semantic Image Representations at a Large
Scale
Yangqing Jia
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2014-93
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-93.html
May 16, 2014"
8ab183883acba0501c3315a914aee755b5e517d8,Synthesis-based Robust Low Resolution Face Recognition,"IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, MONTH 20XX
Synthesis-based Robust Low Resolution Face
Recognition
Sumit Shekhar, Student Member, IEEE, Vishal M. Patel, Member, IEEE, and Rama Chellappa, Fellow, IEEE"
8ad407142de84b66144029845587c77ae94fd240,Multi-class speed-density relationship for pedestrian traffic,"Multi-class speed-density relationship for
pedestrian traffic
Marija Nikoli´c ∗
Matthieu de Lapparent ∗
Michel Bierlaire ∗
Riccardo Scarinci ∗
January 15, 2017
Report TRANSP-OR 170115
Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne
transp-or.epfl.ch
Transport and Mobility Laboratory, School of Architecture, Civil and Environmental Engi-
neering, École Polytechnique Fédérale de Lausanne, Switzerland,
{marija.nikolic, michel.bierlaire, matthieu.delapparent,"
8aac66d15e0903257ec3abe6f126bf6316779011,Constructive Autoassociative Neural Network for Facial Recognition,"RESEARCH ARTICLE
Constructive Autoassociative Neural
Network for Facial Recognition
Bruno J. T. Fernandes1*, George D. C. Cavalcanti2, Tsang I. Ren2
. Escola Polite´ cnica, Universidade de Pernambuco, Recife-PE, Brazil, 2. Centro de Informa´ tica,
Universidade Federal de Pernambuco, Recife-PE, Brazil"
8acdc4be8274e5d189fb67b841c25debf5223840,Improving clustering performance using independent component analysis and unsupervised feature learning,"Gultepe and Makrehchi
Hum. Cent. Comput. Inf. Sci.  (2018) 8:25
https://doi.org/10.1186/s13673-018-0148-3
RESEARCH
Improving clustering performance
using independent component analysis
nd unsupervised feature learning
Open Access
Eren Gultepe* and Masoud Makrehchi
*Correspondence:
Department of Electrical
nd Computer Engineering,
University of Ontario Institute
of Technology, 2000 Simcoe
St N, Oshawa, ON L1H 7K4,
Canada"
8ad4742e656c409e5a813c1a6d5f21fd2e3a9225,A Novel Algorithm for Face Recognition From Very Low Resolution Images,"J Electr Eng Technol Vol. 10, No. ?: 742-?, 2015
http://dx.doi.org/10.5370/JEET.2015.10.1.742
ISSN(Print)    1975-0102
ISSN(Online)  2093-7423
A Novel Algorithm for Face Recognition From Very Low Resolution
Images
C. Senthilsingh† and M. Manikandan*"
8ac074829b55bb6b4c67f062ca9ec62bb79f865f,Person re-identification based on deep multi-instance learning,"Person Re-identification based on Deep
Multi-instance Learning
Domonkos Varga∗†, Tam´as Szir´anyi∗‡
MTA SZTAKI, Institute for Computer Science and Control
{varga.domonkos,
Budapest University of Technology and Economics, Department of Networked Systems and Services
Budapest University of Technology and Economics, Department of Material Handling and Logistics Systems"
8a7726e58c2e24b0a738b48ae35185aaaacb8fe9,PILOT ASSESSMENT OF NONVERBAL PRAGMATIC ABILITY IN PEOPLE WITH ASPERGER SYNDROME Introduction,"Psychology of Language and Communication 2013, Vol. 17, No. 3
DOI: 10.2478/plc-2013-0018
FRANCISCO J. RODRÍGUEZ MUÑOZ
University of Almería
PILOT ASSESSMENT OF NONVERBAL PRAGMATIC ABILITY
IN PEOPLE WITH ASPERGER SYNDROME
The purpose of this study is to present a diagnostic tool to assess the nonverbal pragmatic
ehaviors of people with Asperger syndrome, with the intent to give an account of the
severity of symptoms in the area of nonverbal interaction, as well as providing a profile
of nonverbal behaviors that may be targeted for intervention. Through this communica-
tion profile, overall nonverbal ability is calculated in a group of 20 subjects with Asperger
syndrome. The proposed scale also includes the measurement of the following nonverbal
dimensions: (1) eye gaze, (2) facial expression, (3) body language and posture, (4) proxemics,
(5) gestures, and (6) paralanguage. The results of this assessment suggest low nonverbal
pragmatic ability in these subjects, show specific deficits in nonverbal communication, and
apture variability in nonverbal behavior in individuals with AS.
Key words: Asperger syndrome, autism spectrum disorders, communication profile, non-
verbal communication, pragmatic assessment, speech-language pathology
Introduction
Nobody can deny that nonverbal behavior, understood as a communication"
8a54f8fcaeeede72641d4b3701bab1fe3c2f730a,What do you think of my picture? Investigating factors of influence in profile images context perception,"What do you think of my picture? Investigating factors
of influence in profile images context perception
Filippo Mazza, Matthieu Perreira da Silva, Patrick Le Callet, Ingrid
Heynderickx
To cite this version:
Filippo Mazza, Matthieu Perreira da Silva, Patrick Le Callet, Ingrid Heynderickx. What do you
think of my picture? Investigating factors of influence in profile images context perception. Human
Vision and Electronic Imaging XX, Mar 2015, San Francisco, United States. Proc. SPIE 9394, Hu-
man Vision and Electronic Imaging XX, 9394, <http://spie.org/EI/conferencedetails/human-vision-
electronic-imaging>. <10.1117/12.2082817>. <hal-01149535>
HAL Id: hal-01149535
https://hal.archives-ouvertes.fr/hal-01149535
Submitted on 7 May 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est"
8aae23847e1beb4a6d51881750ce36822ca7ed0b,Comparison Between Geometry-Based and Gabor-Wavelets-Based Facial Expression Recognition Using Multi-Layer Perceptron,"Comparison Between Geometry-Based and Gabor-Wavelets-Based
Facial Expression Recognition Using Multi-Layer Perceptron
Zhengyou Zhang
Shigeru Akamatsu
 Michael Lyons Michael Schuster
 ATR Human Information Processing Research Laboratories
 ATR Interpreting Telecommunications Research Laboratories
-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan
INRIA, 2004 route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex, France
e-mail:"
8aa6c3601924c99ca420c7c37ffcffe00db1eb78,3D facial expression recognition via multiple kernel learning of Multi-Scale Local Normal Patterns,"1st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan
978-4-9906441-0-9 ©2012 ICPR"
8a866bc0d925dfd8bb10769b8b87d7d0ff01774d,WikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art,"WikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art
Saif M. Mohammad and Svetlana Kiritchenko
National Research Council Canada"
8ab16c26678245ef009cbbf87d750cfd18e21572,A Wearable Ultrasonic Obstacle Sensor for Aiding Visually Impaired and Blind Individuals,"A Wearable Ultrasonic Obstacle Sensor for Aiding Visually Impaired and Blind Individuals
{tag}                                                                                   {/tag}
IJCA Proceedings on National Conference on
Growth of Technologies in Electronics, Telecom and Computers - India Perception
© 2014 by IJCA Journal
GTETC-IP
Year of Publication: 2014
Authors:
V.  Diana Earshia
S.  M.  Kalaivanan
Angel Dayana
{bibtex}gtetc1314.bib{/bibtex}"
8af0854c652c90d4004e1868bc5fafec3e4ce724,Labelling the Behaviour of Local Descriptors for Selective Video Content Retrieval,"INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE
Labelling the Behaviour of Local Descriptors for
Selective Video Content Retrieval
Julien Law-To — Valerie Gouet-Brunet — Olivier Buisson — Nozha Boujemaa
N° 5821
January 2006
Thème COG
p p o r t  (cid:13)
(cid:13) d e  r e c h e r c h e (cid:13)"
8aaa97c686c60f611fe5a979d9afbc29dde3d33f,Mastering the Dungeon: Grounded Language Learning by Mechanical Turker Descent,"Published as a conference paper at ICLR 2018
MASTERING THE DUNGEON: GROUNDED LANGUAGE
LEARNING BY MECHANICAL TURKER DESCENT
Zhilin Yang, Saizheng Zhang, Jack Urbanek, Will Feng, Alexander H. Miller
Arthur Szlam, Douwe Kiela & Jason Weston
Facebook AI Research"
8a77025bde5479a1366bb93c6f2366b5a6293720,Sharp Attention Network via Adaptive Sampling for Person Re-identification,"IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, XX 2018
Sharp Attention Network via Adaptive Sampling
for Person Re-identification
Chen Shen, Guo-Jun Qi, Member, IEEE, Rongxin Jiang, Zhongming Jin, Hongwei Yong, Yaowu Chen,
nd Xian-Sheng Hua, Fellow, IEEE"
8a2ed61448d9e41295753f5bd0a662ac28373e6f,Domain-Specific Face Synthesis for Video Face Recognition From a Single Sample Per Person,"Domain-Specific Face Synthesis for Video Face
Recognition From a Single Sample Per Person
Fania Mokhayeri
, Student Member, IEEE, Eric Granger
, Member, IEEE,
nd Guillaume-Alexandre Bilodeau , Member, IEEE"
8ac2736683dac9a467602ee19f5a290096259148,HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection,"HyperNet: Towards Accurate Region Proposal Generation
nd Joint Object Detection
Tao Kong1
Anbang Yao2 Yurong Chen2 Fuchun Sun1
State Key Lab. of Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology (TNList)
Department of Computer Science and Technology, Tsinghua University 2Intel Labs China
{anbang.yao,"
8aea75940c90fac8c1e5d7ece7d04a61555c3bf6,Divide and Grow: Capturing Huge Diversity in Crowd Images with Incrementally Growing CNN,
8adb2fcab20dab5232099becbd640e9c4b6a905a,Beyond Euclidean Eigenspaces: Bayesian Matching for Visual Recognition,"Beyond Euclidean Eigenspaces:
Bayesian Matching for Visual Recognition
Baback Moghaddam
Alex Pentland
Mitsubishi Electric Research Laboratory
MIT Media Laboratory
 Broadway
 Ames St.
Cambridge, MA 	, USA
Cambridge, MA 	, USA"
8a0538eb80b5d41c0e5991aceeef47db01603033,Proposal Flow: Semantic Correspondences from Object Proposals,"Proposal Flow: Semantic Correspondences from
Object Proposals
Bumsub Ham, Member, IEEE, Minsu Cho, Cordelia Schmid, Fellow, IEEE and Jean Ponce, Fellow, IEEE"
8aa5f1b2639da73c2579ea9037a4ebf4579fdc4f,A Steerable multitouch Display for Surface Computing and its Evaluation,"December
S0218213013600166
013 14:51 WSPC/INSTRUCTION
st Reading
International Journal on Artificial Intelligence Tools
Vol. 22, No. 6 (2013) 1360016 (29 pages)
(cid:13) World Scientific Publishing Company
DOI: 10.1142/S0218213013600166
A STEERABLE MULTITOUCH DISPLAY FOR SURFACE
COMPUTING AND ITS EVALUATION
PANAGIOTIS KOUTLEMANIS, ANTONIOS NTELIDAKIS, XENOPHON ZABULIS,
DIMITRIS GRAMMENOS and ILIA ADAMI
Foundation for Research and Technology – Hellas (FORTH )
Institute of Computer Science, N. Plastira 100
Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece
{koutle, ntelidak, zabulis, grammenos,
Received 28 January 2013
Accepted 19 March 2013
Published 20 December 2013
In this paper, a steerable, interactive projection display that has the shape of a disk is"
8abfda3c1e1599bed454661f15ee0bbe7f6b8c12,Who is Mistaken?,"Who is Mistaken?
Benjamin Eysenbach
Carl Vondrick
Antonio Torralba"
8ae02cef563120be51f8655e199a54af856059b7,Three-Dimensional Anthropometric Database of Attractive Caucasian Women: Standards and Comparisons,"SCIENTIFIC FOUNDATION
Three-Dimensional Anthropometric Database of
Attractive Caucasian Women: Standards
nd Comparisons
Luigi Maria Galantucci, PhD, MSE,
Alberto Laino, PhD, DS,
Eliana Di Gioia, DS, MD,§jj Raoul D’Alessio, DS, MD,ô Fulvio Lavecchia, PhD, MSE,#
Roberto Deli, PhD, DS,
Gianluca Percoco, PhD, MSE,# and Carmela Savastano, DS, MD"
8afe84f915d3dbc45c57011e62f5dbf9003dfb4c,Adaptive Binary Quantization for Fast Nearest Neighbor Search,"Adaptive Binary Quantization for Fast Nearest Neighbor
Search
Zhujin Li1 and Xianglong Liu∗2 and Junjie Wu3 and Hao Su4"
8a91ad8c46ca8f4310a442d99b98c80fb8f7625f,2D Segmentation Using a Robust Active Shape Model With the EM Algorithm,"D Segmentation Using a Robust Active
Shape Model With the EM Algorithm
Carlos Santiago, Jacinto C. Nascimento, Member, IEEE, and Jorge S. Marques"
8a2bd5dbcf0ab0130dfb97e2a035e5722aa9319e,NLP EAC Recognition by Component Separation in the Eye Region,"NLP EAC Recognition by Component
Separation in the Eye Region
Ruxandra Vrˆanceanu, Corneliu Florea, Laura Florea and Constantin Vertan
The Image Processing and Analysis Laboratory (LAPI), Politehnica University of
Bucharest, Romania"
8aed6ec62cfccb4dba0c19ee000e6334ec585d70,Localizing and Visualizing Relative Attributes,"Localizing and Visualizing Relative Attributes
Fanyi Xiao and Yong Jae Lee"
8a336e9a4c42384d4c505c53fb8628a040f2468e,Detecting Visually Observable Disease Symptoms from Faces,"Wang and Luo EURASIP Journal on Bioinformatics
nd Systems Biology  (2016) 2016:13
DOI 10.1186/s13637-016-0048-7
R ES EAR CH
Detecting Visually Observable Disease
Symptoms from Faces
Kuan Wang* and Jiebo Luo
Open Access"
8a56adc9605a894c513537f1a2c8d9459573c0a8,Running head: EFFECT OF IDENTITY ON TRUST LEARNING 1 Incidental learning of trust from eye-gaze: Effects of race and facial trustworthiness,"This is an author produced version of Incidental learning of trust from eye-gaze: Effects of
race and facial trustworthiness.
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/119885/
Article:
Strachan, James, Kirkham, Alexander James orcid.org/0000-0001-9286-9448, Manssuer,
Luis et al. (2 more authors) (2017) Incidental learning of trust from eye-gaze: Effects of
race and facial trustworthiness. VISUAL COGNITION. pp. 1-13. ISSN 1350-6285
https://doi.org/10.1080/13506285.2017.1338321
promoting access to
White Rose research papers
http://eprints.whiterose.ac.uk/"
7e8edc45fa80cb0f7bc2c20e8eb893dcadde2c8c,Combining Speeded-up Robust Features with Principal Component Analysis in Face Recognition System,"International Journal of Innovative
Computing, Information and Control
Volume 8, Number 12, December 2012
ICIC International c(cid:13)2012 ISSN 1349-4198
pp. 8545{8556
COMBINING SPEEDED-UP ROBUST FEATURES WITH PRINCIPAL
COMPONENT ANALYSIS IN FACE RECOGNITION SYSTEM
Shinfeng D. Lin(cid:3), Bo-Feng Liu and Jia-Hong Lin
Department of Computer Science and Information Engineering
National Dong Hwa University
No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401, Taiwan
Corresponding author:
(cid:3)
Received October 2011; revised March 2012"
7ed9913de03dd2990b68751842306c2636852647,VQABQ: Visual Question Answering by Basic Questions,"VQABQ: Visual Question Answering by Basic Questions
Jia-Hong Huang
King Abdullah University of Science and Technology
{jiahong.huang, modar.alfadly,
Modar Alfadly
Bernard Ghanem"
7e53ab07d0ce28484830329036a1fc018b9644dd,Online multiple people tracking-by-detection in crowded scenes,"Journal of Advances in Computer Engineering and Technology, 1(2) 2015
Online multiple people tracking-by-detection in
rowded scenes
Sahar Rahmatian1, Reza Safabakhsh2
Received (2015-01-23)
Accepted (2015-03-19)"
7e3367b9b97f291835cfd0385f45c75ff84f4dc5,Improved local binary pattern based action unit detection using morphological and bilateral filters,"Improved Local Binary Pattern Based Action Unit Detection Using
Morphological and Bilateral Filters
Anıl Y¨uce1, Matteo Sorci2 and Jean-Philippe Thiran1
Signal Processing Laboratory (LTS5)
´Ecole Polytechnique F´ed´erale de Lausanne,
Switzerland
nViso SA
Lausanne, Switzerland"
7ef0cc4f3f7566f96f168123bac1e07053a939b2,Triangular Similarity Metric Learning: a Siamese Architecture Approach. ( L'apprentissage de similarité triangulaire en utilisant des réseaux siamois),"Triangular Similarity Metric Learning: a Siamese
Architecture Approach
Lilei Zheng
To cite this version:
Lilei Zheng. Triangular Similarity Metric Learning: a Siamese Architecture Approach. Com-
puter Science [cs]. UNIVERSITE DE LYON, 2016. English. <NNT : 2016LYSEI045>. <tel-
01314392>
HAL Id: tel-01314392
https://hal.archives-ouvertes.fr/tel-01314392
Submitted on 11 May 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
7e5414277148c8fdf9903068b001887225b69868,Perceptive Parallel Processes Coordinating Geometry and Texture,"Perceptive Parallel Processes Coordinating Geometry and Texture
Marco A. Gutierrez1, Rafael E. Banchs2 and Luis F. D'Haro2"
7e7e4af2a79288fd2e391020edff8552ea1ece9a,Trimming Prototypes of Handwritten Digit Images with Subset Infinite Relational Model,"Trimming Prototypes of Handwritten Digit
Images with Subset Infinite Relational Model
Tomonari Masada1 and Atsuhiro Takasu2
Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki, 852-8521 Japan,
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430
Japan,"
7e79c3a92f60c55a6970f89acfa152bcf74823e0,Face Recognition using FSS-DSOP for Small Sample Size Problem with Illumination Variations,"Int. J. Advance. Soft Comput. Appl., Vol. 1, No. 2, November 2009
ISSN 2074-8523; Copyright © ICSRS Publication, 2009
www.i-csrs.org
Face Recognition using FSS-DSOP for Small
Sample Size Problem with Illumination
Variations
Ganesh Bhat, K.K. Achary
Canara Engineering College,Department of Electronics, India"
7ebc96b4b7886b263808c2cd62b21158ebf6297c,"Crowd Motion Analysis: Segmentation, Anomaly Detection, and Behavior Classification","CROWD MOTION ANALYSIS:
SEGMENTATION, ANOMALY
DETECTION, AND BEHAVIOR
CLASSIFICATION
Habib Ullah
Advisor: Nicola Conci, PhD
February 2015"
7e7b4b4a84c2aa0ee69b5cea3a4da7f62a0a37d5,GraSp: Combining Spatially-aware Mobile Devices and a Display Wall for Graph Visualization and Interaction,"Eurographics Conference on Visualization (EuroVis) 2017
J. Heer, T. Ropinski and J. van Wijk
(Guest Editors)
Volume 36 (2017), Number 3
GRASP: Combining Spatially-aware Mobile Devices
nd a Display Wall for Graph Visualization and Interaction
U. Kister1, K. Klamka1, C. Tominski2 and R. Dachselt1
Interactive Media Lab Dresden, Technische Universität Dresden, Germany
Institute for Computer Science, University of Rostock, Germany
Figure 1: Mobile devices support graph visualization and interaction on wall-sized displays close to the display wall and further away (A).
The GRASP system provides a mobile toolbox with selections, alternative representations, lenses, and filtering close to the user (B)."
7ee53d931668fbed1021839db4210a06e4f33190,What If We Do Not have Multiple Videos of the Same Action? &#x2014; Video Action Localization Using Web Images,"What if we do not have multiple videos of the same action? —
Video Action Localization Using Web Images
Center for Research in Computer Vision (CRCV), University of Central Florida (UCF)
Waqas Sultani, Mubarak Shah"
7e9df45ece7843fe050033c81014cc30b3a8903a,Audio-visual intent-to-speak detection for human-computer interaction,"AUDIO-VISUAL INTENT-TO-SPEAK DETECTION FOR HUMAN-COMPUTER
INTERACTION
Philippe de Cuetos
Institut Eurecom
	, route des Cr^etes, BP 	
	 Sophia-Antipolis Cedex, FRANCE
Chalapathy Neti, Andrew W. Senior
IBM T.J. Watson Research Center
Yorktown Heights, NY 	, USA
cneti,aws"
7ebd323ddfe3b6de8368c4682db6d0db7b70df62,Location-based Face Recognition Using Smart Mobile Device Sensors,"Proceedings of the International Conference on Computer and Information Science and Technology
Ottawa, Ontario, Canada, May 11 – 12, 2015
Paper No. 111
Location-based Face Recognition Using Smart Mobile Device
Sensors
Nina Taherimakhsousi, Hausi A. Müller
Department of Computer Science
University of Victoria, Victoria, Canada"
7e3693fffef8d83ac109309a77f2545d32c10fc3,The effect of Ramadan fasting on spatial attention through emotional stimuli,"Psychology Research and Behavior Management
Open access Full Text article
Dovepress
open access to scientific and medical research
O Ri g i n a l   R e s e aRc h
The effect of Ramadan fasting on spatial attention
through emotional stimuli
Maziyar Molavi
Jasmy Yunus
nugraha P Utama
Department of clinical  sciences,
Faculty of Biosciences and Medical
engineering (FBMe), Universiti
Teknologi Malaysia (UTM), Johor
Bahru, Johor, Malaysia
orrespondence: nugraha P Utama
Department of clinical sciences, Faculty
of Biosciences and Medical engineering,
Universiti Teknologi Malaysia (UTM),
81310 Johor Bahru, Johor, Malaysia"
7e59d2d3416537dd958ff71b7a0bff87e639dad9,Feature-Based Pose Estimation,"Feature-based Pose Estimation
Cristian Sminchisescu1,2, Liefeng Bo3, Catalin Ionescu4, Atul Kanaujia5"
7ea7c073d13e80ec5015f41f1d57f0674502cc5e,An Implementation of Face Emotion Identification System using Active Contour Model and PCA,"IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 04, 2015 | ISSN (online): 2321-0613
An Implementation of Face Emotion Identification System using Active
Contour Model and PCA
Namita Rathore1 Mr.Rohit Miri2
P.G. Student 2Assistant Professor
,2Department of Computer Science and Engineering
,2DR C V Raman Institute of Science and Technology Kota, bilaspur
systems,
surveillance"
7e463877264e70d53c844cf4b1bf3b15baec8cfb,ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks,"ReNet: A Recurrent Neural Network Based
Alternative to Convolutional Networks
Francesco Visin(cid:63)
Politecnico di Milano
Kyle Kastner(cid:63)
University of Montreal
Kyunghyun Cho(cid:63)
University of Montreal
Matteo Matteucci
Politecnico di Milano
Aaron Courville
University of Montreal
Yoshua Bengio
University of Montreal
CIFAR Senior Fellow"
7ed6ff077422f156932fde320e6b3bd66f8ffbcb,State of 3D Face Biometrics for Homeland Security Applications,"State of 3D Face Biometrics for Homeland Security Applications
Anshuman Razdan1, Gerald Farin2, Myung Soo-Bae3 and Mahesh
Chaudhari4"
7e3b5d30b83a20c7cffdacf53b3ffbaf81002b54,People Transitioning Across Places: A Multimethod Investigation of How People Go to Football Games,"12589 EABXXX10.1177/0013916511412589
© The Author(s) 2011
Reprints and permission: http://www.
sagepub.com/journalsPermissions.nav
Environment and Behavior
XX(X) 1 –28
© 2011 SAGE Publications
Reprints and permission: http://www.
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0013916511412589
http://eab.sagepub.com
People Transitioning
Across Places:  A
Multimethod
Investigation of
How People Go to
Football Games
R. Barry Ruback1, Robert T. Collins1,
Sarah Koon-Magnin1, Weina Ge2,
Luke Bonkiewicz1, and Clifford E. Lutz1"
7e654380bd0d1f4c00e85da71a3081d3ada432ef,Mgan: Training Generative Adversarial Nets,"Under review as a conference paper at ICLR 2018
MGAN: TRAINING GENERATIVE ADVERSARIAL NETS WITH
MULTIPLE GENERATORS
Anonymous authors
Paper under double-blind review"
7ed5dca8725d59714d61ef8e1a14cc4b71c56d3f,Face Sketch to Photo Matching Using LFDA and Pre-Processing,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358
Face Sketch to Photo Matching Using LFDA and
Pre-Processing
Pushpa Gopal Ambhore1, Lokesh Bijole2
Research Scholar, 2Assistant professor, Computer Engineering Department,
Padm. Dr. V. B. Kolte College of Engineering, Malkapur, Maharashtra, India"
7e25544be9ba701c8cf02c841e0bbadb36fa0e29,Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Network,"Zero-Shot Visual Recognition using Semantics-Preserving
Adversarial Embedding Networks
Long Chen1 Hanwang Zhang2
Jun Xiao1∗ Wei Liu3
Shih-Fu Chang4
Zhejiang University 2Nanyang Technological University 3Tencent AI Lab 4Columbia University
{longc, {wliu,
Figure 1: (a) Attribute variance heat maps of the 312 attributes in CUB birds [60] and the 102 attributes in SUN scenes [47]
(lighter color indicates lower variance, i.e., lower discriminability) and the t-SNE [35] visualizations of the test images
represented by all attributes (left) and only the high-variance ones (right). Some of the low-variance attributes (the lighter
part to the left of the cut-off line) discarded at training are still needed in discriminating unseen test classes. (b) Comparison
of reconstructed images using SAE [25] and our proposed SP-AEN method, which is shown to retain sufficient semantics for
photo-realistic reconstruction."
7e507370124a2ac66fb7a228d75be032ddd083cc,Dynamic Pose-Robust Facial Expression Recognition by Multi-View Pairwise Conditional Random Forests,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2708106, IEEE
Transactions on Affective Computing
Dynamic Pose-Robust Facial Expression
Recognition by Multi-View Pairwise Conditional
Random Forests
Arnaud Dapogny1 and Kevin Bailly1 and S´everine Dubuisson1
Sorbonne Universit´es, UPMC Univ Paris 06
CNRS, UMR 7222, F-75005, Paris, France"
7ea07b7b27d59300840df17e5881dbe3a4769872,Detection driven adaptive multi-cue integration for multiple human tracking,"Detection Driven Adaptive Multi-cue Integration for Multiple Human Tracking
Ming Yang, Fengjun Lv, Wei Xu, Yihong Gong
NEC Laboratories America, Inc.
0080 North Wolfe Road, SW-350, Cupertino, CA 95014"
10fb32ef34f815e9056ba71bc4b67a9951b4475b,End-to-End Audio Visual Scene-Aware Dialog using Multimodal Attention-Based Video Features,"End-to-End Audio Visual Scene-Aware Dialog using
Multimodal Attention-Based Video Features
Chiori Hori†, Huda Alamri∗†, Jue Wang†, Gordon Wichern†,
Vincent Cartillier∗, Raphael Gontijo Lopes∗, Abhishek Das∗,
Takaaki Hori†, Anoop Cherian†, Tim K. Marks†,
Irfan Essa∗, Dhruv Batra∗ Devi Parikh∗,
Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA
School of Interactive Computing, Georgia Tech"
1042683cf5733244238198ff486d3a65e70c9621,End-to-End Instance Segmentation with Recurrent Attention,"End-to-End Instance Segmentation with Recurrent Attention
Mengye Ren1, Richard S. Zemel1,2
University of Toronto1, Canadian Institute for Advanced Research2"
1059729bcca57731c81d8a9c866ceb8ed3547d8d,Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles,"Coupled Object Detection and Tracking from
Static Cameras and Moving Vehicles
Bastian Leibe, Konrad Schindler, Nico Cornelis, and Luc Van Gool"
100f57d2eb737d6cb467bfac6e4bbfa9b39e774f,Mixing Body-Part Sequences for Human Pose Estimation,"Mixing Body-Part Sequences for Human Pose Estimation
Anoop Cherian∗
Julien Mairal∗ Karteek Alahari∗ Cordelia Schmid∗
Inria"
10cdb31a23c3233527ad2f8beebe7803b7a51a8c,Altered Neocortical Microcircuitry in the Valproic Acid Rat Model of Autism,"Altered Neocortical Microcircuitry in the
Valproic Acid Rat Model of Autism
THÈSE N° 3701 (2006)
PRÉSENTÉE LE 20 NOVEMBRE
À LA FACULTÉ DES SCIENCES DE LA VIE
LABORATOIRE DE NEUROSCIENCE DES MICROCIRCUITS
PROGRAMME DOCTORAL EN NEUROSCIENCES
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES
Tania Rinaldi
ingénieur chimiste diplômée EPF
de nationalité suisse et originaire de Vouvry (VS)
cceptée sur proposition du jury:
Prof. R. Schneggenburger, président du jury
Prof. H. Markram, directeur de thèse
Prof. B. Gähwiler, rapporteur
Prof. A. Lüthi, rapporteur
Prof. C. Petersen, rapporteur
Suisse
(2006) année d’impression"
10e7dd3bbbfbc25661213155e0de1a9f043461a2,Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video,"Cross Euclidean-to-Riemannian Metric Learning
with Application to Face Recognition from Video
Zhiwu Huang, Member, IEEE, Ruiping Wang, Member, IEEE, Shiguang Shan, Senior Member, IEEE,
Luc Van Gool, Member, IEEE and Xilin Chen, Fellow, IEEE"
106b54ed74f0fffaf6408a9b847d4ac0aa0ffef9,Block-Diagonal Sparse Representation by Learning a Linear Combination Dictionary for Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2015
Block-Diagonal Sparse Representation by Learning
Linear Combination Dictionary for Recognition
Xinglin Piao, Yongli Hu, Member, IEEE, Yanfeng Sun, Member, IEEE, Junbin Gao, Baocai Yin, Member, IEEE"
10c4b2489d7e1ee43a1d19724d3c1e9c33ca3f29,A Question-Answering framework for plots using Deep learning,"A Question-Answering framework for plots using Deep learning
Revanth Reddy1, Rahul Ramesh1, Ameet Deshpande1 and Mitesh M. Khapra1
Indian Institute of Technology Madras"
10d39dedfaf34d862e3ca7216521c6290044ff87,Synthesized Classifiers for Zero-Shot Learning,"Synthesized Classifiers for Zero-Shot Learning
Soravit Changpinyo∗, Wei-Lun Chao∗
U. of Southern California
Los Angeles, CA
Boqing Gong
U. of Central Florida
Orlando, FL
schangpi,
Fei Sha
U. of California
Los Angeles, CA"
10c077bf2dd1bed928926feb37837862ab786808,"Multiple Target Tracking and Identity Linking under Split, Merge and Occlusion of Targets and Observations","Multiple target tracking and identity linking under split, merge and
occlusion of targets and observations
nonymous submission
Keywords:
Tracking, graphical models, MAP inference, particle tracking, live cell tracking, intelligent headlights."
101c5b39f4fc4dda1f39bf0c00e196f0a4720af2,Viewpoint Invariant Human Re-Identification in Camera Networks Using Pose Priors and Subject-Discriminative Features,"Viewpoint Invariant Human Re-identification in
Camera Networks Using Pose Priors and
Subject-Discriminative Features
Ziyan Wu, Student Member, IEEE, Yang Li, Student Member, IEEE, and Richard J. Radke, Senior
Member, IEEE"
10d8a48deae967b627839cc95c98b6c080ba9966,Overview of the ImageCLEF 2013 Scalable Concept Image Annotation Subtask,"Overview of the ImageCLEF 2013 Scalable
Concept Image Annotation Subtask
Mauricio Villegas,† Roberto Paredes† and Bart Thomee‡
ITI/DSIC, Universitat Polit`ecnica de Val`encia
Cam´ı de Vera s/n, 46022 Val`encia, Spain
Yahoo! Research
Avinguda Diagonal 177, 08018 Barcelona, Spain"
10ca3d8802ab0cc6ce000682a42fd9f6575a2006,Embedding Semantic Information into the Content of Natural Scenes Images,"http://dx.doi.org/10.5755/j01.eee.18.9.2808
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 9, 2012
Embedding Semantic Information into the
Content of Natural Scenes Images
G. Kazakeviciute-Januskeviciene1, E. Januskevicius2
Department of Graphical systems, Vilnius Gediminas Technical University,
Saulėtekio av.11, Vilnius, Lithuania, phone: +370 5 2744848
Department of Building Structures, Vilnius Gediminas Technical University,
Pylimo St. 26/1, Vilnius, Lithuania; phone: +370 5 2745205"
10b3afc6a10149cd88bc6f4007b41895d661d5fe,SAN: Learning Relationship Between Convolutional Features for Multi-scale Object Detection,"SAN: Learning Relationship between
Convolutional Features
for Multi-Scale Object Detection
Yonghyun Kim1[0000−0003−0038−7850], Bong-Nam Kang2[0000−0002−6818−7532],
nd Daijin Kim1[0000−0002−8046−8521]
Department of Computer Science and Engineering, POSTECH, Korea
Department of Creative IT Engineering, POSTECH, Korea"
1099d475ee0807fc0e4aec55b636db4abc01dcb6,Perceptual Principles for Video Classification With Slow Feature Analysis,"Perceptual principles for video classification with
Slow Feature Analysis
Christian Th´eriault(1), Nicolas Thome(1), Matthieu Cord(1), Patrick P´erez(2)
(1)UPMC-Sorbonne Universities, Paris, France (2)Technicolor, France"
10be82098017fc2d60b0572cea8032afabad5d1a,A Dataset for Multimodal Question Answering in the Cultural Heritage Domain,"Proceedings of the Workshop on Language Technology Resources and Tools for Digital Humanities (LT4DH),
pages 10–17, Osaka, Japan, December 11-17 2016."
10ce3a4724557d47df8f768670bfdd5cd5738f95,Fisher Light-Fields for Face Recognition across Pose and Illumination,"Fihe igh	Fied f Face Recgii
Ac e ad 	iai
Rah G ai ahew ad Si Bake
The Rbic i	e Caegie e Uiveiy
5000 Fbe Ave	e ib	gh A 15213
Abac.  ay face ecgii ak he e ad i	iai
dii f he be ad gaey iage ae di(cid:11)ee.  he cae
	ie gaey  be iage ay be avaiabe each ca	ed f
di(cid:11)ee e ad 	de a di(cid:11)ee i	iai. We e a face
ecgii agih which ca 	e ay 	be f gaey iage e
	bjec ca	ed a abiay e ad 	de abiay i	iai
d ay 	be f be iage agai ca	ed a abiay e ad
de abiay i	iai. The agih eae by eiaig he
Fihe igh	(cid:12)ed f he 	bjec head f he i	 gaey  be
iage. achig bewee he be ad gaey i he efed 	ig
he Fihe igh	(cid:12)ed.
d	ci
 ay face ecgii ceai he e f he be ad gaey iage ae
di(cid:11)ee. The gaey cai he iage 	ed d	ig aiig f he agih.
The agih ae eed wih he iage i he be e. F exae he"
102e374347698fe5404e1d83f441630b1abf62d9,Facial Image Analysis for Fully Automatic Prediction of Difficult Endotracheal Intubation,"Facial Image Analysis for Fully-Automatic
Prediction of Difficult Endotracheal Intubation
Gabriel L. Cuendet, Student Member, IEEE, Patrick Schoettker, Anıl Y¨uce Student Member, IEEE, Matteo Sorci,
Hua Gao, Christophe Perruchoud, Jean-Philippe Thiran, Senior Member, IEEE"
101c7bfc56091b627886636afcf1103c1cecccf6,Rapid Clothing Retrieval via Deep Learning of Binary Codes and Hierarchical Search,"Rapid Clothing Retrieval via Deep Learning of Binary
Codes and Hierarchical Search
Kevin Lin
Academia Sinica, Taiwan
Huei-Fang Yang
Academia Sinica, Taiwan
Kuan-Hsien Liu
Academia Sinica, Taiwan
Jen-Hao Hsiao
Yahoo! Taiwan
Chu-Song Chen
Academia Sinica, Taiwan"
10114df7ddbb221337cc1e99e1de0eab8e47c95d,Evaluating Feature Importance for Re-identification,"Chapter 9
Evaluating Feature Importance for
Re-Identification
Chunxiao Liu, Shaogang Gong, Chen Change Loy, and Xinggang Lin"
1068f6eca07c35426ca67961f00c3cac4866f155,Bilinear Models for 3-D Face and Facial Expression Recognition,"Bilinear Models for 3D Face and Facial
Expression Recognition
Iordanis Mpiperis, Sotiris Malassiotis and Michael G. Strintzis, Fellow,"
102a2096ba2e2947dc252445f764e7583b557680,Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks,"Precomputed Real-Time Texture Synthesis with
Markovian Generative Adversarial Networks
Chuan Li and Michael Wand
Institut for Informatik, University of Mainz, Germany"
10261848b16292a5c8c700de6c6c9f692867c9c8,Cleaning Training-Datasets with Noise-Aware Algorithms,"Cleaning Training-Datasets with Noise-Aware Algorithms
Instituto Nacional de Astrof´ısica ´Optica y Electr´onica,
H. Jair Escalante
Computer Science Department
Tonantzintla, Puebla, 72840, M´exico"
100641ed8a5472536dde53c1f50fa2dd2d4e9be9,Visual attributes for enhanced human-machine communication,"Visual Attributes for Enhanced Human-Machine Communication*
Devi Parikh1"
10678172baa93d8318dd1945d09f38721a0c1ffa,A Comparison of Adaptive Appearance Methods for Tracking Faces in Video Surveillance,"A Comparison of Adaptive Appearance Methods for Tracking
Faces in Video Surveillance
M. Ali Akber Dewan*, E. Granger*, F. Roli†, R. Sabourin*, and G. L. Marcialis†
*Laboratoire d’imagerie, de vision et d’intelligence artificielle, École de technologie supérieure,
Université du Québec, Montréal, Canada
Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d'Armi, Cagliari, Italy
Keywords:  Biometrics,  Face  Tracking,  Spatiotemporal  Face
Recognition,  Video  Surveillance,  On-Line  and  Incremental
Learning, Adaptive Appearance Methods."
10916d4eeacbf63a178c229868160189c6ce8850,Extraction of Illumination Invariant Features using Fuzzy Threshold based Approach,"International Conference on Intelligent Systems and Data Processing (ICISD) 2011
Special Issue published by International Journal of Computer Applications® (IJCA)
Extraction of Illumination Invariant Features using
Fuzzy Threshold based Approach
R. M. Makwana
V. K. Thakar
N.C. Chauhan
Dept. of Computer Engineering
A. D. Patel Inst. of Technology,
S.P. University, New V.V. Nagar
Dept. of Electronics and Commu.
A. D. Patel Inst. of Technology
S.P. University, New V.V. Nagar
Dept. of Information Technology
A. D. Patel Inst. of Technology
S.P. University, New V.V. Nagar
in  unconstrained  environment"
105fdf31d14ec55fda91c05059ec83162ba7ce3a,Automatic feature generation and selection in predictive analytics solutions,AutomaticfeaturegenerationandselectioninpredictiveanalyticssolutionsSuzannevandenBosch
10f641aabdd8bc1eb87fae74c63b814d8ef274a5,Automatic Single-Image People Segmentation and Removal for Cultural Heritage Imaging,"Automatic Single-Image People Segmentation
nd Removal for Cultural Heritage Imaging
Marco Manfredi, Costantino Grana, and Rita Cucchiara
Universit`a degli Studi di Modena e Reggio Emilia, Modena MO 41125, Italy"
101569eeef2cecc576578bd6500f1c2dcc0274e2,Multiaccuracy: Black-Box Post-Processing for Fairness in Classification,"Multiaccuracy: Black-Box Post-Processing for Fairness in
Michael P. Kim∗†
Classification
Amirata Ghorbani∗
James Zou"
106732a010b1baf13c61d0994552aee8336f8c85,Expanded Parts Model for Semantic Description of Humans in Still Images,"Expanded Parts Model for Semantic Description
of Humans in Still Images
Gaurav Sharma, Member, IEEE, Fr´ed´eric Jurie, and Cordelia Schmid, Fellow, IEEE"
102b27922e9bd56667303f986404f0e1243b68ab,Multiscale recurrent regression networks for face alignment,"Wang et al. Appl Inform  (2017) 4:13
DOI 10.1186/s40535-017-0042-5
RESEARCH
Multiscale recurrent regression networks
for face alignment
Open Access
Caixun Wang1,2,3, Haomiao Sun1,2,3, Jiwen Lu1,2,3*, Jianjiang Feng1,2,3 and Jie Zhou1,2,3
*Correspondence:
State Key Lab of Intelligent
Technologies and Systems,
Beijing 100084, People’s
Republic of China
Full list of author information
is available at the end of the
rticle"
107010b7f2abe3c0c9df62bcef35eb77f6fc76df,Domain-Adversarial Training of Neural Networks,"Journal of Machine Learning Research 17 (2016) 1-35
Submitted 5/15; Published 4/16
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
Evgeniya Ustinova
Skolkovo Institute of Science and Technology (Skoltech)
Skolkovo, Moscow Region, Russia
Hana Ajakan
Pascal Germain
D´epartement d’informatique et de g´enie logiciel, Universit´e Laval
Qu´ebec, Canada, G1V 0A6
Hugo Larochelle
D´epartement d’informatique, Universit´e de Sherbrooke
Qu´ebec, Canada, J1K 2R1
Fran¸cois Laviolette
Mario Marchand
D´epartement d’informatique et de g´enie logiciel, Universit´e Laval
Qu´ebec, Canada, G1V 0A6
Victor Lempitsky
Skolkovo Institute of Science and Technology (Skoltech)"
10fcbf30723033a5046db791fec2d3d286e34daa,On-Line Cursive Handwriting Recognition: A Survey of Methods and Performances,"On-Line Cursive Handwriting Recognition: A Survey of Methods
nd Performances
Dzulkifli Mohamad* ,  2Muhammad Faisal Zafar*,    and  3Razib M. Othman*
*Faculty of Computer Science & Information Systems, Universiti Teknologi Malaysia (UTM) , 81310
Skudai, Johor, Malaysia."
108b2581e07c6b7ca235717c749d45a1fa15bb24,Using Stereo Matching with General Epipolar Geometry for 2D Face Recognition across Pose,"Using Stereo Matching with General Epipolar
Geometry for 2D Face Recognition
cross Pose
Carlos D. Castillo, Student Member, IEEE, and
David W. Jacobs, Member, IEEE"
103590b36d026928a90eae7ade9d7da318202168,Indoor Scene Recognition Using Local Semantic Concepts,"Indoor Scene Recognition Using Local Semantic
Concepts
Elham Seifossadat1, Niloofar Gheissari2 and Ali Fanian3
Electrical and Computer Department,Isfahan University of Technology
Isfahan, Iran
Electrical and Computer Department,Isfahan University of Technology
Isfahan, Iran
3 Electrical and Computer Department,Isfahan University of Technology
Isfahan, Iran"
10773e5c1bc8a9a901a8baf4d0b891397975ea9d,Group encoding of local features in image classification,"1st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan
978-4-9906441-1-6 ©2012 IAPR"
10d334a98c1e2a9e96c6c3713aadd42a557abb8b,Scene Text Recognition Using Part-Based Tree-Structured Character Detection,"Scene Text Recognition using Part-based Tree-structured Character Detection
Cunzhao Shi, Chunheng Wang, Baihua Xiao, Yang Zhang, Song Gao and Zhong Zhang
State Key Laboratory of Management and Control for Complex Systems, CASIA, Beijing, China"
1038aa6c1f63c1de9045f10e47ed573810cb4a52,A Video-Based Method for Objectively Rating Ataxia,"A Video-Based Method for Objectively Rating Ataxia
Ronnachai Jaroensri∗1, Amy Zhao∗1, Guha Balakrishnan1, Derek Lo2, Jeremy Schmahmann3,
John Guttag1, and Fr´edo Durand1
MIT CSAIL 2Yale University 3Massachusetts General Hospital"
1040a32d5bd5e6f4c8bc1932345ef93671e2c019,Real-time RGB-D based template matching pedestrian detection,"Real-Time RGB-D based Template Matching Pedestrian Detection
Omid Hosseini jafari and Michael Ying Yang"
109df0e8e5969ddf01e073143e83599228a1163f,Scheduling heterogeneous multi-cores through performance impact estimation (PIE),"Scheduling Heterogeneous Multi-Cores through
Performance Impact Estimation (PIE)
Kenzo Van Craeynest•∗ Aamer Jaleel†
Lieven Eeckhout•
Paolo Narvaez†
Joel Emer†‡
Ghent University•
Ghent, Belgium
{kenzo.vancraeynest,
Intel Corporation, VSSAD†
{aamer.jaleel,paolo.narvaez,
Hudson, MA
Cambridge, MA"
1048c753e9488daa2441c50577fe5fdba5aa5d7c,Recognising faces in unseen modes: A tensor based approach,"Recognising faces in unseen modes: a tensor based approach
Santu Rana, Wanquan Liu, Mihai Lazarescu and Svetha Venkatesh
{santu.rana, wanquan, m.lazarescu,
Dept. of Computing, Curtin University of Technology
GPO Box U1987, Perth, WA 6845, Australia."
191753aa338f24bb41f7bacb4326e0c0a1b90459,"Visual People Detection – Different Models, Comparison and Discussion","Visual People Detection – Different Models, Comparison and Discussion
Bernt Schiele, Mykhaylo Andriluka, Nikodem Majer, Stefan Roth and Christian Wojek
Department of Computer Science, TU Darmstadt"
199fdc3c0b73d9469d2e732c97e889bfc8bf8bff,"Multi-Class Constrained Normalized Cut With Hard, Soft, Unary and Pairwise Priors and its Applications to Object Segmentation","Multi-Class Constrained Normalized Cut With
Hard, Soft, Unary and Pairwise Priors and Its
Applications to Object Segmentation
Han Hu, Jianjiang Feng, Member, IEEE, Chuan Yu, and Jie Zhou, Senior Member, IEEE"
199aabb19ea78576a74d573739a7f35cf04fac6e,Fast globally optimal 2D human detection with loopy graph models,"Fast Globally Optimal 2D Human
Detection with Loopy Graph Models
Paper by
T.-P. Tian and S. Sclaroff
Slides by A. Vedaldi"
19fd089807f8925b9384bae6e66cbfe7e6d318aa,Acume: A new visualization tool for understanding facial expression and gesture data,"Acume: A New Visualization Tool for
Understanding Facial Expression and Gesture
Daniel McDuff - MIT Media Lab
March 24, 2011"
19841b721bfe31899e238982a22257287b9be66a,Recurrent Neural Networks,"Published as a conference paper at ICLR 2018
SKIP RNN: LEARNING TO SKIP STATE UPDATES IN
RECURRENT NEURAL NETWORKS
V´ıctor Campos∗†, Brendan Jou‡, Xavier Gir´o-i-Nieto§, Jordi Torres†, Shih-Fu ChangΓ
Barcelona Supercomputing Center, ‡Google Inc,
§Universitat Polit`ecnica de Catalunya, ΓColumbia University
{victor.campos,"
19cfe13e8196872b81d6f31d2849dc540d146f7c,A Bayesian Framework for Sparse Representation-Based 3-D Human Pose Estimation,"A Bayesian Framework for Sparse
Representation-Based 3D Human Pose Estimation
Behnam Babagholami-Mohamadabadi, Amin Jourabloo, Ali Zarghami, and Shohreh Kasaei Senior Member, IEEE"
19dc5a1156819230e6ae425e9c9d56e898d6bcb9,Comparing human and machine face recognition,"Comparing human and machine face recognition1
Face Recognition Algorithms
Surpass Humans Matching Faces Over
Changes in Illumination
Alice J. O’TOOLE, P. Jonathon PHILLIPS, Fang JIANG, Janet AYYAD, Nils PENARD,
nd Hervé ABDI*"
19fcb95815e4c225b250f7deed9be3e90963933d,Evaluación de la calidad de las imágenes de rostros utilizadas para la identificación de las personas,"ISSN: 1405-5546
Instituto Politécnico Nacional
México
Méndez-Vázquez, Heydi; Chang, Leonardo; Rizo-Rodríguez, Dayron; Morales-González, Annette
Evaluación de la calidad de las imágenes de rostros utilizadas para la identificación de las personas
Instituto Politécnico Nacional
Distrito Federal, México
Disponible en: http://www.redalyc.org/articulo.oa?id=61523309003
Cómo citar el artículo
Número completo
Más información del artículo
Página de la revista en redalyc.org
Sistema de Información Científica
Red de Revistas Científicas de América Latina, el Caribe, España y Portugal
Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto"
19441b8be551e8134dd9eb33238309bc2de0a42f,Playing for Benchmarks,"Playing for Benchmarks
Stephan R. Richter
TU Darmstadt
Zeeshan Hayder
Vladlen Koltun
Intel Labs
Figure 1. Data for several tasks in our benchmark suite. Clockwise from top left: input video frame, semantic segmentation, semantic
instance segmentation, 3D scene layout, visual odometry, optical flow. Each task is presented on a different image."
192723085945c1d44bdd47e516c716169c06b7c0,Vision and Attention Theory Based Sampling for Continuous Facial Emotion Recognition,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
Vision and Attention Theory Based Sampling
for Continuous Facial Emotion Recognition
Albert C. Cruz, Student Member, IEEE, Bir Bhanu, Fellow, IEEE, and
Ninad S. Thakoor, Member, IEEE"
197a3c1863c780507798c9550dd6faadeb65caaa,Processing and Recognising Faces in 3D Images,",300+OPEN ACCESS BOOKS107,000+INTERNATIONALAUTHORS AND EDITORS113+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book New Approaches to Characterization and Recognition of FacesDownloaded from: http://www.intechopen.com/books/new-approaches-to-characterization-and-recognition-of-facesPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at"
19b9e5127155730c618c0e1b41e1c723f143651d,Face Verification for Mobile Personal Devices,"Face Verification for Mobile Personal Devices
Qian Tao"
19fb5e5207b4a964e5ab50d421e2549ce472baa8,Online emotional facial expression dictionary,"International Conference on Computer Systems and Technologies - CompSysTech’14
Online Emotional Facial Expression Dictionary
Léon Rothkrantz"
1962e4c9f60864b96c49d85eb897141486e9f6d1,Locality preserving embedding for face and handwriting digital recognition,"Neural Comput & Applic (2011) 20:565–573
DOI 10.1007/s00521-011-0577-7
O R I G I N A L A R T I C L E
Locality preserving embedding for face and handwriting digital
recognition
Zhihui Lai • MingHua Wan • Zhong Jin
Received: 3 December 2008 / Accepted: 11 March 2011 / Published online: 1 April 2011
Ó Springer-Verlag London Limited 2011
supervised manifold
the local sub-manifolds."
19bc52323383732c3c7d73e11726f6232515d2f9,KAIST Multi-Spectral Day/Night Data Set for Autonomous and Assisted Driving,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
KAIST Multi-Spectral Day/Night Data Set for
Autonomous and Assisted Driving
Yukyung Choi
, Namil Kim, Soonmin Hwang, Kibaek Park, Jae Shin Yoon,
Kyounghwan An, Member, IEEE, and In So Kweon, Member, IEEE
i.e., a thermal"
191674c64f89c1b5cba19732869aa48c38698c84,Face Image Retrieval Using Attribute - Enhanced Sparse Codewords,"International Journal of Advanced Technology in Engineering and Science                 www.ijates.com
Volume No.03, Issue No. 03, March 2015                                                   ISSN (online): 2348 – 7550
FACE IMAGE RETRIEVAL USING ATTRIBUTE -
ENHANCED SPARSE CODEWORDS
E.Sakthivel1 , M.Ashok kumar2
PG scholar, Communication Systems, Adhiyamaan College of Engineeing,Hosur,(India)
Asst. Prof., Electronics And Communication Engg., Adhiyamaan College of Engg.,Hosur,(India)"
190d8bd39c50b37b27b17ac1213e6dde105b21b8,Mining Weakly Labeled Web Facial Images for Search-Based Face Annotation,"This document is downloaded from DR-NTU, Nanyang Technological
University Library, Singapore.
Title
Mining weakly labeled web facial images for search-
ased face annotation
Author(s) Wang, Dayong; Hoi, Steven C. H.; He, Ying; Zhu, Jianke
Citation
Wang, D., Hoi, S. C. H., He, Y., & Zhu, J. (2014). Mining
weakly labeled web facial images for search-based face
nnotation. IEEE Transactions on Knowledge and Data
Engineering, 26(1), 166-179.
http://hdl.handle.net/10220/18955
Rights
© 2014 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other
uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any
opyrighted component of this work in other works."
19af008599fb17bbd9b12288c44f310881df951c,Discriminative Local Sparse Representations for Robust Face Recognition,"Discriminative Local Sparse Representations for
Robust Face Recognition
Yi Chen, Umamahesh Srinivas, Thong T. Do, Vishal Monga, and Trac D. Tran"
19296e129c70b332a8c0a67af8990f2f4d4f44d1,Is that you? Metric learning approaches for face identification,"Metric Learning Approaches for Face Identification
Is that you?
M. Guillaumin, J. Verbeek and C. Schmid
LEAR team, INRIA Rhˆone-Alpes, France
Supplementary Material"
19666b9eefcbf764df7c1f5b6938031bcf777191,Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction,"Group Component Analysis for Multi-block Data:
Common and Individual Feature Extraction
Guoxu Zhou, Andrzej Cichocki Fellow, IEEE, Yu Zhang, and Danilo Mandic Fellow, IEEE"
198b6beb53e0e61357825d57938719f614685f75,Vaulted Verification: A Scheme for Revocable Face Recognition,"Vaulted Verification: A Scheme for Revocable Face
Recognition
Michael Wilber
University of Colorado, Colorado Springs"
197eafb6abb6b7d2813eec0891b143e27fc57386,Smile! Studying expressivity of happiness as a synergic factor in collaborative information seeking,"Smile! Studying expressivity of happiness as a synergic factor in collaborative
information seeking.
Rutgers University has made this article freely available.  Please share how this access benefits you.
Your story matters. [https://rucore.libraries.rutgers.edu/rutgers-lib/47408/story/]
This work is the AUTHOR'S ORIGINAL (AO)
This is the author's original version of a work, which may or may not have been subsequently published. The author accepts full
responsibility for the article. Content and layout is as set out by the author.
Citation to this Version: Shah, Chirag, González-Ibáñez, Roberto & Córdova-Rubio, Natalia. (2011). Smile! Studying
expressivity of happiness as a synergic factor in collaborative information seeking.. New Orleans
(La.). Retrieved from doi:10.7282/T3NK3GWF.
Terms of Use:   Copyright for scholarly resources published in RUcore is retained by the copyright holder. By virtue of its appearance in this open
ccess medium, you are free to use this resource, with proper attribution, in educational and other non-commercial settings. Other uses, such as
reproduction or republication, may require the permission of the copyright holder.
Article begins on next page
SOAR is a service of RUcore, the Rutgers University Community Repository
RUcore is developed and maintained by Rutgers University Libraries"
19911c7e66b05d5aa28673608fdfc50ef00591dd,Recognizing Human Faces: Physical Modeling and Pattern Classification,
195d331c958f2da3431f37a344559f9bce09c0f7,Parsing occluded people by flexible compositions,"Parsing Occluded People by Flexible Compositions
Xianjie Chen, Alan Yuille
University of California, Los Angeles.
Figure 1: An illustration of the flexible compositions. Each connected sub-
tree of the full graph (include the full graph itself) is a flexible composition.
The flexible compositions that do not have certain parts are suitable for the
people with those parts occluded.
Figure 2: The absence of body parts evidence can help to predict occlusion.
However, absence of evidence is not evidence of absence.
It can fail in
some challenging scenes. The local image measurements near the occlusion
oundary (i.e., around the right elbow and left shoulder) can reliably provide
evidence of occlusion.
This paper presents an approach to parsing humans when there is signifi-
ant occlusion. We model humans using a graphical model which has a tree
structure building on recent work [1, 6] and exploit the connectivity prior
that, even in presence of occlusion, the visible nodes form a connected sub-
tree of the graphical model. We call each connected subtree a flexible com-
position of object parts. This involves a novel method for learning occlusion
ues. During inference we need to search over a mixture of different flexible"
19a30ad283f2ab2d84f1c666d17492da14056d75,Visuomotor Coordination in Reach-To-Grasp Tasks: From Humans to Humanoids and Vice Versa,"Visuomotor Coordination in Reach-To-Grasp Tasks:
From Humans to Humanoids and Vice Versa
THÈSE NO 6695 (2015)
PRÉSENTÉE LE 4 JUIN 2015
À L’ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE D'ALGORITHMES ET SYSTÈMES D'APPRENTISSAGE
À L’INSTITUTO SUPERIOR TÉCNICO (IST) DA UNIVERSIDADE DE LISBOA
INSTITUTO DE SISTEMA E ROBOTICA
PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE
DOUTORAMENTO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES
POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES (PhD)
Luka LUKIC
Prof. A. Billard, Prof. J. Santos-Victor, directeurs de thèse
cceptée sur proposition du jury:
Prof. J. Faria, président du jury
Prof. D. Vernon, rapporteur
Prof. E. Bicho, rapporteuse
Prof. A. Bernardino, rapporteur
Prof. G. Sandini, rapporteur"
19a3374ac2f917b408b4bcdca33fc9e9fd7ff260,Visual Fixation Patterns during Reciprocal Social Interaction Distinguish a Subgroup of 6-Month-Old Infants At-Risk for Autism from Comparison Infants.,"J Autism Dev Disord (2007) 37:108–121
DOI 10.1007/s10803-006-0342-4
O R I G I N A L P A P E R
Visual Fixation Patterns during Reciprocal Social Interaction
Distinguish a Subgroup of 6-Month-Old Infants At-Risk
for Autism from Comparison Infants
Noah Merin Æ Gregory S. Young Æ Sally Ozonoff Æ
Sally J. Rogers
Published online: 27 December 2006
Ó Springer Science+Business Media, LLC 2006"
19c53302bda8a82ec40d314a85b1713f43058a1a,Deep learning models of biological visual information processing,"Turcsány, Diána (2016) Deep learning models of
iological visual information processing. PhD thesis,
University of Nottingham.
Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/35561/1/thesis_DianaTurcsany.pdf
Copyright and reuse:
The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.
This article is made available under the University of Nottingham End User licence and may
e reused according to the conditions of the licence.  For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf
For more information, please contact"
197f945b66995e4d006497808586f828f8a88a86,Part Discovery from Partial Correspondence,"Part Discovery from Partial Correspondence
Subhransu Maji
Gregory Shakhnarovich
Toyota Technological Institute at Chicago, IL, USA"
19c0c7835dba1a319b59359adaa738f0410263e8,Natural Image Statistics and Low-Complexity Feature Selection,"Natural Image Statistics and
Low-Complexity Feature Selection
Manuela Vasconcelos and Nuno Vasconcelos, Senior Member, IEEE"
193c9bd069e9457ac8650a8dfd4319bb3f4afd56,Improving Person Tracking Using an Inexpensive Thermal Infrared Sensor,"Improving Person Tracking Using an Inexpensive Thermal Infrared Sensor
Suren Kumar
Univ. of SUNY-Buffalo
Tim K. Marks
Mitsubishi Electric Research Labs
Michael Jones
Mitsubishi Electric Research Labs"
19cfec264e863793dd96a5f308a3b603c6b9912e,Attention-Based Ensemble for Deep Metric Learning,"Attention-based Ensemble for
Deep Metric Learning
Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee, Keunjoo Kwon
Samsung Research,
Samsung Electronics
{wonsik16.kim, bhavya.goyal, kunal.chawla, jm411.lee,"
19d583bf8c5533d1261ccdc068fdc3ef53b9ffb9,FaceNet: A unified embedding for face recognition and clustering,"FaceNet: A Unified Embedding for Face Recognition and Clustering
Florian Schroff
Dmitry Kalenichenko
James Philbin
Google Inc.
Google Inc.
Google Inc."
1910f5f7ac81d4fcc30284e88dee3537887acdf3,Semantic Based Hypergraph Reranking Model for Web Image Search,"Volume 6, Issue 5, May 2016                                   ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
Semantic Based Hypergraph Reranking Model for Web
Image Search
Amol Darkunde, 2Manoj Jalan, 3Yelmar Mahesh, 4Shivadatta Shinde, 5Dnyanda Patil
, 2, 3, 4 B. E.  Dept of CSE, 5 Asst. Prof. Dept of CSE
, 2, 3, 4, 5 Dr.D.Y.Patil College of Engineering, Pune, Maharashtra, India"
1936a73920c5a7eb97e8b73cb9a6096aa509e402,Robust Multi-Person Tracking from Moving Platforms,"Robust Multi-Person Tracking from Moving Platforms
Andreas Ess1, Konrad Schindler1, Bastian Leibe1,2 and Luc van Gool1,3
ETH Z¨urich
KU Leuven, IBBT
RWTH Aachen"
19f7654f22416e6fdf430c1c873ad3e8c15e64f8,Zero-crossing based image projections encoding for eye localization,"0th European Signal Processing Conference (EUSIPCO 2012)
© EURASIP, 2012  -  ISSN 2076-1465
. INTRODUCTION"
197c64c36e8a9d624a05ee98b740d87f94b4040c,Regularized Greedy Column Subset Selection,"Regularized Greedy Column Subset Selection
Bruno Ordozgoiti*a, Alberto Mozoa, Jes´us Garc´ıa L´opez de Lacalleb
Department of Computer Systems, Universidad Polit´ecnica de Madrid
Department of Applied Mathematics, Universidad Polit´ecnica de Madrid"
19158dfe2815e7f9eebc5822687e83d0a89ae147,Semantic Regularisation for Recurrent Image Annotation,[cs.CV]  16 Nov 2016
1957956856dc04ebee5815bd62874687e2af7260,Joint Optical Flow and Temporally Consistent Semantic Segmentation,"Joint Optical Flow and Temporally Consistent
Semantic Segmentation
Junhwa Hur and Stefan Roth
Department of Computer Science, TU Darmstadt"
19d4855f064f0d53cb851e9342025bd8503922e2,Learning SURF Cascade for Fast and Accurate Object Detection,"Learning SURF Cascade for Fast and Accurate Object Detection
Jianguo Li, Yimin Zhang
Intel Labs China"
193ec7bb21321fcf43bbe42233aed06dbdecbc5c,Automatic 3D Facial Expression Analysis in Videos,"UC Santa Barbara
UC Santa Barbara Previously Published Works
Title
Automatic 3D facial expression analysis in videos
Permalink
https://escholarship.org/uc/item/3g44f7k8
Authors
Chang, Y
Vieira, M
Turk, M
et al.
Publication Date
005-01-01
Peer reviewed
eScholarship.org
Powered by the California Digital Library
University of California"
19359fb238888c0eb012a4ab5c6f0fa0e9be493b,Enhanced Facial Expression Recognition using 2DPCA Principal component Analysis and Gabor Wavelets,"Enhanced Facial Expression Recognition
using 2DPCA Principal component Analysis
nd Gabor Wavelets.
(1)Laboratory of Automatic and Signals Annaba (LASA) , Department of electronics, Faculty of Engineering,
Zermi.Narima(1), Saaidia.Mohammed(2),
Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria.
E-Mail :
(2) Département de Génie-électrique, Université M.C.M. Souk-Ahras, Algeria"
19766585a701749fc297a5ca6b8cdc0c62d4ba1b,A Bottom-Up Approach for Pancreas Segmentation Using Cascaded Superpixels and (Deep) Image Patch Labeling,"A Bottom-up Approach for Pancreas Segmentation using
Cascaded Superpixels and (Deep) Image Patch Labeling
Amal Faraga, Le Lua, Holger R. Rotha, Jiamin Liua, Evrim Turkbeya, Ronald M. Summersa,∗
Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes
of Health Clinical Center, Building 10 Room 1C224D, MSC 1182, Bethesda, MD 20892-1182, United States"
4c6d6bb5bafba9e04d8f2ce128be71fba1d1e0e8,Human parsing with a cascade of hierarchical poselet based pruners,"HUMAN PARSING WITH A CASCADE OF HIERARCHICAL POSELET BASED PRUNERS
Duan Tran†
Yang Wang‡
University of Illinois at Urbana Champaign†
David Forsyth†
University of Manitoba‡"
4c0ce0ed9cc92115874be4397f6240769d3ed84f,The effect of familiarity on face adaptation.,"doi:10.1068/p6774
The effect of familiarity on face adaptation
Sarah Laurence, Graham Hole
School of Psychology, University of Sussex, Falmer, Brighton BN1 9QH, Sussex, UK;
e-mail:
Received 14 July 2010, in revised form 30 March 2011"
4c6e1840451e1f86af3ef1cb551259cb259493ba,Hand Posture Dataset Creation for Gesture Recognition,"HAND POSTURE DATASET CREATION FOR GESTURE
RECOGNITION
Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria
Luis Anton-Canalis
Campus Universitario de Tafira, 35017 Gran Canaria, Spain
Elena Sanchez-Nielsen
Departamento de E.I.O. y Computacion
8271 Universidad de La Laguna, Spain
Keywords:
Image understanding, Gesture recognition, Hand dataset."
4c69da79843016d5d934464d3777030741978180,Neuromorphic Atomic Switch Networks,"Neuromorphic Atomic Switch Networks
Audrius V. Avizienis1.
Adam Z. Stieg2,3*, James K. Gimzewski1,2,3
, Henry O. Sillin1.
, Cristina Martin-Olmos1, Hsien Hang Shieh2, Masakazu Aono3,
Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America, 2 California NanoSystems Institute,
University of California Los Angeles, Los Angeles, California, United States of America, 3 World Premier International Center for Materials Nanoarchitectonics, National
Institute for Materials Science, Tsukuba, Ibaraki, Japan"
4cc5fb6cf48b2c58b283460b19f3beeb7e5b6a22,Clickage: towards bridging semantic and intent gaps via mining click logs of search engines,"Clickage: Towards Bridging Semantic and Intent Gaps
via Mining Click Logs of Search Engines
Xian-Sheng Hua, Linjun Yang, Jingdong Wang, Jing Wang
Ming Ye, Kuansan Wang, Yong Rui, Jin Li
Microsoft Corporation, One Microsoft Way, Redmond WA 98052, USA
{xshua; linjuny; jingdw; v-wangji; mingye; kuansanw; yongrui;"
4cf74211e635c73ca5816199ef33d10c3462beae,Review of Facial Expression Recognition System and Used Datasets,"IJRET: International Journal of Research in Engineering and Technology       eISSN: 2319-1163 | pISSN: 2321-7308
REVIEW OF FACIAL EXPRESSION RECOGNITION SYSTEM AND
USED DATASETS
Shyna Dutta1, V.B. Baru2,
ME Student, Department of Electronics and Telecommunication, Sinhgad College of Engineering Vadgaon, Pune,
Associate Professor, Department of Electronics and Telecommunication, Sinhgad College of Engineering Vadgaon,"
4c41b774a6bdf43d980f640880cc49b82ae19b34,3D Facial Landmark Detection under Large Yaw and Expression Variations,"D Facial Landmark Detection under
Large Yaw and Expression Variations
Panagiotis Perakis, Member, IEEE Computer Society, Georgios Passalis,
Theoharis Theoharis, and Ioannis A. Kakadiaris, Senior Member, IEEE"
4cff5b5099b0227730efa9e9fd724a63dc0c0c2f,Learning Efficient Binary Codes From High-Level Feature Representations for Multilabel Image Retrieval,"Learning Efficient Binary Codes From
High-Level Feature Representations
for Multilabel Image Retrieval
Lei Ma
, Hongliang Li, Senior Member, IEEE, Fanman Meng, Member, IEEE, Qingbo Wu, Member, IEEE,
nd King Ngi Ngan, Fellow, IEEE"
4cdfef0fec0918dcf5c40b9b53c9e3f48be0462b,Unsupervised robotic sorting: Towards autonomous decision making robots,"Unsupervised robotic sorting:
Towards autonomous decision making
robots
Joris Gu´erin, St´ephane Thiery, Eric Nyiri and Olivier Gibaru
Arts et M´etiers ParisTech, Lille, FRANCE"
4c4454aa7a2a244c678f507a982fe8827ba419bb,Adversarial Examples for Semantic Image Segmentation,"Workshop track - ICLR 2017
ADVERSARIAL EXAMPLES FOR
SEMANTIC IMAGE SEGMENTATION
Volker Fischer1, Mummadi Chaithanya Kumar2, Jan Hendrik Metzen1 & Thomas Brox2
Bosch Center for Artificial Intelligence, Robert Bosch GmbH
University of Freiburg
{volker.fischer,"
4c797506d610525591288f813621b271ce879452,The automaticity of face perception is influenced by familiarity,"Atten Percept Psychophys (2017) 79:2202–2211
DOI 10.3758/s13414-017-1362-1
The automaticity of face perception is influenced by familiarity
Xiaoqian Yan 1 & Andrew W. Young 1 & Timothy J. Andrews 1
Published online: 5 July 2017
# The Author(s) 2017. This article is an open access publication"
4c5041f8b93fd71a851445e84bfca0d7d0c3bb9b,Enhancing Memory-Based Particle Filter with Detection-Based Memory Acquisition for Robustness under Severe Occlusion,"ENHANCING MEMORY-BASED PARTICLE FILTER WITH
DETECTION-BASED MEMORY ACQUISITION FOR ROBUSTNESS
UNDER SEVERE OCCLUSION
Dan Mikami, Kazuhiro Otsuka, Shiro Kumano and Junji Yamato
NTT Communication Science Laboratories, NTT, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
Keywords:
Pose Tracking, Face Pose, Memory-based Prediction, Memory Acquisition."
4c815f367213cc0fb8c61773cd04a5ca8be2c959,Facial expression recognition using curvelet based local binary patterns,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE
ICASSP 2010"
4ca8ff09f24f0838022f1d0b94af4331f6e538cd,Semantic Parsing to Probabilistic Programs for Situated Question Answering,"Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 160–170,
Austin, Texas, November 1-5, 2016. c(cid:13)2016 Association for Computational Linguistics"
4cf17bca0e19070fbe9bb25644787f65fa6ebe1a,Human Pose Estimation,"Human pose estimation
Leonid Sigal, Disney Research, Pittsburgh
Synonyms
– Articulated pose estimation
– Body configuration recovery
Related Concepts
– Human pose tracking
– People tracking
– Articulated pose tracking
– Body parsing
– People parsing
Definition
Human pose estimation is the process of estimating the configuration of the
ody (pose) from a single, typically monocular, image.
Background
Human pose estimation is one of the key problems in computer vision that
has been studied for well over 15 years. The reason for its importance is the
bundance of applications that can benefit from such a technology. For example,
human pose estimation allows for higher level reasoning in the context of human-
omputer interaction and activity recognition; it is also one of the basic building"
4ce18536eec7917da848be6b5f783d3ee3d49677,Fast Face Detection in One Line of Code,"Fast Face Detection in One Line of Code
Michael Zucchi, B.E. (Comp. Sys. Eng.)
Unaliated, unfunded, personal research."
4c1ef2a628627798939dccc072d33f9e12b48640,Advanced Hybrid Color Space Normalization for Human Face Extraction and Detection,"IJSRD - International Journal for Scientific Research & Development| Vol. 1, Issue 4, 2013 | ISSN (online): 2321-0613
Advanced Hybrid Color Space Normalization for Human Face
Extraction and Detection
Jayakrishna.V1  Akhila G.P.2 Shafeena Basheer3
, 2Faculty  3PG Student
, 3Amal Jyothi College of Engineering, Kanjirappally
UKF College of Engineering &Technology,Parippally
S.P.B.Patel Engineering College, Mehsana, Gujarat
(CSN)
technique
enhancing
is  contained
in  Y  component,  and"
4c4e49033737467e28aa2bb32f6c21000deda2ef,Improving Landmark Localization with Semi-Supervised Learning,"Improving Landmark Localization with Semi-Supervised Learning
Sina Honari1∗, Pavlo Molchanov2, Stephen Tyree2, Pascal Vincent1,4,5, Christopher Pal1,3, Jan Kautz2
MILA-University of Montreal, 2NVIDIA, 3Ecole Polytechnique of Montreal, 4CIFAR, 5Facebook AI Research.
{honaris,
{pmolchanov, styree,"
4c39000bbd6761dd9e5609fe310af51facb835a9,Kinects and human kinetics: A new approach for studying pedestrian behavior,"This paper might be a pre-copy-editing or a post-print author-produced .pdf of an article accepted for publication. For the
definitive publisher-authenticated version, please refer directly to publishing house’s archive system."
4c822705edd305d04f2c02ac9b1b73421e857961,Towards fully automated person re-identification,"Towards Fully Automated Person Re-Identification
Matteo Taiana, Dario Figueira, Athira Nambiar, Jacinto Nascimento and Alexandre Bernardino
Institute for Systems and Robotics, IST, Lisboa, Portugal
Re-Identification, Pedestrian Detection, Camera Networks, Video Surveillance
Keywords:"
4c477ba5513ec9c629ca3442c1fee15612259905,Complex Relations in a Deep Structured Prediction Model for Fine Image Segmentation,"Complex Relations in a Deep Structured Prediction
Model for Fine Image Segmentation
Cristina Mata, Guy Ben-Yosef, Boris Katz
Computer Science and Artificial Intelligence Laboratory
{cfmata, gby,
Center for Brains, Minds and Machines"
4c55ea9c04d46d60ec5789f4e4c3224c41360768,Dimensionality Reduction Using Similarity-Induced Embeddings,"IEEE Copyright Notice
Copyright c(cid:13)2017 IEEE
Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or fu-
ture media, including reprinting/republishing this material for
dvertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.
Published in: IEEE Transactions on Neural Networks and
Learning Systems
URL: http://ieeexplore.ieee.org/document/8004500
DOI: 10.1109/TNNLS.2017.2728818
DOI 10.1109/TNNLS.2017.2728818 c(cid:13)2017 IEEE"
4cc675422395ed7dc7e4772280f7c57cac6fbaee,Efficient person re-identification by hybrid spatiogram and covariance descriptor,"Efficient Person Re-identification by Hybrid Spatiogram and Covariance
Descriptor
Mingyong Zeng, Zemin Wu, Chang Tian, Lei Zhang, and Lei Hu
College of Communications Engineering, PLA University
of Science and Technology, Nanjing 210007, China"
4c1e47ba68b81d210718f837b197253164decaf0,Evaluation of Quality Factors for the Captured Facial Image,"International Journal of Computer Applications (0975 – 8887)
Volume 142 – No.10, May 2016
Evaluation of Quality Factors for the Captured Facial
Image
Abhay Goyal
M.Tech. Student
Department of ECE
SBSSTC, Ferozepur, Pujnab"
4ce68170f85560942ee51465e593b16560f9c580,Practical Matrix Completion and Corruption Recovery Using Proximal Alternating Robust Subspace Minimization,"(will be inserted by the editor)
Practical Matrix Completion and Corruption Recovery using
Proximal Alternating Robust Subspace Minimization
Yu-Xiang Wang · Choon Meng Lee · Loong-Fah Cheong · Kim-Chuan Toh
Introduction
Completing a low-rank matrix from partially observed
entries, also known as matrix completion, is a central
task in many real-life applications. The same abstrac-
tion of this problem has appeared in diverse fields such
s signal processing, communications, information re-
trieval, machine learning and computer vision. For in-
stance, the missing data to be filled in may correspond
to plausible movie recommendations (Koren et al 2009;
Funk 2006), occluded feature trajectories for rigid or
non-rigid structure from motion, namely SfM (Hart-
ley and Schaffalitzky 2003; Buchanan and Fitzgibbon
005) and NRSfM (Paladini et al 2009), relative dis-
tances of wireless sensors (Oh et al 2010), pieces of un-
ollected measurements in DNA micro-array (Friedland
et al 2006), just to name a few."
4c81c76f799c48c33bb63b9369d013f51eaf5ada,Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job Candidate Screening from Video CVs,"Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job
Candidate Screening from Video CVs
Heysem Kaya1, Furkan G¨urpınar2, and Albert Ali Salah2
Department of Computer Engineering, Namık Kemal University, Tekirda˘g, Turkey
Department of Computer Engineering, Bo˘gazic¸i University, Istanbul, Turkey"
4c1ce6bced30f5114f135cacf1a37b69bb709ea1,Gaze direction estimation by component separation for recognition of Eye Accessing Cues,"Gaze Direction Estimation by Component Separation for
Recognition of Eye Accessing Cues
Ruxandra Vrˆanceanu
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313
Corneliu Florea
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313
Laura Florea
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313
Constantin Vertan
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313"
4cfa2fe87c250534fd2f285c2300e7ca2cd9e325,"Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation","ORIGINAL RESEARCH
published: 19 April 2016
doi: 10.3389/fnhum.2016.00167
Visual, Auditory, and Cross Modal
Sensory Processing in Adults with
Autism: An EEG Power and BOLD
fMRI Investigation
Elizabeth’ C. Hames1, Brandi Murphy2, Ravi Rajmohan3, Ronald C. Anderson1,
Mary Baker1*, Stephen Zupancic2, Michael O’Boyle4 and David Richman5
Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA, 2 Department of Audiology,
Texas Tech University Health Sciences Center, Lubbock, TX, USA, 3 Department of Pharmacology and Neuroscience, Texas
Tech University Health Sciences Center, Lubbock, TX, USA, 4 College of Human Sciences, Texas Tech University, Lubbock,
TX, USA, 5 Burkhart Center for Autism Education and Research, Texas Tech University, Lubbock, TX, USA
Electroencephalography (EEG) and blood oxygen level dependent functional magnetic
resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing
of visual and auditory stimuli
in 11 adults with autism (ASD) and 10 neurotypical (NT)
ontrols between the ages of 20–28. We hypothesized that ASD performance on
ombined audiovisual trials would be less accurate with observable decreased EEG
power across frontal, temporal, and occipital channels and decreased BOLD fMRI"
4c88e41424022c7c5f111d34d931fae15f52a551,"CUR Decompositions, Similarity Matrices, and Subspace Clustering","CUR Decompositions, Similarity Matrices, and
Subspace Clustering
Akram Aldroubi, Keaton Hamm, Ahmet Bugra Koku, and Ali Sekmen"
4cfae149d6acd8cffc12c06ed796f1f84dce0e73,Face Recognition Based on Image Latent Semantic Analysis Model and SVM,"International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol. 6, No. 3, June, 2013
Face Recognition Based on Image Latent Semantic Analysis Model
nd SVM
Jucheng Yang 1, 2, Min Luo3 and Yanbin Jiao4
Ahead Software Company Limited, Nanchang, 330041, China
College of Computer Science and Information Engineering, Tianjin University of
Science and Technology, Tianjin, China
Jiangxi Institute of Computing Technology, Nanchang, China
School of Information Technology, Jiangxi University of Finance and Economics,
Nanchang, China"
4cfdd0c8313ac4f92845dcd658115beb115b97ce,Multi-Task Learning as Multi-Objective Optimization,"Multi-Task Learning as Multi-Objective Optimization
Ozan Sener
Intel Labs
Vladlen Koltun
Intel Labs"
4c863a15c4da0d0ccd20c5897a4e33fb771fe3eb,The effect of forced choice on facial emotion recognition: a comparison to open verbal classification of emotion labels,"OPEN ACCESS
Research Article
The effect of forced choice on facial emotion recognition:
comparison to open verbal classification of emotion
labels
Der Effekt eines geschlossenen Antwortformats auf die mimische
Emotionserkennung: ein Vergleich mit der freien verbale Zuordnung von
Emotionswörtern
Kerstin
Limbrecht-Ecklundt1
Andreas Scheck1
Lucia Jerg-Bretzke1
Steffen Walter1
Holger Hoffmann1
Harald C. Traue1
University of Ulm, University
Clinic of Psychosomatic
Medicine and Psychotherapy,
Medical Psychology, Ulm,
Germany"
4c05dc45b82b79e87f7b337ccf9f48d537c0e6e2,Exploring Heterogeneity within a Core for Improved Power Efficiency,"Exploring Heterogeneity within a Core for
Improved Power Efficiency
Sudarshan Srinivasan, Nithesh Kurella, Israel Koren, Fellow, IEEE, and Sandip Kundu, Fellow, IEEE"
2608a2499819053468f4e6f77a715c2dbfefdfb0,Object Classification using Hybrid Holistic Descriptors: Application to Building Detection in Aerial Orthophotos,"Object Classification using Hybrid Holistic
Descriptors: Application to Building Detection
in Aerial Orthophotos
Fadi Dornaika, Abdelmalik Moujahid, Alireza Bosaghzadeh, Youssef El Merabet, and Yassine Ruichek"
26172460c2c47886f8b0e141c15de29c9766bfbe,An Iterative Co-Saliency Framework for RGBD Images,"IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XXXX 2017
An Iterative Co-Saliency Framework for RGBD
Images
Runmin Cong, Jianjun Lei, Senior Member, IEEE, Huazhu Fu, Weisi Lin, Fellow, IEEE,
Qingming Huang, Senior Member, IEEE, Xiaochun Cao, Senior Member, IEEE, and Chunping Hou"
2603efdc673e9c7cfa0c1e1dfda512b6ef54ea2c,On the Use of Simple Geometric Descriptors Provided by RGB-D Sensors for Re-Identification,"Sensors 2013, 13, 8222-8238; doi:10.3390/s130708222
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
On the Use of Simple Geometric Descriptors Provided by
RGB-D Sensors for Re-Identification
Javier Lorenzo-Navarro *, Modesto Castrill´on-Santana and Daniel Hern´andez-Sosa
SIANI, Universidad de Las Palmas de Gran Canaria, Campus de Tafira,
Las Palmas de Gran Canaria 35017, Spain; E-Mails: (M.C.-S.);
(D.H.-S.)
* Author to whom correspondence should be addressed; E-Mail:
Tel.: +34-928-458-747.
Received: 25 March 2013; in revised form: 7 June 2013 / Accepted: 20 June 2013 /
Published: 27 June 2013"
2661f38aaa0ceb424c70a6258f7695c28b97238a,Multilayer Architectures for Facial Action Unit Recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 4, AUGUST 2012
Multilayer Architectures for Facial
Action Unit Recognition
Tingfan Wu, Nicholas J. Butko, Paul Ruvolo, Jacob Whitehill, Marian S. Bartlett, and Javier R. Movellan"
2603d8578a6c95a9b9d4cb8a73bc66f18d523f37,Deep Parts Similarity Learning for Person Re-Identification,
264a84f4d27cd4bca94270620907cffcb889075c,Deep motion features for visual tracking,"Deep Motion Features for Visual Tracking
Susanna Gladh, Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg
Computer Vision Laboratory, Department of Electrical Engineering, Link¨oping University, Sweden"
2677a79b6381f3e7787c5dca884fa53d0b28dfe2,Supplementary Document : Single-Shot Multi-Person 3 D Pose Estimation From Monocular RGB 1,"Supplementary Document:
Single-Shot Multi-Person 3D Pose
Estimation From Monocular RGB
. Read-out Process
An algorithmic description of the read-out process
is provided in Alg. 1.
Algorithm 1 3D Pose Inference
: Given: P 2D, C2D, M
: for all i ∈ (1..m) do
if C2D
[k] > thresh, k ∈ {pelvis, neck} then
Person i is detected
for all joints j ∈ (1..n) do
rloc = P2D
Pi[:, j] = ReadLocMap(j, rloc)
limbs
{arml, armr, legl, legr, head} do
{pelvis, neck}; j = parent(j) do
j = getExtremity(l); j
if isValidReadoutLoc(i, j) then"
266b5b038750e1ab1311e38554e4c2c8ba6564fd,SLIC Superpixels Compared to State-of-the-Art Superpixel Methods,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, DECEMBER 2011
SLIC Superpixels Compared to State-of-the-art
Superpixel Methods
Radhakrishna Achanta, Appu Shaji, Kevin Smith,
Aurelien Lucchi, Pascal Fua, and Sabine S¨usstrunk"
26a6b2051fe7970f94584e9efbfcf7bdcfd1d6d6,Diffeomorphic image registration with applications to deformation modelling between multiple data sets,"Diffeomorphic image registration
with applications to deformation
modelling between multiple data sets
Bartłomiej Władysław Papież
A thesis submitted in partial fulfilment
for the requirements of the degree
of Doctor of Philosophy
The research presented in this thesis was carried out at the
Applied Digital Signal and Image Processing Research Centre,
School of Computing, Engineering and Physical Sciences,
University of Central Lancashire,
October 2012"
26a32691321574ac1c90c58f47ec73fdfbc8507a,SATURN (Situational awareness tool for urban responder networks),"SATURN
(Situational Awareness Tool for Urban Responder Networks)
Heather Zwahlen
Aaron Yahr
Danielle Berven
Michael T. Chan
Maximilian Merfeld
Christine Russ
Jason Thornton
MIT Lincoln Laboratory
Lexington, MA
{heatherz | ayahr | danielle.berven | mchan | max.merfeld
| christine russ |"
265644f1b6740ca34bfbe9762b90b33021adde62,Deep Learning in Medical Imaging: General Overview.,"Review Article | Experiment, Engineering, and Physics
https://doi.org/10.3348/kjr.2017.18.4.570
pISSN 1229-6929 · eISSN 2005-8330
Korean J Radiol 2017;18(4):570-584
Deep Learning in Medical Imaging: General Overview
June-Goo Lee, PhD1, Sanghoon Jun, PhD2, 3, Young-Won Cho, MS2, 3, Hyunna Lee, PhD2, 3,
Guk Bae Kim, PhD2, 3, Joon Beom Seo, MD, PhD2*, Namkug Kim, PhD2, 3*
Biomedical Engineering Research Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;  2Department of
Radiology, Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;  3Department of
Convergence Medicine, Biomedical Engineering Research Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was
introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing
gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of
sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data,
enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network.
Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition
tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future.
This review article offers perspectives on the history, development, and applications of deep learning technology, particularly
regarding its applications in medical imaging.
Keywords: Artificial intelligence; Machine learning; Convolutional neural network; Recurrent Neural Network; Computer-aided;"
267bb08aa4eeefa1ef653716ca0ab572748a3a4e,Vision-Based Real-Time Aerial Object Localization and Tracking for UAV Sensing System,"Vision-based Real-Time Aerial Object Localization
nd Tracking for UAV Sensing System
Yuanwei Wu, Student Member,
IEEE, Yao Sui, Member, IEEE, and Guanghui Wang, Member, IEEE"
26a72e9dd444d2861298d9df9df9f7d147186bcd,Collecting and annotating the large continuous action dataset,"DOI 10.1007/s00138-016-0768-4
ORIGINAL PAPER
Collecting and annotating the large continuous action dataset
Daniel Paul Barrett1 · Ran Xu2 · Haonan Yu1 · Jeffrey Mark Siskind1
Received: 18 June 2015 / Revised: 18 April 2016 / Accepted: 22 April 2016 / Published online: 21 May 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com"
269c1f9df4a36b361d32bfdc81457b0a32b60966,Dimensionality Reduction of Visual Features for Efficient Retrieval and Classification,"SIP (2016), vol. 5, e14, page 1 of 14 © The Authors, 2016.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
doi:10.1017/ATSIP.2016.14
industrial technology advances
Dimensionality reduction of visual features
for efficient retrieval and classification
petros t. boufounos1, hassan mansour1, shantanu rane2 and anthony vetro1
Visual retrieval and classification are of growing importance for a number of applications, including surveillance, automotive,
s well as web and mobile search. To facilitate these processes, features are often computed from images to extract discriminative
spects of the scene, such as structure, texture or color information. Ideally, these features would be robust to changes in per-
spective, illumination, and other transformations. This paper examines two approaches that employ dimensionality reduction
for fast and accurate matching of visual features while also being bandwidth-efficient, scalable, and parallelizable. We focus on
two classes of techniques to illustrate the benefits of dimensionality reduction in the context of various industrial applications.
The first method is referred to as quantized embeddings, which generates a distance-preserving feature vector with low rate. The
second method is a low-rank matrix factorization applied to a sequence of visual features, which exploits the temporal redun-
dancy among feature vectors associated with each frame in a video. Both methods discussed in this paper are also universal in
that they do not require prior assumptions about the statistical properties of the signals in the database or the query. Further-
more, they enable the system designer to navigate a rate versus performance trade-off similar to the rate-distortion trade-off in
onventional compression."
26861e41e5b44774a2801e1cd76fd56126bbe257,Personalized Tour Recommendation Based on User Interests and Points of Interest Visit Durations,"Personalized Tour Recommendation based on User Interests and Points of Interest
Visit Durations
Kwan Hui Lim*†, Jeffrey Chan*, Christopher Leckie*† and Shanika Karunasekera*
*Department of Computing and Information Systems, The University of Melbourne, Australia
Victoria Research Laboratory, National ICT Australia, Australia"
266766818dbc5a4ca1161ae2bc14c9e269ddc490,Boosting a Low-Cost Smart Home Environment with Usage and Access Control Rules,"Article
Boosting a Low-Cost Smart Home Environment with
Usage and Access Control Rules
Paolo Barsocchi * ID , Antonello Calabrò, Erina Ferro, Claudio Gennaro ID and Eda Marchetti and
Claudio Vairo
Institute of Information Science and Technologies of CNR (CNR-ISTI)-Italy, 56124 Pisa, Italy;
(A.C.); (E.F.); (C.G.);
(E.M.); (C.V.)
* Correspondence: Tel.: +39-050-315-2965
Received: 27 April 2018; Accepted: 31 May 2018; Published: 8 June 2018"
2606e6a5759c030e259ebf3f4261b9c04a36a609,Generating Semantically Precise Scene Graphs from Textual Descriptions for Improved Image Retrieval,"Proceedings of the 2015 Workshop on Vision and Language (VL’15), pages 70–80,
Lisbon, Portugal, 18 September 2015. c(cid:13)2015 Association for Computational Linguistics."
265af79627a3d7ccf64e9fe51c10e5268fee2aae,A Mixture of Transformed Hidden Markov Models for Elastic Motion Estimation,"A Mixture of Transformed Hidden Markov
Models for Elastic Motion Estimation
Huijun Di, Linmi Tao, and Guangyou Xu, Senior Member, IEEE"
267595dd40cd109c93e67874a1cf49ce79871f3a,A Compromise Principle in Deep Monocular Depth Estimation,"A Compromise Principle in Deep Monocular Depth
Estimation
Huan Fu, Mingming Gong, Chaohui Wang, and Dacheng Tao, Fellow, IEEE"
26c89f890da91119ffa16d5a23fba963257ef3fc,Tattoo Image Search at Scale: Joint Detection and Compact Representation Learning,"Tattoo Image Search at Scale: Joint Detection
nd Compact Representation Learning
Hu Han, Member, IEEE, Jie Li, Anil K. Jain, Fellow, IEEE,
Shiguang Shan, Senior Member, IEEE and Xilin Chen, Fellow, IEEE"
26af867977f90342c9648ccf7e30f94470d40a73,Joint Gender and Face Recognition System for RGB-D Images with Texture and DCT Features,"IJIRST –International Journal for Innovative Research in Science & Technology| Volume 3 | Issue 04 | September 2016
ISSN (online): 2349-6010
Joint Gender and Face Recognition System for
RGB-D Images with Texture and DCT Features
Jesny Antony
PG Student
Department of Computer Science & Information Systems
Federal Institute of Science and Technology,  Mookkannoor
PO, Angamaly, Ernakulam, Kerala 683577, India
Prasad J. C.
Associate Professor
Department of Computer Science & Engineering
Federal Institute of Science and Technology,  Mookkannoor
PO, Angamaly, Ernakulam, Kerala 683577, India"
2663fa2f1777dc779a73d678c7919cce37b5fb61,Relevance - Weighted ( 2 D ) 2 LDA Image Projection Technique for Face Recognition,"Relevance-Weighted (2D)2LDA
Image Projection Technique for Face Recognition
In  this  paper,  a  novel  image  projection  technique  for
face recognition application is proposed which is based on
linear  discriminant  analysis  (LDA)  combined  with  the
relevance-weighted  (RW)  method.  The  projection  is
performed through 2-directional and 2-dimensional LDA,
or  (2D)2LDA,  which  simultaneously  works  in  row  and
olumn directions to solve the small sample size problem.
Moreover, a weighted discriminant hyperplane is used in
the  between-class  scatter  matrix,  and  an  RW  method  is
used  in  the  within-class  scatter  matrix  to  weigh  the
information  to  resolve  confusable  data  in  these  classes.
This technique is called the relevance-weighted (2D)2LDA,
or  RW(2D)2LDA,  which  is  used  for  a  more  accurate
discriminant  decision  than  that  produced  by  the
onventional  LDA  or  2DLDA.  The  proposed  technique
has  been  successfully  tested  on  four  face  databases.
Experimental  results
the  proposed"
26c884829897b3035702800937d4d15fef7010e4,Facial Expression Recognition by Supervised Independent Component Analysis Using MAP Estimation,"IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
PAPER
Facial Expression Recognition by Supervised Independent
Component Analysis using MAP Estimation
Fan CHEN
, Nonmember and Kazunori KOTANI
, Member
SUMMARY Permutation ambiguity of the classical Inde-
pendent Component Analysis (ICA) may cause problems in fea-
ture extraction for pattern classification. Especially when only a
small subset of components is derived from data, these compo-
nents may not be most distinctive for classification, because ICA
is an unsupervised method. We include a selective prior for de-
mixing coef‌f‌icients into the classical ICA to alleviate the problem.
Since the prior is constructed upon the classification information
from the training data, we refer to the proposed ICA model with
selective prior as a supervised ICA (sICA). We formulated the
learning rule for sICA by taking a Maximum a Posteriori (MAP)
scheme and further derived a fixed point algorithm for learning
the de-mixing matrix. We investigate the performance of sICA"
26cdb9b6d94c1d6c6a01792fee3c176585f594ac,Hybrid Person Detection and Tracking in H.264/AVC Video Streams,"Hybrid Person Detection and Tracking in H.264/AVC Video Streams
Philipp Wojaczek1, Marcus Laumer1,2, Peter Amon2, Andreas Hutter2 and André Kaup1
Multimedia Communications and Signal Processing,
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
Imaging and Computer Vision, Siemens Corporate Technology, Munich, Germany
Keywords:
Object Detection, Person Detection, Tracking, Compressed Domain, Pixel Domain, H.264/AVC, Mac-
roblocks, Compression, Color Histogram, Hue, HSV, Segmentation."
26ad6ceb07a1dc265d405e47a36570cb69b2ace6,Neural Correlates of Cross-Cultural Adaptation,"RESEARCH AND EXPLOR ATORY
DEVELOPMENT DEPARTMENT
REDD-2015-384
Neural Correlates of Cross-Cultural
How to Improve the Training and Selection for
Military Personnel Involved in Cross-Cultural
Operating Under Grant #N00014-12-1-0629/113056
Adaptation
September, 2015
Interactions
Jonathon Kopecky
Jason Spitaletta
Mike Wolmetz
Alice Jackson
Prepared for:
Office of Naval Research"
26ad124271c118e207113ae42f0fd3d30f204ea1,State of the Art Report on Video-Based Graphics and Video Visualization,"General Copyright Notice
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely
dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the
uthors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that
ll persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works
may not be reposted without the explicit permission of the copyright holder.
R. Borgo, M. Chen, B. Daubney, E. Grundy, G. Heidemann, B. Höferlin, M. Höferlin, H. Leitte, D.
Weiskopf, X. Xie:
State of the Art Report on Video-Based Graphics and Video Visualization,
Computer Graphics Forum, Vol. 31, No. 8, 2450-2477, 2012.
DOI: 10.1111/j.1467-8659.2012.03158.x
This is the author’s personal copy of the final, accepted version of the paper, which slightly differs from
the version published in Computer Graphics Form.
Copyright © 2012 The Eurographics Association and Blackwell Publishing Ltd.
Preprint"
260081528f19f6f7e8e5ae16a776b62ad8c2ed0d,An Agent Based WCET Analysis for Top-View Person Re-Identification,"An agent-based WCET analysis for Top-View
Person Re-Identification
Marina Paolanti, Valerio Placidi,
Michele Bernardini, Andrea Felicetti, Rocco Pietrini, and
Emanuele Frontoni
Department of Information Engineering, Universit`a Politecnica delle Marche,
Via Brecce Bianche 12, 60131, Ancona, Italy"
26f5b8a79fac681ffb132c4863c51a55bc2b20e2,Visual speech synthesis from 3D mesh sequences driven by combined speech features,"VISUAL SPEECH SYNTHESIS FROM 3D MESH SEQUENCES DRIVEN BY COMBINED
SPEECH FEATURES
Felix Kuhnke and J¨orn Ostermann
Institut f¨ur Informationsverarbeitung, Leibniz Universit¨at Hannover, Germany"
26437fb289cd7caeb3834361f0cc933a02267766,Innovative Assessment Technologies: Comparing ‘Face-to-Face’ and Game-Based Development of Thinking Skills in Classroom Settings,"012 International Conference on Management and Education Innovation
IPEDR vol.37 (2012) © (2012) IACSIT Press, Singapore
Innovative Assessment Technologies: Comparing ‘Face-to-Face’ and
Game-Based Development of Thinking Skills in Classroom Settings
Gyöngyvér Molnár 1 + and András Lőrincz 2
University of Szeged, 2 Eötvös Loránd University"
2690264001ccd4b682b7b4c0334c80af6f5e9c9c,Sensor Transfer: Learning Optimal Sensor Effect Image Augmentation for Sim-to-Real Domain Adaptation,"Sensor Transfer: Learning Optimal Sensor Effect Image Augmentation
for Sim-to-Real Domain Adaptation
Alexandra Carlson1, Katherine A. Skinner1, Ram Vasudevan2 and Matthew Johnson-Roberson3"
26e570049aaedcfa420fc8c7b761bc70a195657c,Hybrid Facial Regions Extraction for Micro-expression Recognition System,"J Sign Process Syst
DOI 10.1007/s11265-017-1276-0
Hybrid Facial Regions Extraction for Micro-expression
Recognition System
Sze-Teng Liong1,2,3 · John See4 · Raphael C.-W. Phan2 · KokSheik Wong5 ·
Su-Wei Tan2
Received: 2 February 2016 / Revised: 20 October 2016 / Accepted: 10 August 2017
© Springer Science+Business Media, LLC 2017"
264dcfb5be3f89dc0950472a2a274ef7b641b1af,Dynamic Objects Segmentation for Visual Localization in Urban Environments,"Dynamic Objects Segmentation for Visual
Localization in Urban Environments
G. Zhou1, B. Bescos2, M. Dymczyk1, M. Pfeiffer1, J. Neira2, R. Siegwart1"
21b0b2f5df87318912d58d3b843da363a4fb91c3,"Distributed and Higher-Order Graphical Models: towards Segmentation, Tracking, Matching and 3D Model Inference Defended by","ECOLECENTRALEPARISPHDTHESIStoobtainthetitleofDoctorofEcoleCentraleParisSpecialty:APPLIEDMATHEMATICSDistributedandHigher-OrderGraphicalModels:towardsSegmentation,Tracking,Matchingand3DModelInferenceDefendedbyChaohuiWANGpreparedatEcoleCentraleParis,MASlaboratorydefendedonSeptember29,2011JURYChairman:Prof.HenriMAITRE-TélécomParisTechReviewers:Prof.MichaelJ.BLACK-MaxPlanckInstituteforIntelligentSystemsProf.PhilipH.S.TORR-OxfordBrookesUniversityAdvisor:Prof.NikosPARAGIOS-EcoleCentraleParisExaminers:Prof.PatrickBOUTHEMY-INRIA-RennesProf.VladimirKOLMOGOROV-InstituteofScienceandTechnologyAustriaProf.DimitrisSAMARAS-StonyBrookUniversity"
21ef129c063bad970b309a24a6a18cbcdfb3aff5,Individual and Inter-related Action Unit Detection in Videos for Affect Recognition,"POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCESacceptée sur proposition du jury:Dr J.-M. Vesin, président du juryProf. J.-Ph. Thiran, Prof. D. Sander, directeurs de thèseProf. M. F. Valstar, rapporteurProf. H. K. Ekenel, rapporteurDr S. Marcel, rapporteurIndividual and Inter-related Action Unit Detection in Videos for Affect RecognitionTHÈSE NO 6837 (2016)ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNEPRÉSENTÉE LE 19 FÉVRIER 2016À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEURLABORATOIRE DE TRAITEMENT DES SIGNAUX 5PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE Suisse2016PARAnıl YÜCE"
218b2c5c9d011eb4432be4728b54e39f366354c1,Enhancing Training Collections for Image Annotation: An Instance-Weighted Mixture Modeling Approach,"Enhancing Training Collections for Image
Annotation: An Instance-Weighted Mixture
Modeling Approach
Neela Sawant, Student Member, IEEE, James Z. Wang, Senior Member, IEEE, Jia Li, Senior Member, IEEE."
21967faefa55857c6a09f9fe52a10a394757d59c,Emotion Recognition Ability Test Using JACFEE Photos: A Validity/Reliability Study of a War Veterans' Sample and Their Offspring,"RESEARCH ARTICLE
Emotion Recognition Ability Test Using
JACFEE Photos: A Validity/Reliability Study of
War Veterans' Sample and Their Offspring
Ivone Castro-Vale1,5*, Milton Severo2,3, Davide Carvalho4,5, Rui Mota-Cardoso1
Medical Psychology Unit, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine,
University of Porto, Porto, Portugal, 2 Department of Clinical Epidemiology, Predictive Medicine and Public
Health, Faculty of Medicine, University of Porto, Porto, Portugal, 3 Department of Medical Education and
Simulation, Faculty of Medicine, University of Porto, Porto, Portugal, 4 Department of Endocrinology,
Diabetes and Metabolism, Centro Hospitalar Sāo Joāo, Faculty of Medicine, University of Porto, Porto,
Portugal, 5 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
11111"
21262e01039e5994114b4c102fc80e9afa3f1bde,Pedestrian Detection and Tracking in Thermal Images from Aerial MPEG Videos,
21679eb7e953bd132803703c27dcd56484d497e6,"utism , oxytocin and interoception","Neuroscience  and  Biobehavioral  Reviews  47  (2014)  410–430
Contents  lists  available  at  ScienceDirect
Neuroscience
Biobehavioral
Reviews
j o u r n a l  h  o m  e p a  g e :  w w w . e l s e v i e r . c o m / l o c a t e / n e u b i o r e v
Review
Autism,   oxytocin   and   interoception
E.   Quattrocki∗,   Karl   Friston 1
The  Wellcome  Trust  Centre  for  Neuroimaging,  UCL,  12  Queen  Square,  London  WC1N  3BG,  UK
Article  history:
Received  5  February  2014
Received  in  revised  form  23  July  2014
Accepted  20  September  2014
Available  online  30  September  2014
Keywords:
Autism
Oxytocin
Interoception
Bayesian  predictive  coding"
2162654cb02bcd10794ae7e7d610c011ce0fb51b,Joint gaze-correction and beautification of DIBR-synthesized human face via dual sparse coding,"978-1-4799-5751-4/14/$31.00 ©2014 IEEE
http://www.skype.com/
http://www.google.com/hangouts/
tification, sparse coding"
21f3c5b173503185c1e02a3eb4e76e13d7e9c5bc,Rotation Invariant Real-time Face Detection and Recognition System,"m a s s a c h u s e t t s   i n s t i t u t e   o f
t e c h n o l o g y   — a r t i f i c i a l   i n t e l l i g e n c e   l a b o r a t o r y
Rotation Invariant Real-time
Face Detection and
Recognition System
Purdy Ho
AI Memo 2001-010
CBCL Memo 197
May 31, 2001
© 2 0 0 1   m a s s a c h u s e t t s   i n s t i t u t e   o f
t e c h n o l o g y, c a m b r i d g e , m a   0 2 1 3 9   u s a   —   w w w. a i . m i t . e d u"
214db8a5872f7be48cdb8876e0233efecdcb6061,Semantic-Aware Co-Indexing for Image Retrieval,"Semantic-aware Co-indexing for Image Retrieval
Shiliang Zhang2, Ming Yang1, Xiaoyu Wang1, Yuanqing Lin1, Qi Tian2
NEC Laboratories America, Inc.
Dept. of CS, Univ. of Texas at San Antonio
Cupertino, CA 95014
San Antonio, TX 78249"
219b7b157f2a559ecdffe21c2a0edf5285931298,Deep hashing for compact binary codes learning,"Deep Hashing for Compact Binary Codes Learning
Venice Erin Liong1, Jiwen Lu1, Gang Wang1,2, Pierre Moulin1,3, and Jie Zhou4
ADSC, Singapore, 2NTU, Singapore, 3UIUC, USA, 4Tsinghua University, China
Large scale visual search has attracted great attention in computer vision
due to its wide potential applications [1]. Hashing is a powerful technique
for large-scale visual search and a variety of hashing-based methods have
een proposed in the literature [3, 4, 7]. The basic idea of hashing-based
pproach is to construct a series of hash functions to map each visual object
into a binary feature vector so that visually similar samples are mapped into
similar binary codes.
In this paper, we propose a new deep hashing (DH) method to learn
ompact binary codes for large scale visual search. Figure 1 illustrates the
asic idea of the proposed approach. Different from most existing binary
odes learning methods which usually seek a single linear projection to map
each sample into a binary vector [2, 5, 6], we develop a deep neural network
to seek multiple hierarchical non-linear transformations to learn these bina-
ry codes. For a given sample xn, we obtain a binary vector bn by passing
it to a network which contains multiple stacked layers of nonlinear trans-
formations. Assume we have M + 1 layers, the output for the mth layer is:
n = s(Wmhm−1"
2129304075990cd2f3317ea67a2acf52b7d7a3e2,Face Recognition and Detection through Similarity Measurements,"International Journal of Computer Applications (0975 – 8887)
Volume 174 – No.3, September 2017
Face Recognition and Detection through Similarity
Measurements
Irfan Bashir
M.Tech( CSE) Schoral
SMVDU, Kakryal Katra, Jummu"
21e82350472bf6a12af0f761b8dea91cb16bf42f,Cost-Sensitive Convolution based Neural Networks for Imbalanced Time-Series Classification,"Cost-Sensitive Convolution based Neural
Networks for Imbalanced Time-Series
Classification
Yue Geng* and Xinyu Luo
Mechanical and Electrical Engineering Institute of CUMTB, Beijing, 100083, China
E-mail:"
214ac8196d8061981bef271b37a279526aab5024,Face Recognition Using Smoothed High-Dimensional Representation,"Face Recognition Using Smoothed High-Dimensional
Representation
Juha Ylioinas, Juho Kannala, Abdenour Hadid, and Matti Pietik¨ainen
Center for Machine Vision Research, PO Box 4500,
FI-90014 University of Oulu, Finland"
218595e1979007ccd6b1bc5a30a3484841c0eafa,Discovering Beautiful Attributes for Aesthetic Image Analysis,"Noname manuscript No.
(will be inserted by the editor)
Discovering beautiful attributes for aesthetic image analysis
Luca Marchesotti · Naila Murray · Florent Perronnin
Received: date / Accepted: date"
21913787b7ed62773926a287b60308d1960e6966,LR-CNN for fine-grained classification with varying resolution,"LR-CNN FOR FINE-GRAINED CLASSIFICATION WITH VARYING RESOLUTION
M. Chevalier(1,2), N. Thome(1), M. Cord(1), J. Fournier(2), G. Henaff(2), E. Dusch(2)
(1) Sorbonne Universit´es, UPMC Univ Paris 06, LIP6, 4 place Jussieu 75005 Paris, France
(2) Thales Optronique S.A.S., 2 avenue Gay-Lussac, 78990 Elancourt, France"
218603147709344d4ff66625d83603deee2854bf,Learning Deep Embeddings with Histogram Loss,"Learning Deep Embeddings with Histogram Loss
Evgeniya Ustinova and Victor Lempitsky
Skolkovo Institute of Science and Technology (Skoltech)
Moscow, Russia"
213a579af9e4f57f071b884aa872651372b661fd,Automatic and Efficient Human Pose Estimation for Sign Language Videos,"Int J Comput Vis
DOI 10.1007/s11263-013-0672-6
Automatic and Efficient Human Pose Estimation for Sign
Language Videos
James Charles · Tomas Pfister · Mark Everingham ·
Andrew Zisserman
Received: 4 February 2013 / Accepted: 29 October 2013
© Springer Science+Business Media New York 2013"
2155739f578e33449546f45a0b4cf64dbd614025,what is facereader ?,"FaceReader
Methodology Note
what is facereader?
FaceReader™ is a program for facial analysis. It can detect
facial expressions. FaceReader has been trained to classify
expressions in one of the following categories: happy,
sad, angry, surprised, scared, disgusted, and neutral. These
emotional categories have been described by Ekman [1]
s the basic or universal emotions. In addition to these
asic emotions, contempt can be classified as expression,
just like the other emotions [2]. Obviously, facial expres-
sions vary in intensity and are often a mixture of emo-
tions. In addition, there is quite a lot of interpersonal
variation.
Figure 1. Analyzing facial expressions with FaceReader.
FaceReader has been trained to classify the expressions
mentioned above. It is not possible to add expressions to
the software yourself. Please contact Noldus Information
Technology if you are interested in the classification of
other expressions."
21626caa46cbf2ae9e43dbc0c8e789b3dbb420f1,Transductive VIS-NIR face matching,"978-1-4673-2533-2/12/$26.00 ©2012 IEEE
ICIP 2012"
2118b1ce0c2551e75d30fb6ba24482e50b319a90,Ensemble Projection for Semi-supervised Image Classification,"Ensemble Projection for Semi-supervised Image Classification
Dengxin Dai
Computer Vision Lab, ETH Zurich
Luc Van Gool
Computer Vision Lab, ETH Zurich"
216c61796c6ead27b1042046e1d95a2038624d26,Vehicle Re-identification Using Quadruple Directional Deep Learning Features,"Vehicle Re-identification Using Quadruple
Directional Deep Learning Features
Jianqing Zhu, Huanqiang Zeng, Jingchang Huang, Shengcai Liao, Zhen Lei, Canhui Cai and LiXin Zheng"
21241d07840e3cc30feda59642571a9b459c817b,Biometrics via Oculomotor Plant Characteristics: Impact of Parameters in Oculomotor Plant Model,"This is a pre-print. Final version of the paper will be available at ACM digital library.
Biometrics via Oculomotor Plant Characteristics:
Impact of Parameters in Oculomotor Plant Model
OLEG KOMOGORTSEV, COREY HOLLAND, ALEX KARPOV, AND LARRY R. PRICE Texas State University
This  paper  proposes  and  evaluates  a  novel  biometric  approach  utilizing  the  internal,  non-visible,  anatomical  structure  of  the  human  eye.  The
proposed method estimates the anatomical properties of the human oculomotor plant from the measurable properties of human eye movements,
utilizing  a  two-dimensional  linear  homeomorphic  model  of  the  oculomotor  plant.  The  derived  properties  are  evaluated  within  a  biometric
framework to determine their efficacy in both verification and identification scenarios. The results suggest that the physical properties derived from
the oculomotor plant model are capable of achieving 20.3% equal error rate and 65.7% rank-1 identification rate on high-resolution equipment
involving 32 subjects, with biometric samples taken over four recording sessions; or 22.2% equal error rate and 12.6% rank-1 identification rate on
low-resolution equipment involving 172 subjects, with biometric samples taken over two recording sessions.
Categories  and  Subject  Descriptors:  I.2.10  [Artificial  Intelligence]:  Vision  and  Scene  Understanding—Modeling  and  recovery  of  physical
ttributes; I.5.1 [Pattern Recognition]: Models—Structural; I.6.4 [Simulation and Modeling]: Model Validation and Analysis
General Terms: Biometrics
Additional Key Words and Phrases: Human oculomotor system, biological system modeling, mathematical model, security and protection.
ACM Reference Format:
Komogortsev,  O.,  Holland,  C.,  Karpov,  A.,  and  Price,  L.  R.  2014.  Oculomotor  Plant  Characteristics:  Biometric  Performance  Evaluation.  ACM
Trans. Appl. Percept. 2, 3, Article 1 (May 2014), 13 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000
INTRODUCTION"
21b16df93f0fab4864816f35ccb3207778a51952,Recognition of Static Gestures Applied to Brazilian Sign Language (Libras),"Recognition of Static Gestures applied to Brazilian Sign Language (Libras)
Igor L. O. Bastos
Math Institute
Michele F. Angelo, Angelo C. Loula
Department of Technology, Department of Exact Sciences
Federal University of Bahia (UFBA),
State University of Feira de Santana (UEFS)
Salvador, Brazil
Feira de Santana, Brazil"
2170636d5d31eb461618b5da10f4473c67e74e73,Person Re-identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function,"Person Re-Identification by Multi-Channel Parts-Based CNN with Improved
Triplet Loss Function
De Cheng, Yihong Gong, Sanping Zhou, Jinjun Wang, Nanning Zheng
Institute of Artificial Intelligence and Robotics
Xi’an Jiaotong University,Xi’an, Shaanxi, P.R. China"
21ff1d20dd7b3e6b1ea02036c0176d200ec5626d,Loss Max-Pooling for Semantic Image Segmentation,"Loss Max-Pooling for Semantic Image Segmentation
Samuel Rota Bul`o(cid:63),†
Gerhard Neuhold†
Peter Kontschieder†
Mapillary - Graz, Austria -
(cid:63)FBK - Trento, Italy -"
2168ec12eff5c3d1ff09d0f3c13d6df5b5061164,Face recognition with salient local gradient orientation binary patterns,"978-1-4244-5654-3/09/$26.00 ©2009 IEEE
ICIP 2009"
21ac5d1c34675bf6056d2670f9fa3dde530b1716,ALB at SemEval-2018 Task 10: A System for Capturing Discriminative Attributes,"Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 963–967
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics"
21a1654b856cf0c64e60e58258669b374cb05539,"You Only Look Once: Unified, Real-Time Object Detection","You Only Look Once:
Unified, Real-Time Object Detection
Joseph Redmon∗, Santosh Divvala∗†, Ross Girshick¶, Ali Farhadi∗†
University of Washington∗, Allen Institute for AI†, Facebook AI Research¶
http://pjreddie.com/yolo/"
4dd2744a37bd1e666346a41dcd2a271945c74e2f,Human-Robot Teaming : Approaches from Joint Action and Dynamical Systems,"Human Robot Teaming: Approaches from Joint
Action and Dynamical Systems
Tariq Iqbal and Laurel D. Riek"
4d510bca00b625f86606cb0096299b993090534a,Small Sample Learning in Big Data Era,"Small Sample Learning in Big Data Era
Jun Shu
Zongben Xu
Deyu Meng
School of Mathematics and Statistics
Ministry of Education Key Lab of Intelligent Networks and Network Security
Xi’an Jiaotong University, Xian, China"
4dade6faf6d5d6db53d5bcb2e107311da1ad48ac,Facial Expression Biometrics Using Statistical Shape Models,"Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 261542, 17 pages
doi:10.1155/2009/261542
Research Article
Facial Expression Biometrics Using Statistical Shape Models
Wei Quan, Bogdan J. Matuszewski (EURASIP Member), Lik-Kwan Shark,
nd Djamel Ait-Boudaoud
Applied Digital Signal and Image Processing Research Centre, University of Central Lancashire, Preston PR1 2HE, UK
Correspondence should be addressed to Bogdan J. Matuszewski,
Received 30 September 2008; Revised 2 April 2009; Accepted 18 August 2009
Recommended by Jonathon Phillips
This paper describes a novel method for representing different facial expressions based on the shape space vector (SSV) of the
statistical shape model (SSM) built from 3D facial data. The method relies only on the 3D shape, with texture information not
eing used in any part of the algorithm, that makes it inherently invariant to changes in the background, illumination, and to
some extent viewing angle variations. To evaluate the proposed method, two comprehensive 3D facial data sets have been used
for the testing. The experimental results show that the SSV not only controls the shape variations but also captures the expressive
haracteristic of the faces and can be used as a significant feature for facial expression recognition. Finally the paper suggests
improvements of the SSV discriminatory characteristics by using 3D facial sequences rather than 3D stills.
Copyright © 2009 Wei Quan et al. This is an open access article distributed under the Creative Commons Attribution License,"
4d49c6cff198cccb21f4fa35fd75cbe99cfcbf27,Topological principal component analysis for face encoding and recognition,"Topological Principal Component Analysis for
face encoding and recognition
Albert Pujol , Jordi Vitri(cid:18)a, Felipe Lumbreras,
Juan J. Villanueva
Computer Vision Center and Departament d’Inform(cid:18)atica, Edi(cid:12)ci O, Universitat
Aut(cid:18)onoma de Barcelona 	, Cerdanyola, Spain"
4da735d2ed0deeb0cae4a9d4394449275e316df2,"The rhythms of head, eyes and hands at intersections","Gothenburg, Sweden, June 19-22, 2016
978-1-5090-1820-8/16/$31.00 ©2016 IEEE"
4db64fbc3dd2486a74dba3350d44c51e561f515f,An Ecological Visual Exploration Tool to Support the Analysis of Visual Processing Pathways in Children with Autism Spectrum Disorders,"Article
An Ecological Visual Exploration Tool to Support the
Analysis of Visual Processing Pathways in Children
with Autism Spectrum Disorders
Dario Cazzato 1, Marco Leo 2,*, Cosimo Distante 2, Giulia Crifaci 3,
Giuseppe Massimo Bernava 4, Liliana Ruta 4, Giovanni Pioggia 4 and Silvia M. Castro 5
Interdisciplinary Centre for Security Reliability and Trust (SnT), University of Luxembourg, 29,
Avenue JF Kennedy, L-1855 Luxembourg, Luxembourg;
Institute of Applied Sciences and Intelligence Systems—CNR, 73100 Lecce, Italy;
Department of Clinical Physiology, CNR Pisa, 56124 Pisa, Italy;
Institute of Applied Sciences and Intelligence Systems—CNR, 98164 Messina, Italy;
(G.M.B.); (L.R.); (G.P.)
5 Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina;
* Correspondence:
Received: 6 November 2017; Accepted: 19 December 2017; Published: 29 December 2017"
4dc6659b5022ecc2c4e1459e9dff16ddece4147e,Transfer Learning for Illustration Classification,"CEIG - Spanish Computer Graphics Conference (2017)
F. J. Melero and N. Pelechano (Editors)
Transfer Learning for Illustration Classification
Manuel Lagunas1 Elena Garces2
Universidad de Zaragoza, I3A
Technicolor
Figure 1: Comparison of the probabilities of the images that belong to the class pelican using our method and the network VGG19 [SZ14].
image (a) is a photograph and image (b) is an illustration which has similar colours, gradients and edges than the natural image. On the"
4d1fc3245b05731a313e61165c1109f42f5b4a0c,Facial expression recognition using local binary patterns and discriminant kernel locally linear embedding,"Zhao and Zhang EURASIP Journal on Advances in Signal Processing 2012, 2012:20
http://asp.eurasipjournals.com/content/2012/1/20
RESEARCH
Facial expression recognition using local binary
patterns and discriminant kernel locally linear
embedding
Xiaoming Zhao1 and Shiqing Zhang2*
Open Access"
4d4b1aa87af8bfd65ac7bc250bba5951aed40986,A Survey on Model Based Approaches for 2D and 3D Visual Human Pose Recovery,"Sensors 2014, 14, 4189-4210; doi:10.3390/s140304189
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Review
A Survey on Model Based Approaches for 2D and 3D Visual
Human Pose Recovery
Xavier Perez-Sala 1
,*, Sergio Escalera 2, Cecilio Angulo 3 and Jordi Gonz`alez 4
Fundaci´o Privada Sant Antoni Abat, Vilanova i la Geltr´u, Universitat Polit`ecnica de Catalunya,
Vilanova i la Geltr´u 08800, Catalonia, Spain
Department Mathematics (MAIA), Universitat de Barcelona and Computer Vision Center (CVC),
Barcelona 08007, Catalonia, Spain; E-Mail:
Automatic Control Department (ESAII), Universitat Polit`ecnica de Catalunya,
Vilanova i la Geltr´u 08800, Catalonia, Spain; E-Mail:
Department Computer Science, Universitat Aut`onoma de Barcelona and Computer Vision Center
(CVC), Bellaterra 08193, Catalonia, Spain; E-Mail:
* Author to whom correspondence should be addressed; E-Mail:
Received: 29 November 2013; in revised form: 30 January 2014 / Accepted: 9 February 2014 /"
4de83b6025526ef7a340ffca30626dac53d7f8cb,SIFT/LBP 3D face recognition,"SIFT/LBP 3D face recognition
Narimen SAAD1  NourEddine DJEDI
Department of Computer Science
LESIA Laboratory
University of Biskra, Algeria"
4d530a4629671939d9ded1f294b0183b56a513ef,Facial Expression Classification Method Based on Pseudo Zernike Moment and Radial Basis Function Network,"International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012
Facial Expression Classification Method Based on Pseudo
Zernike Moment and Radial Basis Function Network
Tran Binh Long, Le Hoang Thai, and Tran Hanh"
4d87784afdb704d9eca14010212afd5cd74c60ec,Cosine Similarity Search with Multi Index Hashing,"Cosine Similarity Search
with Multi-Index Hashing
Sepehr Eghbali and Ladan Tahvildari"
4dd72cdafead8a98dbc77a1a74bd66ffb90d3e01,Virtual and Real World Adaptation for Pedestrian Detection,"Virtual and Real World Adaptation for
Pedestrian Detection
David V ´azquez, Antonio M. L ´opez, Member, IEEE, Javier Mar´ın, Daniel Ponsa, David Ger ´onimo"
4d8347a69e77cc02c1e1aba3a8b6646eac1a0b3d,Re-ID done right: towards good practices for person re-identification,"Re-ID done right: towards good practices for person re-identification
Jon Almaz´an1 Bojana Gaji´c2∗ Naila Murray1 Diane Larlus1
Computer Vision Group
NAVER LABS Europe
Computer Vision Center
Dept. de Ci`encies de la Computaci´o, UAB"
4d2022e3db712237b95fe381a75dbeb827551924,Running Head : GENDER CATEGORIZATION IN INFANTS AND CHILDREN 1 Gender Categorization in Infants and Children,"Running Head: GENDER CATEGORIZATION IN INFANTS AND CHILDREN
Gender Categorization in Infants and Children
Hong N. T. Bui
Senior Thesis in Psychology
Advisor: Karen Wynn
April 27, 2018"
4d2975445007405f8cdcd74b7fd1dd547066f9b8,Image and Video Processing for Affective Applications,"Image and Video Processing
for Affective Applications
Maja Pantic and George Caridakis"
4d45612c41d3e27a30a5ec64e0d8e2362dcb6b73,Brand > Logo: Visual Analysis of Fashion Brands,"Brand > Logo: Visual Analysis of Fashion
Brands
M. Hadi Kiapour and Robinson Piramuthu
eBay, San Francisco CA 94105, USA"
4ddd55a9f103001da8dc24d123d9223dbb67f884,Combining Face and Facial Feature Detectors for Face Detection Performance Improvement,"Combining face and facial feature detectors for
face detection performance improvement
M. Castrill´on-Santana, D. Hern´andez-Sosa, and J. Lorenzo-Navarro(cid:63)
SIANI
Universidad de Las Palmas de Gran Canaria, Spain"
4dba7e19e2958d8ab75261219747aebc675c6f8a,Finding the Topic of a Set of Images,"Finding the Topic of a Set of Images
Gonzalo Vaca-Castano
Univeristy of Central Florida"
4df54d4758b1a883902c036b2a10ef6d0f2d4af9,An Automatic Face Recognition System Based On Adaptive Wavelet Transforms,"International Journal of Scientific Research and Engineering Studies (IJSRES)
Volume 2 Issue 4, April 2015
ISSN: 2349-8862
An Automatic Face Recognition System Based On Adaptive
Wavelet Transforms
Prof. Khaladkar
Nilam Chavan
Apurva Kadam"
4db9e5f19366fe5d6a98ca43c1d113dac823a14d,"Are 1, 000 Features Worth A Picture? Combining Crowdsourcing and Face Recognition to Identify Civil War Soldiers","Combining Crowdsourcing and Face Recognition to Identify Civil War Soldiers
Are 1,000 Features Worth A Picture?
Vikram Mohanty, David Thames, Kurt Luther
Department of Computer Science and Center for Human-Computer Interaction
Virginia Tech, Arlington, VA, USA"
4de757faa69c1632066391158648f8611889d862,Review of Face Recognition Technology Using Feature Fusion Vector,"International Journal of Advanced Engineering Research and Science (IJAERS)                             Vol-3, Issue-3 , March- 2016]
ISSN: 2349-6495
Review of Face Recognition Technology Using
Feature Fusion Vector
Shrutika Shukla, Prof. Anuj Bhargav, Prof. Prashant Badal
Department of Electronics and Communication, S.R.C.E.M, Banmore, RGPV, University, Bhopal, Madhya Pradesh, India"
4d20fbd6dcdb4408dd6268951d86b92e8d96f332,Robust Face Recognition of Variations in Blur and Illumination by Using LDA,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
International Conference on Humming Bird ( 01st March 2014)
RESEARCH ARTICLE
OPEN ACCESS
Robust Face Recognition of Variations in Blur and Illumination
y Using LDA
Ms. K. Hema
PG Student
Department of AE
University College of Engineering
Nagercoil-629004.
Mr. J. Arun Prem Santh M. E.,
Teaching Fellow
Department of ECE
University College of Engineering
Nagercoil-629004 ."
4d334cfafd11a93394917adcffef6c1d27aa178b,Refined Clustering technique based on boosting and outlier detection,"International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015                                                                                                 472
ISSN 2229-5518
Refined Clustering technique based on boosting
nd outlier detection
Ms. Reshma Y. Nagpure, Prof. P. P. Rokade"
4d6043a25bf48c6fd6aff6a46597fe1902a9c6a7,Long-term tracking of multiple interacting pedestrians using a single camera,"Long-term tracking of multiple interacting
pedestrians using a single camera
Mogomotsi Keaikitse∗, Willie Brink† and Natasha Govender∗
Modelling and Digital Sciences
Council for Scientific and Industrial Research
Pretoria, South Africa
Department of Mathematical Sciences
Stellenbosch University
Stellenbosch, South Africa"
4d6e7d73f5226142ffc42b4e8380882d5071e187,Discretion Within Constraint: Homophily and Structure in a Formal Organization,"This article was downloaded by: [128.32.74.70] On: 03 July 2014, At: 15:15
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA
Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org
Discretion Within Constraint: Homophily and Structure in
Formal Organization
Adam M. Kleinbaum, Toby E. Stuart, Michael L. Tushman
To cite this article:
Adam M. Kleinbaum, Toby E. Stuart, Michael L. Tushman (2013) Discretion Within Constraint: Homophily and Structure in a
Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions
This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
pproval, unless otherwise noted. For more information, contact
The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.
Copyright © 2013, INFORMS
Please scroll down for article—it is on subsequent pages"
4d442ea40635a10fd3e642a7161dfc8f2b15a71e,An Image reranking model based on attributes and visual features eliminating duplication,"© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939
An Image reranking model based on attributes and
visual features eliminating duplication
Ms.Madhuri Mhaske,2Prof.Sachin Patil
PG Scholar at G. H. Raisoni College of Engineering and Management, Chas, Ahmednagar
, 2Professor at G. H. Raisoni College of Engineering and Management, Vagholi, Pune
________________________________________________________________________________________________________"
4d7e1eb5d1afecb4e238ba05d4f7f487dff96c11,Largest center-specific margin for dimension reduction,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
4d5c34fb36cf8c74880a62814750760bce0aef16,Boosting descriptors condensed from video sequences for place recognition,"Boosting Descriptors Condensed from Video Sequences for Place Recognition
Tat-Jun Chin, Hanlin Goh and Joo-Hwee Lim
Institute for Infocomm Research
1 Heng Mui Keng Terrace, Singapore 119613.
{tjchin, hlgoh,"
4df34e0194faa27078832cb5078a2af6c9d0ea9b,Saliency Prediction in the Deep Learning Era: An Empirical Investigation,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Saliency Prediction in the Deep Learning Era:
An Empirical Investigation
Ali Borji, Member, IEEE"
4d6ad0c7b3cf74adb0507dc886993e603c863e8c,Human Activity Recognition Based on Wearable Sensor Data : A Standardization of the State-ofthe-Art,"Human Activity Recognition Based on Wearable
Sensor Data: A Standardization of the
State-of-the-Art
Artur Jord˜ao, Antonio C. Nazare Jr., Jessica Sena and William Robson Schwartz
Smart Surveillance Interest Group, Computer Science Department
Universidade Federal de Minas Gerais, Brazil
Email: {arturjordao, antonio.nazare, jessicasena,"
4d7bbaa2c7e89d5ba6940ee5804cf10a6b24d6ec,Multi-target Unsupervised Domain Adaptation without Exactly Shared Categories,"Multi-target Unsupervised Domain Adaptation
without Exactly Shared Categories
Huanhuan Yu, Menglei Hu and Songcan Chen"
4dca3d6341e1d991c902492952e726dc2a443d1c,Learning towards Minimum Hyperspherical Energy,"Learning towards Minimum Hyperspherical Energy
Weiyang Liu1,*, Rongmei Lin2,*, Zhen Liu1,*, Lixin Liu3,*, Zhiding Yu4, Bo Dai1,5, Le Song1,6
Georgia Institute of Technology 2Emory University
South China University of Technology 4NVIDIA 5Google Brain 6Ant Financial"
4d0ef449de476631a8d107c8ec225628a67c87f9,Face system evaluation toolkit: Recognition is harder than it seems,"© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE
must  be  obtained  for  all  other  uses,  in  any  current  or  future  media,  including
reprinting/republishing  this  material  for  advertising  or  promotional  purposes,
reating  new  collective  works,  for  resale  or  redistribution  to  servers  or  lists,  or
reuse of any copyrighted component of this work in other works.
Pre-print of article that appeared at BTAS 2010.
The published article can be accessed from:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5634517"
4d231311cdfe3aba13766bd0b358d4db0a9af3d3,Processing and Recognising Faces in 3D Images,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
4dea287ad9271d4ac73c58c03b8e6e714dd2db6c,Pyramid Center - symmetric Local 1 Binary / Trinary Patterns for Pedestrian 2 Detection,"Pyramid Center-symmetric Local
Binary/Trinary Patterns for Pedestrian
Detection
Yongbin Zheng, Chunhua Shen, Richard Hartley and Xinsheng Huang
Australian National University and NICTA, Canberra"
4d47261b2f52c361c09f7ab96fcb3f5c22cafb9f,Deep multi-frame face super-resolution,"Deep multi-frame face super-resolution
Evgeniya Ustinova, Victor Lempitsky
October 17, 2017"
4dc8b1c193c421f8f570c0a7eac2fc73da06cb51,MODS: Fast and Robust Method for Two-View Matching,"MODS: Fast and Robust Method for Two-View
Matching
Dmytro Mishkin, Jiri Matas, Michal Perdoch
Center for Machine Perception, Faculty of Electrical Engineering,
Czech Technical University in Prague. Karlovo namesti, 13. Prague 2, 12135"
4d9d25e67ebabbfc0acd63798f1a260cb2c8a9bd,Playing for Data: Ground Truth from Computer Games,"Playing for Data: Ground Truth from Computer Games
Stephan R. Richter∗1 Vibhav Vineet∗2
Stefan Roth1 Vladlen Koltun2
TU Darmstadt
Intel Labs"
4d3a6c2cee0cf06ff6471fad3d65a5835d0552f8,3-D Face Recognition Using Geodesic-Map Representation and Statistical Shape Modelling,"Article
­D Face Recognition Using Geodesic­Map
Representation and Statistical Shape Modelling
Quan, Wei, Matuszewski, Bogdan and Shark, Lik
Available at http://clok.uclan.ac.uk/13240/
Quan, Wei, Matuszewski, Bogdan and Shark, Lik (2016) 3­D Face Recognition Using Geodesic­
Map Representation and Statistical Shape Modelling. Lecture Notes in Computer Science, 9493 .
pp. 199­212. ISSN 0302­9743
It is advisable to refer to the publisher’s version if you intend to cite from the work.
http://dx.doi.org/10.1007/978-3-319-27677-9_13
For more information about UCLan’s research in this area go to
http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.
For information about Research generally at UCLan please go to
http://www.uclan.ac.uk/research/
All outputs in CLoK are protected by Intellectual Property Rights law, including
Copyright law.  Copyright, IPR and Moral Rights for the works on this site are retained
y the individual authors and/or other copyright owners. Terms and conditions for use
of this material are defined in the http://clok.uclan.ac.uk/policies/
Central Lancashire online Knowledge
www.clok.uclan.ac.uk"
4df3143922bcdf7db78eb91e6b5359d6ada004d2,The Chicago face database: A free stimulus set of faces and norming data.,"Behav Res (2015) 47:1122–1135
DOI 10.3758/s13428-014-0532-5
The Chicago face database: A free stimulus set of faces
nd norming data
Debbie S. Ma & Joshua Correll & Bernd Wittenbrink
Published online: 13 January 2015
# Psychonomic Society, Inc. 2015"
75827a2021ac2ad2256144b2a2fe301948d39b51,AI Benchmark: Running Deep Neural Networks on Android Smartphones,"AI Benchmark: Running Deep Neural Networks
on Android Smartphones
Andrey Ignatov
ETH Zurich
Radu Timofte
ETH Zurich
William Chou
Qualcomm, Inc.
Ke Wang
Huawei, Inc.
Max Wu
MediaTek, Inc.
Tim Hartley
Arm, Inc.
Luc Van Gool ∗
ETH Zurich"
75cb21fa931e957941c0237a1030aa36209bae36,Gaussian Process for Activity Modeling and Anomaly Detection,"GAUSSIAN PROCESS FOR ACTIVITY MODELING AND ANOMALY DETECTION
Wentong Liaoa, Bodo Rosenhahna, Michael Ying Yangb
Institute for Information Processing, Leibniz University Hannover, Germany
Computer Vision Lab, TU Dresden, Germany
KEY WORDS: Gaussian Process regression, activity modeling, anomaly detection
Commission WG III/3"
75879ab7a77318bbe506cb9df309d99205862f6c,Analysis of emotion recognition from facial expressions using spatial and transform domain methods,"Analysis Of Emotion Recognition From Facial
Expressions Using Spatial And Transform Domain
Methods
Ms. P. Suja* and Dr. Shikha Tripathi"
75d571d53eb250e222d66461fa2400956b40eaa9,What Makes a Photograph Memorable?,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
What makes a photograph memorable?
Phillip Isola, Jianxiong Xiao, Member, IEEE, Devi Parikh, Member, IEEE, Antonio Torralba, Member, IEEE,
nd Aude Oliva"
75d59ae0ed3ce51e37b383985cfff310251f591a,Cost-Sensitive Robustness against Adversarial Examples,"Cost-Sensitive Robustness against Adversarial Examples
Xiao Zhang∗
nd David Evans†"
75a9d9ea6c1a5ee55fc0ccb347b263785b15ac0a,An Image Search Reranking Model based on attribute assisted hypergraph Miss,"International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056
Volume: 03 Issue: 05 | May-2016                       www.irjet.net                                                               p-ISSN: 2395-0072
An Image Search Reranking Model based on
ttribute assisted hypergraph
Miss. Madhuri J.Mhaske1, Prof. Sachin P.Patil2
PG Scholar Computer Engineering , G. H. Raisoni College of Engineering and Management,
Savitribai Phule Pune University , Chas, Ahmednagar.414001,Maharashtra, India.
Assistant professor, computer engineering, G.H. Raisoni College of engineering and Management,
Savitribai Phule Pune University, Wagholi, Pune 411015, Maharashtra, India.
---------------------------------------------------------------------***---------------------------------------------------------------------
user wants to search for a red image, the images cannot be"
758572c5779a47e898caff7232af76eda253163b,Csr: Medium: Collaborative Research: Architecture and System Support for Power-agile Computing,"CSR: MEDIUM: COLLABORATIVE RESEARCH: ARCHITECTURE AND
SYSTEM SUPPORT FOR POWER-AGILE COMPUTING
Co-PI: Geoffrey Challen (University at Buffalo), Co-PI: Mark Hempstead (Drexel University)
NSF PROPOSAL
5 OCT 2013
As energy management on energy-constrained devices continues to challenge researchers and frustrate
users, device designs are addressing the problem by integrating more hardware components that can trade
off energy and performance. Dynamic voltage-and-frequency scaling (DVFS) allows CPUs and memory
to trade off speed and energy, buffering and polling rates allow radios to trade off latency and energy,
nd screen refresh rates allow displays to trade off quality and energy. And as the Dark Silicon utilization
wall forces systems to choose what parts of the CPU to operate, the already-large configuration space will
explode. This proposal refers to the emerging class of devices integrating multiple energy-proportional
omponents as power-agile, reflecting their potential ability to adaptively reallocate energy usage between
omponents to improve performance and save energy. But as energy-management features proliferate,
new interfaces enabling coordination between applications, the operating system (OS), and hardware are
urgently needed to realize the potential energy and performance benefits.
INTELLECTUAL MERIT: Our proposal describes a new architecture for power-agile systems with both
novel interfaces that cleanly separate energy management responsibilities and a new approach to energy
llocation driven by differences in hardware energy efficiency. Applications use resource requests to allo-
ate energy between hardware components, making their resource needs explicit. The OS manages energy"
75a92d92ee59555c847973a7422d7356514cde2d,Exploiting Multiple Detections for Person Re-Identification,"Article
Exploiting Multiple Detections for
Person Re-Identification
Amran Bhuiyan *, Alessandro Perina and Vittorio Murino
Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Via Morego 30,
6163 Genova, Italy; (A.P.); (V.M.)
* Correspondence: Tel.: +39-331-803-7176
Received: 18 November 2017; Accepted: 11 January 2018; Published: 23 January 2018"
7557e81c1189f0ef9643519e0664d60baed51721,Robust and Efficient Graph Correspondence Transfer for Person Re-identification,"DRAFT
Transfer for Person Re-identification
Qin Zhou, Heng Fan, Hua Yang, Member, IEEE, Hang Su, Member, IEEE, Shibao Zheng, Member, IEEE,
Shuang Wu, and Haibin Ling, Member, IEEE"
751e11880b54536a89bfcc4fd904b0989345a601,Hierarchical Adversarially Learned Inference,"HIERARCHICAL ADVERSARIALLY LEARNED
INFERENCE
Mohamed Ishmael Belghazi1, Sai Rajeswar1, Olivier Mastropietro1,
Negar Rostamzadeh2, Jovana Mitrovic2 and Aaron Courville1†
MILA, Université de Montréal,
Element AI,
DeepMind,
CIFAR Fellow."
75503aff70a61ff4810e85838a214be484a674ba,Improved facial expression recognition via uni-hyperplane classification,"Improved Facial Expression Recognition via Uni-Hyperplane Classification
S.W. Chew∗, S. Lucey†, P. Lucey‡, S. Sridharan∗, and J.F. Cohn‡"
754fa133a250d824c50b4c3b9c73975059954f41,Siamese Learning Visual Tracking: A Survey,"Siamese Learning Visual Tracking: A Survey
Roman Pflugfelder, Member, IEEE
(Draft Article)"
75308067ddd3c53721430d7984295838c81d4106,Rapid Facial Reactions in Response to Facial Expressions of Emotion Displayed by Real Versus Virtual Faces,"Article
Rapid Facial Reactions
in Response to Facial
Expressions of Emotion
Displayed by Real Versus
Virtual Faces
i-Perception
018 Vol. 9(4), 1–18
! The Author(s) 2018
DOI: 10.1177/2041669518786527
journals.sagepub.com/home/ipe
Leonor Philip, Jean-Claude Martin and Ce´ line Clavel
LIMSI, CNRS, University of Paris-Sud, Orsay, France"
750e567370fd8c37bab657207195517405727a71,Time Aware Task Delegation in Agent Interactions for Video-Surveillance,"Time aware task delegation in agent interactions
for video-surveillance
Paolo Sernani1, Matteo Biagiola2,3, Nicola Falcionelli1,
Dagmawi Neway Mekuria1, Stefano Cremonini4, Aldo Franco Dragoni1
Dipartimento di Ingegneria dell’Informazione,
Universit`a Politecnica delle Marche,
Ancona, Italy
{p.sernani,
{n.falcionelli,
Fondazione Bruno Kessler,
Trento, Italy
Universit`a degli Studi di Genova,
Genova, Italy
Site Spa, Bologna, Italy"
75d8f2da0e9d80eef141c765254d7752445afb53,Violent video detection based on MoSIFT feature and sparse coding,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
Long Xu1, Chen Gong1, Jie Yang1(cid:3), Qiang Wu2, Lixiu Yao1
. INTRODUCTION"
75e4efae6de6d1ac787a6ca381fb49381fcb062b,Hierarchical Representation Learning for Kinship Verification,"IEEE TRANSACTIONS ON IMAGE PROCESSING
Hierarchical Representation Learning for Kinship
Verification
Naman Kohli, Student Member, IEEE, Mayank Vatsa, Senior Member, IEEE, Richa Singh, Senior Member, IEEE,
Afzel Noore, Senior Member, IEEE, and Angshul Majumdar, Senior Member, IEEE"
75d5e67e31cefa09ae46044fa1f9f7696e058c99,MRI based Techniques for Detection of Alzheimer: A Survey,"MRI based Techniques for Detection of Alzheimer: A Survey
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 159
Number 5
Year of Publication: 2017
Authors:
Ruaa Adeeb Abdulmunem Al-falluji
10.5120/ijca2017912929
{bibtex}2017912929.bib{/bibtex}"
759a3b3821d9f0e08e0b0a62c8b693230afc3f8d,Attribute and simile classifiers for face verification,"Attribute and Simile Classifiers for Face Verification
Neeraj Kumar
Alexander C. Berg
Peter N. Belhumeur
Columbia University∗
Shree K. Nayar"
75e9401e70c05c4d080e2d17f83ed2b61b44b3af,A distributed algorithm for partitioned robust submodular maximization,"A Distributed Algorithm for Partitioned
Robust Submodular Maximization
Ilija Bogunovic, Slobodan Mitrovi´c, Jonathan Scarlett, and Volkan Cevher
École Polytechnique Fédérale de Lausanne (EPFL)
{ilija.bogunovic, slobodan.mitrovic, jonathan.scarlett,"
7538ad235caf4dbc64a8b94a6146e1212d4de1ff,Amygdala dysfunction in men with the fragile X premutation.,"doi:10.1093/brain/awl338
Brain (2007), 130, 404–416
Amygdala dysfunction in men with the fragile
X premutation
David Hessl,1,2 Susan Rivera,1,5 Kami Koldewyn,1,6 Lisa Cordeiro,1 John Adams,1 Flora Tassone,1,4
Paul J. Hagerman1,4 and Randi J. Hagerman1,3
Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Departments of 2Psychiatry and Behavioral
Sciences, 3Pediatrics, University of California-Davis, Medical Center, Sacramento, 4Department of Biochemistry and
Molecular Medicine, University of California-Davis, School of Medicine, 5Department of Psychology and 6Center for
Neuroscience, University of California-Davis, Davis, CA, USA
Correspondence to: David Hessl, PhD, Assistant Clinical Professor, MIND Institute, University of California, Davis Medical
Center, 2825 50th Street, Sacramento, CA 95817, USA.
E-mail:
Premutation alleles (55–200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene are associated
with autism spectrum disorder in childhood, premature ovarian failure, and the neurodegenerative disorder,
fragile X-associated tremor/ataxia syndrome (FXTAS). FXTAS, and perhaps the other clinical presentations
mong carriers, are thought to be due to toxic gain-of-function of elevated levels of the expanded-repeat
FMR1 mRNA. Previous structural MRI studies have implicated the amygdala as a potential site of dysfunction
underlying social deficits and/or risk for FXTAS. As a preliminary investigation of this possible association, adult
males with the premutation, and male controls matched for IQ, age and education, completed three protocols"
75859ac30f5444f0d9acfeff618444ae280d661d,Multibiometric Cryptosystems Based on Feature-Level Fusion,"Multibiometric Cryptosystems based on Feature
Level Fusion
Abhishek Nagar, Student Member, IEEE, Karthik Nandakumar, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
758d7e1be64cc668c59ef33ba8882c8597406e53,"AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild","IEEE TRANSACTIONS ON AFFECTIVE COMPUTING
AffectNet: A Database for Facial Expression,
Valence, and Arousal Computing in the Wild
Ali Mollahosseini, Student Member, IEEE, Behzad Hasani, Student Member, IEEE,
nd Mohammad H. Mahoor, Senior Member, IEEE"
75522dfc1610c8765185c4344d97db33e1af5047,"RASKIN, RUDZSKY, RIVLIN: BODY-PART TRACKING AND ACTION CLASSIFICATION 1 3D Human Body-Part Tracking and Action Classification Using a Hierarchical Body Model","RASKIN, RUDZSKY, RIVLIN: BODY-PART TRACKING AND ACTION CLASSIFICATION
D Human Body-Part Tracking and Action
Classification Using a Hierarchical Body
Model
Leonid Raskin
Michael Rudzsky
Ehud Rivlin
Computer Science Department
Technion -Israel Institute of Technology
Haifa, Israel, 3200"
7553fba5c7f73098524fbb58ca534a65f08e91e7,A Practical Approach for Determination of Human Gender & Age,"Harpreet Kaur Bhatia et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.6, June- 2014, pg. 816-824
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IJCSMC, Vol. 3, Issue. 6, June 2014, pg.816 – 824
RESEARCH ARTICLE
A Practical Approach for Determination
of Human Gender & Age
Harpreet Kaur Bhatia1, Ahsan Hussain2
CSE Dept. & CSVTU University, India
CSE Dept. & CSVTU University, India"
75cf72819b8741777a961157f43d994238219f5e,Crowd Behavior Detection for Abnormal Conditions,"International Journal of Computer Systems (ISSN: 2394-1065), Volume 03– Issue 06, June, 2016
Available at http://www.ijcsonline.com/
Crowd Behavior Detection for Abnormal Conditions
Aniket A. Patil, Prof. S. A. Shinde
Department of Computer Engineering,
Savitribai Phule Pune University, Pune, India"
75b987f86af2bc7f68edc45be240dd30e1ef2699,Sampling Algorithms to Handle Nuisances in Large-Scale Recognition,"UNIVERSITY OF CALIFORNIA
Los Angeles
Sampling Algorithms to Handle Nuisances in Large-Scale Recognition
A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy in Computer Science
Nikolaos Karianakis"
75073faadb967823db48794e9cd54b681bb0729b,Thermal-Aware Task Allocation and Scheduling for Heterogeneous Multi-core Cyber-Physical Systems,"Thermal-Aware Task Allocation and Scheduling for
Heterogeneous Multi-core Cyber-Physical Systems
Department of Electrical and Computer Engineering University of Massachusetts Amherst, Amherst, MA, 01003
Shikang Xu, Israel Koren and C. M. Krishna"
75c3ba0c7e5b0d4a11e9d2e073ccd02ee688c0c9,"A Multimodal LDA Model integrating Textual, Cognitive and Visual Modalities","Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1146–1157,
Seattle, Washington, USA, 18-21 October 2013. c(cid:13)2013 Association for Computational Linguistics"
75650bfc20036d99314f7ddae8f2baecde3d57e2,Concave Losses for Robust Dictionary Learning,"CONCAVE LOSSES FOR ROBUST DICTIONARY LEARNING
Rafael Will M. de Araujo, R. Hirata Jr ∗
Alain Rakotomamonjy †
University of S˜ao Paulo
Institute of Mathematics and Statistics
Rua do Mat˜ao, 1010 – 05508-090 – S˜ao Paulo-SP, Brazil
Universit´e de Rouen Normandie
LITIS EA 4108
76800 Saint- ´Etienne-du-Rouvray, France"
75249ebb85b74e8932496272f38af274fbcfd696,Face Identification in Large Galleries,"Face Identification in Large Galleries
Rafael H. Vareto, Filipe Costa, William Robson Schwartz
Smart Surveillance Interest Group, Department of Computer Science
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil"
816c8c8d0f02200f988625d4989a1b4b34d779c6,An Efficient Hybrid Face Recognition Algorithm Using PCA and GABOR Wavelets,
81eb804756f27d08f2d193d1074e58e1c5d263ca,Monocular 3D Human Pose Estimation Using Transfer Learning and Improved CNN Supervision,"Monocular 3D Human Pose Estimation Using Transfer Learning and Improved
CNN Supervision
Dushyant Mehta*, Helge Rhodin*, Dan Casass, Oleksandr Sotnychenko*, Weipeng Xu*, and Christian
Theobalt*
*Max Planck Institute For Informatics, Saarland Informatics Campus, Germany
sUniversidad Rey Juan Carlos, Spain"
81a142c751bf0b23315fb6717bc467aa4fdfbc92,Pairwise Trajectory Representation for Action Recognition,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
81bfe562e42f2eab3ae117c46c2e07b3d142dade,A Hajj And Umrah Location Classification System For Video Crowded Scenes,"A Hajj And Umrah Location Classification System For Video
Crowded Scenes
Hossam M. Zawbaa†
Salah A. Aly†‡
Adnan A. Gutub†
Center of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA
College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA"
81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f,Comparison of Face Recognition Neural Networks,"UNIVERSITY OF TARTU
FACULTY OF SCIENCE AND TECHNOLOGY
Institute of Computer Science
Computer Science
Zepp Uibo
Comparison of Face Recognition
Neural Networks
Bachelor's thesis (6 ECST)
Supervisor: Tambet Matiisen
Tartu 2016"
8147ee02ec5ff3a585dddcd000974896cb2edc53,Angular Embedding: A Robust Quadratic Criterion,"Angular Embedding:
A Robust Quadratic Criterion
Stella X. Yu, Member,"
8199803f476c12c7f6c0124d55d156b5d91314b6,The iNaturalist Species Classification and Detection Dataset,"The iNaturalist Species Classification and Detection Dataset
Grant Van Horn1 Oisin Mac Aodha1 Yang Song2 Yin Cui3 Chen Sun2
Alex Shepard4 Hartwig Adam2
Pietro Perona1
Serge Belongie3
Caltech
Google
Cornell Tech
iNaturalist"
816617fa6801fb2abd3d4475c459bf6e3221954d,3D human detection and tracking on a mobile platform for situation awareness,"D Human Detection and
Tracking on a Mobile Platform
for Situation Awareness
Niklas Beuter"
81e628a23e434762b1208045919af48dceb6c4d2,Attend and Rectify: A Gated Attention Mechanism for Fine-Grained Recovery,"Attend and Rectify: a Gated Attention
Mechanism for Fine-Grained Recovery
Pau Rodr´ıguez†, Josep M. Gonfaus‡, Guillem Cucurull†,
F. Xavier Roca†, Jordi Gonz`alez†
Computer Vision Center and Universitat Aut`onoma de Barcelona (UAB),
Campus UAB, 08193 Bellaterra, Catalonia Spain
Visual Tagging Services, Parc de Recerca, Campus UAB"
811dff89b6d4657e5a0b8534e208baefd2204cee,Pseudo-Feature Generation for Imbalanced Data Analysis in Deep Learning,"Pseudo-Feature Generation for Imbalanced Data
Analysis in Deep Learning
Tomohiko Konno∗ and Michiaki Iwazume
AI Science Research and Development Promotion Center
National Institute of Information and Communications Technology, Tokyo Japan
Figure 1: The sketch of proposed method. Left: train deep neural networks. Center: extract features
from a layer, and then obtain multivariate probability distributions of the features, and then generate
pseudo-features of minority classes from the probability distributions, and then re-train the layers
elow the layer. Right: Put the retrained layers back to the original one. (It is the last classifier that is
re-trained and put back in the experiment.)"
812725dc3968aaff6429ec7c3f44ba1ca2116013,Acoplamiento de micro multitudes para el desarrollo de videojuegos controlados por movimiento,"Acoplamiento de micro multitudes
para el desarrollo de videojuegos
ontrolados por movimiento
Iv´an Rivalcoba1, Krely Rodr´ıguez2, Oriam Degives1, Isaac Rudom´ın3
Tecnol´ogico de Monterrey, Campus Estado de M´exico,
M´exico
Tecnol´ogico de Minatitl´an,
Minatitl´an, Veracruz, M´exico
Barcelona Supercomputing Center
Barcelona, Espa˜na
Resumen. La simulaci´on de multitudes en tiempo real y los juegos controlados
por movimiento se han vuelto muy populares en los ´ultimos a˜nos. En conjunto
estas dos tecnolog´ıas proporcionan una mejor experiencia de juego en entornos
virtuales logrando escenas m´as realistas y vibrantes. Sin embargo, hasta ahora no
se ha explotado la interacci´on de m´ultiples jugadores con una gran multitud bajo
un entorno virtual. En este trabajo presentamos un sistema no intrusivo capaz
de simular multitudes virtuales acopladas en tiempo real con varios usuarios,
sentando con ello las bases para la creaci´on de juegos donde interact´uen muchos
jugadores con muchas personajes, para ello se realiza una detecci´on de personas
en una secuencia de v´ıdeo, nuestra contribuci´on consiste en utilizar patrones"
812a6ced985317b3b9429ef0455645a9744af6d1,No need for a social cue! A masked magician can also trick the audience in the vanishing ball illusion.,"Atten Percept Psychophys
DOI 10.3758/s13414-015-1036-9
No need for a social cue! A masked magician can also trick
the audience in the vanishing ball illusion
Cyril Thomas 1 & André Didierjean 1
# The Psychonomic Society, Inc. 2015"
81706277ed180a92d2eeb94ac0560f7dc591ee13,Emotion based Contextual Semantic Relevance Feedback in Multimedia Information Retrieval,"International Journal of Computer Applications (0975 – 8887)
Volume 55– No.15, October 2012
Emotion based Contextual Semantic Relevance
Feedback in Multimedia Information Retrieval
Karm Veer Singh
Department of Computer Engineering, Indian
Institute of Technology, Banaras Hindu
University,Varanasi, 221005, India
Anil K. Tripathi
Department of Computer Engineering, Indian
Institute of Technology, Banaras Hindu
University,Varanasi, 221005, India
find  some
issued  by  a  user"
81c03eda1d175fbe351980ac4cffe42c5dec47b0,User observation & dataset collection for robot training,"User Observation & Dataset Collection for Robot Training
Caroline Pantofaru
Willow Garage, Inc.
Menlo Park, CA 94025
Categories and Subject Descriptors:
I.5.2 [Comput-
ing Methodologies]: Pattern Recognition - Design Method-
ology, H.1.2 [Information Systems]: Models and Principles -
User/Machine Systems
General Terms: Measurement
INTRODUCTION
Personal robots operate in human environments such as
homes and of‌f‌ices, co-habiting with people. To effectively
train robot algorithms for such scenarios, a large amount of
training data containing both people and the environment is
required. Collecting such data involves taking a robot into
new environments, observing and interacting with people.
So far, best practices for robot data collection have been
undefined. Fortunately, the human-robot interaction com-
munity has conducted field studies whose methodology can"
81a51cd6ecd467abb1ef38c8e35bdf1885f96fe3,Deep Spatio-Temporal Random Fields for Efficient Video Segmentation,"Deep Spatio-Temporal Random Fields for Efficient Video Segmentation
Siddhartha Chandra1
Camille Couprie2
INRIA GALEN, Ecole CentraleSup´elec Paris
Iasonas Kokkinos2
Facebook AI Research, Paris"
81f30bc57b84a6e5b71983b50bdea32f32bee285,"The more fine-grained, the better for transfer learning","The more fine-grained, the better for transfer learning
Anonymous Author(s)
Affiliation
Address
email"
81b2a541d6c42679e946a5281b4b9dc603bc171c,Semi-supervised learning with committees: exploiting unlabeled data using ensemble learning algorithms,"Universit¨at Ulm | 89069 Ulm | Deutschland
Fakult¨at f¨ur Ingenieurwissenschaften und Informatik
Institut f¨ur Neuroinformatik
Direktor: Prof. Dr. G¨unther Palm
Semi-Supervised Learning with Committees:
Exploiting Unlabeled Data Using Ensemble
Learning Algorithms
Dissertation zur Erlangung des Doktorgrades
Doktor der Naturwissenschaften (Dr. rer. nat.)
der Fakult¨at f¨ur Ingenieurwissenschaften und Informatik
der Universit¨at Ulm
vorgelegt von
Mohamed Farouk Abdel Hady
us Kairo, ¨Agypten
Ulm, Deutschland"
81ff6d7f934f7134d93b2039d788b72f8593693c,Accelerating Convolutional Neural Network Systems,"Accelerating Convolutional
Neural Network Systems
Henry G.R. Gouk
This report is submitted in partial fulfillment of the requirements for the degree of
Bachelor of Computing and Mathematical Sciences with Honours (BCMS(Hons))
t The University of Waikato.
COMP520-14C (HAM)
© 2014 Henry G.R. Gouk"
813e9f76fb9e3f007f0bc819eab66b0b5fbd8204,Towards Building Large Scale Multimodal Domain-Aware Conversation Systems,"Towards Building Large Scale Multimodal Domain-Aware Conversation Systems
Amrita Saha1,2
Mitesh M. Khapra2
Karthik Sankaranarayanan1
IBM Research AI
I.I.T. Madras, India"
81eecb00eeadb5fe36cd840b687439bfdca7ff30,Kernelized Saliency-Based Person Re-Identification Through Multiple Metric Learning,"JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012
Kernelized Saliency-based Person Re-Identification
through Multiple Metric Learning
Niki Martinel* Student Member, IEEE, Christian Micheloni, Member, IEEE, and Gian Luca Foresti, Senior
Member, IEEE"
81d327ec41c67728b15438bca86d10b72de1d88f,Visual Affordance and Function Understanding: A Survey,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2018
Visual Affordance and Function Understanding:
A Survey
Mohammed Hassanin, Salman Khan, Murat Tahtali"
81d5c4b49fe17aaa3af837745cafdedb066a067d,Automatic Adaptive Center of Pupil Detection Using Face Detection and CDF Analysis,"Automatic Adaptive Center of Pupil Detection
Using Face Detection and CDF Analysis
Mansour Asadifard, Jamshid Shanbezadeh"
819a321975c736e006870e76446d581e195cad2e,Deep Canonical Time Warping for Simultaneous Alignment and Representation Learning of Sequences,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Deep Canonical Time Warping
for simultaneous alignment and representation
learning of sequences
George Trigeorgis, Mihalis A. Nicolaou, Member, IEEE, Bj¨orn W. Schuller, Senior member, IEEE
Stefanos Zafeiriou, Member, IEEE"
81006fe4c4947d225b9fa17e6b98b8acb36a7692,A Dataset for Grasping and Manipulation using ROS,"A Dataset for Grasping and Manipulation using ROS
Matei Ciocarlie†, Gary Bradski†, Kaijen Hsiao† and Peter Brook†∗"
810eafc9e854ea9b1d7a9e9f755f8102310d5db6,Dynamic Multimodal Instance Segmentation Guided by Natural Language Queries,"Dynamic Multimodal Instance Segmentation
Guided by Natural Language Queries
Edgar Margffoy-Tuay, Juan C. P´erez, Emilio Botero, and Pablo Arbel´aez
{ea.margffoy10, jc.perez13, e.botero10,
Universidad de los Andes, Colombia"
816c1925de9e8557fa70ec67d0ff71a5059eb931,Person Re-identification by Articulated Appearance Matching,"Person Re-identification by Articulated
Appearance Matching
Dong Seon Cheng and Marco Cristani"
8160b3b5f07deaa104769a2abb7017e9c031f1c1,Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification,"Exploiting Discriminant Information in Nonnegative
Matrix Factorization With Application
to Frontal Face Verification
Stefanos Zafeiriou, Anastasios Tefas, Member, IEEE, Ioan Buciu, and Ioannis Pitas, Senior Member, IEEE"
81fc46dd71121cfafbb11455745ae62f6eca0b25,Joint Camera Pose Estimation and 3D Human Pose Estimation in a Multi-camera Setup,"Joint Camera Pose Estimation and 3D Human
Pose Estimation in a Multi-Camera Setup
Jens Puwein1, Luca Ballan1, Remo Ziegler2 and Marc Pollefeys1
Department of Computer Science, ETH Zurich, Switzerland
Vizrt"
814d091c973ff6033a83d4e44ab3b6a88cc1cb66,The EU-Emotion Stimulus Set: A validation study.,"Behav Res (2016) 48:567–576
DOI 10.3758/s13428-015-0601-4
The EU-Emotion Stimulus Set: A validation study
Helen O’Reilly 1,2 & Delia Pigat 1 & Shimrit Fridenson 5 & Steve Berggren 3,4 & Shahar Tal 5 &
Ofer Golan 5 & Sven Bölte 3,4 & Simon Baron-Cohen 1,6 & Daniel Lundqvist 3
Published online: 30 September 2015
# Psychonomic Society, Inc. 2015"
816eff5e92a6326a8ab50c4c50450a6d02047b5e,fLRR: Fast Low-Rank Representation Using Frobenius Norm,"fLRR: Fast Low-Rank Representation Using
Frobenius Norm
Haixian Zhang, Zhang Yi, and Xi Peng
Low Rank Representation (LRR) intends to find the representation
with lowest-rank of a given data set, which can be formulated as a
rank minimization problem. Since the rank operator is non-convex and
discontinuous, most of the recent works use the nuclear norm as a convex
relaxation. This letter theoretically shows that under some conditions,
Frobenius-norm-based optimization problem has an unique solution that
is also a solution of the original LRR optimization problem. In other
words, it is feasible to apply Frobenius-norm as a surrogate of the
nonconvex matrix rank function. This replacement will largely reduce the
time-costs for obtaining the lowest-rank solution. Experimental results
show that our method (i.e., fast Low Rank Representation, fLRR),
performs well in terms of accuracy and computation speed in image
lustering and motion segmentation compared with nuclear-norm-based
LRR algorithm.
Introduction: Given a data set X ∈ Rm×n(m < n) composed of column
vectors, let A be a data set composed of vectors with the same dimension
s those in X. Both X and A can be considered as matrices. A linear"
81ed28ea6cfe71bfc4cfc35c6695fa07dd7cc42e,"Deep Episodic Memory: Encoding, Recalling, and Predicting Episodic Experiences for Robot Action Execution","Deep Episodic Memory: Encoding, Recalling, and Predicting
Episodic Experiences for Robot Action Execution
Jonas Rothfuss∗†, Fabio Ferreira∗†, Eren Erdal Aksoy ‡, You Zhou† and Tamim Asfour†"
81ede08b36f3abd423424804da8ff240606b3a5d,Top-Down Deep Appearance Attention for Action Recognition,"Top-Down Deep Appearance Attention for
Action Recognition
Rao Muhammad Anwer1, Fahad Shahbaz Khan2, Joost van de Weijer3, Jorma
Laaksonen1
Department of Computer Science, Aalto University School of Science, Finland
Computer Vision Laboratory, Link¨oping University, Sweden
Computer Vision Center, CS Dept. Universitat Autonoma de Barcelona, Spain"
810d60ff5c0106de53a48fa2731eacf5ca2377b6,MultiQ: single sensor-based multi-quality multi-modal large-scale biometric score database and its performance evaluation,"Uddin et al. IPSJ Transactions on Computer Vision and
Applications  (2017) 9:18
DOI 10.1186/s41074-017-0029-0
IPSJ Transactions on Computer
Vision and Applications
TECHNICAL NOTE
Open Access
MultiQ: single sensor-based multi-quality
multi-modal large-scale biometric score
database and its performance evaluation
Md. Zasim Uddin*, Daigo Muramatsu, Takuhiro Kimura, Yasushi Makihara and Yasushi Yagi"
8149c30a86e1a7db4b11965fe209fe0b75446a8c,Semi-supervised multiple instance learning based domain adaptation for object detection,"Semi-Supervised Multiple Instance Learning based
Domain Adaptation for Object Detection
Siemens Corporate Research
Siemens Corporate Research
Siemens Corporate Research
Amit Kale
Bangalore
Chhaya Methani
Bangalore
{chhaya.methani,
Rahul Thota
Bangalore
rahul.thota,"
815069f591122aa7b388615f944c17c7fa1eff14,Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling,"Constrained Overcomplete Analysis Operator
Learning for Cosparse Signal Modelling
Mehrdad Yaghoobi, Sangnam Nam, R´emi Gribonval and Mike E. Davies"
81b6de17391f44c07b2efe75a529aa200604ee48,Machine à Vecteurs Supports Multi-Noyau pour la détection de points caractéristiques du visage,"Machine à Vecteurs Supports Multi-Noyau pour la détection de points
aractéristiques du visage
Vincent Rapp1, Thibaud Senechal1, Kevin Bailly1, Lionel Prevost2
ISIR - CNRS UMR 7222
Université Pierre et Marie Curie, Paris
LAMIA - EA 4540
Université des Antilles et de la Guyanne
{rapp, senechal,
Résumé
Dans cet article, nous présentons une méthode robuste
et précise pour détecter 17 points caractéristiques du vi-
sage sur des images expressives. Une nouvelle architecture
multi-résolution basée sur les récents algorithmes multi-
noyau est introduite. Les patches de faibles résolutions
odent les informations globales du visage donnant lieu à
une détection grossière mais robuste du point désiré. Les
patches de grandes résolutions quant à eux utilisent les dé-
tails locaux afin d’affiner cette localisation. En combinant
une détection indépendante de points et des informations
priori sur les distributions de points, nous proposons"
819d1dcea397e6e671acf74adccdef5750550873,Representations for Visually Guided Actions,"Representations for Visually Guided Actions
Saurabh Gupta
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2018-104
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-104.html
August 8, 2018"
8121824f4598d600e4cdb745cd2715e4655c9e88,A Taxonomy of Emerging Multilinear Discriminant Analysis Solutions for Biometric Signal Recognition,"Contents
A Taxonomy of Emerging Multilinear Discriminant Analysis Solutions
for Biometric Signal Recognition
Haiping Lu, K. N. Plataniotis and A. N. Venetsanopoulos
Introduction
.2 Multilinear basics
.3 Multilinear discriminant analysis
.5 Conclusions
Empirical Comparison of MLDA variants on Face Recognition
Appendix: Multilinear decompositions
References"
81c3d1be0c69e9d3e13054969e4b67ee69a4e6f0,Dynamical Models for Neonatal Intensive Care Monitoring,"This thesis has been submitted in fulfilment of the requirements for a postgraduate degree
(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
terms and conditions of use:
This work is protected by copyright and other intellectual property rights, which are
retained by the thesis author, unless otherwise stated.
A copy can be downloaded for personal non-commercial research or study, without
prior permission or charge.
This thesis cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author.
The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author.
When referring to this work, full bibliographic details including the author, title,
warding institution and date of the thesis must be given."
81eb9fca9093f58eabb8850512f8f46fe2bb07a2,Sem-GAN: Semantically-Consistent Image-to-Image Translation,"Sem-GAN: Semantically-Consistent Image-to-Image Translation
Anoop Cherian
Alan Sullivan
Mitsubishi Electric Research Labs (MERL), Cambridge, MA
{cherian,"
818dcb3bac6342c02eebd896cd0a46bcf2192b64,Unified Structured Learning for Simultaneous Human Pose Estimation and Garment Attribute Classification,"Unified Structured Learning for Simultaneous
Human Pose Estimation and Garment Attribute
Classification
Jie Shen, Guangcan Liu, Member, IEEE, Jia Chen, Yuqiang Fang, Jianbin Xie, Member, IEEE, Yong Yu,
nd Shuicheng Yan, Senior Member, IEEE"
8134b052a9aedd573dd16649a611f68b48e30cb2,InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image,"InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image
Hyeongwoo Kim1
Justus Thies2
Max-Planck-Institute for Informatics
Michael Zollhöfer1
Christian Richardt3
University of Erlangen-Nuremberg 3 University of Bath
Christian Theobalt1
Ayush Tewari1
Figure 1. Our single-shot deep inverse face renderer InverseFaceNet obtains a high-quality geometry, reflectance and illumination estimate
from just a single input image. We jointly recover the face pose, shape, expression, reflectance and incident scene illumination. From left to
right: input photo, our estimated face model, its geometry, and the pointwise Euclidean error compared to Garrido et al. [14]."
862f19f8317971fabc46cf0f994f4a8616f17b78,Human Re-identification through Distance Metric Learning based on Jensen-Shannon Kernel,"HUMAN RE-IDENTIFICATION THROUGH DISTANCE METRIC
LEARNING BASED ON JENSEN-SHANNON KERNEL
Yoshihisa Ijiri1, Shihong Lao2, Tony X. Han3 and Hiroshi Murase4
Corporate R&D, OMRON Corp., Kizugawa, Kyoto, Japan
OMRON Social Solutions Co. Ltd., Kizugawa, Kyoto, Japan
Electrical & Computer Engineering Dept., Univ. of Missouri, Columbia, MO, U.S.A.
Graduate School of Information Science, Nagoya Univ., Chigusaku, Nagoya, Japan
Keywords:
Human Re-identification, Distance Metric Learning, Jensen-Shannon Kernel."
86614c2d2f6ebcb9c600d4aef85fd6bf6eab6663,Benchmarks for Cloud Robotics,"Benchmarks for Cloud Robotics
Arjun Singh
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2016-142
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-142.html
August 12, 2016"
86b69b3718b9350c9d2008880ce88cd035828432,Improving Face Image Extraction by Using Deep Learning Technique,"Improving Face Image Extraction by Using Deep Learning Technique
Zhiyun Xue, Sameer Antani, L. Rodney Long, Dina Demner-Fushman, George R. Thoma
National Library of Medicine, NIH, Bethesda, MD"
86904aee566716d9bef508aa9f0255dc18be3960,Learning Anonymized Representations with Adversarial Neural Networks,"Learning Anonymized Representations with
Adversarial Neural Networks
Cl´ement Feutry, Pablo Piantanida, Yoshua Bengio, and Pierre Duhamel"
8602b2ef26a0f851f1f6f2f2ae0ce142eb64300a,Is it a face ? How to find and validate a face on 3D scans,"Is it a face ? How to find and validate a face on 3D scans
Przemyslaw Szeptycki,
Mohsen Ardabilian,
Liming Chen
Ecole Centrale de Lyon, 36 av. Guy de Collongue, 69134 Lyon, France
{przemyslaw.szeptycki, mohsen.ardabilian,
Introduction"
867e709a298024a3c9777145e037e239385c0129,Analytical Representation of Undersampled Face Recognition Approach Based on Dictionary Learning and Sparse Representation,"INTERNATIONAL JOURNAL
OF PROFESSIONAL ENGINEERING STUDIES                                                                                                            Volume VIII /Issue 2 / FEB 2017
ANALYTICAL REPRESENTATION OF UNDERSAMPLED FACE
RECOGNITION APPROACH BASED ON DICTIONARY LEARNING
AND  SPARSE REPRESENTATION
Murala Sandeep1 A.Mallikarjuna Reddy2 P.Rajashaker Reddy3 Dr. G. Vishnu murthy4
(M.Tech)1, Assistant Professor2, Assistant Professor3, HOD of CSE Department4
Anurag group of institutions Ghatkesar, Ranga Reddy, Hyderabad, India"
869a2fbe42d3fdf40ed8b768edbf54137be7ac71,Relative Attributes for Enhanced Human-Machine Communication,"Relative Attributes for Enhanced Human-Machine Communication
Devi Parikh1, Adriana Kovashka3, Amar Parkash2, and Kristen Grauman3
Toyota Technological Institute, Chicago
Indraprastha Institute of Information Technology, Delhi
University of Texas, Austin"
86b1751b265b289b09de79956e77a01d82e12086,Face recognition in multi-camera surveillance videos,"1st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan
978-4-9906441-1-6 ©2012 IAPR"
8645fe95f3f503f854b08096c2874a3f7ea6b79b,BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition,"BoxCars: 3D Boxes as CNN Input
for Improved Fine-Grained Vehicle Recognition
Jakub Sochor∗, Adam Herout, Jiˇr´ı Havel
Brno University of Technology
Brno, Czech Republic"
86e5f81bde496549e9df2b1abdef0879a3135adb,The Visual QA Devil in the Details: The Impact of Early Fusion and Batch Norm on CLEVR,"The Visual QA Devil in the Details: The Impact
of Early Fusion and Batch Norm on CLEVR
Mateusz Malinowski and Carl Doersch
DeepMind, London, United Kingdom
Introduction
Visual QA is a pivotal challenge for higher-level reasoning [1,2,3,4], requiring
understanding language, vision, and relationships between many objects in a
scene. Although datasets like CLEVR [5] are designed to be unsolvable with-
out such complex relational reasoning, some surprisingly simple feed-forward,
“holistic” models have recently shown strong performance on this dataset [6,7].
These models lack any kind of explicit iterative, symbolic reasoning procedure,
which are hypothesized to be necessary for counting objects, narrowing down
the set of relevant objects based on several attributes, etc. The reason for this
strong performance is poorly understood. Hence, our work analyzes such mod-
els, and finds that minor architectural elements are crucial to performance. In
particular, we find that early fusion of language and vision provides large per-
formance improvements. This contrasts with the late fusion approaches popular
t the dawn of Visual QA [5,8,9,10]. We propose a simple module we call Mul-
timodal Core (MC), which we hypothesize performs the fundamental operations
for multimodal tasks. We believe that understanding why these elements are so"
86cdc6ae46f53ac86b9e0ace2763c5fe15633055,Experimental Force-Torque Dataset for Robot Learning of Multi-Shape Insertion,"Experimental Force-Torque Dataset for Robot Learning of Multi-Shape Insertion
Giovanni De Magistris1, Asim Munawar1, Tu-Hoa Pham1, Tadanobu Inoue1,
Phongtharin Vinayavekhin1, Ryuki Tachibana1
IBM Research - Tokyo, Japan
The accurate modeling of real-world systems and
physical interactions is a common challenge towards the
resolution of robotics tasks. Machine learning approaches
have demonstrated significant results in the modeling of
omplex systems (e.g., articulated robot structures, ca-
le stretch, fluid dynamics), or to learn robotics tasks
(e.g., grasping, reaching) from raw sensor measurements
without explicit programming, using reinforcement learn-
ing. However, a common bottleneck in machine learn-
ing techniques resides in the availability of suitable data.
While many vision-based datasets have been released in
the recent years, ones involving physical interactions, of
particular interest for the robotic community, have been
scarcer. In this paper, we present a public dataset on peg-
in-hole insertion tasks containing force-torque and pose
information for multiple variations of convex-shaped pegs."
86c053c162c08bc3fe093cc10398b9e64367a100,Cascade of forests for face alignment,"Cascade of Forests for Face Alignment
Heng Yang, Changqing Zou, Ioannis Patras"
861802ac19653a7831b314cd751fd8e89494ab12,"Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications","Marcin Grzegorzek, Christian Theobalt, Reinhard Koch,
Andreas Kolb
Time-of-Flight and Depth Imaging. Sensors, Algorithms
nd Applications: Dagstuhl Seminar 2012 and GCPR
Workshop on Imaging New Modalities (Lecture ... Vision,
Pattern Recognition, and Graphics)
Publisher: Springer; 2013 edition
(November 8, 2013)
Language: English
Pages: 320
ISBN: 978-3642449635
Size: 20.46 MB
Format: PDF / ePub / Kindle
Cameras for 3D depth imaging, using
either time-of-flight (ToF) or
structured light sensors, have received
lot of attention recently and have
een improved considerably over the
last few years. The present
techniques..."
8646f22a46b65c2018bc39ad3cbdb939e788a1fc,Learning a Confidence Measure for Optical Flow,"Learning a Confidence Measure
for Optical Flow
Oisin Mac Aodha, Ahmad Humayun, Marc Pollefeys and Gabriel J. Brostow"
8641593c67d87d81e528448a527e45fc9a5aa145,Complex Urban LiDAR Data Set,"Complex Urban LiDAR Data Set
Jinyong Jeong1, Younggun Cho1, Young-Sik Shin1, Hyunchul Roh1 and Ayoung Kim1
Fig. 1: This paper provides the complex urban data set including metropolitan area, apartment building complex and
underground parking lot. Sample scenes from the data set can be found in https://youtu.be/IguZjmLf5V0."
861b12f405c464b3ffa2af7408bff0698c6c9bf0,An Effective Technique for Removal of Facial Dupilcation by SBFA,"International Journal on Recent and Innovation Trends in Computing and Communication                                                     ISSN: 2321-8169
Volume: 3 Issue: 5
3337 - 3342
_______________________________________________________________________________________________
An Effective Technique for Removal of Facial Dupilcation by SBFA
Miss. Deepika B. Patil
Computer Department,
GHRCEM,
Pune, India
Dr. Ayesha Butalia
Computer Department,
GHRCEM,
Pune, India"
869df5e8221129850e81e77d4dc36e6c0f854fe6,A metric for sets of trajectories that is practical and mathematically consistent,"A metric for sets of trajectories that is
practical and mathematically consistent
Jos´e Bento
Jia Jie Zhu"
86c1bf121851aa901e3e7eb11a3b8cc5a08a921b,"Motion, Blur, Illumination based Face Recognition","ISSN: 2455-5797                International Journal of Innovative Works in Engineering and Technology (IJIWET)
Motion, Blur, Illumination based Face Recognition
Anand M.S
PG Student
Department of ECE
Satyam College of Engineering
E-mail :"
86e1bdbfd13b9ed137e4c4b8b459a3980eb257f6,The Kinetics Human Action Video Dataset,"The Kinetics Human Action Video Dataset
Will Kay
Jo˜ao Carreira
Karen Simonyan
Brian Zhang
Chloe Hillier
Sudheendra Vijayanarasimhan
Fabio Viola
Tim Green
Trevor Back
Paul Natsev
Mustafa Suleyman
Andrew Zisserman"
86b6de59f17187f6c238853810e01596d37f63cd,Competitive Representation Based Classification Using Facial Noise Detection,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 3, 2016
Competitive Representation Based Classification
Using Facial Noise Detection
Tao Liu
Ying Liu
Chongqing Key Laboratory of Computational Intelligence
College of Computer Science and Technology, Chongqing
Chongqing Key Laboratory of Computational Intelligence
College of Computer Science and Technology, Chongqing
University of Posts and Telecommunications
University of Posts and Telecommunications
Chongqing, China
Chongqing, China
Cong Li
Chao Li
Chongqing Key Laboratory of Computational Intelligence
College of Computer Science and Technology, Chongqing
Chongqing Key Laboratory of Computational Intelligence
College of Computer Science and Technology, Chongqing"
86e87d276b5b01a6b4b09b5487781fab740aca2e,Deep Ranking Model by Large Adaptive Margin Learning for Person Re-identification,"Deep Ranking Model by Large Adaptive Margin Learning for
Person Re-identification
Jiayun Wanga, Sanping Zhoua, Jinjun Wanga,∗, Qiqi Houa
The institute of artificial intelligence and robotic, Xi’an Jiaotong University, Xianning West Road
No.28, Shaanxi, 710049, P.R. China"
860196a306c9303ddaf323d702dacba68db658d2,Open-Ended Content-Style Recombination Via Leakage Filtering,"OPEN-ENDED CONTENT-STYLE RECOMBINATION
VIA LEAKAGE FILTERING
Karl Ridgeway+∗ & Michael C. Mozer+†
+ Department of Computer Science, University of Colorado, Boulder
Sensory, Inc.
presently at Google Brain, Mountain View"
86b105c3619a433b6f9632adcf9b253ff98aee87,A Mutual Information based Face Clustering Algorithm for Movies,"­4244­0367­7/06/$20.00 ©2006 IEEE
ICME 2006"
8616ff1d0fd7bcfc5fd81d1e8a9b189c21f3b93d,Visual Reference Resolution using Attention Memory for Visual Dialog,"Visual Reference Resolution using Attention Memory
for Visual Dialog
Paul Hongsuck Seo†
POSTECH
Andreas Lehrmann§
{hsseo, {andreas.lehrmann,
Bohyung Han†
§Disney Research
Leonid Sigal§"
8609035f1b9fa5bddfbbffd287a98ba47a1ecba0,Making Bertha See,"Making Bertha See
Uwe Franke, David Pfeiffer, Clemens Rabe, Carsten Knoeppel,
Markus Enzweiler, Fridtjof Stein, and Ralf G. Herrtwich
Daimler AG - Research & Development, 71059 Sindelfingen, Germany"
86be567bab1293ed847979d2c56a662fcbcbc1d5,Exploiting View-Specific Appearance Similarities Across Classes for Zero-Shot Pose Prediction: A Metric Learning Approach,"Exploiting View-Specific Appearance Similarities Across Classes for
Zero-shot Pose Prediction: A Metric Learning Approach
Alina Kuznetsova
Leibniz University Hannover
Appelstr 9A, 30169
Hannover, Germany
Sung Ju Hwang
UNIST
50 UNIST-gil, 689798
Ulsan, Korea
Bodo Rosenhahn
Leibniz University Hannover
Appelstr 9A, 30169
Hannover, Germany
Leonid Sigal
Disney Research
720 Forbes Avenue, 15213
Pittsburgh, PA, US"
8627248c6e3c3e316e3964d12e0a44e23aa969f3,Automated Annotations,"Automated Annotations
Richard Brath and Martin Matusiak*
Uncharted Software Inc."
72ef0ac03d3043bf664ca7c21abafc4191b24557,Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection,"Towards Safe Autonomous Driving: Capture Uncertainty in the Deep
Neural Network For Lidar 3D Vehicle Detection
Di Feng1, Lars Rosenbaum1, Klaus Dietmayer2"
7214d9356398aa39923c69650bcf761d4ab6307f,Improving Spatial Saliency Using Affinity Model and Temporal Motion,"Int'l Conf. IP, Comp. Vision, and Pattern Recognition |  IPCV'15  |
Improving Spatial Saliency Using
Affinity Model and Temporal Motion
Dept. of Computer and Communications Engineering, Kangwon National University
Manbae Kim
Chunchon, Gangwondo, Republic of Korea
E-mail:"
721fbc63a647239158bf817311d1c084455398e9,Shape-based automatic detection of a large number of 3D facial landmarks,"Shape-based Automatic Detection of a Large Number of 3D Facial Landmarks
Syed Zulqarnain Gilani, Faisal Shafait, Ajmal Mian
School of Computer Science and Software Engineering,The University of Western Australia.
Figure 3: Histogram of mean localization error for 18 landmarks on 4,007
scans of FRGCv2 dataset (18× 4007 Landmarks).
Mean Localization Error(mm)
Neutral
Non−Neutral
Neutral
Level−1
Level−2
Level−3
Level−4
Figure 1: Our algorithm automatically detects an arbitrarily large number of
facial landmarks by establishing dense correspondences between 3D faces.
The figure shows 85 landmarks detected (red) on neutral and extreme anger
expression of a subject from BU3DFE database [3]. The ground truth is
represented by blue dots.
2202
Mean Localization Error(mm)"
72a87f509817b3369f2accd7024b2e4b30a1f588,Fault diagnosis of a railway device using semi-supervised independent factor analysis with mixing constraints,"Fault diagnosis of a railway device using semi-supervised
independent factor analysis with mixing constraints
Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin
To cite this version:
Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin. Fault diagnosis of a railway device
using semi-supervised independent factor analysis with mixing constraints. Pattern Analysis and
Applications, Springer Verlag, 2012, 15 (3), pp.313-326. <hal-00750589>
HAL Id: hal-00750589
https://hal.archives-ouvertes.fr/hal-00750589
Submitted on 11 Nov 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
72a00953f3f60a792de019a948174bf680cd6c9f,Understanding the role of facial asymmetry in human face identification,"Stat Comput (2007) 17:57–70
DOI 10.1007/s11222-006-9004-9
Understanding the role of facial asymmetry in human face
identification
Sinjini Mitra · Nicole A. Lazar · Yanxi Liu
Received: May 2005 / Accepted: September 2006 / Published online: 30 January 2007
C(cid:1) Springer Science + Business Media, LLC 2007"
725597072c76dad5caa92b7baa6e1c761addc300,Deep adversarial neural decoding,"Deep adversarial neural decoding
Ya˘gmur Güçlütürk*, Umut Güçlü*,
Katja Seeliger, Sander Bosch,
Rob van Lier, Marcel van Gerven,
Radboud University, Donders Institute for Brain, Cognition and Behaviour
Nijmegen, the Netherlands
*Equal contribution"
727ecf8c839c9b5f7b6c7afffe219e8b270e7e15,Leveraging Geo-referenced Digital Photographs a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"LEVERAGING GEO-REFERENCED DIGITAL PHOTOGRAPHS
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Mor Naaman
July 2005"
7278f4c361f960b2e54275c5efd98535f9ccaded,Image Based Recognition of Dynamic Traffic Situations by Evaluating the Exterior Surrounding and Interior Space of Vehicles,"IMAGE BASED RECOGNITION OF DYNAMIC TRAFFIC SITUATIONS BY
EVALUATING THE EXTERIOR SURROUNDING AND INTERIOR SPACE OF VEHICLES
Photogrammetry & Remote Sensing, Technische Universitaet Muenchen, Germany - (alexander.hanel, ludwig.hoegner,
BMW Research & Technology, Muenchen, Germany -
A. Hanela, H. Klödenb, L. Hoegnera, U. Stillaa
KEY WORDS: vehicle camera system, crowd sourced data, image analysis, machine learning, object detection, illumination recogni-
tion, traffic situation recognition"
722221f6c696b4a7cc094748aaad8158990ec41e,3D facial expression recognition: A perspective on promises and challenges,"D Facial Expression Recognition:
A Perspective on Promises and Challenges
T. Fang, X. Zhao, O. Ocegueda, S.K. Shah and I.A. Kakadiaris*"
72ecaff8b57023f9fbf8b5b2588f3c7019010ca7,Facial Keypoints Detection,"Facial Keypoints Detection
Shenghao Shi"
72edc24c67c34b5f2c98086a689bf0f3591e393d,An Introduction to Image Synthesis with Generative Adversarial Nets,"An Introduction to Image Synthesis with
Generative Adversarial Nets
He Huang, Phillip S. Yu and Changhu Wang"
72591a75469321074b072daff80477d8911c3af3,Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction,"Group Component Analysis for Multi-block Data:
Common and Individual Feature Extraction
Guoxu Zhou, Andrzej Cichocki Fellow, IEEE, Yu Zhang, and Danilo Mandic Fellow, IEEE"
72a1ecfcd5f0b022fef49cab72bb476e41dea40e,Bag-of-features representations using spatial visual vocabularies for object classification,"BAG-OF-FEATURES REPRESENTATIONS USING SPATIAL VISUAL VOCABULARIES FOR
OBJECT CLASSIFICATION
Rene Grzeszick, Leonard Rothacker, Gernot A. Fink
TU Dortmund
Email: {rene.grzeszick, leonard.rothacker,
Department of Computer Science"
729a9d35bc291cc7117b924219bef89a864ce62c,Recognizing Material Properties from Images,"Recognizing Material Properties from Images
Gabriel Schwartz and Ko Nishino, Senior Member, IEEE"
7249b263d0a84d2d9d03f2f7b378778d129f9af9,Research Statement Research Focus,"RESEARCH STATEMENT
Ryan Farrell
In recent years, the topic of object detection/recognition has rapidly gained in popularity and is now
perhaps the most actively researched topic in computer vision. Object detection algorithms are becoming
prevalent in consumer devices such as digital cameras (real-time face detection) and automobiles (pedestrian
detection systems for collision avoidance are already available and will be a standard feature on new cars
within a few years). Object recognition technology is quickly becoming widespread in smartphone apps;
examples include Google Goggles, Amazon Flow and Leafsnap. I believe we are at a ‘tipping point’ towards
the impending ubiquity of computer vision, specifically object recognition, in our everyday lives.
RESEARCH FOCUS
My research in object recognition focuses specifically on Fine-grained Visual Categorization (sometimes
bbreviated FGVC). For many years, computer vision has focused on classifying an object in several basic-
level categories such as person, car, frog, or piano. At the opposing end of the categorization spectrum
(see Figure ) is biometric identification - recognizing individuals within a population (e.g. face recognition or
recognizing individual whales by unique fluke patterns). Between these two extremes lie what are called entry-
nd subordinate-level categories. Entry-level categories include penguin, owl, etc.; people generally use these
more specific labels instead of simply saying “bird” (the basic-level category). Subordinate-level categories
re highly specific. Continuing with the example of birds, categorizing at the subordinate-level would require
differentiating two quite similar species (such as the Red-breasted and White-breasted Nuthatches). Fine-
grained recognition addresses this situation where categories are distinguised by very subtle differences."
721d9c387ed382988fce6fa864446fed5fb23173,Assessing Facial Expressions in Virtual Reality Environments,
72c0c8deb9ea6f59fde4f5043bff67366b86bd66,Age progression in Human Faces : A Survey,"Age progression in Human Faces : A Survey
Narayanan Ramanathan, Rama Chellappa and Soma Biswas"
727d03100d4a8e12620acd7b1d1972bbee54f0e6,von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification,"von Mises-Fisher Mixture Model-based Deep
learning: Application to Face Verification
Md. Abul Hasnat, Julien Bohn´e, Jonathan Milgram, St´ephane Gentric and Liming Chen"
728a8c4ed6b5565a250bd1e0587293a6a97f515b,Arguing Machines: Human Supervision of Black Box AI Systems That Make Life-Critical Decisions,"Arguing Machines: Human Supervision of Black Box
AI Systems That Make Life-Critical Decisions
Lex Fridman*
Li Ding
Massachusetts Institute of Technology (MIT)
Benedikt Jenik
Bryan Reimer
Figure 1: “Arguing machines” framework that adds a secondary system to a primary “black box” AI system that makes life-
ritical decisions and uses disagreement between the two as a signal to seek human supervision. We demonstrate that this can
e a powerful way to reduce overall system error."
72a6044a0108e0f8f1e68cd70ada46c81a416324,Improved Training of Generative Adversarial Networks Using Representative Features,"Improved Training of Generative Adversarial Networks
using Representative Features
Duhyeon Bang 1 Hyunjung Shim 1"
72ef87fb1a49f0e386f123a6b4f5566f51a3a47d,Minimizing Latency for Secure Coded Computing Using Secret Sharing via Staircase Codes,"Minimizing Latency for Secure Coded Computing
Using Secret Sharing via Staircase Codes
Rawad Bitar, Parimal Parag, and Salim El Rouayheb"
7276a3ffa0941524083ac0fa9f0129746bca65d7,Multi-scale Deep Learning Architectures for Person Re-identification,"Multi-scale Deep Learning Architectures for Person Re-identification
Xuelin Qian1 Yanwei Fu2,5,* Yu-Gang Jiang1,3 Tao Xiang4 Xiangyang Xue1,2
Shanghai Key Lab of Intelligent Info. Processing, School of Computer Science, Fudan University;
School of Data Science, Fudan University; 3Tencent AI Lab;
Queen Mary University of London; 5University of Technology Sydney;"
72f4aaf7e2e3f215cd8762ce283988220f182a5b,Active illumination and appearance model for face alignment,"Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010, c(cid:2) T ¨UB˙ITAK
doi:10.3906/elk-0906-48
Active illumination and appearance model for face
lignment
Fatih KAHRAMAN1, Muhittin G ¨OKMEN 2, Sune DARKNER3, Rasmus LARSEN3
Institute of Informatics, ˙Istanbul Technical University, ˙Istanbul, 34469, TURKEY
Department of Computer Engineering, ˙Istanbul Technical University, ˙Istanbul, 34469, TURKEY
DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, DENMARK
e-mail:
e-mail:
e-mail: {sda,"
72944b4266523effe97708bff89e1d57d6aebf50,"A Multi-Sensory, Automated and Accelerated Sensory Integration Program","A Multi-Sensory, Automated and Accelerated
Sensory Integration Program
The Research
Below are several published research reports that document the efficacy of  a
singular program such as auditory therapy or visual therapy alone as well as the
use of multi-sensory programs using one or more sensory programs together.
This is only a sample of the volumes of research that has been done.
Multisensory integration of cross-modal stimulus combinations yielded responses
that  were  significantly  greater  than  those  evoked  by  the  best  component
stimulus.  J  Neurophysiol  97:  3193–3205,  2007.  doi:10.1152/jn.00018.2007.
Multisensory  Versus  Unisensory  Integration:  Contrasting  Modes  in  the  Superior
Colliculus, Juan Carlos Alvarado, J. William Vaughan, Terrence R. Stanford, and
Barry E. Stein
Department  of  Neurobiology  and  Anatomy,  Wake  Forest  University  School  of
Medicine, Winston-Salem, North Carolina
When  sound  and  touch  were  activated  simultaneously,  the  activation  of  the
uditory  cortex  was  strongest.  Auditory  information  in  conjunction  with  tactile
input  assists  with  making  tactile  decisions.  Tactile  and  auditory  stimulation
simultaneously  and  individually  may  positively  impact  neuroplastic  changes  in
individuals  with  neurological  deficits  or  impairments.  Used  singularly,  sound"
72d067a6e1fd447ef512262248ad5f73823a3842,Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms,"Probabilistic Models for
D Urban Scene Understanding
from Movable Platforms
Dissertation
Dipl.-Inform. Andreas Geiger"
72f4c415b5f3ecf63380b6985c95c5af2ba72632,Activity Recognition on a Large Scale in Short Videos - Moments in Time Dataset,"ACTIVITY RECOGNITION ON A LARGE SCALE IN
SHORT VIDEOS - MOMENTS IN TIME DATASET
Ankit Parag Shah* ∗
Harini Kesavamoorthy*
Poorva Rane*
Pramati Kalwad*
Alexander Hauptmann
Florian Metze"
72a55554b816b66a865a1ec1b4a5b17b5d3ba784,Real-Time Face Identification via CNN and Boosted Hashing Forest,"Real-Time Face Identification
via CNN
nd Boosted Hashing Forest
Yury Vizilter, Vladimir Gorbatsevich, Andrey Vorotnikov and Nikita Kostromov
State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia
IEEE Computer Society Workshop on Biometrics
In conjunction with CVPR 2016, June 26, 2016"
72c248c8d3bd76e2a31963aad7286b8d06ab7f8e,Looking outside of the Box: Object Detection and Localization with Multi-scale Patterns,"Looking outside of the Box:
Object Detection and Localization with
Multi-scale Patterns
Eshed Ohn-Bar, Student Member, IEEE, and Mohan Manubhai Trivedi, Fellow, IEEE"
72a79f351d4ae03ff940ff920898e41ce960f58e,Author's Personal Copy Backtracking: Retrospective Multi-target Tracking,"(This is a sample cover image for this issue. The actual cover is not yet available at this time.)
This article appeared in a journal published by Elsevier. The attached
opy is furnished to the author for internal non-commercial research
nd education use, including for instruction at the authors institution
nd sharing with colleagues.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.
In most cases authors are permitted to post their version of the
rticle (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information
regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:
http://www.elsevier.com/copyright"
72bf9c5787d7ff56a1697a3389f11d14654b4fcf,Robust Face Recognition Using Symmetric Shape-from-Shading,"RobustFaceRecognitionUsing
SymmetricShape-from-Shading
W.Zhao
RamaChellappa
CenterforAutomationResearchand
ElectricalandComputerEngineeringDepartment
UniversityofMaryland
CollegePark,MD-
ThesupportoftheO(cid:14)ceofNavalResearchunderGrantN-	--isgratefullyacknowledged.DRAFT"
727c8c696c6acc04e57b6c3541613702c22c6f0f,Optimal discrete wavelet transform (DWT) features for face recognition,"010 Asia Pacific Conference on Circuits and Systems (APCCAS 2010)
6 - 9 December 2010, Kuala Lumpur, Malaysia
Optimal Discrete Wavelet Transform (DWT)
Features for Face Recognition
Paul Nicholl
School of Electronics, Electrical
Engineering & Computer Science
Queen’s Univ., Northern Ireland
Email:
Afandi Ahmad
Abbes Amira
JEC, Faculty of. Elec. and Electronic Eng.
Univ. Tun Hussein Onn Malaysia
NIBEC, Faculty of Comp. and Eng.
Univ. of Ulster, Jordanstown Campus
Johor, Malaysia
Email:
Northern Ireland
Email:"
725a45ad75caf0112d649253f8a69793b1f00e80,LIFEisGAME : An approach to the utilization of serious games for therapy for children with ASD,"LIFEisGAME: An approach to the utilization of serious
games for therapy for children with ASD
Tiago Fernandes1,5, Samanta Alves2, José Miranda3,5, Cristina Queirós2, Verónica
Instituto de Telecomunicações, Lisboa, Portugal,
Faculdade de Psicologia da Universidade do Porto, Porto, Portugal,
Instituto Politécnico da Guarda, Porto, Portugal,
Faculdade de Ciências da Universidade do Porto, Porto, Portugal,
5 Faculdade de Engenharia da Universidade do Porto, Porto, Portugal,
Orvalho1,4"
72cebd7d046080899703ed3cd96e3019a9f60f13,Towards Transparent AI Systems: Interpreting Visual Question Answering Models,"Towards Transparent AI Systems:
Interpreting Visual Question Answering Models
Yash Goyal, Akrit Mohapatra, Devi Parikh, Dhruv Batra
{ygoyal, akrit, parikh,
Virginia Tech"
724a493411b7c5a904445406d3037df4a22b6c89,Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation,"Training of Convolutional Networks on Multiple Heterogeneous
Datasets for Street Scene Semantic Segmentation
Panagiotis Meletis and Gijs Dubbelman"
4414a328466db1e8ab9651bf4e0f9f1fe1a163e4,Weighted voting of sparse representation classifiers for facial expression recognition,"© EURASIP, 2010   ISSN 2076-1465
8th European Signal Processing Conference (EUSIPCO-2010)
INTRODUCTION"
44736c0c7cfced2c0f06c5ae8dd0111d9ea0dc20,On the Robustness of Speech Emotion Recognition for Human-Robot Interaction with Deep Neural Networks,"On the Robustness of Speech Emotion Recognition for Human-Robot
Interaction with Deep Neural Networks
Egor Lakomkin1, Mohammad Ali Zamani1, Cornelius Weber1, Sven Magg1 and Stefan Wermter1"
44f4b1b90f8d5515f2486e07e4cb4b9589c27518,Deep Learning and Its Applications to Machine Health Monitoring: A Survey,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Deep Learning and Its Applications to Machine
Health Monitoring: A Survey
Rui Zhao, Ruqiang Yan, Zhenghua Chen, Kezhi Mao, Peng Wang, and Robert X. Gao"
44b30a1048465cd56904cdcbec8e79dffab693bd,Semantic based Query Approach For Web Image Search Through reranking algorithm,"Scientific Journal of Impact Factor (SJIF): 3.134
E-ISSN (O): 2348-4470
P-ISSN (P): 2348-6406
International Journal of Advance Engineering and Research
Development
Volume 2,Issue 12,December -2015
Semantic based Query Approach For Web Image Search
Through reranking algorithm
Pushpak Waghmare1, Shubham Katkamwan2, Abhijeet Markand3,  Abuj Pratiksha4, Prof. Navale Girish Jaysingh5
-5Department Of Computer,All India shri Shivaji Memorial Society’s"
44442a26062c20dab7db4a9862349b598efca119,Modelling errors in a biometric re-identification system,"Modeling Errors in a Biometric Re-Identification System
B. DeCann and A. Ross
We consider the problem of “re-identification” where a biometric system answers the question “Has this person been encountered before?” without actually
deducing the person’s identity. Such a system is vital in biometric surveillance applications and applicable to biometric de-duplication. In such a system, identifiers
re created dynamically as and when the system encounters an input probe. Consequently, multiple probes of the same identity may be mistakenly assigned different
identifiers, while probes from different identities may be mistakenly assigned the same identifier. In this work, we describe a re-identification system and develop
terminology as well as mathematical expressions for prediction of matching errors. Further, we demonstrate that the sequential order in which the probes are
encountered by the system has a great impact on its matching performance. Experimental analysis based on unimodal and multimodal face and fingerprint scores
onfirms the validity of the designed error prediction model, as well as demonstrates that traditional metrics for biometric recognition fail to accurately characterize
the error dynamics of a re-identification system.
Introduction: In a classical biometric system [1], the input probe (query) biometric data is compared against the reference samples (templates) residing
in the reference database (gallery). Each sample in the reference database is assigned a label, which acts as an identifier (e.g., user-id, name, etc.) that
relates the reference sample to a specific individual and therefore, the comparison process enables the system to either determine the individual associated
with the input data (referred to as identification or 1:N matching) or verify whether the input biometric data corresponds to a specific person (referred
to as verification or 1:1 matching). Labels are assigned to a reference sample during an enrollment phase, when the biometric data of an individual is
cquired and stored in the reference database. The identifier may be further associated with additional biographic data (e.g., legal name, ID number) to
link the identifier to an identity.1 Thus, the identification and verification problems address the question: “Who is this person?” or “Is this person who
they claim to be?”, respectively.
In this work, we examine a variant of the classical biometric identification system, wherein probe data is input into the system from sensors at
multiple locations. The objective of the system is to deduce: “Has this person been encountered before?”. A biometric system performing such duties"
4425df6cc10917644c44a7f4177a5d7cc1c8b7bc,Object Localization based on Structural SVM using Privileged Information,"Object Localization based on Structural SVM
using Privileged Information
Jan Feyereisl, Suha Kwak∗, Jeany Son, Bohyung Han
Dept. of Computer Science and Engineering, POSTECH, Pohang, Korea"
4439746eeb7c7328beba3f3ef47dc67fbb52bcb3,YASAMAN HEYDARZADEH at al: AN EFFICIENT FACE DETECTION METHOD USING ADABOOST,"YASAMAN HEYDARZADEH at al: AN EFFICIENT FACE DETECTION METHOD USING ADABOOST . . .
An Efficient Face Detection Method Using Adaboost and Facial Parts
Yasaman Heydarzadeh, Abolfazl Toroghi Haghighat
Computer, IT and Electronic department
Azad University of Qazvin
Tehran, Iran
qiau.ac.ir ,"
446a99fdedd5bb32d4970842b3ce0fc4f5e5fa03,A Pose-Adaptive Constrained Local Model for Accurate Head Pose Tracking,"A Pose-Adaptive Constrained Local Model For
Accurate Head Pose Tracking
Lucas Zamuner
Eikeo
1 rue Leon Jouhaux,
F-75010, Paris, France
Kevin Bailly
Sorbonne Universit´es
UPMC Univ Paris 06
CNRS UMR 7222, ISIR
F-75005, Paris, France
Erwan Bigorgne
Eikeo
1 rue Leon Jouhaux,
F-75010, Paris, France"
44b1399e8569a29eed0d22d88767b1891dbcf987,Learning Multi-modal Latent Attributes,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Learning Multi-modal Latent Attributes
Yanwei Fu, Timothy M. Hospedales, Tao Xiang and Shaogang Gong"
448efcae3b97aa7c01b15c6bc913d4fbb275f644,Style Finder: Fine-Grained Clothing Style Recognition and Retrieval,"Style Finder: Fine-Grained Clothing Style Recognition and Retrieval
Wei Di2, Catherine Wah1, Anurag Bhardwaj2, Robinson Piramuthu2, and Neel Sundaresan2
Department of Computer Science and Engineering, University of California, San Diego
eBay Research Labs, 2145 Hamilton Ave. San Jose, CA"
4443ee5eaa56e41acddb62cacbc2f6d8c84ccd59,Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs,"Article
Multiple Objects Fusion Tracker Using a Matching
Network for Adaptively Represented Instance Pairs
Sang-Il Oh and Hang-Bong Kang *
Department of Media Engineering, Catholic University of Korea, 43-1, Yeoggok 2-dong, Wonmmi-gu,
Bucheon-si, Gyeonggi-do 14662, Korea;
* Correspondence: Tel.: +82-2-2164-4598
Academic Editor: Simon X. Yang
Received: 27 February 2017; Accepted: 14 April 2017; Published: 18 April 2017"
446dc1413e1cfaee0030dc74a3cee49a47386355,Recent Advances in Zero-shot Recognition,"Recent Advances in Zero-shot Recognition
Yanwei Fu, Tao Xiang, Yu-Gang Jiang, Xiangyang Xue, Leonid Sigal, and Shaogang Gong"
44a3ec27f92c344a15deb8e5dc3a5b3797505c06,A Taxonomy of Part and Attribute Discovery Techniques,"A Taxonomy of Part and Attribute Discovery
Techniques
Subhransu Maji"
44880df54e6caa3e7263db7a4d5cb77838f4698f,Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions,"Learning Optimal Parameters for Multi-target Tracking with Contextual
Interactions
Shaofei Wang · Charless C. Fowlkes"
44bb6ccb3526bb38364550263bc608116910da32,Model-Driven Simulations for Computer Vision,"017 IEEE Winter Conference on Applications of Computer Vision
Model-driven Simulations for Computer Vision
VSR Veeravasarapu1, Constantin Rothkopf2, Ramesh Visvanathan1
Center for Cognition and Computation, Dept. of Computer Science, Goethe University, Frankfurt
Center for Cognitive Science & Dept. of Psychology, Technical University Darmstadt.
(a) Lambertian
(Direct-lighting based rendering)
(b) Ray tracing
(appearance-driven rendering)
(c) Monte-Carlo rendering
(physics-driven rendering)
(d) Semantic labels
(e) Day light
(f) Night
Figure 1: Rendering fidelity and Virtual scene diversity. This work aims to quantify the impact of photorealism and physics
fidelity on transfer learning from virtual reality. (a)-(c): Images of same scene state rendered with different rendering engines.
(e)-(g): Same scene under different lighting. (d) and (h) semantic labels. Color coding scheme for labels is same as [5].
(g) Rain
(h) Semantic labels"
44993de87bbbce71f14d7917944d055700217696,A late fusion approach to combine multiple pedestrian detectors,"A Late Fusion Approach to Combine Multiple
Pedestrian Detectors
Artur Jord˜ao, Jessica Sena de Souza, William Robson Schwartz
Smart Surveillance Interest Group, Computer Science Department
Universidade Federal de Minas Gerais, Minas Gerais, Brazil"
44241248f16c172a1c2fb90e48fd728ba26220fc,Expression-invariant Non-rigid 3D Face Recognition: A Robust Approach to Expression-aware Morphing,"Expression-invariant Non-rigid 3D Face Recognition: A Robust Approach to
Expression-aware Morphing
F. R. Al-Osaimi
M. Bennamoun
A. Mian"
44dd150b9020b2253107b4a4af3644f0a51718a3,An Analysis of the Sensitivity of Active Shape Models to Initialization When Applied to Automatic Facial Landmarking,"An Analysis of the Sensitivity of Active Shape
Models to Initialization when Applied to Automatic
Facial Landmarking
Keshav Seshadri, Student Member, IEEE and Marios Savvides, Member, IEEE"
447d8893a4bdc29fa1214e53499ffe67b28a6db5,Electronic Transport in Quantum Confined Systems,"THÈSEPour obtenir le titre deDOCTEUR DE L’UNIVERSITÉSpécialitéSCIENCES DES MATÉRIAUXParMaxime BERTHEElectronic transport in quantum confined systemsSoutenue le 11 décembre 2007 devant la commission d’examen composée de:B. DJAFARI-ROUHANIS. ROUSSETD. RODITCHEVF. CHARRAD. STIÉVENARDH. SHIGEKAWAB. GRANDIDIERPrésidentRapporteurRapporteurExaminateurDirecteur de thèseCo-directeur de thèseCo-directeur de thèsel’Université des Sciences et Technologies de LilleEcole Doctorale Sciences de la Matière, du Rayonnement et de l’EnvironnementPrésentée à"
44f65e3304bdde4be04823fd7ca770c1c05c2cef,On the use of phase of the Fourier transform for face recognition under variations in illumination,"SIViP
DOI 10.1007/s11760-009-0125-4
ORIGINAL PAPER
On the use of phase of the Fourier transform for face recognition
under variations in illumination
Anil Kumar Sao · B. Yegnanarayana
Received: 17 November 2008 / Revised: 20 February 2009 / Accepted: 7 July 2009
© Springer-Verlag London Limited 2009"
44703dea094eb9558965db9439a07b9a74fd36b5,"Multiculturalism, Colorblindness, and Prejudice: Examining How Diversity Ideologies Impact Intergroup Attitudes","University of Arkansas, Fayetteville
Theses and Dissertations
8-2018
Multiculturalism, Colorblindness, and Prejudice:
Examining How Diversity Ideologies Impact
Intergroup Attitudes
David Sparkman
University of Arkansas, Fayetteville
Follow this and additional works at: https://scholarworks.uark.edu/etd
Part of the Social Psychology Commons
Recommended Citation
Sparkman, David, ""Multiculturalism, Colorblindness, and Prejudice: Examining How Diversity Ideologies Impact Intergroup
Attitudes"" (2018). Theses and Dissertations. 2923.
https://scholarworks.uark.edu/etd/2923
This Dissertation is brought to you for free and open access by It has been accepted for inclusion in Theses and Dissertations by
n authorized administrator of For more information, please contact"
4461a1b70e461ec298d7066ba103deda48d4ba22,Classification via Minimum Incremental Coding Length,"Vol. 2, No. 2, pp. 367–395
(cid:2) 2009 Society for Industrial and Applied Mathematics
Classification via Minimum Incremental Coding Length
John Wright
, Yi Ma
, Yangyu Tao
, Zhouchen Lin
, and Heung-Yeung Shum"
442cc39db208a66acf3acc22589b13981bb303fd,Design of Non-Linear Discriminative Dictionaries for Image Classification,"CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
Design of Non-Linear Discriminative
Dictionaries for Image Classi(cid:12)cation
Anonymous ACCV 2012 submission
Paper ID 662"
447a5e1caf847952d2bb526ab2fb75898466d1bc,Learning Non-linear Transform with Discrim- Inative and Minimum Information Loss Priors,"Under review as a conference paper at ICLR 2018
LEARNING NON-LINEAR TRANSFORM WITH DISCRIM-
INATIVE AND MINIMUM INFORMATION LOSS PRIORS
Anonymous authors
Paper under double-blind review"
4452c36dc4c5e9f11d041489c8ff2e7006d33c80,"A Computational Analysis of Recent Multi-Object Tracking Methods Based on Particle Filter, HMM and Appearance Information of Objects","International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 02, February 2013)
A Computational Analysis of Recent Multi-Object Tracking
Methods Based on Particle Filter, HMM and Appearance
Information of Objects
Raksha Shrivastava1, Professor Rajesh Nema 2
,2Department of Electronics and Communication, NRI Institute of Information Science and Technology, Bhopal (M.P)"
2a7bca56e2539c8cf1ae4e9da521879b7951872d,Exploiting Unrelated Tasks in Multi-Task Learning,"Exploiting Unrelated Tasks in Multi-Task Learning
Anonymous Author 1
Unknown Institution 1
Anonymous Author 2
Unknown Institution 2
Anonymous Author 3
Unknown Institution 3"
2af2aa21538783e46911fb857a23dbb88ed90c2b,A Study on Deep Learning Based Sauvegrain Method for Measurement of Puberty Bone Age,"A Study on Deep Learning Based
Sauvegrain Method for Measurement
of Puberty Bone Age
Keum Gang Cha∗
Seung Bin Baik∗
Plani Inc.
Plani Inc.
September 20, 2018"
2aa08ab3d6c227e3b071dc470a2f36dc5d4a2403,Ensembling Visual Explanations for VQA,"To Appear In Proceedings of the NIPS 2017 workshop on Visually-Grounded
Interaction and Language (ViGIL), December 2017."
2a2b99fc9583419931681acfd83ac953a3df3270,Estimating the quality of face localization for face verification,"ESTIMATING THE QUALITY OF FACE LOCALIZATION FOR FACE VERIFICATION
Yann Rodriguez
Fabien Cardinaux
Samy Bengio
Johnny Mari´ethoz
IDIAP
CP 592, rue du Simplon 4
920 Martigny, Switzerland"
2a93ce4284c7f8605e1d9bc0a8b86036073ebf61,"Tracking, Learning and Detection of Multiple Objects in Video Sequences","Master Thesis
Czech
Technical
University
in Prague
Faculty of Electrical Engineering
Department of Cybernetics
Tracking, Learning and Detection of
Multiple Objects in Video Sequences
Filip Naiser
Supervisor: prof. Ing. Jiří Matas, Ph.D.
January 2017"
2a218c17944d72bfdc7f078f0337cab67536e501,Detection bank: an object detection based video representation for multimedia event recognition,"Detection Bank: An Object Detection Based Video
Representation for Multimedia Event Recognition
Tim Althoff, Hyun Oh Song, Trevor Darrell
UC Berkeley EECS/ICSI
Multimedia Event Detection
Birthday Party      vs      Wedding Ceremony
● ObjectBank omits the following steps that are
standard in a detection pipeline:
● Thresholding of score maps
● Non-maximum suppression
● Pooling across all scales
● We compute different detection count statistics to
apture e.g. max number of detections, sum of
detection scores, probablity of detection based on
the detection images from a large number of
windowed object detectors.
Detection Count Statistics
Look for: Balloon, Candle, Birthday Cake vs.
Bride, Groom, Wedding Gown, Wedding Cake
Illustration"
2a152dae1ba70d0cc605b0f7418392ed1a294a4a,Head Pose Detection Using Fast Robust PCA for Side Active Appearance Models Under Occlusion,"Head Pose Detection Using Fast Robust PCA
for Side Active Appearance Models Under Occlusion
Anıl Yüce1, Matteo Sorci2, and Jean-Philippe Thiran1
Signal Processing Laboratory (LTS5)
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
nViso Sàrl, Lausanne, Switzerland"
2a12c72b0328a23b0d7ea63db1f93abf3054beec,Extended Feature Descriptor and Vehicle Motion Model with Tracking-by-Detection for Pedestrian Active Safety,"IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
PAPER
Extended Feature Descriptor and Vehicle Motion Model with
Tracking-by-detection for Pedestrian Active Safety
Hirokatsu KATAOKAy;yya), Kimimasa TAMURAy, Nonmembers, Kenji IWATAyyy, Yutaka SATOHyyy, Members,
Yasuhiro MATSUIyyyy, Nonmember, and Yoshimitsu AOKIy, Member
SUMMARY
The percentage of pedestrian deaths in traf‌f‌ic accidents is
on the rise in Japan. In recent years, there have been calls for measures
to be introduced to protect vulnerable road users such as pedestrians and
yclists. In this study, a method to detect and track pedestrians using an
in-vehicle camera is presented. We improve the technology of detecting
pedestrians by using the highly accurate images obtained with a monocular
amera. In the detection step, we employ ECoHOG as the feature descrip-
tor; it accumulates the integrated gradient intensities. In the tracking step,
we apply an effective motion model using optical flow and the proposed
feature descriptor ECoHOG in a tracking-by-detection framework. These
techniques were verified using images captured on real roads.
key words: Pedestrian Active Safety, Tracking-by-detection, ECoHOG,
Particle Filter, Vehicle Motion Model"
2a067874fc1ec318b6d23f34bdb13ea4e95d5ca6,An Evaluation of Image-Based Verb Prediction Models against Human Eye-Tracking Data,"New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics
Proceedings of NAACL-HLT 2018, pages 758–763"
2ad2af8e3bdeb0302de07defc3fec9b387414a27,Don't Look Back: Post-hoc Category Detection via Sparse Reconstruction,"Don't Look Back: Post-hoc Category Detection via
Sparse Reconstruction
Hyun Oh Song
Mario Fritz
Tim Althoff
Trevor Darrell
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2012-16
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-16.html
January 24, 2012"
2a86bcdfb1d817ddb76ba202319f8267a36c0f62,PCL: Proposal Cluster Learning for Weakly Supervised Object Detection,"JOURNAL OF LATEX CLASS FILES
PCL: Proposal Cluster Learning for Weakly
Supervised Object Detection
Peng Tang, Xinggang Wang, Member, IEEE, Song Bai, Wei Shen, Xiang Bai, Senior Member, IEEE,
Wenyu Liu, Senior Member, IEEE, and Alan Yuille, Fellow, IEEE"
2a259fd1b4442a71cd127afac417a650ffc379d9,Human upper body posture recognition and upper limbs motion parameters estimation,"Human Upper Body Posture Recognition and Upper
Limbs Motion Parameters Estimation
Jun-Yang Huang1 Shih-Chung Hsu1and Chung-Lin Huang1,2
.  Department Of Electrical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan
.  Department of Applied Informatics and Multimedia, Asia Univeristy, Tai-Chung, Taiwan.
Email:"
2a0efb1c17fbe78470acf01e4601a75735a805cc,Illumination-Insensitive Face Recognition Using Symmetric Shape-from-Shading,"Illumination-InsensitiveFaceRecognitionUsing
SymmetricShape-from-Shading
WenYiZhao
RamaChellappa
CenterforAutomationResearch
UniversityofMaryland,CollegePark,MD-"
2a7e2cda27807d24b845f5b5080fb1296c302bfe,Personal Authentication Using Signature Recognition,"Personal Authentication Using Signature Recognition
Diana Kalenova
Department of Information Technology, Laboratory of Information Processing,
Lappeenranta University of Technology"
2a08147bf88041c6e0354e26762b4e4d65d5163f,Trimmed Event Recognition ( Moments in Time ) : Submission to ActivityNet Challenge 2018,"Trimmed Event Recognition (Moments in Time):
Submission to ActivityNet Challenge 2018
Dongyang Cai"
2a3227f54286d8a36736663781f194167f2b6582,Nonlinear Dimensionality Reduction for Discriminative Analytics of Multiple Datasets,"Nonlinear Dimensionality Reduction for
Discriminative Analytics of Multiple Datasets
Jia Chen, Gang Wang, Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE"
2ade545f25f5ba66295aeab3a89583e7cf6101b3,A Dataset for Airborne Maritime Surveillance Environments,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2775524, IEEE
Transactions on Circuits and Systems for Video Technology
A Dataset for Airborne Maritime Surveillance
Environments
Ricardo Ribeiro, Member, IEEE, Gonc¸alo Cruz, Jorge Matos, Student, IST,
nd Alexandre Bernardino, Member, IEEE,"
2aec012bb6dcaacd9d7a1e45bc5204fac7b63b3c,Robust Registration and Geometry Estimation from Unstructured Facial Scans,"Robust Registration and Geometry Estimation from Unstructured
Facial Scans
Maxim Bazik1 and Daniel Crispell2"
2ac31bc7a4dd0256166208dcc8d5dfa99347117e,A Window-Based Classifier for Automatic Video-Based Reidentification,"A Window-Based Classifier for Automatic
Video-Based Reidentification
Dario Figueira, Matteo Taiana, Jacinto C. Nascimento, Member, IEEE, and Alexandre Bernardino, Member, IEEE"
2ae139b247057c02cda352f6661f46f7feb38e45,Combining modality specific deep neural networks for emotion recognition in video,"Combining Modality Specific Deep Neural Networks for
Emotion Recognition in Video
Samira Ebrahimi Kahou1, Christopher Pal1, Xavier Bouthillier2, Pierre Froumenty1,
Ça˘glar Gülçehre2,∗ , Roland Memisevic2, Pascal Vincent2, Aaron Courville2, & Yoshua Bengio2
École Polytechique de Montréal, Université de Montréal, Montréal, Canada
Laboratoire d’Informatique des Systèmes Adaptatifs, Université de Montréal, Montréal, Canada
{samira.ebrahimi-kahou, christopher.pal,
{bouthilx, gulcehrc, memisevr, vincentp, courvila,"
2a86bc520586f611771c2052b50ac52239414dd2,CrowdHuman: A Benchmark for Detecting Human in a Crowd,"CrowdHuman: A Benchmark for Detecting Human in a Crowd
Shuai Shao∗ Zijian Zhao∗ Boxun Li
Tete Xiao Gang Yu Xiangyu Zhang
Jian Sun
{shaoshuai, zhaozijian, liboxun, xtt, yugang, zhangxiangyu,
Megvii Inc. (Face++)"
2a1deffc67ccb5f8ca5897ac3f31dac09af70f05,Robust Subspace Clustering via Tighter Rank Approximation,"Robust Subspace Clustering via Tighter Rank
Approximation
Zhao Kang
Computer Science Dept.
Southern Illinois University
Carbondale, IL, USA
Chong Peng
Computer Science Dept.
Southern Illinois University
Carbondale, IL, USA
Qiang Cheng
Computer Science Dept.
Southern Illinois University
Carbondale, IL, USA"
2a83a51c9596ed796da52bdac49ca30e4eb04345,Eclectic Genetic Algorithm for Holistic Face Recognition in L ∞ Space,"Eclectic Genetic Algorithm for Holistic Face
Recognition in L∞ Space
C. Villegas, J. Climent, C.R. Murillo, A. Otero, C.R. Villegas"
2a87f95e36938ca823b33c72a633d8d902d5cb86,xytocin Improves “Mind-Reading” in Humans,"PRIORITY COMMUNICATION
Oxytocin Improves “Mind-Reading” in Humans
Gregor Domes, Markus Heinrichs, Andre Michel, Christoph Berger, and Sabine C. Herpertz
Background: The ability to “read the mind” of other individuals, that is, to infer their mental state by interpreting subtle social cues, is
indispensable in human social interaction. The neuropeptide oxytocin plays a central role in social approach behavior in nonhuman
mammals.
Methods: In a double-blind, placebo-controlled, within-subject design, 30 healthy male volunteers were tested for their ability to infer
the affective mental state of others using the Reading the Mind in the Eyes Test (RMET) after intranasal administration of 24 IU oxytocin.
Results: Oxytocin improved performance on the RMET compared with placebo. This effect was pronounced for difficult compared with
easy items.
Conclusions: Our data suggest that oxytocin improves the ability to infer the mental state of others from social cues of the eye region.
Oxytocin might play a role in the pathogenesis of autism spectrum disorder, which is characterized by severe social impairment.
Key Words: Emotion, oxytocin, peptide, social cognition, theory of
T he ability to infer the internal state of another person to
dapt one’s own behavior is a cornerstone of all human
social interactions. Humans have to infer internal states
from external cues such as facial expressions in order to make
sense of or predict another person’s behavior, an ability that is
referred  to  as  “mind-reading”  (Siegal  and  Varley  2002;  Stone  et  al
998).  In  particular,  individuals  with  autism  have  distinct  diffi-"
2a6c7d5aa087233ff8a09bdaa34d5f76f3330a4f,A Survey of Efficient Regression of General-Activity Human Poses from Depth Images,"A Survey of Efficient Regression of General-Activity Hu-
man Poses from Depth Images
Wenye He
This paper presents a comprehensive review on regression-based method for human pose es-
timation. The problem of human pose estimation has been intensively studied and enabled
many application from entertainment to training. Traditional methods often rely on color im-
ge only which cannot completely ambiguity of joint’s 3D position, especially in the complex
ontext. With the popularity of depth sensors, the precision of 3D estimation has significant
improvement. In this paper, we give a detailed analysis of state-of-the-art on human pose
estimation, including depth image based and RGB-D based approaches. The experimental
results demonstrate their advantages and limitation for different scenarios.
Introduction
Human pose estimation from images has been studied for decades in computer vision. As recent
development in cameras and sensors, depth images receive a wide spread of notice from researchers
from body pose estimation 1 to 3D reconstruction 2. Girshick et al.1 present an approach to find the
joints position in human body from depth images. They address the problem of general-activity
pose estimation. Their regression-based approach sucessfully computes the joint positions even
with occlusion. Their method can be view as a new combination of two existing works, implicit
shape models3 and Hough forest4. The following sections cover related works, explanation on the
method from testing to training, and result and comparison."
2a2232f2972191a0606d588aa4f13c9f27d1972d,InstanceCut: From Edges to Instances with MultiCut,"InstanceCut: from Edges to Instances with MultiCut
Alexander Kirillov1 Evgeny Levinkov2 Bjoern Andres2 Bogdan Savchynskyy1 Carsten Rother1
TU Dresden, Dresden, Germany
MPI for Informatics, Saarbr¨ucken, Germany"
2a06341b40b3fd27483b2a8d8cbf86fddf45e423,Automatic generation of ground truth for the evaluation of obstacle detection and tracking techniques,"Automatic generation of ground truth for the evaluation of obstacle detection
nd tracking techniques
Hatem Hajri∗, Emmanuel Doucet∗†, Marc Revilloud∗, Lynda Halit∗, Benoit Lusetti∗,
Mohamed-Cherif Rahal∗
Automated Driving Research Team, Institut VEDECOM, Versailles, France
InnoCoRe Team, Valeo, Bobigny, France"
2acf319c5eac89cc9e0ed24633e4408dbd4a8a5b,The Effect of Distance Measures on the Recognition Rates of PCA and LDA Based Facial Recognition,"The Effect of Distance Measures on the Recognition Rates of PCA
nd LDA Based Facial Recognition
Philip Miller, Jamie Lyle
Digitial Image Processing
Clemson Universtiy
{pemille,"
2a40917ef436000b22bc7c6f35400440ef673d36,Learning clustered sub-spaces for sketch-based image retrieval,"Learning Clustered Sub-spaces for Sketch-based Image Retrieval
Koustav Ghosal Ameya Prabhu
Riddhiman Dasgupta
koustav.ghosal∗
meya.prabhu∗
riddhiman.dasgupta∗
Anoop M Namboodiri
noop†
Centre for Visual Information Technology, IIIT-Hyderabad, India"
2a56a51490f6ccfaf6fcbdf546a5515bef5203a1,"Attention, please!: Comparing Features for Measuring Audience Attention Towards Pervasive Displays","Attention, please! Comparing Features for Measuring
Audience Attention Towards Pervasive Displays
Florian Alta, Andreas Bullingb, Lukas Meckea, Daniel Buscheka
LMU Munich
Munich, Germany"
2aa362740ac9a2b304a74122da820e3829689842,"Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age","Past, Present, and Future of Simultaneous
Localization And Mapping: Towards the
Robust-Perception Age
Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
Davide Scaramuzza, Jos´e Neira, Ian Reid, John J. Leonard"
2ad0ee93d029e790ebb50574f403a09854b65b7e,Acquiring linear subspaces for face recognition under variable lighting,"Acquiring Linear Subspaces for Face
Recognition under Variable Lighting
Kuang-Chih Lee, Student Member, IEEE, Jeffrey Ho, Member, IEEE, and
David Kriegman, Senior Member, IEEE"
2a8aedea2031128868f1c6dd44329c5bb7afc419,A Convex Duality Framework for GANs,"A Convex Duality Framework for GANs
Farzan Farnia∗
David Tse∗"
2acf7e58f0a526b957be2099c10aab693f795973,Bosphorus Database for 3D Face Analysis,"Bosphorus Database for 3D Face Analysis
Arman Savran1, Neşe Alyüz2, Hamdi Dibeklioğlu2, Oya Çeliktutan1, Berk Gökberk3,
Bülent Sankur1, and Lale Akarun2
Boğaziçi University, Electrical and Electronics Engineering Department
Boğaziçi University, Computer Engineering Department
Philips Research, Eindhoven, The Netherlands"
2ab9c36e19090ed9ac5295b3704708bdce80462d,Zero-Shot Learning via Category-Specific Visual-Semantic Mapping and Label Refinement,"Zero-Shot Learning via Category-Specific
Visual-Semantic Mapping
Li Niu, Jianfei Cai, and Ashok Veeraraghavan"
2ac986ec18c3572ee4f922ba9a90ae374563491c,A New Approach of Human Segmentation from Photo Images,"International Journal of Scientific and Research Publications, Volume 5, Issue 1, January 2015
ISSN 2250-3153
A New Approach of Human Segmentation from Photo
Images
Ashwini Magar*, Prof.J.V.Shinde**
* Computer Department, Late G .N. Sapkal College Of Engineering, Savitribai Phule Pune University
** Computer Department, Late G .N .Sapkal College Of Engineering, Savitribai Phule Pune University"
2a6327a8bdbd31e2c08863b96c4f09245db8cab7,Targets ' facial width-to-height ratio biases pain judgments ☆,"Journal of Experimental Social Psychology 74 (2018) 56–64
Contents lists available at ScienceDirect
Journal of Experimental Social Psychology
journal homepage: www.elsevier.com/locate/jesp
Targets' facial width-to-height ratio biases pain judgments☆
Jason C. Deska⁎, Kurt Hugenberg
Miami University, 501 East High Street, Oxford, OH 45056, United States
A R T I C L E I N F O
A B S T R A C T
Keywords:
Facial width-to-height ratio
Pain judgments
Pain perception
The accurate perception of others' pain is important for both perceivers and targets. Yet, like other person
perception judgments, pain judgments are prone to biases. Although past work has begun detailing character-
istics of targets that can bias pain judgments (e.g., race, gender), the current work examines a novel source of
ias inherent to all targets: structural characteristics of the human face. Specifically, we present four studies
demonstrating that facial width-to-height ratio, a stable feature of all faces, biases pain judgments. Compared to
those with low facial width-to-height ratio, individuals with high facial width-to-height ratio are perceived as
experiencing less pain in otherwise identical situations (Studies 1, 2, & 3), and as needing less pain medication to"
2ff9618ea521df3c916abc88e7c85220d9f0ff06,Facial Tic Detection Using Computer Vision,"Facial Tic Detection Using Computer Vision
Christopher D. Leveille
Advisor: Prof. Aaron Cass
March 20, 2014"
2f587ab6694fdcfe6bd2977120ebeb758e28d77f,Coupled Generative Adversarial Nets,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Coupled Generative Adversarial Nets
Liu, M.-Y.; Tuzel, O.
TR2016-070
June 2016"
2f0c30d6970da9ee9cf957350d9fa1025a1becb4,Deformable Convolutional Networks,"Deformable Convolutional Networks
Jifeng Dai∗ Haozhi Qi∗,† Yuwen Xiong∗,† Yi Li∗,† Guodong Zhang∗,† Han Hu Yichen Wei
Microsoft Research Asia"
2fda461869f84a9298a0e93ef280f79b9fb76f94,OpenFace: An open source facial behavior analysis toolkit,"OpenFace: an open source facial behavior analysis toolkit
Tadas Baltruˇsaitis
Peter Robinson
Louis-Philippe Morency"
2f0d5cd2d25ea2f3add0139cf4b61f358435bab8,A New Effective System for Filtering Pornography Videos,"Tarek Abd El Hafeez / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2847-2852
A New Effective System for Filtering
Pornography Videos
Tarek Abd El-Hafeez
Department of Computer Science,
Faculty of Science, Minia University
El-Minia, Egypt"
2ffcd35d9b8867a42be23978079f5f24be8d3e35,Satellite based Image Processing using Data mining,"ISSN XXXX XXXX © 2018 IJESC
Research Article                                                                                                                            Volume 8 Issue No.6
Satellite based Image Processing using Data mining
E.Malleshwari1, S.Nirmal Kumar2, J.Dhinesh3
Professor1, Assistant Professor2, PG Scholar3
Department of Information Technology1, 2, Master of Computer Applications3
Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Avadi, Chennai, India"
2fa16dc0ee50550c1bf58c410912d48cddbc3554,Search Tracker: Human-Derived Object Tracking in the Wild Through Large-Scale Search and Retrieval,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2555718, IEEE
Transactions on Circuits and Systems for Video Technology
Search Tracker: Human-derived object tracking
in-the-wild through large-scale search and retrieval
Archith John Bency, Student Member, IEEE S. Karthikeyan,, Carter De Leo, Santhoshkumar Sunderrajan,
Member, IEEE and B. S. Manjunath, Fellow, IEEE"
2f7e9b45255c9029d2ae97bbb004d6072e70fa79,cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey,"Noname manuscript No.
(will be inserted by the editor)
vpaper.challenge in 2015
A review of CVPR2015 and DeepSurvey
Hirokatsu Kataoka · Yudai Miyashita · Tomoaki Yamabe · Soma
Shirakabe · Shin’ichi Sato · Hironori Hoshino · Ryo Kato · Kaori Abe ·
Takaaki Imanari · Naomichi Kobayashi · Shinichiro Morita · Akio
Nakamura
Received: date / Accepted: date"
2f04c7aaac3a884088be550d1be51b4a0b585a2e,"Robust, Real-Time 3D Tracking of Multiple Objects with Similar Appearances","Robust, Real-Time 3D Tracking of Multiple Objects with Similar Appearances
Taiki Sekii
Panasonic System Networks R&D Lab. Co., Ltd."
2f489bd9bfb61a7d7165a2f05c03377a00072477,Structured Semi-supervised Forest for Facial Landmarks Localization with Face Mask Reasoning,"JIA, YANG: STRUCTURED SEMI-SUPERVISED FOREST
Structured Semi-supervised Forest for
Facial Landmarks Localization with Face
Mask Reasoning
Department of Computer Science
The Univ. of Hong Kong, HK
School of EECS
Queen Mary Univ. of London, UK
Xuhui Jia1
Heng Yang2
Angran Lin1
Kwok-Ping Chan1
Ioannis Patras2"
2f33884d0612fcc3f7eed66e1a4acc229860d6b5,Survey on Spatio-Temporal View Invariant Human Pose Recovery,"Survey on Spatio-Temporal View
Invariant Human Pose Recovery
Xavier Perez-Sala, Email: a;c,
Sergio Escalera, Email: b;c and
Cecilio Angulo, Email: a
CETpD-UPC Technical Research Center for Dependency Care and Autonomous
Living, Universitat Polit`ecnica de Catalunya, Ne`apolis, Rambla de l’Exposici´o, 59-69,
Dept. Mathematics, Universitat de Barcelona, Gran Via de les Corts Catalanes 585,
08800 Vilanova i la Geltru, Spain
Computer Vision Center, Campus UAB, Edifici 0, 08193, Bellaterra, Spain
08007, Barcelona, Spain"
2f7452476910a7dbf6231b6b27aed67d9ed455d3,Seam carving for content-aware image resizing,"Seam Carving for Content-Aware Image Resizing
Shai Avidan
Mitsubishi Electric Research Labs
Ariel Shamir
The Interdisciplinary Center & MERL
Figure 1: A seam is a connected path of low energy pixels in an image. On the left is the original image with one horizontal and one vertical
seam. In the middle the energy function used in this example is shown (the magnitude of the gradient), along with the vertical and horizontal
path maps used to calculate the seams. By automatically carving out seams to reduce image size, and inserting seams to extend it, we achieve
ontent-aware resizing. The example on the top right shows our result of extending in one dimension and reducing in the other, compared to
standard scaling on the bottom right."
2f29b13fcf7a92a3cc438014068f11f9e45d62be,"AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups","AMIGOS: A dataset for Mood, personality and
ffect research on Individuals and GrOupS
Juan Abdon Miranda-Correa, Student Member, IEEE, Mojtaba Khomami Abadi, Student Member, IEEE,
Nicu Sebe, Senior Member, IEEE, and Ioannis Patras, Senior Member, IEEE"
2fe0555f2b92a81992247519cb8fdc047069e2b0,A Semantic World Model for Urban Search and Rescue Based on Heterogeneous Sensors,"This is a preprint of a paper which appeared in the Proceedings of
RoboCup 2010: Robot Soccer World Cup XIV
A Semantic World Model for Urban Search and
Rescue Based on Heterogeneous Sensors
Johannes Meyer2, Paul Schnitzspan1, Stefan Kohlbrecher1, Karen Petersen1,
Mykhaylo Andriluka1, Oliver Schwahn1, Uwe Klingauf2, Stefan Roth1,
Bernt Schiele1,3, and Oskar von Stryk1
Department of Computer Science, TU Darmstadt, Germany
Department of Mechanical Engineering, TU Darmstadt, Germany
MPI Informatics, Saarbr¨ucken, Germany"
2f23f7d08c7b8670289cfedd1e571f44a3bace8b,Contextual Information and Covariance Descriptors for People Surveillance: An Application for Safety of Construction Workers,"Hindawi Publishing Corporation
EURASIP Journal on Image and Video Processing
Volume 2011, Article ID 684819, 16 pages
doi:10.1155/2011/684819
Research Article
Contextual Information and Covariance Descriptors for People
Surveillance: An Application for Safety of Construction Workers
Giovanni Gualdi,1 Andrea Prati,2 and Rita Cucchiara1
DII, University of Modena and Reggio Emilia, 41122 Modena, Italy
DISMI, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
Correspondence should be addressed to Andrea Prati,
Received 30 April 2010; Revised 7 October 2010; Accepted 10 December 2010
Academic Editor: Luigi Di Stefano
Copyright © 2011 Giovanni Gualdi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
ited.
In computer science, contextual information can be used both to reduce computations and to increase accuracy. This paper
discusses how it can be exploited for people surveillance in very cluttered environments in terms of perspective (i.e., weak scene
alibration) and appearance of the objects of interest (i.e., relevance feedback on the training of a classifier). These techniques are
pplied to a pedestrian detector that uses a LogitBoost classifier, appropriately modified to work with covariance descriptors which"
2f59f28a1ca3130d413e8e8b59fb30d50ac020e2,Children Gender Recognition Under Unconstrained Conditions Based on Contextual Information,"Children Gender Recognition Under Unconstrained
Conditions Based on Contextual Information
Riccardo Satta, Javier Galbally and Laurent Beslay
Joint Research Centre, European Commission, Ispra, Italy
Email:"
2f43bfedb8cffc9e44de9f95db80b26395a29cc8,Generalized Hadamard-Product Fusion Operators for Visual Question Answering,"Generalized Hadamard-Product Fusion Operators
for Visual Question Answering
Brendan Duke∗†, Graham W. Taylor∗†‡
School of Engineering, University of Guelph
Vector Institute for Artificial Intelligence
Canadian Institute for Advanced Research"
2f78e471d2ec66057b7b718fab8bfd8e5183d8f4,An Investigation of a New Social Networks Contact Suggestion Based on Face Recognition Algorithm,"SOFTWARE ENGINEERING
VOLUME: 14 | NUMBER: 5 | 2016 | DECEMBER
An Investigation of a New Social Networks
Contact Suggestion Based on Face Recognition
Algorithm
Ivan ZELINKA1,2, Petr SALOUN 2, Jakub STONAWSKI 2, Adam ONDREJKA2
Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics
Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman
Department of Computer Science, Faculty of Electrical Engineering and Computer Science,
VSB–Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
DOI: 10.15598/aeee.v14i5.1116"
2f88d3189723669f957d83ad542ac5c2341c37a5,Attribute-correlated local regions for deep relative attributes learning,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Attribute-correlatedlocalregionsfordeeprelativeattributeslearningFenZhangXiangweiKongZeJiaFenZhang,XiangweiKong,ZeJia,“Attribute-correlatedlocalregionsfordeeprelativeattributeslearning,”J.Electron.Imaging27(4),043021(2018),doi:10.1117/1.JEI.27.4.043021."
2fda164863a06a92d3a910b96eef927269aeb730,Names and faces in the news,"Names and Faces in the News
Tamara L. Berg, Alexander C. Berg, Jaety Edwards, Michael Maire,
Ryan White, Yee-Whye Teh, Erik Learned-Miller and D.A. Forsyth
Computer Science Division
U.C. Berkeley
Berkeley, CA 94720"
2f8ef26bfecaaa102a55b752860dbb92f1a11dc6,A Graph Based Approach to Speaker Retrieval in Talk Show Videos with Transcript-Based Supervision,"A Graph Based Approach to Speaker Retrieval in Talk
Show Videos with Transcript-Based Supervision
Yina Han  1, Guizhong Liu, Hichem Sahbi, Gérard Chollet"
2fd9ecb40df6c7cd4f27c047223a1e45aae1bb95,Feature-based affine-invariant localization of faces,"Feature-based affine-invariant localization of
faces
M. Hamouz, J. Kittler, J.-K. Kamarainen, P. Paalanen, H. K¨alvi¨ainen, J. Matas"
2fdb3576715829aa9bbaf74825236bbb71d06f1a,Where-and-When to Look: Deep Siamese Attention Networks for Video-based Person Re-identification,"Where-and-When to Look: Deep Siamese Attention
Networks for Video-based Person Re-identification
Lin Wu, Yang Wang, Junbin Gao, Xue Li"
2f3f4e0c8a9c63e714a10a6711c67f5e84e4c7c1,IoT Based Embedded Smart Lock Control System,"ISSN XXXX XXXX © 2016 IJESC
Research Article                                                                                                             Volume 6 Issue No. 11
IoT Based Embedded Smart Lock Control System
Rohith R1, J. Nageswara Reddy2, K. Ravi Kiran3
M.Tech, Embedded Systems, CM RCET, Hyderabad, India 1
Assistant Professor, Depart ment of ECE, CM RCET, Hyderabad, India2
Assistant Professor, Depart ment, of ECE, CM RCET, Hyderabad, India3
INTRODUCTION
Abstrac t:
Smart ho me security and re mote monitoring have become vita l and indispensable in recent times, and with the advent of new con cepts
like  Internet of Things and development of advanced authentication and security technologies, the need for smarter security s ystems
has  only  been  growing.  The  design  and  development  of  an  intelligent  web -based  door  lock  control  system  using  face  recognition
technology, for authentication, re mote  monitoring of visitors and re mote control of s mart door loc k has been reported in th is paper.
This system uses Haar-like  features for face detection and Local Binary Pattern Histogram (LBPH) fo r face recognition. The  system
lso includes a web-based remote monitoring, an authentication module, and a bare-bones embedded IoT server, which transmits the
live pictures of the visitors via email a long with an SMS notification,  and the owner can then remotely control the lock by responding
to  the  email  with  predefined  security  codes  to  unlock  the door.  This  system  finds  a wide application  in  sma rt  homes  where  the
physical presence of the owner at all times is not possible, and where a remote authentication and control  is desired. The system has
een  imple mented  and  tested  using  the  Raspberry  Pi  2  board,  Python  along  with  OpenCV  are   used  to  program  the  various  face
recognition and control modules."
2f000034f040f6a23c756671477f5f573514af8a,Learning Transferable Distance Functions for Human Action Recognition and Detection,"-)41/ 64)5.-4)*- ,156)+- .7+615
.4 07) )+61 4-+/161 ),
,-6-+61
9AEC ;=C
*-C 5KJDA=IJ 7ELAHIEJO +DE=  %
= 6DAIEI E F=HJE= BKBEAJ
B JDA HAGKEHAAJI BH JDA B
=IJAH B 5?EA?A
E JDA 5?D
+FKJEC 5?EA?A
? 9AEC ;=C
51 .4)5-4 718-4516;
5FHEC
) HECDJI 0MALAH E MEJD JDA
+FOHECDJ )?J B JDEI MH =O >A MEJDKJ
=KJDHE=JE JDA BH .=EH ,A=EC 6DAHABHA
B JDEI MH BH JDA FKHFIAI B FHEL=JA
HAIA=H?D ?HEJE?EI HALEAM AMI HAFHJEC EI EAO J
>A E MEJD JDA =M F=HJE?K=HO EB =FFHFHE=JAO"
2fdc469096f72533726964260c80b4c14ae62fab,A Kernel Maximum uncertainty Discriminant Analysis and its Application to Face Recognition,"A KERNEL MAXIMUM UNCERTAINTY DISCRIMINANT
ANALYSIS AND ITS APPLICATION TO FACE RECOGNITION
Department of Electrical Engineering, Centro Universitario da FEI, FEI, Sao Paulo, Brazil
Carlos Eduardo Thomaz
Gilson Antonio Giraldi
Department of Computer Science, National Laboratory for Scientific Computing, LNCC, Rio de Janeiro, Brazil
Keywords:"
2fce767ad830e0203d62ce30bbe75213b959d19c,Histogram of Log-Gabor Magnitude Patterns for face recognition,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
School of Information and Communication Engineering,
{yijun,
Jun Yi†, Fei Su†‡
. INTRODUCTION"
2f17f6c460e02bd105dcbf14c9b73f34c5fb59bd,Robust Face Recognition Using the Deep C2D-CNN Model Based on Decision-Level Fusion,"Article
Robust Face Recognition Using the Deep C2D-CNN
Model Based on Decision-Level Fusion
Jing Li 1,2,†, Tao Qiu 3,†, Chang Wen 3,*, Kai Xie 1,2 and Fang-Qing Wen 1,2
School of Electronic and Information, Yangtze University, Jingzhou 434023, China;
(J.L.); (K.X.); (F-Q.W.)
National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University,
Jingzhou 434023, China
School of Computer Science, Yangtze University, Jingzhou 434023, China;
* Correspondence: Tel.: +86-136-9731-5482
These authors contributed equally to this work.
Received: 20 May 2018; Accepted: 25 June 2018; Published: 28 June 2018"
2f184c6e2c31d23ef083c881de36b9b9b6997ce9,Polichotomies on Imbalanced Domains by One-per-Class Compensated Reconstruction Rule,"Polichotomies on Imbalanced Domains
y One-per-Class Compensated Reconstruction Rule
Roberto D’Ambrosio and Paolo Soda
Integrated Research Centre, Universit´a Campus Bio-Medico of Rome, Rome, Italy"
2fa1629d75a03b950c56bf9b3430b2983abd7881,Learning geometrical transforms between multi camera views using Canonical Correlation Analysis,"CONRAD, MESTER: LEARNING GEOMETRICAL TRANSFORMS USING CCA
Learning geometrical transforms between
multi camera views using Canonical
Correlation Analysis
Christian Conrad
Rudolf Mester
Visual Sensorics and Information
Processing Lab, Goethe University
Frankfurt am Main, Germany
Computer Vision Laboratory
Electr. Eng. Dept. (ISY)
Linköping University, Sweden"
2f529605ed776d4fbeac2d73054247b495504ac7,Person Re-identification for Real-world Surveillance Systems,"Person Re-identification for Real-world
Surveillance Systems
Furqan M. Khan and Fran¸cois Br´emond
INRIA Sophia Antipolis - M´editerran´ee
004 Route des Lucioles, Sophia Antipolis
{furqan.khan |"
2f3125bf303bca19d9cdc9ffe1de2aacf7a23023,In-Bed Pose Estimation: Deep Learning with Shallow Dataset,"JOURNAL OF , VOL. , NO. , MONTH YEAR
In-Bed Pose Estimation:
Deep Learning with Shallow Dataset
Shuangjun Liu, Yu Yin, and Sarah Ostadabbas"
2f48f1cb1cfef964fa70d7868b87d81455e7be2e,A new image centrality descriptor for wrinkle frame detection in WCE videos,"MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN
A new image centrality descriptor for wrinkle frame detection in
WCE videos.
Santi Segu´ı1,2, Ekaterina Zaytseva1,2, Michal Drozdzal1,2, Carolina Malagelada3,
Fernando Azpiroz3, Petia Radeva1,2 and Jordi Vitri`a1,2
Computer Vision Center (CVC), Universitat Aut`onoma de Barcelona, Barcelona, Spain
Dept. Matem`atica Aplicada i An`alisis, Universitat de Barcelona, Barcelona, Spain
Digestive System Research Unit, Hospital Vall dHebron, Barcelona, Spain"
2fc15f80080b4317cad60ad645300b49afddb19e,Low cognitive load strengthens distractor interference while high load attenuates when cognitive load and distractor possess similar visual characteristics.,"Atten Percept Psychophys
DOI 10.3758/s13414-015-0866-9
Low cognitive load strengthens distractor interference while high
load attenuates when cognitive load and distractor possess similar
visual characteristics
Takehiro Minamoto & Zach Shipstead & Naoyuki Osaka &
Randall W. Engle
# The Psychonomic Society, Inc. 2015"
2fc2250d843326f3eefab1941e5a6e54eef239b3,Appearance Based Facial Recognition System Using Dhmm with Linear Discriminant Analysis,"Daffodil International University
Institutional Repository
DIU Journal of Science and Technology
Volume 10, Issue 1-2, July 2015
016-06-18
Appearance Based Facial Recognition
System Using Dhmm with Linear
Discriminant Analysis
Islam, Md. Rabiul
http://hdl.handle.net/20.500.11948/1487
Downloaded from  http://dspace.library.daffodilvarsity.edu.bd, Copyright Daffodil International University Library"
2f13dd8c82f8efb25057de1517746373e05b04c4,Evaluation of state-of-the-art algorithms for remote face recognition,"EVALUATION OF STATE-OF-THE-ART ALGORITHMS FOR REMOTE FACE
RECOGNITION
Jie Ni and Rama Chellappa
Department of Electrical and Computer Engineering and Center for Automation Research, University
of Maryland, College Park, MD 20742, USA"
2fa241edb56734539c3b3487eda159e0b3e0f31c,Kinematic Pose Rectification for Performance Analysis and Retrieval in Sports,"Kinematic Pose Rectification for Performance Analysis and Retrieval in Sports
Dan Zecha, Moritz Einfalt, Christian Eggert and Rainer Lienhart
Multimedia Computing and Computer Vision Lab
University of Augsburg"
2f77c0908716b0febfda19ff6a0e2970c23af440,A face recognition system dealing with expression variant faces,"A face recognition system dealing with expression variant faces
Stefano Arca∗, Paola Campadelli, Raffaella Lanzarotti, Giuseppe Lipori
Dipartimento di Scienze dell’Informazione
Universit`a degli Studi di Milano
Via Comelico, 39/41 20135 Milano, Italy"
2f02328dc09396e37e159141c5e21bef3e6ff06e,Combining face detection and people tracking in video sequences,"Author manuscript, published in ""The 3rd International Conference on Imaging for Crime Detection and Prevention - ICDP09,
Kingston Upon Thames (London) : Royaume-Uni (2009)"""
2f3a67394deb32f265bcff9daf2c829d4be36336,Improving Visual Relationship Detection Using Semantic Modeling of Scene Descriptions,"Improving Visual Relationship Detection using
Semantic Modeling of Scene Descriptions
Stephan Baier1, Yunpu Ma1,2, and Volker Tresp1,2
Ludwig Maximilian University, 80538 Munich, Germany
Siemens AG, Corporate Technology, Munich, Germany"
2fa1fc116731b2b5bb97f06d2ac494cb2b2fe475,A novel approach to personal photo album representation and management,"A novel approach to personal photo album representation
nd management
Edoardo Ardizzone, Marco La Cascia, and Filippo Vella
Universit`a di Palermo - Dipartimento di Ingegneria Informatica
Viale delle Scienze, 90128, Palermo, Italy"
2f882ceaaf110046e63123b495212d7d4e99f33d,High Frequency Component Compensation based Super-Resolution Algorithm for Face Video Enhancement,"High Frequency Component Compensation based Super-resolution
Algorithm for Face Video Enhancement
Junwen Wu, Mohan Trivedi, Bhaskar Rao
CVRR Lab, UC San Diego, La Jolla, CA 92093, USA"
2f349ec19443523bc6c1e4b15fb677b1c188e253,Finding Time Series Motifs in Disk-Resident Data,"Finding Time Series Motifs in Disk-Resident Data
Abdullah Mueen, Eamonn Keogh
Nima Bigdely-Shamlo
Department of Computer Science and Engineering
University of California, Riverside, USA
{mueen,"
2f95340b01cfa48b867f336185e89acfedfa4d92,Face expression recognition with a 2-channel Convolutional Neural Network,"Face Expression Recognition with a 2-Channel
Convolutional Neural Network
Dennis Hamester, Pablo Barros, Stefan Wermter
University of Hamburg — Department of Informatics
Vogt-K¨olln-Straße 30, 22527 Hamburg, Germany
http://www.informatik.uni-hamburg.de/WTM/"
2fa3ad0329386bf9f55eb2c011e031ca71a11299,Weakly-supervised Semantic Parsing with Abstract Examples,
2fa4f66a7c3846a189ea1f962592d7c20d9683b1,Object Detection with YOLO on Artwork Dataset,"Object Detection with YOLO on Artwork Dataset
Yihui He∗
Computer Science Department, Xi’an Jiaotong University"
2faa09413162b0a7629db93fbb27eda5aeac54ca,Quantifying how lighting and focus affect face recognition performance,"NISTIR 7674
Quantifying How Lighting and Focus
Affect Face Recognition Performance
Phillips, P. J.
Beveridge, J. R.
Draper, B.
Bolme, D.
Givens, G. H.
Lui, Y. M."
433bb1eaa3751519c2e5f17f47f8532322abbe6d,Face Recognition,
434ad689f9f8bc034fa8489f80f851686b8b449e,Regularized Multi-Concept MIL for weakly-supervised facial behavior categorization,"A.RUIZ, X.BINEFA, J.VAN DE WEIJER: RMC-MIL FACIAL BEHAVIOR CATEGORIZATION 1
Regularized Multi-Concept MIL for
weakly-supervised facial behavior
ategorization
Adria Ruiz1
Joost Van de Weijer2
Xavier Binefa1
Universitat Pompeu Fabra (DTIC)
Barcelona, Spain
Centre de Visió per Computador
Barcelona, Spain"
43bf6489abd63992b82f2008b4417a1638955f0c,Principal Angles Separate Subject Illumination Spaces in YDB and CMU-PIE,"Short Papers___________________________________________________________________________________________________
Principal Angles Separate Subject
Illumination Spaces in YDB and CMU-PIE
J. Ross Beveridge, Member, IEEE,
Bruce A. Draper, Member, IEEE,
Jen-Mei Chang, Michael Kirby,
Holger Kley, and
Chris Peterson"
43bb20ccfda7b111850743a80a5929792cb031f0,Discrimination of Computer Generated versus Natural Human Faces,"PhD Dissertation
International Doctorate School in Information and
Communication Technologies
DISI - University of Trento
Discrimination of Computer Generated
versus Natural Human Faces
Duc-Tien Dang-Nguyen
Advisor:
Prof. Giulia Boato
Universit`a degli Studi di Trento
Co-Advisor:
Prof. Francesco G. B. De Natale
Universit`a degli Studi di Trento
February 2014"
439ac8edfa1e7cbc65474cab544a5b8c4c65d5db,Face authentication with undercontrolled pose and illumination,"SIViP (2011) 5:401–413
DOI 10.1007/s11760-011-0244-6
ORIGINAL PAPER
Face authentication with undercontrolled pose and illumination
Maria De Marsico · Michele Nappi · Daniel Riccio
Received: 15 September 2010 / Revised: 14 December 2010 / Accepted: 17 February 2011 / Published online: 7 August 2011
© Springer-Verlag London Limited 2011"
432be99dde7d93001044048501c72c70e4ea2927,People and Mobile Robot Classification Through Spatio-Temporal Analysis of Optical Flow,"June 3, 2015
3:29 WSPC/INSTRUCTION FILE
People and mobile robot classification through spatio-temporal analysis
of optical flow
Plinio Moreno and Dario Figueira and Alexandre Bernardino and Jos´e Santos-Victor
Institute for Systems and Robotics (ISR/IST)
LARSyS, Instituto Superior T´ecnico
Universidade de Lisboa
{plinio, dfigueira, alex,
Lisboa, Portugal
The goal of this work is to distinguish between humans and robots in a mixed human-
robot environment. We analyze the spatio-temporal patterns of optical flow-based fea-
tures along several frames. We consider the Histogram of Optical Flow (HOF) and the
Motion Boundary Histogram (MBH) features, which have shown good results on people
detection. The spatio-temporal patterns are composed by groups of feature components
that have similar values on previous frames. The groups of features are fed into the
FuzzyBoost algorithm, which at each round selects the spatio-temporal pattern (i.e.
feature set) having the lowest classification error. The search for patterns is guided by
grouping feature dimensions, considering three algorithms: (a) similarity of weights from
dimensionality reduction matrices, (b) Boost Feature Subset Selection (BFSS) and (c)"
43f6953804964037ff91a4f45d5b5d2f8edfe4d5,Multi-feature fusion in advanced robotics applications,"Multi-Feature Fusion in Advanced Robotics Applications
Zahid Riaz, Christoph Mayer, Michael Beetz,
Bernd Radig
Institut für Informatik
Technische Universität München
D-85748 Garching, Germany"
430482d92007a3eec7009a2603aa5c1f2e63f661,Synaesthesia: mechanisms and broader traits,"Synaesthesia: mechanisms and broader traits.
Agnieszka Barbara Janik
Department of Psychology
Goldsmiths University of London
PhD in Psychology
I, Agnieszka Barbara Janik, confirm that the work presented in this thesis is my own.
Where information has been derived from other sources, I confirm that this has been
indicated in the thesis."
43a2c871450ba4d8888e8692aa98cb10e861ea71,Learning Generative ConvNet with Continuous Latent Factors by Alternating Back-Propagation,"Alternating Back-Propagation for Generator Network
Tian Han †, Yang Lu †, Song-Chun Zhu, Ying Nian Wu
Department of Statistics, University of California, Los Angeles, USA"
439ec47725ae4a3660e509d32828599a495559bf,Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation and Evaluation,"Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation
nd Evaluation"
43de246e9cc197623e27ab41a69530a8d121c77e,Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally,"Barrett et al. Molecular Autism  (2017) 8:42
DOI 10.1186/s13229-017-0160-x
R ES EAR CH
Developmental disruption of amygdala
transcriptome and socioemotional behavior
in rats exposed to valproic acid prenatally
Catherine E. Barrett 1,2*, Thomas M. Hennessey1,2, Katelyn M. Gordon1,2, Steve J. Ryan1,2, Morgan L. McNair1,2,
Kerry J. Ressler3 and Donald G. Rainnie1,2
Open Access"
43c76cf17767a43a345cd1a8d7c08d18578b53ec,Boosting Color Feature Selection for Color Face Recognition,"Accepted Manuscript for Publication in IEEE Transaction on Image Processing
Boosting Color Feature Selection for Color Face Recognition
Jae Young Choi, Student Member, IEEE, Yong Man Ro, Senior Member, IEEE, and
Konstantinos N. Plataniotis, Senior Member, IEEE"
43fbe350681185ec9a18991dbcb19d694ce4f245,The Perspective Face Shape Ambiguity,"The Perspective Face Shape Ambiguity
William A. P. Smith"
432326edbc598774315a0def91d1fc224d732922,Classification of Diseased Arecanut based on Texture Features,"International Journal of Computer Applications (0975 – 8887)
Recent Advances in Information Technology, 2014
Classification of Diseased Arecanut based on Texture
Suresha M
Department of Computer
Science
Kuvempu University
Karnataka, India
Features
Ajit Danti
Department of MCA
JNN College of Engineering
Karnataka, India
S. K Narasimhamurthy
Department of Mathematics
Kuvempu University
Karnataka, India"
434bf475addfb580707208618f99c8be0c55cf95,DeXpression: Deep Convolutional Neural Network for Expression Recognition,"UNDER CONSIDERATION FOR PUBLICATION IN PATTERN RECOGNITION LETTERS
DeXpression: Deep Convolutional Neural
Network for Expression Recognition
Peter Burkert∗‡, Felix Trier∗‡, Muhammad Zeshan Afzal†‡,
Andreas Dengel†‡ and Marcus Liwicki‡
German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany"
43836d69f00275ba2f3d135f0ca9cf88d1209a87,Effective hyperparameter optimization using Nelder-Mead method in deep learning,"Ozaki et al. IPSJ Transactions on Computer Vision and
Applications  (2017) 9:20
DOI 10.1186/s41074-017-0030-7
IPSJ Transactions on Computer
Vision and Applications
RESEARCH PAPER
Open Access
Effective hyperparameter optimization
using Nelder-Mead method in deep learning
Yoshihiko Ozaki1,2, Masaki Yano1,2 and Masaki Onishi1,2*"
43e11904ca961006be79f650025b5d8fbac9913f,Unsupervised Deep Video Hashing with Balanced Rotation,"Unsupervised Deep Video Hashing with Balanced Rotation
IJCAI Anonymous Submission 2367"
4362368dae29cc66a47114d5ffeaf0534bf0159c,"Performance Analysis of FDA Based Face Recognition Using Correlation, ANN and SVM","UACEE International Journal of Artificial Intelligence and Neural Networks ISSN:- 2250-3749 (online)
Performance Analysis of FDA Based Face
Recognition Using Correlation, ANN and SVM
Mahesh Goyani
Akash Dhorajiya
Ronak Paun
Department of Computer Engineering
Department of Computer Engineering
Department of Computer Engineering
GCET, Sardar Patel University
GCET, Sardar Patel University
GCET, Sardar Patel University
Anand, INDIA
Anand, INDIA
Anand, INDIA
e- mail :
e- mail :
e- mail :"
4350bb360797a4ade4faf616ed2ac8e27315968e,Edge Suppression by Gradient Field Transformation Using Cross-Projection Tensors,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Edge Suppression by Gradient Field
Transformation using Cross-Projection
Tensors
Amit Agrawal, Ramesh Raskar, Rama Chellappa
TR2006-058
June 2006"
43c1bf9bd7b18c9603324c328f0f2696278c5327,Tracking Multiple Players using a Single Camera,"Noname manuscript No.
(will be inserted by the editor)
Tracking Multiple Players using a Single Camera
Horesh BenShitrit · Mirko Raca · Fran¸cois
Fleuret · Pascal Fua
Received: date / Accepted: date"
439da29cf857151f386e6af488b2d60c098c4fd8,Person Authentication Using Color Face Recognition,"Kiran Davakhar et al. Int. Journal of Engineering Research and Applications               www.ijera.com
Vol. 3, Issue 5, Sep-Oct 2013, pp.178-182
RESEARCH ARTICLE                                                                               OPEN ACCESS
Person Authentication Using Color Face Recognition
Kiran Davakhar1, S. B. Mule2, Achala Deshmukh3
(Department of E&TC, Sinhgad COE, Vadgaon, Pune, Pune University, India)
(Department of E&TC, Sinhgad COE, Vadgaon, Pune, Pune University, India)
(Department of E&TC, Sinhgad COE, Vadgaon, Pune, Pune University, India)"
43476cbf2a109f8381b398e7a1ddd794b29a9a16,A Practical Transfer Learning Algorithm for Face Verification,"A Practical Transfer Learning Algorithm for Face Verification
Xudong Cao
David Wipf
Fang Wen
Genquan Duan
Jian Sun"
4353d0dcaf450743e9eddd2aeedee4d01a1be78b,Learning Discriminative LBP-Histogram Bins for Facial Expression Recognition,"Learning Discriminative LBP-Histogram Bins
for Facial Expression Recognition
Caifeng Shan and Tommaso Gritti
Philips Research, High Tech Campus 36, Eindhoven 5656 AE, The Netherlands
{caifeng.shan,"
4335d53e763b2caf20f06928cd420ae09e5041ad,Discrete-continuous optimization for multi-target tracking,"Discrete-Continuous Optimization for Multi-Target Tracking
Anton Andriyenko1
Konrad Schindler2
Stefan Roth1
Department of Computer Science, TU Darmstadt
Photogrammetry and Remote Sensing Group, ETH Z¨urich"
43d073d3fdc22f0d74793fdac47ff56b66c95990,Online Localization and Prediction of Actions and Interactions,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Online Localization and Prediction of
Actions and Interactions
Khurram Soomro, Member, IEEE, Haroon Idrees, Member, IEEE, and Mubarak Shah, Fellow, IEEE"
43d4927f5113c5e376ab05d41e33063a6d06d727,Pedestrian Detection: Exploring Virtual Worlds,"Pedestrian Detection: Exploring Virtual Worlds
Javier Mar´ın
Computer Vision Center,
Universitat Aut`onoma de Barcelona, Spain
David Ger´onimo, David V´azquez, Antonio M. L´opez
Computer Vision Center and Computer Science Department,
Universitat Aut`onoma de Barcelona, Spain
Introduction
The objective of advanced driver assistance systems (ADAS) is to improve traffic safety by assisting the driver
through warnings and by even automatically taking active countermeasures. Two examples of successfully com-
mercialised ADAS are lane departure warnings and adaptive cruise control, which make use of either active
(e.g., radar) or passive (e.g., cameras) sensors to keep the vehicle on the lane and maintain a safe distance from
the preceding vehicle, respectively. One of the most complex safety systems are pedestrian protection systems
(PPSs) (Bishop, 2005; Gandhi & Trivedi, 2007; Enzweiler & Gavrila, 2009; Ger´onimo et al., 2010), which are
specialised in avoiding vehicle-to-pedestrian collisions. In fact, this kind of accidents results in approximately
50000 injuries and 7000 killed pedestrians every year just in the European Union (UN-ECE, 2007). Similar
statistics apply to the United States, while underdeveloped countries are increasing theirs year after year. In the
ase of PPSs, the most promising approaches make use of images as main source of information, as can be seen
in the large amount of proposals exploiting them (Ger´onimo et al., 2010). Hence, the core of a PPS is a forward
facing camera that acquires images and processes them using Computer Vision techniques. In fact, the Computer"
434627a03d4433b0df03058724524c3ac1c07478,Online Multi-Target Tracking With Unified Handling of Complex Scenarios,"IEEE TRANSANCTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, NOVEMBER 2014
Online Multi-Target Tracking
with Unified Handling of Complex Scenarios
Huaizu Jiang, Jinjun Wang, Yihong Gong, Senior Member, IEEE
Na Rong, Zhenhua Chai, and Nanning Zheng, Fellow, IEEE"
431fc5903ab4853820eac6614073c5b7aec0ac31,Semantic-visual concept relatedness and co-occurrences for image retrieval,"978-1-4673-2533-2/12/$26.00 ©2012 IEEE
ICIP 2012"
434fe2cca3321c08ef30a0076864298cf608e0d5,Multiple Human Tracking in High-Density Crowds,"Multiple Human Tracking in High-Density Crowds
Irshad Ali1, Matthew N. Dailey 2
Computer Science and Information Management Program, Asian Institute of Technology
(AIT), Pathumthani, Thailand"
43cb50f669a0d492256d11c6cc4128ba0ce79a3e,Per-Pixel Feedback for improving Semantic Segmentation,"Indian Institute of Technology Roorkee
Department of Mathematics
Per-Pixel Feedback for improving Semantic
Segmentation
Aditya Ganeshan
Submitted in part fulfilment of the requirements for the degree of
Integrated Masters of Science in Applied Mathematics, May 2017"
434a0aebf3522638d75614b0de1f0c2dcc1b19f1,Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers,"Visual Analytics in Deep Learning:
An Interrogative Survey for the Next Frontiers
Fred Hohman, Member, IEEE, Minsuk Kahng, Member, IEEE, Robert Pienta, Member, IEEE,
nd Duen Horng Chau, Member, IEEE"
43b8b5eeb4869372ef896ca2d1e6010552cdc4d4,Large-scale Supervised Hierarchical Feature Learning for Face Recognition,"Large-scale Supervised Hierarchical Feature Learning for Face Recognition
Jianguo Li, Yurong Chen
Intel Labs China"
43ae4867d058453e9abce760ff0f9427789bab3a,Graph Embedded Nonparametric Mutual Information for Supervised Dimensionality Reduction,"Graph Embedded Nonparametric Mutual
Information For Supervised
Dimensionality Reduction
Dimitrios Bouzas, Nikolaos Arvanitopoulos, Student Member, IEEE, and Anastasios Tefas, Member, IEEE"
438b88fe40a6f9b5dcf08e64e27b2719940995e0,Building a classification cascade for visual identification from one example,"Building a Classi(cid:2)cation Cascade for Visual Identi(cid:2)cation from One Example
Andras Ferencz
Erik G. Learned-Miller
Computer Science, U.C. Berkeley
Computer Science, UMass Amherst
Jitendra Malik
Computer Science, U.C. Berkeley"
43e3cd896d4dada4114a8961b98ae9f6d6ff9401,Image2speech: Automatically generating audio descriptions of images,"Image2speech: Automatically generating audio descriptions of images
Mark Hasegawa-Johnson1, Alan Black2, Lucas Ondel3, Odette Scharenborg4, Francesco Ciannella2
. University of Illinois, Urbana, IL USA 2. Carnegie-Mellon University, Pittsburgh, PA USA
. Brno University of Technology, Brno, Czech Republic
. Centre for Language Studies, Radboud University, Nijmegen, Netherlands"
43fb9efa79178cb6f481387b7c6e9b0ca3761da8,Mixture of parts revisited: Expressive part interactions for Pose Estimation,"Mixture of Parts Revisited: Expressive Part Interactions for Pose Estimation
Anoop R Katti
IIT Madras
Chennai, India
Anurag Mittal
IIT Madras
Chennai, India"
4332314ac4ab56153f68a9e55e92b3659e93a5b4,Learning Collective Crowd Behaviors with Dynamic Pedestrian-Agents,"Int J Comput Vis
DOI 10.1007/s11263-014-0735-3
Learning Collective Crowd Behaviors with Dynamic
Pedestrian-Agents
Bolei Zhou · Xiaoou Tang · Xiaogang Wang
Received: 9 September 2013 / Accepted: 24 May 2014
© Springer Science+Business Media New York 2014"
43ed518e466ff13118385f4e5d039ae4d1c000fb,Classification of Occluded Objects Using Fast Recurrent Processing,"Classification of Occluded Objects using Fast Recurrent
Processing
Ozgur Yilmaza,∗
Turgut Ozal University, Department of Computer Engineering, Ankara Turkey"
43d7d0d0d0e2d6cf5355e60c4fe5b715f0a1101a,Playlist Generation using Facial Expression Analysis and Task Extraction,"Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/05/2018 16:53:32
U M CS"
88e3aefe454e72388bbbe7dfa0b74fcfc52032f0,Weighted Gradient Feature Extraction Based on Multiscale Sub-Blocks for 3D Facial Recognition in Bimodal Images,"Article
Weighted Gradient Feature Extraction Based on
Multiscale Sub-Blocks for 3D Facial Recognition in
Bimodal Images
Yingchun Guo *, Ruoyu Wei and Yi Liu *
School of Computer Science and Engineering, Hebei University of Technology, Tianjin 300400, China;
* Correspondence: (Y.G.); (Y.L.)
Received: 6 January 2018; Accepted: 19 February 2018; Published: 28 February 2018"
88c6d4b73bd36e7b5a72f3c61536c8c93f8d2320,Image patch modeling in a light field,"Image patch modeling in a light field
Zeyu Li
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2014-81
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-81.html
May 15, 2014"
889bc64c7da8e2a85ae6af320ae10e05c4cd6ce7,Using Support Vector Machines to Enhance the Performance of Bayesian Face Recognition,"Using Support Vector Machines to Enhance the
Performance of Bayesian Face Recognition
Zhifeng Li, Member, IEEE, and Xiaoou Tang, Senior Member, IEEE"
88dc2b2f6d033b290ed56b844c98c3ee6efde80b,Experimental manipulation of face-evoked activity in the  fusiform gyrus of individuals with autism.,"!""#$%&’(#)*+%,&$%-.,/*.&-+-%012%34&*+%5/#6+’$#(17
8/2%9:%;+<(+=0+’%9>?>
FB0*#$""+’%F$1)"".*.G1%F’+$$
H/I.’=&%J(-%K+G#$(+’+-%#/%L/G*&/-%&/-%M&*+$%K+G#$(+’+-%NB=0+’2%?>D9COP%K+G#$(+’+-%.II#)+2%Q.’(#=+’%R.B$+S%EDT
P?%Q.’(#=+’%;(’++(S%J./-./%M?!%EURS%5V
;.)#&*%N+B’.$)#+/)+
FB0*#)&(#./%-+(&#*$S%#/)*B-#/G%#/$(’B)(#./$%I.’%&B("".’$%&/-%$B0$)’#<(#./%#/I.’=&(#./2
""((<2WW,,,X#/I.’=&,.’*-X).=W$=<<W(#(*+Y)./(+/(Z(DP?DD??PE
L[<+’#=+/(&*%=&/#<B*&(#./%.I%I&)+T+6.\+-%&)(#6#(1%#/%(""+%IB$#I.’=%G1’B$%.I
#/-#6#-B&*$%,#(""%&B(#$=
‘#’$(%<B0*#$""+-%./2%>P%Q&1%9>?>
N+B’.$)#+/)+SS%‘#’$(%<B0*#$""+-%./2%>P%Q&1%9>?>%a#‘#’$(b
5KJ2%""((<2WW-[X-.#X.’GW?>X?>d>W?DPD>C??>>E:dE?dO
PLEASE SCROLL DOWN FOR ARTICLE
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses"
88bbedf7f6f0dcc830640c521acece28e67be356,Robust sparse coding for face recognition,"Robust Sparse Coding for
Face Recognition
Meng Yang, Lei Zhang, Jian Yang, David Zhang
Hong Kong Polytechnic Univ.
Presenter : 江振國"
88a898592b4c1dfd707f04f09ca58ec769a257de,MobileFace: 3D Face Reconstruction with Efficient CNN Regression,"MobileFace: 3D Face Reconstruction
with Ef‌f‌icient CNN Regression
Nikolai Chinaev1, Alexander Chigorin1, and Ivan Laptev1,2
VisionLabs, Amsterdam, The Netherlands
{n.chinaev,
Inria, WILLOW, Departement d’Informatique de l’Ecole Normale Superieure, PSL
Research University, ENS/INRIA/CNRS UMR 8548, Paris, France"
881066ec43bcf7476479a4146568414e419da804,From Traditional to Modern: Domain Adaptation for Action Classification in Short Social Video Clips,"From Traditional to Modern : Domain Adaptation for
Action Classification in Short Social Video Clips
Aditya Singh, Saurabh Saini, Rajvi Shah, and P J Narayanan
Center for Visual Information Technology, IIIT Hyderabad, India"
8813368c6c14552539137aba2b6f8c55f561b75f,Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition,"Trunk-Branch Ensemble Convolutional Neural
Networks for Video-based Face Recognition
Changxing Ding, Student Member, IEEE, Dacheng Tao, Fellow, IEEE"
886dfe069bd0f6bbb0a885e0bf2788007bfb737c,3-D Facial Expression Representation using B-spline Statistical Shape Model,"-D Facial Expression Representation using
B-spline Statistical Shape Model
Wei Quan, Bogdan J. Matuszewski, Lik-Kwan Shark, Djamel Ait-Boudaoud
Applied Digital Signal and Image Processing Research Centre
University of Central Lancashire
Preston PR1 2HE, UK"
883006c0f76cf348a5f8339bfcb649a3e46e2690,Weakly supervised pain localization using multiple instance learning,"Weakly Supervised Pain Localization using Multiple Instance Learning
Karan Sikka, Abhinav Dhall and Marian Bartlett"
88f5f9d92c4fa696457a824c3eec204da05ba6a4,XGAN: Unsupervised Image-to-Image Translation for many-to-many Mappings,"XGAN: Unsupervised Image-to-Image
Translation for Many-to-Many Mappings
Am´elie Royer1[0000−0002−8407−0705], Konstantinos Bousmalis2,6, Stephan
Gouws2, Fred Bertsch3, Inbar Mosseri4, Forrester Cole4, and Kevin Murphy5
IST Austria, 3400 Klosterneuburg, Austria
Work done while at Google Brain London, UK
Google Brain, London, UK
{konstantinos,
Google Brain, Mountain View, USA
Google Research, Cambridge, USA
5 Google Research, Mountain View, USA
6 Currently at Deepmind, London, UK"
88850b73449973a34fefe491f8836293fc208580,XBeats-An Emotion Based Music Player,"www.ijaret.org                                                                                                                                                     Vol. 2, Issue I, Jan. 2014
ISSN 2320-6802
INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN
ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..
XBeats-An Emotion Based Music Player
Sayali Chavan1, Ekta Malkan2, Dipali Bhatt3, Prakash H. Paranjape4
U.G. Student, Dept. of Computer Engineering,
D.J. Sanghvi College of Engineering,
Vile Parle (W), Mumbai-400056.
U.G. Student, Dept. of Computer Engineering,
D.J. Sanghvi College of Engineering,
Vile Parle (W), Mumbai-400056.
U.G. Student, Dept. of Computer Engineering,
D.J. Sanghvi College of Engineering,
Vile Parle (W), Mumbai-400056.
Assistant Professor, Dept. of Computer Engineering,
D.J. Sanghvi College of Engineering,
Vile Parle (W), Mumbai-400056."
88f2952535df5859c8f60026f08b71976f8e19ec,A neural network framework for face recognition by elastic bunch graph matching,"A neural network framework for face
recognition by elastic bunch graph matching
Francisco A. Pujol López, Higinio Mora Mora*, José A. Girona Selva"
88c5baffa5522ea62ff5d5c41036b92e30d7e3c9,Who is who at different cameras. People re-identification using Depth Cameras,"Document downloaded from:
This paper must be cited as:
The final publication is available at
Copyright
Additional Information
http://dx.doi.org/10.1049/iet-cvi.2011.0140http://hdl.handle.net/10251/56627Institution of Engineering and Technology (IET)Albiol Colomer, AJ.; Albiol Colomer, A.; Oliver Moll, J.; Mossi García, JM. (2012). Who iswho at different cameras: people re-identification using depth cameras. IET ComputerVision. 6(5):378-387. doi:10.1049/iet-cvi.2011.0140."
887cd2271ca5a58501786d49afa53139f48c66f3,"Visual orienting in children with autism: Hyper‐responsiveness to human eyes presented after a brief alerting audio‐signal, but hyporesponsiveness to eyes presented without sound","SHORT REPORT
Visual Orienting in Children With Autism: Hyper-Responsiveness
to Human Eyes Presented After a Brief Alerting Audio-Signal,
ut Hyporesponsiveness to Eyes Presented Without Sound
Johan Lundin Kleberg, Emilia Thorup, and Terje Falck-Ytter
Autism Spectrum Disorder (ASD) has been associated with reduced orienting to social stimuli such as eyes, but the
results are inconsistent. It is not known whether atypicalities in phasic alerting could play a role in putative altered
social orienting in ASD. Here, we show that in unisensory (visual) trials, children with ASD are slower to orient to
eyes (among distractors) than controls matched for age, sex, and nonverbal IQ. However, in another condition where
brief spatially nonpredictive sound was presented just before the visual targets, this group effect was reversed. Our
results indicate that orienting to social versus nonsocial stimuli is differently modulated by phasic alerting mecha-
nisms in young children with ASD. Autism Res 2017, 10: 246–250. VC 2016 The Authors Autism Research published
y Wiley Periodicals, Inc. on behalf of International Society for Autism Research.
Keywords: Autism; social orienting; eye tracking; phasic alerting; arousal; face perception
According to social orienting theories of Autism Spec-
trum Disorder (ASD), people with this condition orient
less or slower to socially salient stimuli than people
with typical development (TD; Dawson et al., 2004).
Further, it is assumed that reduced orienting early in
life may have cascading effects on both brain develop-"
887b7676a4efde616d13f38fcbfe322a791d1413,Deep Temporal Appearance-Geometry Network for Facial Expression Recognition,"Deep Temporal Appearance-Geometry Network
for Facial Expression Recognition
Injae Lee‡ Chunghyun Ahn‡
Junmo Kim†
Heechul Jung† Sihaeng Lee† Sunjeong Park†
Korea Advanced Institute of Science and Technology†
Electronics and Telecommunications Research Institute‡
{heechul, haeng, sunny0414, {ninja,"
88909ec19d2c6750f836e8b9c15ee3e1236b37e7,Local Learning with Deep and Handcrafted Features for Facial Expression Recognition,"Local Learning with Deep and Handcrafted Features
for Facial Expression Recognition
Mariana-Iuliana Georgescu1,2
Radu Tudor Ionescu1,3
Marius Popescu1,3
University of Bucharest, 14 Academiei, Bucharest, Romania
Novustech Services, 12B Aleea Ilioara, Bucharest, Romania
SecurifAI, 21D Mircea Vod˘a, Bucharest, Romania
georgescu"
887b7d34ebac80bbe3fb3792ed579dd82ff7e373,Query-driven iterated neighborhood graph search for scalable visual indexing,"Query-driven iterated neighborhood graph search for scalable
visual indexing∗
Jingdong Wang† Xian-Sheng Hua‡ Shipeng Li†
Microsoft Corporation
Microsoft Research Asia
August 10, 2012"
8878871ec2763f912102eeaff4b5a2febfc22fbe,Human Action Recognition in Unconstrained Videos by Explicit Motion Modeling,"Human Action Recognition in Unconstrained
Videos by Explicit Motion Modeling
Yu-Gang Jiang, Qi Dai, Wei Liu, Xiangyang Xue, and Chong-Wah Ngo"
8855d6161d7e5b35f6c59e15b94db9fa5bbf2912,COGNITION IN PREGNANCY AND THE POSTPARTUM PERIOD COGNITIVE REORGANIZATION AND PROTECTIVE MECHANISMS IN PREGNANCY AND THE POSTPARTUM PERIOD By,COGNITION IN PREGNANCY AND THE POSTPARTUM PERIOD
88132a786442ab8a5038d81164384c1c1f7231c8,Limited attentional bias for faces in toddlers with autism spectrum disorders.,"ORIGINAL ARTICLE
Limited Attentional Bias for Faces in Toddlers
With Autism Spectrum Disorders
Katarzyna Chawarska, PhD; Fred Volkmar, MD; Ami Klin, PhD
Context: Toddlers with autism spectrum disorders (ASD)
exhibit poor face recognition and atypical scanning pat-
terns in response to faces. It is not clear if face-processing
deficits are also expressed on an attentional level. Typical
individuals require more effort to shift their attention from
faces compared with other objects. This increased disen-
gagement cost is thought to reflect deeper processing of these
socially relevant stimuli.
Objective: To examine if attention disengagement from
faces is atypical in the early stages of ASD.
Design: Attention disengagement was tested in a varia-
tion of the cued attention task in which participants were
required to move their visual attention from face or non-
face central fixation stimuli and make a reactive saccade
to a peripheral target. The design involved diagnosis as
between-group factor and central fixation stimuli type"
88590857138505ee524f3adf6da9c57352d917f2,Random Subspace Two-Dimensional PCA for Face Recognition,"Random Subspace Two-Dimensional PCA for
Face Recognition
Nam Nguyen, Wanquan Liu and Svetha Venkatesh
Department of Computing, Curtin University of Technology, WA 6845, Australia"
8855755a72c148dfde84bb08ae65d58c260e70d4,Robust image classification: analysis and applications,"POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCESacceptée sur proposition du jury:Prof. P. Vandergheynst, président du juryProf. P. Frossard, directeur de thèseProf. J. Bruna, rapporteurProf. N. Paragios, rapporteurDr F. Fleuret, rapporteurRobust image classification: analysis and applicationsTHÈSE NO 7258 (2016)ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNEPRÉSENTÉE LE 16 DÉCEMBRE 2016 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEURLABORATOIRE DE TRAITEMENT DES SIGNAUX 4PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE Suisse2016PARAlhussein FAWZI"
88bee9733e96958444dc9e6bef191baba4fa6efa,Extending Face Identification to Open-Set Face Recognition,"Extending Face Identification to
Open-Set Face Recognition
Cassio E. dos Santos Jr., William Robson Schwartz
Department of Computer Science
Universidade Federal de Minas Gerais
Belo Horizonte, Brazil"
8818dafda0cf230731ac2f962d8591c89a9fac09,xGEMs: Generating Examplars to Explain Black-Box Models,"xGEMs: Generating Examplars to Explain Black-Box
Models
Shalmali Joshi
UT Austin
Oluwasanmi Koyejo
Been Kim
Google Brain
Joydeep Ghosh
UT Austin"
88fd4d1d0f4014f2b2e343c83d8c7e46d198cc79,Joint action recognition and summarization by sub-modular inference,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
9f22e0749405dfc3e3211474b933aa7514722e4b,Theory of mind - not emotion recognition - mediates the relationship between executive functions and social functioning in patients with schizophrenia.,"© Medicinska naklada - Zagreb, Croatia
Original paper
THEORY OF MIND - NOT EMOTION RECOGNITION -
MEDIATES THE RELATIONSHIP BETWEEN EXECUTIVE
FUNCTIONS AND SOCIAL FUNCTIONING IN PATIENTS
WITH SCHIZOPHRENIA
Michal Hajdúk1,2, Dana Kraj(cid:254)ovi(cid:254)ová2, Miroslava Zimányiová2, Viera Ko(cid:284)ínková2,
Anton Heretik1 & Ján Pe(cid:254)e(cid:278)ák2
Department of Psychology, Faculty of Arts, Comenius University, Bratislava, Slovak Republic
Clinic of Psychiatry, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
received: 9.8.2017;
revised: 15.3.2018;
ccepted: 17.7.2018
SUMMARY
Background:  Dysfunction  of  social-cognitive  abilities  is  one  of  the  hallmark  features  of  schizophrenia  and  is  associated  with
neurocognition and social functioning. The Green and Nuechterlein model proposed that social cognition mediates the relationship
etween neurocognition and functional outcome. We tested this hypothesis in schizophrenia patients in the everyday clinical setting.
Subjects and methods: Social cognition, executive function and social functioning were assessed in a group of 43 patients with
schizophrenia or schizoaffective disorder using a range of measures.
Results:  Theory  of  mind  was  associated  with  executive  functions  and  social  functioning.  Results  of  our  mediation  analysis"
9f889c81bdb1d791e22c5f455baf32829b5b788b,The GRODE metrics: Exploring the performance of group detection approaches,"Exploring the Performance of Group Detection Approaches
The GRODE Metrics:
Francesco Setti
ISTC - CNR
via alla Cascata 56/C, I-38121 Trento"
9fd5ecc538a9344814dc00b92beb45c54d5dff3e,NIC: A Robust Background Extraction Algorithm for Foreground Detection in Dynamic Scenes,"NIC: A Robust Background Extraction Algorithm
for Foreground Detection in Dynamic Scenes
Thien Huynh-The, Student Member, IEEE, Oresti Banos, Member, IEEE, Sungyoung Lee, Member, IEEE,
Byeong Ho Kang, Eun-Soo Kim, and Thuong Le-Tien, Member, IEEE"
9f1319162974cb4d6125e8c6c52878ebc48eb8a7,Loss factors for learning Boosting ensembles from imbalanced data,"Loss Factors for Learning Boosting Ensembles
from Imbalanced Data
Roghayeh Soleymani∗, Eric Granger∗, Giorgio Fumera†
Laboratoire d’imagerie, de vision et d’intelligence artificielle, École de technologie supérieure,
Université du Québec, Montreal, Canada,
Dept. of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy,
Email:
Email:"
9fede7e3fac47a4206a643c4647834e5680f2a8f,Results from a Real-time Stereo-based Pedestrian Detection System on a Moving Vehicle,"Results from a Real-time Stereo-based Pedestrian Detection System on
Moving Vehicle
Max Bajracharya, Baback Moghaddam, Andrew Howard, Shane Brennan, Larry H. Matthies"
9f91fd3e9621b88769ecc330f362a591876f948f,Bicycle Detection Based On Multi-feature and Multi-frame Fusion in low-resolution traffic videos,"Bicycle Detection Based On Multi-feature and
Multi-frame Fusion in low-resolution traffic videos
Yicheng Zhang, Student Member, IEEE, and Qiang Ling, Senior Member, IEEE
Some other methods like using MSC-HOG method for
detection [12] or detecting tires of bicycles in videos [13]
lso can get good results, but they are either time consuming
or high quality videos required. Some new methods, such the
method based on HOG features with ROI in [14], try to use
more advanced hardware device like GPU to finish the great
mount of computation.
In summary, there are three major defects in the available
icycle detection methods based on image processing. First,
they require fine features for detection, which are hard to
extract, particularly for traffic videos with low-resolution.
Second, the processing time under these methods is usually
long and may not meet
the requirement of the real-time
detection. Last, they make the bicycle detection decision by the
information in a single frame, which may lead to misjudgment,
especially in the case of strong noise or light changing."
9fc37eccb3d12329f208cb7d3a509024e182a100,Mel-cepstral feature extraction methods for image representation,Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 9/28/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx
9fb1bd7d98a2fa79e1b9cb21b865ec7af0c1283f,Not All Distraction Is Bad: Working Memory Vulnerability to Implicit Socioemotional Distraction Correlates with Negative Symptoms and Functional Impairment in Psychosis,"Hindawi Publishing Corporation
Schizophrenia Research and Treatment
Volume 2014, Article ID 320948, 6 pages
http://dx.doi.org/10.1155/2014/320948
Clinical Study
Not All Distraction Is Bad: Working Memory Vulnerability
to Implicit Socioemotional Distraction Correlates with Negative
Symptoms and Functional Impairment in Psychosis
Quintino R. Mano,1,2,3 Gregory G. Brown,1,2,3 Heline Mirzakhanian,1,2,3
Khalima Bolden,1,2,3 Kristen S. Cadenhead,1,2,3 and Gregory A. Light1,2,3
San Diego Veterans Affairs Healthcare System, San Diego, CA 92161, USA
VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System,
San Diego, CA 92161, USA
Department of Psychiatry, University of California, San Diego, School of Medicine, San Diego, CA, USA
Correspondence should be addressed to Gregory G. Brown;
Received 31 July 2013; Revised 26 November 2013; Accepted 15 December 2013; Published 27 February 2014
Academic Editor: Steven J. Siegel
Copyright © 2014 Quintino R. Mano et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
ited."
9f483933bcc872771707dcf0acb1382411ffee94,Which Facial Expressions Can Reveal Your Gender? A Study With 3D Faces,"IN SUBMISSION TO IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
Which Facial Expressions Can Reveal Your
Gender? A Study With 3D Faces
Baiqiang XIA"
9fa1be81d31fba07a1bde0275b9d35c528f4d0b8,Identifying Persons by Pictorial and Contextual Cues,"Identifying Persons by Pictorial and
Contextual Cues
Nicholas Leonard Pi¨el
Thesis submitted for the degree of Master of Science
Supervisor:
Prof. dr. Theo Gevers
April 2009"
9f7c1b794805be34bc2091e02c382c5461e0bcb4,On-board real-time tracking of pedestrians on a UAV,"On-board real-time tracking of pedestrians on a UAV
Floris De Smedt, Dries Hulens, and Toon Goedem´e
ESAT-PSI-VISICS, KU Leuven, Belgium"
9f094341bea610a10346f072bf865cb550a1f1c1,Recognition and volume estimation of food intake using a mobile device,"Recognition and Volume Estimation of Food Intake using a Mobile Device
Manika Puri Zhiwei Zhu Qian Yu Ajay Divakaran Harpreet Sawhney
Sarnoff Corporation
01 Washington Rd,
Princeton, NJ, 08540
{mpuri, zzhu, qyu, adivakaran,"
9fbe2611b1e2a49199fdee96c2083da625ba57df,Leveraging Multi-Modal Sensing for Mobile Health: A Case Review in Chronic Pain,"J-STSP-PCSPHT-00370-2015.R1
Leveraging Multi-Modal Sensing for Mobile
Health: a Case Review in Chronic Pain
Min S. H. Aung, Faisal Alquaddoomi, Andy Hsieh, Mashfiqui Rabbi, Longqi Yang, J.P. Pollak,
Tanzeem Choudhury, and Deborah Estrin
(cid:3)"
9fb1d7cbf1baf5f347d159410d22912fcee1fdb1,Face Detection Using Ferns,"FACE DETECTION USING FERNS
Venkatesh Bala Subburaman        Sébastien Marcel
Idiap-Com-01-2011
DECEMBER 2011
Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12   www.idiap.ch"
6b7f27cff688d5305c65fbd90ae18f3c6190f762,Generative networks as inverse problems with Scattering transforms,"Published as a conference paper at ICLR 2018
GENERATIVE NETWORKS AS INVERSE PROBLEMS
WITH SCATTERING TRANSFORMS
Tom´as Angles & St´ephane Mallat
´Ecole normale sup´erieure, Coll`ege de France, PSL Research University
75005 Paris, France"
6bd6460ec06adc1bd69d9517d116fd1545c04ac7,Small sample scene categorization from perceptual relations,"In the Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2012
Small Sample Scene Categorization from Perceptual Relations
Ilan Kadar and Ohad Ben-Shahar
Dept. of Computer Science, Ben-Gurion University
Beer-Sheva, Israel"
6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0,Facial Expression Recognition in the Wild Using Improved Dense Trajectories and Fisher Vector Encoding,"Facial expression recognition in the wild using improved dense trajectories and
Fisher vector encoding
Sadaf Afshar1
Albert Ali Salah2
Computational Science and Engineering Program, Bo˘gazic¸i University, Istanbul, Turkey
Department of Computer Engineering, Bo˘gazic¸i University, Istanbul, Turkey
{sadaf.afshar,"
6bee77418af305d632b21eb03872a0d268eeebac,Understanding the Intrinsic Memorability of Images,"Understanding the Intrinsic Memorability of Images
Phillip Isola
Devi Parikh
TTI-Chicago
Antonio Torralba
Aude Oliva"
6bbcec054017a6fd64af8bf325cb6e3e7244ba55,On the Benefits and the Limits of `p-norm Multiple Kernel Learning In Image Classification,"On the Benefits and the Limits of (cid:96)p-norm Multiple Kernel Learning In Image
Classification
Alexander Binder
Technical University of Berlin
Franklinstr. 28/29, 10587 Berlin, Germany
Shinichi Nakajima
NIKON Corporation
Optical Research Laboratory, Tokyo, Japan
Marius Kloft
Technical University of Berlin
Christina M¨uller
Technical University of Berlin
Wojciech Samek
Technical University of Berlin
Ulf Brefeld
Yahoo! Research
Barcelona, Spain
Klaus-Robert M¨uller
Technical University of Berlin
Motoaki Kawanabe"
6b4da897dce4d6636670a83b64612f16b7487637,Learning from Simulated and Unsupervised Images through Adversarial Training,"This paper has been submitted for publication on November 15, 2016.
Learning from Simulated and Unsupervised Images through Adversarial
Training
Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang, Russ Webb
Apple Inc"
6b089627a4ea24bff193611e68390d1a4c3b3644,Cross-Pollination of Normalization Techniques From Speaker to Face Authentication Using Gaussian Mixture Models,"CROSS-POLLINATION OF NORMALISATION
TECHNIQUES FROM SPEAKER TO FACE
AUTHENTICATION USING GAUSSIAN
MIXTURE MODELS
Roy Wallace        Mitchell McLaren        Chris McCool
Sébastien Marcel
Idiap-RR-03-2012
JANUARY 2012
Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12   www.idiap.ch"
6b5850c5a288fd26480ebcbbfc43172597e0d442,PHARMACOLOGICAL EFFECTS ON SOCIAL INTERACTION 1 Effects of Pharmacological Manipulations on Natural Social Interaction in Rhesus Macaques: A Pilot Investigation,"PHARMACOLOGICAL EFFECTS ON SOCIAL INTERACTION
Effects of Pharmacological Manipulations on
Natural Social Interaction in Rhesus Macaques: A Pilot Investigation
Angelica Fuentes
Spring, 2017
Cognitive Science
Advisor: Steve W. Chang"
6be0ab66c31023762e26d309a4a9d0096f72a7f0,Enhance Visual Recognition under Adverse Conditions via Deep Networks,"Enhance Visual Recognition under Adverse
Conditions via Deep Networks
Ding Liu, Student Member, IEEE, Bowen Cheng, Zhangyang Wang, Member, IEEE,
Haichao Zhang, Member, IEEE, and Thomas S. Huang, Life Fellow, IEEE"
6b3c9c0e4d47bd960c0adc4d13ae524a5d9b94d1,Visual Multiple-Object Tracking for Unknown Clutter Rate,"THIS PAPER IS A PREPRINT OF A PAPER SUBMITTED TO IET COMPUTER VISION. IF ACCEPTED, THE COPY OF RECORD WILL BE AVAILABLE AT THE IET DIGITAL LIBRARY1
Visual Multiple-Object Tracking for Unknown
Clutter Rate
Du Yong Kim"
6bf58047438f54720e03252d50984d1a340a116a,Discriminative Autoencoders for Small Targets Detection,"Discriminative Autoencoders
for Small Targets Detection.
Sebastien Razakarivony
SAGEM D.S. – SAFRAN Group
CNRS UMR 6072 – University of Caen – ENSICAEN
Email:
Fr´ed´eric Jurie
CNRS UMR 6072 – University of Caen – ENSICAEN
Email:"
6b0b10836197d7934f53080a39787b7d8d2b81f2,Detecting Granger-causal relationships in global spatio-temporal climate data via multitask learning,"Detecting Granger-causal relationships in global
spatio-temporal climate data via multi-task learning
Matthias Demuzere
Christina Papagiannopoulou
Diego G. Miralles
Ghent University
Ghent University
Ghent University
Niko E. C. Verhoest
Ghent University
Willem Waegeman
Ghent University"
6b78f2ece211c2d1eb6699e1e057b7beb3e0b4a7,GM-PHD-Based Multi-Target Visual Tracking Using Entropy Distribution and Game Theory,"GM-PHD-Based Multi-Target Visual Tracking
Using Entropy Distribution and Game Theory
Xiaolong Zhou, Youfu Li, Senior Member, IEEE, Bingwei He, and Tianxiang Bai"
6b2db002cbc5312e4796de4d4b14573df2c01648,Learning Hierarchical Features from Deep Generative Models,"Learning Hierarchical Features from Deep Generative Models
Shengjia Zhao 1 Jiaming Song 1 Stefano Ermon 1"
6b18628cc8829c3bf851ea3ee3bcff8543391819,Face recognition based on subset selection via metric learning on manifold,"Hong Shao, Shuang Chen, Jie-yi Zhao, Wen-cheng Cui, Tian-shu Yu, 2015.
Face recognition based on subset selection via metric learning on manifold.
058.  [doi:10.1631/FITEE.1500085]
Face recognition based on subset
selection via metric learning on manifold
Key words: Face recognition, Sparse representation, Manifold structure,
Metric learning, Subset selection
Contact: Shuang Chen
E-mail:
ORCID: http://orcid.org/0000-0001-7441-4749
Front Inform Technol & Electron Eng"
6b02d73f097d745e58bb99a880e559b78c4594a1,Cross-Domain Face Verification: Matching ID Document and Self-Portrait Photographs,"Cross-Domain Face Verification:
Matching ID Document and Self-Portrait Photographs
Guilherme Folego 1,2 ∗ Marcus A. Angeloni 1,2
Jos´e Augusto Stuchi 2,3 Alan Godoy 1,2 Anderson Rocha 2
CPqD Foundation, Brazil
University of Campinas (Unicamp), Brazil
Phelcom Technologies, Brazil"
6bf57ae6c63873253d1b95782f8c6b7bbc91b9ac,Semantic face segmentation from video streams in the wild,"UNIVERSITAT POLITÈCNICA DE CATALUNYA
Universitat de Barcelona
Universitat Rovira i Virgili
MASTER THESIS
Semantic face segmentation from video
streams in the wild
Author:
Deividas SKIPARIS
Academic Supervisor:
Dr. Sergio ESCALERA
Industry Supervisor:
Dr. Pascal LANDRY
A thesis submitted in fulfillment of the requirements
for the degree of Master of Artificial Intelligence
in the
Facultat d’Informàtica de Barcelona (FIB)
Facultat de Matemàtiques (UB)
Escola Tècnica Superior d’Enginyeria (URV)
June 16, 2017"
6b6946ce943da5ba4bf6471609d3355cadec172e,Improvement of Facial Emotion Recognition Using Skin Color and Face Components,"International journal of Computer Science & Network Solutions                                         April.2014-Volume 2.No4
http://www.ijcsns.com
ISSN 2345-3397
Improvement of Facial Emotion Recognition
Using Skin Color and Face Components
Department of Computer Engineering, khouzestan Science and Research Branch, Islamic Azad
kowsar azadmanesh, Reza javidan,  S. Enayatolah Alavi
Computer Engineering and IT Department Shiraz University of Technology, Shiraz, Iran,
Department of computer Engineering, shahid chamran university, Ahvaz, Iran,
University, Ahvaz, Iran,"
6b5438161cfe55d1bd44829db81f396819e9e6b9,Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning,"Wasserstein Dictionary Learning:
Optimal Transport-Based Unsupervised Nonlinear Dictionary Learning
Morgan A. Schmitz∗ , Matthieu Heitz† , Nicolas Bonneel† , Fred Ngol`e‡ , David Coeurjolly† ,
Marco Cuturi§ , Gabriel Peyr´e¶, and Jean-Luc Starck∗"
6b6791c0a3f06c356035747f7e5f87d54bc5a657,A Neuro Fuzzy approach for Facial Expression Recognition using LBP Histograms,"International Journal of Computer Theory and Engineering, Vol. 2, No. 2 April, 2010
793-8201
A Neuro Fuzzy approach for Facial Expression
Recognition using LBP Histograms
V. Gomathi, Dr. K. Ramar, and A. Santhiyaku Jeevakumar"
6b59716a193d3f91f88277e4c8a0f4cd0b6873c4,Detection of Deception in the Mafia Party Game,"Detection of Deception in the Mafia Party Game
Sergey Demyanov
James Bailey
Kotagiri
Ramamohanarao
Christopher Leckie
Department of Computing and Information Systems
The University of Melbourne, Melbourne, VIC, Australia"
6b55153f8d87bfd0dfb2f24eb2aa61d40e314cae,"Track, Then Decide: Category-Agnostic Vision-Based Multi-Object Tracking","Track, then Decide: Category-Agnostic Vision-based
Multi-Object Tracking
Aljoˇsa Oˇsep, Wolfgang Mehner, Paul Voigtlaender, and Bastian Leibe"
6bca057c25b48fa7d1607e5701c46392ec906822,An ordered topological representation of 3D triangular mesh facial surface: Concept and applications,"Werghi et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:144
http://asp.eurasipjournals.com/content/2012/1/144
RESEARCH
Open Access
An ordered topological representation of 3D
triangular mesh facial surface: concept and
pplications
Naoufel Werghi1*, Mohamed Rahayem2 and Johan Kjellander2"
6b6943a138938c31b285c1bb11213b87404feddf,Multiple Instance Learning-Based Birdsong Classification Using Unsupervised Recording Segmentation,"Multiple Instance Learning-Based Birdsong Classification
Using Unsupervised Recording Segmentation
J. F. Ruiz-Mu˜noz, Mauricio Orozco-Alzate, G. Castellanos-Dominguez
Universidad Nacional de Colombia - Sede Manizales
{jfruizmu, morozcoa,"
6b8a5a2d018356b396301b27156fd69dd18b1d82,A Study on the Impact of Wavelet Decomposition on Face Recognition Methods,"International Journal of Computer Applications (0975 – 8887)
Volume 87 – No.3, February 2014
A Study on the Impact of Wavelet Decomposition on
Face Recognition Methods
M. M. Mohie El-Din1, Neveen. I. Ghali2, Ahmed. A. A. G1 and H. A. El Shenbary 1
Department of Mathematics and Computer Science, Faculty of Science, Al-Azhar University, Cairo, Egypt
Assoc. Prof Computer Science, Faculty of Science, Al-Azhar University, Cairo. Egypt"
6b6493551017819a3d1f12bbf922a8a8c8cc2a03,Pose Normalization for Local Appearance-Based Face Recognition,"Pose Normalization for Local Appearance-Based
Face Recognition
Hua Gao, Hazım Kemal Ekenel, and Rainer Stiefelhagen
Computer Science Department, Universit¨at Karlsruhe (TH)
Am Fasanengarten 5, Karlsruhe 76131, Germany
http://isl.ira.uka.de/cvhci"
6b6e2c2ff6fcc5837523940c69cf2e9e94bc0503,Unsupervised Deep Video Hashing with Balanced Rotation,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
6b95a3dbec92071c8552576930e69455c70e529c,BEGAN: Boundary Equilibrium Generative Adversarial Networks,"BEGAN: Boundary Equilibrium Generative
Adversarial Networks
David Berthelot, Thomas Schumm, Luke Metz
Google"
6b6ff9d55e1df06f8b3e6f257e23557a73b2df96,Survey of Threats to the Biometric Authentication Systems and Solutions,"International Journal of Computer Applications (0975 – 8887)
Volume 61– No.17, January 2013
Survey of Threats to the Biometric Authentication
Systems and Solutions
Sarika Khandelwal
Research Scholor,Mewar
University,Chitorgarh. (INDIA)
P.C.Gupta
Kota University,Kota(INDIA)
Khushboo Mantri
M.tech.student, Arya College of
engineering ,Jaipur(INDIA)"
6bb55ed3761eb1556acbd1a0d15c2c9099bab0b7,Temporally Coherent Bayesian Models for Entity Discovery in Videos by Tracklet Clustering,"Temporally Coherent Chinese Restaurant Process
for Discovery of Persons and Corresponding
Tracklets from User-generated Videos"
0728f788107122d76dfafa4fb0c45c20dcf523ca,The Best of BothWorlds: Combining Data-Independent and Data-Driven Approaches for Action Recognition,"The Best of Both Worlds: Combining Data-independent and Data-driven
Approaches for Action Recognition
Zhenzhong Lan, Dezhong Yao, Ming Lin, Shoou-I Yu, Alexander Hauptmann
{lanzhzh, minglin, iyu,"
07d49098ada2d8e1ca0608c70e559dd517ca3432,Modélisation de contextes pour l'annotation sémantique de vidéos. (Context based modeling for video semantic annotation),"Modélisation de contextes pour l’annotation sémantique
de vidéos
Nicolas Ballas
To cite this version:
Nicolas Ballas. Modélisation de contextes pour l’annotation sémantique de vidéos. Autre [cs.OH].
Ecole Nationale Supérieure des Mines de Paris, 2013. Français. <NNT : 2013ENMP0051>. <pastel-
00958135>
HAL Id: pastel-00958135
https://pastel.archives-ouvertes.fr/pastel-00958135
Submitted on 11 Mar 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
07ea3dd22d1ecc013b6649c9846d67f2bf697008,Human-centric Video Understanding with Weak Supervision a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"HUMAN-CENTRIC VIDEO UNDERSTANDING WITH WEAK
SUPERVISION
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Vignesh Ramanathan
June 2016"
071099a4c3eed464388c8d1bff7b0538c7322422,Facial expression recognition in the wild using rich deep features,"FACIAL EXPRESSION RECOGNITION IN THE WILD USING RICH DEEP FEATURES
Abubakrelsedik Karali, Ahmad Bassiouny and Motaz El-Saban
Microsoft Advanced Technology labs, Microsoft Technology and Research, Cairo, Egypt"
079b6800e3130ca2ef1815a35632ab6998848ef3,Fine-grained Apparel Classification and Retrieval without rich annotations,"Fine-grained Apparel Classification and Retrieval
without rich annotations
Aniket Bhatnagar · Sanchit Aggarwal"
0760b9375db1505e9b9c182e98bb9579dd9197af,Robust Subspace Discovery through Supervised Low-Rank Constraints,"Robust Subspace Discovery through Supervised Low-Rank Constraints
Sheng Li∗
Yun Fu∗"
070ab604c3ced2c23cce2259043446c5ee342fd6,An Active Illumination and Appearance (AIA) Model for Face Alignment,"AnActiveIlluminationandAppearance(AIA)ModelforFaceAlignment
FatihKahraman,MuhittinGokmen
IstanbulTechnicalUniversity,
ComputerScienceDept.,Turkey
{fkahraman,
InformaticsandMathematicalModelling,Denmark
SuneDarkner,RasmusLarsen
TechnicalUniversityofDenmark"
07a8a4b8f207b2db2a19e519027f70cd1c276294,Pixel Recursive Super Resolution,"Pixel Recursive Super Resolution
Ryan Dahl ∗
Jonathon Shlens
Mohammad Norouzi
Google Brain"
071135dfb342bff884ddb9a4d8af0e70055c22a1,Temporal 3D ConvNets: New Architecture and Transfer Learning for Video Classification,"New Architecture and Transfer Learning for Video Classification
Temporal 3D ConvNets:
Ali Diba1,4,(cid:63), Mohsen Fayyaz2,(cid:63), Vivek Sharma3, Amir Hossein Karami4, Mohammad Mahdi Arzani4,
Rahman Yousefzadeh4, Luc Van Gool1,4
ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai"
0754e769eb613fd3968b6e267a301728f52358be,Towards a Watson that sees: Language-guided action recognition for robots,"Towards a Watson That Sees: Language-Guided Action Recognition for
Robots
Ching L. Teo, Yezhou Yang, Hal Daum´e III, Cornelia Ferm¨uller and Yiannis Aloimonos"
0725b950792ddbe4edf812a7ee8cef14447236ed,Efficient Large-Scale Multi-Modal Classification,"Efficient Large-Scale Multi-Modal Classification
Douwe Kiela, Edouard Grave, Armand Joulin and Tomas Mikolov
Facebook AI Research"
07c83f544d0604e6bab5d741b0bf9a3621d133da,Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition,"Learning Spatio-Temporal Features with 3D Residual Networks
for Action Recognition
Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Ibaraki, Japan
{kensho.hara, hirokatsu.kataoka,"
07adc7429fb22352946b675023df7db11c905701,Active Multitask Learning Using Both Latent and Supervised Shared Topics,"Active Multitask Learning Using Both Latent and Supervised Shared Topics
Ayan Acharya∗
Raymond J. Mooney∗
Joydeep Ghosh∗"
073c9ec4ff069218f358b9dd8451a040cf1a4a82,Object Classification and Detection in High Dimensional Feature Space,"Object Classification and Detection
in High Dimensional Feature Space
THIS IS A TEMPORARY TITLE PAGE
It will be replaced for the final print by a version
provided by the service académique.
Thèse n. 6043
présentée le 17 Décembre 2013
à la Faculté Sciences et Techniques de l’Ingénieur
Laboratoire de l’Idiap
Programme doctoral en Informatique, Communications et Infor-
mation
École Polytechnique Fédérale de Lausanne
pour l’obtention du grade de Docteur ès Sciences
Charles Dubout
cceptée sur proposition du jury:
Prof Mark Pauly, président du jury
Dr François Fleuret, directeur de thèse
Prof Pascal Fua, rapporteur
Prof Gilles Blanchard, rapporteur
Prof Frédéric Jurie, rapporteur"
0726152a1c1a5723ac34d54abec0dc8d4659598e,Realtime Image Matching for Vision Based Car Navigation with Built-in Sensory Data,"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W2, 2013
ISA13 - The ISPRS Workshop on Image Sequence Analysis 2013, 11 November 2013, Antalya, Turkey"
070199a5087590f96c4422b82e4803911bb0652e,What Are We Tracking: A Unified Approach of Tracking and Recognition,"What Are We Tracking: A Unified Approach of
Tracking and Recognition
Jialue Fan, Xiaohui Shen, Student Member, IEEE, and Ying Wu, Senior Member, IEEE"
07ca211bde38009697c964702a29d0fe3260bf97,Resource Aware Person Re-identification across Multiple Resolutions,"Resource Aware Person Re-identification across Multiple Resolutions
Yan Wang∗ †, Lequn Wang∗ †, Yurong You∗ ‡, Xu Zou§, Vincent Chen†
Serena Li†, Gao Huang†, Bharath Hariharan†, Kilian Q. Weinberger†"
07dbf04089b015db773fe95e664fa73aef874b36,Fishy Faces: Crafting Adversarial Images to Poison Face Authentication,"Fishy Faces: Crafting Adversarial Images to Poison Face Authentication
Giuseppe Garofalo
Vera Rimmer
Tim Van hamme
imec-DistriNet, KU Leuven
imec-DistriNet, KU Leuven
imec-DistriNet, KU Leuven
Davy Preuveneers
Wouter Joosen
imec-DistriNet, KU Leuven
imec-DistriNet, KU Leuven"
07d6238d8f8edbfe0fd2887fa0a7939735f21e13,Learning Human Optical Flow,"RANJAN, ROMERO, BLACK: LEARNING HUMAN OPTICAL FLOW
Learning Human Optical Flow
MPI for Intelligent Systems
Tübingen, Germany
Amazon Inc.
Anurag Ranjan1
Javier Romero∗,2
Michael J. Black1"
07ad6bb9b21c065cd92ab2f24a22c1d4a8f205a7,Realtime facial animation with on-the-fly correctives,"Realtime Facial Animation with On-the-fly Correctives
Hao Li⇤
Jihun Yu†
Yuting Ye‡
Chris Bregler§
Industrial Light & Magic
input depth map & 2D features
data-driven tracking
our tracking
data-driven retargeting
our retargeting
Figure 1: Our adaptive tracking model conforms to the input expressions on-the-fly, producing a better fit to the user than state-of-the-art
data driven techniques [Weise et al. 2011] which are confined to learned motion priors and generate plausible but not accurate tracking.
Links:
Introduction
The essence of high quality performance-driven facial animation is
to capture every trait and characteristic of an actor’s facial and ver-
al expression and to reproduce those on a digital double or crea-
ture. Even with the latest 3D scanning and motion capture tech-
nology, the creation of realistic digital faces in film and game pro-"
072fd0b8d471f183da0ca9880379b3bb29031b6a,Image-to-Image Translation with Conditional Adversarial Networks,"Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
Berkeley AI Research (BAIR) Laboratory, UC Berkeley
Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data."
0717b47ab84b848de37dbefd81cf8bf512b544ac,Robust Face Recognition and Tagging in Visual Surveillance System,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
International Conference on Humming Bird ( 01st March 2014)
RESEARCH ARTICLE
OPEN ACCESS
Robust Face Recognition and Tagging in Visual Surveillance
Kavitha MS 1, Siva Pradeepa S2
System
Kavitha MS Author is currently pursuing M.E(CSE)in VINS Christian college of Engineering,Nagercoil.
Siva pradeepa,Assistant Lecturer in VINS Christian college of Engineering"
07eaf19eecf4ccdd5f8e3367c1675d9f4addd2df,Learning pullback manifolds of dynamical models,"IEEE TRANSACTIONS ON PAMI, VOL. XX, NO. Y, MONTH 2010
SubmittedtoIEEETrans.onPatternAnalysisandMachineIntelligence;October27,2010
Learning pullback manifolds of dynamical
models
Fabio Cuzzolin"
0779875eff440365184dd8bf44e9f85f78267c5f,An Intelligent Extraversion Analysis Scheme from Crowd Trajectories for Surveillance,"JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. YY, JULY 2017
An Intelligent Extraversion Analysis Scheme from
Crowd Trajectories for Surveillance
Wenxi Liu, Yuanlong Yu, Chun-Yang Zhang, Genggeng Liu, Naixue Xiong"
074a12f9187beafe40386f19aa2544df30fa5703,Product Characterisation towards Personalisation: Learning Attributes from Unstructured Data to Recommend Fashion Products,"Product Characterisation towards Personalisation
Learning Attributes from Unstructured Data to Recommend Fashion Products
Ângelo Cardoso∗
ISR, IST, Universidade de Lisboa
Lisbon, Portugal
Fabio Daolio
ASOS.com
London, UK
Saúl Vargas
ASOS.com
London, UK"
0750a816858b601c0dbf4cfb68066ae7e788f05d,CosFace: Large Margin Cosine Loss for Deep Face Recognition,"CosFace: Large Margin Cosine Loss for Deep Face Recognition
Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,
Zhifeng Li∗, and Wei Liu∗
Tencent AI Lab"
078d507703fc0ac4bf8ca758be101e75ea286c80,Large - Scale Content Based Face Image Retrieval using Attribute Enhanced,"ISSN: 2321-8169
International Journal on Recent and Innovation Trends in Computing and Communication
Volume: 3 Issue: 8
5287 - 5296
________________________________________________________________________________________________________________________________
Large- Scale Content Based Face Image Retrieval using Attribute Enhanced
Sparse Codewords.
Chaitra R,
Mtech Digital Coomunication Engineering
Acharya Institute Of Technology
Bangalore"
0716e1ad868f5f446b1c367721418ffadfcf0519,Interactively Guiding Semi-Supervised Clustering via Attribute-Based Explanations,"Interactively Guiding Semi-Supervised
Clustering via Attribute-Based Explanations
Shrenik Lad and Devi Parikh
Virginia Tech, Blacksburg, VA, USA"
07c6744e25ed01967e448a397f5d7e9d540345c3,Effective Multi-Query Expansions: Collaborative Deep Networks for Robust Landmark Retrieval,"Effective Multi-Query Expansions: Collaborative Deep Networks for Robust
Landmark Retrieval
Yang Wang, Xuemin Lin, Lin Wu, Wenjie Zhang"
0726a45eb129eed88915aa5a86df2af16a09bcc1,Introspective perception: Learning to predict failures in vision systems,"Introspective Perception: Learning to Predict Failures in Vision Systems
Shreyansh Daftry, Sam Zeng, J. Andrew Bagnell and Martial Hebert"
07625af8d73142e239b5cdccb1dd226648e4b0d4,Learning Scene-Independent Group Descriptors for Crowd Understanding,"Learning Scene-Independent Group Descriptors for
Crowd Understanding
Jing Shao, Chen Change Loy, Member, IEEE, and Xiaogang Wang, Member, IEEE"
0742d051caebf8a5d452c03c5d55dfb02f84baab,Real-time geometric motion blur for a deforming polygonal mesh,"Real-Time Geometric Motion Blur for a Deforming Polygonal Mesh
Nathan Jones
Formerly: Texas A&M University
Currently: The Software Group"
079a0a3bf5200994e1f972b1b9197bf2f90e87d4,Component-Based Face Recognition with 3D Morphable Models,"Component-based Face Recognition with 3D
Morphable Models
Jennifer Huang1, Bernd Heisele1;2, and Volker Blanz3
Center for Biological and Computational Learning, M.I.T., Cambridge, MA, USA
Honda Research Institute US, Boston, MA, USA
Computer Graphics Group, Max-Planck-Institut, Saarbr˜ucken, Germany"
07faa38d4d0e9d14d72bd049362efa83fae78ee3,Quick Identification of Child Pornography in Digital Videos,"IJoFCS (2012) 2, 21-32
DOI: 10.5769/J201202002 or http://dx.doi.org/10.5769/J201202002
Quick Identification of Child Pornography
in Digital Videos
Mateus de Castro Polastro and Pedro Monteiro da Silva Eleuterio
Brazilian Federal Police
Campo Grande/MS
E-mails:"
073bcb3b1aed5cdf7bff4e9fe46a21175f42c877,"Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly","Zero-Shot Learning - A Comprehensive
Evaluation of the Good, the Bad and the Ugly
Yongqin Xian, Student Member, IEEE, Christoph H. Lampert,
Bernt Schiele, Fellow, IEEE, and Zeynep Akata, Member, IEEE"
0770f0f8f168c284a63e46b394150a8c429549da,Project-Team Pulsar Perception Understanding Learning Systems for Activity Recognition,"INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE
Project-Team Pulsar
Perception Understanding Learning
Systems for Activity Recognition
Sophia Antipolis - Méditerranée
THEME COG
tivitytepor2008"
389b2390fd310c9070e72563181547cf23dceea3,Β-vae: Learning Basic Visual Concepts with a Constrained Variational Framework,"Published as a conference paper at ICLR 2017
β-VAE: LEARNING BASIC VISUAL CONCEPTS WITH A
CONSTRAINED VARIATIONAL FRAMEWORK
Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, Alexander Lerchner
Google DeepMind
{irinah,lmatthey,arkap,cpburgess,glorotx,"
38d56ddcea01ce99902dd75ad162213cbe4eaab7,Sense Beauty by Label Distribution Learning,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
389334e9a0d84bc54bcd5b94b4ce4c5d9d6a2f26,Facial parameter extraction system based on active contours,"FACIAL PARAMETER EXTRACTION SYSTEM BASED ON ACTIVE CONTOURS
Montse Pardàs, Marcos Losada
Universitat Politècnica de Catalunya, Barcelona, Spain"
38f7f3c72e582e116f6f079ec9ae738894785b96,A New Technique for Face Matching after Plastic Surgery in Forensics,"IJARCCE
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940
International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015
A New Technique for Face Matching after
Plastic Surgery in Forensics
Anju Joseph1, Nilu Tressa Thomas2, Neethu C. Sekhar3
Student, Dept. of CSE, Amal Jyothi College of Engineering, Kanjirappally, India 1,2
Asst. Professor, Dept. of CSE, Amal Jyothi College of Engineering, Kanjirappally, India 3
I.  INTRODUCTION
Facial  recognition  is  one  of  the  most  important    task  that
forensic  examiners  execute
their
investigation. This work focuses on analysing the effect of
plastic  surgery  in  face  recognition  algorithms.  It  is
imperative for the subsequent facial recognition systems to
e  capable  of  addressing  this  significant  issue  and
ccordingly  there  is  a  need  for  more  research  in  this
important area."
38679355d4cfea3a791005f211aa16e76b2eaa8d,Evolutionary Cross-Domain Discriminative Hessian Eigenmaps,"Title
Evolutionary cross-domain discriminative Hessian Eigenmaps
Author(s)
Si, S; Tao, D; Chan, KP
Citation
Issued Date
http://hdl.handle.net/10722/127357
Rights
This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.; ©2010
IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
opyrighted component of this work in other works must be
obtained from the IEEE."
38998d58a0c1048ad4c08d0022066e22ba6d1201,Re-identification through a Video Camera Network,"UNIVERSIT´EDENICE-SOPHIAANTIPOLIS´ECOLEDOCTORALESTICSCIENCESETTECHNOLOGIESDEL’INFORMATIONETDELACOMMUNICATIONTH`ESEpourl’obtentiondugradedeDocteurenSciencesdel’Universit´edeNice-SophiaAntipolisMention:AUTOMATIQUETRAITEMENTDUSIGNALETDESIMAGESpr´esent´eeetsoutenueparMalikSOUDEDPEOPLEDETECTION,TRACKINGANDRE-IDENTIFICATIONTHROUGHAVIDEOCAMERANETWORKTh`esedirig´eeparFranc¸oisBR´EMONDSoutenancepr´evuele20/12/2013Jury:MoniqueTHONNATDirectrice,INRIASophia-Antipolis,FrancePr´esidenteJamesFERRYMANProfesseur,UniversityofReading,UKRapporteurCarloREGAZZONIProfesseur,UniversityofGenova,ItalyRapporteurPatrickBOUTHEMYDirecteur,INRIARennes,FranceExaminateurFranc¸oisBREMONDDirecteur,INRIASophia-Antipolis,FranceDirecteurdeth`eseMarie-ClaudeFRASSONDirectrice,DigitalBarriers,Sophia-Antipolis,FranceInvit´ee"
380b8df0f340e5bbc3a953c62f9bc573ce073b92,Joint Image-Text News Topic Detection and Tracking by Multimodal Topic And-Or Graph,"Joint Image-Text News Topic Detection and
Tracking by Multimodal Topic And-Or Graph
Weixin Li, Jungseock Joo, Hang Qi, and Song-Chun Zhu"
382f1ebe6009e580949d5513bc298cb253a1eeda,Interpreting Complex Regression Models,"Interpreting Complex Regression Models
Noa Avigdor-Elgrabli∗, Alex Libov†, Michael Viderman∗, Ran Wolff∗
Yahoo Research, Haifa, Israel,
Amazon Research, Haifa, Israel,"
38682c7b19831e5d4f58e9bce9716f9c2c29c4e7,Movie Character Identification Using Graph Matching Algorithm,"International Journal of Computer Trends and Technology (IJCTT) – Volume 18 Number 5 – Dec 2014
Movie Character Identification Using Graph Matching
Algorithm
Shaik. Kartheek.*1, A.Srinivasa Reddy*2
M.Tech Scholar, Dept of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India.
Associate Professor, Department of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India"
383d64b27fb3cdf2beff43f3beb8caac8c21a886,Detecting activities of daily living in first-person camera views,"Detecting Activities of Daily Living in First-person Camera Views
Hamed Pirsiavash Deva Ramanan
Department of Computer Science, University of California, Irvine"
3851ed2e3c00083f68c2811694736ebdaa9ed8b5,DeepStory: Video Story QA by Deep Embedded Memory Networks,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
38b3cae6ba1b98d6bc6f88d903916dac888cb951,Improving Semantic Embedding Consistency by Metric Learning for Zero-Shot Classiffication,"Improving Semantic Embedding Consistency by
Metric Learning for Zero-Shot Classification
Maxime Bucher1,2, St´ephane Herbin1, Fr´ed´eric Jurie2
ONERA - The French Aerospace Lab, Palaiseau, France
Normandie Univ, UNICAEN, ENSICAEN, CNRS"
3810b6299140bf2c7d6d0cced765c0777d603923,Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?,"Do Deep Features Generalize from Everyday Objects
to Remote Sensing and Aerial Scenes Domains?
Ot´avio A. B. Penatti
Advanced Technologies Group
SAMSUNG Research Institute
Campinas, SP, 13097-160, Brazil
Keiller Nogueira, Jefersson A. dos Santos
Department of Computer Science
Universidade Federal de Minas Gerais
Belo Horizonte, MG, 31270-010, Brazil"
38eea307445a39ee7902c1ecf8cea7e3dcb7c0e7,Multi-distance Support Matrix Machines,"Noname manuscript No.
(will be inserted by the editor)
Multi-distance Support Matrix Machine
Yunfei Ye1
· Dong Han1
Received: date / Accepted: date"
3885cfd634c025c6e27c4db8211d72f54f864f90,Implications of holistic face processing in autism and schizophrenia,"Implications of holistic face processing in autism and
schizophrenia
Tamara L. Watson*
School of Social Science and Psychology, University of Western Sydney, Sydney, NSW, Australia
REVIEW ARTICLE
published: 05 July 2013
doi: 10.3389/fpsyg.2013.00414
People with autism and schizophrenia have been shown to have a local bias in sensory
processing and face recognition difficulties. A global or holistic processing strategy is
known to be important when recognizing faces. Studies investigating face recognition in
these populations are reviewed and show that holistic processing is employed despite
lower overall performance in the tasks used. This implies that holistic processing is
necessary but not sufficient for optimal face recognition and new avenues for research
into face recognition based on network models of autism and schizophrenia are proposed.
Keywords: vision, face recognition, autism, schizophrenia, holistic coding, configurational coding
Edited by:
Rachel A. Robbins, Univeristy of
Western Sydney, Australia
Reviewed by:
Olivia Carter, University of"
3837f81524286ed5f9142d245743733766aa4017,Houdini: Fooling Deep Structured Visual and Speech Recognition Models with Adversarial Examples,"Houdini: Fooling Deep Structured Visual and Speech
Recognition Models with Adversarial Examples
Moustapha Cisse
Facebook AI Research
Natalia Neverova*
Facebook AI Research"
38192f06ac19172299ab543483d2e0eca2f889c0,Mining Mid-level Features for Image Classification,"(will be inserted by the editor)
Mining Mid-level Features for Image Classification
Basura Fernando · Elisa Fromont · Tinne Tuytelaars
Received: date / Accepted: date"
3832a6d6b1f78cdadee6968d51c1c7c2922ab3cd,ISIA at the ImageCLEF 2017 Image Caption Task,"ISIA at the ImageCLEF 2017 Image Caption Task
Sisi Liang, Xiangyang Li, Yongqing Zhu, Xue Li, and Shuqiang Jiang
Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology Chinese Academy of Sciences,
No.6 Kexueyuan South Road Zhongguancun, Haidian District, 100190 Beijing, China
{sisi.liang, xiangyang.li, yongqing.zhu, xue.li,"
384908bfad5b9e81d605344abcb9e99d8b0f4027,Improving Deep Models of Person Re-identification for Cross-Dataset Usage,"Improving Deep Models of Person Re-identification for
Cross-Dataset Usage
Sergey Rodionov1,2, Alexey Potapov1,3, Hugo Latapie4, Enzo Fenoglio4,
Maxim Peterson2,3
SingularityNET LLC
Novamente LLC, USA
ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
Chief Technology & Architecture Office, Cisco
{pas.aicv, astroseger, {hlatapie,"
38a169b6e67ef7768f91fa208c9b5544f6f57f16,Object Bank: An Object-Level Image Representation for High-Level Visual Recognition,"Int J Comput Vis
DOI 10.1007/s11263-013-0660-x
Object Bank: An Object-Level Image Representation
for High-Level Visual Recognition
Li-Jia Li · Hao Su · Yongwhan Lim · Li Fei-Fei
Received: 2 January 2012 / Accepted: 11 September 2013
© Springer Science+Business Media New York 2013"
38b18585e4bdb78347d44caa561e69a0045ade8d,Differential Attention for Visual Question Answering,"Differential Attention for Visual Question Answering
Badri Patro, Vinay P. Namboodiri
IIT Kanpur
{ badri,vinaypn"
3805d47da61527137b6f44b92af3017a2dfe7bd5,Greedy column subset selection for large-scale data sets,"(will be inserted by the editor)
Greedy Column Subset Selection for Large-scale
Data Sets
Ahmed K. Farahat · Ahmed Elgohary ·
Ali Ghodsi · Mohamed S. Kamel
Received: date / Accepted: date"
386a5c06d334d20227e8b2daf5433a2bef385648,Cross and Learn: Cross-Modal Self-Supervision,"Cross and Learn: Cross-Modal Self-Supervision
Nawid Sayed1, Biagio Brattoli2, and Bj¨orn Ommer2
Heidelberg University, HCI / IWR, Germany"
384f972c81c52fe36849600728865ea50a0c4670,"Multi-Fold Gabor, PCA and ICA Filter Convolution Descriptor for Face Recognition","Multi-Fold Gabor, PCA and ICA Filter
Convolution Descriptor for Face Recognition
Cheng Yaw Low, Andrew Beng Jin Teoh, Senior Member, IEEE, Cong Jie Ng"
38f1fac3ed0fd054e009515e7bbc72cdd4cf801a,Finding Person Relations in Image Data of the Internet Archive,"Finding Person Relations in Image Data of the
Internet Archive
Eric M¨uller-Budack1,2[0000−0002−6802−1241],
Kader Pustu-Iren1[0000−0003−2891−9783], Sebastian Diering1, and
Ralph Ewerth1,2[0000−0003−0918−6297]
Leibniz Information Centre for Science and Technology (TIB), Hannover, Germany
L3S Research Center, Leibniz Universit¨at Hannover, Germany"
380d5138cadccc9b5b91c707ba0a9220b0f39271,Deep Imbalanced Learning for Face Recognition and Attribute Prediction,"Deep Imbalanced Learning for Face Recognition
nd Attribute Prediction
Chen Huang, Yining Li, Chen Change Loy, Senior Member, IEEE and Xiaoou Tang, Fellow, IEEE"
383a58de852715c8544abe60fa64d29fb7ea5688,Inductive Hashing on Manifolds,"Inductive Hashing on Manifolds
Fumin Shen‡(cid:5)∗ Chunhua Shen(cid:5)† Qinfeng Shi(cid:5) Anton van den Hengel(cid:5) Zhenmin Tang‡
(cid:5) The University of Adelaide, Australia ‡ Nanjing University of Science and Technology, China"
38215c283ce4bf2c8edd597ab21410f99dc9b094,The SEMAINE Database: Annotated Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent,"The SEMAINE Database: Annotated Multimodal Records of
Emotionally Colored Conversations between a Person and a Limited
Agent
McKeown, G., Valstar, M., Cowie, R., Pantic, M., & Schröder, M. (2012). The SEMAINE Database: Annotated
Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent. IEEE
Transactions on Affective Computing, 3(1), 5-17. DOI: 10.1109/T-AFFC.2011.20
Published in:
Document Version:
Peer reviewed version
Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.
Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact
Download date:05. Nov. 2018"
38b0a67727dea3fe563e8662517bd0fda2fd5e06,Perceiving and expressing feelings through actions in relation to individual differences in empathic traits: the Action and Feelings Questionnaire (AFQ),"Cogn Affect Behav Neurosci (2016) 16:248–260
DOI 10.3758/s13415-015-0386-z
Perceiving and expressing feelings through actions in relation
to individual differences in empathic traits: the Action
nd Feelings Questionnaire (AFQ)
Justin H. G. Williams 1,4 & Isobel M. Cameron 1 & Emma Ross 2 & Lieke Braadbaart 3 &
Gordon D Waiter 3
Published online: 20 October 2015
# The Author(s) 2015. This article is published with open access at Springerlink.com"
38a3611138388490c2cd60dfbf795932d5e55a79,2D pose estimation in the Restaurant of the Future,"D pose estimation in the Restaurant
of the Future
Frederik (Frank) Evers
supervision by
dr. ir. Nico P. van der Aa
Noldus IT B.V.
Wageningen, NL
dr. Robby T. Tan
University of Utrecht
Utrecht, NL
March 29, 2012"
383f874ba7975c83b55c694ec0a70f51dc3a0ee5,Towards Automatic Image Understanding and Mining via Social Curation,"Towards Automatic Image Understanding and Mining via Social Curation
Katsuhiko Ishiguro, Akisato Kimura, and Koh Takeuchi
NTT Communication Science Laboratories
NTT Corporation, Kyoto, Japan"
389363432ee9fcf0e0cfe67b7b4f62618e1f4b59,Performing content-based retrieval of humans using gait biometrics,"Performing Content-Based Retrieval of Humans
Using Gait Biometrics
Sina Samangooei and Mark S. Nixon
School of Electronics and Computer Science, Southampton University, Southampton,
SO17 1BJ, United Kingdom"
3837f3faa722c91aa21d6f17ea1ac1cb5187bda1,Human Action Attribute Learning From Video Data Using Low-Rank Representations,"Human Action Attribute Learning From Video
Data Using Low-Rank Representations
Tong Wu, Student Member, IEEE, Prudhvi Gurram, Senior Member, IEEE,
Raghuveer M. Rao, Fellow, IEEE, and Waheed U. Bajwa, Senior Member, IEEE"
3898a9dcb22f87413f08bb44c656f4129e1c42df,On binary representations for biometric template protection,"ON BINARY REPRESENTATIONS FOR
BIOMETRIC TEMPLATE PROTECTION
Chun Chen"
38cc2896058131e4656443aedfb1b9dae61b99cd,Functional Connectivity Imaging Analysis: Interhemispheric Integration in Autism,"Functional Connectivity Imaging Analysis:
Interhemispheric Integration in Autism
Daniel J. Kelley"
3802da31c6d33d71b839e260f4022ec4fbd88e2d,Deep Attributes for One-Shot Face Recognition,"Deep Attributes for One-Shot Face Recognition
Aishwarya Jadhav1,3, Vinay P. Namboodiri2, and K. S. Venkatesh 3
Xerox Research Center India, 2Department of Computer Science,
Department of Electrical Engineering, IIT Kanpur"
38e509fc0d94e954a512128760f7a1f0d6fbc384,A Framework for Application-Guided Task Management on Heterogeneous Embedded Systems,"A Framework for Application Guided Task Management on
Heterogeneous Embedded Systems
FRANCISCO GASPAR, INESC-ID, Instituto Superior T´ecnico, Universidade de Lisboa
LUIS TANIC¸ A, INESC-ID, Instituto Superior T´ecnico, Universidade de Lisboa
PEDRO TOM ´AS, INESC-ID, Instituto Superior T´ecnico, Universidade de Lisboa
ALEKSANDAR ILIC, INESC-ID, Instituto Superior T´ecnico, Universidade de Lisboa
LEONEL SOUSA, INESC-ID, Instituto Superior T´ecnico, Universidade de Lisboa
In this paper, we propose a general framework for fine-grain application-aware task management in hetero-
geneous embedded platforms, which allows integration of different mechanisms for an efficient resource uti-
lization, frequency scaling and task migration. The proposed framework incorporates several components for
ccurate run-time monitoring by relying on the OS facilities and performance self-reporting for parallel and
iterative applications. The framework efficiency is experimentally evaluated on a real hardware platform,
where significant power and energy savings are attained for SPEC CPU2006 and PARSEC benchmarks, by
guiding frequency scaling and inter-cluster migrations according to the run-time application behavior and
predefined performance targets.
CCS Concepts:rComputer systems organization → Multicore architectures; Heterogeneous (hybrid)
systems;rSoftware and its engineering → Process management;
Additional Key Words and Phrases: Heterogeneous multi processor; scheduling; embedded systems; quality
of service; big.LITTLE; task migration; dynamic voltage and frequency control
ACM Reference Format:"
000a83a533f9c945addce83e466e308df1ae79c5,Efficient max-margin multi-label classification with applications to zero-shot learning,"Mach Learn manuscript No.
(will be inserted by the editor)
Efficient Max-Margin Multi-Label Classification with
Applications to Zero-Shot Learning
Bharath Hariharan · S. V. N. Vishwanathan ·
Manik Varma
Received: 30 September 2010 / Accepted: date"
004dc8de3a6832c8d4764144570dc122b5265ec5,Hyper-dimensional computing for a visual question-answering system that is trainable end-to-end,"Hyper-dimensional computing for a visual
question-answering system that is trainable
end-to-end
Guglielmo Montone
J.Kevin O’Regan
Laboratoire Psychologie de la Perception
Laboratoire Psychologie de la Perception
Université Paris Descartes
75006 Paris, France
Université Paris Descartes
75006 Paris, France
Alexander V. Terekhov
Laboratoire Psychologie de la Perception
Université Paris Descartes
75006 Paris, France"
00fb2836068042c19b5197d0999e8e93b920eb9c,Genetic Algorithm for Weight Optimization in Descriptor based Face Recognition Methods,
005c996a9059af96454c3d6f83338068d3608585,On Detection of Multiple Object Instances Using Hough Transforms,"On Detection of Multiple Object Instances using Hough Transforms
Olga Barinova
Moscow State University∗
Victor Lempitsky
University of Oxford∗
Pushmeet Kohli
Microsoft Research Cambridge"
0033e0ce8720f913761f9edb9a6c378eed8366a8,Interactive Object Retrieval using Interpretable Visual Models,"UNIVERSIT´EPARIS-SUD11Facult´edessciencesd’OrsayN◦Ordre:2011PA112054PHDTHESISInteractiveObjectRetrievalusingInterpretableVisualModelsSubmittedforthedegreeof“docteurensciences”oftheUniversityParis-Sud11Speciality:ComputerScienceByAhmedRebaiMay2011INRIAParis-Rocquencourt,ImediaTeamThesiscommittee:Reviewers:FredStentiford-Prof.atUniversityCollegeLondon(UK)SylviePhilipp-Foliguet-Prof.atUniversit´eCergy/Pontoise(FR)Director:NozhaBoujemaa-DirectoroftheINRIA-SaclayCenter(FR)Advisor:AlexisJoly-ResearcheratINRIA-Rocquencourt(FR)Examinator:MichelCrucianu-Prof.atCNAM(FR)President:Fran¸coisYvon-Prof.atUniversit´eParis-Sud11(FR)Copyrightc(cid:13)2011AhmedRebaiAllrightsreserved."
003afe78ec7989371f648fd8957a6ce79083cf11,SeaCLEF 2016: Object Proposal Classification for Fish Detection in Underwater Videos,"SeaCLEF 2016: Object proposal classification for
fish detection in underwater videos
Jonas J¨ager1,2, Erik Rodner2, Joachim Denzler2, Viviane Wolff1, and Klaus
Fricke-Neuderth1
Department of Electrical Engineering and Information Technology,
Fulda University of Applied Sciences, Germany
Computer Vision Group, Friedrich Schiller University Jena, Germany"
00dfd58bbaff871603e4a8aa81e67915b0675aeb,Human Sensing Using Computer Vision for Personalized Smart Spaces,"013 IEEE 10th International Conference on Ubiquitous Intelligence & Computing and 2013 IEEE 10th International Conference
on Autonomic & Trusted Computing
Human Sensing using Computer Vision for
Personalized Smart Spaces
Dipak Surie, Saeed Partonia, Helena Lindgren
User Interaction and Knowledge Modeling Group
Dept. of Computing Science
Umeå University, Sweden
{dipak, mcs10spa,
spaces
everyday"
008dafebbb27eb64a1af8ded8bfe2e7a04c1d703,CANDLE/Supervisor: A Workflow Framework for Machine Learning Applied to Cancer Research,"CANDLE/Supervisor: A Workflow Framework for
Machine Learning Applied to Cancer Research
Justin M. Wozniak, Rajeev Jain,
Prasanna Balaprakash
Mathematics & Computer Science
Argonne National Laboratory
Argonne, IL, USA
Jamaludin Mohd-Yusof,
Cristina Garcia Cardona
Computer, Computational &
Statistical Sciences
Los Alamos National Laboratory
Los Alamos, NM, USA
Jonathan Ozik,
Nicholson Collier
Global Security Sciences
Argonne National Laboratory
Argonne, IL, USA
Brian Van Essen
Lawrence Livermore National"
0077cd8f97cafd2b389783858a6e4ab7887b0b6b,Face Image Reconstruction from Deep Templates,"MAI et al.: ON THE RECONSTRUCTION OF DEEP FACE TEMPLATES
On the Reconstruction of Deep Face Templates
Guangcan Mai, Kai Cao, Pong C. Yuen, Senior Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
00b03ee4a7e31a999715d7a0c31d283d646106fa,Multi-level Semantic Feature Augmentation for One-shot Learning,"Multi-level Semantic Feature Augmentation for
One-shot Learning
Zitian Chen, Yanwei Fu*, Yinda Zhang, Leonid Sigal"
00d8f67ac0ea0bb2c9827b60e1f47c300346cd7a,Face recognition using color local binary pattern from mutually independent color channels,"Anbarjafari EURASIP Journal on Image and Video Processing 2013, 2013:6
http://jivp.eurasipjournals.com/content/2013/1/6
R ES EAR CH
Open Access
Face recognition using color local binary pattern
from mutually independent color channels
Gholamreza Anbarjafari"
00214fe1319113e6649435cae386019235474789,Face Recognition using Distortion Models,"Bachelorarbeit im Fach Informatik
Face Recognition using
Distortion Models
Mathematik, Informatik und Naturwissenschaften der
RHEINISCH-WESTFÄLISCHEN TECHNISCHEN HOCHSCHULE AACHEN
Der Fakultät für
Lehrstuhl für Informatik VI
Prof. Dr.-Ing. H. Ney
vorgelegt von:
Harald Hanselmann
Matrikelnummer 252400
Gutachter:
Prof. Dr.-Ing. H. Ney
Prof. Dr. B. Leibe
Betreuer:
Dipl.-Inform. Philippe Dreuw
September 2009"
0063b44da282eec78045ab59d2debbf61959a4a4,Improving person re-identification by viewpoint cues,"Improving Person Re-identification by Viewpoint Cues
Sławomir B ˛ak
Sofia Zaidenberg Bernard Boulay
Francois Brémond
INRIA Sophia Antipolis, STARS/Neosensys
004, route des Lucioles, BP93
06902 Sophia Antipolis Cedex - France"
003b141fb02078a4b5d02f4f803001ce22d73ba7,Real-time 3d Multiple Human Tracking with Robustness Enhancement through Machine Learning,"REAL-TIME 3D MULTIPLE HUMAN TRACKING WITH
ROBUSTNESS ENHANCEMENT THROUGH MACHINE LEARNING
Keywords:
Visual Tracking"
004e3292885463f97a70e1f511dc476289451ed5,Quadruplet-Wise Image Similarity Learning,"Quadruplet-wise Image Similarity Learning
Marc T. Law
Nicolas Thome
Matthieu Cord
LIP6, UPMC - Sorbonne University, Paris, France
{Marc.Law, Nicolas.Thome,"
00d14af37bc75b6477b4846f6ab561cdc89c96a2,"UvA-DARE ( Digital Academic Repository ) Infants ’ Temperament and Mothers ’ , and Fathers ’ Depression Predict Infants ’ Attention to Objects Paired with Emotional","UvA-DARE (Digital Academic Repository)
Infants’ Temperament and Mothers’, and Fathers’ Depression Predict Infants’ Attention
to Objects Paired with Emotional Faces
Aktar, E.; Mandell, D.J.; de Vente, W.; Majdandzic, M.; Raijmakers, M.E.J.; Bögels, S.M.
Published in:
Journal of Abnormal Child Psychology
0.1007/s10802-015-0085-9
Link to publication
Citation for published version (APA):
Aktar, E., Mandell, D. J., de Vente, W., Majdandži, M., Raijmakers, M. E. J., & Bögels, S. M. (2016). Infants’
Temperament and Mothers’, and Fathers’ Depression Predict Infants’ Attention to Objects Paired with Emotional
Faces. Journal of Abnormal Child Psychology, 44(5), 975-990. DOI: 10.1007/s10802-015-0085-9
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible."
00433d2ad90b40bc5ad22a591aac0da68037003e,K-means Based Automatic Pests Detection and Classification for Pesticides Spraying,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8 No. 11, 2017
K-means Based Automatic Pests Detection and
Classification for Pesticides Spraying
Muhammad Hafeez Javed
Foundation University Islamabad
M Humair Noor
Babar Yaqoob Khan
Foundation University Islamabad
Foundation University Islamabad
Nazish Noor
Foundation University Islamabad
Tayyaba Arshad
Foundation University Islamabad"
00cb08dcef72bfaa1aab0664d34168615ac6a5cc,Amygdala Surface Modeling with Weighted Spherical Harmonics,"Amygdala Surface Modeling with
Weighted Spherical Harmonics
Moo K. Chung1,2, Brendon M. Nacewicz2, Shubing Wang1,
Kim M. Dalton2, Seth Pollak3, and Richard J. Davidson2,3
Department of Statistics, Biostatistics and Medical Informatics
Waisman Laboratory for Brain Imaging and Behavior
Department of Psychology and Psychiatry
University of Wisconsin, Madison, WI 53706, USA"
0079d56c8e183ef36f876b84327b97ee9454825b,Scene Parsing by Weakly Supervised Learning with Image Descriptions,"Hierarchical Scene Parsing by Weakly
Supervised Learning with Image Descriptions
Ruimao Zhang, Liang Lin, Guangrun Wang, Meng Wang, and Wangmeng Zuo"
003846e4559fa32699f08ecd09de13ed5a4e92d2,Analysis of Brain Waves in Violent Images - Are Differences in Gender?,
00f0ed04defec19b4843b5b16557d8d0ccc5bb42,Modeling Spatial and Temporal Cues for Multi-label Facial Action Unit Detection,
005503ccf270890ea2582370feed4506f3785004,Characterizing the temporal dynamics of object recognition by deep neural networks: role of depth,"ioRxiv preprint first posted online Sep. 10, 2017;
peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.
http://dx.doi.org/10.1101/178541
The copyright holder for this preprint (which was not
Characterizing the temporal dynamics of object
recognition by deep neural networks : role of depth
Kandan Ramakrishnan1, Iris I.A. Groen2, Arnold W.M. Smeulders1,
H. Steven Scholte*3, Sennay Ghebreab*1
Institute of Informatics, University of Amsterdam.
Laboratory of Brain and Cognition, National Institute of Health.
Department of Psychology, University of Amsterdam.
Keywords: deep neural network, ERP, architecture, number of layers"
00d63b30e7e8383ea3dd2993499df70a51295d13,Exploiting structure in man-made environments,"Exploiting structure in man-made environments
ALPER AYDEMIR
Doctoral Thesis
Stockholm, Sweden, 2012"
0037bff7be6d463785d4e5b2671da664cd7ef746,Multiple Instance Metric Learning from Automatically Labeled Bags of Faces,"Author manuscript, published in ""European Conference on Computer Vision (ECCV '10) 6311 (2010) 634--647""
DOI : 10.1007/978-3-642-15549-9_46"
0014a057ebdeca672b1cdee8104cca4dc928ef3e,Training Deformable Part Models with Decorrelated Features,"Training deformable part models with decorrelated features
Ross Girshick and Jitendra Malik
UC Berkeley
{rbg,"
00b370765678c44acd5313f3946b2431890721a9,Dynamic Scene Classification: Learning Motion Descriptors with Slow Features Analysis,"Dynamic Scene Classification: Learning Motion Descriptors with Slow Features
Analysis
Christian Th´eriault, Nicolas Thome, Matthieu Cord
UPMC-Sorbonne Universities, Paris, France"
00e39fad9846084eb435b6cddd675ee11f2dfb90,Person Re-identification Using Haar-based and DCD-based Signature,"Person Re-identification Using Haar-based and
DCD-based Signature
Slawomir Bak, Etienne Corvee, François Bremond, Monique Thonnat
To cite this version:
Slawomir Bak, Etienne Corvee, François Bremond, Monique Thonnat. Person Re-identification Us-
ing Haar-based and DCD-based Signature. 2nd Workshop on Activity Monitoring by Multi-Camera
Surveillance Systems, AMMCSS 2010, in conjunction with 7th IEEE International Conference on Ad-
vanced Video and Signal-Based Surveillance, AVSS - 2010, Aug 2010, Boston, United States. 2010.
<inria-00496051>
HAL Id: inria-00496051
https://hal.inria.fr/inria-00496051
Submitted on 29 Jun 2010
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents"
006a9f68bcf6edca62d8750af55168971cf0890c,Dynamic Programming Bipartite Belief Propagation For Hyper Graph Matching,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
001dc49f7f3348841b4086f966bfe4e9dfadf03e,Automatic image captioning using multitask learning,"Automatic image captioning using multi-task learning
Anna Fariha"
0029418d56d8fe71d1d45bdaad88e5cc75dc58e7,Pushing the “Speed Limit”: High-Accuracy US Traffic Sign Recognition With Convolutional Neural Networks,"Pushing the “Speed Limit”: High-Accuracy U.S.
Traffic Sign Recognition with Convolutional Neural
Networks
Yuan Li, Andreas Møgelmose, and Mohan M. Trivedi"
00d9d88bb1bdca35663946a76d807fff3dc1c15f,Subjects and Their Objects: Localizing Interactees for a Person-Centric View of Importance,"Subjects and Their Objects: Localizing Interactees for a
Person-Centric View of Importance
Chao-Yeh Chen · Kristen Grauman"
00091891790ee77816ebd785d25900254e6986bd,Discriminative Robust Local Binary Pattern based Edge Texture Features for Object Recognition,"International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878, Impact Factor (2014): 3.05
www.ijser.in
Discriminative Robust Local Binary Pattern based
Edge Texture Features for Object Recognition
Rasika Raikar1, Shivani Pandita2
Dhole Patil College of Engineering, Wagholi, Pune, India
Professor, Dhole Patil College of Engineering, Wagholi, Pune, India
round
each  point.  Various"
00edd45d8f4fd75fc329d6a6fcc7d87108baa3a9,Distance Measures for Gabor Jets-Based Face Authentication: A Comparative Evaluation,"Distance Measures for Gabor Jets-based Face
Authentication: A Comparative Evaluation
Daniel Gonz´alez-Jim´enez1, Manuele Bicego2, J.W.H. Tangelder3, B.A.M
Schouten3, Onkar Ambekar3, Jos´e Luis Alba-Castro1, Enrico Grosso2, Massimo
Tistarelli4
TSC Department, University of Vigo, Vigo (Spain)
DEIR - University of Sassari, Sassari (Italy)
CWI, Amsterdam (The Netherlands)
DAP - University of Sassari, Alghero (Italy)"
00a3cfe3ce35a7ffb8214f6db15366f4e79761e3,Using Kinect for real-time emotion recognition via facial expressions,"Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen, 2015. Using
Kinect for real-time emotion recognition via facial expressions. Frontiers of
Information Technology & Electronic Engineering, 16(4):272-282.
[doi:10.1631/FITEE.1400209]
Using Kinect for real-time emotion
recognition via facial expressions
Key words: Kinect, Emotion recognition, Facial expression, Real-time
lassification, Fusion algorithm, Support vector machine (SVM)
Contact: Qi-rong Mao
E-mail:
ORCID: http://orcid.org/0000-0002-5021-9057
Front Inform Technol & Electron Eng"
004a1bb1a2c93b4f379468cca6b6cfc6d8746cc4,Balanced k-Means and Min-Cut Clustering,"Balanced k-Means and Min-Cut Clustering
Xiaojun Chang, Feiping Nie, Zhigang Ma, and Yi Yang"
0089a590154694e0de340f357a022f6a38d60946,Speeding-up Object Detection Training for Robotics with FALKON,"Speeding-up Object Detection Training for Robotics with FALKON
Elisa Maiettini1,2,3, Giulia Pasquale1,2, Lorenzo Rosasco2,3 and Lorenzo Natale1"
00d94b35ffd6cabfb70b9a1d220b6823ae9154ee,Discriminative Bayesian Dictionary Learning for Classification,"Discriminative Bayesian Dictionary Learning
for Classification
Naveed Akhtar, Faisal Shafait, and Ajmal Mian"
002d1619748a99aa683b5c30b7eafebdfe6adfc4,Nearest feature line embedding for face hallucination,"Nearest feature line embedding for face
hallucination
Junjun Jiang, Ruimin Hu, Zhen Han and Tao Lu
A new manifold learning method, called nearest feature line (NFL)
embedding, for face hallucination is proposed. While many manifold
learning based face hallucination algorithms have been proposed in
recent years, most of them apply the conventional nearest neighbour
metric to derive the subspace and may not effectively characterise
the geometrical
information of the samples, especially when the
number of training samples is limited. This reported work proposes
using the NFL metric to define the neighbourhood relations between
face samples to improve the expressing power of the given training
samples for reconstruction. The algorithm preserves the linear relation-
ship in a smaller local space than traditional manifold learning based
methods, which better reflects the nature of manifold learning theory.
Experimental results demonstrate that
the method is effective at
preserving detailed visual information.
Introduction: Face super-resolution (SR), or face hallucination, refers to"
00f17fca3cf3ab4262edde3626e6230a89ff1a1f,Human Pose Estimation with Iterative Error Feedback,"Human Pose Estimation with Iterative Error
Feedback
Jo˜ao Carreira
UC Berkeley
Pulkit Agrawal
UC Berkeley
Katerina Fragkiadaki
UC Berkeley
Jitendra Malik
UC Berkeley"
006f283a50d325840433f4cf6d15876d475bba77,Preserving Structure in Model-Free Tracking,"Preserving Structure in Model-Free Tracking
Lu Zhang and Laurens van der Maaten"
00d931eccab929be33caea207547989ae7c1ef39,The Natural Input Memory Model,"The Natural Input Memory Model
Joyca P.W. Lacroix
Department of Computer Science, IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands
Department of Psychology, Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands
Jaap M.J. Murre
Department of Computer Science, IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands
Eric O. Postma
H. Jaap van den Herik"
00796052277d41e2bb3a1284d445c1747aed295f,Performance and Energy Consumption Characterization and Modeling of Video Decoding on Multi-core Heterogenous SoC and their Applications,"Performance and Energy Consumption Characterization
nd Modeling of Video Decoding on Multi-core
Heterogenous SoC and their Applications
Yahia Benmoussa
To cite this version:
Yahia Benmoussa. Performance and Energy Consumption Characterization and Modeling of
Video Decoding on Multi-core Heterogenous SoC and their Applications. Multimedia [cs.MM].
Universit´e de Bretagne Occidentale, 2015. English. <tel-01313326>
HAL Id: tel-01313326
https://hal.archives-ouvertes.fr/tel-01313326
Submitted on 9 May 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,"
0052de4885916cf6949a6904d02336e59d98544c,Generalized Low Rank Approximations of Matrices,"005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.
DOI: 10.1007/s10994-005-3561-6
Generalized Low Rank Approximations of Matrices
JIEPING YE
Department of Computer Science & Engineering,University of Minnesota-Twin Cities, Minneapolis,
MN 55455, USA
Editor:
Peter Flach
Published online: 12 August 2005"
00319cd17cebae5e1095a248260bd7be15781362,A Dataset for Improved RGBD-Based Object Detection and Pose Estimation for Warehouse Pick-and-Place,"A Dataset for Improved RGBD-based Object
Detection and Pose Estimation for Warehouse
Pick-and-Place
Colin Rennie1, Rahul Shome1, Kostas E. Bekris1, and Alberto F. De Souza2"
0041afaf2b17f1a33bd514db27b17ce34670fdb8,Deep Reinforcement Learning-Based Image Captioning with Embedding Reward,"Deep Reinforcement Learning-based Image Captioning with Embedding Reward
Zhou Ren1
Xiaoyu Wang1
Ning Zhang1
Xutao Lv1
Li-Jia Li2∗
{zhou.ren, xiaoyu.wang, ning.zhang,
Snap Inc.
Google Inc."
006350ae14784bb929b6a749d4e5c265a10168b7,Abstract Eye Detection Using Discriminatory Features and an Efficient Support Vector Machine Eye Detection Using Discriminatory Features and an Efficient Support Vector Machine Eye Detection Using Discriminatory Features and an Efficient Support Vector Machine,"Copyright Warning & Restrictions
The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.
Under certain conditions specified in the law, libraries and
rchives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,
This institution reserves the right to refuse to accept a
opying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.
Please Note:  The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation
Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #”  on the print dialog screen"
6ef0b43cf897f527540c29cae0618aabb7329072,Parallel Algorithms for Nearest Neighbor Search Problems in High Dimensions,"PARALLEL ALGORITHMS FOR NEAREST NEIGHBOR SEARCH
PROBLEMS IN HIGH DIMENSIONS.
BO XIAO∗ AND GEORGE BIROS†"
6e396401b3950eccdaf8265aeae8a4f0da8965a0,Obstacle Detection Quality as a Problem-Oriented Approach to Stereo Vision Algorithms Estimation in Road Situation Analysis,"Obstacle Detection Quality as a Problem-Oriented
Approach to Stereo Vision Algorithms Estimation
in Road Situation Analysis
A.A. Smagina, D.A. Shepelev, E.I. Ershov, A.S. Grigoryev
Institute for Information Transmission Problems (Kharkevich Institute) –IITP RAS,
Bolshoy Karetny per. 19, build.1, Moscow, Russia, 127051
E-mail:"
6e99832e265999194aa88958d892db62afbd7ac9,Is Combinational Strategy Better For Image Memorability Prediction,"Is Combinational Strategy Better For Image
Memorability Prediction
Wenting Zhu"
6e198f6cc4199e1c4173944e3df6f39a302cf787,MORPH-II: Inconsistencies and Cleaning Whitepaper,"MORPH-II: Inconsistencies and Cleaning Whitepaper
Participants: G. Bingham, B. Yip, M. Ferguson, and C. Nansalo
Mentors: C. Chen, Y. Wang, and T. Kling
NSF-REU Site at UNC Wilmington, Summer 2017"
6e0288b874320b1b6461016fde8b215c3ba46b90,Recognising activities by jointly modelling actions and their effects,"This thesis has been submitted in fulfilment of the requirements for a postgraduate degree
(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
terms and conditions of use:
This work is protected by copyright and other intellectual property rights, which are
retained by the thesis author, unless otherwise stated.
A copy can be downloaded for personal non-commercial research or study, without
prior permission or charge.
This thesis cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author.
The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author.
When referring to this work, full bibliographic details including the author, title,
warding institution and date of the thesis must be given."
6e82ce9897093ce4f5fa795887273992489c380d,Face recognition using Eigensurface on Kinect depth-maps,"Int'l Conf. IP, Comp. Vision, and Pattern Recognition |  IPCV'16  |
Face recognition using Eigensurface on Kinect depth-maps
Marcelo Romero1, Cesar Flores1, Vianney Muñoz1 and Luis Carlos Altamirano2
Universidad Autónoma del Estado de México1 and Benemérita Universidad Autónoma de Puebla2"
6e297f10a02580dfc74595ff8d7db34020002ec4,Correlation Net : spatio temporal multimodal deep learning,"learning
Novanto Yudistira, Takio Kurita, Member, IEEE,"
6e35585eb37ee8a1de60a10a56a3183af480e214,"The YLI-MED Corpus: Characteristics, Procedures, and Plans",
6e7cfcefe82471a6aca78b59be0285467ce37b8b,Déjà Vu: an empirical evaluation of the memorization properties of ConvNets,"D´ej`a Vu: an empirical evaluation of the
memorization properties of ConvNets
Alexandre Sablayrolles†,(cid:63), Matthijs Douze†, Cordelia Schmid(cid:63),
nd Herv´e J´egou†
Facebook AI Research
(cid:63)Inria
September 19, 2018"
6eba25166fe461dc388805cc2452d49f5d1cdadd,"ALBANIE, VEDALDI: LEARNING GRIMACES BY WATCHING TV 1 Learning Grimaces by Watching TV","Pages 122.1-122.12
DOI: https://dx.doi.org/10.5244/C.30.122"
6e8a81d452a91f5231443ac83e4c0a0db4579974,Illumination robust face representation based on intrinsic geometrical information,"Illumination robust face representation based on intrinsic geometrical
information
Soyel, H; Ozmen, B; McOwan, PW
This is a pre-copyedited, author-produced PDF of an article accepted for publication in IET
Conference on Image Processing (IPR 2012). The version of record is available
http://ieeexplore.ieee.org/document/6290632/?arnumber=6290632&tag=1
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/16147
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
6ed738ff03fd9042965abdfaa3ed8322de15c116,K-MEAP: Generating Specified K Clusters with Multiple Exemplars by Efficient Affinity Propagation,"This document is downloaded from DR-NTU, Nanyang Technological
University Library, Singapore.
Title
K-MEAP: Generating Specified K Clusters with Multiple
Exemplars by Efficient Affinity Propagation
Author(s) Wang, Yangtao; Chen, Lihui
Citation
Wang, Y & Chen, L. (2014). K-MEAP: Generating
Specified K Clusters with Multiple Exemplars by Efficient
Affinity Propagation. 2014 IEEE International Conference
on Data Mining (ICDM), 1091-1096.
http://hdl.handle.net/10220/39690
Rights
© 2014 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other
uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any
opyrighted component of this work in other works. The"
6ee1f57cbf7daa37576efca7e7d24040a5c94ee2,Multimodal Neural Network for Overhead Person Re-Identification,"Aalborg Universitet
Multimodal Neural Network for Overhead Person Re-identification
Lejbølle, Aske Rasch; Nasrollahi, Kamal; Krogh, Benjamin; Moeslund, Thomas B.
Published in:
6th International Conference of the Biometrics Special Interest Group
DOI (link to publication from Publisher):
0.23919/BIOSIG.2017.8053514
Publication date:
Document Version
Accepted author manuscript, peer reviewed version
Link to publication from Aalborg University
Citation for published version (APA):
Lejbølle, A. R., Nasrollahi, K., Krogh, B., & Moeslund, T. B. (2017). Multimodal Neural Network for Overhead
Person Re-identification. In 16th International Conference of the Biometrics Special Interest Group IEEE.
https://doi.org/10.23919/BIOSIG.2017.8053514
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain"
6ecd4025b7b5f4894c990614a9a65e3a1ac347b2,Automatic Naming of Character using Video Streaming for Face Recognition with Graph Matching,"International Journal on Recent and Innovation Trends in Computing and Communication
ISSN: 2321-8169
Volume: 2 Issue: 5
1275– 1281
_______________________________________________________________________________________________
Automatic Naming of Character using Video Streaming for Face
Recognition with Graph Matching
Nivedita.R.Pandey
Ranjan.P.Dahake
PG Student at MET’s IOE Bhujbal Knowledge City,
PG Student at MET’s IOE Bhujbal Knowledge City,
Nasik, Maharashtra, India,
Nasik, Maharashtra, India,"
6e7b2afb4daf1fe50a62faf75018ff81c24ee526,Submitted to CVPR ' 99 Discriminant Analysis based Feature ExtractionW,"SubmittedtoCVPR'		DiscriminantAnalysisbasedFeatureExtraction
W.Zhao
CenterforAutomationResearch
UniversityofMaryland
CollegePark,MD-
nantAnalysishaveachievedquiteasuccessinprac-"
6e3a181bf388dd503c83dc324561701b19d37df1,Finding a low-rank basis in a matrix subspace,"Finding a low-rank basis in a matrix subspace
Yuji Nakatsukasa · Tasuku Soma ·
Andr´e Uschmajew"
6e1b85aabb132ed741381fdf00909475d16cd3ba,"Motor, emotional and cognitive empathic abilities in children with autism and conduct disorder","Motor, Emotional and Cognitive Empathic Abilities
in Children with Autism and Conduct Disorder
Danielle M.A. Bons1,2
+31 (0)488 – 469 611
Nanda N.J. Rommelse1,2
+31 (0)24 351 2222
Floor E. Scheepers1
Jan K. Buitelaar1,2
Karakter child- and adolescent psychiatry
University Centre Nijmegen, Zetten-Tiel
Department of Psychiatry UMC St. Radboud
P.O. Box 9101, 6500HB Nijmegen, The
P.O. Box 104, 6670AC Zetten, The Netherlands
the  studies"
6ef1996563835b4dfb7fda1d14abe01c8bd24a05,Nonparametric Part Transfer for Fine-Grained Recognition,"Nonparametric Part Transfer for Fine-grained Recognition
Christoph G¨oring, Erik Rodner, Alexander Freytag, and Joachim Denzler∗
Computer Vision Group, Friedrich Schiller University Jena
www.inf-cv.uni-jena.de"
6e75fcf384b31ea2108a81d868fbb886f39cd188,Sparse Coding on Symmetric Positive Definite Manifolds Using Bregman Divergences,"Sparse Coding on Symmetric Positive Definite Manifolds
using Bregman Divergences
Mehrtash Harandi, Richard Hartley, Brian Lovell, Conrad Sanderson"
6e80caed3f2ac86db775bd5e7d64925b00f1a0ca,Social interaction contexts bias the perceived expressions of interactants.,"City Research Online
City, University of London Institutional Repository
Citation: Gray, K., Barber, L., Murphy, J. & Cook, R. (2017). Social interaction contexts
0.1037/emo0000257
This is the accepted version of the paper.
This version of the publication may differ from the final published
version.
Permanent repository link:  http://openaccess.city.ac.uk/16315/
Link to published version: http://dx.doi.org/10.1037/emo0000257
Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.
City Research Online:            http://openaccess.city.ac.uk/"
6e32c368a6157fb911c9363dc3e967a7fb2ad9f7,Hybrid Stochastic / Deterministic Optimization for Tracking Sports Players and Pedestrians,"Hybrid Stochastic / Deterministic Optimization
for Tracking Sports Players and Pedestrians(cid:2)
Robert T. Collins1 and Peter Carr2
The Pennsylvania State University, USA
Disney Research Pittsburgh, USA"
6e44ddb54edbb80d5bb8f2ca3b36e40c486b9daf,Evolutionary 3D Mapping,"Evolutionary 3D Mapping Using the GPU
Calculating the psi similarity function for 2D images
Diana Cristina Albu
May 7, 2007
Submitted to the School of Engineering and Sciences
in partial fulfillment of the requirements for the degree of
Bachelor of Science in Electrical Engineering and Computer Science
Jacobs University Bremen
Supervisor: Andreas Birk"
6e8c3b7d25e6530a631ea01fbbb93ac1e8b69d2f,"Deep Episodic Memory: Encoding, Recalling, and Predicting Episodic Experiences for Robot Action Execution","Deep Episodic Memory: Encoding, Recalling, and Predicting
Episodic Experiences for Robot Action Execution
Jonas Rothfuss∗†, Fabio Ferreira∗†, Eren Erdal Aksoy ‡, You Zhou† and Tamim Asfour†"
6e7d799497b94954dc4232d840628c3a00263e42,Deep Multimodal Pain Recognition: A Database and Comparision of Spatio-Temporal Visual Modalities,"Aalborg Universitet
Deep Multimodal Pain Recognition: A Database and Comparison of Spatio-Temporal
Visual Modalities
Haque, Mohammad Ahsanul; Nasrollahi, Kamal; Moeslund, Thomas B.; B. Bautista, Ruben;
Laursen, Christian B.; Escalera, Sergio; Irani, Ramin; Andersen, Ole Kæseler; Spaich, Erika
Geraldina; Kulkarni, Kaustubh; Bellantonio, Marco; Anbarjafari, Gholamreza; Noroozi,
Fatemeh
Published in:
Proc. of the 13th IEEE Conf. on Automatic Face and Gesture Recognition
Publication date:
Link to publication from Aalborg University
Citation for published version (APA):
Haque, M. A., Nasrollahi, K., Moeslund, T. B., B. Bautista, R., Laursen, C. B., Escalera, S., ... Noroozi, F. (2018).
Deep Multimodal Pain Recognition: A Database and Comparison of Spatio-Temporal Visual Modalities. In Proc.
of the 13th IEEE Conf. on Automatic Face and Gesture Recognition (pp. 1). IEEE.
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain"
6e911227e893d0eecb363015754824bf4366bdb7,Wasserstein Divergence for GANs,"Wasserstein Divergence for GANs
Jiqing Wu1, Zhiwu Huang1, Janine Thoma1, Dinesh Acharya1, and
Luc Van Gool1,2
Computer Vision Lab, ETH Zurich, Switzerland
VISICS, KU Leuven, Belgium"
6e885d831568520aa95f523f625623e46578efd0,Camera Selection for Adaptive Human-Computer Interface,"JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012
Camera Selection for Adaptive
Human-Computer Interface
Niki Martinel Student Member, IEEE, Christian Micheloni, Member, IEEE,
Claudio Piciarelli, Member, IEEE and Gian Luca Foresti, Senior Member, IEEE"
6eb7ae81554ad4db92ee6b578f47be659c8b9cbd,Audio phrases for audio event recognition,"AUDIO PHRASES FOR AUDIO EVENT RECOGNITION
Huy Phan(cid:63)†, Lars Hertel(cid:63), Marco Maass(cid:63), Radoslaw Mazur(cid:63), and Alfred Mertins(cid:63)
Graduate School for Computing in Medicine and Life Sciences, University of L¨ubeck, Germany
(cid:63)Institute for Signal Processing, University of L¨ubeck, Germany
Email: {phan, hertel, maass, mazur,"
6ee8a94ccba10062172e5b31ee097c846821a822,How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis,"Submitted 3/13; Revised 10/13; Published 12/13
How to Solve Classification and Regression Problems on
High-Dimensional Data with a Supervised
Extension of Slow Feature Analysis
Alberto N. Escalante-B.
Laurenz Wiskott
Institut f¨ur Neuroinformatik
Ruhr-Universit¨at Bochum
Bochum D-44801, Germany
Editor: David Dunson"
6ee64c19efa89f955011531cde03822c2d1787b8,Table S1: Review of Existing Facial Expression Databases That Are Often Used in Social Psycholgy,"Table S1: Review of existing facial expression databases that are often used in social
psycholgy.
Author
database
Expressions1
Format
Short summary
GEMEP Corpus
Mind Reading: the
interactive
guide
to emotions
udio
video
record-
Videos
nger,
muse-
dmiration,
ment,"
6ed559a0d04e7d4185eeea43f77e372483982e4b,A Review Paper on Player Tracking and Automated Analysis in Sports Videos,"International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 5, Issue 6, June 2015)
A Review Paper on Player Tracking and Automated Analysis in
Sports Videos
Nikhil M.1, Sreejith S.2
,2Department of ECE, Government College of Engineering Kannur, kerala, India"
6ee3fbc4768f578601d42b1596aaf2b0cfa1d40a,Human Detection and Identification by Robots Using Thermal and Visual Information in Domestic Environments,"J Intell Robot Syst (2012) 66:223–243
DOI 10.1007/s10846-011-9612-2
Human Detection and Identification by Robots
Using Thermal and Visual Information
in Domestic Environments
Mauricio Correa · Gabriel Hermosilla ·
Rodrigo Verschae · Javier Ruiz-del-Solar
Received: 11 December 2010 / Accepted: 30 May 2011 / Published online: 12 July 2011
© Springer Science+Business Media B.V. 2011"
6e379f2d34e14efd85ae51875a4fa7d7ae63a662,A New Multi-modal Biometric System Based on Fingerprint and Finger Vein Recognition,"A NEW MULTI-MODAL BIOMETRIC SYSTEM
BASED ON FINGERPRINT AND FINGER
VEIN RECOGNITION
Naveed AHMED
Master's Thesis
Department of Software Engineering
Advisor: Prof. Dr. Asaf VAROL
JULY-2014"
6e74a055a70c69c287a34d86ce8b159456cf4420,Pose Recognition for Tracker Initialization Using 3 D Models,"Institutionen för systemteknik
Department of Electrical Engineering
Examensarbete
Pose Recognition for Tracker Initialization Using
D Models
Examensarbete utfört i Bildbehandling
vid Tekniska högskolan i Linköping
Martin Berg
LiTH-ISY-EX--07/4076--SE
Linköping 2008
Department of Electrical Engineering
Linköpings universitet
SE-581 83 Linköping, Sweden
Linköpings tekniska högskola
Linköpings universitet
581 83 Linköping"
6e0a05d87b3cc7e16b4b2870ca24cf5e806c0a94,Random Graphs for Structure Discovery in High-dimensional Data,"RANDOM GRAPHS FOR STRUCTURE
DISCOVERY IN HIGH-DIMENSIONAL DATA
Jos¶e Ant¶onio O. Costa
A dissertation submitted in partial fulflllment
of the requirements for the degree of
Doctor of Philosophy
(Electrical Engineering: Systems)
in The University of Michigan
Doctoral Committee:
Professor Alfred O. Hero III, Chair
Professor Jefirey A. Fessler
Professor Susan A. Murphy
Professor David L. Neuhofi"
6e1802874ead801a7e1072aa870681aa2f555f35,Exploring Feature Descritors for Face Recognition,"­4244­0728­1/07/$20.00 ©2007 IEEE
I ­ 629
ICASSP 2007
*22+),)164,7+616DAIK??AIIB=B=?AHA?CEJE=CHEJDCHA=JOHAEAI.EIDAHB=?A -*/ 4A?AJO?=*E=HO2=JJAH*22+),)"
6ed22b934e382c6f72402747d51aa50994cfd97b,Customized expression recognition for performance-driven cutout character animation,"Customized Expression Recognition for Performance-Driven
Cutout Character Animation
Xiang Yu†
NEC Laboratories America
Jianchao Yang‡ Wilmot Li§
Snapchat"
6e261b9e539ecd03d76063f893d59c6eafb6ed43,On the Use of External Face Features for Identity Verification,"On the Use of External Face Features for
Identity Verification
`Agata Lapedriza1, David Masip2 and Jordi Vitri`a1
Computer Vision Center (CVC), Computer Science Dept.
Universitat Aut`onoma de Barcelona
Bellaterra, Spain, 08193.
{agata,
Department of Applied Mathematics and Analysis (MAiA)
University of Barcelona (UB)
Edifici Hist`oric Gran Via de les Corts Catalanes 585, Barcelona 08007, Spain."
6ee5205408fc6db03460c05765ae0f21a6eb9552,A literature review on recent multi-object tracking methods based on HMM and particle filter,"IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. VII (Mar-Apr. 2014), PP 05-07
www.iosrjournals.org
A literature review on recent multi-object tracking methods
ased on HMM and particle filter
Kalyani Ahire1, Prof.P.S Mohod2
Department of Computer Science & Engineering,, G.H.R.I.E.T.W.,RashtrasantTukdojiMaharaj Nagpur
University Nagpur, India"
6e93fd7400585f5df57b5343699cb7cda20cfcc2,Comparing a novel model based on the transferable belief model with humans during the recognition of partially occluded facial expressions.,"http://journalofvision.org/9/2/22/
Comparing a novel model based on the transferable
elief model with humans during the recognition of
partially occluded facial expressions
Zakia Hammal
Martin Arguin
Frédéric Gosselin
Département de Psychologie, Université de Montréal,
Canada
Département de Psychologie, Université de Montréal,
Canada
Département de Psychologie, Université de Montréal,
Canada
Humans recognize basic facial expressions effortlessly. Yet, despite a considerable amount of research, this task remains
elusive for computer vision systems. Here, we compared the behavior of one of the best computer models of facial
expression recognition (Z. Hammal, L. Couvreur, A. Caplier, & M. Rombaut, 2007) with the behavior of human observers
during the M. Smith, G. Cottrell, F. Gosselin, and P. G. Schyns (2005) facial expression recognition task performed on
stimuli randomly sampled using Gaussian apertures. The modelVwhich we had to significantly modify in order to give the
bility to deal with partially occluded stimuliVclassifies the six basic facial expressions (Happiness, Fear, Sadness,
Surprise, Anger, and Disgust) plus Neutral from static images based on the permanent facial feature deformations and the"
6e604946a0a51911db0e887378ba1ae103dcfb9e,Detection and Classification of a Moving Object in a Video Stream,"Proc. of the Intl. Conf. on Advances in Computing and Information Technology-- ACIT 2014
Copyright © Institute of Research Engineers and Doctors. All rights reserved.
ISBN: 978-981-07-8859-9 doi: 10.3850/ 978-981-07-8859-9_23
Detection and Classification of a Moving Object
in a Video Stream
Asim R. Aldhaheri and Eran A. Edirisinghe"
6edb41364802b0fdd1e3e98d644fe78b1ecbbe45,Understanding Image and Text Simultaneously: a Dual Vision-Language Machine Comprehension Task,"Understanding Image and Text Simultaneously: a Dual Vision-Language
Machine Comprehension Task
Nan Ding
Google
Sebastian Goodman
Google
Fei Sha
Google
Radu Soricut
Google"
9ab463d117219ed51f602ff0ddbd3414217e3166,Weighted Transmedia Relevance Feedback for Image Retrieval and Auto-annotation,"Weighted Transmedia
Relevance Feedback for
Image Retrieval and
Auto-annotation
Thomas Mensink, Jakob Verbeek, Gabriela Csurka
TECHNICAL
REPORT
N° 0415
December 2011
Project-Teams LEAR - INRIA
nd TVPA - XRCE"
9af9fa7727df11b86301a252db8a916c3a516a8d,VIBIKNet: Visual Bidirectional Kernelized Network for Visual Question Answering,"VIBIKNet: Visual Bidirectional Kernelized
Network for Visual Question Answering
Marc Bola˜nos1,2, ´Alvaro Peris3, Francisco Casacuberta3, Petia Radeva1,2
Universitat de Barcelona, Barcelona, Spain,
Computer Vision Center, Bellaterra, Spain,
PRHLT Research Center, Universitat Polit`ecnica de Val`encia, Val`encia, Spain,"
9ac82909d76b4c902e5dde5838130de6ce838c16,Recognizing Facial Expressions Automatically from Video,"Recognizing Facial Expressions Automatically
from Video
Caifeng Shan and Ralph Braspenning
Introduction
Facial expressions, resulting from movements of the facial muscles, are the face
hanges in response to a person’s internal emotional states, intentions, or social
ommunications. There is a considerable history associated with the study on fa-
ial expressions. Darwin (1872) was the first to describe in details the specific fa-
ial expressions associated with emotions in animals and humans, who argued that
ll mammals show emotions reliably in their faces. Since that, facial expression
nalysis has been a area of great research interest for behavioral scientists (Ekman,
Friesen, and Hager, 2002). Psychological studies (Mehrabian, 1968; Ambady and
Rosenthal, 1992) suggest that facial expressions, as the main mode for non-verbal
ommunication, play a vital role in human face-to-face communication. For illus-
tration, we show some examples of facial expressions in Fig. 1.
Computer recognition of facial expressions has many important applications in
intelligent human-computer interaction, computer animation, surveillance and se-
urity, medical diagnosis, law enforcement, and awareness systems (Shan, 2007).
Therefore, it has been an active research topic in multiple disciplines such as psy-
hology, cognitive science, human-computer interaction, and pattern recognition."
9a6b80f8ea7e5f24e3da05a5151ba8b42494962f,Leveraging multiple tasks to regularize fine-grained classification,"Cancún Center, Cancún, México, December 4-8, 2016
978-1-5090-4847-2/16/$31.00 ©2016 IEEE
KingfisherRingedKingfisherWhite Breasted KingfisherMegaceryleCeryleChloroceryleHalcyonAlcedinidaeHalcyonidaeFig.1.Leveragingthetaxonomicontologyofbirdsforfinegrainedrecogni-tion.Fromtoptobottom,wehavefamily,orderandspeciesforfiveclassesofkingfishersintheCUB-200-2011dataset[6].Observehowidentifyingthefamilyorordercanhelpidentifyingtheclass,e.g.incaseofringedkingfisherandgreenkingfisher.Bestviewedenlarged,incolor.differencesandstrikinginter-classsimilarities.Mostmodernmethodsforfinegrainedrecognitionrelyonacombinationoflocalizingdiscriminativeregionsandlearningcorrespondingdiscriminativefeatures.Thisinturnrequiresstrongsuper-visionsuchaskeypointorattributeannotations,whichareexpensiveanddifficulttoobtainatscale.Ontheotherhand,sincefinegrainedrecognitiondealswithsubordinate-levelclassification,thereexistsanimpliedrelationshipsamonglabels.Theserelationshipsmaybetaxonomical(suchassuperclasses)orsemantic(suchasattributes)innature.Theontol-ogyobtainedinthismannercontainsrichlatentknowledgeaboutfinerdifferencesbetweenclassesthatcanbeexploitedforvisualclassification.Themodelweproposeconsistsofasingledeepconvolutionalneuralnetwork,witheachleveloftheontologygivingrisetoanadditionalsetoflabelsfortheinputimages.Theseadditionallabelsareusedasauxiliarytasksforamulti-tasknetwork,whichcanbetrainedend-to-endusingasimpleweightedobjectivefunction.Wealsoproposeanovelmethodtodynamicallyupdatethelearningrates(hereforthreferredtoasthetaskcoefficients)foreachtaskinthemulti-tasknetwork,basedonitsrelatednesstotheprimarytask.Inthiswork,weanalyzetheutilityofjointlylearningmultiplerelated/auxiliarytasksthatcouldregularizeeachothertopreventover-fitting,whileensuringthatthenetworkretainsitsdiscriminativecapability.Muchlikedropoutisbaggingtakentotheextreme,multi-tasklearningisanalogoustoboosting,ifeachtaskisconsideredaweaklearner.Wenotethatourmodelcanbepluggedintoorusedinconjunctionwithmorecomplexmulti-stagepipelinemethodssuchas[7]–[10]"
9ac15845defcd0d6b611ecd609c740d41f0c341d,Robust Color-based Vision for Mobile Robots,"Copyright
Juhyun Lee"
9af1cf562377b307580ca214ecd2c556e20df000,International Journal of Advanced Studies in Computer Science and Engineering,"Feb. 28
International Journal of Advanced Studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 2, 2015
Video-Based Facial Expression Recognition
Using Local Directional Binary Pattern
Sahar Hooshmand, Ali Jamali Avilaq, Amir Hossein Rezaie
Electrical Engineering Dept., AmirKabir Univarsity of Technology
Tehran, Iran"
9a9af8a5b6939a1da9936608fbf071f852eca7e1,Deep Part Features Learning by a Normalised Double-Margin-Based Contrastive Loss Function for Person Re-Identification,
9a23a0402ae68cc6ea2fe0092b6ec2d40f667adb,High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs,"High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
Ting-Chun Wang1 Ming-Yu Liu1
Jun-Yan Zhu2 Andrew Tao1
Jan Kautz1 Bryan Catanzaro1
NVIDIA Corporation
UC Berkeley
Figure 1: We propose a generative adversarial framework for synthesizing 2048 × 1024 images from semantic label maps
(lower left corner in (a)). Compared to previous work [5], our results express more natural textures and details. (b) We can
hange labels in the original label map to create new scenes, like replacing trees with buildings. (c) Our framework also
llows a user to edit the appearance of individual objects in the scene, e.g. changing the color of a car or the texture of a road.
Please visit our website for more side-by-side comparisons as well as interactive editing demos."
9ad27106b8e0cf14e8e2814dc318142138d5527b,Camera Style Adaptation for Person Re-identification,"Camera 6Style Transfer(a)  Example images under two cameras from Market-1501(b)  Examples of camera-aware style transfer between two camerasrealtransferredrealtransferredFigure1.(a)ExampleimagesfromMarket-1501[42].(b)Exam-plesofcamera-awarestyletransferbetweentwocamerasusingourmethod.Imagesinthesamecolumnrepresentthesameperson.ancepropertyunderdifferentcameras.Examplesintradi-tionalapproachesincludeKISSME[16],XQDA[20],DNS[39],etc.Examplesindeeprepresentationlearningmeth-odsincludeIDE[43],SVDNet[29],TripletNet[11],etc.Comparingtopreviousmethods,thispaperresortstoanexplicitstrategyfromtheviewofcamerastyleadapta-tion.Wearemostlymotivatedbytheneedforlargedatavolumeindeeplearningbasedpersonre-ID.Tolearnrichfeatureswhicharerobusttocameravariations,annotatinglarge-scaledatasetsisusefulbutprohibitivelyexpensive.Nevertheless,ifwecanaddmoresamplestothetrainingsetthatareawareofthestyledifferencesbetweencameras,weareableto1)addressthedatascarcityprobleminpersonre-IDand2)learninvariantfeaturesacrossdifferentcameras.Preferably,thisprocessshouldnotcostanymorehumanla-beling,sothatthebudgetiskeptlow.Basedontheabovediscussions,weproposeacam-erastyle(CamStyle)adaptationmethodtoregularizeCNNtrainingforpersonre-ID.Initsvanillaversion,welearnimage-imagetranslationmodelsforeachcamerapairwithCycleGAN[51].WiththelearnedCycleGANmodel,foratrainingimagecapturedbyacertaincamera,wecangener-"
9a7784eea6bfa62bf2834ee0b87a3cdda46006f2,Digital Comics Image Indexing Based on Deep Learning,"Article
Digital Comics Image Indexing Based on
Deep Learning
Nhu-Van Nguyen * ID , Christophe Rigaud ID and Jean-Christophe Burie ID
Lab L3I, University of La Rochelle, 17000 La Rochelle, France; (C.R.);
(J.-C.B.)
* Correspondence:
Received: 30 April 2018; Accepted: 27 June 2018; Published: 2 July 2018"
9a9a888bcce37e582b8a5b5f12f662e487443e5c,Cascaded Pyramid Network for Multi-Person Pose Estimation,"Cascaded Pyramid Network for Multi-Person Pose Estimation
Yilun Chen∗ Zhicheng Wang∗ Yuxiang Peng1
Zhiqiang Zhang2 Gang Yu
Jian Sun
Megvii Inc. (Face++), {chenyilun, wangzhicheng, pyx, zhangzhiqiang, yugang,
Tsinghua University 2HuaZhong University of Science and Technology"
9a7858eda9b40b16002c6003b6db19828f94a6c6,Mooney face classification and prediction by learning across tone,"MOONEY FACE CLASSIFICATION AND PREDICTION BY LEARNING ACROSS TONE
Tsung-Wei Ke(cid:63)†
Stella X. Yu(cid:63)†
David Whitney(cid:63)
(cid:63) UC Berkeley / †ICSI"
9a2ed8abaa17834cb8f227a9353c8cfed3a367cd,A Method of Detecting Abnormal Crowd Behavior Events Applied in Air Patrol Robot,"A Method of Detecting Abnormal Crowd Behavior Events Applied in Air Patrol Robot
School of Electrical and Electronic Engineering ,Shanghai Institute of Technology, Shanghai, China
Huailin Zhao
School of Electrical and Electronic Engineering ,Shanghai Institute of Technology, Shanghai, China
Shunzhou Wang
School of Electrical and Electronic Engineering ,Shanghai Institute of Technology, Shanghai, China
Shifang Xu
School of Computer Science and Information Engineering ,Shanghai Institute of Technology, Shanghai, China
Yani Zhang
Masanori Sugisaka
Alife Robotics Corporation LTD, Oita, Japan"
9abc9e3cadbec9139b39dfddb0de6c08b7aaf2d0,Pain Intensity Evaluation through Facial Action Units,"Pain Intensity Evaluation Through Facial Action
Units
Zuhair Zafar
Dept. of Electrical Engineering, SBASSE,
Lahore University of Management Sciences,
Lahore, Pakistan
Nadeem Ahmad Khan
Dept. of Electrical Engineering, SBASSE,
Lahore University of Management Sciences,
Lahore, Pakistan"
9a88d23234ee41965ac17fc5774348563448a94d,3021977 GI P_212 Cover.indd,"Gesellschaft für Informatik e.V. (GI)
publishes  this  series  in  order  to  make  available  to  a  broad  public
recent findings in informatics (i.e. computer science and informa-
tion  systems),  to  document  conferences  that  are  organized  in  co-
operation with GI and to publish the annual GI Award dissertation.
Broken down into
• seminars
• proceedings
• dissertations
• thematics
urrent topics are dealt with from the vantage point of research and
development, teaching and further training in theory and practice.
The Editorial Committee uses an intensive review process in order
to ensure high quality contributions.
The volumes are published in German or English.
Information: http://www.gi.de/service/publikationen/lni/
ISSN 1617-5468
ISBN 978-3-88579-606-0
The proceedings of the BIOSIG 2013 include scientific contributions of the annual
onference of the Biometrics Special Interest Group (BIOSIG) of the Gesellschaft"
9a276c72acdb83660557489114a494b86a39f6ff,Emotion Classification through Lower Facial Expressions using Adaptive Support Vector Machines,"Emotion Classification through Lower Facial Expressions using Adaptive
Support Vector Machines
Porawat Visutsak
Department of Information Technology, Faculty of Industrial Technology and Management,
King Mongkut’s University of Technology North Bangkok,"
9ad65c5c5a2b22ef0343831fe0dabc2055d72497,Eyediap Database: Data Description and Gaze Tracking Evaluation Benchmarks,"EYEDIAP DATABASE: DATA DESCRIPTION
AND GAZE TRACKING EVALUATION
BENCHMARKS
Kenneth Alberto Funes Mora        Florent Monay
Jean-Marc Odobez
Idiap-RR-08-2014
Version of SEPTEMBER 18, 2014
Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12   www.idiap.ch"
9a1a9dd3c471bba17e5ce80a53e52fcaaad4373e,Automatic Recognition of Spontaneous Facial Actions,"Automatic Recognition of Spontaneous Facial
Actions
Marian Stewart Bartlett1, Gwen C. Littlewort1, Mark G. Frank2, Claudia Lainscsek1,
Ian R. Fasel1, Javier R. Movellan1
Institute for Neural Computation, University of California, San Diego.
Department of Communication, University at Buffalo, State University of New York."
9a08459b0cb133f0f4352c58225446f9dc95ecc4,Metadata of the chapter that will be visualized in SpringerLink,"Metadata of the chapter that will be visualized in
SpringerLink
Book Title
Series Title
Chapter Title
Copyright Year
Copyright HolderName
Author
Corresponding Author
Author
Author
Instituto de Investigación en Informática de Albacete
Universidad de Castilla-La Mancha
02071, Albacete, Spain
Ambient Assisted Living. ICT-based Solutions in Real Life Situations
Sokolova
Marina V.
Fernández-Caballero
Experimentation on Emotion Regulation with Single-Colored Images
Springer International Publishing Switzerland"
9a42c519f0aaa68debbe9df00b090ca446d25bc4,Face Recognition via Centralized Coordinate Learning,"Face Recognition via Centralized Coordinate
Learning
Xianbiao Qi, Lei Zhang"
9a03b7b71a82fc2c86b3b4cbec802dfc16978486,One-Shot Observation Learning,"One-Shot Observation Learning
Leo Pauly, Wisdom C. Agboh, Mohamed Abdellatif, David C. Hogg, Raul Fuentes"
9aad8e52aff12bd822f0011e6ef85dfc22fe8466,Temporal-Spatial Mapping for Action Recognition,"Temporal-Spatial Mapping for Action Recognition
Xiaolin Song, Cuiling Lan, Wenjun Zeng, Junliang Xing, Jingyu Yang, and Xiaoyan Sun"
9a9019972dece591f502a2f794e81648b9e064fe,Combination of facial landmarks for robust eye localization using the Discriminative Generalized Hough Transform,"Combination of Facial Landmarks
for Robust Eye Localization
Using the Discriminative Generalized Hough Transform
Ferdinand Hahmann, Gordon B¨oer, Hauke Schramm
Institute of Applied Computer Science
University of Applied Sciences Kiel
Grenzstraße 3, 24149 Kiel"
363ca0a3f908859b1b55c2ff77cc900957653748,Local Binary Patterns and Linear Programming using Facial Expression,"International Journal of Computer Trends and Technology (IJCTT) – volume 1 Issue 3 Number 4 – Aug 2011
Local Binary Patterns and Linear Programming using
Facial Expression
Ms.P.Jennifer
#MCA Department, Bharath Institute of Science and Technology
+B.Tech (C.S.E), Bharath University , Chennai – 73.
Dr. A. Muthu kumaravel
#MCA Department, Bharath Institute of Science and Technology
+B.Tech (C.S.E), Bharath University , Chennai – 73."
36d8cc038db71a473d0c94c21f2b68a840dff21c,Unsupervised Detector Adaptation by Joint Dataset Feature Learning,"	

	
		

	
	

	
				


!∀∀
##!∃%&∋()
		
∗+,
			
#−./!0!∀
!!2!342
,"
36cbcd70af6f2fd3e700e0a710acd5f1f6abebcf,Matching People across Camera Views using Kernel Canonical Correlation Analysis,"Matching People across Camera Views using
Kernel Canonical Correlation Analysis
Giuseppe Lisanti , Iacopo Masi , Alberto Del Bimbo
Media Integration and Communication Center (MICC), Università degli Studi di Firenze
Viale Morgagni 65 - 50134 Firenze, Italy"
36358eff7c34de64c0ce8aa42cf7c4da24bf8e93,Deep Metric Learning for Person Re-identification,"Deep Metric Learning for Person Re-Identification
(Invited Paper)
Dong Yi, Zhen Lei, Shengcai Liao and Stan Z. Li
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences (CASIA)"
367231b80e8201fc9c461fbb42047b20e89ea961,Impatient DNNs - Deep Neural Networks with Dynamic Time Budgets,"MANUEL AMTHOR, ERIK RODNER, AND JOACHIM DENZLER: IMPATIENT DNNS
Impatient DNNs – Deep Neural Networks
with Dynamic Time Budgets
Manuel Amthor
Erik Rodner
Joachim Denzler
Computer Vision Group
Friedrich Schiller University Jena
Germany
www.inf-cv.uni-jena.de"
36fa002f36e14ab7d24ebcdd99b6589ed726b383,Detecting conversational gaze aversion using unsupervised learning,"Detecting Conversational Gaze Aversion Using
Unsupervised Learning
Matthew Roddy, Naomi Harte
ADAPT Centre, School of Engineering
Trinity College Dublin, Ireland"
362cfe79a6822f9e317555c5e3469dd038b9053f,Damped Gauss-Newton algorithm for nonnegative Tucker decomposition,"978-1-4577-0568-7/11/$26.00 ©2011 IEEE
DY, An	, G (cid:2) (cid:12)Y  G  A	(cid:12)2
DECOMPOSITION
. INTRODUCTION"
364584f8313e7601b1f5134d371e98aeb61110e8,An invariant bipolar representation for 3D surfaces,"An invariant bipolar representation for 3D surfaces
M. JRIBI and F. GHORBEL
CRSITAL Laboratory / GRIFT research group,
Ecole Nationale des Sciences de l’Informatique (ENSI),
La Manouba University, 2010 La Manouba, Tunisia"
36939e6a365e9db904d81325212177c9e9e76c54,"Assessing the Accuracy of Four Popular Face Recognition Tools for Inferring Gender, Age, and Race","Assessing the Accuracy of Four Popular Face Recognition Tools for
Inferring Gender, Age, and Race
Soon-Gyo Jung, Jisun An, Haewoon Kwak, Joni Salminen, Bernard J. Jansen
Qatar Computing Research Institute, HBKU
HBKU Research Complex, Doha, P.O. Box 34110, Qatar"
366c14f477bf2ed16b1498d1c56a7e1f2af08e69,Comparative Analysis of Statistical Shape Spaces,"Comparative Analysis of Statistical Shape Spaces
Alan Brunton∗
Augusto Salazar†
Timo Bolkart†
Stefanie Wuhrer†"
3646b42511a6a0df5470408bc9a7a69bb3c5d742,Detection of Facial Parts based on ABLATA,"International Journal of Computer Applications (0975 – 8887)
Applications of Computers and Electronics for the Welfare of Rural Masses (ACEWRM) 2015
Detection of Facial Parts based on ABLATA
Siddhartha Choubey
Shri Shankaracharya
Technical Campus, Bhilai
Vikas Singh
Shri Shankaracharya
Technical Campus, Bhilai
Abha Choubey
Shri Shankaracharya
Technical Campus, Bhilai"
36cd55cdb1b032c8f29e011ed0637923afc46d3f,Strategies to Improve Activity Recognition Based on Skeletal Tracking: Applying Restrictions Regarding Body Parts and Similarity Boundaries †,"Article
Strategies to Improve Activity Recognition Based on
Skeletal Tracking: Applying Restrictions Regarding
Body Parts and Similarity Boundaries †
Carlos Gutiérrez-López-Franca *, Ramón Hervás and Esperanza Johnson
MAmI Research Lab, University of Castilla-La Mancha, Paseo de la Universidad 4, 13071 Ciudad Real, Spain;
(R.H.); (E.J.)
* Correspondence:
This paper is an extended version of our paper published in Gutiérrez López de la Franca, C.; Hervás, R.;
Johnson, E.; Bravo, J. Findings about Selecting Body Parts to Analyze Human Activities through Skeletal
Tracking Joint Oriented Devices. In Proceedings of the 10th International Conference on Ubiquitous
Computing and Ambient Intelligence (UCAMI 2016), Gran Canaria, Spain, 29 November–2 December 2016.
Received: 4 April 2018; Accepted: 17 May 2018; Published: 22 May 2018"
36fe39ed69a5c7ff9650fd5f4fe950b5880760b0,Tracking von Gesichtsmimik mit Hilfe von Gitterstrukturen zur Klassifikation von schmerzrelevanten Action Units,"Tracking von Gesichtsmimik
mit Hilfe von Gitterstrukturen
zur Klassifikation von schmerzrelevanten Action
Units
Christine Barthold1, Anton Papst1, Thomas Wittenberg1
Christian K¨ublbeck1, Stefan Lautenbacher2, Ute Schmid2, Sven Friedl1,3
Fraunhofer-Institut f¨ur Integrierte Schaltungen IIS, Erlangen,
Otto-Friedrich-Universit¨at Bamberg, 3Universit¨atsklinkum Erlangen
Kurzfassung. In der Schmerzforschung werden schmerzrelevante Mi-
mikbewegungen von Probanden mittels des Facial Action Coding System
klassifiziert. Die manuelle Klassifikation hierbei ist aufw¨andig und eine
utomatische (Vor-)klassifikation k¨onnte den diagnostischen Wert dieser
Analysen erh¨ohen sowie den klinischen Workflow unterst¨utzen. Der hier
vorgestellte regelbasierte Ansatz erm¨oglicht eine automatische Klassifika-
tion ohne große Trainingsmengen vorklassifizierter Daten. Das Verfahren
erkennt und verfolgt Mimikbewegungen, unterst¨utzt durch ein Gitter,
und ordnet diese Bewegungen bestimmten Gesichtsarealen zu. Mit die-
sem Wissen kann aus den Bewegungen auf die zugeh¨origen Action Units
geschlossen werden.
Einleitung"
363e5a0e4cd857e98de72a726ad6f80cea9c50ab,Fast Landmark Localization With 3D Component Reconstruction and CNN for Cross-Pose Recognition,"Fast Landmark Localization
with 3D Component Reconstruction and CNN for
Cross-Pose Recognition
Gee-Sern (Jison) Hsu, Hung-Cheng Shie, Cheng-Hua Hsieh"
36b2aa7248152fdad7bc7f670d0b577c9728d466,Data-dependent Initializations of Convolutional Neural Networks,"Under review as a conference paper at ICLR 2016
DATA-DEPENDENT INITIALIZATIONS OF
CONVOLUTIONAL NEURAL NETWORKS
Philipp Kr¨ahenb¨uhl1, Carl Doersch1,2, Jeff Donahue1, Trevor Darrell1
Department of Electrical Engineering and Computer Science, UC Berkeley
Machine Learning Department, Carnegie Mellon"
36fc4120fc0638b97c23f97b53e2184107c52233,Introducing Celebrities in an Images using HAAR Cascade algorithm,"National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)
Proceedings published by International Journal of Computer Applications® (IJCA)
Introducing Celebrities in an Images using HAAR
Cascade algorithm
Jaya M. Jadhav
Deipali V. Gore
Asst. Professor
Rashmi R. Tundalwar
PES Modern College of Engg.
PES Modern College of Engg.
PES Modern College of Engg.
Shivaji Nagar, Pune
Shivaji Nagar, Pune
Shivaji Nagar, Pune"
361367838ee5d9d5c9a77c69c1c56b1c309ab236,Salient Object Detection: A Survey,"Salient Object Detection: A Survey
Ali Borji, Ming–Ming Cheng, Huaizu Jiang and Jia Li"
36ca720185b62e92a7f3cce75418356a5a125d24,Template aging in 3D and 2D face recognition,"Template Aging in 3D and 2D Face Recognition
Ishan Manjani∗
Hakki Sumerkan†
Patrick J. Flynn†
Kevin W. Bowyer†"
36ce0b68a01b4c96af6ad8c26e55e5a30446f360,Facial expression recognition based on a mlp neural network using constructive training algorithm,"Multimed Tools Appl
DOI 10.1007/s11042-014-2322-6
Facial expression recognition based on a mlp neural
network using constructive training algorithm
Hayet Boughrara · Mohamed Chtourou ·
Chokri Ben Amar · Liming Chen
Received: 5 February 2014 / Revised: 22 August 2014 / Accepted: 13 October 2014
© Springer Science+Business Media New York 2014"
3674f3597bbca3ce05e4423611d871d09882043b,Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions,"ISSN 1796-2048
Volume 7, Number 4, August 2012
Contents
Special Issue: Multimedia Contents Security in Social Networks Applications
Guest Editors: Zhiyong Zhang and Muthucumaru Maheswaran
Guest Editorial
Zhiyong Zhang and Muthucumaru Maheswaran
SPECIAL ISSUE PAPERS
DRTEMBB: Dynamic Recommendation Trust Evaluation Model Based on Bidding
Gang Wang and Xiao-lin Gui
Block-Based Parallel Intra Prediction Scheme for HEVC
Jie Jiang, Baolong, Wei Mo, and Kefeng Fan
Optimized LSB Matching Steganography Based on Fisher Information
Yi-feng Sun, Dan-mei Niu, Guang-ming Tang, and Zhan-zhan Gao
A Novel Robust Zero-Watermarking Scheme Based on Discrete Wavelet Transform
Yu Yang, Min Lei, Huaqun Liu, Yajian Zhou, and Qun Luo
Stego Key Estimation in LSB Steganography
Jing Liu and Guangming Tang
REGULAR PAPERS
Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions"
362bfeb28adac5f45b6ef46c07c59744b4ed6a52,Incorporating Scalability in Unsupervised Spatio- Temporal Feature Learning,"INCORPORATING SCALABILITY IN UNSUPERVISED SPATIO-TEMPORAL FEATURE
LEARNING
Sujoy Paul, Sourya Roy and Amit K. Roy-Chowdhury
Dept. of Electrical and Computer Engineering, University of California, Riverside, CA 92521"
36918b2ef6b20ffb8cffe458c0067742500c6149,"""Look, some Green Circles!"": Learning to Quantify from Images","Proceedings of the 5th Workshop on Vision and Language, pages 75–79,
Berlin, Germany, August 12 2016. c(cid:13)2016 Association for Computational Linguistics"
365866dc937529c3079a962408bffaa9b87c1f06,Facial Feature Expression Based Approach for Human Face Recognition: A Review,"IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 3, May 2014.
www.ijiset.com
ISSN 2348 – 7968
Facial Feature Expression Based Approach for Human Face
Recognition: A Review
Jageshvar K. Keche1, Mahendra P. Dhore2
Department of Computer Science, SSESA, Science College, Congress Nagar, Nagpur, (MS)-India,
Department of Electronics & Computer Science, RTM Nagpur University, Campus Nagpur, (MS)-India.
required
extraction  of"
362a70b6e7d55a777feb7b9fc8bc4d40a57cde8c,A partial least squares based ranker for fast and accurate age estimation,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
360a590703542f2ba345b432416398b6dad9e3fb,Multimodal Person Reidentification Using RGB-D Cameras,"Multi-modal Person Re-Identification
Using RGB-D Cameras
Federico Pala, Member, IEEE, Riccardo Satta, Giorgio Fumera, Member, IEEE, and Fabio Roli, Fellow, IEEE"
36c91b1342c1357877e89b4c43f8eadb39755c0b,Recognizing Human-Object Interactions in Still Images by Modeling the Mutual Context of Objects and Human Poses,"Recognizing Human-Object Interactions in
Still Images by Modeling the Mutual Context
of Objects and Human Poses
Bangpeng Yao, Member, IEEE, and Li Fei-Fei, Member, IEEE"
36c9731f24e5daa42c1e2c6c68258567dfa78a0a,Movement tracking in terrain conditions accelerated with CUDA,"Proceedings of the 2014 Federated Conference on
Computer Science and Information Systems pp. 709–717
DOI: 10.15439/2014F282
ACSIS, Vol. 2
978-83-60810-58-3/$25.00 c(cid:13) 2014, IEEE"
3678dac7e9998567b92f526046a16e2910ced55d,Talking Robots: grounding a shared lexicon in an unconstrained environment,"Berthouze, L., Prince, C. G., Littman, M., Kozima, H., and Balkenius, C. (2007).
Proceedings of the Seventh International Conference on Epigenetic Robotics: Modeling
Cognitive Development in Robotic Systems. Lund University Cognitive Studies, 135.
Talking Robots: grounding a shared lexicon in an
unconstrained environment
Matthieu Nottale
Jean-Christophe Baillie
ENSTA-UEI cognitive robotics lab."
3630324c2af04fd90f8668f9ee9709604fe980fd,Image Classification With Tailored Fine-Grained Dictionaries,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2607345, IEEE
Transactions on Circuits and Systems for Video Technology
Image Classification with Tailored Fine-Grained
Dictionaries
Xiangbo Shu, Jinhui Tang, Guo-Jun Qi, Zechao Li, Yu-Gang Jiang and Shuicheng Yan"
36513f869e5ba2928369014244dff998ab93728c,Discriminative cluster analysis,"Chapter 1
Discriminative Cluster Analysis
Fernando De la Torre and Takeo Kanade"
36973330ae638571484e1f68aaf455e3e6f18ae9,Scale-Aware Fast R-CNN for Pedestrian Detection,"Scale-aware Fast R-CNN for Pedestrian Detection
Jianan Li, Xiaodan Liang, ShengMei Shen, Tingfa Xu, and Shuicheng Yan"
36b322095bd0953d6076096111e4a020f427793b,Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Large Displacement Optical Flow:
Descriptor Matching in Variational
Motion Estimation
Thomas Brox, Jitendra Malik, Fellow, IEEE"
36cf96fe11a2c1ea4d999a7f86ffef6eea7b5958,RGB-D Face Recognition With Texture and Attribute Features,"RGB-D Face Recognition with Texture and
Attribute Features
Gaurav Goswami, Student Member, IEEE, Mayank Vatsa, Senior Member, IEEE, and Richa Singh, Senior
Member, IEEE"
36018404263b9bb44d1fddaddd9ee9af9d46e560,Occluded Face Recognition by Using Gabor Features,"OCCLUDED FACE RECOGNITION BY USING GABOR
FEATURES
Burcu Kepenekci 1,2, F. Boray Tek 1,2, Gozde Bozdagi Akar 1
Department of Electrical And Electronics Engineering, METU, Ankara, Turkey
7h%ł7$.(cid:3)%ł/7(1(cid:15)(cid:3)$QNDUD(cid:15)(cid:3)7XUNH\"
36f039e39efde3558531b99d85cd9e3ab7d396b3,Efficiency of Recognition Methods for Single Sample per Person Based Face Recognition,"Efficiency of Recognition Methods for Single
Sample per Person Based Face Recognition
Miloš Oravec, Jarmila Pavlovičová, Ján Mazanec,
Ľuboš Omelina, Matej Féder and Jozef Ban
Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava
Slovakia
. Introduction
Even for the present-day computer technology, the biometric recognition of human face is
difficult  task  and  continually  evolving  concept  in  the  area  of  biometric  recognition.  The
rea of face recognition is well-described today in many papers and books, e.g. (Delac et al.,
008), (Li & Jain, 2005), (Oravec et al., 2010). The idea that two-dimensional still-image face
recognition  in  controlled  environment  is  already  a  solved  task  is  generally  accepted  and
several  benchmarks  evaluating  recognition  results  were  done  in  this  area  (e.g.  Face
Recognition  Vendor  Tests,  FRVT  2000,  2002,  2006,  http://www.frvt.org/).  Nevertheless,
many  tasks  have  to  be  solved,  such  as  recognition  in  unconstrained  environment,
recognition of non-frontal images, single sample per person problem, etc.
This chapter deals with single sample per person face recognition (also called one sample
per  person  problem).  This  topic  is  related  to  small  sample  size  problem  in  pattern
recognition. Although there are also advantages of single sample – fast and easy creation of"
367b5b814aa991329c2ae7f8793909ad8c0a56f1,Performance evaluation of random set based pedestrian tracking algorithms,"Performance Evaluation of Random Set Based
Pedestrian Tracking Algorithms
Branko Ristic
ISR Division
Australia
Jamie Sherrah
ISR Division
Australia
´Angel F. Garc´ıa-Fern´andez
Department of Signals and Systems
Chalmers University of Technology
Sweden"
36688a79cc8926f489ccb6e6dadba15afbb4b6a4,Linear discriminant analysis for the small sample size problem: an overview,"Int. J. Mach. Learn. & Cyber.
DOI 10.1007/s13042-013-0226-9
O R I G I N A L A R T I C L E
Linear discriminant analysis for the small sample size problem:
n overview
Alok Sharma • Kuldip K. Paliwal
Received: 19 March 2013 / Accepted: 26 December 2013
Ó Springer-Verlag Berlin Heidelberg 2014"
368132f8dfcbd6e857dfc1b7dce2ab91bd9648ad,"Simultaneous Localization And Mapping: Present, Future, and the Robust-Perception Age","Simultaneous Localization And Mapping:
Present, Future, and the Robust-Perception Age
Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
Davide Scaramuzza, Jos´e Neira, Ian D. Reid, John J. Leonard"
367008b91eb57c5ea64ef7520dfcabc0c5c85532,"Person Re-identification: Past, Present and Future","JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Person Re-identification:
Past, Present and Future
Liang Zheng, Yi Yang, and Alexander G. Hauptmann"
365b72a225a18a930b96e7c0b215b9fede8a0968,Storyline Reconstruction for Unordered Images,"Storyline Reconstruction for Unordered Images
Final Paper
Sameedha Bairagi, Arpit Khandelwal, Venkatesh Raizaday
Introduction:
Storyline reconstruction is a relatively new topic and has not been researched extensively. The
main objective is to take a stream of images as input and re-shuffle them in chronological order.
The recent growth of online multimedia data has generated lots and lots of unstructured data on
the web. Image streams are generated daily on websites like Flicker, Instagram etc. and almost
00 hours of video is uploaded on YouTube on a daily basis.
In  this paper,  we  try  and  implement  an  algorithm  which  uses  the  property of  videos  of being
temporally adept to sort a stream of unordered images. The basic process is as follows:
-  Generate  key  frames/video  summary  of  a  video  from  multiple  instances  of  the  same
ategory.
-  Cluster these key frames on the basis of the action being performed in them.
-  Create a graph from these clusters using temporal data from the videos.
-  Take an input stream of images and assign each image to its most probable cluster.
-  Use the graph to assign ordering to the images.
In the following sections, we will try and go deep into each of the step mentioned above and
discuss multiple approaches we implemented to do the same.
Background and Related work:"
362250566948f17693b737122fc1434173982da8,Automatic Image Annotation using Weakly Labelled Web Data,"Automatic Image Annotation using
Weakly Labelled Web Data
Pravin Kakar, Xiangyu Wang and Alex Yong-Sang Chia
Social Media and Internet Vision Analytics Lab,
Institute for Infocomm Research,
#21-01, 1 Fusionopolis Way,
{kakarpv, wangx,
Singapore 138632."
36ab143da8b6f6d49811afaaa7bcbf81c22a210e,Modeling Multimodal Clues in a Hybrid Deep Learning Framework for Video Classification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Modeling Multimodal Clues in a Hybrid Deep
Learning Framework for Video Classification
Yu-Gang Jiang, Zuxuan Wu, Jinhui Tang, Zechao Li, Xiangyang Xue, Shih-Fu Chang"
366595171c9f4696ec5eef7c3686114fd3f116ad,Algorithms and Representations for Visual Recognition,"Algorithms and Representations for Visual
Recognition
Subhransu Maji
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2012-53
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-53.html
May 1, 2012"
3607afdb204de9a5a9300ae98aa4635d9effcda2,Face Description with Local Binary Patterns: Application to Face Recognition,"Face Description with Local Binary Patterns:
Application to Face Recognition
Timo Ahonen, Student Member, IEEE, Abdenour Hadid,
nd Matti Pietik¨ainen, Senior Member, IEEE"
367c571480ac46d48be050dee4e6103a0ebb5db5,Multimedia Content Based Image Retrieval Iii: Local Tetra Pattern,"Manas M N et al Int. Journal of Engineering Research and Applications                       www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 6( Version 3), June 2014, pp.104-107
RESEARCH ARTICLE
OPEN ACCESS
Multimedia  Content  Based  Image  Retrieval  Iii:  Local  Tetra
Pattern
Nagaraja G S1, Rajashekara Murthy S2, Manas M N3, Sridhar N H4
(Department of CSE, RVCE, Visvesvaraya Technological University, Bangalore-59, Karnataka, India)
(Department of ISE, RVCE, Visvesvaraya Technological University, Bangalore-59, Karnataka, India)
(M.  Tech,  Department  of  CSE,  RVCE,  Visvesvaraya  Technological  University,  Bangalore-59,  Karnataka,
India)
(Research  Scholar,  Department  of  CSE,  RVCE,  Visvesvaraya  Technological  University,  Bangalore-59,
Karnataka, India)"
36119c10f75094e0568cae8256400c94546d973b,The CASIA NIR-VIS 2.0 Face Database,"The CASIA NIR-VIS 2.0 Face Database
Stan Z. Li, Dong Yi, Zhen Lei and Shengcai Liao
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences (CASIA)
szli, dyi, zlei,"
36b9faf0d6c4c6296193b8d5d7833624a181624c,Real-Time Multiple Human Perception With Color-Depth Cameras on a Mobile Robot,"Real-Time Multiple Human Perception
with Color-Depth Cameras on a Mobile Robot
Hao Zhang, Student Member, IEEE, Christopher Reardon, Student Member, IEEE, and Lynne E. Parker, Fellow, IEEE"
5c6ccca19179fd217a74ccb954a4c4370e4203e2,Correspondences of Persistent Feature Points on Near-Isometric Surfaces,"Correspondences of Persistent Feature Points
on Near-Isometric Surfaces
Ying Yang1,2, David G¨unther1,3, Stefanie Wuhrer3,1, Alan Brunton3,4
Ioannis Ivrissimtzis2, Hans-Peter Seidel1, Tino Weinkauf1 (cid:63)
MPI Informatik 2Durham University 3Saarland University 4University of Ottawa"
5cb343e447c7fd933ff8f57fc9c99c5673cad97d,MoCap-guided Data Augmentation for 3D Pose Estimation in the Wild,"MoCap-guided Data Augmentation
for 3D Pose Estimation in the Wild
Grégory Rogez
Cordelia Schmid
Inria Grenoble Rhône-Alpes, Laboratoire Jean Kuntzmann, France"
5ca2e14f91dffb4784c443fe5cfe7838c3f3713c,Convolutional Recurrent Predictor: Implicit Representation for Multi-target Filtering and Tracking,"Convolutional Recurrent Predictor:
Implicit Representation for Multi-target Filtering and Tracking
Mehryar Emambakhsh, Alessandro Bay and Eduard Vazquez
{mehryar.emambakhsh, alessandro.bay,
Cortexica Vision Systems
London, UK"
5c6de2d9f93b90034f07860ae485a2accf529285,Compensating for pose and illumination in unconstrained periocular biometrics,"Int. J. Biometrics, Vol. X, No. Y, xxxx
Compensating for pose and illumination in
unconstrained periocular biometrics
Chandrashekhar N. Padole and
Hugo Proença*
Department of Computer Science,
IT – Instituto de Telecomunicações,
University of Beira Interior,
6200-Covilhã, Portugal
Fax: +351-275-319899
E-mail:
E-mail:
*Corresponding author"
5c5dbca68946434afb201f0df90011104c85e4c4,Robust 3D Patch-Based Face Hallucination,"Robust 3D Patch-Based Face Hallucination
Chengchao Qu1,2 Christian Herrmann1,2 Eduardo Monari2 Tobias Schuchert2
J¨urgen Beyerer2,1
Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT)
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB)"
5cc9fdd3a588f6e62e46d7884c1dbeef92a782f2,Spontaneous attention to faces in Asperger syndrome using ecologically valid static stimuli.,"Durham Research Online
Deposited in DRO:
6 December 2014
Version of attached le:
Accepted Version
Peer-review status of attached le:
Peer-reviewed
Citation for published item:
Hanley, M. and McPhillips, M. and Mulhern, G. and Riby, D. M. (2013) 'Spontaneous attention to faces in
Asperger Syndrome using ecologically valid static stimuli.', Autism., 17 (6). pp. 754-761.
Further information on publisher's website:
http://dx.doi.org/10.1177/1362361312456746
Publisher's copyright statement:
Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for
personal research or study, educational, or not-for-prot purposes provided that:
• a full bibliographic reference is made to the original source
• a link is made to the metadata record in DRO
• the full-text is not changed in any way
The full-text must not be sold in any format or medium without the formal permission of the copyright holders."
5c7db2907c586f4f2d6ae5937b0dc0f4d1bc834a,Deliverable D2.1 Audio-visual Algorithms for Person Tracking and Characterization (baseline),"MULTIMODAL MALL ENTERTAINMENT ROBOT
mummer-project.eu
Grant No. 688147. Project started 2016-03-01. Duration 48 months.
DELIVERABLE D2.1
AUDIO-VISUAL ALGORITHMS FOR PERSON
TRACKING AND CHARACTERIZATION (BASELINE)
Jean-Marc Odobez (Idiap), Natalia Lyubova (SBRE),
Olivier Can´evet (Idiap), Kenneth Funes Mora (Idiap),
Weipeng He (Idiap), Angel Martinez Gonzalez (Idiap),
Jean-Marc Montanier (SBRE), Marc Moreaux (SBRE)
Beneficiaries:
Workpackage:
Idiap Research Institute (lead), SoftBank Robotics Europe
Active Multimodal Sensing and Perception
Version:
Nature:
Dissemination level:
Pages:
017-3-3
Draft"
5c0dc4dff1dfb5e27b19bef0713bccd9f85ce3b2,Joint probabilistic pedestrian head and body orientation estimation,"014 IEEE Intelligent Vehicles Symposium (IV)
June 8-11, 2014. Dearborn, Michigan, USA
978-1-4799-3637-3/14/$31.00 ©2014 IEEE"
5c8ad080ccb3f5e3c999c2948029f0bd005d5635,Engaging Image Captioning,"ENGAGING IMAGE CAPTIONING VIA PERSONALITY
Kurt Shuster, Samuel Humeau, Hexiang Hu, Antoine Bordes, Jason Weston
Facebook AI Research"
5c81048593a6729b2d0b948a1129a97bdbf82f11,Moving Object Localization Using Optical Flow for Pedestrian Detection from a Moving Vehicle,"Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 196415, 8 pages
http://dx.doi.org/10.1155/2014/196415
Research Article
Moving Object Localization Using Optical Flow for Pedestrian
Detection from a Moving Vehicle
Joko Hariyono, Van-Dung Hoang, and Kang-Hyun Jo
Graduate School of Electrical Engineering, University of Ulsan, Ulsan 680-749, Republic of Korea
Correspondence should be addressed to Kang-Hyun Jo;
Received 9 April 2014; Revised 7 June 2014; Accepted 8 June 2014; Published 10 July 2014
Academic Editor: Yu-Bo Yuan
Copyright © 2014 Joko Hariyono et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This paper presents a pedestrian detection method from a moving vehicle using optical flows and histogram of oriented gradients
(HOG). A moving object is extracted from the relative motion by segmenting the region representing the same optical flows after
ompensating the egomotion of the camera. To obtain the optical flow, two consecutive images are divided into grid cells 14 × 14
pixels; then each cell is tracked in the current frame to find corresponding cell in the next frame. Using at least three corresponding
ells, affine transformation is performed according to each corresponding cell in the consecutive images, so that conformed optical
flows are extracted. The regions of moving object are detected as transformed objects, which are different from the previously"
5c271b5f96cfce1b4fdacc728ae8f8ebcbc738f9,A framework for implicit human-centered image tagging inspired by attributed affect,"Vis Comput (2013)
O R I G I NA L  A RT I C L E
A framework for implicit human centered image tagging
inspired by attributed affect
Konstantinos C. Apostolakis · Petros Daras
Published online:
© Springer-Verlag Berlin Heidelberg 2013"
5cfa8d0384bcdf5dfd7501561c748e69f3a2a747,Lip AUs Detection by Boost-SVM and Gabor,"Lip AUs Detection by Boost-SVM and Gabor
Xianmei Wang, Yuyu Liang, Xiujie Zhao and Zhiliang Wang
School of Computer and Communication Engineering, University of Science and Technology, Beijing, China
Email:"
5c2e264d6ac253693469bd190f323622c457ca05,Improving large-scale face image retrieval using multi-level features,"978-1-4799-2341-0/13/$31.00 ©2013 IEEE
ICIP 2013"
5c48f97a8a8217025abafeababaef6288fd7ded6,Model syndromes for investigating social cognitive and affective neuroscience: a comparison of Autism and Williams syndrome.,"doi:10.1093/scan/nsl035
SCAN (2006) 1of 8
Model syndromes for investigating social cognitive
nd affective neuroscience: a comparison of
utism and Williams syndrome
Helen Tager-Flusberg, Daniela Plesa Skwerer, and Robert M. Joseph
Boston University School of Medicine, Boston, MA, USA
Autism and Williams syndrome are genetically based neurodevelopmental disorders that present strikingly different social
phenotypes. Autism involves fundamental impairments in social reciprocity and communication, whereas people with Williams
syndrome are highly sociable and engaging. This article reviews the behavioral and neuroimaging literature that has explored the
neurocognitive mechanisms that underlie these contrasting social phenotypes, focusing on studies of face processing. The article
oncludes with a discussion of how the social phenotypes of both syndromes may be characterized by impaired connectivity
etween the amygdala and other critical regions in the ’social brain’.
Keywords: autism; Williams syndrome; face processing; emotion processing; amygdala
INTRODUCTION
For the past two decades autism, (ASD)1 and Williams
syndrome (WMS) have captured the interest and imagina-
tion of cognitive neuroscientists. These neurodevelopmental
disorders present striking phenotypes that hold out the
promise of advancing our understanding of the biological"
5cdc02ed9f456219369fe3115321564c9955b9ae,Real-time Analysis and Visualization of the YFCC100m Dataset,"Real-time Analysis and Visualization
of the YFCC100m Dataset
Firstname Lastname
Institute
City, Country"
5ce40105e002f9cb428a029e8dec6efe8fad380e,Co-design of architectures and algorithms for mobile robot localization and model-based detection of obstacles. (Co-conception d'architectures et d'algorithmes pour la localisation de robots mobiles et la détection d'obstacles basée sur des modèles),"Co-design of architectures and algorithms for mobile
robot localization and model-based detection of obstacles
Daniel Törtei
To cite this version:
Daniel Törtei. Co-design of architectures and algorithms for mobile robot localization and model-based
detection of obstacles. Embedded Systems. Université Paul Sabatier - Toulouse III, 2016. English.
<NNT : 2016TOU30294>. <tel-01477662v2>
HAL Id: tel-01477662
https://tel.archives-ouvertes.fr/tel-01477662v2
Submitted on 16 Feb 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
5c5e1f367e8768a9fb0f1b2f9dbfa060a22e75c0,Reference Face Graph for Face Recognition,"Reference Face Graph for Face Recognition
Mehran Kafai, Member, IEEE, Le An, Student Member, IEEE, and Bir Bhanu, Fellow, IEEE"
5c35ac04260e281141b3aaa7bbb147032c887f0c,Face Detection and Tracking Control with Omni Car,"Face Detection and Tracking Control with Omni Car
Jheng-Hao Chen, Tung-Yu Wu
CS 231A Final Report
June 31, 2016"
5c435c4bc9c9667f968f891e207d241c3e45757a,"""How old are you?"" : Age Estimation with Tensors of Binary Gaussian Receptive Maps","RUIZ-HERNANDEZ, CROWLEY, LUX: HOW OLD ARE YOU?
""How old are you?"" : Age Estimation with
Tensors of Binary Gaussian Receptive Maps
John A. Ruiz-Hernandez
James L. Crowley
Augustin Lux
INRIA Grenoble Rhones-Alpes
Research Center and Laboratoire
d’Informatique de Grenoble (LIG)
655 avenue de l’Europe
8 334 Saint Ismier Cedex, France"
5c315aae464602115674716a7f976c4992fcb98e,Teachers’ Perception in the Classroom,"Teachers’ Perception in the Classroom
¨Omer S¨umer1
Patricia Goldberg1
Kathleen St¨urmer1
Tina Seidel3
Peter Gerjets2 Ulrich Trautwein1
Enkelejda Kasneci1
University of T¨ubingen, Germany
Leibniz-Institut f¨ur Wissensmedien, Germany
Technical University of Munich, Germany"
5c77901df1e0f52a9774b39e730c31afbc1214a7,Learning Social Tag Relevance by Neighbor Voting,"Learning Social Tag Relevance by Neighbor Voting
Xirong Li, Cees G. M. Snoek, Member, IEEE, Marcel Worring, Member, IEEE"
5cb1277bc7257e7b4cfc1699199c6d8e13ff0b1a,Refining Synthetic Images with Semantic Layouts by Adversarial Training,"Proceedings of Machine Learning Research 95:863-878, 2018
ACML 2018
Refining Synthetic Images with Semantic Layouts by
Adversarial Training
Tongtong Zhao
Dalian Maritime University
Dalian 116026, China
Yuxiao Yan
Dalian Maritime University
Dalian 116026, China
JinJia Peng
Dalian Maritime University
Dalian 116026, China
HaoHui Wei
Dalian Maritime University
Dalian 116026, China
Xianping Fu
Dalian Maritime University
Dalian 116026, China
Editors: Jun Zhu and Ichiro Takeuchi"
5c9c153f705a02e157adcf49dccf4f1eeb70cf93,Learning Appearance Transfer for Person Re-identification,"Learning Appearance Transfer for Person
Re-identification
Tamar Avraham and Michael Lindenbaum"
5c1e0e94d6cb74448c7b3c1e0db42121be4e9bd6,Saliency Detection using regression trees on hierarchical image segments,"SALIENCY DETECTION USING REGRESSION TREES ON
HIERARCHICAL IMAGE SEGMENTS
G¨okhan Yildirim, Appu Shaji, Sabine S¨usstrunk
School of Computer and Communication Sciences
´Ecole Polytechnique F´ed´erale de Lausanne"
5c3fd194ba96c5eea41c0772ad0b2292dedcd197,Understanding the Energy Saving Potential of Smart Scale Selection in the Viola and Jones Facial Detection Algorithm,
5cff58d081a4732b11e6da498196ed6fbb54d15b,Adversarial Examples for Semantic Segmentation and Object Detection,"Adversarial Examples for Semantic Segmentation and Object Detection
Cihang Xie1*, Jianyu Wang2*, Zhishuai Zhang1∗, Yuyin Zhou1, Lingxi Xie1, Alan Yuille1
Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218 USA
{cihangxie306, wjyouch, zhshuai.zhang, zhouyuyiner, 198808xc,
Baidu Research USA, Sunnyvale, CA 94089 USA"
5cd11d6b6cb7a2b8c00fcb535879edbd6b008a01,Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras,"Large-Scale Direct Sparse Visual Odometry with Stereo Cameras
Stereo DSO:
Rui Wang∗, Martin Schw¨orer∗, Daniel Cremers
Technical University of Munich
{wangr, schwoere,"
5c09d905f6d4f861624821bf9dfe2aae29137e9c,Women Also Snowboard: Overcoming Bias in Captioning Models,"Women also Snowboard:
Overcoming Bias in Captioning Models
Lisa Anne Hendricks * 1 Kaylee Burns * 1 Kate Saenko 2 Trevor Darrell 1 Anna Rohrbach 1"
5cead7ba087ebe7314f96d875f3d3dbb8dbed1c7,Automatic Food Intake Assessment Using Camera Phones,"Michigan Technological University
Digital Commons Michigan
Dissertations, Master's Theses and Master's Reports
- Open
Dissertations, Master's Theses and Master's Reports
Automatic Food Intake Assessment Using Camera
Phones
Fanyu Kong
Michigan Technological University
Copyright 2012 Fanyu Kong
Recommended Citation
Kong, Fanyu, ""Automatic Food Intake Assessment Using Camera Phones"", Dissertation, Michigan Technological University, 2012.
http://digitalcommons.mtu.edu/etds/494
Follow this and additional works at: http://digitalcommons.mtu.edu/etds
Part of the Computer Engineering Commons"
5cebc83001ea0737cc46360850fd294327c82013,MEMORY-BASED GAIT RECOGNITION 1 Memory-based Gait Recognition,"DANLIUet al.:MEMORY-BASEDGAITRECOGNITION
Memory-based Gait Recognition
Dan Liu
Mao Ye∗
Xudong Li
Feng Zhang
Lan Lin
School of Computer Science and
Engineering,
Center for Robotics,
Key Laboratory for NeuroInformation of
Ministry of Education,
University of Electronic Science and
Technology of China,
Chengdu 611731, P.R. China"
5cd34abb1e96e0c11f427364e40b1e87d6fc62c2,Greedy Part-Wise Learning of Sum-Product Networks,"Greedy Part-Wise Learning of Sum-Product
Networks
Robert Peharz, Bernhard C. Geiger and Franz Pernkopf
{robert.peharz, geiger,
Signal Processing and Speech Communication Laboratory
Graz, University of Technology"
5c02bd53c0a6eb361972e8a4df60cdb30c6e3930,Multimedia stimuli databases usage patterns: a survey report,"Multimedia stimuli databases usage patterns: a
survey report
M. Horvat1, S. Popović1 and K. Ćosić1
University of Zagreb, Faculty of Electrical Engineering and Computing
Department of Electric Machines, Drives and Automation
Zagreb, Croatia"
5c5304b79ebc2afd28ade6bb88daa80144ae3587,Review of Human-Robot Interactive Modelling and Application for Elders,"COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12C) 408-413
Han Jing, Xie, Lun Xu Shangmou, Wang Zhiliang
Review of Human-Robot Interactive Modelling and
Application for Elders
Jing Han, Lun Xie*, Shangmou Xu, Zhiliang Wang
School of Computer and Communication Engineering, University of Science and Technology Beijing, No.30 Xueyuan  road, Beijing, China
Received 23 November 2014, www.cmnt.lv"
5c717afc5a9a8ccb1767d87b79851de8d3016294,A novel eye region based privacy protection scheme,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
5c879f9e2e79d6c6af8d4c821575e73876240a83,DeepFaceLIFT: Interpretable Personalized Models for Automatic Estimation of Self-Reported Pain,"Journal of Machine Learning Research 66 (2017) 1-16
Submitted 5/17; Published 08/17
DeepFaceLIFT: Interpretable Personalized Models
for Automatic Estimation of Self-Reported Pain
Dianbo Liu*2,3
Fengjiao Peng*1
Andrew Shea*3
Ognjen (Oggi) Rudovic1
Rosalind Picard1
Media Lab, MIT, Cambridge, MA, USA
Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA"
0971a5e835f365b6008177a867cfe4bae76841a5,Supervised Dictionary Learning by a Variational Bayesian Group Sparse Nonnegative Matrix Factorization,"Supervised Dictionary Learning by a
Variational Bayesian Group Sparse
Nonnegative Matrix Factorization
Ivan Ivek"
09f4e1064afffd8464e9fd558fc8ef7be5e33170,Spatial and Temporal Organization of the Individual Human Cerebellum,"Article
Spatial and Temporal Organization of the Individual
Human Cerebellum"
098388c08ef7d23ab583819b793b0057c0396dc8,Low Rank Approximation using Error Correcting Coding Matrices,"Low Rank Approximation using Error Correcting Coding Matrices
Shashanka Ubaru
Arya Mazumdar
Yousef Saad
University of Minnesota-Twin Cities, MN USA"
092f955f701b31f3e58adb57c57e39a4dcab9fcd,Weighted Additive Criterion for Linear Dimension Reduction,"Seventh IEEE International Conference on Data Mining
Seventh IEEE International Conference on Data Mining
Seventh IEEE International Conference on Data Mining
Seventh IEEE International Conference on Data Mining
Seventh IEEE International Conference on Data Mining
Weighted Additive Criterion for Linear Dimension Reduction
Jing Peng & Stefan Robila
Computer Science Department, Montclair State University
Montclair, NJ 07043"
09e5f2f819a21162d833f356670a140cd555a740,Adaptive Algorithm and Platform Selection for Visual Detection and Tracking,"Adaptive Algorithm and Platform Selection for
Visual Detection and Tracking
Shu Zhang, Qi Zhu, and Amit K. Roy-Chowdhury"
096e68f8d632f4363056d54a7de9c59d66b806d8,Impaired visuocortical discrimination learning of socially conditioned stimuli in social anxiety.,"Impaired Visuocortical Discrimination Learning of Socially
Conditioned Stimuli in Social Anxiety
Lea M. Ahrens1, Andreas Mühlberger2, Paul Pauli1, & Matthias J. Wieser1
Department of Psychology I, University of Würzburg, Germany
Department of Clinical Psychology and Psychotherapy, University of Regensburg, Germany
Address for correspondence:
Lea M. Ahrens, University of Würzburg, Department of Psychology, Biological Psychology, Clinical
Psychology, and Psychotherapy, Marcusstr. 9-11, D-97070 Würzburg, Phone.: +49 931 31-81929,
Fax: +49 931 31-82733,
Running title:
Social Conditioning in Social Anxiety
Words: 4995 (+ 8 place marker)
© The Author (2014). Published by Oxford University Press. For Permissions, please email:"
0969aa7d4557699b7460e4159658828efafed8bd,Con-Text: Text Detection for Fine-Grained Object Classification,"Con-Text: Text Detection for Fine-grained Object
Classification
Sezer Karaoglu, Ran Tao, Jan C. van Gemert and Theo Gevers, Member, IEEE,"
096eb8b4b977aaf274c271058feff14c99d46af3,Multi-observation visual recognition via joint dynamic sparse representation,"REPORT DOCUMENTATION PAGE
Form Approved OMB NO. 0704-0188
including
for  reviewing
information,
this  collection  of
information
is  estimated
to  average  1 hour  per  response,
the  data  needed,  and  completing  and  reviewing
this  collection  of
instructions,
The  public  reporting  burden
Send  comments
searching  existing  data  sources,  gathering  and  maintaining
to  Washington
regarding
this  burden  estimate  or  any  other  aspect  of
Information  Operations  and  Reports,  1215 Jefferson  Davis  Highway,  Suite  1204,  Arlington  VA,  22202-4302.
Headquarters  Services,  Directorate"
09d9d9d153119558e83643f0097ffb87e1037649,Face Recognition and Verification Using Artificial Neural Network,"©2010 International Journal of Computer Applications (0975 – 8887)
Volume 1 – No. 14
Face Recognition and Verification
Using Artificial Neural Network
Ms. S. S.Ranawade
Maharashtra Institute Technology, Pune 05
/  nonface
images.  We  solve"
09137e3c267a3414314d1e7e4b0e3a4cae801f45,Two Birds with One Stone: Transforming and Generating Facial Images with Iterative GAN,"Noname manuscript No.
(will be inserted by the editor)
Two Birds with One Stone: Transforming and Generating
Facial Images with Iterative GAN
Dan Ma · Bin Liu · Zhao Kang · Jiayu Zhou · Jianke Zhu · Zenglin Xu
Received: date / Accepted: date"
092d5bc60a21933abf98aa85ace8a9c85df16958,Implementing Randomized Matrix Algorithms in Parallel and Distributed Environments,"Implementing Randomized Matrix Algorithms in Parallel and
Distributed Environments
Jiyan Yang ∗
Xiangrui Meng †
Michael W. Mahoney ‡"
09d78009687bec46e70efcf39d4612822e61cb8c,Consistent Re-identification in a Camera Network,"Consistent Re-identification in a Camera
Network
Abir Das(cid:2), Anirban Chakraborty(cid:2), and Amit K. Roy-Chowdhury(cid:2)(cid:2)
Dept. of Electrical Engineering, University of California, Riverside, CA 92521, USA"
09926ed62511c340f4540b5bc53cf2480e8063f8,Tubelet Detector for Spatio-Temporal Action Localization,"Action Tubelet Detector for Spatio-Temporal Action Localization
Vicky Kalogeiton1,2
Philippe Weinzaepfel3
Vittorio Ferrari2
Cordelia Schmid1"
0917de8a3be50f2a813e7b77fc53b81125a58acb,Video based head detection and tracking surveillance system,978-1-4673-0024-7/10/$26.00 ©2012 IEEE                                 2832
09fbfb566a8f2af9df4d3a1bf5df00d0693a22eb,Conformal Prediction for Automatic Face Recognition,"Proceedings of Machine Learning Research 60:1–20, 2017 Conformal and Probabilistic Prediction and Applications
Conformal Prediction for Automatic Face Recognition
Charalambos Eliades
Harris Papadopoulos
Computer Science and Engineering Department, Frederick University,
7 Y. Frederickou St., Palouriotisa, Nicosia 1036, Cyprus
Editor: Alex Gammerman, Vladimir Vovk, Zhiyuan Luo, and Harris Papadopoulos"
0965a62c9c354d2c7175e313ade9e38120f1bd4e,Efficient Face Detection Method using Modified Hausdorff Distance Method with C 4 . 5 Classifier and Canny Edge Detection,"International Journal of Computer Applications (0975 – 8887)
Volume 123 – No.10, August 2015
Efficient Face Detection Method using Modified
Hausdorff Distance Method with C4.5 Classifier and
Canny Edge Detection
Neelima Singh
Research Scholar
Computer Science and
Engineering Department
Samrat Ashok Technological
Institute, Vidisha, M. P.
Satish Pawar
Assistant Professor
Computer Science and
Engineering Department
Samrat Ashok Technological
Institute, Vidisha, M. P.
Yogendra Kumar Jain
Head of Department
Computer Science and"
09eaa332ddcd036b0f0950bbdb3624072f105a3b,When appearance does not match accent: neural correlates of ethnicity-related expectancy violations.,"doi: 10.1093/scan/nsw148
Advance Access Publication Date: 19 October 2016
Original article
When appearance does not match accent: neural
orrelates of ethnicity-related expectancy violations
Karolina Hansen,1 Melanie C. Steffens,2 Tamara Rakic,3 and Holger Wiese4
University of Warsaw, Warsaw, Poland, 2University of Koblenz-Landau, Landau, Germany, 3Lancaster
University, Lancaster, UK, and 4Durham University, Durham, UK
Correspondence should be addressed to Karolina Hansen, Faculty of Psychology, University of Warsaw, Stawki 5/7, 00-183 Warszawa, Poland.
E-mail:"
09c4732280c3b2586e390d818ef0056a8de73e2c,A New Method of Histogram Computation for Efficient Implementation of the HOG Algorithm,"Article
A New Method of Histogram Computation for
Efficient Implementation of the HOG Algorithm †
Mariana-Eugenia Ilas 1,* ID and Constantin Ilas 2
Department of Electronics, Telecommunications and IT, University Politehnica Bucharest,
Bucharest 060042, Romania
Department of Automatics and Computer Science, University Politehnica Bucharest,
Bucharest 060042, Romania;
* Correspondence: Tel.: +40-21-402-4618
This paper is an extended version of our paper published in the 9th Computer Science & Electronic
Engineering Conference (CEEC), Colchester, UK, 27–29 September 2017.
Received: 5 January 2018; Accepted: 27 February 2018; Published: 1 March 2018"
09a6261c3334471bb0bc1a173aff672afe963ae3,Key-Pose Prediction in Cyclic Human Motion,"Key-Pose Prediction in Cyclic Human Motion
Multimedia Computing and Computer Vision Lab, University of Augsburg
Dan Zecha
Rainer Lienhart"
09c019141b209401b76a35184c86bab6cd1fe6b9,3D Deformable Shape Reconstruction with Diffusion Maps,"TAO, MATUSZEWSKI: 3D RECONSTRUCTION WITH DIFFUSION MAPS
D Deformable Shape Reconstruction with
Diffusion Maps
Lili Tao
Bogdan J. Matuszewski
Applied Digital Signal and Image
Processing Research Centre
University of Central Lancashire, UK"
09718bf335b926907ded5cb4c94784fd20e5ccd8,"Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft k-NN ensemble","Recognizing Partially Occluded, Expression Variant
Faces From Single Training Image per Person
With SOM and Soft k-NN Ensemble
Xiaoyang Tan, Songcan Chen, Zhi-Hua Zhou, Member, IEEE, and Fuyan Zhang"
09251a324dc4865732e2ead50334bfb906f8ffb4,Beyond Text based sentiment analysis: Towards multi-modal systems,"Springer Cognitive Computation manuscript No.
(will be inserted by the editor)
Beyond Text based sentiment analysis: Towards multi-modal
systems
Soujanya Poria · Amir Hussain · Erik Cambria
the date of receipt and acceptance should be inserted later"
09ac8added26307b358b83884b55af29de8b5bf9,Learning to grasp objects with multiple contact points,"Learning to grasp objects with multiple contact points
Quoc V. Le, David Kamm, Arda F. Kara, Andrew Y. Ng"
0949f46d5db3169813ae23acafa345c6b8a37f08,When Slower Is Faster: On Heterogeneous Multicores for Reliable Systems,"When Slower is Faster: On Heterogeneous Multicores for Reliable Systems
Tomas Hruby
The Network Institute, VU University Amsterdam
Herbert Bos
Andrew S. Tanenbaum"
09222c50d8ffcc74bbb7462400bd021772850bba,Incorporating Network Built-in Priors in Weakly-Supervised Semantic Segmentation,"Incorporating Network Built-in Priors in
Weakly-supervised Semantic Segmentation
Fatemeh Sadat Saleh, Mohammad Sadegh Aliakbarian, Mathieu Salzmann, Lars Petersson,
Jose M. Alvarez, and Stephen Gould"
0994916f67fd15687dd5d7e414becb1cd77129ac,Multi Class Different Problem Solving Using Intelligent Algorithm,"SIVAKUMAR R, Dr.M.SRIDHAR / International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622   www.ijera.com
Vol. 2, Issue4, July-August 2012, pp.1782-1785
Multi Class Different Problem Solving Using Intelligent
Algorithm
SIVAKUMAR R, 2Dr.M.SRIDHAR
Research Scholar Dept of ECE BHARATH UNIVERSITY India
Dept of ECE BHARATH UNIVERSITY India"
0903bb001c263e3c9a40f430116d1e629eaa616f,An Empirical Study of Context in Object Detection,"CVPR 2009 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
An Empirical Study of Context in Object Detection
Anonymous CVPR submission
Paper ID 987"
092597b8e0f31be1671025cea1b9fd28a48e04bc,Supervised Person Re-ID based on Deep Hand-crafted and CNN Features,
091b4ad74ac5bec206604673506b19838d6a0c52,Person Re-Identification By Saliency Learning,"|| Volume 2 ||Issue 10 ||MAY 2017||ISSN (Online) 2456-0774
INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH
AND ENGINEERING TRENDS
Person Re-Identification By Saliency Learning
Shaihenila
P.G. Student, Computer Science & Engineering, Everest Educational Society's Group of Institutions, Aurangabad, India."
092b64ce89a7ec652da935758f5c6d59499cde6e,Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments,"Human3.6M:
Large Scale Datasets and Predictive Methods
for 3D Human Sensing in Natural Environments
Catalin Ionescu∗†‡, Dragos Papava∗‡, Vlad Olaru∗, Cristian Sminchisescu§∗"
09df62fd17d3d833ea6b5a52a232fc052d4da3f5,Mejora de Contraste y Compensación en Cambios de la Iluminación,"ISSN: 1405-5546
Instituto Politécnico Nacional
México
Rivas Araiza, Edgar A.; Mendiola Santibañez, Jorge D.; Herrera Ruiz, Gilberto; González Gutiérrez,
Carlos A.; Trejo Perea, Mario; Ríos Moreno, G. J.
Mejora de Contraste y Compensación en Cambios de la Iluminación
Instituto Politécnico Nacional
Distrito Federal, México
Disponible en: http://www.redalyc.org/articulo.oa?id=61509703
Cómo citar el artículo
Número completo
Más información del artículo
Página de la revista en redalyc.org
Sistema de Información Científica
Red de Revistas Científicas de América Latina, el Caribe, España y Portugal
Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto"
093b6af0e5f00f9578088a49822d8d500283cab0,Human visual behaviour for collaborative human-machine interaction,"Human Visual Behaviour for
Collaborative Human-Machine
Interaction
Andreas Bulling
Perceptual User Interfaces
Group
Max Planck Institute for
Informatics
Saarbr¨ucken, Germany
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components"
09e3967a34cca8dc0f00c9ee7a476a96812a55e0,1 Machine Learning Methods for Social Signal Processing,"Machine Learning Methods for
Social Signal Processing
Ognjen Rudovic, Mihalis A. Nicolaou and Vladimir Pavlovic
Introduction
In this chapter we focus on systematization, analysis, and discussion of recent
trends in machine learning methods for Social signal processing (SSP)(Pentland
007). Because social signaling is often of central importance to subconscious de-
ision making that affects everyday tasks (e.g., decisions about risks and rewards,
resource utilization, or interpersonal relationships) the need for automated un-
derstanding of social signals by computers is a task of paramount importance.
Machine learning has played a prominent role in the advancement of SSP over
the past decade. This is, in part, due to the exponential increase of data avail-
bility that served as a catalyst for the adoption of a new data-driven direction in
ffective computing. With the dif‌f‌iculty of exact modeling of latent and complex
physical processes that underpin social signals, the data has long emerged as the
means to circumvent or supplement expert- or physics-based models, such as the
deformable musculo-sceletal models of the human body, face or hands and its
movement, neuro-dynamical models of cognitive perception, or the models of the
human vocal production. This trend parallels the role and success of machine
learning in related areas, such as computer vision, c.f., (Poppe 2010, Wright"
094f5e36dae2602e179f2c1d95a616df3dbe967f,Bilinear classifiers for visual recognition,"Bilinear classifiers for visual recognition
Hamed Pirsiavash
Deva Ramanan
Charless Fowlkes
Department of Computer Science
University of California at Irvine"
0910a4c470a410fac446f4026f7c8ef512ae7427,Hierarchical Question-Image Co-Attention for Visual Question Answering,"Hierarchical Question-Image Co-Attention
for Visual Question Answering
Jiasen Lu∗, Jianwei Yang∗, Dhruv Batra∗† , Devi Parikh∗†
Virginia Tech, † Georgia Institute of Technology
{jiasenlu, jw2yang, dbatra,"
09d08e543a9b2fc350cb37e47eb087935c12be16,"A Multimodal, Full-Surround Vehicular Testbed for Naturalistic Studies and Benchmarking: Design, Calibration and Deployment","A Multimodal, Full-Surround Vehicular Testbed for Naturalistic Studies
nd Benchmarking: Design, Calibration and Deployment
Akshay Rangesh1, Kevan Yuen1, Ravi Kumar Satzoda1, Rakesh Nattoji Rajaram1,
Pujitha Gunaratne2, and Mohan M. Trivedi1
Laboratory for Intelligent and Safe Automobiles (LISA), UC San Diego
Toyota Collaborative Safety Research Center (CSRC)
in autonomous"
09f853ce12f7361c4b50c494df7ce3b9fad1d221,Random Forests for Real Time 3D Face Analysis,"myjournal manuscript No.
(will be inserted by the editor)
Random forests for real time 3D face analysis
Gabriele Fanelli · Matthias Dantone · Juergen Gall · Andrea Fossati ·
Luc Van Gool
Received: date / Accepted: date"
09ba6b87736fa29aae88c5b4cf30f25188e4c6ef,Gaze Estimation in the 3D Space Using RGB-D Sensors,"The final publication is available at Springer via http://dx.doi.org/10.1007/s11263-015-0863-4
Gaze Estimation in the 3D Space Using RGB-D sensors
Towards Head-Pose And User Invariance
Kenneth A. Funes-Mora · Jean-Marc Odobez
Received: 19 November 2014 / Accepted: 23 September 2015"
09edf114f8764c82713f8dd35b1b32ad83ecaa17,Large-Margin Learning of Compact Binary Image Encodings,"MANUSCRIPT
Large-margin Learning of Compact Binary Image
Encodings
Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel"
09b0040ad09d61f3403c57c437c03271f8614add,HUMAN ACTIVITY RECOGNITION AND GYMNASTICS ANALYSIS THROUGH DEPTH IMAGERY by,"HUMAN ACTIVITY RECOGNITION AND
GYMNASTICS ANALYSIS THROUGH
DEPTH IMAGERY
Brian J. Reily"
09750c9bbb074bbc4eb66586b20822d1812cdb20,Estimation of the neutral face shape using Gaussian Mixture Models,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
09e15bb266da86d0a9525d2a94ac0b38f0b53b88,Detect What You Can: Detecting and Representing Objects Using Holistic Models and Body Parts,"Detect What You Can: Detecting and Representing Objects using Holistic
Models and Body Parts
Xianjie Chen1, Roozbeh Mottaghi2, Xiaobai Liu1, Sanja Fidler3, Raquel Urtasun3, Alan Yuille1
University of California, Los Angeles 2Stanford University 3University of Toronto"
0956a3c628959afcf870f5d7ec581160a4aa5221,LIFEisGAME Prototype: A Serious Game about Emotions for Children with Autism Spectrum Disorders,"Volume 11, Number 3, 191 – 211
LIFEisGAME Prototype: A Serious Game about Emotions
for Children with Autism Spectrum Disorders
Samanta Alves1, António Marques2, Cristina Queirós∗1 and Verónica Orvalho3
Psychosocial
Rehabilitation
Laboratory, Faculty of
Psychology and
Educational Sciences,
Porto University
(Portugal)
Psychosocial
Rehabilitation
Laboratory, School of
Allied Health Sciences,
Porto Polytechnic
Institute
(Portugal)
Porto
Interactive"
09749e7b0ae6bd9ab37671fcc4f0e7a7bcf9ff2e,Perceptual enhancement of emotional mocap head motion: An experimental study,"Perceptual Enhancement of Emotional Mocap Head Motion: An Experimental
Study
Yu Ding
Univeristy of Houston
Houston, TX, USA
Lei Shi
Univeristy of Houston
Houston, TX, USA
Zhigang Deng
Univeristy of Houston
Houston, TX, USA"
097f674aa9e91135151c480734dda54af5bc4240,Face Recognition Based on Multiple Region Features,"Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney
Face Recognition Based on Multiple Region Features
Jiaming Li, Geoff  Poulton, Ying Guo,  Rong-Yu Qiao
CSIRO Telecommunications & Industrial Physics
Australia
Tel: 612 9372 4104, Fax: 612 9372 4411, Email:"
5d0e11844f1a210f16025e990de938f6732672ab,Distance to Center of Mass Encoding for Instance Segmentation,"Distance to Center of Mass Encoding for Instance Segmentation
Thomio Watanabe
University of Sao Paulo
Denis Wolf
University of Sao Paulo"
5da740682f080a70a30dc46b0fc66616884463ec,Real-Time Head Pose Estimation Using Multi-variate RVM on Faces in the Wild,"Real-Time Head Pose Estimation Using
Multi-Variate RVM on Faces in the Wild
Mohamed Selim, Alain Pagani, Didier Stricker
Augmented Vision Research Group,
German Research Center for Artificial Intelligence (DFKI),
Tripstaddterstr. 122, 67663 Kaiserslautern, Germany
Technical University of Kaiserslautern
http://www.av.dfki.de"
5dc003a75a302761778cb1c15d796e3d90dd9322,Bayesian Fisher's Discriminant for Functional Data,"Bayesian Fisher’s Discriminant for Functional Data
Yao-Hsiang Yang ∗, Lu-Hung Chen†, Chieh-Chih Wang‡, and Chu-Song Chen §
December 10, 2014"
5d1608e03ab9c529d0b05631f9d2a3afcbf1c3e3,Sparsity and Robustness in Face Recognition,"Sparsity and Robustness in Face Recognition
John Wright, Arvind Ganesh, Allen Yang, Zihan Zhou, and Yi Ma
Background. This note concerns the use of techniques for sparse signal representation and sparse
from the paper [WYG+09], which showed how, under certain technical conditions, one could cast
the face recognition problem as one of seeking a sparse representation of a given input face image
in terms of a “dictionary” of training images and images of individual pixels. To be more precise,
the method of [WYG+09] assumes access to a suf‌f‌icient number of well-aligned training images of
each of the k subjects. These images are stacked as the columns of matrices A1, . . . , Ak. Given a
new test image y, also well aligned, but possibly subject to illumination variation or occlusion, the
method of [WYG+09] seeks to represent y as a sparse linear combination of the database as whole.
Writing A = [A1 | ··· | Ak], this approach solves
(cid:107)x(cid:107)1 + (cid:107)e(cid:107)1
subj. to Ax + e = y.
minimize
the identity of the test image y the index whose sparse coef‌f‌icients minimize the residual:
ˆi = arg min
(cid:107)y − Aixi − e(cid:107)2.
This approach demonstrated successful results in laboratory settings (fixed pose, varying illumi-
nation, moderate occlusion) in [WYG+09], and was extended to more realistic settings (involving
moderate pose and misalignemnt) in [WWG+11]. For the sake of clarity, we repeat the above"
5d80149e005894ab57f47e667f3e060e247d8e43,Lip reading using CNN and LSTM,"Lip reading using CNN and LSTM
Amit Garg
Jonathan Noyola
Sameep Bagadia"
5df11c59e3b47189486445f5833675bf08359bfe,Influence of Image Classification Accuracy on Saliency Map Estimation,"IET Research Journals
Brief Paper
Influence of Image Classification Accuracy
on Saliency Map Estimation
Taiki Oyama1 Takao Yamanaka1
Department of Information & Communication Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-0094, Japan
* E-mail:
ISSN 1751-8644
doi: 0000000000
www.ietdl.org"
5da139fc43216c86d779938d1c219b950dd82a4c,A Generalized Multiple Instance Learning Algorithm for Iterative Distillation and Cross-Granular Propagation of Video Annotations,"-4244-1437-7/07/$20.00 ©2007 IEEE
II - 205
ICIP 2007"
5d04bd7104f08f7fb91967613ffc519c27641e99,Bound to Lose: Physical Incapacitation Increases the Conceptualized Size of an Antagonist in Men,"Bound to Lose: Physical Incapacitation Increases the
Conceptualized Size of an Antagonist in Men
Daniel M. T. Fessler*, Colin Holbrook
Department of Anthropology and Center for Behavior, Evolution, and Culture, University of California Los Angeles, Los Angeles, California, United States of America"
5d14cc415a93e6f3a625ed7794e1fdcf99ea5713,Predicting Face Recognition Performance Using Image Quality,"Predicting Face Recognition Performance Using
Image Quality
Abhishek Dutta, Raymond Veldhuis, Senior Member, IEEE and Luuk Spreeuwers,"
5da53a17165fcc64e8fb6e9ca532bfb6d95ff622,RSCM: Region Selection and Concurrency Model for Multi-Class Weather Recognition,"RSCM: Region Selection and Concurrency Model
for Multi-Class Weather Recognition
Di Lin, Cewu Lu, Member, IEEE, Hui Huang, Member, IEEE, and Jiaya Jia, Senior Member, IEEE
ondition"
5d185d82832acd430981ffed3de055db34e3c653,A Fuzzy Reasoning Model for Recognition of Facial Expressions,"A Fuzzy Reasoning Model for Recognition
of Facial Expressions
Oleg Starostenko1, Renan Contreras1, Vicente Alarcón Aquino1, Leticia Flores Pulido1,
Jorge Rodríguez Asomoza1, Oleg Sergiyenko2, and Vira Tyrsa3
Research Center CENTIA, Department of Computing, Electronics and Mechatronics,
Universidad de las Américas, 72820, Puebla, Mexico
{oleg.starostenko; renan.contrerasgz; vicente.alarcon; leticia.florespo;
Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juárez,
Insurgentes Este, 21280, Mexicali, Baja California, Mexico
Universidad Politécnica de Baja California, Mexicali, Baja California, Mexico"
5d90f06bb70a0a3dced62413346235c02b1aa086,Learning Multiple Layers of Features from Tiny Images,"Learning Multiple Layers of Features from Tiny Images
Alex Krizhevsky
April 8, 2009"
5d233e6f23b1c306cf62af49ce66faac2078f967,Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions,"RESEARCH ARTICLE
Optimal Geometrical Set for Automated
Marker Placement to Virtualized Real-Time
Facial Emotions
Vasanthan Maruthapillai, Murugappan Murugappan*
School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600, Ulu Pauh, Arau, Perlis, West Malaysia"
5da0224590d91defe8c75db0ab5e12d50b6ab6f3,NMTPY: A Flexible Toolkit for Advanced Neural Machine Translation Systems,"NMTPY: A FLEXIBLE TOOLKIT FOR ADVANCED
NEURAL MACHINE TRANSLATION SYSTEMS
Ozan Caglayan, Mercedes García-Martínez, Adrien Bardet, Walid Aransa,
Fethi Bougares, Loïc Barrault
Laboratoire d’Informatique de l’Université du Maine (LIUM)
Language and Speech Technology (LST) Team
Le Mans, France"
5da43ff9c246ae37d9006bba3406009cb4fb1dcf,Lifelong Machine Learning Lifelong Machine Learning,"Lifelong Machine Learning
November, 2016
Zhiyuan Chen and Bing Liu
Draft : This is an early draft of the book.
Zhiyuan Chen and Bing Liu. Lifelong Machine Learning.
Morgan & Claypool Publishers, Nov 2016.
LifelongMachineLearningZhiyuan ChenBing Liu"
5dcfb84ab3f5d5f1dd02f59e45154c9710de97b2,On the Latent Variable Interpretation in Sum-Product Networks,"On the Latent Variable Interpretation in
Sum-Product Networks
Robert Peharz, Robert Gens, Franz Pernkopf, Senior Member, IEEE, and Pedro Domingos"
5db46dda9f0f08220d49a5db1204f149bd4f6a4a,Engaging Image Captioning Via Personality,"ENGAGING IMAGE CAPTIONING VIA PERSONALITY
Kurt Shuster, Samuel Humeau, Hexiang Hu, Antoine Bordes, Jason Weston
Facebook AI Research"
5db075a308350c083c3fa6722af4c9765c4b8fef,The Novel Method of Moving Target Tracking Eyes Location based on SIFT Feature Matching and Gabor Wavelet Algorithm,"The Novel Method of Moving Target Tracking Eyes
Location based on SIFT Feature Matching and Gabor
Wavelet Algorithm
* Jing Zhang, Caixia Yang, Kecheng Liu
College of Computer and Information Engineering, Nanyang Institute of Technology,
Henan Nanyang, 473004, China
* Tel.: 0086+13838972861
* E-mail:
Sensors & Transducers, Vol. 154, Issue 7, July 2013, pp. 129-137
SSSeeennnsssooorrrsss   &&&   TTTrrraaannnsssddduuuccceeerrrsss
© 2013 by IFSA
http://www.sensorsportal.com
Received: 28 April 2013   /Accepted: 19 July 2013   /Published: 31 July 2013"
5d7de2eb2ee99798bfb2e50ed5169e3b8a35469a,Design of a Three-dimensional Face Recognition System,"The Open Automation and Control Systems Journal, 2015, 7, 587-590
Design of a Three-Dimensional Face Recognition System
Send Orders for Reprints to
Open Access
Wang Xuechun* and Wang Zhaoping
School of Information Engineering, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, P.R. China"
5d7f8eb73b6a84eb1d27d1138965eb7aef7ba5cf,Robust Registration of Dynamic Facial Sequences,"Robust Registration of Dynamic Facial Sequences
Evangelos Sariyanidi, Hatice Gunes, and Andrea Cavallaro"
5db4fe0ce9e9227042144758cf6c4c2de2042435,Recognition of Facial Expression Using Haar Wavelet Transform,"INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.3, JUNE 2010
Recognition of Facial Expression Using Haar
Wavelet Transform
M. Satiyan,  M.Hariharan,  R.Nagarajan
paper
features
investigates"
5d165ff5b0b389e32809c17838a2afc218a91d62,Object Detectors Emerge in Deep Scene CNNs,"Published as a conference paper at ICLR 2015
OBJECT DETECTORS EMERGE IN DEEP SCENE CNNS
Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba
Computer Science and Artificial Intelligence Laboratory, MIT"
5d7f9e1463b596eb5d77865a8b1a0e149215303b,A Hidden Markov Model-based Approach for Face Detection and Recognition a Hidden Markov Model-based Approach for Face Detection and Recognition,"AHiddenMarkovModel-BasedApproach
forFaceDetectionandRecognition
ATHESIS
Presentedto
TheAcademicFaculty
AraNe(cid:12)an
InPartialFul(cid:12)llment
oftheRequirementsfortheDegreeof
DoctorofPhilosophyinElectricalEngineering
GeorgiaInstituteofTechnology
August,"
5d5cd6fa5c41eb9d3d2bab3359b3e5eb60ae194e,Face Recognition Algorithms,"Face Recognition Algorithms
Proyecto Fin de Carrera
June 16, 2010
Ion Marqu´es
Supervisor:
Manuel Gra˜na"
5d09d5257139b563bd3149cfd5e6f9eae3c34776,Pattern recognition with composite correlation filters designed with multi-objective combinatorial optimization,"Optics Communications 338 (2015) 77–89
Contents lists available at ScienceDirect
Optics Communications
journal homepage: www.elsevier.com/locate/optcom
Pattern recognition with composite correlation filters designed with
multi-objective combinatorial optimization
Victor H. Diaz-Ramirez a,n, Andres Cuevas a, Vitaly Kober b, Leonardo Trujillo c,
Abdul Awwal d
Instituto Politécnico Nacional – CITEDI, Ave. del Parque 1310, Mesade Otay, Tijuana B.C. 22510, México
Department of Computer Science, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada B.C. 22860, México
Instituto Tecnológico de Tijuana, Blvd. Industrial y Ave. ITR TijuanaS/N, Mesa de Otay, Tijuana B.C. 22500, México
d National Ignition Facility, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
r t i c l e i n f o
b s t r a c t
Article history:
Received 12 July 2014
Accepted 16 November 2014
Available online 23 October 2014
Keywords:
Object recognition"
5d7395085f2636dd2b6262bc7f3fef14058f4765,Regularizing Deep Networks by Modeling and Predicting Label Structure,"Regularizing Deep Networks by Modeling and Predicting Label Structure
Mohammadreza Mostajabi
Michael Maire
Gregory Shakhnarovich
Toyota Technological Institute at Chicago"
5d197c8cd34473eb6cde6b65ced1be82a3a1ed14,A Face Image Database for Evaluating Out-of-Focus Blur,"0AFaceImageDatabaseforEvaluatingOut-of-FocusBlurQiHan,QiongLiandXiamuNiuHarbinInstituteofTechnologyChina1.IntroductionFacerecognitionisoneofthemostpopularresearchfieldsofcomputervisionandmachinelearning(Tores(2004);Zhaoetal.(2003)).Alongwithinvestigationoffacerecognitionalgorithmsandsystems,manyfaceimagedatabaseshavebeencollected(Gross(2005)).Facedatabasesareimportantfortheadvancementoftheresearchfield.Becauseofthenonrigidityandcomplex3Dstructureofface,manyfactorsinfluencetheperformanceoffacedetectionandrecognitionalgorithmssuchaspose,expression,age,brightness,contrast,noise,blurandetc.Someearlyfacedatabasesgatheredunderstrictlycontrolledenvironment(Belhumeuretal.(1997);Samaria&Harter(1994);Turk&Pentland(1991))onlyallowslightexpressionvariation.Toinvestigatetherelationshipsbetweenalgorithms’performanceandtheabovefactors,morefacedatabaseswithlargerscaleandvariouscharacterswerebuiltinthepastyears(Bailly-Bailliereetal.(2003);Flynnetal.(2003);Gaoetal.(2008);Georghiadesetal.(2001);Hallinan(1995);Phillipsetal.(2000);Simetal.(2003)).Forinstance,The""CAS-PEAL"",""FERET"",""CMUPIE"",and""YaleB""databasesincludevariousposes(Gaoetal.(2008);Georghiadesetal.(2001);Phillipsetal.(2000);Simetal.(2003));The""HarvardRL"",""CMUPIE""and""YaleB""databasesinvolvemorethan40differentconditionsinillumination(Georghiadesetal.(2001);Hallinan(1995);Simetal.(2003));Andthe""BANCA"",and""NDHID""databasescontainover10timesgathering(Bailly-Bailliereetal.(2003);Flynnetal.(2003)).Thesedatabaseshelpresearcherstoevaluateandimprovetheiralgorithmsaboutfacedetection,recognition,andotherpurposes.Blurisnotthemostimportantbutstillanotablefactoraffectingtheperformanceofabiometricsystem(Fronthaleretal.(2006);Zamanietal.(2007)).Themainreasonsleadingblurconsistinout-of-focusofcameraandmotionofobject,andtheout-of-focusblurismoresignificantintheapplicationenvironmentoffacerecognition(Eskicioglu&Fisher(1995);Kimetal.(1998);Tanakaetal.(2007);Yitzhaky&Kopeika(1996)).Toinvestigatetheinfluenceofbluronafacerecognitionsystem,afaceimagedatabasewithdifferentconditionsofclarityandefficientblurevaluatingalgorithmsareneeded.Thischapterintroducesanewfacedatabasebuiltforthepurposeofblurevaluation.Theapplicationenvironmentsoffacerecognitionareanalyzedfirstly,thenaimagegatheringschemeisdesigned.Twotypicalgatheringfacilitiesareusedandthefocusstatusaredividedinto11steps.Further,theblurassessmentalgorithmsaresummarizedandthecomparisonbetweenthemisraisedonthevarious-claritydatabase.The7www.intechopen.com"
5da2ae30e5ee22d00f87ebba8cd44a6d55c6855e,"When facial expressions do and do not signal minds: The role of face inversion, expression dynamism, and emotion type.","This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository: http://orca.cf.ac.uk/111659/
This is the author’s version of a work that was submitted to / accepted for publication.
Citation for final published version:
Krumhuber, Eva G, Lai, Yukun, Rosin, Paul and Hugenberg, Kurt 2018. When facial expressions
Publishers page:
Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page
numbers may not be reflected in this version. For the definitive version of this publication, please
refer to the published source. You are advised to consult the publisher’s version if you wish to cite
this paper.
This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications
made available in ORCA are retained by the copyright holders."
31625522950e82ad4dffef7ed0df00fdd2401436,Motion Representation with Acceleration Images,"Motion Representation with Acceleration Images
Hirokatsu Kataoka, Yun He, Soma Shirakabe, Yutaka Satoh
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Ibaraki, Japan
{hirokatsu.kataoka, yun.he, shirakabe-s,"
3107486fe666a3004b720125bd2b05ff9382fdb8,Generalized two-dimensional linear discriminant analysis with regularization,"JOURNAL OF LATEX CLASS FILES, VOL.
, NO.
Generalized two-dimensional linear discriminant
nalysis with regularization
Chun-Na Li, Yuan-Hai Shao,Wei-Jie Chen, Zhen Wang and Nai-Yang Deng"
318e7e6daa0a799c83a9fdf7dd6bc0b3e89ab24a,Sparsity in Dynamics of Spontaneous Subtle Emotions: Analysis and Application,"Sparsity in Dynamics of Spontaneous
Subtle Emotions: Analysis & Application
Anh Cat Le Ngo, Member, IEEE, John See, Member, IEEE, Raphael C.-W. Phan, Member, IEEE"
3137eede6bbada4442e0193dc5918788b7e88aa1,Hyper-class augmented and regularized deep learning for fine-grained image classification,"Hyper-class Augmented and Regularized Deep Learning for Fine-grained Image Classification
Saining Xie1, Tianbao Yang2 Xiaoyu Wang3, Yuanqing Lin4
University of California, San Diego. 2University of Iowa. 3Snapchat Research. 4NEC Labs America, Inc.
Fine-grained image classification (FGIC) is challenging because (i) fine-
grained labeled data is much more expensive to acquire (usually requir-
ing domain expertise); (ii) there exists large intra-class and small inter-
lass variance. In this paper, we propose a systematic framework of learn-
ing a deep CNN that addresses the challenges from two new perspectives:
(i) identifying easily annotated hyper-classes inherent in the fine-grained
data and acquiring a large number of hyper-class-labeled images from read-
ily available external sources, and formulating the problem into multi-task
learning, to address the data scarcity issue. We use two common types of
hyper-classes to augment our data, with one being the super-type hyper-
lasses that subsume a set of fine-grained classes, and another being named
factor-type hyper-classes (e.g., different view-points of a car) that explain
the large intra-class variance. (ii) a novel learning model by exploiting a reg-
ularization between the fine-grained recognition model and the hyper-class
recognition model to mitigate the issue of large intra-class variance and im-
prove the generalization performance. The proposed approach also closely
relates to attribute-based learning, since one can consider that factor-type"
31c0968fb5f587918f1c49bf7fa51453b3e89cf7,Deep Transfer Learning for Person Re-identification,"Deep Transfer Learning for Person Re-identification
Mengyue Geng
Yaowei Wang
Tao Xiang
Yonghong Tian"
318d7a4bc9c7b1e3a01056815479564ed8ad78a4,University of Oklahoma Graduate College Reinforcement Learning Scheduler for Heterogeneous Multi-core Processors Reinforcement Learning Scheduler for Heterogeneous Multi-core Processors a Thesis Approved for the School of Computer Science,"UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE
REINFORCEMENT LEARNING SCHEDULER FOR HETEROGENEOUS
MULTI-CORE PROCESSORS
A THESIS
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
Degree of
MASTER OF SCIENCE
XIAOLEI YAN
Norman, Oklahoma"
318eb316c0117059dd47978854cfa92baeaac1d2,Deterministic CUR for Improved Large-Scale Data Analysis: An Empirical Study,"Deterministic CUR for Improved Large-Scale Data Analysis:
An Empirical Study
Christian Thurau, Kristian Kersting, and Christian Bauckhage
Fraunhofer IAIS, Germany"
3174fceef3cf09ac35e8d1eb4e1b8b73a3b2c713,Unsupervised learning from videos using temporal coherency deep networks,"Computer Vision and Image Understanding
journal homepage: www.elsevier.com
Unsupervised learning from videos using temporal coherency deep networks
Carolina Redondo-Cabreraa,∗∗, Roberto Lopez-Sastrea
GRAM, University of Alcal´a, Alcal´a de Henares, 28805, Spain"
31f1c4cf34ce0bb35382c35b2f468cf72bffae0b,Are spatial and global constraints really necessary for segmentation?,"Are Spatial and Global Constraints Really Necessary for Segmentation?
Aur´elien Lucchi1
Yunpeng Li1
Computer Vision Laboratory, EPFL, Lausanne
Xavier Boix2
Kevin Smith1
Pascal Fua1
BIWI, ETH Zurich"
3123e97a6b86913d994e44f8d9d5c639e0e2dc96,A Method of Initialization for Nonnegative Matrix Factorization,"A METHOD OF INITIALIZATION FOR NONNEGATIVE MATRIX FACTORIZATION
Yong-Deok Kim and Seungjin Choi
Department of Computer Science, POSTECH, Korea
{karma13,"
31ea778b6f5c9c2653eb2bed307ac7b02bcc6894,Dense Error Correction via `-Minimization,"IEEE TRANS. ON INFORMATION THEORY, 2009.
Dense Error Correction via (cid:96)1-Minimization
John Wright, Member, and Yi Ma, Senior Member."
316e67550fbf0ba54f103b5924e6537712f06bee,Multimodal semi-supervised learning for image classification,"Multimodal semi-supervised learning
for image classification
Matthieu Guillaumin, Jakob Verbeek, Cordelia Schmid
LEAR team, INRIA Grenoble, France"
31786e6d5187d7bc41678cbd2d1bf8edf1ddfed9,Capture de mouvements humains par capteurs RGB-D. (Capture human motions by RGB-D sensor ),"Capture de mouvements humains par capteurs RGB-D
Jean-Thomas Masse
To cite this version:
Jean-Thomas Masse. Capture de mouvements humains par capteurs RGB-D. Robotique
[cs.RO]. Universit´e Paul Sabatier - Toulouse III, 2015. Fran¸cais.
¡ NNT : 2015TOU30361
HAL Id: tel-01280163
https://tel.archives-ouvertes.fr/tel-01280163v2
Submitted on 26 Apr 2017
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de
recherche fran¸cais ou ´etrangers, des laboratoires"
31ef5419e026ef57ff20de537d82fe3cfa9ee741,Facial Expression Analysis Based on High Dimensional Binary Features,"Facial Expression Analysis Based on
High Dimensional Binary Features
Samira Ebrahimi Kahou, Pierre Froumenty, and Christopher Pal
´Ecole Polytechique de Montr´eal, Universit´e de Montr´eal, Montr´eal, Canada
{samira.ebrahimi-kahou, pierre.froumenty,"
3176ee88d1bb137d0b561ee63edf10876f805cf0,Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation,"Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation
Sina Honari1, Jason Yosinski2, Pascal Vincent1,4, Christopher Pal3
University of Montreal, 2Cornell University, 3Ecole Polytechnique of Montreal, 4CIFAR
{honaris,"
310a88a60ffa2d8a0fa7ef9fc77fa842d16eed57,View Invariant Gait Recognition,"View Invariant Gait Recognition
Richard D. Seely, Michela Goffredo, John N. Carter and Mark S. Nixon"
3151b110ecdcf2105def494bfb0775f21259d7e8,Asymmetric Cuts: Joint Image Labeling and Partitioning,"Asymmetric Cuts : Joint Image Labeling and
Partitioning
Thorben Kroeger1, J¨org H. Kappes2, Thorsten Beier1, Ullrich Koethe1 and
Fred A. Hamprecht1,2
Multidimensional Image Processing Group, Heidelberg University
Heidelberg Collaboratory for Image Processing, Heidelberg University"
31ace8c9d0e4550a233b904a0e2aabefcc90b0e3,Learning Deep Face Representation,"Learning Deep Face Representation
Haoqiang Fan
Megvii Inc.
Zhimin Cao
Megvii Inc.
Yuning Jiang
Megvii Inc.
Qi Yin
Megvii Inc.
Chinchilla Doudou
Megvii Inc."
312b807a24b8c30876c1750530b08e4d9627e231,Increasing Trustworthiness of Face Authentication in Mobile Devices by Modeling Gesture Behavior and Location Using Neural Networks,"Article
Increasing Trustworthiness of Face Authentication in
Mobile Devices by Modeling Gesture Behavior and
Location Using Neural Networks
Blerim Rexha 1 ID , Gresa Shala 2,* and Valon Xhafa 3
Faculty of Electrical and Computer Engineering, University of Prishtina, Kodra e Diellit p.n.,
0000 Prishtina, Kosovo;
Department of Computer Science, Freiburg University, Georges-Köhler Alley 101,
79110 Freiburg im Breisgau, Germany
Department of Informatics, Technical University of Munich, Boltzmannstraße 3,
85748 Garching bei München, Germany;
* Correspondence:
Received: 18 January 2018; Accepted: 2 February 2018; Published: 5 February 2018"
31afdb6fa95ded37e5871587df38976fdb8c0d67,Quantized fuzzy LBP for face recognition,"QUANTIZED FUZZY LBP FOR FACE RECOGNITION
Jianfeng
Xudong Jiang,
Junsong
BeingThere
Centre
Institute
of Media Innovation
Nanyang
50 Nanyang
Technological
Singapore
Drive,
637553.
University
School of Electrical
& Electronics
Engineering
Nanyang
50 Nanyang"
318c4c25d86511690cc5df7b041a6392e8cc4ea8,Fashion-Gen: The Generative Fashion Dataset and Challenge,"Fashion-Gen: The Generative Fashion Dataset and Challenge
Negar Rostamzadeh 1 Seyedarian Hosseini 1 2 Thomas Boquet 1 Wojciech Stokowiec 1 Ying Zhang 1
Christian Jauvin 1 Chris Pal 3 1"
316bed02e22aa6742dffcd50c29a7365c5a5a437,Representation Learning for Visual-Relational Knowledge Graphs,"Representation Learning for Visual-Relational
Knowledge Graphs
Daniel Oñoro-Rubio, Mathias Niepert, Alberto García-Durán, Roberto
González-Sánchez and Roberto J. López-Sastre*
NEC Labs Europe, Alcalá de Henares*
{daniel.onoro, mathias.niepert, alberto.duran,
https://github.com/nle-ml/mmkb.git"
317f5a56519df95884cce81cfba180ee3adaf5a5,Operator-In-The-Loop Deep Sequential Multi-camera Feature Fusion for Person Re-identification,"FusionCam C1Cam C2Classical re-id schemeProposed re-idschemeQueryQueryRanked List: Cam 𝐶1Ranked List: Cam 𝐶2Ranked List: Cam 𝐶1OperatorFeedbackRanked List: Cam 𝐶2Fig.1:(Top)Classicalre-idschemewherequeryimage’sfeaturerepresentationisusedtosearcheachcamerainthenetworkinde-pendently.Theretrievedlistsarereturnedtothehumanoperator.(Bottom)Ourproposedsequentialre-idschemewhereoperatorfeedbackregardingtargetsightingisutilizedtowardsbetterre-idperformanceinanonlinefashion.Inthefigure,cameraC1isqueriedfirstandrankedlistofmatchesisobtained.Thecorrectmatch(pinkbox)inretrievedrankedlistisidentifiedbyoperator.Thecorrectmatchisfusedwithqueryimageatfeaturelevel(orangeblock).ThisfusedrepresentationisusedtoquerycameraC2.NoticethatrankingofquerytargetinC2’slistimprovesinourapproachunliketheclassicalversionwhichcannotexploitoperatorinputstoimprovesubsequentqueries.arXiv:1807.07295v3  [cs.CV]  6 Nov 2018"
3130eb9bfab5e5a095ab989ba3cc6a2ec62c156d,Generating Facial Ground Truth with Synthetic Faces,"Generating Facial Ground Truth with Synthetic Faces
Rossana Queiroz, Marcelo Cohen, Juliano L. Moreira, Adriana Braun, J´ulio C. Jacques J´unior, Soraia Raupp Musse
Pontif´ıcia Universidade Cat´olica do Rio Grande do Sul - PUCRS
Graduate Programme in Computer Science
Virtual Human Laboratory -www.inf.pucrs.br/∼vhlab
Porto Alegre, Brazil
Figure 1. A sample of 3D faces generated by our prototype."
31b9251dedce1e10467a0a33f56ac4eb05ed0451,Viewpoint-dependent 3D human body posing for sports legacy recovery from images and video,"VIEWPOINT-DEPENDENT 3D HUMAN BODY POSING FOR SPORTS LEGACY
RECOVERY FROM IMAGES AND VIDEO
Luis Unzueta, Jon Goenetxea, Mikel Rodriguez and Maria Teresa Linaza
Vicomtech-IK4, Paseo Mikeletegi, 57, Parque Tecnológico, 20009, Donostia, Spain"
31ca0d6488a27a140263291c51ec924b8a49967b,"Show, Ask, Attend, and Answer: A Strong Baseline For Visual Question Answering","Show, Ask, Attend, and Answer:
A Strong Baseline For Visual Question Answering
Vahid Kazemi
Ali Elqursh
Google Research
600 Amphitheater Parkway
{vahid,"
31ea3186aa7072a9e25218efe229f5ee3cca3316,A ug 2 01 7 Reinforced Video Captioning with Entailment Rewards,"Reinforced Video Captioning with Entailment Rewards
Ramakanth Pasunuru and Mohit Bansal
UNC Chapel Hill
{ram,"
318f7b59fc22d6326f77b24939860b0137bf8e77,Multiple Classifier Boosting and Tree-Structured Classifiers,"Multiple Classifier Boosting and
Tree-Structured Classifiers
Tae-Kyun Kim and Roberto Cipolla"
31470cf8fda53c4460de4373e5ac4544236c44af,Biased information processing as an endophenotype for depression,"PDF hosted at the Radboud Repository of the Radboud University
Nijmegen
The following full text is a publisher's version.
For additional information about this publication click this link.
http://repository.ubn.ru.nl/handle/2066/127113
Please be advised that this information was generated on 2017-04-19 and may be subject to
hange."
318ee553c61888f2418280cb1d342c698d3444c9,Towards face unlock: on the difficulty of reliably detecting faces on mobile phones,"Towards Face Unlock: On the Difficulty of Reliably
Detecting Faces on Mobile Phones
Rainhard D. Findling
Softwarepark 11
Hagenberg, Austria
Rene Mayrhofer
Softwarepark 11
Hagenberg, Austria
Department for Mobile Computing
Upper Austria University of Applied Sciences
Department for Mobile Computing
Upper Austria University of Applied Sciences"
318985dc2b8d5a1882b709eedeaac4a2e7de1d81,Accelerating Message Passing for MAP with Benders Decomposition,"Accelerating Message Passing for MAP with
Benders Decomposition
Julian Yarkony
Experian Data Lab.
Shaofei Wang
Baidu Inc.
May 15, 2018"
31fc3b044ec908f7f61386422727ef23784178c0,Enhancing Face Recognition using Average per Region,"International Journal of Computer Applications (0975 – 8887)
Volume 65– No.3, March 2013
Enhancing Face Recognition using Average per Region
Basheer M. Nasef
Teaching Assistant
Dept of Computer and Systems Engineering,
Zagazig University, Sharkia, Egypt
Ibrahim E. Ziedan
Dept of Computer and Systems Engineering,
Professor
Zagazig University, Sharkia, Egypt"
31c174f2190889d5792358713e078336926d7ee4,Image Categorization Using Codebooks Built from Scored and Selected Local Features,"Image Categorization using Codebooks Built from
Scored and Selected Local Features
Department of Computer Science, Northern Illinois University DeKalb IL USA 60115
Bala S. Divakaruni and Jie Zhou
follows
(M&C)  process"
31d30089d00d89715167ca4a130a5d262e1d79d3,"Fawzi, Frossard: Measuring the Effect of Nuisance Variables","FAWZI, FROSSARD: MEASURING THE EFFECT OF NUISANCE VARIABLES
Measuring the effect of nuisance variables
on classifiers
Alhussein Fawzi
Pascal Frossard
Signal Processing Laboratory (LTS4)
Ecole Polytechnique Fédérale de
Lausanne (EPFL)
Lausanne, Switzerland"
3137870bf1314e25c2246d4a9d77d941aadd5398,Influence of Positive Instances on Multiple Instance Support Vector Machines,"Influence of Positive Instances on
Multiple Instance Support Vector Machines
Nuno Barroso Monteiro1,2, Jo˜ao Pedro Barreto2, and Jos´e Gaspar1
Institute for Systems and Robotics (ISR/IST), LARSyS, Univ. of Lisbon, Portugal
Institute for Systems and Robotics, Univ. of Coimbra, Portugal"
9175b123837ecf55a9aae6c40ba245ddacbc37d5,Various Fusion Schemes to Recognize Simulated and Spontaneous Emotions,"Various Fusion Schemes to Recognize Simulated and Spontaneous
Emotions
Sonia Gharsalli1, H´el`ene Laurent2, Bruno Emile1 and Xavier Desquesnes1
Univ. Orl´eans, INSA CVL,
PRISME EA 4229, Bourges, France
on secondment from INSA CVL, Univ. Orl´eans,
PRISME EA 4229, Bourges, France
to the Rector of the Academy of Strasbourg, Strasbourg, France
Keywords:
Facial Emotion Recognition, Posed Expression, Spontaneous Expression, Early Fusion, Late Fusion, SVM,
FEEDTUM Database, CK+ Database."
91811203c2511e919b047ebc86edad87d985a4fa,Expression Subspace Projection for Face Recognition from Single Sample per Person,"Expression Subspace Projection for Face
Recognition from Single Sample per Person
Hoda Mohammadzade, Student Member, IEEE, and Dimitrios Hatzinakos, Senior Member, IEEE"
912f1f57a010194047b6438cc1ea6bec95c6c2b8,ContextVP: Fully Context-Aware Video Prediction,"ContextVP: Fully Context-Aware Video
Prediction
Wonmin Byeon1,2,3,4, Qin Wang2,
Rupesh Kumar Srivastava4, and Petros Koumoutsakos2
NVIDIA, Santa Clara, CA, USA
ETH Zurich, Zurich, Switzerland
The Swiss AI Lab IDSIA, Manno, Switzerland
NNAISENSE, Lugano, Switzerland"
91f67f69597a52b905c748a15db427c61f352073,Scale-Aware Pixelwise Object Proposal Networks,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Scale-aware Pixel-wise Object Proposal Networks
Zequn Jie, Xiaodan Liang, Jiashi Feng, Wen Feng Lu, Eng Hock Francis Tay, Shuicheng Yan
essential
proposal"
91edca64a666c46b0cbca18c3e4938e557eeb21a,Guiding InfoGAN with Semi-supervision,"Guiding InfoGAN with Semi-Supervision
Adrian Spurr, Emre Aksan, and Otmar Hilliges
Advanced Interactive Technologies, ETH Zurich
{adrian.spurr, emre.aksan,"
912f6a6ac8703e095d21e2049da4871cc6d4d23b,Partitioning Networks with Node Attributes by Compressing Information Flow,"Partitioning Networks with Node Attributes by
Compressing Information Flow
Laura M. Smith
Department of Mathematics
California State University
Fullerton, CA
Kristina Lerman
Information Sciences Institute
U. of Southern California
Marina del Rey, CA 90292
Linhong Zhu
Information Sciences Institute
U. of Southern California
Marina del Rey, CA 90292
Allon G. Percus
Claremont Graduate U.
Claremont, CA 91711"
91dda4183c6118de8195e07a623962dbd22cc34e,Representing local binary descriptors with BossaNova for visual recognition,"Representing Local Binary Descriptors with
BossaNova for Visual Recognition
Carlos Caetano†, Sandra Avila†, Silvio Guimarães‡, Arnaldo de A. Araújo†
Federal University of Minas Gerais, NPDI Lab — DCC/UFMG, Minas Gerais, Brazil
Pontifical Catholic University of Minas Gerais, VIPLAB — ICEI/PUC Minas, Minas Gerais, Brazil
{carlos.caetano,"
9117fd5695582961a456bd72b157d4386ca6a174,Recognition Using Dee Networks,"Facial Expression
n Recognition Using Dee
ep Neural
Networks
Junnan Li and Edmund Y. Lam
Departm
ment of Electrical and Electronic Engineering
he University of Hong Kong, Pokfulam,
Hong Kong"
91067f298e1ece33c47df65236853704f6700a0b,Local Binary Pattern and Local Linear Regression for Pose Invariant Face Recognition,"IJSTE - International Journal of Science Technology & Engineering | Volume 2 | Issue 11 | May 2016
ISSN (online): 2349-784X
Local Binary Pattern and Local Linear
Regression for Pose Invariant Face Recognition
Raju Dadasab Patil
M. Tech Student
Shreekumar T
Associate Professor
Department of Computer Science & Engineering
Department of Computer Science & Engineering
Mangalore Institute of Engineering & Technology, Badaga
Mangalore Institute of Engineering & Technology, Badaga
Mijar, Moodbidri, Mangalore
Mijar, Moodbidri, Mangalore
Karunakara K
Professor & Head of Dept.
Department of Information Science & Engineering
Sri SidarthaInstitute of Technology, Tumkur"
91b0081a348d182d616f74a0c9fb80d56acf4198,Exploiting photographic style for category-level image classification by generalizing the spatial pyramid,"Exploiting Photographic Style for Category-Level Image
Classification by Generalizing the Spatial Pyramid
Jan C. van Gemert
Puzzual
Oudeschans 18
011LA, Amsterdam, The Netherlands"
91a7816609f991c1ac45b791c1cd3c6117194bb0,I Know How You Feel: Emotion Recognition with Facial Landmarks,"I Know How You Feel: Emotion Recognition with Facial Landmarks
Tooploox 2Polish-Japanese Academy of Information Technology 3Warsaw University of Technology
Ivona Tautkute1,2, Tomasz Trzcinski1,3 and Adam Bielski1"
919d3067bce76009ce07b070a13728f549ebba49,Time Based Re-ranking for Web Image Search,"International Journal of Scientific and Research Publications, Volume 4, Issue 6, June 2014
ISSN 2250-3153
Time Based Re-ranking for Web Image Search
Ms. A.Udhayabharadhi *, Mr. R.Ramachandran **
* MCA Student, Sri Manakula Vinayagar Engineering College, Pondicherry-605106
** Assistant Professor dept of MCA, Sri Manakula Vinayagar Engineering College, Pondicherry-605106"
91f820e2cb6fb5a8adc83e6065cbdf071aca84bd,What makes Federer look so elegant?,"What makes Federer look so elegant?
Kuldeep Kulkarni and Vinay Venkataraman"
91e57667b6fad7a996b24367119f4b22b6892eca,Probabilistic Corner Detection for Facial Feature,"Probabilistic  Corner  Detection  for  Facial  Feature
Extraction
Article
Accepted version
E. Ardizzone, M. La Cascia, M. Morana
In Lecture Notes in Computer Science Volume 5716, 2009
It  is  advisable  to  refer  to  the  publisher's  version  if  you  intend  to  cite
from the work.
Publisher: Springer
http://link.springer.com/content/pdf/10.1007%2F978-3-
642-04146-4_50.pdf"
917611cfc0fee3e834d1a6cc13ad5bc18ae428f3,Geometric models with co-occurrence groups,"Geometric Models with Co-occurrence Groups
Joan Bruna1
and St´ephane Mallat2
8/16 rue Paul Vaillant Couturier, 92240, Malakoff - France
- Zoran France
- Ecole Polytechnique - CMAP
Route de Saclay, 91128 Palaiseau - France"
917bea27af1846b649e2bced624e8df1d9b79d6f,Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for Mobile and Embedded Applications,"Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for
Mobile and Embedded Applications
Baohua Sun,
Lin Yang,
Patrick Dong, Wenhan Zhang,
Gyrfalcon Technology Inc.
Jason Dong, Charles Young
900 McCarthy Blvd. Milpitas, CA 95035"
91b1a59b9e0e7f4db0828bf36654b84ba53b0557,Simultaneous Hallucination and Recognition of Low-Resolution Faces Based on Singular Value Decomposition,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <
Simultaneous Hallucination and Recognition of
Low-Resolution Faces Based on Singular Value
Decomposition
Muwei Jian,  Kin-Man Lam*, Senior Member, IEEE
(SVD)
for  performing  both"
911bef7465665d8b194b6b0370b2b2389dfda1a1,Learning Human Optical Flow,"RANJAN, ROMERO, BLACK: LEARNING HUMAN OPTICAL FLOW
Learning Human Optical Flow
MPI for Intelligent Systems
Tübingen, Germany
Amazon Inc.
Anurag Ranjan1
Javier Romero∗,2
Michael J. Black1"
91ead35d1d2ff2ea7cf35d15b14996471404f68d,Combining and Steganography of 3D Face Textures,"Combining and Steganography of 3D Face Textures
Mohsen Moradi and Mohammad-Reza Rafsanjani-Sadeghi"
91c014ff243ea747ea3a84a9efd4a3e38a7217ee,Reinforced Temporal Attention and Split-Rate Transfer for Depth-Based Person Re-identification,"Reinforced Temporal Attention and Split-Rate
Transfer for Depth-Based Person
Re-Identification
Nikolaos Karianakis1, Zicheng Liu1, Yinpeng Chen1, and Stefano Soatto2
Microsoft, Redmond, USA
University of California, Los Angeles, USA"
919e827c449ca77bcff4ce5f2ccbccdab8399ac6,Generative Entity Networks: Disentangling Enti-,"Under review as a conference paper at ICLR 2018
GENERATIVE ENTITY NETWORKS: DISENTANGLING ENTI-
TIES AND ATTRIBUTES IN VISUAL SCENES USING PARTIAL
NATURAL LANGUAGE DESCRIPTIONS
Anonymous authors
Paper under double-blind review"
914fd65d29094e434346806bdddeb17d9468610d,Scene Text Recognition in Mobile Applications by Character Descriptor and Structure Configuration,"IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308
SCENE TEXT RECOGNITION IN MOBILE APPLICATIONS BY
CHARACTER DESCRIPTOR AND STRUCTURE CONFIGURATION
Sathish Kumar Penchala1, Pallavi S.Umap2
Assistant Professor, Dept. of Computer Engineering, Dr. D.Y.Patil SOET., Lohegaon, Pune-47, Maharashtra, India
ME 2nd year, Dept. of Computer Engineering, Dr.D.Y.Patil SOET., Lohegaon, Pune-47, Maharashtra India"
91d513af1f667f64c9afc55ea1f45b0be7ba08d4,Automatic Face Image Quality Prediction,"Automatic Face Image Quality Prediction
Lacey Best-Rowden, Student Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
91e58c39608c6eb97b314b0c581ddaf7daac075e,Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks,"Pixel-wise Ear Detection with Convolutional
Encoder-Decoder Networks
ˇZiga Emerˇsiˇc 1, Luka Lan Gabriel 2, Vitomir ˇStruc 3 and Peter Peer 1"
910da5e0afef96c8acca3c6a4314a9ab5121b1e4,Détection d'obstacles multi-capteurs supervisée par stéréovision. (Multi-sensor road obstacle deetection controled by stereovision),"Détection d’obstacles multi-capteurs supervisée par
stéréovision
Mathias Perrollaz
To cite this version:
Mathias Perrollaz. Détection d’obstacles multi-capteurs supervisée par stéréovision. Vision par ordi-
nateur et reconnaissance de formes [cs.CV]. Université Pierre et Marie Curie - Paris VI, 2008. Français.
<tel-00656864>
HAL Id: tel-00656864
https://tel.archives-ouvertes.fr/tel-00656864
Submitted on 5 Jan 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
91ee88754cc7a193d51656a3b53e16389bf4aadb,Fast and accurate algorithm for eye localisation for gaze tracking in low-resolution images,"Fast and Accurate Algorithm for Eye Localization
for Gaze Tracking in Low Resolution Images
Anjith George, Member, IEEE, and Aurobinda Routray, Member, IEEE"
91bdc706ad1d7b246e457870a7eb8caff87ec05a,Face Recognition Using Holistic Based Approach,"International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 7, July 2014)
Face Recognition Using Holistic Based Approach
1Research Scholar, 2Professor, Department of Information Science and Engineering, SDM CET, Dharwad
Vandana S. Bhat1, Dr. Jagadeesh D. Pujari2"
9168b36568b8abffab5b9de029be5941f673dca2,Improving 3D Facial Action Unit Detection with Intrinsic Normalization,"YUDIN, ET AL.: IMPROVING 3D AU DETECTION WITH INTRINSIC NORMALIZATION
Improving 3D Facial Action Unit Detection
with Intrinsic Normalization
Geometric Image Processing Lab
Technion - Israel Institute of Technology
Technion City, Haifa, Israel
Eric Yudin
Aaron Wetzler
Matan Sela
Ron Kimmel"
916ca7000c022fbd97ea15cc0094f0e53c408b56,Spontaneous and Non-Spontaneous 3D Facial Expression Recognition Using a Statistical Model with Global and Local Constraints,"SPONTANEOUS AND NON-SPONTANEOUS 3D FACIAL EXPRESSION RECOGNITION
USING A STATISTICAL MODEL WITH GLOBAL AND LOCAL CONSTRAINTS"
91eae81dbba3013261292296bb929a18d73b447f,Utilization of Interest Point Detectors in Content Based Image Retrieval,"Ročník 2011
Číslo II
Utilization of Interest Point Detectors in Content Based Image Retrieval
M. Zukal 1, P. Číka1
Department of Telecommunications, Faculty of Electrical Engineering, BUT, Brno,
E-mail :
Purkyňova 118, Brno"
91ddac7d1d63c52cbe30fe27674b9c1e54bc584c,Development of Eye-Blink and Face Corpora for Research in Human Computer Interaction,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 5, 2015
Development of Eye-Blink and Face Corpora for
Research in Human Computer Interaction
Emmanuel Jadesola Adejoke.
Dept. of Computer science
Bingham University
Nassarawa, Nigeria
Ibiyemi Tunji Samuel
Dept. of Electrical Engineering
University of Ilorin
Ilorin, Nigeria
oded
voluntary
eye-blink  based
language  communication  depends"
9131c990fad219726eb38384976868b968ee9d9c,Deep Facial Expression Recognition: A Survey,"Deep Facial Expression Recognition: A Survey
Shan Li and Weihong Deng∗, Member, IEEE"
911505a4242da555c6828509d1b47ba7854abb7a,Improved Active Shape Model for Facial Feature Localization,"IMPROVED ACTIVE SHAPE MODEL FOR FACIAL FEATURE LOCALIZATION
Hui-Yu Huang and Shih-Hang Hsu
National Formosa University, Taiwan
Email:"
915d4a0fb523249ecbc88eb62cb150a60cf60fa0,Comparison of Feature Extraction Techniques in Automatic Face Recognition Systems for Security Applications,"Comparison of Feature Extraction Techniques in Automatic
Face Recognition Systems for Security Applications
S .  Cruz-Llanas, J. Ortega-Garcia, E. Martinez-Torrico, J. Gonzalez-Rodriguez
Dpto. Ingenieria Audiovisual y Comunicaciones, EUIT Telecomunicacion, Univ. PolitCcnica de Madrid, Spain
{cruzll, jortega, etorrico,
http://www.atvs.diac.upm.es"
65126e0b1161fc8212643b8ff39c1d71d262fbc1,Occlusion Coherence: Localizing Occluded Faces with a Hierarchical Deformable Part Model,"Occlusion Coherence: Localizing Occluded Faces with a
Hierarchical Deformable Part Model
Golnaz Ghiasi Charless C. Fowlkes
Dept. of Computer Science, University of California, Irvine"
657ae9ecb59cb2a27e57784577a9efb60de81126,The Task Matters: Comparing Image Captioning and Task-Based Dialogical Image Description,"The Task Matters: Comparing Image
Captioning and Task-Based Dialogical Image Description
Nikolai Ilinykh, Sina Zarrieß, David Schlangen
Dialogue Systems Group
University of Bielefeld
Germany"
6582f4ec2815d2106957215ca2fa298396dde274,Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations,"JUNE 2007
Discriminative Learning and Recognition
of Image Set Classes Using
Canonical Correlations
Tae-Kyun Kim, Josef Kittler, Member, IEEE, and Roberto Cipolla, Member, IEEE"
656e7c7739e3f334d4f275c71499485501aabc44,A Two-Step Methodology for Human Pose Estimation Increasing the Accuracy and Reducing the Amount of Learning Samples Dramatically,"A two-step methodology for human pose
estimation increasing the accuracy and reducing
the amount of learning samples dramatically
Samir Azrour, Sébastien Piérard, Pierre Geurts, and Marc Van Droogenbroeck
INTELSIG Laboratory, Department of Electrical Engineering and Computer Science,
University of Liège, Belgium"
65eff143b099e53dcf39692c2fb542b0ee1fdfb6,Real-time Scale-invariant Object Recognition from Light Field Imaging,
65639b79576f22b705a601f062bb6905f0a396af,A Preliminary Investigation into the Impact of Training for Example-Based Facial Blendshape Creation,"EUROGRAPHICS 2018/ O. Diamanti and A. Vaxman
Short Paper
A Preliminary Investigation into the Impact of Training for
Example-Based Facial Blendshape Creation
Emma Carrigan1, Ludovic Hoyet2, Rachel McDonnell1 and Quentin Avril3
Graphics Vision and Visualisation Group, Trinity College Dublin, Ireland
Inria Rennes, France 3 Technicolor"
65539436abf0eedabeb915a52f787b962722c99a,Satellite Image Classification via Two-Layer Sparse Coding With Biased Image Representation,"Satellite Image Classification via Two-Layer Sparse
Coding With Biased Image Representation
Dengxin Dai and Wen Yang, Member, IEEE"
658c802890c7133e2ade778b5d88b68bcd0dca9c,Learning to Segment via Cut-and-Paste,"Learning to Segment via Cut-and-Paste
Tal Remez, Jonathan Huang, Matthew Brown
Google"
65b1209d38c259fe9ca17b537f3fb4d1857580ae,Information Constraints on Auto-Encoding Variational Bayes,"Information Constraints on Auto-Encoding Variational Bayes
Romain Lopez1, Jeffrey Regier1, Michael I. Jordan1,2, and Nir Yosef1,3,4
{romain_lopez, regier,
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
Department of Statistics, University of California, Berkeley
Ragon Institute of MGH, MIT and Harvard
Chan-Zuckerberg Biohub"
651125ca22947e95e5be6206c3056988b850266a,Swifter: improved online video scrubbing,"Swifter: Improved Online Video Scrubbing
Justin Matejka, Tovi Grossman, and George Fitzmaurice
Autodesk Research, Toronto, Ontario, Canada
Figure  1.  Scrubbing  behavior  of  a  traditional  streaming  video  player,  the  Swift  interface  [16],  and  our  new  Swifter
interface, which shows multiple frames around the active timeline location and allows for direct selection of each frame.
Traditional
Swift
Swifter"
655d9ba828eeff47c600240e0327c3102b9aba7c,Kernel pooled local subspaces for classification,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005
Kernel Pooled Local Subspaces for Classification
Peng Zhang, Student Member, IEEE, Jing Peng, Member, IEEE, and Carlotta Domeniconi"
656a59954de3c9fcf82ffcef926af6ade2f3fdb5,Convolutional Network Representation for Visual Recognition,"Convolutional Network Representation
for Visual Recognition
ALI SHARIF RAZAVIAN
Doctoral Thesis
Stockholm, Sweden, 2017"
650f4ccbe7d4aa49ae80e246df394ca6c60894ec,Department of Informatics,"DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN
Bachelor’s Thesis in Informatics
Pedestrian detection in urban environments
ased on vision and depth data
Andreas Kreutz"
652d3f33fd0a99808dd646aed228b45eacdaf34f,A Framework for Binding and Retrieving Class-Specific Information to and from Image Patterns Using Correlation Filters,"A Framework for Binding and Retrieving
Class-Specific Information to and from Image
Patterns using Correlation Filters
Vishnu Naresh Boddeti, Student Member, IEEE, and B.V.K Vijaya Kumar, Fellow, IEEE"
65edab091e437d3b9d093dcb8be7c5dc4ce0fe0f,DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation,"DeepOrgan: Multi-level Deep Convolutional
Networks for Automated Pancreas Segmentation
Holger R. Roth, Le Lu, Amal Farag, Hoo-Chang Shin, Jiamin Liu,
Evrim B. Turkbey, and Ronald M. Summers
Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and
Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD
0892-1182, USA"
65237b5e96c7492a0e5d01ddea5b1d381da408cd,A human-machine collaborative approach to tracking human movement in multi-camera video,"A Human-Machine Collaborative Approach to Tracking
Human Movement in Multi-Camera Video
Philip DeCamp
MIT Media Lab
0 Ames Street, E15-441
Cambridge, Massachusetts 02139
Deb Roy
MIT Media Lab
0 Ames Street, E15-488
Cambridge, Massachusetts 02139"
656aeb92e4f0e280576cbac57d4abbfe6f9439ea,Use of Image Enhancement Techniques for Improving Real Time Face Recognition Efficiency on Wearable Gadgets,"Journal of Engineering Science and Technology
Vol. 12, No. 1 (2017) 155 - 167
© School of Engineering, Taylor’s University
USE OF IMAGE ENHANCEMENT TECHNIQUES
FOR IMPROVING REAL TIME FACE RECOGNITION EFFICIENCY
ON WEARABLE GADGETS
MUHAMMAD EHSAN RANA1,*, AHMAD AFZAL ZADEH2,
AHMAD MOHAMMAD MAHMOOD ALQURNEH3
, 3Asia Pacific University of Technology & Innovation, Kuala Lumpur 57000, Malaysia
Staffordshire University, Beaconside Stafford ST18 0AB, United Kingdom
*Corresponding Author:"
65a858ca95dcfa032e812a7f1fc7ee5bdac88f5b,Using Pre-Trained Models for Fine-Grained Image Classification in Fashion Field,"Using Pre-Trained Models for Fine-Grained Image
Classification in Fashion Field
Anna Iliukovich-Strakovskaia
Moscow Institute of Physics and
Technology
Moscow Institute of Physics and
Alexey Dral
Technology
“А” Kerchenskaya st., Moscow,
17303, Russian Federation
“А” Kerchenskaya st., Moscow,
17303, Russian Federation
+7 495 408 45 54
+7 495 408 45 54
Emeli Dral
Moscow Institute of Physics and
Technology & Yandex Data Factory
“А” Kerchenskaya st., Moscow,
17303, Russian Federation
+7 495 408 45 54"
6527cf0b9dbddbd0c6429a35a3cbded3ca336583,MCMC Supervision for People Re-identification in Nonoverlapping Cameras,"MEDEN, LERASLE, SAYD: MCMC TRACKING-BY-REIDENTICATION
MCMC Supervision for People
Reidentification in Nonoverlapping Cameras
Boris Meden1
Frédéric Lerasle2
lerasle.laas.fr
Patrick Sayd1
CEA, LIST,
Laboratoire Vision et Ingénierie des
Contenus,
BP 94, F-91191 Gif-sur-Yvette, France
CNRS ; LAAS ;
Université de Toulouse ; UPS, LAAS ;
F-31077 Toulouse Cedex 4, France"
656f05741c402ba43bb1b9a58bcc5f7ce2403d9a,Supervised Learning Approaches for Automatic Structuring of Videos. (Méthodes d'apprentissage supervisé pour la structuration automatique de vidéos),"THÈSEPour obtenir le grade deDOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPESSpécialité : Mathématiques et InformatiqueArrêté ministériel : 7 août 2006Présentée parDanila POTAPOVThèse dirigée par Cordelia SCHMID et codirigée par Zaid HARCHAOUIpréparée au sein de Inria Grenoble Rhône-Alpesdans l'École Doctorale Mathématiques, Sciences et technologies de l'information, InformatiqueSupervised Learning Approaches for Automatic Structuring of VideosThèse soutenue publiquement le « 22 Juillet 2015 »,devant le jury composé de : Prof. Cordelia SCHMID Inria Grenoble Rhône-Alpes, France, Directeur de thèseDr. Zaid HARCHAOUIInria Grenoble Rhône-Alpes, France, Co-encadrant de thèse Prof. Patrick PEREZTechnicolor Rennes, France, RapporteurProf. Ivan LAPTEVInria Paris Rocquencourt, France, Rapporteur, PrésidentDr. Florent PERRONNINFacebook AI Research, Paris, France, ExaminateurDr. Matthijs DOUZEInria Grenoble Rhône-Alpes, France, Examinateur"
659fc2a483a97dafb8fb110d08369652bbb759f9,Improving the Fisher Kernel for Large-Scale Image Classification,"Improving the Fisher Kernel
for Large-Scale Image Classification
Florent Perronnin, Jorge S´anchez, and Thomas Mensink
Xerox Research Centre Europe (XRCE)"
656a5d4d84c450792402b3c69eecbdbca4cad4cb,2.1. Imagenet and Related Datasets,"Figure 4: Percent of clean images at different tree depth levels in
ImageNet. A total of 80 synsets are randomly sampled at every
tree depth of the mammal and vehicle subtrees. An independent
group of subjects verified the correctness of each of the images.
An average of 99.7% precision is achieved for each synset.
ImageNet
TinyImage
LabelMe
LHill
LabelDisam
Clean
DenseHie
FullRes
PublicAvail
Segmented
Table 1: Comparison of some of the properties of ImageNet ver-
sus other existing datasets.
ImageNet offers disambiguated la-
els (LabelDisam), clean annotations (Clean), a dense hierarchy
(DenseHie), full resolution images (FullRes) and is publicly avail-"
65874dd7220664762b5b25f47460b623a7eb0175,Tree Crown Mapping in Managed Woodlands (Parklands) of Semi-Arid West Africa Using WorldView-2 Imagery and Geographic Object Based Image Analysis,"Sensors 2014, 14, 22643-22669; doi:10.3390/s141222643
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
Tree Crown Mapping in Managed Woodlands (Parklands) of
Semi-Arid West Africa Using WorldView-2 Imagery and
Geographic Object Based Image Analysis
Martin Karlson 1,*, Heather Reese 2,† and Madelene Ostwald 1,3,†
Centre for Climate Science and Policy Research, Department of Thematic Studies/Environmental
Change, Linköping University, Linköping 58183, Sweden; E-Mail:
Section of Forest Remote Sensing, Department of Forest Resource Management,
Swedish University of Agricultural Sciences, Umeå 901 83, Sweden; E-Mail:
Centre for Environment and Sustainability, GMV, University of Gothenburg and
Chalmers University of Technology, Göteborg 405 30, Sweden
These authors contributed equally to this work.
*  Author to whom correspondence should be addressed; E-Mail:
Tel.: +46-1328-2977; Fax: +46-1313-3630.
External Editor: Assefa M. Melesse"
6574eaab393aa8d674cd785fab16cae06a53151a,A study on polymorphing superscalar processor dynamically to improve power efficiency,"A Study on Polymorphing Superscalar Processor Dynamically
to Improve Power Efficiency
Sudarshan Srinivasan, Rance Rodrigues, Arunachalam Annamalai, Israel Koren and Sandip Kundu
Department of Electrical and Computer Engineering
University of Massachusetts at Amherst, MA, USA
Email: {ssrinivasan, rodrigues, annamalai, koren,"
65ec52a3e0a0f6a46fd140ff83bb82d7d02a2d45,Learning Hierarchical Features from Generative Models,"Learning Hierarchical Features from Generative Models
Shengjia Zhao 1 Jiaming Song 1 Stefano Ermon 1"
656b6133fd671f129fce0091a8dab39c97e604f2,Multiview Discriminative Geometry Preserving Projection for Image Classification,"Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 924090, 11 pages
http://dx.doi.org/10.1155/2014/924090
Research Article
Multiview Discriminative Geometry Preserving
Projection for Image Classification
Ziqiang Wang, Xia Sun, Lijun Sun, and Yuchun Huang
School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
Correspondence should be addressed to Ziqiang Wang;
Received 19 December 2013; Accepted 22 January 2014; Published 9 March 2014
Academic Editors: X. Meng, Z. Zhou, and X. Zhu
Copyright © 2014 Ziqiang Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In many image classification applications, it is common to extract multiple visual features from different views to describe an image.
Since different visual features have their own specific statistical properties and discriminative powers for image classification, the
onventional solution for multiple view data is to concatenate these feature vectors as a new feature vector. However, this simple
oncatenation strategy not only ignores the complementary nature of different views, but also ends up with “curse of dimensionality.”
To address this problem, we propose a novel multiview subspace learning algorithm in this paper, named multiview discriminative
geometry preserving projection (MDGPP) for feature extraction and classification. MDGPP can not only preserve the intraclass"
65817963194702f059bae07eadbf6486f18f4a0a,WhittleSearch: Interactive Image Search with Relative Attribute Feedback,"http://dx.doi.org/10.1007/s11263-015-0814-0
WhittleSearch: Interactive Image Search with Relative Attribute
Feedback
Adriana Kovashka · Devi Parikh · Kristen Grauman
Received: date / Accepted: date"
6581c5b17db7006f4cc3575d04bfc6546854a785,Contextual Person Identification in Multimedia Data,"Contextual Person Identification
in Multimedia Data
zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)
genehmigte
Dissertation
Dipl.-Inform. Martin Bäuml
us Erlangen
Tag der mündlichen Prüfung:
8. November 2014
Hauptreferent:
Korreferent:
Prof. Dr. Rainer Stiefelhagen
Karlsruher Institut für Technologie
Prof. Dr. Gerhard Rigoll
Technische Universität München
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu"
659fc18b1ec79a7437e6e7b1dce145d423e82199,Real time person detection and tracking by mobile robots using RGB-D images,"Real Time Person Detection and Tracking by Mobile Robots using
RGB-D Images
Duc My Vo, Lixing Jiang and Andreas Zell"
65d588e2ff7b4f2903efbeded978885f7da5d0e0,UMPM benchmark: A multi-person dataset with synchronized video and motion capture data for evaluation of articulated human motion and interaction,"UMPM benchmark: a multi-person dataset with synchronized video and motion
apture data for evaluation of articulated human motion and interaction
N.P. van der Aa1,2, X. Luo1, G.J. Giezeman1, R.T. Tan1, R.C. Veltkamp1
{x.luo, g.j.giezeman, r.t.tan,
Utrecht University
Noldus Information Technology"
653d19e64bd75648cdb149f755d59e583b8367e3,"Decoupling ""when to update"" from ""how to update""","Decoupling “when to update” from “how to
update”
Eran Malach and Shai Shalev-Shwartz
School of Computer Science, The Hebrew University, Israel"
65babb10e727382b31ca5479b452ee725917c739,Label Distribution Learning,"Label Distribution Learning
Xin Geng*, Member, IEEE"
62dccab9ab715f33761a5315746ed02e48eed2a0,A Short Note about Kinetics-600,"A Short Note about Kinetics-600
Jo˜ao Carreira
Eric Noland
Andras Banki-Horvath
Chloe Hillier
Andrew Zisserman"
62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4,Noise-resistant network: a deep-learning method for face recognition under noise,"Ding et al. EURASIP Journal on Image and Video Processing  (2017) 2017:43
DOI 10.1186/s13640-017-0188-z
EURASIP Journal on Image
nd Video Processing
R ES EAR CH
Noise-resistant network: a deep-learning
method for face recognition under noise
Yuanyuan Ding1,2, Yongbo Cheng1,2, Xiaoliu Cheng1, Baoqing Li1*, Xing You1 and Xiaobing Yuan1
Open Access"
62aeecbe5db3e4ed6b783f4b580157f4f1c8ba45,"Haar like and LBP based features for face, head and people detection in video sequences","Author manuscript, published in ""International Workshop on Behaviour Analysis and Video Understanding (ICVS 2011) (2011)"
6275aa21331a2712222b7ab2116e9589e21ae82c,Prediction of Manipulation Actions,"Noname manuscript No.
(will be inserted by the editor)
Prediction of Manipulation Actions
Cornelia Ferm¨uller · Fang Wang · Yezhou Yang · Konstantinos Zampogiannis · Yi
Zhang · Francisco Barranco · Michael Pfeiffer
the date of receipt and acceptance should be inserted later"
62694828c716af44c300f9ec0c3236e98770d7cf,Identification of Action Units Related to Affective States in a Tutoring System for Mathematics,"Padrón-Rivera, G., Rebolledo-Mendez, G., Parra, P. P., & Huerta-Pacheco, N. S. (2016). Identification of Action Units Related to
Identification of  Action Units Related to Affective States in a Tutoring System
Gustavo Padrón-Rivera1, Genaro Rebolledo-Mendez1*, Pilar Pozos Parra2 and N. Sofia
Facultad de Estadística e Informática, Universidad Veracruzana, Mexico // 2Universidad Juárez Autónoma de
Tabasco, Mexico // // // //
for Mathematics
Huerta-Pacheco1
*Corresponding author"
6225e9c2a9ee47b4d3d58313a839f6e170b48525,Shape Aware Matching of Implicit Surfaces based on Thin Shell Energies,"SHAPE AWARE MATCHING OF IMPLICIT SURFACES BASED ON THIN SHELL
ENERGIES
JOS ´E A. IGLESIAS, MARTIN RUMPF, AND OTMAR SCHERZER"
62e8010e2ac1523d3a3e7e1c13cb34e63e85ce04,Transfer Learning for Action Unit Recognition,"Transfer Learning for Action Unit Recognition
Yen Khye Lim1, Zukang Liao1, Stavros Petridis1 and Maja Pantic1,2"
62d5c16760018b08e301a940434c3fc2e862c385,Approach For Palm Vein Blood Vessel Detection Based On Fuzzy Logic,"International Journal of Electronics Engineering Research.
ISSN 0975-6450 Volume 9, Number 4 (2017) pp. 613-619
© Research India Publications
http://www.ripublication.com
Approach For Palm Vein Blood Vessel Detection
Based On Fuzzy Logic
Praveen Kaundal
Department of E.C.E, PEC, University of Technology
Chandigarh-160012, India
Dr. Sukhwinder Singh
Department of E.C.E, PEC, University of Technology
Chandigarh-160012, India"
622949b1aacd316c60a7034c44121c698a3fb6a4,Highway Driving Dataset for Semantic Video Segmentation,"KIM, YIM, AND KIM: HIGHWAY DRIVING DATASET
Highway Driving Dataset
for Semantic Video Segmentation
Byungju Kim
Junho Yim
Junmo Kim*
School of Electrical Engineering
Korea Advanced Institute of Science
nd Technology (KAIST),
South Korea"
6211ba456908d605e85d102d63b106f1acb52186,Visual Interpretability forDeepLearning,"Zhang et al. / Front Inform Technol Electron Eng
in press
Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)
E-mail:
Visual Interpretability for Deep Learning∗
Quanshi Zhang and Song-Chun Zhu
(University of California, Los Angeles)
E-mail:"
62f0d8446adee6a5e8102053a63a61af07ac4098,Facial point detection using convolutional neural network transferred from a heterogeneous task,"FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK
TRANSFERRED FROM A HETEROGENEOUS TASK
Takayoshi Yamashita* Taro Watasue** Yuji Yamauchi* Hironobu Fujiyoshi*
**Tome R&D
*Chubu University,
200, Matsumoto-cho, Kasugai, AICHI"
62cf8c07ca6c4c7817f6a5682eb2d7cde76198ae,Boosted Metric Learning for Efficient Identity-Based Face Retrieval,"NEGREL ET AL.: BOOSTED METRIC LEARNING FOR FACE RETRIEVAL
Boosted Metric Learning for Efficient
Identity-Based Face Retrieval
Romain Negrel
Alexis Lechervy
Frederic Jurie
GREYC, CNRS UMR 6072, ENSICAEN
Université de Caen Basse-Normandie
France"
6268ad4bc516a41a30db566e2207079fc483212e,LBP-Based Edge-Texture Features for Object Recognition,"LBP-Based Edge-Texture Features for
Object Recognition
Amit Satpathy, Member, IEEE, Xudong Jiang, Senior Member, IEEE, and How-Lung Eng, Member, IEEE"
62374b9e0e814e672db75c2c00f0023f58ef442c,Frontal face authentication using discriminating,"Frontalfaceauthenticationusingdiscriminatinggridswith
morphologicalfeaturevectors
A.Tefas
C.Kotropoulos
I.Pitas
DepartmentofInformatics,AristotleUniversityofThessaloniki
Box,Thessaloniki,GREECE
EDICSnumbers:-KNOWContentRecognitionandUnderstanding
-MODAMultimodalandMultimediaEnvironments
Anovelelasticgraphmatchingprocedurebasedonmultiscalemorphologicaloperations,thesocalled
morphologicaldynamiclinkarchitecture,isdevelopedforfrontalfaceauthentication.Fastalgorithms
forimplementingmathematicalmorphologyoperationsarepresented.Featureselectionbyemploying
linearprojectionalgorithmsisproposed.Discriminatorypowercoe(cid:14)cientsthatweighthematching
errorateachgridnodearederived.Theperformanceofmorphologicaldynamiclinkarchitecturein
frontalfaceauthenticationisevaluatedintermsofthereceiveroperatingcharacteristicontheMVTS
faceimagedatabase.Preliminaryresultsforfacerecognitionusingtheproposedtechniquearealso
presented.
Correspondingauthor:I.Pitas
DRAFT
September,"
6215c5713adeacbb33b9d1c4c739f2b0b50dd17f,Part-based 3d Face Recognition under Pose and Expression Variations,"PART-BASED 3D FACE RECOGNITION UNDER POSE AND EXPRESSION
VARIATIONS
Hamdi Dibeklio˘glu
B.S, in Computer Engineering, Yeditepe University, 2006
Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science
Graduate Program in Computer Engineering
Bo˘gazi¸ci University"
6273b3491e94ea4dd1ce42b791d77bdc96ee73a8,"Evaluating Appearance Models for Recognition, Reacquisition, and Tracking","Evaluating Appearance Models for Recognition, Reacquisition, and Tracking
Doug Gray
Shane Brennan
Hai Tao
University of California, Santa Cruz
156 High St., Santa Cruz, CA 95064
{dgray, shanerb,"
62d1b32d67e4a4b58a66cba91629aae5f7968962,Recurrent Neural Networks for Semantic Instance Segmentation,"Recurrent Neural Networks
for Semantic Instance Segmentation
Amaia Salvador1, M´ıriam Bellver2, V´ıctor Campos2, Manel Baradad1
Ferran Marques1 Jordi Torres2 and Xavier Giro-i-Nieto1
Universitat Polit`ecnica de Catalunya 2Barcelona Supercomputing Center"
626859fe8cafd25da13b19d44d8d9eb6f0918647,Activity Recognition Based on a Magnitude-Orientation Stream Network,"Activity Recognition based on a
Magnitude-Orientation Stream Network
Carlos Caetano, Victor H. C. de Melo, Jefersson A. dos Santos, William Robson Schwartz
Smart Surveillance Interest Group, Department of Computer Science
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil"
6289d2c4c47d7101861153bfe78c92d16cf4581b,A Cross-Core Performance Model for Heterogeneous Many-Core Architectures,"A Cross-Core Performance Model for
Heterogeneous Many-Core Architectures
Rui Pinheiro, Nuno Roma, and Pedro Tom´as (cid:63)
INESC-ID, Instituto Superior T´ecnico, Universidade de Lisboa"
623da0faea1f98f238936e34f361518829edfdf4,Digital geometry image analysis for medical diagnosis,"Digital Geometry Image Analysis for Medical Diagnosis
Jiandong Fang    Shiaofen Fang     Jeffrey Huang     Mihran Tuceryan
Department of Computer and Information Science
Indiana University Purdue University Indianapolis
723 W. Michigan St., SL 280
Indianapolis, IN 46202, USA
-317-274-9731"
624077c8c8c9306c12671870cacc0fb13ff20324,"Smart, Sparse Contours to Represent and Edit Images","Sparse, Smart Contours to Represent and Edit Images
Tali Dekel 1
Chuang Gan 2
Dilip Krishnan 1
Ce Liu 1 William T. Freeman 1,3
Google Research 2 MIT-Watson AI Lab 3 MIT-CSAIL
Figure 1. Our method produces high quality reconstructions of images from information along a small number of contours: a source
(512×512) image in (a) is reconstructed in (c) from gradient information stored at the set of colored contours in (b)2, which are less than
5% of the pixels. The model synthesizes hair texture, facial lines and shading even in regions where no input information is provided.
Our model allows for semantically intuitive editing in the contour domain. Top-right: a caricature-like result (e) is created by moving and
scaling some contours in (d). Bottom-right: hairs are synthesized by pasting a set of hair contours copied from a reference image. Edited
ontours are marked in green while the original contours in red."
6236962ce0d627fc23774f0680e77069b9667803,Fitting a Morphable Model to Pose and Shape of a Point Cloud,"Fitting a Morphable Model to Pose and Shape of a Point Cloud
David C. Schneider, Peter Eisert
Fraunhofer Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin, Germany"
627107c02c2df1366965f11678dd3c4fb14ac9b3,Connecting Images and Natural Language a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"CONNECTING IMAGES AND NATURAL LANGUAGE
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Andrej Karpathy
August 2016"
629722342f719ee413e9bb07072a2fc2b4f09a26,Gender Classification by Information Fusion of Hair and Face,"Gender Classification by Information Fusion
of Hair and Face
Zheng Ji, Xiao-Chen Lian and Bao-Liang Lu
Department of Computer Science and Engineering, Shanghai
Jiao Tong University 800 Dong Chuan Road,
Shanghai 200240, China
. Introduction
Various gender classification methods have been reported in the literature. These existing
methods fall into two categories. The first kind of method is the appearance-based approach.
Golomb et al. [1] used a two-layer neural network with 30 × 30 inputs and directly fed the
scaled  image  pixels  to  the  network  without  dimensionality  reduction.  Their  database
ontains only 90 images with half male and half female facial images. Gutta et al. [2] used the
mixture of experts combining the ensembles of radial basis functions (RBF) networks and a
decision tree. Xu et al. [3] applied Adaboost to gender classification problem with the feature
pools  composed  of  a  set  of  linear  projections  utilizing  statistical  moments  up  to  second
order. Wu et al. [4] also adopted Adaboost. Instead of using threshold weak classifiers, they
used  looking-up  table  weak  classifiers,  which  are  more  general  and  better  than  simple
threshold  ones  due  to  stronger  ability  to  model  complex  distribution  of  training  samples.
Moghaddam and Yang [5] demonstrated that support vector machines (SVMs) work better
than other classifiers such as ensemble of radial basis function (RBF) networks, classical RBF"
62e2c431d375bbafd988d53c4d39f240c8b7977b,A Game-Theoretic Probabilistic Approach for Detecting Conversational Groups,"A Game-Theoretic Probabilistic Approach
for Detecting Conversational Groups
Sebastiano Vascon1, Eyasu Zemene Mequanint2, Marco Cristani1,3, Hayley Hung4 (cid:63),
Marcello Pelillo2, and Vittorio Murino1,3
Dept. of Pattern Analysis & Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Genova, Italy
Dept. of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Italy
Dept. of Computer Science, University of Verona, Italy
Faculty of Electrical Engineering, Mathematics and Computer Science, Technical University of Delft, Netherlands"
627412bf4cf2706f6dc9530313ecf06bbc532cca,Dissertation Gerard Pons Moll,"Human Pose Estimation from Video and Inertial
Sensors
Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover
zur Erlangung des akademischen Grades
Doktor-Ingenieur
(abgekürzt: Dr.-Ing.)
genehmigte
Dissertation
Gerard Pons Moll
geboren am 25. Oktober 1984 in Barcelona."
62dd66f9f4995cfdaafb479de50363ce0255b1bd,2 Feature Extraction Based on Wavelet Moments and Moment Invariants in Machine Vision Systems,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
621ea1f1e364262348135c803557e7b3454a804e,Generative spatiotemporal modeling of neutrophil behavior,"Accepted to 2018 IEEE International Symposium on Biomedical Imaging
Copyright ©2018 IEEE
Generative Spatiotemporal Modeling Of Neutrophil Behavior
Narita Pandhe(cid:63)
Balazs Rada†
Shannon Quinn(cid:63)
(cid:63) Department of Computer Science
Department of Infectious Diseases
University of Georgia"
62007c30f148334fb4d8975f80afe76e5aef8c7f,Eye In-Painting with Exemplar Generative Adversarial Networks,"Eye In-Painting with Exemplar Generative Adversarial Networks
Brian Dolhansky, Cristian Canton Ferrer
Facebook Inc.
Hacker Way, Menlo Park (CA), USA
{bdol,"
62a30f1b149843860938de6dd6d1874954de24b7,Fast Algorithm for Updating the Discriminant Vectors of Dual-Space LDA,"Fast Algorithm for Updating the Discriminant Vectors
of Dual-Space LDA
Wenming Zheng, Member, IEEE, and Xiaoou Tang, Fellow, IEEE"
626c12d6ccb1405c97beca496a3456edbf351643,Conditional Variance Penalties and Domain Shift Robustness,"Conditional Variance Penalties and Domain Shift Robustness
Christina Heinze-Deml & Nicolai Meinshausen
Seminar for Statistics
ETH Zurich
Zurich, Switzerland"
62e0380a86e92709fe2c64e6a71ed94d152c6643,Facial emotion recognition with expression energy,"Facial Emotion Recognition With Expression Energy
Albert Cruz
Center for Research in
Intelligent Systems
16 Winston Chung Hall
Bir Bhanu
Center for Research in
Intelligent Systems
16 Winston Chung Hall
Ninad Thakoor
Center for Research in
Intelligent Systems
16 Winston Chung Hall
Riverside, CA, 92521-0425,
Riverside, CA, 92521-0425,
Riverside, CA, 92521-0425,"
62b90583723174220b26c92bd67f6c422ad75570,Dna-gan: Learning Disentangled Represen-,"Under review as a conference paper at ICLR 2018
DNA-GAN: LEARNING DISENTANGLED REPRESEN-
TATIONS FROM MULTI-ATTRIBUTE IMAGES
Anonymous authors
Paper under double-blind review"
62070fbd22b2a4bba830668c2e9720ec4bff4171,Fast human detection using template matching for gradient images and aSC descriptors based on subtraction stereo,"978-1-4799-2341-0/13/$31.00 ©2013 IEEE
ICIP 2013"
968c62bb2927ca300ef953644e652ba7d2c2e5e6,Learning person-object interactions for action recognition in still images,"Learning person-object interactions for
ction recognition in still images
Vincent Delaitre∗
´Ecole Normale Sup´erieure
Josef Sivic*
INRIA Paris - Rocquencourt
Ivan Laptev*
INRIA Paris - Rocquencourt"
96e7142ab905c54c033696ac3692e85692c43bf3,Sparse Illumination Learning and Transfer for Single-Sample Face Recognition with Image Corruption and Misalignment,"Noname manuscript No.
(will be inserted by the editor)
Sparse Illumination Learning and Transfer for
Single-Sample Face Recognition with Image Corruption and
Misalignment
Liansheng Zhuang · Tsung-Han Chan ·
Allen Y. Yang · S. Shankar Sastry · Yi Ma
Received: date / Accepted: date"
9626bcb3fc7c7df2c5a423ae8d0a046b2f69180c,A deep learning approach for action classification in American football video sequences,"UPTEC STS 17033
Examensarbete 30 hp
November 2017
A deep learning approach for
ction classification in American
football video sequences
Jacob Westerberg"
96e9bc6b54d1c79406cf37ae45fd35ef04d647c6,A Fully Automated System for Sizing Nasal PAP Masks Using Facial Photographs,"A Fully Automated System for Sizing Nasal PAP Masks Using Facial
Photographs
Benjamin Johnston Student Member, IEEE and Philip de Chazal Senior Member, IEEE"
9603b3a4649fd217752972909d627bde8e0a5023,Spectral Hashing With Semantically Consistent Graph for Image Indexing,"Spectral Hashing With Semantically
Consistent Graph for Image Indexing
Peng Li, Meng Wang, Member, IEEE, Jian Cheng, Member, IEEE, Changsheng Xu, Senior Member, IEEE, and
Hanqing Lu, Senior Member, IEEE"
96d6e0bf752c42ede0170e9b332ca390ac75cd1f,Temporal Hierarchical Dictionary with HMM for Fast Gesture Recognition,"018 24th International Conference on Pattern Recognition (ICPR)
Beijing, China, August 20-24, 2018
978-1-5386-3787-6/18/$31.00 ©2018 European Union"
9696b172d66e402a2e9d0a8d2b3f204ad8b98cc4,Region-Based Facial Expression Recognition in Still Images,"J Inf Process Syst, Vol.9, No.1, March 2013
pISSN 1976-913X
eISSN 2092-805X
Region-Based Facial Expression Recognition in
Still Images
Gawed M. Nagi*, Rahmita Rahmat*, Fatimah Khalid* and Muhamad Taufik*"
9679d15c6699b521740408b2e899c03af89390ac,Dimensionality Reduction for 3d Articulated Body Tracking and Human Action Analysis,"DIMENSIONALITY REDUCTION FOR 3D
ARTICULATED BODY TRACKING AND HUMAN
ACTION ANALYSIS
Leonid Raskin
Research Supervisors:
Prof. Ehud Rivlin, Dr. Michael Rudzsky
Prof. Michael Lindenbaum
Submitted in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy
Technion IIT - Israel Institute of Technology
Haifa, Israel
March 2010
(cid:176) Copyright by Leonid Raskin, 2010
Technion - Computer Science Department - Ph.D. Thesis  PHD-2010-11 - 2010"
96390f95a73a6bd495728b6cd2a97554ef187f76,Pan Olympus : Sensor Privacy through Utility Aware,"Proceedings on Privacy Enhancing Technologies ..; .. (..):1–21
Nisarg Raval, Ashwin Machanavajjhala, and Jerry Pan
Olympus: Sensor Privacy through Utility Aware
Obfuscation"
9630109529870d142fde01341da05967484e906c,Techniques of Facial Synthesis: A Comprehensive Literature Review,"International Journal of Computer Applications (0975 – 8887)
Volume 61– No.10, January 2013
Techniques of Facial Synthesis: A
Comprehensive Literature Review
Deepti Chandra
Shri Shankaracharya College
of Engg. & Technology,  Bhilai,
Chhattisgarh, India
Sanjeev  Karmakar
Bhilai Institute of Technology (BIT)
Chhattisgarh, Durg 491001, India
Rajendra  Hegadi
Pragati College of Engg. &
Management
Raipur,Chhattisgarh, India
realism
-the  synthesized"
96f4a1dd1146064d1586ebe86293d02e8480d181,Comparative Analysis of Reranking Techniques for Web Image Search,"COMPARATIVE ANALYSIS OF RERANKING
TECHNIQUES FOR WEB IMAGE SEARCH
Suvarna V. Jadhav1, A.M.Bagade2
,2Department of Information Technology, Pune Institute of Computer Technology, Pune,( India)"
96723b42451c42ec396381596490143aac8f85cd,A Computer Vision Approach for the Eye Accessing Cue Model Used in Neuro-linguistic Programming,"U.P.B. Sci. Bull., Series C, Vol. 75, Iss. 4, 2013                                                   ISSN 2286 – 3540
A COMPUTER VISION APPROACH FOR THE EYE
ACCESSING CUE MODEL USED IN NEURO-LINGUISTIC
PROGRAMMING
Ruxandra VRÂNCEANU1, Laura FLOREA2, Corneliu FLOREA3
This paper investigates the Eye Accessing Cue (EAC) model used in Neuro-
Linguistic Programming (NLP) and shows how image processing techniques can be
used to improve the interpretation of this model. An experiment was carried out to
validate the model by inducing certain eye cues using a set of questions. A simple
nd  efficient  method  is  proposed  for  automatically  locating  the  eyes  and  the
orrespondent  EAC.  The  relative  position  between  the  iris  and  the  sclera  is
determined  using  a  fast  mechanism,  based  on  the  analysis  of  integral  projections
inside the bounding box of the eye.
Keywords: Neuro-Linguistic Programming, Eye Detection, Eye Gaze
. Introduction
The progress made in image processing and the increase of computational
apabilities  of  machines  over  the  past  decades  has  led  to  new  opportunities  for
human-computer  interactions  and  to  the  development  of  systems  capable  of
utomatically  interpreting  the  facial  attributes  of  a  person.  Such  algorithms  are
used  in  the  field  of  people  identification  and  description,  in  applications  that"
96a7f2faf4baa09184deb458a03146805d62beed,Passive Three Dimensional Face Recognition Using Iso-Geodesic Contours and Procrustes Analysis,"Int J Comput Vis (2013) 105:87–108
DOI 10.1007/s11263-013-0631-2
Passive Three Dimensional Face Recognition Using Iso-Geodesic
Contours and Procrustes Analysis
Sina Jahanbin · Rana Jahanbin · Alan C. Bovik
Received: 11 November 2011 / Accepted: 11 May 2013 / Published online: 19 June 2013
© Springer Science+Business Media New York 2013"
9606b1c88b891d433927b1f841dce44b8d3af066,Principal Component Analysis with Tensor Train Subspace,"Principal Component Analysis with Tensor Train
Subspace
Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron"
96fdc0131dc80ffa6d7b9c526e07f080414c54ec,1 Paying More A ention to Saliency : Image Captioning with Saliency and Context A ention,"Paying More A(cid:130)ention to Saliency: Image Captioning with
Saliency and Context A(cid:130)ention
MARCELLA CORNIA, University of Modena and Reggio Emilia
LORENZO BARALDI, University of Modena and Reggio Emilia
GIUSEPPE SERRA, University of Udine
RITA CUCCHIARA, University of Modena and Reggio Emilia
Image captioning has been recently gaining a lot of a(cid:138)ention thanks to the impressive achievements
shown by deep captioning architectures, which combine Convolutional Neural Networks to extract image
representations, and Recurrent Neural Networks to generate the corresponding captions. At the same time,
signi(cid:128)cant research e(cid:130)ort has been dedicated to the development of saliency prediction models, which
an predict human eye (cid:128)xations. Even though saliency information could be useful to condition an image
aptioning architecture, by providing an indication of what is salient and what is not, research is still struggling
to incorporate these two techniques. In this work, we propose an image captioning approach in which a
generative recurrent neural network can focus on di(cid:130)erent parts of the input image during the generation of
the caption, by exploiting the conditioning given by a saliency prediction model on which parts of the image
re salient and which are contextual. We show, through extensive quantitative and qualitative experiments on
large scale datasets, that our model achieves superior performances with respect to captioning baselines with
nd without saliency, and to di(cid:130)erent state of the art approaches combining saliency and captioning.
CCS Concepts: •Computing methodologies →Scene understanding; Natural language generation;
Additional Key Words and Phrases: saliency, visual saliency prediction, image captioning, deep learning."
9691055b1fcbe626b5bce9d8d43903094a5c0339,Generating an item pool for translational social cognition research: methodology and initial validation.,"Behav Res (2015) 47:228–234
DOI 10.3758/s13428-014-0464-0
Generating an item pool for translational social cognition
research: Methodology and initial validation
Michael K. Keutmann & Samantha L. Moore &
Adam Savitt & Ruben C. Gur
Published online: 10 April 2014
# Psychonomic Society, Inc. 2014"
96b1000031c53cd4c1c154013bb722ffd87fa7da,ContextVP: Fully Context-Aware Video Prediction,"ContextVP: Fully Context-Aware Video
Prediction
Wonmin Byeon1,2,3,4, Qin Wang2,
Rupesh Kumar Srivastava4, and Petros Koumoutsakos2
NVIDIA, Santa Clara, CA, USA
ETH Zurich, Zurich, Switzerland
The Swiss AI Lab IDSIA, Manno, Switzerland
NNAISENSE, Lugano, Switzerland"
96f0da034d090a3ecadd0fb92333bb681f23ab14,Temporal-Spatial Mapping for Action Recognition,"Temporal-Spatial Mapping for Action Recognition
Xiaolin Song, Cuiling Lan, Wenjun Zeng, Junliang Xing, Jingyu Yang, and Xiaoyan Sun"
964e43f4983a42ef3790c265bdce42c1fce56d79,A Virtual Environment Tool for Benchmarking Face Analysis Systems,"A Virtual Environment Tool for Benchmarking Face
Analysis Systems
Mauricio Correa+,*, Javier Ruiz-del-Solar+,*, Rodrigo Verschae*
+Department of Electrical Engineering, Universidad de Chile
*Advanced Mining Technology Center, Universidad de Chile
{macorrea,"
968f472477a8afbadb5d92ff1b9c7fdc89f0c009,Firefly-based Facial Expression Recognition,Firefly-based Facial Expression Recognition
96fc93175169b788acd98f0a676dffab00651cbc,On Matching Faces with Alterations due to Plastic Surgery and Disguise,"On Matching Faces with Alterations due to Plastic Surgery and Disguise
Saksham Suri1, Anush Sankaran2, Mayank Vatsa1, Richa Singh1
IIIT - Delhi, India 2IBM Research, Bengaluru, India
{saksham15082, mayank,"
9686dcf40e6fdc4152f38bd12b929bcd4f3bbbcc,Emotion Based Music Player,"International Journal of Engineering Research and General Science Volume 3, Issue 1,  January-February, 2015
ISSN 2091-2730
Emotion Based Music Player
Hafeez Kabani1, Sharik Khan2, Omar Khan3, Shabana Tadvi4
Department of Computer Science and Engineering
Department of Computer Science and Engineering
Department of Computer Science and Engineering
Asst. Professor, Department of Computer Science and Engineering
M.H Saboo Siddik College of Engineering, University of Mumbai, India"
96788880589a514c3ae9de29695c0127d6e76b8f,Attention-Based Multimodal Fusion for Video Description,"Attention-Based Multimodal Fusion for Video Description
Chiori Hori
Takaaki Hori
Teng-Yok Lee
Kazuhiro Sumi∗
John R. Hershey
Tim K. Marks
Mitsubishi Electric Research Laboratories (MERL)
{chori, thori, tlee, sumi, hershey,"
3abfab8740ffc66c0c191ce32ce1240062620bea,Continuous Facial Affect Recognition from Videos,"N. Garay, J. Abascal (Eds.): Actas del XII Congreso Internacional Interacción 2011, Lisboa
Continuous Facial Affect Recognition from Videos
Sergio Ballano1, Isabelle Hupont1, Eva Cerezo2 and Sandra Baldassarri2
Aragon Institute of Technology, Department of R&D and Technology Services,
Zaragoza. 5018, María de Luna 7-8, Spain
University of Zaragoza, Computer Science and Systems Engineering Department,
Zaragoza. 50018, María de Luna 3, Spain
{sballano, {ecerezo,"
3a7f9b4badc7407273325650763e887ad7b5cc9e,Anthropometric Comparison of Cross-Sectional External Ear between Monozygotic Twin,"Annals of Forensic Research and Analysis
*Corresponding author
Rumiza Abd Rashid, Institute of Forensic Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia; Tel: +60196943080; Fax: +603-55444562 ;
Email:
Submitted: 19 November 2014
Accepted: 20 November 2014
Published: 22 November 2014
Copyright
© 2014 Rashid et al.
OPEN ACCESS
Keywords
•	External ear
•	Monozygotic twin
•	Anthropometric measurement
•	Forensic anthropology
•	Identification
Research Article
Anthropometric Comparison"
3aad63c3c049eedb1c6da4871faa90e797b933e8,Highway Networks for Visual Question Answering,"Highway Networks for Visual Question Answering
Aaditya Prakash and James Storer
Brandeis University"
3a2fc58222870d8bed62442c00341e8c0a39ec87,Probabilistic Local Variation Segmentation,"Probabilistic Local Variation
Segmentation
Michael Baltaxe
Technion - Computer Science Department - M.Sc. Thesis  MSC-2014-02 - 2014"
3a4ecdf7d73b0fb392763048aa834a537a495537,Contour-based object detection,"SCHLECHT, OMMER: CONTOUR-BASED OBJECT DETECTION
Contour-based Object Detection
Joseph Schlecht
Björn Ommer
Interdisciplinary Center for
Scientific Computing
University of Heidelberg
Germany"
3aef744dad3982a7ae1ad97b4f126b6772fc3d07,Scene-Centric Joint Parsing of Cross-View Videos,"Scene-centric Joint Parsing of Cross-view Videos
Hang Qi1∗, Yuanlu Xu1∗, Tao Yuan1∗, Tianfu Wu2, Song-Chun Zhu1
Dept. Computer Science and Statistics, University of California, Los Angeles (UCLA)
{hangqi, tianfu
Dept. Electrical and Computer Engineering, NC State University"
3a8f16d8f7adae8bd0cdc5cc5114dac0b388a9f6,Interpreting Deep Neural Network: Fast Object Localization via Sensitivity Analysis,"Under review as a conference paper at ICLR 2019
INTERPRETING DEEP NEURAL NETWORK:
FAST OBJECT LOCALIZATION VIA SENSITIVITY
ANALYSIS
Anonymous authors
Paper under double-blind review"
3a8023d206613c930cee8e9166fcbbfd743e6634,Enhancing Person Re-identification in a Self-trained Subspace,"Enhancing Person Re-identification in a Self-trained
Subspace
Xun Yang, Meng Wang, Richang Hong, Qi Tian, Yong Rui"
3acfbc2aee9b2ed246a640930ebc2e350621f990,Progressive Boosting for Class Imbalance,"Progressive Boosting for Class Imbalance
Roghayeh Soleymania,∗, Eric Grangera, Giorgio Fumerab
Laboratoire d’imagerie, de vision et d’intelligence artificielle, ´Ecole de technologie sup´erieure
Pattern Recognition and Applications Group, Dept. of Electrical and Electronic Engineering
Universit´e du Qu´ebec, Montreal, Canada
University of Cagliari, Cagliari, Italy"
3a804cbf004f6d4e0b041873290ac8e07082b61f,A Corpus-Guided Framework for Robotic Visual Perception,"Language-Action Tools for Cognitive Artificial Agents: Papers from the 2011 AAAI Workshop (WS-11-14)
A Corpus-Guided Framework for Robotic Visual Perception
Ching L. Teo, Yezhou Yang, Hal Daum´e III, Cornelia Ferm¨uller, Yiannis Aloimonos
University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742-3275
{cteo, yzyang, hal, fer,"
3abc833f4d689f37cc8a28f47fb42e32deaa4b17,Large Scale Retrieval and Generation of Image Descriptions,"Noname manuscript No.
(will be inserted by the editor)
Large Scale Retrieval and Generation of Image Descriptions
Vicente Ordonez · Xufeng Han · Polina Kuznetsova · Girish Kulkarni ·
Margaret Mitchell · Kota Yamaguchi · Karl Stratos · Amit Goyal ·
Jesse Dodge · Alyssa Mensch · Hal Daum´e III · Alexander C. Berg ·
Yejin Choi · Tamara L. Berg
Received: date / Accepted: date"
3a165f7e22f0667b401cba1b2615048193781b4c,Patch-based Object Recognition,"Diplomarbeit im Fach Informatik
Rheinisch-Westf¨alische Technische Hochschule Aachen
Lehrstuhl f¨ur Informatik 6
Prof. Dr.-Ing. H. Ney
Patch-Based Object Recognition
vorgelegt von:
Andre Hegerath
Matrikelnummer 228760
Gutachter:
Prof. Dr.-Ing. H. Ney
Prof. Dr. T. Seidl
Betreuer:
Dipl.-Inform. T. Deselaers"
3abb51739b90c8bfd665e045b0eeadc87e065b63,Intrinsic 3D Dynamic Surface Tracking based on Dynamic Ricci Flow and Teichm&#xfc;ller Map,"Intrinsic 3D Dynamic Surface Tracking based on Dynamic Ricci Flow and
Teichm ¨uller Map
Xiaokang Yu
Dept of Comp Sci
Qingdao Univ
Na Lei
Dept of Soft and Tech
Dalian Univ of Tech
Qingdao, PR China
Dalian,PR China
Yalin Wang
Comp.Sci.& Engin
Arizona State Univ
Arizona, USA
Xianfeng Gu
Dept of Comp Sci
Stony Brook Univ
Stony Brook, USA"
3ab13f3ee6d66186c33766ac115d57f8b381468f,Stream Clustering with Dynamic Estimation of Emerging Local Densities,"Stream Clustering with Dynamic Estimation of
Emerging Local Densities
Ziyin Wang
Gavriil Tsechpenakis
Department of Computer and Information Science
Indiana University-Purdue University Indianapolis
Department of Computer and Information Science
Indiana University-Purdue University Indianapolis
Indianapolis, IN 46202, USA
Email:
Indianapolis, IN 46202, USA
Email:"
3acb6b3e3f09f528c88d5dd765fee6131de931ea,Novel representation for driver emotion recognition in motor vehicle videos,"(cid:49)(cid:50)(cid:57)(cid:40)(cid:47)(cid:3)(cid:53)(cid:40)(cid:51)(cid:53)(cid:40)(cid:54)(cid:40)(cid:49)(cid:55)(cid:36)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3)(cid:41)(cid:50)(cid:53)(cid:3)(cid:39)(cid:53)(cid:44)(cid:57)(cid:40)(cid:53)(cid:3)(cid:40)(cid:48)(cid:50)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3)(cid:53)(cid:40)(cid:38)(cid:50)(cid:42)(cid:49)(cid:44)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3)(cid:3)
(cid:44)(cid:49)(cid:3)(cid:48)(cid:50)(cid:55)(cid:50)(cid:53)(cid:3)(cid:57)(cid:40)(cid:43)(cid:44)(cid:38)(cid:47)(cid:40)(cid:3)(cid:57)(cid:44)(cid:39)(cid:40)(cid:50)(cid:54)(cid:3)
(cid:53)(cid:68)(cid:77)(cid:78)(cid:88)(cid:80)(cid:68)(cid:85)(cid:3)(cid:55)(cid:75)(cid:72)(cid:68)(cid:74)(cid:68)(cid:85)(cid:68)(cid:77)(cid:68)(cid:81)(cid:13)(cid:15)(cid:3)(cid:37)(cid:76)(cid:85)(cid:3)(cid:37)(cid:75)(cid:68)(cid:81)(cid:88)(cid:13)(cid:15)(cid:3)(cid:36)(cid:79)(cid:69)(cid:72)(cid:85)(cid:87)(cid:3)(cid:38)(cid:85)(cid:88)(cid:93)(cid:130)(cid:15)(cid:3)(cid:37)(cid:72)(cid:79)(cid:76)(cid:81)(cid:71)(cid:68)(cid:3)(cid:47)(cid:72)(cid:13)(cid:15)(cid:3)(cid:36)(cid:86)(cid:82)(cid:81)(cid:74)(cid:88)(cid:3)(cid:55)(cid:68)(cid:80)(cid:69)(cid:82)(cid:13)(cid:3)
(cid:3)
*Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA
(cid:130) Computer Perception Lab, California State University, Bakersfield, CA 93311, USA
(cid:36)(cid:37)(cid:54)(cid:55)(cid:53)(cid:36)(cid:38)(cid:55)(cid:3)
the  background
(cid:3)
A  novel  feature  representation  of  human  facial  expressions
for  emotion  recognition  is  developed.  The  representation
leveraged
texture  removal  ability  of
Anisotropic  Inhibited  Gabor  Filtering  (AIGF)  with  the
ompact  representation  of  spatiotemporal
local  binary
patterns. The  emotion recognition  system incorporated face
detection  and registration  followed  by the proposed  feature
representation:  Local  Anisotropic  Inhibited  Binary  Patterns
in  Three  Orthogonal"
3a13c964cc7adc5f010164ccb91d150457685a78,LIMO: Lidar-Monocular Visual Odometry,"LIMO: Lidar-Monocular Visual Odometry
Johannes Graeter1, Alexander Wilczynski1 and Martin Lauer1"
3aee6a6285869e6db48ad269eb110b542ad23c93,One-Click Annotation with Guided Hierarchical Object Detection,"One - Click Annotation with Guided Hierarchical Object Detection
Adithya Subramanian, Anbumani Subramanian
Intel
Bangalore, India"
3ac09c2589178dac0b6a2ea2edf04b7629672d81,Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017
Wasserstein CNN: Learning Invariant Features
for NIR-VIS Face Recognition
Ran He, Senior Member, IEEE, Xiang Wu, Zhenan Sun∗, Member, IEEE, and Tieniu Tan, Fellow, IEEE"
3a772ed83fdc90e10def9d38f59153aee49cd47b,A Camera Network Tracking (CamNeT) Dataset and Performance Baseline,"A Camera Network Tracking (CamNeT) Dataset and Performance Baseline
Shu Zhang1, Elliot Staudt1, Tim Faltemier2, and Amit K. Roy-Chowdhury1
Department of Electrical and Computer Engineering, University of California, Riverside
Progeny Systems Corporation"
3a35154f765dcba4e3789a38346bf54bce69e336,Object Hallucination in Image Captioning,"Object Hallucination in Image Captioning
Anna Rohrbach∗1, Lisa Anne Hendricks∗1,
Kaylee Burns1 , Trevor Darrell1, Kate Saenko2
UC Berkeley, 2 Boston University"
3a60678ad2b862fa7c27b11f04c93c010cc6c430,A Multimodal Database for Affect Recognition and Implicit Tagging,"JANUARY-MARCH 2012
A Multimodal Database for
Affect Recognition and Implicit Tagging
Mohammad Soleymani, Member, IEEE, Jeroen Lichtenauer,
Thierry Pun, Member, IEEE, and Maja Pantic, Fellow, IEEE"
3a37f57a9b94fff82ffea4e77803ebe5ebf6401b,ER7ST-algorithm for extracting facial expressions,"068                                                                 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016
ER7ST-Algorithm for Extracting Facial Expressions
Ahmad Tayyar1, Shadi Al-Shehabi2, and Majida AlBakoor3
Department of Computer Science, Jerash University, Jordan
Department of C omputer Engineeringm, Türk Hava Kurumu Üniversitesi, Turkey
Department of Mathematics, Aleppo University, Syria"
3acdccd33e518f22dcfe36ee29c332a644afdb25,Automatic Detection of Facial Midline And Its Contributions To Facial Feature Extraction,"Electronic Letters on Computer Vision and Image Analysis 6(3):55-66, 2008
Automatic Detection of Facial Midline
And Its Contributions To Facial Feature Extraction
Nozomi NAKAO, Wataru OHYAMA, Tetsushi WAKABAYASHI and Fumitaka KIMURA
Graduate School of Engineering, Mie University, 1577 Kurimamachiya–cho, Tsu–shi, Mie 514–8507, Japan
Received 17 April 2007; revised 17 June 2007; accepted 17 September 2007"
3a92a00b41dc6217f7685148c8a378524fa1a542,Human Pose Estimation Using Exemplars and Part Based Refinement,"Human Pose Estimation
Using Exemplars and Part Based Refinement
Yanchao Su1, Haizhou Ai1, Takayoshi Yamashita2, and Shihong Lao2
Computer Science and Technology Department, Tsinghua, Beijing 100084, China
Core Technology Center, Omron Corporation, Kyoto 619-0283, Japan"
3a591a9b5c6d4c62963d7374d58c1ae79e3a4039,Driver Cell Phone Usage Detection from HOV/HOT NIR Images,"Driver Cell Phone Usage Detection From HOV/HOT NIR Images
Yusuf Artan, Orhan Bulan, Robert P. Loce, and Peter Paul
Xerox Research Center Webster
800 Phillips Rd. Webster NY 14580"
3aa9c8c65ce63eb41580ba27d47babb1100df8a3,Differentiating Duchenne from non-Duchenne smiles using active appearance models,"Annals of the
University of North Carolina Wilmington
Master of Science in
Computer Science and Information Systems"
3a0a839012575ba455f2b84c2d043a35133285f9,Corpus-Guided Sentence Generation of Natural Images,"Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 444–454,
Edinburgh, Scotland, UK, July 27–31, 2011. c(cid:13)2011 Association for Computational Linguistics"
3a192e0391c357124cd2ec2287b1706f523ecdfd,An Introduction to the 3rd Workshop on Egocentric (First-Person) Vision,"An Introduction to the 3rd Workshop on Egocentric (First-person) Vision
Steve Mann, Kris M. Kitani, Yong Jae Lee, M. S. Ryoo, Alireza Fathi"
3aa98c08043558fec09bbf731cd7a8f09cf4eacf,Projective Nonnegative Matrix Factorization with α-Divergence,"Projective Nonnegative Matrix Factorization
with α-Divergence
Zhirong Yang and Erkki Oja
Department of Information and Computer Science(cid:2)
P.O. Box 5400, FI-02015, TKK, Espoo, Finland
Helsinki University of Technology"
3a9681e2e07be7b40b59c32a49a6ff4c40c962a2,"Comparing treatment means : overlapping standard errors , overlapping confidence intervals , and tests of hypothesis","Biometrics & Biostatistics International Journal
Comparing treatment means: overlapping standard
errors, overlapping confidence intervals, and tests of
hypothesis"
3a846704ef4792dd329a5c7a2cb8b330ab6b8b4e,FACE-GRAB: Face recognition with General Region Assigned to Binary operator,"in  any  current  or
future  media,
for  all  other  uses,
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained
including
reprinting/republishing  this  material  for  advertising  or  promotional  purposes,  creating
new  collective  works,  for  resale  or  redistribution  to  servers  or  lists,  or  reuse  of  any
opyrighted component of this work in other works.
Pre-print of article that appeared at the IEEE Computer Society Workshop on Biometrics
010.
The published article can be accessed from:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5544597"
3af0a26ef9a4084703b310eb997ca630d0bae237,Automatic conversion of monoscopic image / video to stereo for 3 D visualization,"________________________________________________________________________________________________
International Journal of Recent Advances in Engineering & Technology (IJRAET)
Automatic conversion of monoscopic image/ video to stereo for 3D
visualization
R.C.Gokul Nanda Kumar, 2Vijaykumar T
4th sem, M.Tech (Digital Electronics), SJBIT, Bangalore
Assoc Prof, Dept. of ECE, SJBIT, Bangalore
Email:
into  a"
3aa66f2829ef440842c71a52cdaff30398a90ccb,Pointly-Supervised Action Localization,"International Journal of Computer Vision manuscript No.
(will be inserted by the editor)
Pointly-Supervised Action Localization
Pascal Mettes · Cees G. M. Snoek
Received: date / Accepted: date"
3a0673199699cd51abe0f104ebe080f63d1b6d37,Sparse shape registration for occluded facial feature localization,"Sparse Shape Registration for Occluded Facial Feature Localization
Fei Yang, Junzhou Huang and Dimitris Metaxas"
3a95eea0543cf05670e9ae28092a114e3dc3ab5c,Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering,"Constructing the L2-Graph for Robust Subspace
Learning and Subspace Clustering
Xi Peng, Zhiding Yu, Huajin Tang, Member, IEEE, and Zhang Yi, Senior Member, IEEE"
3af0400c011700f3958062edfdfed001e592391c,The Intense World Theory – A Unifying Theory of the Neurobiology of Autism,"HUMAN NEUROSCIENCE
The Intense World Theory – a unifying theory of the
neurobiology of autism
Review ARticle
published: 21 December 2010
doi: 10.3389/fnhum.2010.00224
Kamila Markram
* and
Henry Markram
Laboratory of Neural Microcircuits, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Edited by:
Silvia A. Bunge, University of California
Berkeley, USA
Reviewed by:
Matthew K. Belmonte, Cornell
University, USA; University of
Cambridge, UK
Egidio D’Angelo, University of Pavia,
Italy
*Correspondence:"
3a24c276368fa63473078723ce4bc99c9ea36019,Stability comparison of dimensionality reduction techniques attending to data and parameter variations,"Eurographics Conference on Visualization (EuroVis) (2013)
M. Hlawitschka and T. Weinkauf (Editors)
Short Papers
Stability comparison of dimensionality reduction techniques
ttending to data and parameter variations
Francisco J. García-Fernández1,2, Michel Verleysen2, John A. Lee2 and Ignacio Díaz1
University of Oviedo, Spain
Université Catholique de Louvain, Belgium"
3a0cceb1a10697e3e17738579d27708c9c3303a8,Data-Intensive Multimedia Semantic Concept Modeling using Robust Subspace Bagging and MapReduce,"Data-Intensive Multimedia Semantic Concept Modeling
using Robust Subspace Bagging and MapReduce"
3af28e9e9e883c235b6418a68bda519b08f9ae26,Implications of Adult Facial Aging on Biometrics,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
3a28fe49e7a856ddd60d134696a891ed7bca5962,Small-scale Pedestrian Detection Based on Somatic Topology Localization and Temporal Feature Aggregation,"Small-scale Pedestrian Detection Based on
Somatic Topology Localization and Temporal
Feature Aggregation
Tao Song, Leiyu Sun, Di Xie, Haiming Sun, Shiliang Pu
Hikvision Research Institute"
3affe6f9c2244f4b32c1c0f7d7f1d24770d40efe,Evaluating the Resilience of Face Recognition Systems against Malicious Attacks,"OMAR L., IVRISSIMTZIS I.: RESILIENCE OF FACE RECOGNITION SYSTEMS
Evaluating the Resilience of Face
Recognition Systems against Malicious
Attacks
Luma Omar1
Ioannis Ivrissimtzis1
School of Engineering and
Computing Sciences
Durham University
Durham, UK"
3ab7f06cf8e7e7ca34427f81b766b823647ac117,Explaining Eye Movements During Learning as an Active Sampling Process,"Proceedings of the 2004 International
Conference on Development and Learning
Editors: Jochen Triesch and Tony Jebara
Publisher: UCSD Institute for Neural Computation
Location: The Salk Institute for Biological Studies
La Jolla California, USA
ISBN: 0-615-12704-5"
3a4f522fa9d2c37aeaed232b39fcbe1b64495134,Face Recognition and Retrieval Using Cross-Age Reference Coding With Cross-Age Celebrity Dataset,"ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526
INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
Vol. 4, Issue 5, May 2016
IJIREEICE
Face Recognition and Retrieval Using Cross
Age Reference Coding
Sricharan H S1, Srinidhi K S1, Rajath D N1, Tejas J N1, Chandrakala B M2
BE, DSCE, Bangalore1
Assistant Professor, DSCE, Bangalore2"
54509dbe70cd3015007bbd5fa1fd8793b388319e,Fast Pedestrian Detection by Cascaded Random Forest with Dominant Orientation Templates,"TANG ET AL.: FAST PEDESTRIAN DETECTION BY RANDOM FORESTS WITH DOT
Fast Pedestrian Detection by Cascaded
Random Forest with Dominant Orientation
Templates
Danhang Tang
http://www.iis.ee.ic.ac.uk/~dtang
Yang Liu
http://www.iis.ee.ic.ac.uk/~yliu
Tae-Kyun Kim
http://www.iis.ee.ic.ac.uk/~tkkim
Department of Electrical Engineering,
Imperial College,
London, UK"
548f94f82bf28efa299a64c2527aad36d76b81af,Adaptive Kernels for Texture Based Analysis of Object Based Classification of Forest Stands,"Adaptive Kernels for Texture Based
Analysis of Object Based Classification
of Forest Stands
Ziab Khan
A thesis submitted in partial fulfilment for the
degree of Master of Philosophy
in the
Department of Geography
University of Leicester
August 26, 2014"
540b39ba1b8ef06293ed793f130e0483e777e278,Biologically Inspired Emotional Expressions for Artificial Agents,"ORIGINAL RESEARCH
published: 13 July 2018
doi: 10.3389/fpsyg.2018.01191
Biologically Inspired Emotional
Expressions for Artificial Agents
Beáta Korcsok 1*, Veronika Konok 2, György Persa 3, Tamás Faragó 2, Mihoko Niitsuma 4,
Ádám Miklósi 2,5, Péter Korondi 1, Péter Baranyi 6 and Márta Gácsi 2,5
Department of Mechatronics, Optics and Engineering Informatics, Budapest University of Technology and Economics,
Budapest, Hungary, 2 Department of Ethology, Eötvös Loránd University, Budapest, Hungary, 3 Institute for Computer Science
nd Control, Hungarian Academy of Sciences, Budapest, Hungary, 4 Department of Precision Mechanics, Chuo University,
Tokyo, Japan, 5 MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary, 6 Department of Telecommunications
nd Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
A special area of human-machine interaction,
the expression of emotions gains
importance with the continuous development of artificial agents such as social robots or"
54ed052738ca0f4570c74931857b3275fca9993b,Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation,"Knowledge-Guided Deep Fractal Neural Networks
for Human Pose Estimation
Guanghan Ning, Student Member, IEEE, Zhi Zhang, Student Member, IEEE, and Zhihai He, Fellow, IEEE"
54bb3a17d536c7b88e56d294464f3d54de2ea9b3,Video surveillance online repository (ViSOR): www.openvisor.org,"Video Surveillance Online Repository (ViSOR)
www.openvisor.org
Roberto Vezzani, Rita Cucchiara
Dipartimento di Ingegneria “Enzo Ferrari”
University of Modena and Reggio Emilia, Italy"
544829d3b2e878c8f28fae5aa0c226e65ba6242a,Human Body Segmentation with Multi-limb Error-Correcting Output Codes Detection and Graph Cuts Optimization,"Human Pose Recovery and Behavior Analysis Group
Human Body Segmentation with
Multi-limb Error-Correcting Output
Codes Detection and Graph Cuts
Optimization
Daniel Sánchez, Juan Carlos Ortega,
Miguel Ángel Bautista & Sergio Escalera
All rights reserved HuBPA©"
54d78ad2ed30557474fabd1d3a9e5db1c76fbeaa,Deep Person Re-identification for Probabilistic Data Association in Multiple Pedestrian Tracking,"Deep Person Re-identification for Probabilistic Data Association in
Multiple Pedestrian Tracking
Brian H. Wang1, Yan Wang2, Kilian Q. Weinberger2, and Mark Campbell1"
54983972aafc8e149259d913524581357b0f91c3,ReSEED: social event dEtection dataset,"ReSEED: Social Event dEtection Dataset
Timo Reuter
Universität Bielefeld, CITEC
Bielefeld, Germany
ielefeld.de
Symeon Papadopoulos
CERTH-ITI
Thermi, Greece
Vasilios Mezaris
CERTH-ITI
Thermi, Greece
Philipp Cimiano
Universität Bielefeld, CITEC
Bielefeld, Germany
ielefeld.de"
541c68e2c65f6dce6179801c9f92dc7803dc71b5,Unsupervised and Transfer Learning under Uncertainty - From Object Detections to Scene Categorization,"Unsupervised and Transfer Learning under Uncertainty:
from Object Detections to Scene Categorization
Gr´egoire Mesnil1,2, Salah Rifai1, Antoine Bordes3,
Xavier Glorot1, Yoshua Bengio1 and Pascal Vincent1
LISA, Universit´e de Montr´eal, Qu´ebec, Canada
LITIS, Universit´e de Rouen, France
CNRS - Heudiasyc UMR 7253, Universit´e de Technologie de Compi`egne, France
Keywords:
Unsupervised Learning, Transfer Learning, Deep Learning, Scene Categorization, Object Detection"
543f21d81bbea89f901dfcc01f4e332a9af6682d,Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks,"Published as a conference paper at ICLR 2016
UNSUPERVISED AND SEMI-SUPERVISED LEARNING
WITH CATEGORICAL GENERATIVE ADVERSARIAL
NETWORKS
Jost Tobias Springenberg
University of Freiburg
79110 Freiburg, Germany"
54c5e9cded7da1f9dc695f5397d9d1a5ac5350af,Person Re-identification Based on Color Histogram and Spatial Configuration of Dominant Color Regions,"Person Re-identification Based on Color Histogram and Spatial
Configuration of Dominant Color Regions
Kwangchol Jang, Sokmin Han, Insong Kim
College of Computer Science, KIM IL SUNG University, Pyongyang, D.P.R of Korea
illumination,  pose  and  viewpoint,  camera  parameters.  Being  related"
54969bcd728b0f2d3285866c86ef0b4797c2a74d,Learning for Video Compression,"IEEE TRANSACTION SUBMISSION
Learning for Video Compression
Zhibo Chen, Senior Member, IEEE, Tianyu He, Xin Jin, Feng Wu, Fellow, IEEE"
5456166e3bfe78a353df988897ec0bd66cee937f,Improved Boosting Performance by Exclusion of Ambiguous Positive Examples,"Improved Boosting Performance by Exclusion
of Ambiguous Positive Examples
Miroslav Kobetski, Josephine Sullivan
Computer Vision and Active Perception, KTH, Stockholm 10800, Sweden
{kobetski,
Keywords:
Boosting, Image Classification, Algorithm Evaluation, Dataset Pruning, VOC2007."
543c601f8ebc0995040f4b8de4a339fd4c860cbb,Eye localization: a survey,"Eye localization: a survey
Paola CAMPADELLI, Raffaella LANZAROTTI, Giuseppe LIPORI 1
Dipartimento di Scienze dell’Informazione.
Università degli Studi di Milano.
Via Comelico, 39/41 - 20135 Milano (Italy)"
5432392d916e730c53962be202c115133e6d7777,Face processing in a case of high functioning autism with developmental prosopagnosia.,"RESEARCH PAPER
Acta Neurobiol Exp 2018, 78: 114–131
DOI: 10.21307/ane‑2018‑011
Face processing in a case of high functioning autism
with developmental prosopagnosia
Hanna B. Cygan1,3*, Hanna Okuniewska2, Katarzyna Jednoróg3, Artur Marchewka4,
Marek Wypych4 and Anna Nowicka3
Laboratory of Social Psychology, Department of Ergonomics, Central Institute for Labour Protection, National Research Institute,
Warsaw, Poland, 2 Faculty of Psychology, University of Warsaw, Warsaw, Poland, 3 Laboratory of Psychophysiology, Department of
Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland, 4 Laboratory of Brain Imaging,
Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland,
* Email:
The ability to “read” the information about facial identity, expressed emotions, and intentions is crucial for non‑verbal social interaction.
Neuroimaging and clinical studies consequently link face perception with fusiform gyrus (FG) and occipital face area (OFA) activity. Here
we investigated face processing in an adult, patient PK, diagnosed with both high functioning autism spectrum disorder (ASD) and
developmental prosopagnosia (DP). Both disorders have a significant impact on face perception and recognition, thus creating a unique
neurodevelopmental condition. We used eye‑tracking and functional magnetic resonance imaging (fMRI) method. Eye‑tracking and fMRI
results of PK were compared to results of control subjects. Patient PK showed atypical gaze‑fixation strategy during face perception and
typical patterns of brain activations in the FG and OFA. However, a significant difference between PK and control subjects was found in
the left anterior superior temporal sulcus/middle temporal gyrus (aSTS/MTG). In PK the left aSTS/MTG was hypo‑activated in comparison"
5479da1038a530beb760a38dbb5b08947dfaefbd,Fusing continuous spectral images for face recognition under indoor and outdoor illuminants,"DOI 10.1007/s00138-008-0151-1
ORIGINAL PAPER
Fusing continuous spectral images for face recognition
under indoor and outdoor illuminants
H. Chang · A. Koschan · B. Abidi · M. Abidi
Received: 4 December 2007 / Accepted: 14 May 2008 / Published online: 17 June 2008
© Springer-Verlag 2008
image fusion approaches,"
54aacc196ffe49b3450059fccdf7cd3bb6f6f3c3,A joint learning framework for attribute models and object descriptions,"A Joint Learning Framework for Attribute Models and Object Descriptions
Dhruv Mahajan
Yahoo! Labs, Bangalore, India
Sundararajan Sellamanickam
Vinod Nair"
5478a70badcf4d6da383d86163f0acc2c28b6bd3,Enhancing pedestrian detection using optical flow for surveillance,"Int. J. Computational Vision and Robotics, Vol. 7, Nos. 1/2, 2017
Enhancing pedestrian detection using optical flow for
surveillance
Redwan A.K. Noaman*,
Mohd Alauddin Mohd Ali and
Nasharuddin Zainal
Department of Electrical, Electronic and Systems Engineering,
Faculty of Engineering and Built Environment,
Universiti Kebangsaan Malaysia,
3600 Bandar Baru Bangi, Selangor, Malaysia
Email:
Email:
Email:
*Corresponding author"
5454c5900b6b6a0cf36df65d667129fcbd5262dc,Benchmarking asymmetric 3D-2D face recognition systems,"Benchmarking Asymmetric 3D-2D Face Recognition Systems
Xi Zhao, Wuming Zhang, Georgios Evangelopoulos, Di Huang, Shishir K. Shah, Yunhong Wang,
Ioannis A. Kakadiaris and Liming Chen"
541bccf19086755f8b5f57fd15177dc49e77d675,A few days of a robot's life in the human's world: toward incremental individual recognition,"Computer Science and ArtificialIntelligence LaboratoryTechnical Reportmassachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.eduMIT-CSAIL-TR-2007-022April 3, 2007A Few Days of A Robot’s Life in the Human’s World: Toward Incremental Individual RecognitionLijin Aryananda"
54f0fa07dee7bd270d3bd8da9011ca90df78af59,Comparison of Laser-Based Person Tracking at Feet and Upper-Body Height,"Comparison of Laser-based Person Tracking at
Feet and Upper-Body Height
Konrad Schenk, Markus Eisenbach,
Alexander Kolarow, and Horst-Michael Gross (cid:63)
Neuroinformatics and Cognitive Robotics
Ilmenau University of Technologies"
542289d1acfebb9d79ea7a10c8e1516924e09973,Video Highlight Prediction Using Audience Chat Reactions,"Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 972–978
Copenhagen, Denmark, September 7–11, 2017. c(cid:13)2017 Association for Computational Linguistics"
54dae5187de3898d8034719bcaa3e0100ae72d76,Probabilistic Attributed Hashing,"Probabilistic Attributed Hashing
Mingdong Ou1, Peng Cui1, Jun Wang2, Fei Wang3, Wenwu Zhu1
Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University. Beijing, China
Department of Computer Science and Engineering, University of Connecticut. Storrs, CT. USA.
Data Science, Alibaba Group, Seattle, WA, USA."
5458ccf22bdea7197e28b433ef06d5225fb030a7,Video Description Using Bidirectional Recurrent Neural Networks,"Video Description using Bidirectional Recurrent
Neural Networks
´Alvaro Peris1, Marc Bola˜nos2,3, Petia Radeva2,3, and Francisco Casacuberta1
PRHLT Research Center, Universitat Polit`ecnica de Val`encia, Valencia (Spain)
Universitat de Barcelona, Barcelona (Spain)
Computer Vision Center, Bellaterra (Spain)"
546cef6f86fb5a9fd59d40d9df63301c8a9d7d15,PathTrack: Fast Trajectory Annotation with Path Supervision,"PathTrack: Fast Trajectory Annotation with Path Supervision
Santiago Manen1
Michael Gygli1
Dengxin Dai1
Luc Van Gool1,2
Computer Vision Laboratory
ESAT - PSI / IBBT
{smanenfr, gygli, daid,
ETH Zurich
K.U. Leuven"
54b309443f53ed960f588f64d6aefe53f87504b6,TVD: A Reproducible and Multiply Aligned TV Series Dataset,"TVD: a reproducible and multiply aligned TV series dataset
Anindya Roy1, Camille Guinaudeau1,2, Herv´e Bredin1, Claude Barras1,2
Spoken Language Processing Group, CNRS-LIMSI, B.P. 133, Orsay, France.
Universit´e Paris Sud, Orsay, France.
{roy, guinaudeau, bredin,"
541b13515480c0371bb8bb79cf17120645edccc7,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
54756f824befa3f0c2af404db0122f5b5bbf16e0,Computer Vision — Visual Recognition,"Research Statement
Computer Vision — Visual Recognition
Alexander C. Berg
Computational visual recognition concerns identifying what is in an image, video, or other visual data, enabling
pplications such as measuring location, pose, size, activity, and identity as well as indexing for search by content.
Recent progress in making economical sensors and improvements in network, storage, and computational power
make visual recognition practical and relevant in almost all experimental sciences and commercial applications
such as image search. My work in visual recognition brings together machine learning, insights from psychology
nd physiology, computer graphics, algorithms, and a great deal of computation.
While I am best known for my work on general object category detection – creating techniques and building
systems for some of the best performing approaches to categorizing and localizing objects in images, recognizing
ction in video, and searching large collections of video and images – my research extends widely across visual
recognition including:
• Creating low-level image descriptors – procedures for converting pixel values to features that can be used
to model appearance for recognition. These include widely used descriptors for category recognition in
images [4, 2], object detection in images and video [11, 10, 2], and optical flow based descriptors for action
recognition in video [8].
• Developing models for recognition – ranging from what is becoming seminal work in recognizing human
ctions in video [8], to formulating object localization as approximate subgraph isomorphism [2], to models
for parsing architectural images [3], to a novel approach for face recognition based on high level describable"
549c719c4429812dff4d02753d2db11dd490b2ae,YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video,"YouTube-BoundingBoxes: A Large High-Precision
Human-Annotated Data Set for Object Detection in Video
Esteban Real
Google Brain
Jonathon Shlens
Google Brain
Stefano Mazzocchi
Google Research
Xin Pan
Google Brain
Vincent Vanhoucke
Google Brain"
548bc4203770450c21133bfb72c58f5fae0fbdf2,Visual-Inertial-Semantic Scene Representation for 3D Object Detection,"Visual-Inertial-Semantic Scene Representation for 3D Object Detection
Jingming Dong∗
Xiaohan Fei∗
Stefano Soatto
UCLA Vision Lab, University of California, Los Angeles, CA 90095
{dong, feixh,"
987dd3dd6079e5fa8a10a1c53b2580fd71e27ede,Concept-Based Video Retrieval By Cees,"Foundations and Trends R(cid:1) in
Information Retrieval
Vol. 2, No. 4 (2008) 215–322
(cid:1) 2009 C. G. M. Snoek and M. Worring
DOI: 10.1561/1500000014
Concept-Based Video Retrieval
By Cees G. M. Snoek and Marcel Worring
Contents
Introduction
How to Retrieve Video Content?
Human-Driven Labeling
.3 Machine-Driven Labeling
Aims, Scope, and Organization
Detecting Semantic Concepts in Video
Introduction
Basic Concept Detection
Feature Fusion
Classifier Fusion
.5 Modeling Relations
Best of Selection"
9853136dbd7d5f6a9c57dc66060cab44a86cd662,"Improving the Neural Network Training for Face Recognition using Adaptive Learning Rate , Resilient Back Propagation and Conjugate Gradient Algorithm","International Journal of Computer Applications (0975 – 8887)
Volume 34– No.2, November 2011
Improving the Neural Network Training for Face
Recognition using Adaptive Learning Rate, Resilient
Back Propagation and Conjugate Gradient Algorithm
Hamed Azami
M.Sc. Student
Department of Electrical
Engineering, Iran University
of Science and Technology,
Tehran, Iran
Saeid Sanei
Associate Professor
Department of Computing,
Faculty of Engineering and
Physical Sciences, University
of Surrey, UK
Karim Mohammadi
Professor
Department of Electrical"
98f1613889657963b102460e4e970fe421c6ed3c,Accurate and Robust Neural Networks for Security Related Applications Exampled by Face Morphing Attacks,"Accurate and Robust Neural Networks for
Security Related Applications Exampled by Face
Morphing Attacks
Clemens Seibold1, Wojciech Samek1, Anna Hilsmann1 and Peter Eisert1,2
Fraunhofer HHI, Einsteinufer 37, 10587 Berlin, Germany
Humboldt University Berlin, Unter den Linden 6, 10099 Berlin, Germany"
98a6f2145a358cb2e54eddc99dd29911764bce0e,Learning Single-view 3D Reconstruction of Objects and Scenes,"Learning Single-view 3D Reconstruction of Objects and
Scenes
Shubham Tulsiani
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2018-93
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-93.html
July 26, 2018"
986224bad9684c359db7fac2192b7134b855fbe3,Shopping for emotion,"Shopping for emotion
Evaluating the usefulness of emotion recognition data from a retail perspective
Anton Forsberg
Anton Forsberg
VT 2017
Examensarbete f¨or civilingenj¨orer, 30hp
Supervisor: Lars-Erik Janlert
Examiner: Anders Broberg
Civilingenj¨orsprogammet i Interaktion & Design"
987c9a137d638f3d561c52b6dd0f987734ad5460,Efficient Dense Modules of Asymmetric Convolution for Real-Time Semantic Segmentation,"Efficient Dense Modules of Asymmetric Convolution for
Real-Time Semantic Segmentation
Shao-Yuan Lo1     Hsueh-Ming Hang1     Sheng-Wei Chan2     Jing-Jhih Lin2
National Chiao Tung University     2 Industrial Technology Research Institute
{ShengWeiChan,"
988d1295ec32ce41d06e7cf928f14a3ee079a11e,Semantic Deep Learning,"Semantic Deep Learning
Hao Wang
September 29, 2015"
98c7a6210ca7bc81d2f7092ab28451f47039e920,UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society Title What is the Ground ?,"UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society
Title
What is the Ground? Continuous Maps for Symbol Grounding
Permalink
https://escholarship.org/uc/item/9p5236j4
Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36)
Authors
Perera, Ian
Allen, James
Publication Date
014-01-01
Peer reviewed
eScholarship.org
Powered by the California Digital Library
University of California"
98c548a4be0d3b62971e75259d7514feab14f884,Deep generative-contrastive networks for facial expression recognition,"Deep generative-contrastive networks for facial expression recognition
Youngsung Kim†, ByungIn Yoo‡,†, Youngjun Kwak†, Changkyu Choi†, and Junmo Kim‡
Samsung Advanced Institute of Technology (SAIT), ‡KAIST
hangkyu"
98b98a8413f21a48ee6effd52da8c31ece6a910d,Detecting handwritten signatures in scanned documents,"9th Computer Vision Winter Workshop
Zuzana Kúkelová and Jan Heller (eds.)
Křtiny, Czech Republic, February 3–5, 2014
Detecting handwritten signatures in scanned documents
İlkhan Cüceloğlu1,2, Hasan Oğul1
Department of Computer Engineering, Başkent University, Ankara, Turkey
DAS Document Archiving and Management Systems CO., Ankara, Turkey"
98142e84a3cee08661b31371a2c610183df82c8f,Tight Bounds for the Expected Risk of Linear Classifiers and PAC-Bayes Finite-Sample Guarantees,"Tight Bounds for the Expected Risk of Linear Classifiers and
PAC-Bayes Finite-Sample Guarantees
Jean Honorio
CSAIL, MIT
Cambridge, MA 02139, USA"
981449cdd5b820268c0876477419cba50d5d1316,Learning Deep Features for One-Class Classification,"Learning Deep Features for One-Class
Classification
Pramuditha Perera, Student Member, IEEE, and Vishal M. Patel, Senior Member , IEEE"
98960be5ae51d30118f091f7091299a49f2f34bb,Global and Feature Based Gender Classification of Faces: a Comparison of Human Performance and Computational Models,"GLOBAL AND FEATURE BASED GENDER CLASSIFICATION
OF FACES: A COMPARISON OF HUMAN PERFORMANCE
AND COMPUTATIONAL MODELS
SAMARASENA BUCHALAA   TIM M.GALEA,B   NEIL DAVEYA   RAY J.FRANKA
KERRY FOLEYB
A Department of Computer Science, University of Hertfordshire, College Lane, Hatfield,
{S.Buchala, N.Davey, T.Gale,
AL10 9AB, UK
B Department of Psychiatry, QEII Hospital, Welwyn Garden City, AL7 4HQ, UK
Most computational models for gender classification use global information (the full face
image) giving equal weight to the whole face area irrespective of the importance of the
internal features. Here, we use a global and feature based representation of face images
that  includes  both  global  and  featural  information.  We  use  dimensionality  reduction
techniques and a support vector machine classifier and show that this method performs
etter than either global or feature based representations alone.
.  Introduction
Most  computational  models  of  gender  classification  use  whole  face  images,
giving  equal  weight  to  all  areas  of  the  face,  irrespective  of  the  importance  of
internal  facial  features.  In  this paper we evaluate the  importance of global and
local  information  in  a  series  of  gender  recognition  experiments.  Global"
98c5b88db35d7ab2d3cc0a63c7ff1414160d2aa6,Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors,"Article
Convolutional Neural Network-Based Finger-Vein
Recognition Using NIR Image Sensors
Hyung Gil Hong, Min Beom Lee and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; (H.G.H); (M.B.L.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Academic Editor: Vittorio M. N. Passaro
Received: 11 May 2017; Accepted: 1 June 2017; Published: 6 June 2017"
98424c79970a80f30db837db84880a4c02e76f1a,Deepagent: An Algorithm Integration Approach for Person Re-Identification,"DEEPAGENT: AN ALGORITHM INTEGRATION APPROACH FOR PERSON
RE-IDENTIFICATION
Fulong Jiao, Bir Bhanu
Center for Research in Intelligent Systems
University of California, Riverside, Riverside, CA 92521, USA"
98f13ab2845cfe8513a0c05427a8b90d9c0c1b69,Pedestrian Attribute Recognition with Part-based CNN and Combined Feature Representations,
98220d35ae6a3ba745f7dea1434f000ca60c62c0,Multi-object Tracking using Particle Swarm Optimization on Target Interactions,"Multi-object Tracking using Particle Swarm
Optimization on Target Interactions
Bogdan Kwolek"
984d5ed1fa80124117fdd0aa9a5be69f269da268,[insert Cover Letter Here],[Insert cover letter here]
988d5ad8d114f5f21a73b2ae464dca4277f5725f,Persian Viseme Classification Using Interlaced Derivative Patterns and Support Vector Machine,"Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 9 (2014) pp. 148-156
© MIR Labs, www.mirlabs.net/jias/index.html
Persian Viseme Classification Using Interlaced
Derivative Patterns and Support Vector Machine
Mohammad Mahdi Dehshibi1, Jamshid Shanbehzadeh2
Digital Signal Processing Lab., Pattern Research Center,
Karaj, Iran
Department of Computer Engineering, Kharazmi University,
Tehran, Iran
is  a"
986be05b286d99d840583578c102af31c56428fd,An Efficient Algorithm for Implementing Traffic Sign Detection on Low Cost Embedded System,"International Journal of Innovative
Computing, Information and Control
Volume 14, Number 1, February 2018
ICIC International c(cid:13)2018 ISSN 1349-4198
pp. 1–14
AN EFFICIENT ALGORITHM FOR IMPLEMENTING TRAFFIC SIGN
DETECTION ON LOW COST EMBEDDED SYSTEM
Aryuanto Soetedjo and I Komang Somawirata
Department of Electrical Engineering
National Institute of Technology
Jalan Raya Karanglo KM 2 Malang 65153, Indonesia
Received May 2017; revised September 2017"
9854145f2f64d52aac23c0301f4bb6657e32e562,An Improved Face Verification Approach Based on Speedup Robust Features and Pairwise Matching,"An Improved Face Verification Approach based on
Speedup Robust Features and Pairwise Matching
Eduardo Santiago Moura, Herman Martins Gomes and Jo˜ao Marques de Carvalho
Center for Electrical Engineering and Informatics (CEEI)
Federal University of Campina Grande (UFCG)
Campina Grande, Para´ıba, Brazil
Email:"
983534325c649e391fefe87025337187021b9830,Towards Automatic Generation of Question Answer Pairs from Images,"Towards Automatic Generation of Question Answer Pairs from Images
Issey Masuda Mora, Santiago Pascual de la Puente, Xavier Giro-i-Nieto
Universitat Politecnica de Catalunya (UPC)
Barcelona, Catalonia/Spain"
98127346920bdce9773aba6a2ffc8590b9558a4a,Efficient human action recognition using histograms of motion gradients and VLAD with descriptor shape information,"Noname manuscript No.
(will be inserted by the editor)
Ef‌f‌icient Human Action Recognition using
Histograms of Motion Gradients and
VLAD with Descriptor Shape Information
Ionut C. Duta · Jasper R.R. Uijlings ·
Bogdan Ionescu · Kiyoharu Aizawa ·
Alexander G. Hauptmann · Nicu Sebe
Received: date / Accepted: date"
98582edd6029c94844f5a40d246eaa86f74d8512,Learning Visual Scene Attributes,"Learning Visual Scene Attributes
Vazheh Moussavi
A Glance at Attribute-Centric Scene Representations
Take a look around you. How would you describe your surroundings to best give an idea of what
everything looks like to someone not there? Maybe you will give a category to the scene, say,
‘bedroom’. You might try to list some of the objects around you, like ‘bed’, ‘lamp’, and ‘desk’. Or
perhaps you’ll describe it with adjectives like ‘indoors’, ‘cozy’, and ‘cluttered’. In computer vision,
(or more specifically, in scene understanding), the most effective way to describe a visual scene is
lso a major question.
Of the these three ways of describing a scene, (commonly referred to as categorization, scene pars-
ing, and attribute-based representation respectively), categories have historically been the method of
hoice. In categorization, an image (scene) is allowed to fall into exactly one of an arbitrary number
of buckets. Attribute representations, however, are typically composed of several sets of buckets
each of which will have a value associated with that scene. For instance, a simple category-based
model would place an image in one of urban/rural/room, whereas a binary attribute-based model
would have as attributes indoors and warm, each of which are marked as either present or not. In
larger models, this leads to high dimensionality for attribute-based models, which has been a large
disincentive for its use. In addition, classifying a scene’s entire attribute set non-trivially falls un-
der multi-label learning, for which there exist very few learning algorithms in popular use. Lastly,
there is scene parsing[5], which involves using object detectors, possibly in conjunction, to build"
9889596a98824bdf7e7c59b62e732c0b2d356c69,Soft Correspondences in Multimodal Scene Parsing,"Sarah Taghavi Namin, Mohammad Najafi, Mathieu Salzmann, and Lars Petersson"
98a660c15c821ea6d49a61c5061cd88e26c18c65,Face Databases for 2D and 3D Facial Recognition: A Survey,"IOSR Journal of Engineering (IOSRJEN)
e-ISSN: 2250-3021, p-ISSN: 2278-8719
Vol. 3, Issue 4 (April. 2013), ||V1 || PP 43-48
Face Databases for 2D and 3D Facial Recognition: A Survey
R.Senthilkumar1, Dr.R.K.Gnanamurthy2
Assistant Professor,  Department of Electronics and Communication Engineering, Institute of Road and
Professor and Dean , Department of Electronics and Communication Engineering, Odaiyappa College of
Transport Technology,Erode-638 316.
Engineering and Technology,Theni-625 531."
9817e0d11701e9ce0e31a32338ff3ff0969621ed,Dppnet: Approximating Determinantal Point Processes with Deep Networks,"Under review as a conference paper at ICLR 2019
DPPNET: APPROXIMATING DETERMINANTAL POINT
PROCESSES WITH DEEP NETWORKS
Anonymous authors
Paper under double-blind review"
98126d18be648640fc3cfeb7ffc640a2ec1d5f6f,Supplemental Material: Discovering Groups of People in Images,"Supplemental Material: Discovering Groups of People in
Images
Wongun Choi1, Yu-Wei Chao2, Caroline Pantofaru3 and Silvio Savarese4
. NEC Laboratories 2. University of Michigan, Ann Arbor
. Google, Inc
. Stanford University
Qualitative Examples
In Fig. 1 and 2, we show additional qualitative examples obtained using our model
with poselet [1] and ground truth (GT) detections, respectively. We show the image
onfiguration of groups on the left and corresponding 3D configuration on the right.
Different colors and different line types (solid or dashed) represent different groups,
the type of each structured group is overlayed on the bottom-left of one participant. In
D visualization, squares represent standing people, circles represent people sitting on
n object, and triangles represent people sitting on the ground. The view point of each
individual is shown with a line. The gray triangle is the camera position. The poses are
obtained by using the individual pose classification output for visualization purposes.
The figures show that our algorithm is capable of correctly associating individu-
ls into multiple different groups while estimating the type of each group. Notice that
our algorithm can successfully segment different instances of the same group type that
ppear in proximity. A distance-based clustering method would not be able to differ-"
98a60b218ff8addaf213e97e2f4b54d39e45f5b9,Benchmarking Real World Object Recognition,"Bonn-Aachen International Center for Information Technology
Master of Science in Autonomous Systems
Bonn-Rhein-Sieg University of Applied Sciences
Date: March 4, 2005
Student: Adolf, Florian-Michael
Matriculation-No: 9005989
eMail:
Supervisor: Prassler, Erwin
Institution: UAS Bonn-Rhein-Sieg
eMail:
Benchmarking Real World Object Recognition
Summer Term 2005
Master Thesis Proposal
Context
Service robotics basically comprise everything that is not industrial robotics, and reflects
the distinction between the manufacturing and service sectors of the economy. Hence
service robots are supposed to operate in our human world as autonomously as possible.
The perception of objects in video images suitable for everyday use (”real-world”) is one
of the key disciplines in developing this key technology.
Recent service robotic projects [16, 13, 19, 20, 2] demand research in machine vision and"
984ecfbda7249e67eca8d9b1697e81f80e2e483d,Visual object categorization with new keypoint-based adaBoost features,"Visual object categorization with new keypoint-based
daBoost features
Taoufik Bdiri, Fabien Moutarde, Bruno Steux
To cite this version:
Taoufik Bdiri, Fabien Moutarde, Bruno Steux. Visual object categorization with new keypoint-based
daBoost features. IEEE Symposium on Intelligent Vehicles (IV’2009), Jun 2009, XiAn, China. 2009.
<hal-00422580>
HAL Id: hal-00422580
https://hal.archives-ouvertes.fr/hal-00422580
Submitted on 7 Oct 2009
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
98519f3f615e7900578bc064a8fb4e5f429f3689,Dictionary-Based Domain Adaptation Methods for the Re-identification of Faces,"Dictionary-based Domain Adaptation Methods
for the Re-identification of Faces
Qiang Qiu, Jie Ni, and Rama Chellappa"
9825aa96f204c335ec23c2b872855ce0c98f9046,Face and Facial Expression Recognition in 3-d Using Masked Projection under Occlusion,"International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014)
FACE AND FACIAL EXPRESSION
RECOGNITION IN 3-D USING MASKED
PROJECTION UNDER OCCLUSION
Jyoti patil *
M.Tech (CSE)
GNDEC Bidar-585401
BIDAR, INDIA
Gouri Patil
M.Tech (CSE)
GNDEC Bidar- 585401
BIDAR, INDIA
Snehalata Patil
M.Tech (CSE)
VKIT, Bangalore- 560040
BANGALORE, INDIA"
981847c0a3d667aae385276221834edbb8ebd11c,A generalizable approach for multi-view 3D human pose regression,"A generalizable approach for multi-view 3D human pose regression
Abdolrahim Kadkhodamohammadia,∗, Nicolas Padoya
ICube, University of Strasbourg, CNRS, IHU Strasbourg, France"
982db27f0a092d5c8db88e959a77fae5b4f9cdf6,"A cross-cultural, multimodal, affective corpus for gesture expressivity analysis","J Multimodal User Interfaces
DOI 10.1007/s12193-012-0112-x
ORIGINAL PAPER
A cross-cultural, multimodal, affective corpus for gesture
expressivity analysis
G. Caridakis · J. Wagner · A. Raouzaiou ·
F. Lingenfelser · K. Karpouzis · E. Andre
Received: 5 March 2012 / Accepted: 15 September 2012
© OpenInterface Association 2012"
53819049f41998a5a1587dfccccc2db8612b45af,Deep Semantic Lane Segmentation for Mapless Driving,"018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Madrid, Spain, October 1-5, 2018
978-1-5386-8093-3/18/$31.00 ©2018 IEEE"
53079196041fedeb5f1e236b1c76c7108fd8346e,"Multiple Object Detection, Tracking and Long-Term Dynamics Learning in Large 3D Maps","Multiple Object Detection, Tracking
nd Long-Term Dynamics Learning
in Large 3D Maps
Local
D Maps
Object
Posteriors
Learn
Dynamics
Location l1
Location l3
Object jump
probability:
pjump = 0.036
Object spatial
process variance:
q = 0.137
Measurement
ovariance:
 0.14 −0.03 0.02"
5357bdaf7c54619016bdb7ebfa991a65a6cc8353,"Infants’ Temperament and Mothers’, and Fathers’ Depression Predict Infants’ Attention to Objects Paired with Emotional Faces","J Abnorm Child Psychol (2016) 44:975–990
DOI 10.1007/s10802-015-0085-9
Infants’ Temperament and Mothers’, and Fathers’ Depression
Predict Infants’ Attention to Objects Paired with Emotional Faces
Evin Aktar 1,2 & Dorothy J. Mandell 1 & Wieke de Vente 2 & Mirjana Majdandžić 2 &
Maartje E. J. Raijmakers 1,3 & Susan M. Bögels 2
Published online: 8 October 2015
# The Author(s) 2015. This article is published with open access at Springerlink.com"
53c5f995e76ead002f1b0a78bfd50de3b1faf593,Enhancing the Symmetry and Proportion of 3D Face Geometry,"Enhancing the symmetry and proportion of 3D
face geometry
Qiqi Liao, Xiaogang Jin, Wenting Zeng"
531b211d4cbe766e0b86c4bb6f24e924494360c5,"SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation","SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation
Sudeep Pillai, Rares, Ambrus,, Adrien Gaidon
Toyota Research Institute (TRI)"
53bb52eb910c3a0ac5dc7f379b1f3f7c29af529d,Pain recognition using spatiotemporal oriented energy of facial muscles,"Pain Recognition using Spatiotemporal Oriented Energy of Facial Muscles
Ramin Irani, Kamal Nasrollahi, and Thomas B. Moeslund
Visual Analysis of People (VAP) Laboratory
Rendsburggade 14, 9000 Aalborg, Denmark
{ri, kn,"
53e081f5af505374c3b8491e9c4470fe77fe7934,Unconstrained realtime facial performance capture,"Unconstrained Realtime Facial Performance Capture
Pei-Lun Hsieh⇤
⇤ University of Southern California
Chongyang Ma⇤
Jihun Yu†
Hao Li⇤
Industrial Light & Magic
Figure 1: Calibration-free realtime facial performance capture on highly occluded subjects using an RGB-D sensor."
53f8f1ddd83a9e0e0821aaa883fbf7c1f7f5426e,Face Recognition using Principal Component Analysis and Log-Gabor Filters,"Face Recognition using Principal Component
Analysis and Log-Gabor Filters
Vytautas Perlibakas
Image Processing and Analysis Laboratory, Computational Technologies Centre,
Kaunas University of Technology, Studentu st. 56-305, LT-51424 Kaunas,
Lithuania"
53ac22fff7ae3ed08565439ac30656846cac2465,Learning 3D Human Pose from Structure and Motion,"Learning 3D Human Pose from Structure and Motion
Rishabh Dabral1, Anurag Mundhada1, Uday Kusupati1, Safeer Afaque1, Abhishek
Sharma2, Arjun Jain1
{rdabral, safeer, {anuragmundhada,
Indian Institute of Technology Bombay, 2Gobasco AI Labs
kusupatiuday,"
53b35519e09772fb7ec470fdec51c6edb43c4f13,Word Channel Based Multiscale Pedestrian Detection without Image Resizing and Using Only One Classifier,"Word Channel Based Multiscale Pedestrian Detection
Without Image Resizing and Using Only One Classifier
Arthur Daniel Costea       and       Sergiu Nedevschi
Image Processing and Pattern Recognition Group  (http://cv.utcluj.ro)
Computer Science Department, Technical University of Cluj-Napoca, Romania
{arthur.costea,
pedestrian or non-pedestrian based on image features. The
image features should capture the required information for
lassification, while allowing fast computation.
Previous  object  detection  approaches  use  a  fixed  size
sliding window and resize the image [8] or use a fixed size
image  and  resize  the  sliding  window  [29].  When  using
multiple  sliding  window  scales,  individual  classifiers  are
trained  for  different  scales.  In  this  paper  we  propose  a
solution to pedestrian detection that does not require image
resizing and uses only one classifier for all sliding window
scales. The proposed approach introduces the use of word
hannels,  inspired  from  codebook  based  semantic  image
nnotation techniques for extracting classification features.
. Related work"
5357e6e5d5fe06934bfe693d18b9f44bbd98f73b,Landmark Detection for Unconstrained Face Recognition,"Landmark Detection for
Unconstrained Face Recognition
Panagiotis B. Perakis (cid:63)
National and Kapodistrian University of Athens
Department of Informatics and Telecommunications"
53f981cb6f1cf19b08255c571d62cc1073fd792b,Deconvolutional networks for point-cloud vehicle detection and tracking in driving scenarios,"Deconvolutional Networks for Point-Cloud Vehicle Detection
nd Tracking in Driving Scenarios
V´ıctor Vaquero∗, Ivan del Pino∗, Francesc Moreno-Noguer, Joan Sol`a, Alberto Sanfeliu and Juan Andrade-Cetto"
538a9230ddc14b8a5d3f5f195aac4ec43e37d16f,Joint Holistic and Partial CNN for Pedestrian Detection,"YUN ZHAO et al.: JOINT HOLISTIC AND PARTIAL CNN FOR PEDESTRIAN DETECTION 1
Joint Holistic and Partial CNN for Pedestrian
Detection
Yun Zhao1
Zejian Yuan*1
Hui Zhang2
Institute of Artificial Intelligence and
Robotics
Xi’an Jiaotong University
Xi’an, China
Shenzhen Forward Innovation
Digital Technology Co. Ltd. China"
53881bb35cb98c788f75fbc8c76198ccbc50edbf,Selective experience replay in reinforcement learning for reidentification,"SELECTIVE EXPERIENCE REPLAY IN REINFORCEMENT LEARNING FOR
REIDENTIFICATION
Ninad Thakoor , Bir Bhanu
Center for Research in Intelligent Systems,
University of California, Riverside, Riverside, CA 92521, USA"
53993c7fabf631cbd8a44ab3e42c6bdf784db456,Understanding and Predicting Image Memorability at a Large Scale,"Understanding and Predicting Image Memorability at a Large Scale
Aditya Khosla
Akhil S. Raju
Antonio Torralba
Aude Oliva"
537a00082b413b40fbdd02b5584791614f5071d2,Face Recognition Using Principal Component Analysis for Security Based System,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Face Recognition Using Principal Component
Analysis for Security Based System
Madhuri M. Ghodake1, Parul S. Arora2
Savitribai Phule Pune University, G.H.Raisoni College of Engg & Management, Domkhel Road, Wagholi, Pune
Assistant Professor, G.H.Raisoni College of Engg & Management, Domkhel Road, Wagholi, Pune, Savitribai Phule University, Pune"
53c36186bf0ffbe2f39165a1824c965c6394fe0d,I Know How You Feel: Emotion Recognition with Facial Landmarks,"I Know How You Feel: Emotion Recognition with Facial Landmarks
Tooploox 2Polish-Japanese Academy of Information Technology 3Warsaw University of Technology
Ivona Tautkute1,2, Tomasz Trzcinski1,3 and Adam Bielski1"
5366573e96a1dadfcd4fd592f83017e378a0e185,"Server, server in the cloud. Who is the fairest in the crowd?","Böhlen, Chandola and Salunkhe
Server, server in the cloud.
Who is the fairest in the crowd?"
53a41c711b40e7fe3dc2b12e0790933d9c99a6e0,Recurrent Memory Addressing for Describing Videos,"Recurrent Memory Addressing for describing videos
Arnav Kumar Jain∗ Abhinav Agarwalla∗
Kumar Krishna Agrawal∗
Pabitra Mitra
{arnavkj95, abhinavagarawalla, kumarkrishna,
Indian Institute of Technology Kharagpur"
53822d61e829ef02a95a6c89fea082114fd3e16b,A General Framework for Tracking Multiple People from a Moving Camera,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
A General Framework for Tracking Multiple
People from a Moving Camera
Wongun Choi, Caroline Pantofaru, Silvio Savarese"
53c8f841cbf2c8f09c6ece9d7f164504fe39409b,Deep Clustering for Unsupervised Learning of Visual Features,"Deep Clustering for Unsupervised Learning
of Visual Features
Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze
Facebook AI Research"
533bfb82c54f261e6a2b7ed7d31a2fd679c56d18,Unconstrained Face Recognition: Identifying a Person of Interest From a Media Collection,"Technical Report MSU-CSE-14-1
Unconstrained Face Recognition: Identifying a
Person of Interest from a Media Collection
Lacey Best-Rowden, Hu Han, Member, IEEE, Charles Otto, Brendan Klare, Member, IEEE, and
Anil K. Jain, Fellow, IEEE"
5383473d1a669beb0089f72a9a5075e943f0270f,Higher-order Occurrence Pooling on Mid- and Low-level Features: Visual Concept Detection,
5367610430dc0380dfbe8344e08537267875968c,Tracking 3D Surfaces Using Multiple Cameras: A Probabilistic Approach,"Tracking 3D Surfaces Using
Multiple Cameras: A
Probabilistic Approach
Thomas Popham
Thesis
Submitted to the University of Warwick
for the degree of
Doctor of Philosophy
Department of Computer Science
August 2010"
53facd4da5f1d1f98f876211421957f5fbe8a29a,The Mesh-LBP: A Framework for Extracting Local Binary Patterns From Discrete Manifolds,"The Mesh-LBP: A Framework for Extracting Local
Binary Patterns From Discrete Manifolds
Naoufel Werghi, Member, IEEE, Stefano Berretti, Member, IEEE, and Alberto del Bimbo, Member, IEEE"
537061f3601965b5aab9f402763d9dcf451e1cef,A Deep Neural Model Of Emotion Appraisal,"Noname manuscript No.
(will be inserted by the editor)
A Deep Neural Model Of Emotion Appraisal
Pablo Barros · Emilia Barakova · Stefan Wermter
Received: date / Accepted: date"
53492cb14b33a26b10c91102daa2d5a2a3ed069d,Improving Online Multiple Object tracking with Deep Metric Learning,"Improving Online Multiple Object tracking with Deep Metric Learning
Michael Thoreau, Navinda Kottege"
53bed2d3d75c4320ad5af4a85e31bf92e3c704ef,Reinforced Video Captioning with Entailment Rewards,"Reinforced Video Captioning with Entailment Rewards
Ramakanth Pasunuru and Mohit Bansal
UNC Chapel Hill
{ram,"
536d1f74c6543afcf2bc711befd82ac7886d1c33,Fusing Shearlets and LBP Feature Sets for Face Recognition,"ISSN 1746-7659, England, UK
Journal of Information and Computing Science
Vol. 10, No. 1, 2015, pp. 029-039
Fusing Shearlets and LBP Feature Sets for Face Recognition
Zhiyong Zeng 1
Faculty of Software, Fujian Normal University, Fuzhou, 350108, China
(Received October  07, 2014, accepted December 24, 2014)"
538f735450463f40c78f60797899fcee47df72bc,Discriminative Dictionary Learning With Motion Weber Local Descriptor for Violence Detection,"© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
ll other uses, in any current or future media, including reprinting/republishing this material for
dvertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works."
3f55d26dd638c849745b95e912c28d88445ba5e1,Supervised Learning of Universal Sentence Representations from Natural Language Inference Data,"Supervised Learning of Universal Sentence Representations from
Natural Language Inference Data
Alexis Conneau
Facebook AI Research
Douwe Kiela
Facebook AI Research
Holger Schwenk
Facebook AI Research
Lo¨ıc Barrault
LIUM, Universit´e Le Mans
Antoine Bordes
Facebook AI Research"
3fbd68d1268922ee50c92b28bd23ca6669ff87e5,A shape- and texture-based enhanced Fisher classifier for face recognition,"IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001
A Shape- and Texture-Based Enhanced Fisher
Classifier for Face Recognition
Chengjun Liu, Member, IEEE, and Harry Wechsler, Fellow, IEEE"
3f22a4383c55ceaafe7d3cfed1b9ef910559d639,Robust Kronecker Component Analysis,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Robust Kronecker Component Analysis
Mehdi Bahri, Student Member, IEEE, Yannis Panagakis, and Stefanos Zafeiriou, Member, IEEE"
3f06d445371c252d5a6ba977181987094148d6de,Fast Single Shot Detection and Pose Estimation,"Fast Single Shot Detection and Pose Estimation
Patrick Poirson1, Phil Ammirato1, Cheng-Yang Fu1, Wei Liu1, Jana Koˇseck´a2, Alexander C. Berg1
UNC Chapel Hill 2George Mason University
201 S. Columbia St., Chapel Hill, NC 27599 24400 University Dr, Fairfax, VA 22030"
3fdcc1e2ebcf236e8bb4a6ce7baf2db817f30001,A Top-Down Approach for a Synthetic Autobiographical Memory System,"A top-down approach for a synthetic
utobiographical memory system
Andreas Damianou1,2, Carl Henrik Ek3, Luke Boorman1, Neil D. Lawrence2,
nd Tony J. Prescott1
Shef‌f‌ield Centre for Robotics (SCentRo), Univ. of Shef‌f‌ield, Shef‌f‌ield, S10 2TN, UK
Dept. of Computer Science, Univ. of Shef‌f‌ield, Shef‌f‌ield, S1 4DP, UK
CVAP Lab, KTH, Stockholm, Sweden"
3f44352b857f2fc18c18c5ebb2cbf994ee22f44c,Humanist computing for knowledge discovery from ordered datasets,"HumanistComputingforKnowledgeDiscovery
fromOrderedDatasets
JonathanMichaelRossiter
DepartmentofEngineeringMathematics
UniversityofBristol
AdissertationsubmittedtotheUniversityofBristol
inaccordancewiththerequirementsofthedegreeof
DoctorofPhilosophyintheFacultyofEngineering
January"
3f9c09e2fbefc9aeba6505f49317f9a2fc03a615,Understanding fundamental design choices in single-ISA heterogeneous multicore architectures,"Understanding Fundamental Design Choices in Single-ISA
Heterogeneous Multicore Architectures
KENZO VAN CRAEYNEST and LIEVEN EECKHOUT, Ghent University
Single-ISA heterogeneous multicore processors have gained substantial interest over the past few years
ecause of their power efficiency, as they offer the potential for high overall chip throughput within a
given power budget. Prior work in heterogeneous architectures has mainly focused on how heterogeneity
an improve overall system throughput. To what extent heterogeneity affects per-program performance
has remained largely unanswered. In this article, we aim at understanding how heterogeneity affects both
hip throughput and per-program performance; how heterogeneous architectures compare to homogeneous
rchitectures under both performance metrics; and how fundamental design choices, such as core type, cache
size, and off-chip bandwidth, affect performance.
We use analytical modeling to explore a large space of single-ISA heterogeneous architectures. The ana-
lytical model has linear-time complexity in the number of core types and programs of interest, and offers a
unique opportunity for exploring the large space of both homogeneous and heterogeneous multicore proces-
sors in limited time. Our analysis provides several interesting insights: While it is true that heterogeneity
an improve system throughput, it fundamentally trades per-program performance for chip throughput;
lthough some heterogeneous configurations yield better throughput and per-program performance than
homogeneous designs, some homogeneous configurations are optimal for particular throughput versus per-
program performance trade-offs. Two core types provide most of the benefits from heterogeneity and a larger
number of core types does not contribute much; job-to-core mapping is both important and challenging for"
3f5b20c35f55417823f0201862d85af1f31e9348,Salience Biased Loss for Object Detection in Aerial Images,"Salience Biased Loss for Object Detection
in Aerial Images
Peng Sun
Guerdan Luke
Guang Chen
University of Missouri-Columbia
Yi Shang
over regular and dense sampling of object scales, locations,
nd aspect ratios, such as YOLO [8], SSD [11], and RetinaNet
[18]. Each of these demonstrates promising results with faster
speed, a simpler network, and similar accuracy of two-stage
object detectors. RetinaNet [18] even outperforms one of the
est two-stage detectors, Faster R-CNN [5], with a relative 4.0
mAP improvement in COCO data [17]."
3faebe9d5c47fc90998811c4ac768706283d605c,Semi-Supervised Detection of Extreme Weather Events in Large Climate Datasets,"Under review as a conference paper at ICLR 2017
SEMI-SUPERVISED DETECTION OF EXTREME WEATHER
EVENTS IN LARGE CLIMATE DATASETS
Evan Racah1, Christopher Beckham2, Tegan Maharaj2
Prabhat1, Christopher Pal2
Lawrence Berkeley National Lab, Berkeley, CA,
´Ecole Polytechnique de Montr´eal,"
3f0f3c2bc151ef91959b06442b9ad80d405387a5,Evidential combination of pedestrian detectors,"XU ET AL.: EVIDENTIAL COMBINATION OF PEDESTRIAN DETECTORS
Evidential combination of pedestrian
detectors
Philippe Xu1
https://www.hds.utc.fr/~xuphilip
Franck Davoine12
Thierry Denœux1
https://www.hds.utc.fr/~tdenoeux
UMR CNRS 7253, Heudiasyc,
Université de Technologie de
Compiègne, France
CNRS, LIAMA,
Beijing, P. R. China"
3f848d6424f3d666a1b6dd405a48a35a797dd147,Is 2D Information Enough For Viewpoint Estimation?,"GHODRATI et al.: IS 2D INFORMATION ENOUGH FOR VIEWPOINT ESTIMATION?
Is 2D Information Enough For Viewpoint
Estimation?
Amir Ghodrati
Marco Pedersoli
Tinne Tuytelaars
KU Leuven, ESAT - PSI, iMinds
Leuven, Belgium"
3f6a6050609ba205ec94b8af186a9dca60a8f65e,Harmonizing Maximum Likelihood with Gans,"Under review as a conference paper at ICLR 2019
HARMONIZING MAXIMUM LIKELIHOOD WITH GANS
FOR MULTIMODAL CONDITIONAL GENERATION
Anonymous authors
Paper under double-blind review"
3f10b9d98a276fb9e21e5742ce88bc7f48629715,Imparare a Quantificare Guardando (Learning to Quantify by Watching),"Imparare a quantificare guardando
Sandro Pezzelle
CIMeC
Ionut Sorodoc
Aurelie Herbelot
CIMeC
EM LCT
Universit`a degli Studi di Trento
Raffaella Bernardi
CIMeC, DISI"
3fa738ab3c79eacdbfafa4c9950ef74f115a3d84,DaMN - Discriminative and Mutually Nearest: Exploiting Pairwise Category Proximity for Video Action Recognition,"DaMN – Discriminative and Mutually Nearest:
Exploiting Pairwise Category Proximity
for Video Action Recognition
Rui Hou1, Amir Roshan Zamir1, Rahul Sukthankar2, and Mubarak Shah1
Center for Research in Computer Vision at UCF, Orlando, USA
Google Research, Mountain View, USA
http://crcv.ucf.edu/projects/DaMN/"
3f8e481ea845aa20704d8c93f6a3a72025219f64,Data mapping by probabilistic modular networks and information-theoretic criteria,"IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 12, DECEMBER 1998
Data Mapping by Probabilistic Modular
Networks and Information-Theoretic Criteria
Yue Wang, Shang-Hung Lin, Huai Li, and Sun-Yuan Kung, Fellow, IEEE"
3f2270762ff68d6771d93d800683ae6bc76855e7,3D Human Motion Tracking and Pose Estimation using Probabilistic Activity Models,"MANCHESTER METROPOLITAN UNIVERSITY
D Human Motion Tracking and
Pose Estimation using
Probabilistic Activity Models
John Darby
A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy
Faculty of Science and Engineering
The Department of Computing and Mathematics
October 2010"
3fb98e76ffd8ba79e1c22eda4d640da0c037e98a,Convolutional Neural Networks for Crop Yield Prediction using Satellite Images,"Convolutional Neural Networks for Crop Yield Prediction using Satellite Images
H. Russello"
3fa9bf4649ff5e0d63ee20a546e8814f3a93ca4d,Digital Image Technique using Gabor Filter and SVM in Heterogeneous Face Recognition,"Research Inventy: International Journal of Engineering And Science
Vol.4, Issue 4 (April 2014), PP 45-52
Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com
Digital Image Technique using Gabor Filter and SVM in
Heterogeneous Face Recognition
M.Janani#1, K.Nandhini*2, K.Senthilvadivel*3,S.Jothilakshmi*4,
PG Student#1,*2*3, Assistant Professor*4,, Dept of CSE#1,*2,*3,*4
S.V.S College of Engineering#1,*4,, PPG Institute of Technology*2,*3,
Coimbatore, Tamilnadu"
3f600008dd9745e8357f5b7b3c1a69b8be6b7767,Atypical reflexive gaze patterns on emotional faces in autism spectrum disorders.,"The Journal of Neuroscience, September 15, 2010 • 30(37):12281–12287 • 12281
Behavioral/Systems/Cognitive
Atypical Reflexive Gaze Patterns on Emotional Faces in
Autism Spectrum Disorders
Dorit Kliemann,1,2,3 Isabel Dziobek,2 Alexander Hatri,1,2 Rosa Steimke,2,4 and Hauke R. Heekeren1,2,3
Department of Educational Science and Psychology, and 2Cluster of Excellence, “Languages of Emotion,” Freie Universita¨t Berlin, 14195 Berlin, Germany,
nd 3Max Planck Institute for Human Development, 14195 Berlin, Germany, and 4Department of Psychiatry and Psychotherapy, Charité University
Medicine, 10117 Berlin, Germany
Atypical scan paths on emotional faces and reduced eye contact represent a prominent feature of autism symptomatology, yet the reason
for these abnormalities remains a puzzle. Do individuals with autism spectrum disorders (ASDs) fail to orient toward the eyes or do they
ctively avoid direct eye contact? Here, we used a new task to investigate reflexive eye movements on fearful, happy, and neutral faces.
Participants (ASDs: 12; controls: 11) initially fixated either on the eyes or on the mouth. By analyzing the frequency of participants’ eye
movements away from the eyes and toward the eyes, respectively, we explored both avoidance and orientation reactions. The ASD group
showed a reduced preference for the eyes relative to the control group, primarily characterized by more frequent eye movements away
from the eyes. Eye-tracking data revealed a pronounced influence of active avoidance of direct eye contact on atypical gaze in ASDs. The
ombination of avoidance and reduced orientation into an individual index predicted emotional recognition performance. Crucially, this
result provides evidence for a direct link between individual gaze patterns and associated social symptomatology. These findings thereby
give important insights into the social pathology of ASD, with implications for future research and interventions.
Introduction
Recent reports from the social-cognitive neurosciences have em-"
3f60b1f800178841f4e0ecb79b64fe60b48ed03b,Video Scene Parsing with Predictive Feature Learning,"Video Scene Parsing with Predictive Feature Learning
Xiaojie Jin1 Xin Li2 Huaxin Xiao2 Xiaohui Shen3 Zhe Lin3 Jimei Yang3
Yunpeng Chen2 Jian Dong4 Luoqi Liu4 Zequn Jie2 Jiashi Feng2 Shuicheng Yan4,2
NUS Graduate School for Integrative Science and Engineering, NUS
360 AI Institute
Department of ECE, NUS
Adobe Research"
3f9210830e31f42103c6550f75cb37fde18e5af1,HeadFusion: 360° Head Pose Tracking Combining 3D Morphable Model and 3D Reconstruction,"PAMI SPECIAL ISSUE
HeadFusion: 360◦Head Pose tracking combining
D Morphable Model and 3D Reconstruction
Yu Yu, Kenneth Alberto Funes Mora, Jean-Marc Odobez"
3f14b504c2b37a0e8119fbda0eff52efb2eb2461,Joint Facial Action Unit Detection and Feature Fusion: A Multi-Conditional Learning Approach,"Joint Facial Action Unit Detection and Feature
Fusion: A Multi-Conditional Learning Approach
Stefanos Eleftheriadis, Ognjen Rudovic, Member, IEEE, and Maja Pantic, Fellow, IEEE"
3fac7c60136a67b320fc1c132fde45205cd2ac66,Remarks on Computational Facial Expression Recognition from HOG Features Using Quaternion Multi-layer Neural Network,"Remarks on Computational Facial Expression
Recognition from HOG Features Using
Quaternion Multi-layer Neural Network
Kazuhiko Takahashi1, Sae Takahashi1, Yunduan Cui2,
nd Masafumi Hashimoto3
Information Systems Design, Doshisha University, Kyoto, Japan
Graduate School of Doshisha University, Kyoto, Japan
Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan"
3f0e00188d751829c4548f9aacb939b982425ebd,Template Protection For 3D Face Recognition,"Template Protection For 3D Face Recognition
Template Protection For 3D Face Recognition
Xuebing Zhou, Arjan Kuijper and Christoph Busch
Fraunhofer Institute for Computer Graphics Research IGD
Germany"
3f9a7d690db82cf5c3940fbb06b827ced59ec01e,VIP: Finding important people in images,"VIP: Finding Important People in Images
Clint Solomon Mathialagan
Virginia Tech
Andrew C. Gallagher
Google Inc.
Dhruv Batra
Virginia Tech
Project: https://computing.ece.vt.edu/~mclint/vip/
Demo: http://cloudcv.org/vip/"
3fd90098551bf88c7509521adf1c0ba9b5dfeb57,Attribute-Based Classification for Zero-Shot Visual Object Categorization,"Page 1 of 21
*****For Peer Review Only*****
Attribute-Based Classification for Zero-Shot
Visual Object Categorization
Christoph H. Lampert, Hannes Nickisch and Stefan Harmeling"
3f5158ea65bb483c6797462faffa16fea9f0b004,"Lie-X: Depth Image Based Articulated Object Pose Estimation, Tracking, and Action Recognition on Lie Groups","Lie-X : Depth Image Based Articulated Object Pose Estimation,
Tracking, and Action Recognition on Lie Groups
Chi Xu1, Lakshmi Narasimhan Govindarajan1, Yu Zhang1, and Li Cheng∗1
Bioinformatics Institute, A*STAR, Singapore"
3faff93758fe7fc58b3832055cb15c6ca3f306a7,Evaluation of multi feature fusion at score-level for appearance-based person re-identification,"Evaluation of Multi Feature Fusion at Score-Level
for Appearance-based Person Re-Identification
Markus Eisenbach
Ilmenau University of Technology
98684 Ilmenau, Germany
Alexander Kolarow
Alexander Vorndran
Julia Niebling
Horst-Michael Gross
Ilmenau University of Technology
Ilmenau University of Technology
98684 Ilmenau, Germany
98684 Ilmenau, Germany"
3f7723ab51417b85aa909e739fc4c43c64bf3e84,Improved Performance in Facial Expression Recognition Using 32 Geometric Features,"Improved Performance in Facial Expression
Recognition Using 32 Geometric Features
Giuseppe Palestra1(B), Adriana Pettinicchio2, Marco Del Coco2,
Pierluigi Carcagn`ı2, Marco Leo2, and Cosimo Distante2
Department of Computer Science, University of Bari, Bari, Italy
National Institute of Optics, National Research Council, Arnesano, LE, Italy"
3fb689c0f1db224d53d9fdaee578d3ff8522f807,"Integrating Motion, Illumination, and Structure in Video Sequences with Applications in Illumination-Invariant Tracking","Integrating Motion, Illumination, and Structure
in Video Sequences with Applications in
Illumination-Invariant Tracking
Yilei Xu, Student Member, IEEE, and Amit K. Roy-Chowdhury, Member, IEEE"
3f63f9aaec8ba1fa801d131e3680900680f14139,Facial Expression recognition using Local Binary Patterns and Kullback Leibler divergence,"Facial Expression Recognition using Local Binary
Patterns and Kullback Leibler Divergence
AnushaVupputuri, SukadevMeher
divergence."
3f0e0739677eb53a9d16feafc2d9a881b9677b63,Efficient Two-Stream Motion and Appearance 3D CNNs for Video Classification,"Efficient Two-Stream Motion and Appearance 3D CNNs for
Video Classification
Ali Diba
ESAT-KU Leuven
Ali Pazandeh
Sharif UTech
Luc Van Gool
ESAT-KU Leuven, ETH Zurich"
302fee58f8c9498e8a5e543312e7c11baf7e0827,Robust voting algorithm based on labels of behavior for video copy detection,"Robust Voting Algorithm Based on Labels of Behavior
for Video Copy Detection
Julien Law-To, Olivier Buisson
Valerie Gouet-Brunet, Nozha Boujemaa
INRIA Institut National
de la Recherche et de l’Informatique
Rocquencourt, France
Institut National de l’Audiovisuel
Bry Sur Marne, France
(jlawto,obuisson)"
30b15cdb72760f20f80e04157b57be9029d8a1ab,Face Aging with Identity-Preserved Conditional Generative Adversarial Networks,"Face Aging with Identity-Preserved
Conditional Generative Adversarial Networks
Zongwei Wang
Shanghaitech University
Xu Tang
Baidu
Weixin Luo, Shenghua Gao∗
Shanghaitech University
{luowx,"
30c8a2b6a505645b9f93dcc4d365eee6f46c4c37,Using Curvilinear Features in Focus for Registering a Single Image to a 3D Object,"Using Curvilinear Features in Focus for Registering
Single Image to a 3D Object
Hatem A. Rashwan, Sylvie Chambon, Pierre Gurdjos, G´eraldine Morin and Vincent Charvillat"
30870ef75aa57e41f54310283c0057451c8c822b,Overcoming catastrophic forgetting with hard attention to the task,"Overcoming Catastrophic Forgetting with Hard Attention to the Task
Joan Serr`a 1 D´ıdac Sur´ıs 1 2 Marius Miron 1 3 Alexandros Karatzoglou 1"
305346d01298edeb5c6dc8b55679e8f60ba97efb,Fine-Grained Face Annotation Using Deep Multi-Task CNN,"Article
Fine-Grained Face Annotation Using Deep
Multi-Task CNN
Luigi Celona *
, Simone Bianco
nd Raimondo Schettini
Department of Informatics, Systems and Communication, University of Milano-Bicocca,
viale Sarca, 336 Milano, Italy; (S.B.); (R.S.)
* Correspondence:
Received: 3 July 2018; Accepted: 13 August 2018; Published: 14 August 2018"
306ae56a4fc8f090e58a237749950e1607382ed7,Spatio-Temporal Matching for Human Pose Estimation in Video,"Spatio-temporal Matching for
Human Pose Estimation in Video
Feng Zhou and Fernando De la Torre"
30ccfd2b4b6d5b30581356ccefcf96fd77c1766a,Overview of the ImageCLEF 2014 Scalable Concept Image Annotation Task,"Overview of the ImageCLEF 2016 Scalable
Concept Image Annotation Task
Andrew Gilbert, Luca Piras, Josiah Wang, Fei Yan, Arnau Ramisa, Emmanuel
Dellandrea, Robert Gaizauskas, Mauricio Villegas and Krystian Mikolajczyk"
30aac3becead355545b5ab7f0c3158040360021e,ACD: Action Concept Discovery from Image-Sentence Corpora,"ACD: Action Concept Discovery from
Image-Sentence Corpora
Jiyang Gao
Univ. of Southern California
Chen Sun
Univ. of Southern California
Ram Nevatia
Univ. of Southern California"
30962cf6f47396df88bf1c8827ebda8f0a6ff516,A Convolutional Neural Network Approach for Assisting Avalanche Search and Rescue Operations with UAV Imagery,"Article
A Convolutional Neural Network Approach for
Assisting Avalanche Search and Rescue Operations
with UAV Imagery
Mesay Belete Bejiga 1, Abdallah Zeggada 1, Abdelhamid Nouffidj 2 and Farid Melgani 1,*
Department of Information Engineering and Computer Science University of Trento, 38123 Trento, Italy;
(M.B.B.); (A.Z.)
Département des Télécommunications, Faculté d’Electronique et d’Informatique, USTHB BP 32, El-Alia,
Bab-Ezzouar, 16111 Algiers, Algeria;
* Correspondence: Tel.: +39-046-128-1573
Academic Editors: Francesco Nex, Xiaofeng Li and Prasad S. Thenkabail
Received: 11 November 2016; Accepted: 14 January 2017; Published: 24 January 2017"
309e17e6223e13b1f76b5b0eaa123b96ef22f51b,Face recognition based on a 3D morphable model,"Face Recognition based on a 3D Morphable Model
Volker Blanz
University of Siegen
H¤olderlinstr. 3
57068 Siegen, Germany"
30256c10cb7ec139b4245855850998c39b297975,Functional magnetic resonance imaging of autism spectrum disorders,"C l i n i c a l   r e s e a r c h
Functional magnetic resonance imaging of
utism spectrum disorders
Gabriel S. Dichter, PhD
Introduction
utism was first described by Leo Kanner1 and
Hans Asperger2 in a series of clinical case studies. Both
linicians suggested that the conditions now referred to
s autism spectrum disorders (ASDs) may have a neu-
robiological basis. With the relatively recent advent of
modern brain imaging techniques, translational psychi-
tric  research  has  embraced  the  systematic  study  of
This review presents an overview of functional magnetic resonance imaging findings in autism spectrum disorders
(ASDs). Although there is considerable heterogeneity with respect to results across studies, common themes have
emerged, including: (i) hypoactivation in nodes of the “social brain” during social processing tasks, including regions
within the prefrontal cortex, the posterior superior temporal sulcus, the amygdala, and the fusiform gyrus; (ii) aber-
rant frontostriatal activation during cognitive control tasks relevant to restricted and repetitive behaviors and inter-
ests, including regions within the dorsal prefrontal cortex and the basal ganglia; (iii) differential lateralization and
ctivation of language processing and production regions during communication tasks; (iv) anomalous mesolimbic
responses to social and nonsocial rewards; (v) task-based long-range functional hypoconnectivity and short-range"
3046baea53360a8c5653f09f0a31581da384202e,Deformable Face Alignment via Local Measurements and Global Constraints,"Deformable Face Alignment via Local
Measurements and Global Constraints
Jason M. Saragih"
30aff559ad25dd3490712749793547bc89b0f103,Image Latent Semantic Analysis for Face Recognition,"Image Latent Semantic Analysis for Face Recognition
Jucheng Yang 1,2,3 , Yanbin Jiao2, Jinfeng Yang4,Zhijun Fang2 , Congcong Xiong1,
Lei Shu2
College of Computer Science and Information Engineering, Tianjin University of Science
nd Technology, Tianjin, China.
School of Information Technology, Jiangxi University of Finance and Economics,
Nanchang, China. {ybjiao, zjfang, lshu
Ahead Software Company Limited, Nanchang, 330041, China
Tianjin Key Lab for Advanced Signal Processing, Civil Aviation University of China,
Tianjin, China"
3028690d00bd95f20842d4aec84dc96de1db6e59,Leveraging Union of Subspace Structure to Improve Constrained Clustering,"Leveraging Union of Subspace Structure to Improve Constrained Clustering
John Lipor 1 Laura Balzano 1"
308647f22e3f1c80b7416b3c53fd56f9abfa904f,Robust Real-Time Tracking with Diverse Ensembles and Random Projections,"Robust Real-Time Tracking with Diverse Ensembles and Random Projections
Center for Informatics Science,
Center for Informatics Science,
Sara Maher
Nile University
Giza, Egypt
Mohamed El Helw
Center for Informatics Science,
Nile University
Giza, Egypt
Ahmed Salaheldin
Nile University
Giza, Egypt"
30f7609d111bb3bc006e3dd38678291528aa14d3,A new approach for extracting and summarizing abnormal activities in surveillance videos,"014 IEEE International
Conference on Multimedia and
Expo Workshops
(ICMEW 2014)
Chengdu, China
4-18 July 2014
Pages 516-1030
IEEE Catalog Number:
ISBN:
CFP14IEW-POD
978-1-4799-4716-4"
30c96cc041bafa4f480b7b1eb5c45999701fe066,Discrete Cosine Transform Locality-Sensitive Hashes for Face Retrieval,"Discrete Cosine Transform Locality-Sensitive
Hashes for Face Retrieval
Mehran Kafai, Member, IEEE, Kave Eshghi, and Bir Bhanu, Fellow, IEEE"
300fb25626bebfc84cf2f6458784b5cdf5c3ffc2,Cross-Dataset Adaptation for Visual Question Answering,"Cross-Dataset Adaptation for Visual Question Answering
Wei-Lun Chao∗
Hexiang Hu∗
Fei Sha
U. of Southern California
U. of Southern California
U. of Southern California
Los Angeles, CA
Los Angeles, CA
Los Angeles, CA"
30eed14dfdee78279536e680871bed4f128d5f46,A Study of Calorie Estimation in Pictures of Food,
306957285fea4ce11a14641c3497d01b46095989,Face Recognition Under Varying Lighting Based on Derivates of Log Image,"FACE RECOGNITION UNDER VARYING LIGHTING BASED ON
DERIVATES OF LOG IMAGE
Laiyun Qing1,2, Shiguang Shan2,  Wen Gao1,2
ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing 100080, China
Graduate School, CAS, Beijing, 100039, China"
309e5ae1554d2afc3b94eaea66b8f31ba85c434a,"Bian, Xiao. Sparse and Low-rank Modeling on High Dimensional Data: a Geometric Perspective. (under the Direction of Dr. Hamid Krim.) Sparse and Low-rank Modeling on High Dimensional Data: a Geometric Perspective",
30f113d985d876a3974838b2ead49a069b474e57,Guided Upsampling Network for Real-Time Semantic Segmentation,"MAZZINI: GUN FOR REAL-TIME SEMANTIC SEGMENTATION
Guided Upsampling Network for Real-Time
Semantic Segmentation
Davide Mazzini
Department of Informatics, Systems
nd Communication
University of Milano-Bicocca
viale Sarca 336 Milano, Italy"
3005a4afddab849d9070788ac0e4e95e0fff2216,"Transfer Metric Learning: Algorithms, Applications and Outlooks","JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXX XXXX
Transfer Metric Learning: Algorithms,
Applications and Outlooks
Yong Luo, Yonggang Wen, Senior Member, IEEE, Ling-Yu Duan, Member, IEEE,
nd Dacheng Tao, Fellow, IEEE"
307a810d1bf6f747b1bd697a8a642afbd649613d,An affordable contactless security system access for restricted area,"An affordable contactless security system access
for restricted area
Pierre Bonazza1, Johel Mitéran1, Barthélémy Heyrman1, Dominique Ginhac1,
Vincent Thivent2, Julien Dubois1
Laboratory Le2i
University Bourgogne Franche-Comté, France
Odalid compagny, France
Contact
Keywords – Smart Camera, Real-time Image Processing, Biometrics, Face Detection, Face Verifica-
tion, EigenFaces, Support Vector Machine,
We  present  in  this  paper  a  security  system  based  on
identity verification process and a low-cost smart cam-
era, intended to avoid unauthorized access to restricted
rea.  The  Le2i  laboratory  has  a  longstanding  experi-
ence in smart cameras implementation and design [1],
for  example in the  case of  real-time classical  face de-
tection [2] or human fall detection [3].
The principle of the system, fully thought and designed
in  our  laboratory,  is  as  follows:  the  allowed  user  pre-
sents a RFID card to the reader based on Odalid system"
301474a50a39b24917ad79bd2493f1168c4c1227,Eigen-disfigurement model for simulating plausible facial disfigurement after reconstructive surgery,"Lee et al. BMC Medical Imaging  (2015) 15:12
DOI 10.1186/s12880-015-0050-7
R ES EAR CH A R T I C LE
Open Access
Eigen-disfigurement model for simulating plausible
facial disfigurement after reconstructive surgery
Juhun Lee1,2, Michelle C Fingeret2,3, Alan C Bovik1, Gregory P Reece2, Roman J Skoracki2,
Matthew M Hanasono2 and Mia K Markey4,5*"
30b32f4a6341b5809428df1271bdb707f2418362,A Sequential Neural Encoder With Latent Structured Description for Modeling Sentences,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
A Sequential Neural Encoder with Latent Structured
Description for Modeling Sentences
Yu-Ping Ruan, Qian Chen, and Zhen-Hua Ling, Member, IEEE"
30a059872d0fff3442504c24880c93738036e6aa,Calcul Neuronal Distribué Pour La Perception Visuelle Du Mouvement Th`ese,"UFRmath´ematiquesetinformatique´EcoledoctoraleIAEMLorraineD´epartementdeformationdoctoraleeninformatiqueCalculneuronaldistribu´epourlaperceptionvisuelledumouvementTH`ESEpr´esent´eeetsoutenuepubliquementle14Octobre2011pourl’obtentionduDoctoratdel’universit´eNancy2(sp´ecialit´einformatique)parMauricioDavidCerdaVillablancaCompositiondujuryPr´esident:Lepr´esidentRapporteurs:MathiasQUOYProfesseur,Universit´edeCergy-Pontoise,FranceAdrianPALACIOSProfesseur,UniversidaddeValparaiso,ChiliExaminateurs:HeikoNEUMANNProfesseur,UniversityofUlm,AllemagneAnneBOYERProfesseur,Universit´eNancy2,FranceRachidDERICHEDirecteurdeRecherche,INRIA,Sophia-Antipolis,FranceBernardGIRAU(directeur)Professeur,Universit´eHenriPoincar´e,Nancy1LaboratoireLorraindeRechercheenInformatiqueetsesApplications—UMR7503"
300eb15b819ecc9668be26735e5038efc4e05281,Object-based Place Recognition for Mobile Robots Using Panoramas,"Object-based Place Recognition for
Mobile Robots Using Panoramas
Arturo RIBES a,1, Arnau RAMISA a and Ramon LOPEZ DE MANTARAS a and
Ricardo TOLEDO b
Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, 08193 Bellaterra,
Computer Vision Center (CVC), Campus UAB, 08193 Bellaterra, Spain
Spain"
30bb582c2c09abc7eb9dda7d9f80804eeb89f9d7,Research Problems and Opportunities in Memory Systems,"ResearchProblemsandOpportunitiesinMemorySystemsOnurMutlu1,LavanyaSubramanian1c(cid:13)TheAuthors2014.ThispaperispublishedwithopenaccessatSuperFri.orgThememorysystemisafundamentalperformanceandenergybottleneckinalmostallcom-putingsystems.Recentsystemdesign,application,andtechnologytrendsthatrequiremoreca-pacity,bandwidth,ef‌f‌iciency,andpredictabilityoutofthememorysystemmakeitanevenmoreimportantsystembottleneck.Atthesametime,DRAMtechnologyisexperiencingdif‌f‌iculttech-nologyscalingchallengesthatmakethemaintenanceandenhancementofitscapacity,energy-ef‌f‌iciency,andreliabilitysignificantlymorecostlywithconventionaltechniques.Inthisarticle,afterdescribingthedemandsandchallengesfacedbythememorysystem,weexaminesomepromisingresearchanddesigndirectionstoovercomechallengesposedbymemoryscaling.Specifically,wedescribethreemajornewresearchchallengesandsolutiondirections:1)enablingnewDRAMarchitectures,functions,interfaces,andbetterintegrationoftheDRAMandtherestofthesystem(anapproachwecallsystem-DRAMco-design),2)designingamemorysystemthatemploysemergingnon-volatilememorytechnologiesandtakesadvantageofmultipledifferenttechnologies(i.e.,hybridmemorysystems),3)providingpredictableperformanceandQoStoapplicationssharingthememorysystem(i.e.,QoS-awarememorysystems).WealsobrieflydescribeourongoingrelatedworkincombatingscalingchallengesofNANDflashmemory.Keywords:memorysystems,scaling,DRAM,flash,non-volatilememory,QoS,reliability.IntroductionMainmemoryisacriticalcomponentofallcomputingsystems,employedinserver,em-bedded,desktop,mobileandsensorenvironments.Memorycapacity,energy,cost,performance,andmanagementalgorithmsmustscaleaswescalethesizeofthecomputingsysteminordertomaintainperformancegrowthandenablenewapplications.Unfortunately,suchscalinghasbe-comedif‌f‌icultbecauserecenttrendsinsystems,applications,andtechnologygreatlyexacerbatethememorysystembottleneck.1.MemorySystemTrendsInparticular,onthesystems/architecturefront,energyandpowerconsumptionhavebecomekeydesignlimitersasthememorysystemcontinuestoberesponsibleforasignificantfractionofoverallsystemenergy/power[112].Moreandincreasinglyheterogeneousprocessingcoresandagents/clientsaresharingthememorysystem[11,36,39,60,78,79,178,181],leadingtoincreasingdemandformemorycapacityandbandwidthalongwitharelativelynewdemandforpredictableperformanceandqualityofservice(QoS)fromthememorysystem[129,137,176].Ontheapplicationsfront,importantapplicationsareusuallyverydataintensiveandarebecomingincreasinglyso[17],requiringbothreal-timeandof‌f‌linemanipulationofgreatamountsofdata.Forexample,next-generationgenomesequencingtechnologiesproducemassiveamountsofsequencedatathatoverwhelmsmemorystorageandbandwidthrequirementsoftoday’shigh-enddesktopandlaptopsystems[9,111,186,196,197]yetresearchershavethegoalofenablinglow-costpersonalizedmedicine,whichrequiresevenlargeramountsofdataandtheireffectiveanalyses.Creationofnewkillerapplicationsandusagemodelsforcomputerslikelydependsonhowwellthememorysystemcansupporttheef‌f‌icientstorageandmanipulationofdatainsuch1CarnegieMellonUniversityDOI:10.14529/jsfi1403022014,Vol.1,No.319"
302c2293e36e0704ccfe9af759a8505df588eb07,Face recognition with Multilevel B-Splines and Support Vector Machines,"Face Recognition with Multilevel B-Splines and Support
Vector Machines
Manuele Bicego
Dipartimento di Informatica
University of Verona
Strada Le Grazie 15
7134 Verona - Italia
Gianluca Iacono
Dipartimento di Informatica
University of Verona
Strada Le Grazie 15
7134 Verona - Italia
Vittorio Murino
Dipartimento di Informatica
University of Verona
Strada Le Grazie 15
7134 Verona - Italia"
30f84c48bdf2f6152075dd9651a761a84b2f2166,"No fear, no panic: probing negation as a means for emotion regulation.","doi:10.1093/scan/nss043
SCAN (2013) 8, 654 ^661
No fear, no panic: probing negation as a means for
emotion regulation
Cornelia Herbert,1 Roland Deutsch,2 Petra Platte,1 and Paul Pauli1
Department of Psychology, Biological Psychology, Clinical Psychology and Psychotherapy, University of Wu¨rzburg, 97070 Wu¨rzburg and
Department of Psychology, Technische Universita¨t Dresden, Dresden, Germany
This electroencephalographic study investigated if negating one’s emotion results in paradoxical effects or leads to effective emotional downregulation.
Healthy participants were asked to downregulate their emotions to happy and fearful faces by using negated emotional cue words (e.g. no fun, no fear).
Cue words were congruent with the emotion depicted in the face and presented prior to each face. Stimuli were presented in blocks of happy and fearful
faces. Blocks of passive stimulus viewing served as control condition. Active regulation reduced amplitudes of early event-related brain potentials (early
posterior negativity, but not N170) and the late positive potential for fearful faces. A fronto-central negativity peaking at about 250 ms after target face
onset showed larger amplitude modulations during downregulation of fearful and happy faces. Behaviorally, negating was more associated with
reappraisal than with suppression. Our results suggest that in an emotional context, negation processing could be quite effective for emotional
downregulation but that its effects depend on the type of the negated emotion (pleasant vs unpleasant). Results are discussed in the context of
dual process models of cognition and emotion regulation.
Keywords: emotion regulation; event-related brain potentials; negation; reappraisal; suppression
INTRODUCTION
Emotion regulation is an important aspect of everyday life (Gross and
John, 2003; Nezlek and Kuppens, 2008). Imagine the following situ-"
300b8caf79783a7eba5608b5819b6fed14273d2d,Unsupervised Joint Mining of Deep Features and Image Labels for Large-Scale Radiology Image Categorization and Scene Recognition,"Unsupervised Joint Mining of Deep Features and Image Labels
for Large-scale Radiology Image Categorization and Scene Recognition
Xiaosong Wang, Le Lu, Hoo-chang Shin, Lauren Kim, Mohammadhadi Bagheri,
Isabella Nogues, Jianhua Yao, Ronald M. Summers
Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center,
0 Center Drive, Bethesda, MD 20892"
300b819bbbe857f5fe89d0895f907073fc288719,"Towards a Robust People Tracking Framework for Service Robots in Crowded, Dynamic Environments","Towards a Robust People Tracking Framework
for Service Robots in Crowded, Dynamic Environments
Timm Linder
Fabian Girrbach
Kai O. Arras"
305dccd4004560572af2e849a36faf5626990517,Comparative Analysis of Face Recognition Approaches : A Survey,"Comparative Analysis of Face Recognition Approaches:
International Journal of Computer Applications (0975 – 8887)
Volume 57– No.17, November 2012
A Survey
Ripal Patel, Nidhi Rathod, Ami Shah
Electronics & Telecommunication Department,
BVM Engineering College,
Vallabh Vidyanagar-388120, Gujarat, India."
30fd7b1f8502b1c1d7a855946d99d2d5323ec973,Big Data Analysis for 2 Media Production,"I N V I T E D
P A P E R
Big Data Analysis for
Media Production
By Josep Blat, Alun Evans, Hansung Kim, Evren Imre, Luka`sˇ Polok,
Viorela Ila, Nikos Nikolaidis, Senior Member IEEE, Pavel Zemcˇı´k, Anastasios Tefas,
Pavel Smrzˇ, Adrian Hilton, Member IEEE, and Ioannis Pitas, Fellow IEEE"
302c9c105d49c1348b8f1d8cc47bead70e2acf08,Unconstrained Face Recognition Using A Set-to-Set Distance Measure,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2710120, IEEE
Transactions on Circuits and Systems for Video Technology
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
Unconstrained Face Recognition Using A Set-to-Set
Distance Measure
Jiaojiao Zhao, Jungong Han, and Ling Shao, Senior Member IEEE"
30861d747c87e2e838c1c30eed334b17cc93cdb6,Bootstrapping Face Detection with Hard Negative Examples,"Bootstrapping Face Detection with Hard
Negative Examples
Shaohua Wan
Zhijun Chen Tao Zhang Bo Zhang Kong-kat Wong
{wanshaohua, chenzhijun, tao.zhang, zhangbo,
Xiaomi Inc.
August 9, 2016"
301b0da87027d6472b98361729faecf6e1d5e5f6,Head Pose Estimation in Face Recognition Across Pose Scenarios,"HEAD POSE ESTIMATION IN FACE RECOGNITION ACROSS
POSE SCENARIOS
M. Saquib Sarfraz and Olaf Hellwich
Computer vision and Remote Sensing, Berlin university of Technology
Sekr. FR-3-1, Franklinstr. 28/29, D-10587, Berlin, Germany.
Keywords:
Pose estimation, facial pose, face recognition, local energy models, shape description, local features, head
pose classification."
30b103d59f8460d80bb9eac0aa09aaa56c98494f,Enhancing Human Action Recognition with Region Proposals,"Enhancing Human Action Recognition with Region Proposals
Fahimeh Rezazadegan, Sareh Shirazi, Niko Sünderhauf, Michael Milford, Ben Upcroft
Australian Centre for Robotic Vision(ACRV), School of Electrical Engineering and Computer Science
Queensland University of Technology(QUT)"
5e6f546a50ed97658be9310d5e0a67891fe8a102,Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?,"Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Ibaraki, Japan
{kensho.hara, hirokatsu.kataoka,"
5e5e11e143140cc376db466d5b096a54b900c2ba,Face Recognition in Uncontrolled Environment,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 8, 2016
Face Recognition in Uncontrolled Environment
Radhey Shyam and Yogendra Narain Singh
Department of Computer Science & Engineering
Institute of Engineering and Technology
Lucknow - 226 021, India"
5eee9c417157916ee66689718af65965c423b2b7,Autism and Asperger’s Syndrome: A Cognitive Neuroscience Perspective,"In Press: Carol Armstrong, Ed., Handbook of Medical Neuropsychology. New York:
Springer Science.
Autism and Asperger’s Syndrome: A Cognitive Neuroscience Perspective
Jeanne Townsend, Ph.D., Marissa Westerfield, Ph.D.
Department of Neurosciences, University of California, San Diego
Table of Contents
History and Background
Biological Underpinnings
Postmortem Studies
MRI Studies
White Matter Connectivity
Neuroanatomy
EEG Abnormalities
Seizures
Diagnosis
Neurocognitive Mechanisms
Screening Guidelines
Clinical & Research Criteria
Increased Prevalence of Autism
It’s not the vaccine"
5e0eb34aeb2b58000726540336771053ecd335fc,Low-Quality Video Face Recognition with Deep Networks and Polygonal Chain Distance,"Low-Quality Video Face Recognition with Deep
Networks and Polygonal Chain Distance
Christian Herrmann∗†, Dieter Willersinn†, J¨urgen Beyerer†∗
Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
Fraunhofer IOSB, Karlsruhe, Germany"
5e0832848fab012b7e59580264257e0a3d05c596,The University of Southampton Multi-Biometric Tunnel and introducing a novel 3D gait dataset,"The University of Southampton Multi-Biometric Tunnel and
introducing a novel 3D gait dataset
Richard D. Seely, Sina Samangooei, Lee Middleton, John N. Carter and Mark S. Nixon"
5eae1a3e0dfd0834be6a003b979bf5b3dc923453,"Far-Field, Multi-Camera, Video-to-Video Face Recognition","Far-Field, Multi-Camera, Video-to-Video Face
Recognition
Aristodemos Pnevmatikakis and Lazaros Polymenakos
Athens Information Technology
Greece
. Introduction
Face recognition on still images has been extensively studied. Given sufficient training data
(many  gallery  stills  of  each  person)  and/or  high  resolution  images,  the  90%  recognition
arrier can be exceeded, even for hundreds of different people to be recognized (Phillips et
l.,  2006).  Face  recognition  on  video  streams  has  only  recently  begun  to  receive  attention
(Weng  et  al.,  2000;  Li  et  al.,  2001;  Gorodnichy,  2003;  Lee  et  al.,  2003;  Liu  and  Chen,  2003;
Raytchev  and  Murase,  2003;  Aggarval  et  al.,  2004;  Xie  et  al.,  2004;  Stergiou  et  al.,  2006).
Video-to-video face recognition refers to the problem of training and testing face recognition
systems using video streams. Usually these video streams are near-field, where the person
to be recognized occupies most of the frame. They are also constrained in the sense that the
person  looks mainly  at  the  camera.  Typical such  video streams  originate  from  video-calls
nd news narration, where a person’s head and upper torso is visible.
A  much  more  interesting  application  domain  is  that  of  the  far-field  unconstrained  video
streams. In such streams the people are far from the camera, which is typically mounted on a
room corner near the ceiling. VGA-resolution cameras in such a setup can easily lead to quite"
5ecf564bc9eab26c96c17304744ff1029215a109,Single-Sample Face Recognition Based on Intra-Class Differences in a Variation Model,"Sensors 2015, 15, 1071-1087; doi:10.3390/s150101071
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
Single-Sample Face Recognition Based on Intra-Class
Differences in a Variation Model
Jun Cai, Jing Chen * and Xing Liang
School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China;
E-Mails: (J.C.); (X.L.)
*  Author to whom correspondence should be addressed; E-Mail:
Tel.: +86-136-8151-5195.
External Editor: Valentina Gatteschi
Received: 17 September 2014 / Accepted: 10 December 2014 / Published: 8 January 2015"
5e0df06d92176f362d52962de866e2d825185afb,Improving Multi-frame Data Association with Sparse Representations for Robust Near-online Multi-object Tracking,"Improving Multi-Frame Data Association with
Sparse Representations for Robust Near-Online
Multi-Object Tracking
Lo¨ıc Fagot-Bouquet1, Romaric Audigier1, Yoann Dhome1, Fr´ed´eric Lerasle2,3
CEA, LIST, Vision and Content Engineering Laboratory,
Point Courrier 173, F-91191 Gif-sur-Yvette, France
CNRS, LAAS, 7, Avenue du Colonel Roche, F-31400 Toulouse, France
Universit´e de Toulouse, UPS, LAAS, F-31400 Toulouse, France"
5e16cc5dc7ef8b4fc1320abbfeb838b4fe041905,A Proposal for Common Dataset in Neural-Symbolic Reasoning Studies,"A Proposal for Common Dataset in
Neural-Symbolic Reasoning Studies
Ozgur Yilmaz, Artur d’Avila Garcez, and Daniel Silver
Turgut Ozal University, Computer Science Department, Ankara Turkey
City University London, Department of Computer Science, London UK
Acadia University, Jodrey School of Computer Science, Nova Scotia Canada,"
5e28673a930131b1ee50d11f69573c17db8fff3e,Descriptor Based Methods in the Wild,"Author manuscript, published in ""Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France
(2008)"""
5ef49174ca2b54c1bb54df828acc52075cf1634b,DAPs: Deep Action Proposals for Action Understanding,"DAPs: Deep Action Proposals for Action
Understanding
Victor Escorcia1, Fabian Caba Heilbron1,
Juan Carlos Niebles2,3, Bernard Ghanem1
King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
Stanford University. 3 Universidad del Norte, Colombia.
{victor.escorcia, fabian.caba,"
5ea9063b44b56d9c1942b8484572790dff82731e,Multiclass Support Vector Machines and Metric Multidimensional Scaling for Facial Expression Recognition,"MULTICLASS SUPPORT VECTOR MACHINES AND METRIC MULTIDIMENSIONAL
SCALING FOR FACIAL EXPRESSION RECOGNITION
Irene Kotsiay, Stefanos Zafeiriouy, Nikolaos Nikolaidisy and Ioannis Pitasy
yAristotle University of Thessaloniki, Department of Informatics
Thessaloniki, Greece
email: fekotsia, dralbert, nikolaid,"
5e9a6357fd7de7271dac77756c3992dce260eb49,On the Convergence of Affective and Persuasive Technologies in Computer-mediated Health-care Systems,"Rebeca I. García-Betances
Life Supporting Technologies (LifeSTech)
Superior Technical School of
Telecommunications Engineers
Polytechnic University of Madrid
Superior Technical School of
Telecommunications Engineers
Polytechnic University of Madrid
Spain
Dario Salvi
Spain
Giuseppe Fico
Life Supporting Technologies (LifeSTech)
Superior Technical School of
Telecommunications Engineers
Polytechnic University of Madrid
Spain
Manuel Ottaviano
Superior Technical School of
Telecommunications Engineers"
5e8a7a2eef68f568c023f37e41576fa811e5c628,Deep Reinforcement Learning For Sequence to Sequence Models,"Deep Reinforcement Learning for
Sequence-to-Sequence Models
Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, Chandan K. Reddy, Senior Member, IEEE"
5e1b42d07eb84cddc1ebae607f3041aa2ef8fce8,RAM: Role Representation and Identification from combined Appearance and Activity Maps,"RAM: Role Representation and Identification
from combined Appearance and Activity Maps
Carlos Torres† Archith J. Bency† Je(cid:130)rey C. Fried‡ B. S. Manjunath†
University of California Santa Barbara ‡Santa Barbara Co(cid:138)age Hospital
{carlostorres, archith,"
5e053cd164b02433c4efc0fc675f6273a8a1c46a,Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling,"Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 321–331
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 321–331
Vancouver, Canada, July 30 - August 4, 2017. c(cid:13)2017 Association for Computational Linguistics
Vancouver, Canada, July 30 - August 4, 2017. c(cid:13)2017 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17-1030
https://doi.org/10.18653/v1/P17-1030"
5e4ad1f19e88b6dc87000f64b984d8f09abe7baf,Invariant Spectral Hashing of Image Saliency Graph,"Invariant Spectral Hashing of Image Saliency Graph
Maxime Taquet, Laurent Jacques, Christophe De Vleeschouwer and Benoˆıt Macq
Information and Communication Technologies, Electronics and Applied Mathematics
Universit´e catholique de Louvain, Belgium.
September 17, 2010"
5e832ea5328cdcc9b4346458672ad8288a56c0a7,Illumination-robust face recognition with Block-based Local Contrast Patterns,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
5e6ba16cddd1797853d8898de52c1f1f44a73279,Face Identification with Second-Order Pooling,"Face Identification with Second-Order Pooling
Fumin Shen, Chunhua Shen and Heng Tao Shen"
5e2b918f2dee17cb79d692e10aa2103ca9129e2c,Rotating your face using multi-task deep neural network,"Rotating Your Face Using Multi-task Deep Neural Network
Junho Yim1 Heechul Jung1 ByungIn Yoo1;2 Changkyu Choi2 Dusik Park2
Junmo Kim1
School of Electrical Engineering, KAIST, South Korea
Samsung Advanced Institute of Technology
fjunho.yim, heechul,
fbyungin.yoo, changkyu choi,"
5e8e3d2a79537a6cd0c138545bce63ddafaa853c,Intent-aware long-term prediction of pedestrian motion,"Intent-Aware Long-Term Prediction of Pedestrian Motion
Vasiliy Karasev
Alper Ayvaci
Bernd Heisele
Stefano Soatto"
5e2266d4ca1377bdf38ad2c07d0d9e0200813522,Recognizing and Mask Removal in 3D Faces Even In Presence of Occlusions,"ISSN(Online): 2320-9801
ISSN (Print):  2320-9798
International Journal of Innovative Research in Computer and Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol.2, Special Issue 1, March 2014
Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)
Organized by
Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014
Recognizing and Mask Removal in 3D Faces Even
In Presence of Occlusions
M.Dhivya1, P.Purushothaman2
Dept. of Computer Science and Engineering, Muthayammal Engineering College, Rasipuram, Tamilnadu, India1. 2"
5eefe98aafffe665b19de515e3ba90c9c0b7219c,Trimmed Event Recognition Submission to ActivityNet Challenge 2018,"Trimmed Event Recognition​ Submission to ActivityNet Challenge 2018
Jiaqing Lin,  Akikazu Takeuchi
STAIR Lab, Chiba Institute of Technology, Japan
{lin,
. Overview
This paper describes STAIR Lab submission to
ActivityNet 2018 Challenge for guest
task C:
Trimmed Event Recognition (Moments in Time) [1].
Our approach is to utilize three networks, Audio
Net, Spatial-temporal Net, and DenseNet to make
individual predictions, then use MLP to fuses the
results to make an overall prediction. The flow chart
of our approach is shown in figure 1.
. Implementation
.1 Audio network
Our audio dataset training is different from other
methods. Usually, auditory raw waveforms are used
s input and are fed into a model like SoundNet [2].
In our case, firstly, we converted auditory raw"
5e6944abfed38fd30d8be45ee0c24dc1c0525ba1,An Algorithm for Face Recognition based on Isolated Image Points with Neural Network,"International Journal of Computer Applications (0975 – 8887)
Volume 150 – No.2, September 2016
An Algorithm for Face Recognition based on Isolated
Image Points with Neural Network
Hassan Jaleel Hassan, PhD
Computer Engineering Department,
University of Technology
techniques
Pixel-based"
5e9e3afeea446a2ae19e3a8e0678f08b73b0b36b,Commonsense knowledge acquisition and applications,"Commonsense Knowledge
Acquisition and Applications
Niket Tandon
Max-Planck-Institut f¨ur Informatik
Dissertation
zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakult¨aten
der Universit¨at des Saarlandes
Saarbr¨ucken
August, 2016"
5ece99e52efbd43ac7fed8a7d0d604218cba0337,Towards Deep Representation Learning with Genetic Programming,"Towards Deep Representation Learning with Genetic
Programming(cid:63)
Lino Rodriguez-Coayahuitl, Alicia Morales-Reyes, and Hugo Jair Escalante
Instituto Nacional de Astrofisica, Optica y Electronica,
Luis Enrique Erro No.1, Tonantzintla, 72840, Puebla, Mexico,"
5ec94adc9e0f282597f943ea9f4502a2a34ecfc2,Leveraging the Power of Gabor Phase for Face Identification: A Block Matching Approach,"Leveraging the Power of Gabor Phase for Face
Identification: A Block Matching Approach
Yang Zhong, Haibo Li
KTH, Royal Institute of Technology"
5ebd9457a3a09889fad8cc86a91b274da5986636,oASIS: Adaptive Column Sampling for Kernel Matrix Approximation,"PATEL et al.: OASIS: ADAPTIVE COLUMN SAMPLING FOR KERNEL MATRIX APPROXIMATION
oASIS: Adaptive Column Sampling
for Kernel Matrix Approximation
Raajen Patel*, Student Member, IEEE, Thomas A. Goldstein, Member, IEEE, Eva L. Dyer, Member, IEEE,
Azalia Mirhoseini, Student Member, IEEE, and Richard G. Baraniuk, Fellow, IEEE"
5e286a45a4780a142e1420728ab99cb92993ab50,Data-driven image captioning with meta-class based retrieval,"META-SINIF TABANLI GETİRME İLE VERİYE DAYALI İMGE ALTYAZILAMA
DATA-DRIVEN IMAGE CAPTIONING WITH META-CLASS BASED RETRIEVAL
Mert Kılıçkaya1, Erkut Erdem1, Aykut Erdem1, Nazlı İkizler Cinbiş1, Ruket Çakıcı2
Bilgisayar Mühendisliği Bölümü
Hacettepe Üniversitesi
ÖZETÇE
Otomatik imge altyazılama, bir imgenin açıklamasını yaratma
işlemi,  bilgisayarlı  görü  ve  doğal  dil  işleme  topluluklarının
ilgisini  daha  yeni  çeken  çok  zorlu  bir  problemdir.  Bu
çalışmada,  verilen  bir  imge  için;  imge-altyazı  ikilileri  içeren
geniş bir veri kümesinden ona görsel olarak en benzer imgeyi
ulan  ve  onun  altyazısını  girdi  imgesinin  açıklaması  olarak
ktaran  veriye  dayalı  özgün  bir  imge  altyazılama  stratejisi
önerilmiştir.  Özgünlüğümüz,  getirme
için  girdi
görüntüsünün  anlamsal  içeriğini  daha  iyi  yakalamak  için
meta-sınıg gösterimi olarak adlandırılan yeni önerilmiş yüksek
düzey bir global imge gösterimi kullanılmasında yatmaktadır.
Deneylerimiz  meta-sınıf  güdümlü  yaklaşımımızın  dayanak
Im2Text  modeline  kıyasla  daha  doğru  açıklamalar  ürettiğini"
5ef2be1aadd2f666756b2ab66bc05d146ba0681b,Normalization in Training Deep Convolutional Neural Networks for 2D Bio-medical Semantic Segmentation,"Normalization in Training Deep Convolutional Neural Networks for 2D
Bio-medical Semantic Segmentation
Xiao-Yun Zhou1 and Guang-Zhong Yang1"
5e39deb4bff7b887c8f3a44dfe1352fbcde8a0bd,Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!,"Supervised COSMOS Autoencoder: Learning Beyond the
Euclidean Loss!
Maneet Singh, Student Member, IEEE, Shruti Nagpal, Student Member, IEEE, Mayank Vatsa, Senior Member, IEEE,
Richa Singh, Senior Member, IEEE, and Afzel Noore, Senior Member, IEEE"
5ee220b6fb70a3d4d99be9d81d2c0e5de06ab3b9,LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics,"Pre-print of article that will appear in Proceedings of Robotics: Science and Systems XIV, 2018.Please cite this paper as:Sourav Garg, Niko Sunderhauf, and Michael Milford. LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics. Proceedings of Robotics: Science and Systems XIV,  title={LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics},  author={Garg, Sourav and Suenderhauf, Niko and Milford, Michael},  journal={Proceedings of Robotics: Science and Systems XIV},  year={2018}}"
5e4a451faf2e47486a5dbeca8a5109b53e22d95a,Statement Arun Kumar,"Research Statement
Arun Kumar
Large-scale data analytics using machine learning (ML), popularly known as advanced analytics or “Big
Data” analytics, is transforming almost every data-powered application in the enterprise, Web, science,
government, and other domains. However, there are still many barriers to broad and successful adoption
of advanced analytics. Designing new ML algorithms and faster ML implementations are important issues
that have been studied by researchers for a long time, but for most data-powered applications, the real
showstopper is a different issue that is often glossed over in research: the end-to-end process of building
ML models given raw data is often too painful even for professional analysts, while developers skilled in
oth general-purpose programming and the latest ML are rare. The goal of my research is to improve the
productivity of the users and developers of advanced analytics systems to enable data-powered applications
to realize the full potential of advanced analytics. To this end, my work focuses on fundamental research
questions at the intersection of data management and ML that address usability, developability, perfor-
mance, and scalability issues. My approach to solving a problem involves the whole spectrum of algorithm
design, theoretical analysis, empirical analysis, building prototype systems, and deploying them in practice.
Research Summary. My dissertation opens up a new problem that I call “learning over joins”, which
illustrates my goal of improving the productivity of analysts. My observation is simple: most ML toolkits
ssume the input data is a single table, but many real-world datasets are multi-table. Thus, analysts join
ll tables to create a single table that might be much larger, which means that managing and maintaining
it is a usability headache. Creating a single table also causes storage and performance issues. To mitigate"
5be74c6fa7f890ea530e427685dadf0d0a371fc1,Deep Co-attention based Comparators For Relative Representation Learning in Person Re-identification,"Deep Co-attention based Comparators For Relative
Representation Learning in Person Re-identification
Lin Wu, Yang Wang, Junbin Gao, Dacheng Tao, Fellow, IEEE"
5b25b9053ceafe1cf8258d8daa818a2da80c800f,Assigning affinity-preserving binary hash codes to images,"Assigning af‌f‌inity-preserving
inary hash codes to images
Jason Filippou
Varun Manjunatha
June 10, 2014"
5bfc32d9457f43d2488583167af4f3175fdcdc03,Local Gray Code Pattern (LGCP): A Robust Feature Descriptor for Facial Expression Recognition,"International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064
Local Gray Code Pattern (LGCP): A Robust
Feature Descriptor for Facial Expression
Recognition
Mohammad Shahidul Islam
Atish Dipankar University of Science & Technology, School, Department of Computer Science and Engineering, Dhaka, Bangladesh."
5bc5cfc2622f6b0a0003d7b115726d075205a2cc,Auto Landing Process for Autonomous Flying Robot by Using Image Processing Based on Edge Detection,"AUTO LANDING PROCESS FOR
AUTONOMOUS FLYING ROBOT BY USING
IMAGE PROCESSING BASED ON EDGE
DETECTION
Bahram Lavi Sefidgari1 and Sahand Pourhassan Shamchi2
Department of Computer Engineering, EMU, Famagusta, Cyprus
Department of Mechanical Engineering, EMU, Famagusta, Cyprus"
5ba7882700718e996d576b58528f1838e5559225,Predicting Personalized Image Emotion Perceptions in Social Networks,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2016.2628787, IEEE
Transactions on Affective Computing
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X, OCTOBER 2016
Predicting Personalized Image Emotion
Perceptions in Social Networks
Sicheng Zhao, Hongxun Yao, Yue Gao, Senior Member, IEEE, Guiguang Ding and Tat-Seng Chua"
5b6f0a508c1f4097dd8dced751df46230450b01a,Finding lost children,"Finding Lost Children
Ashley Michelle Eden
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2010-174
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-174.html
December 20, 2010"
5b10fa6b4c0921af7b36a58f4fd2d8fca6e3c9b1,Low-Rank Multi-View Learning in Matrix Completion for Multi-Label Image Classification,"Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
Low-Rank Multi-View Learning
in Matrix Completion for Multi-Label Image Classification
Meng Liu†, Yong Luo†§, Dacheng Tao‡, Chao Xu†, and Yonggang Wen§
Key Laboratory of Machine Perception (MOE), School of EECS, PKU, Beijing 100871, China
Center for Quantum Computation and Intelligent Systems, UTS, Sydney, NSW 2007, Australia
§Division of Networks and Distributed Systems School of Computer Engineering, NTU, 639798, Singapore
{lemolemac,"
5bb684dfe64171b77df06ba68997fd1e8daffbe1,One-Sided Unsupervised Domain Mapping,
5bf9493564d1ed173aee4dc701d4e62d5f926fe3,Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics using CNNs,"Bonnet: An Open-Source Training and Deployment Framework
for Semantic Segmentation in Robotics using CNNs
Andres Milioto
Cyrill Stachniss"
5b0552a8e0ffdf1b6e7f2573640f888815391dec,Part-level fully convolutional networks for pedestrian detection,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
5b14abbea83270282ef94fcf3f3a73e7d8fee023,Experiments about the Generalization Ability of Common Vector based Methods for Face Recognition,"Experiments about the Generalization Ability of
Common Vector based methods for Face
Recognition ?
Marcelo Armengot, Francesc J. Ferri, and Wladimiro D´ıaz
Dept. d’Inform`atica, Universitat de Val`encia
Dr Moliner, 50 46100 Burjassot, Spain"
5b9c849c2acbdea6e3cfc730def4f083f169521c,A Method for Face Detection based on Wavelet Transform and optimised feature selection using Ant Colony Optimisation in Support Vector Machine,"ISSN (Print)   : 2320 – 9798
ISSN (Online) : 2320 – 9801
International Journal of Innovative  Research in Computer and Communication Engineering
Vol. 1, Issue 2, April  2013
A Method for Face Detection based on Wavelet
Transform and optimised feature selection using Ant
Colony Optimisation in Support Vector Machine
Sanjay Kumar Pal1, Uday Chourasia 2 and Manish Ahirwar3
Department of CSE, University Institute of Technology, RGPV, Bhopal, India1,2,3"
5bf4f97b631937b2176db9c80dee965e2e2286be,From Classical to Generalized Zero-Shot Learning: a Simple Adaptation Process,"From Classical to Generalized Zero-Shot
Learning: a Simple Adaptation Process
Yannick Le Cacheux
Herv´e Le Borgne
CEA LIST
CEA LIST
Michel Crucianu
CEDRIC Lab – CNAM
September 27, 2018"
5be6340c55d4a45e96e811bdeac3972328ca9247,People Identification and Tracking Through Fusion of Facial and Gait Features,"Original citation:
Guan, Yu (Researcher in Computer Science), Wei, Xingjie, Li, Chang-Tsun and Keller,
Y. (2014) People identification and tracking through fusion of facial and gait features. In:
Cantoni, Virginio and Dimov, Dimo and Tistarell, Massimo, (eds.) Biometric
Authentication : First International Workshop, BIOMET 2014, Sofia, Bulgaria, June 23-
4, 2014. Revised Selected Papers. Lecture Notes in Computer Science . Springer
International Publishing, pp. 209-221. ISBN 9783319133850
Permanent WRAP url:
http://wrap.warwick.ac.uk/65110
Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.  Copyright ©
nd all moral rights to the version of the paper presented here belong to the individual
uthor(s) and/or other copyright owners.  To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
vailable.
Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge.  Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way."
5bae9822d703c585a61575dced83fa2f4dea1c6d,MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking,"MOTChallenge 2015:
Towards a Benchmark for Multi-Target Tracking
Laura Leal-Taix´e∗, Anton Milan∗, Ian Reid, Stefan Roth, and Konrad Schindler"
5bcff482bd9652420f8f6b0e6e58ab59a562046e,Bit-Scalable Deep Hashing With Regularized Similarity Learning for Image Retrieval and Person Re-Identification,"Bit-Scalable Deep Hashing with Regularized
Similarity Learning for Image Retrieval and Person
Re-identification
Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo, and Lei Zhang"
5babbad3daac5c26503088782fd5b62067b94fa5,Are You Sure You Want To Do That? Classification with Verification,"Are You Sure You Want To Do That?
Classification with Verification
Harris Chan∗
Atef Chaudhury∗
Kevin Shen∗"
5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f,Targeting Ultimate Accuracy: Face Recognition via Deep Embedding,"Targeting Ultimate Accuracy: Face Recognition via Deep Embedding
Jingtuo Liu     Yafeng Deng     Tao Bai     Zhengping Wei     Chang Huang
Baidu Research – Institute of Deep Learning"
5b7870359b8b9934453f8e772ab7c3f9df3a5035,LF Indoor Location and Identification System,"LF Indoor Location and Identification System
Antti Ropponen, Matti Linnavuo, Raimo Sepponen
Helsinki University of Technology
Department of Electronics
PL 3340, 02015 TKK Finland
Emails:"
5b6c603fba0a66fb3c037632079bdca82ec3bf91,Alternating Co-Quantization for Cross-Modal Hashing,"Alternating Co-Quantization for Cross-modal Hashing
Go Irie
Hiroyuki Arai
Yukinobu Taniguchi
NTT Corporation
{irie.go, arai.hiroyuki,"
5b9d9f5a59c48bc8dd409a1bd5abf1d642463d65,An evolving spatio-temporal approach for gender and age group classification with Spiking Neural Networks,"Evolving Systems. manuscript No.
(will be inserted by the editor)
An evolving spatio-temporal approach for gender and age
group classification with Spiking Neural Networks
Fahad Bashir Alvi, Russel Pears, Nikola Kasabov
Received: date / Accepted: date"
5b01d4338734aefb16ee82c4c59763d3abc008e6,A Robust Face Recognition Algorithm Based on Kernel Regularized Relevance-Weighted Discriminant Analysis,"DI WU: A ROBUST FACE RECOGNITION ALGORITHM BASED ON KERNEL REGULARIZED RELEVANCE …
A Robust Face Recognition Algorithm Based on Kernel Regularized
Relevance-Weighted Discriminant Analysis
Di WU 1, 2
2 Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China.
College of Electrical and Information Engineering,
[e-mail:
I. INTRODUCTION
interface  and  security
recognition
their
this  paper,  we  propose  an  effective"
5b721f86f4a394f05350641e639a9d6cb2046c45,Detection under Privileged Information,"A short version of this paper is accepted to ACM Asia Conference on Computer and Communications Security (ASIACCS) 2018
Detection under Privileged Information (Full Paper)∗
Z. Berkay Celik
Pennsylvania State University
Patrick McDaniel
Pennsylvania State University
Rauf Izmailov
Vencore Labs
Nicolas Papernot,
Ryan Sheatsley, Raquel Alvarez
Pennsylvania State University
Ananthram Swami
Army Research Laboratory"
5b6bdf478860b1e3f797858e71abd14f98684b61,Distributed neural computation for the visual perception of motion. (Calcul neuronal distribué pour la perception visuelle du mouvement),"Distributed neural computation for the visual
perception of motion
Mauricio Cerda
To cite this version:
Mauricio Cerda. Distributed neural computation for the visual perception of motion. Computer
science. Universit´e Nancy II, 2011. English. <tel-00642818>
HAL Id: tel-00642818
https://tel.archives-ouvertes.fr/tel-00642818
Submitted on 18 Nov 2011
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de
recherche fran¸cais ou ´etrangers, des laboratoires"
5b3725c8b5e058ec3a383b621aa9316b90738b2e,Gaussian Conditional Random Field Network for Semantic Segmentation,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Gaussian Conditional Random Field Network for Semantic
Segmentation
Vemulapalli, R.; Tuzel, C.O.; Liu, M.-Y.; Chellappa, R.
TR2016-078
June 2016"
5b1b90a0a6d491b26f427824985d69d5d0693220,Human gender classification: a review,"IEEE SENSORS JOURNAL, VOL. X, NO. X, XXXXXXX 2015
Human Gender Classification: A Review
Yingxiao Wu, Member, IEEE, Yan Zhuang, Student Member, IEEE, Xi Long, Member, IEEE,
Feng Lin, Member, IEEE, and Wenyao Xu, Member, IEEE"
5bb24d1250df62a56cab1445f1d8c5c61269b785,Measuring the Temporal Behavior of Real-World Person Re-Identification,"Measuring the Temporal Behavior of Real-World
Person Re-Identification
Meng Zheng, Student Member, IEEE, Srikrishna Karanam, Member, IEEE,
nd Richard J. Radke, Senior Member, IEEE"
5bb14bba7510c590164007d7e3aa1bf88cb3faec,Learning to Match Appearances by Correlations in a Covariance Metric Space,"Learning to Match Appearances by Correlations
in a Covariance Metric Space
Sªawomir B¡k, Guillaume Charpiat, Etienne Corvée, François Brémond,
Monique Thonnat
INRIA Sophia Antipolis, STARS group
004, route des Lucioles, BP93
06902 Sophia Antipolis Cedex - France"
5ba1db56bccc090ce5eceb13f46f2cd15ba3aa55,Interpretable Counting in Visual Question Answering,"Under review as a conference paper at ICLR 2018
INTERPRETABLE COUNTING IN VISUAL QUESTION
ANSWERING
Anonymous authors
Paper under double-blind review"
5b818c73ce5681e523d6fe9ed8603c7afc0a9089,Improving Shape Retrieval by Spectral Matching and Meta Similarity,"Improving Shape retrieval by Spectral
Matching and Meta Similarity
Amir Egozi (BGU),
Yosi Keller (BIU)
nd Hugo Guterman (BGU)
Department of Electrical and Computer Engineering,
Ben-Gurion University of the Negev
/ 21"
5b1d78b160560db5f581e65289ce5e2f99eb9b1f,Twitter100k: A Real-World Dataset for Weakly Supervised Cross-Media Retrieval,"Twitter100k: A Real-world Dataset for Weakly
Supervised Cross-Media Retrieval
Yuting Hu, Liang Zheng, Yi Yang, and Yongfeng Huang"
5b94093939ac42aba54ab41eb1725aeba1bd5c34,RGB-D Segmentation of Poultry Entrails,"Aalborg Universitet
RGB-D Segmentation of Poultry Entrails
Philipsen, Mark Philip; Jørgensen, Anders; Guerrero, Sergio Escalera; Moeslund, Thomas B.
Published in:
IX International Conference on Articulated Motion and Deformable Objects
DOI (link to publication from Publisher):
0.1007/978-3-319-41778-3_17
Publication date:
Document Version
Accepted author manuscript, peer reviewed version
Link to publication from Aalborg University
Citation for published version (APA):
Philipsen, M. P., Jørgensen, A., Guerrero, S. E., & Moeslund, T. B. (2016). RGB-D Segmentation of Poultry
Entrails. In IX International Conference on Articulated Motion and Deformable Objects (pp. 168-174). Springer.
(Lecture Notes in Computer Science, Vol. 9756). DOI: 10.1007/978-3-319-41778-3_17
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain"
5be3cc1650c918da1c38690812f74573e66b1d32,Relative Parts: Distinctive Parts for Learning Relative Attributes,"Relative Parts: Distinctive Parts for Learning Relative Attributes
Ramachandruni N. Sandeep
Yashaswi Verma
C. V. Jawahar
Center for Visual Information Technology, IIIT Hyderabad, India - 500032"
5b6bed112e722c0629bcce778770d1b28e42fc96,Can Your Eyes Tell Me How You Think? A Gaze Directed Estimation of the Mental Activity,"FLOREA ET AL.:CANYOUREYESTELLMEHOWYOUTHINK?
Can Your Eyes Tell Me How You Think? A
Gaze Directed Estimation of the Mental
Activity
Laura Florea
http://alpha.imag.pub.ro/common/staff/lflorea
Corneliu Florea
http://alpha.imag.pub.ro/common/staff/cflorea
Ruxandra Vrânceanu
Constantin Vertan
http://alpha.imag.pub.ro/common/staff/vertan
Image Processing and Analysis
Laboratory, LAPI
University “Politehnica” of Bucharest
Bucharest, Romania"
374c7a2898180723f3f3980cbcb31c8e8eb5d7af,Facial Expression Recognition in Videos using a Novel Multi-Class Support Vector Machines Variant,"FACIAL EXPRESSION RECOGNITION IN VIDEOS USING A NOVEL MULTI-CLASS
SUPPORT VECTOR MACHINES VARIANT
Irene Kotsiay, Nikolaos Nikolaidisy and Ioannis Pitasy
yAristotle University of Thessaloniki
Department of Informatics
Box 451, 54124 Thessaloniki, Greece"
37b207d2c4a82a57f80e96353f79ecd71320a854,Person Search with Natural Language Description,"Person Search with Natural Language Description
Shuang Li1 Tong Xiao1 Hongsheng Li1∗ Bolei Zhou2 Dayu Yue3 Xiaogang Wang1 ∗
The Chinese University of Hong Kong 2Massachuate Institute of Technology 3SenseTime Group Limited"
37c42f0a0e2e97a74113e1a1e1a79b04e0c64244,Covariance Pooling For Facial Expression Recognition,"Covariance Pooling for Facial Expression Recognition
Computer Vision Lab, ETH Zurich, Switzerland
VISICS, KU Leuven, Belgium
Dinesh Acharya†, Zhiwu Huang†, Danda Pani Paudel†, Luc Van Gool†‡
{acharyad, zhiwu.huang, paudel,"
372fb32569ced35eaf3740a29890bec2be1869fa,Mu rhythm suppression is associated with the classification of emotion in faces.,"Running head: MU RHYTHM MODULATION BY CLASSIFICATION OF EMOTION  1
Mu rhythm suppression is associated with the classification of emotion in faces
Matthew R. Moore1, Elizabeth A. Franz1
Department of Psychology, University of Otago, Dunedin, New Zealand
Corresponding authors:
Matthew Moore & Liz Franz
Phone:  +64 (3) 479 5269; Fax:  +64 (3) 479 8335
Department of Psychology
University of Otago
PO Box 56
Dunedin, New Zealand"
376ea595a6ff5b876367654833de1e1778bacd1e,Bilingualism and ambiguous emotional cues 1,"Bilingualism and ambiguous emotional cues  1
Examensarbete på avancerad nivå
Independent degree project  second cycle
Psychology
Major subject
Title
Bilingualism and Children's Attention to Facial Expressions that Conflict with Lexical
Content
Amani Asad"
37f2e03c7cbec9ffc35eac51578e7e8fdfee3d4e,Co-operative Pedestrians Group Tracking in Crowded Scenes Using an MST Approach,"WACV 2015 Submission #394. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
Co-operative Pedestrians Group Tracking in Crowded Scenes using an MST
Approach
Anonymous WACV submission
Paper ID 394"
3748a828dabc6b5292b53cec6080cef33d78d3e3,On Clustering and Embedding Manifolds using a Low Rank Neighborhood Approach,"On Clustering and Embedding Manifolds using a
Low Rank Neighborhood Approach
Arun M. Saranathan, Student Member, IEEE, and Mario Parente, Member, IEEE"
3795974e24296185d9b64454cde6f796ca235387,Finding your Lookalike: Measuring Face Similarity Rather than Face Identity,"Finding your Lookalike:
Measuring Face Similarity Rather than Face Identity
Amir Sadovnik, Wassim Gharbi, Thanh Vu
Lafayette College
Easton, PA
Andrew Gallagher
Google Research
Mountain View, CA"
37d6cde8be756b70d22262f1acc3442a0c6aa7ea,Kernel learning approaches for image classification,"Kernel Learning Approaches for
Image Classification
Dissertation
zur Erlangung des akademischen Grades
Doctor rerum naturalium (Dr.rer.nat)
n der Naturwissenschaftlich-Technischen Fakult¨at I
der Universit¨at des Saarlandes, Saarbr¨ucken
vorgelegt von Dipl.-Inform.
Peter Vincent Gehler
0. Juni 2009"
37a4eb74f9c9d6333864dbe1e0803d30c2e4db7c,An Evaluation of Deep CNN Baselines for Scene-Independent Person Re-Identification,"An Evaluation of Deep CNN Baselines for
Scene-Independent Person Re-Identification
Paul Marchwica, Michael Jamieson, Parthipan Siva
Senstar Corporation
Waterloo, Canada
{Paul.Marchwica, Mike.Jamieson,
the art"
37a95a78bee34bb26a64c7ec30f7bd0496e072f1,The Focus-Aspect-Polarity Model for Predicting Subjective Noun Attributes in Images,"The Focus-Aspect-Polarity Model
for Predicting Subjective Noun Attributes in Images
Tushar Karayil1
DFKI, Germany
Philipp Blandfort1
DFKI and TUK, Germany
J¨orn Hees
DFKI, Germany
Andreas Dengel
DFKI, Germany"
37278ffce3a0fe2c2bbf6232e805dd3f5267eba3,Can we still avoid automatic face detection?,"Can we still avoid automatic face detection?
Michael J. Wilber1,2
Vitaly Shmatikov1,2
Serge Belongie1,2
Department of Computer Science, Cornell University 2 Cornell Tech"
377a1be5113f38297716c4bb951ebef7a93f949a,Facial emotion recognition with anisotropic inhibited Gabor energy histograms,"Dear Faculty, IGERT Fellows, IGERT Associates and Students,
You are cordially invited to attend a Seminar presented by Albert Cruz. Please
plan to attend.
Albert Cruz
IGERT Fellow
Electrical Engineering
Date: Friday, October 11, 2013
Location: Bourns A265
Time: 11:00am
Facial  emotion  recognition  with  anisotropic
inhibited gabor energy histograms"
37992120053b50b2f92eaa1949273bf828a54b50,Face Recognition Techniques - An evaluation Study,"Int. J. Advanced Networking and Applications
Volume: 6 Issue: 4 Pages: 2393-2397       (2015) ISSN: 0975-0290
Face Recognition Techniques - An evaluation
Department of Management Information System, Applied Science University, 166-11391, Jordan
Study
Dr.Asmahan M Altaher
Email:
Keywords"
3765df816dc5a061bc261e190acc8bdd9d47bec0,Presentation and validation of the Radboud Faces Database,"This article was downloaded by: [Radboud University Nijmegen]
On: 24 November 2010
Access details: Access Details: [subscription number 907172236]
Publisher Psychology Press
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
1 Mortimer Street, London W1T 3JH, UK
Cognition & Emotion
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713682755
Presentation and validation of the Radboud Faces Database
Oliver Langnera; Ron Dotscha; Gijsbert Bijlstraa; Daniel H. J. Wigboldusa; Skyler T. Hawkb; Ad van
Knippenberga
Radboud University Nijmegen, Nijmegen, The Netherlands b University of Amsterdam, Amsterdam,
The Netherlands
Online publication date: 22 November 2010
To cite this Article Langner, Oliver , Dotsch, Ron , Bijlstra, Gijsbert , Wigboldus, Daniel H. J. , Hawk, Skyler T. and van
Knippenberg, Ad(2010) 'Presentation and validation of the Radboud Faces Database', Cognition & Emotion, 24: 8, 1377 —
To link to this Article: DOI: 10.1080/02699930903485076
URL: http://dx.doi.org/10.1080/02699930903485076
PLEASE SCROLL DOWN FOR ARTICLE"
370e0d9b89518a6b317a9f54f18d5398895a7046,Cross-pollination of normalisation techniques from speaker to face authentication using Gaussian mixture models,"IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, XXXXXXX 20XX
Cross-pollination of normalisation techniques
from speaker to face authentication
using Gaussian mixture models
Roy Wallace, Member, IEEE, Mitchell McLaren, Member, IEEE, Christopher McCool, Member, IEEE,
nd S´ebastien Marcel, Member, IEEE"
372bc106c61e7eb004835e85bbfee997409f176a,Coupled Generative Adversarial Networks,"Coupled Generative Adversarial Networks
Mitsubishi Electric Research Labs (MERL),
Mitsubishi Electric Research Labs (MERL),
Ming-Yu Liu
Oncel Tuzel"
37838a832838ff3211b358bc51ba5105b9d82e89,The Complete Gabor-Fisher Classifier for Robust Face Recognition,"EURASIP JOURNAL ON ADVANCES IS SIGNAL PROCESSING
The Complete Gabor-Fisher Classifier for Robust
Face Recognition
Vitomir ˇStruc and Nikola Paveˇsi´c"
37381718559f767fc496cc34ceb98ff18bc7d3e1,Harnessing Synthesized Abstraction Images to Improve Facial Attribute Recognition,Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
372bf2716c53e353be6c3f027493f1a40edb6640,MINE: Mutual Information Neural Estimation,"Mutual Information Neural Estimation
Mohamed Ishmael Belghazi 1 Aristide Baratin 1 2 Sai Rajeswar 1 Sherjil Ozair 1 Yoshua Bengio 1 3 4
Aaron Courville 1 3 R Devon Hjelm 1 4"
3773e5d195f796b0b7df1fca6e0d1466ad84b5e7,UNIVERSITY OF CALIFORNIA RIVERSIDE Learning from Time Series in the Presence of Noise: Unsupervised and Semi-Supervised Approaches,"UNIVERSITY OF CALIFORNIA
RIVERSIDE
Learning from Time Series in the Presence of Noise: Unsupervised and Semi-Supervised
Approaches
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Computer Science
Dragomir Dimitrov Yankov
March 2008
Dissertation Committee:
Dr. Eamonn Keogh, Chairperson
Dr. Stefano Lonardi
Dr. Vassilis Tsotras"
37eb666b7eb225ffdafc6f318639bea7f0ba9a24,"Age, Gender and Race Estimation from Unconstrained Face Images","MSU Technical Report (2014): MSU-CSE-14-5
Age, Gender and Race Estimation from
Unconstrained Face Images
Hu Han, Member, IEEE and Anil K. Jain, Fellow, IEEE"
375993fd5f94c7b02169ff0d71a74d1b84262dfc,Parallel Application Library for Object Recognition,"Parallel Application Library for Object Recognition
Bor-Yiing Su
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2012-199
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-199.html
September 27, 2012"
375435fb0da220a65ac9e82275a880e1b9f0a557,From Pixels to Response Maps: Discriminative Image Filtering for Face Alignment in the Wild,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
From Pixels to Response Maps: Discriminative Image
Filtering for Face Alignment in the Wild
Akshay Asthana, Stefanos Zafeiriou, Georgios Tzimiropou-
los, Shiyang Cheng and Maja Pantic"
37a23e76674e606ce779131d2c93496e8a53bb2f,The discrete cosine transform (DCT) plus local normalization: a novel two-stage method for de-illumination in face recognition,"Optica Applicata, Vol. XLI, No. 4, 2011
The discrete cosine transform (DCT)
plus local normalization:
novel two-stage method
for de-illumination in face recognition
MINGHUA ZHAO*, YINGHUI WANG, ZHENGHAO SHI, JIULONG ZHANG
School of Computer Science and Engineering, Xi’an University of Technology, Xi’an710048, China
*Corresponding author:
To  deal  with  illumination  variations  in  face  recognition,  a  novel  two-stage  illumination
normalization method is proposed in this paper. Firstly, a discrete cosine transform (DCT) is used
on the original images in logarithm domain. DC coefficient is set based on the average pixel value
of all the within-class training samples and some low frequency AC coefficients are set to zero to
eliminate illumination variations in large areas. Secondly, local normalization method, which can
minimize illumination variations in small areas, is used on the inverse DCT images. This makes
the pixel values on the processed images be close to or equal to that of the normal illumination
ondition. Experimental results, both on Yale B database and Extended Yale B database, show
that the proposed method can eliminate effect of illumination variations effectively and improve
performance  of  face  recognition  methods  significantly.  The  present  method  does  not  demand
modeling step and can eliminate the effect of illumination variations before face recognition. In
this way, it can be used as a preprocessing step for any existing face recognition method."
3726b82007512a15a530fd1adad57af58a9abb62,Teaching Compositionality to CNNs,"Teaching Compositionality to CNNs∗
Austin Stone
Yi Liu
Huayan Wang
D. Scott Phoenix
Michael Stark
Dileep George
Vicarious FPC, San Francisco, CA, USA
{austin, huayan, michael, yi, scott,"
37b6d6577541ed991435eaf899a2f82fdd72c790,Vision-based Human Gender Recognition: A Survey,"Vision-based Human Gender Recognition: A Survey
Choon Boon Ng, Yong Haur Tay, Bok Min Goi
Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia."
37b0357d2db89bc4560d4201c3c2478988c87640,Face Recognition Based on Curvelet Transform and LS-SVM,"ISBN 978-952-5726-02-2 (Print), 978-952-5726-03-9 (CD-ROM)
Proceedings  of  the  2009  International  Symposium  on  Information  Processing  (ISIP’09)
Huangshan, P. R. China, August 21-23, 2009, pp. 140-143
Face Recognition Based on Curvelet Transform
nd LS-SVM
School of Electronics, Jiangxi University of Finance and Economics, Nanchang, China
Jianhong Xie
long
reduce
singularities
urves.  To"
37347e4c1b35196761fc1620e451738f880f0392,Exemplar-based human action pose correction and tagging,"Exemplar-Based Human Action Pose Correction and Tagging
Wei Shen
Ke Deng
Xiang Bai
Huazhong Univ. of Sci.&Tech.
Microsoft Corporation
Huazhong Univ. of Sci.&Tech.
Tommer Leyvand
Microsoft Corporation
Baining Guo
Zhuowen Tu
Microsoft Research Asia
Microsoft Research Asia & UCLA"
3752dc15fada54abc0af866273d03a28f4dc8975,A Variational Framework for Pedestrian Segmentation in Cluttered Scenes Using Bag of Optical Flows and Shape Priors,"A VARIATIONAL FRAMEWORK FOR PEDESTRIAN
SEGMENTATION IN CLUTTERED SCENES USING
BAG OF OPTICAL FLOWS AND SHAPE PRIORS
Gagan Bansal
A thesis submitted to The Johns Hopkins University in conformity with the requirements
for the degree of Master of Science.
Baltimore, Maryland
January, 2009
(cid:176) Gagan Bansal 2009
All rights reserved"
375e478acf62eede1cc69693c54d81aa718df9e7,DFT domain Feature Extraction using Edge-based Scale Normalization for Enhanced Face Recognition,"Journal of Advanced Computer Science and Technology, 1 (3) (2012) 134-166
(cid:13)Science Publishing Corporation
www.sciencepubco.com/index.php/JACST
DFT domain Feature Extraction using
Edge-based Scale Normalization for
Enhanced Face Recognition
K Manikantan1,∗, S Ramachandran2,†
Department of Electronics and Communication Engineering,
M S Ramaiah Institute of Technology, Bangalore, Karnataka, India 560054
Department of Electronics and Communication Engineering,
S J B Institute of Technology, Bangalore, Karnataka, India 560060"
372a8bf0ef757c08551d41e40cb7a485527b6cd7,Unsupervised Video Hashing by Exploiting Spatio-Temporal Feature,"Unsupervised Video Hashing by Exploiting
Spatio-Temporal Feature
Chao Ma, Yun Gu, Wei Liu, and Jie Yang(cid:63)
Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong
University, Shanghai, China."
37c4541037b67e8f4c538b285efe80aa251a49b9,Tracking as a Whole: Multi-Target Tracking by Modeling Group Behavior With Sequential Detection,"Tracking as a Whole: Multi-Target Tracking
y Modeling Group Behavior With
Sequential Detection
Yuan Yuan, Senior Member, IEEE, Yuwei Lu, and Qi Wang, Senior Member, IEEE"
376b73334bd9aebed1fbb69c4ed3848ec0826b6c,Online non-rigid structure-from-motion based on a keyframe representation of history,"Online Non-rigid Structure-from-motion based on a
keyframe representation of history
Simon Donn´e, Ljubomir Jovanov, Bart Goossens, Wilfried Philips, Aleksandra Piˇzurica
Department of Telecommunications and Information Processing (TELIN)
{Simon.Donne, Ljubomir.Jovanov, Bart.Goossens, Wilfried.Philips,
Ghent University
Ghent, Belgium"
370ed90971eca7ad84c67d8804f97e02ff6fd5b4,"The Socio-Moral Image Database (SMID): A novel stimulus set for the study of social, moral and affective processes","RESEARCH ARTICLE
The Socio-Moral Image Database (SMID): A
novel stimulus set for the study of social,
moral and affective processes
Damien L. Crone1*, Stefan Bode1, Carsten Murawski2, Simon M. Laham1
Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia,
Department of Finance, University of Melbourne, Melbourne, Australia"
370277791a0708b7c93deb21da172e025b558643,"Fusing LIDAR, camera and semantic information: A context-based approach for pedestrian detection","Fusing LIDAR, camera and semantic information:
context-based approach for pedestrian detection
Cristiano Premebida and Urbano Nunes
The final version is available at: http://ijr.sagepub.com/content/32/3.toc
This is a pre-print version."
370b5757a5379b15e30d619e4d3fb9e8e13f3256,Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments,"Labeled Faces in the Wild: A Database for Studying
Face Recognition in Unconstrained Environments
Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller"
08aedeb74dda306a14c699ffcef4f434a60f34e8,3 D Spatial Layout and Geometric Constraints for Scene Understanding by Varsha Chandrashekhar,(cid:13) 2011 Varsha Chandrashekhar Hedau
08d2f655361335bdd6c1c901642981e650dff5ec,Automatic Cast Listing in Feature-Length Films with Anisotropic Manifold Space,"This is the published version:
Arandjelovic,	Ognjen	and	Cipolla,	R.	2006,	Automatic	cast	listing	in	feature‐length	films	with
Anisotropic	Manifold	Space,	in	CVPR	2006	:	Proceedings	of	the	Computer	Vision	and	Pattern
Recognition	Conference	2006,	IEEE,	Piscataway,	New	Jersey,	pp.	1513‐1520.
http://hdl.handle.net/10536/DRO/DU:30058435
Reproduced	with	the	kind	permission	of	the	copyright	owner.
Copyright	:	2006,	IEEE
Available from Deakin Research Online:"
085fce160b0fa279597bf23b518c56c735d9e7ff,Joint detection and recognition of human actions in wireless surveillance camera networks,"Joint Detection and Recognition of Human Actions in Wireless
Surveillance Camera Networks
Nikhil Naikal1, Pedram Lajevardi2 and Shankar. S. Sastry1"
08fbe3187f31b828a38811cc8dc7ca17933b91e9,Statistical Computations on Grassmann and Stiefel Manifolds for Image and Video-Based Recognition,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Statistical Computations on Grassmann and
Stiefel Manifolds for Image and Video-Based
Recognition
Turaga, P.; Veeraraghavan, A.; Srivastava, A.; Chellappa, R.
TR2011-084 April 2011"
08ae100805d7406bf56226e9c3c218d3f9774d19,Predicting the Sixteen Personality Factors (16PF) of an individual by analyzing facial features,"Gavrilescu and Vizireanu EURASIP Journal on Image and Video Processing  (2017) 2017:59
DOI 10.1186/s13640-017-0211-4
EURASIP Journal on Image
nd Video Processing
R ES EAR CH
Predicting the Sixteen Personality Factors
(16PF) of an individual by analyzing facial
features
Mihai Gavrilescu* and Nicolae Vizireanu
Open Access"
08c6943a17f267ef27316cff9248b3036a7059f3,We are not contortionists: Coupled adaptive learning for head and body orientation estimation in surveillance video,"We are not Contortionists: Coupled Adaptive Learning
for Head and Body Orientation Estimation in Surveillance Video
Cheng Chen
Jean-Marc Odobez
Idiap Research Institute – CH-1920, Martigny, Switzerland
(cid:3)"
08c18b2f57c8e6a3bfe462e599a6e1ce03005876,A Least-Squares Framework for Component Analysis,"A Least-Squares Framework
for Component Analysis
Fernando De la Torre Member, IEEE,"
08ff81f3f00f8f68b8abd910248b25a126a4dfa4,Symmetric Subspace Learning for Image Analysis,"Papachristou, K., Tefas, A., & Pitas, I. (2014). Symmetric Subspace Learning
5697. DOI: 10.1109/TIP.2014.2367321
Peer reviewed version
Link to published version (if available):
0.1109/TIP.2014.2367321
Link to publication record in Explore Bristol Research
PDF-document
This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Institute of Electrical and Electronic Engineers at http://dx.doi.org/10.1109/TIP.2014.2367321. Please refer to
ny applicable terms of use of the publisher.
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms"
08d625158727bd97ba6fc58992158ee55a53011c,HCLAE: High Capacity Locally Aggregating Encodings for Approximate Nearest Neighbor Search,"HCLAE: High Capacity Locally Aggregating Encodings for Approximate Nearest
Neighbor Search
{artheru, yz sjr, Shanghai Jiaotong University
Liu Shicong, Shao Junru, Lu Hongtao"
08f46d6a91e513edd57a0ef15d5367b5d0545c1b,"How do targets, nontargets, and scene context influence real-world object detection?","Atten Percept Psychophys
DOI 10.3758/s13414-017-1359-9
How do targets, nontargets, and scene context influence
real-world object detection?
Harish Katti 1
& Marius V. Peelen 2 & S. P. Arun 1
# The Psychonomic Society, Inc. 2017"
0888b6904ef12bc7a3c59fa59c4051d5002de80f,Learning with Shared Information for Image and Video Analysis,"DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School
LEARNING WITH SHARED INFORMATION FOR IMAGE
AND VIDEO ANALYSIS
Gaowen Liu
Advisor
Prof. Nicu Sebe
Universit`a degli Studi di Trento"
0834dff6e1d37ecb36137e019f8e2c933d5e74f6,Building Part-Based Object Detectors via 3D Geometry,"BUILDING PART-BASED OBJECT DETECTORS VIA 3D GEOMETRY
Experimental Results
Qualitative Results
Input Image
DPM Detection
Test Set: NYU v2 RGB Images
gDPM Detection  Predicted Geometry
Bed gDPM Model 3
Sofa gDPM Model 3
Table gDPM Model 3
Discriminative Part-based Models
Supervised Parts
Unsupervised Parts
Key-point/part annotation, e.g.,
Heuristic initialization, e.g., gradient
natomical.
magnitudes.
. Overview
. Overview
As input to the system, at training, we use RGB images"
0816cbac9ea8f4425d9b57fd46174cb35cd5d7cc,People tracking in RGB-D data with on-line boosted target models,"People Tracking in RGB-D Data
With On-line Boosted Target Models
Matthias Luber
Luciano Spinello
Kai O. Arras"
0856622ce2fcc4e39fd396427abae90cddf78fd0,Abnormal activation of the social brain during face perception in autism.,"Abnormal Activation of the Social Brain During
Face Perception in Autism
Nouchine Hadjikhani,1,2* Robert M. Joseph,3 Josh Snyder,1
nd Helen Tager-Flusberg3
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology,
Harvard Medical School, Charlestown, Massachusetts
Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston,
Cambridge, Massachusetts
Massachusetts"
083a2bc86e0984968b06593ba06654277b252f00,Neural evidence for the contribution of holistic processing but not attention allocation to the other-race effect on face memory.,"Cognitive, Affective, & Behavioral Neuroscience (2018) 18:1015–1033
https://doi.org/10.3758/s13415-018-0619-z
Neural evidence for the contribution of holistic processing but not
ttention allocation to the other-race effect on face memory
Grit Herzmann 1 & Greta Minor 1 & Tim Curran 2
Published online: 25 June 2018
# Psychonomic Society, Inc. 2018"
085ca7f8935808986ae1c6afbbb62f6804049f26,Monocular 3D human pose estimation by classification,"Universit¨at Augsburg
Monocular 3D Human Pose Estimation
y Classification
T. Greif, D. Sengupta, R. Lienhart
Report 2011-09
M¨arz 2011
Institut f¨ur Informatik
D-86135 Augsburg"
0875af310ab8c850b3232b3f6b84535ffff84e5d,A Novel Technique to Detect Faces in a Group Photo,"International Journal of Computer Applications (0975 – 8887)
Volume 54– No.1, September 2012
A Novel Technique to Detect Faces in a Group Photo
Saravanan Chandran
Assistant Professor, National Institute of Technology, Durgapur, West Bengal, India."
081093b0b3195e3f6bfa283b49fee26b606d4f67,Object Co-detection,"Object Co-detection
Sid Yingze Bao, Yu Xiang, Silvio Savarese
University of Michigan at Ann Arbor, USA
{yingze, yuxiang,"
08bbb59036c4b85a2418f9702ccd37929c5dd154,Understanding and Predicting the Memorability of Natural Scene Images,"Understanding and Predicting the Memorability of
Natural Scene Images
Jiaxin Lu, Mai Xu, Senior Member, IEEE, Ren Yang and Zulin Wang"
08bdb84d5c66265b3b6d33e8f95c4cc27caf33ad,Detecting Visual Relationships Using Box Attention,"Detecting Visual Relationships Using Box Attention
Alexander Kolesnikov∗
Google AI
Christoph H. Lampert
IST Austria
Vittorio Ferrari
Google AI"
084bd219dd239dc4c9a02621a5333d3bc1446566,DeepTrack: Learning Discriminative Feature Representations Online for Robust Visual Tracking,"DeepTrack: Learning Discriminative Feature
Representations Online for Robust Visual Tracking
Hanxi Li, Yi Li, Fatih Porikli"
0861f86fb65aa915fbfbe918b28aabf31ffba364,An Efficient Facial Annotation with Machine Learning Approach,"International Journal of Computer Trends and Technology (IJCTT) – volume 22 Number 3–April 2015
An Efficient Facial Annotation with Machine Learning Approach
A.Anusha,2R.Srinivas
Final M.Tech Student, 2Associate Professor
,2Dept of CSE ,Aditya Institute of Technology And Management, Tekkali, Srikakulam , Andhra Pradesh"
082a8642455b9a5cfb27c07cf9969106f8a7bf3c,Face recognition is similarly affected by viewpoint in school-aged children and adults,"Face recognition is similarly affected by
viewpoint in school-aged children and
dults
Marisa Nordt and Sarah Weigelt
Department of Developmental Neuropsychology, Institute of Psychology, Ruhr-Universität Bochum,
Bochum, Germany"
08b76e6923eea74ab0ed149811b3144fa21c7c73,Scalable Laplacian K-modes,"Scalable Laplacian K-modes
Imtiaz Masud Ziko ∗
ÉTS Montreal
Eric Granger
ÉTS Montreal
Ismail Ben Ayed
ÉTS Montreal"
08809165154c9c557d368cddfa3ae66ccaceaed9,Taming VAEs,"Taming VAEs
Danilo J. Rezende ∗
Fabio Viola ∗
{danilor,
DeepMind, London, UK"
080c204edff49bf85b335d3d416c5e734a861151,CLAD: A Complex and Long Activities Dataset with Rich Crowdsourced Annotations,"CLAD: A Complex and Long Activities
Dataset with Rich Crowdsourced
Annotations
Jawad Tayyub1, Majd Hawasly2∗, David C. Hogg1 and Anthony G. Cohn1
Journal Title
XX(X):1–6
(cid:13)The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/"
08f4832507259ded9700de81f5fd462caf0d5be8,Geometric Approach for Human Emotion Recognition using Facial Expression,"International Journal of Computer Applications (0975 – 8887)
Volume 118 – No.14, May 2015
Geometric Approach for Human Emotion
Recognition using Facial Expression
S. S. Bavkar
Assistant Professor
VPCOE Baramati
J. S. Rangole
Assistant Professor
VPCOE Baramati
V. U. Deshmukh
Assistant Professor
VPCOE Baramati"
081d6ac51bbb7df142e3db6649fb5d663e90d569,Generalized zero-shot learning for action recognition with web-scale video data,"Noname manuscript No.
(will be inserted by the editor)
Generalized Zero-Shot Learning for Action
Recognition with Web-Scale Video Data
Kun Liu · Wu Liu · Huadong Ma ·
Wenbing Huang · Xiongxiong Dong
Received: date / Accepted: date"
082d339e29b1b1a9a800a1d72b401f69b6a157c5,Webly Supervised Joint Embedding for Cross-Modal Image-Text Retrieval,"Webly Supervised Joint Embedding for Cross-Modal
Image-Text Retrieval
Niluthpol Chowdhury Mithun
University of California, Riverside, CA
Evangelos E. Papalexakis
University of California, Riverside, CA
Rameswar Panda
University of California, Riverside, CA
Amit K. Roy-Chowdhury
University of California, Riverside, CA"
08d40ee6e1c0060d3b706b6b627e03d4b123377a,Towards Weakly-Supervised Action Localization,"Human Action Localization
with Sparse Spatial Supervision
Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid, Fellow, IEEE"
08030f9d34cc96384f672d9f9f296914d594335b,Multiple Object Tracking: A Literature Review,"Multiple Object Tracking: A Literature Review
Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang, Wei Liu, Xiaowei Zhao and Tae-Kyun Kim"
085ba9f82e15603f1fe2a29dfa0182d46465a591,Face Recognition In Presence Of Occlusion Using Machine Learning Classifier,"International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 4, April 2014
Face Recognition In Presence Of Occlusion
Using Machine Learning Classifier
Vandana P, Manjunath C N
chieve"
088aabe3da627432fdccf5077969e3f6402f0a80,Classifier-to-generator Attack: Estimation,"Under review as a conference paper at ICLR 2018
CLASSIFIER-TO-GENERATOR ATTACK: ESTIMATION
OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER
Anonymous authors
Paper under double-blind review"
084f1a6c62a3464b1a9b745fee40af2895920301,Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance,"Capitalize on Dimensionality Increasing
Techniques for Improving Face Recognition
Grand Challenge Performance
Chengjun Liu"
08903bf161a1e8dec29250a752ce9e2a508a711c,Joint Dimensionality Reduction and Metric Learning: A Geometric Take,"Joint Dimensionality Reduction and Metric Learning: A Geometric Take
Mehrtash Harandi 1 2 Mathieu Salzmann 3 Richard Hartley 2 1"
08847df8ea5b22c6a2d6d75352ef6270f53611de,Using k-Poselets for Detecting People and Localizing Their Keypoints,"Using k-poselets for detecting people and localizing their keypoints
Georgia Gkioxari∗, Bharath Hariharan∗, Ross Girshick and Jitendra Malik
University of California, Berkeley - Berkeley, CA 94720"
08e24f9df3d55364290d626b23f3d42b4772efb6,Enhancing facial expression classification by information fusion,"ENHANCING FACIAL EXPRESSION CLASSIFICATION BY INFORMATION
FUSION
I. Buciu1, Z. Hammal 2, A. Caplier2, N. Nikolaidis 1, and I. Pitas 1
AUTH/Department of Informatics/ Aristotle University of Thessaloniki
phone: + 30(2310)99.6361, fax: + 30(2310)99.8453, email:
GR-54124, Thessaloniki, Box 451, Greece
Laboratoire des Images et des Signaux / Institut National Polytechnique de Grenoble
phone: + 33(0476)574363, fax: + 33(0476)57 47 90, email:
web: http://www.aiia.csd.auth.gr
8031 Grenoble, France
web: http://www.lis.inpg.fr"
08ff22f76a567fcbc1afec6bfbf957a560cfadc7,Exploring Person Context and Local Scene Context for Object Detection,"Exploring Person Context and Local Scene Context for Object Detection
Saurabh Gupta∗
UC Berkeley
Bharath Hariharan∗
Facebook AI Research
Jitendra Malik
UC Berkeley"
08b0664fd37cd434201a1b37c20c0919833a6ff1,Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering,"Online Multi-Object Tracking with Historical Appearance Matching and
Scene Adaptive Detection Filtering
Young-chul Yoon Abhijeet Boragule Young-min Song Kwangjin Yoon Moongu Jeon
Gwangju Institute of Science and Technology
23 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
{zerometal9268, abhijeet, sym, yoon28,
(cid:11)(cid:36)(cid:57)(cid:54)(cid:54)(cid:3)(cid:21)(cid:19)(cid:20)(cid:27)(cid:12)
(cid:20)(cid:17)(cid:3)(cid:44)(cid:81)(cid:87)(cid:85)(cid:82)(cid:71)(cid:88)(cid:70)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:11)(cid:87)(cid:72)(cid:80)(cid:83)(cid:82)(cid:85)(cid:68)(cid:79)(cid:3)(cid:72)(cid:85)(cid:85)(cid:82)(cid:85)(cid:86)(cid:3)(cid:71)(cid:88)(cid:85)(cid:76)(cid:81)(cid:74)(cid:3)(cid:87)(cid:85)(cid:68)(cid:70)(cid:78)(cid:76)(cid:81)(cid:74)(cid:12)"
08ca2a2a543ee74e2bd6585e0a059b30aae65d30,Semantic Video Segmentation with Using Ensemble of Particular Classifiers and a Deep Neural Network for Systems of Detecting Abnormal Situations,"IT in Industry, vol. 6, 2018                                                                                                                         Published online 09-Feb-2018
Semantic Video Segmentation with Using Ensemble
of Particular Classifiers and a Deep Neural Network
for Systems of Detecting Abnormal Situations
O. Amosov, Y. Ivanov, S. Zhiganov
Department of Industrial Electronics
Komsomolsk-on-Amur State Technical University
Komsomolsk-on-Amur, Russia"
0874a262c2ec7082658cbfc55892ec6e5ca6a374,CaTDet: Cascaded Tracked Detector for Efficient Object Detection from Video,"CATDET: CASCADED TRACKED DETECTOR FOR EFFICIENT OBJECT
DETECTION FROM VIDEO
Huizi Mao 1 Taeyoung Kong 1 William J. Dally 1 2"
0857281a3b6a5faba1405e2c11f4e17191d3824d,Face recognition via edge-based Gabor feature representation for plastic surgery-altered images,"Chude-Olisah et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:102
http://asp.eurasipjournals.com/content/2014/1/102
R ES EAR CH
Face recognition via edge-based Gabor feature
representation for plastic surgery-altered images
Chollette C Chude-Olisah1*, Ghazali Sulong1, Uche A K Chude-Okonkwo2 and Siti Z M Hashim1
Open Access"
08b70ab782141a2d7003226a0f438a6aea0a0d46,Parametrizing Fully Convolutional Nets,"Under review as a conference paper at ICLR 2019
PARAMETRIZING FULLY CONVOLUTIONAL NETS
WITH A SINGLE HIGH-ORDER TENSOR
Anonymous authors
Paper under double-blind review"
081456e22734a2cdef442345f80182e84d1c6124,Approaches for Multi-Class Discriminant Analysis for Ranking Principal Components,"Approaches for Multi-Class Discriminant Analysis
for Ranking Principal Components
Tiene Andre Filisbino
Laborat´orio Nacional
Gilson Antonio Giraldi
Laborat´orio Nacional
Carlos Eduardo Thomaz
Departamento de Engenharia El´etrica
de Computac¸˜ao Cient´ıfica - LNCC
de Computac¸˜ao Cient´ıfica - LNCC
Centro Universit´ario da FEI
Petr´opolis, RJ 25651-075
Email:
Petr´opolis, RJ 25651-075
Email:
S˜ao Bernardo do Campo, SP 09850-901
Email:"
08f00e5adaba03628144dbc97daefa8ceb6e5322,Machine Vision based Fruit Classification and Grading-A Review,"International Journal of Computer Applications (0975 – 8887)
Volume 170 – No.9, July 2017
Machine Vision based Fruit Classification and
Grading - A Review
Sapan Naik
Babu Madhav Institute of Information Technology
Uka Tarsadia University,
Bardoli, Surat, Gujarat, India."
08ff3e9f5ad47e59592ad993348b817003b9c0e4,A Sequential Classifier for Hand Detection in the Framework of Egocentric Vision,"A Sequential Classifier for Hand Detection in the Framework of Egocentric Vision
Alejandro Betancourt1,2
Miriam M. L´opez1
Carlo S. Regazzoni1
Matthias Rauterberg2
Department of Naval, Electric, Electronic and Telecommunications Engineering - University of Genoa, Italy
Designed Intelligence Group, Department of Industrial Design - Eindhoven University of Technology, The Netherlands"
08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7,Understanding Kin Relationships in a Photo,"Understanding Kin Relationships in a Photo
Siyu Xia, Ming Shao, Student Member, IEEE, Jiebo Luo, Fellow, IEEE, and Yun Fu, Senior Member, IEEE"
6d88fb85fe5c61bd65e0a373cd39fac81a19596a,DC-Image for Real Time Compressed Video Matching,"DC-Image for Real Time Compressed
Video Matching
Saddam Bekhet, Amr Ahmed and Andrew Hunter"
6d96bf377c96e1dd9b43e9f12e0ee2a66543edbe,Viewpoint invariant 3D landmark model inference from monocular 2D images using higher-order priors,"011 IEEE International Conference on Computer Vision
978-1-4577-1102-2/11/$26.00 c(cid:13)2011 IEEE"
6dd052df6b0e89d394192f7f2af4a3e3b8f89875,A literature survey on Facial Expression Recognition using Global Features,"International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013
A literature survey on Facial Expression
Recognition using Global Features
Vaibhavkumar J. Mistry, Mahesh M. Goyani"
6d84d92d9ed6c226f0cc6401bc425a23432c9f96,Autism spectrum disorders: clinical and research frontiers.,"Downloaded from
dc.bmj.com
on 22 May 2008
Autism spectrum disorders: clinical and research
frontiers
E B Caronna, J M Milunsky and H Tager-Flusberg
Arch. Dis. Child.
doi:10.1136/adc.2006.115337
2008;93;518-523; originally published online 27 Feb 2008;
Updated information and services can be found at:
http://adc.bmj.com/cgi/content/full/93/6/518
These include:
References
This article cites 70 articles, 25 of which can be accessed free at:
http://adc.bmj.com/cgi/content/full/93/6/518#BIBL
Rapid responses
You can respond to this article at:
http://adc.bmj.com/cgi/eletter-submit/93/6/518
Email alerting
service"
6dd5dbb6735846b214be72983e323726ef77c7a9,A Survey on Newer Prospective Biometric Authentication Modalities,"Josai Mathematical Monographs
vol. 7 (2014), pp. 25-40
A Survey on Newer Prospective
Biometric Authentication Modalities
Narishige Abe, Takashi Shinzaki"
6d10beb027fd7213dd4bccf2427e223662e20b7d,User Adaptive and Context-Aware Smart Home Using Pervasive and Semantic Technologies,"Publishing CorporationJournal of Electrical and Computer EngineeringVolume 2016, Article ID 4789803, 20 pageshttp://dx.doi.org/10.1155/2016/4789803"
6d500b0c342c1cf23efff049ef121bcf5e606ea1,Real-Time Category-Based and General Obstacle Detection for Autonomous Driving,"Real-time category-based and general obstacle detection for autonomous driving
Noa Garnett
Uri Verner
Ariel Ayash
Shai Silberstein
Vlad Goldner
Shaul Oron
Rafi Cohen
Ethan Fetaya
Kobi Horn
Dan Levi
Advanced Technical Center Israel, General Motors R&D
Hamada 7, Herzlyia, Israel"
6dd007b6e518a3aa96111028c4664f2647e5e81a,3D Face Synthesis Driven by Personality Impression,"D Face Synthesis Driven by Personality Impression
Yining Lang1 Wei Liang1 Yujia Wang1 Lap-Fai Yu2
Beijing Institute of Technology
University of Massachusetts Boston"
6d6bb981bc8470de23e30890bd96a76ffd2b7ced,The Eyes Are the Windows to the Mind: Direct Eye Gaze Triggers the Ascription of Others' Minds.,"669124 PSPXXX10.1177/0146167216669124Personality and Social Psychology BulletinKhalid et al.
research-article2016
Article
The Eyes Are the Windows to
the Mind: Direct Eye Gaze Triggers
the Ascription of Others’ Minds
Saara Khalid1, Jason C. Deska1, and Kurt Hugenberg1
Personality and Social
Psychology Bulletin
016, Vol. 42(12) 1666 –1677
© 2016 by the Society for Personality
nd Social Psychology, Inc
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0146167216669124
pspb.sagepub.com"
6d432962055a8c521e6b388d5a0a2140a0019a5e,Sensor network reconfiguration and big multimedia data fusion for situational awareness in smart environments,"Sensor network reconfiguration and big multimedia data fusion for situational
wareness in smart environments
Z. Akhtar, C. Drioli, M. Farinosi, G. Ferrin, G.L. Foresti, N. Martinel, C. Micheloni, C. Piciarelli, D.
Salvati, L. Snidaro and M. Vernier
AVIRES Lab - Department of Mathematics and Computer Science, Università degli Studi di Udine
Via delle Scienze, 206, 33100 Udine - Italy
last  years,  an
INTRODUCTION
increasing  number  of
environments  have  been  enhanced  with  smart
sensors and have become more and more smart and
self-organizing  [1].  Situational  awareness  (SA)  in
these  wide  areas  covers  a  huge  range  of  topics  and
hallenges  [2].  As  matter  of  fact,  understanding
ctivities
for  situation  assessment  cannot  be
chieved locally but  it requires to widen as much as
possible  the  monitored  area.  Several  different  and
new  problems must  be  investigated from the  use  of
single  sensors  able  to  adapt  internal  or  external"
6dddf1440617bf7acda40d4d75c7fb4bf9517dbb,"Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking","JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MM YY
Beyond Counting: Comparisons of Density Maps for Crowd
Analysis Tasks - Counting, Detection, and Tracking
Di Kang, Zheng Ma, Member, IEEE, Antoni B. Chan Senior Member, IEEE,"
6d902439b736a7546dd8872b307fb760087ca629,SIFT Meets CNN: A Decade Survey of Instance Retrieval,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
SIFT Meets CNN:
A Decade Survey of Instance Retrieval
Liang Zheng, Yi Yang, and Qi Tian, Fellow, IEEE"
6d5b0f6e5258d370f9af8a2cebf035fe61905db1,Gazefinder as a clinical supplementary tool for discriminating between autism spectrum disorder and typical development in male adolescents and adults,"Fujioka et al. Molecular Autism  (2016) 7:19
DOI 10.1186/s13229-016-0083-y
Open Access
R ES EAR CH
Gazefinder as a clinical supplementary tool
for discriminating between autism
spectrum disorder and typical development
in male adolescents and adults
Toru Fujioka1,2,3, Keisuke Inohara1,4, Yuko Okamoto2,3, Yasuhiro Masuya1, Makoto Ishitobi1,5, Daisuke N. Saito2,3,6,
Minyoung Jung2,3, Sumiyoshi Arai2,3, Yukiko Matsumura1, Takashi X. Fujisawa2,3, Kosuke Narita7, Katsuaki Suzuki3,8,9,
Kenji J. Tsuchiya3,8,9, Norio Mori3,8,9, Taiichi Katayama3, Makoto Sato2,3,10,11, Toshio Munesue3,12,
Hidehiko Okazawa2,3,6, Akemi Tomoda2,3, Yuji Wada1,2,3 and Hirotaka Kosaka1,2,3*"
6d973fb5f682c491be94aa40a184a1707a8dc24a,Combining Multiple Image Segmentations by Maximizing Expert Agreement,"Combining Multiple Image Segmentations by
Maximizing Expert Agreement
Joni-Kristian Kamarainen, Lasse Lensu, and Tomi Kauppi
Machine Vision and Pattern Recognition Laboratory
Department of Information Technology
Lappeenranta University of Technology
P.O. Box 20, FI-53851 Lappeenranta, Finland
http://www2.it.lut.fi/mvpr/"
6d79999f8dc0cb9f86a87eaa2eb313a4eaeb2e5a,Instructions for use Title Bregman pooling : feature-space local pooling for imageclassification,"Title
Bregman pooling : feature-space local pooling for image
lassification
Author(s)
Najjar, Alameen; Ogawa, Takahiro; Haseyama, Miki
Citation
International Journal of Multimedia Information Retrieval
Issue Date
015-09-04
Doc URL
http://hdl.handle.net/2115/62753
Right
The final publication is available at link.springer.com
rticle (author version)
Additional
Information
Information BP.pdf
Instructions for use
Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP"
6da06fc70f32454f7841b153c582e65aed7047e9,Deep pipelined one-chip FPGA implementation of a real-time image-based human detection algorithm,"NAOSITE: Nagasaki University's Academic Output SITE
Title
Deep pipelined one-chip FPGA implementation of a real-time image-based
human detection algorithm
Author(s)
Negi, Kazuhiro; Dohi, Keisuke; Shibata, Yuichiro; Oguri, Kiyoshi
Citation
011, Article number6132679; 2011
Issue Date
011-12
Right
http://hdl.handle.net/10069/29887
© 2011 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.
This document is downloaded at: 2018-12-08T05:46:10Z
http://naosite.lb.nagasaki-u.ac.jp"
6dc17e91c0b02ff3b9e5c9283924279c28641db7,A Methodology for Extracting Standing Human Bodies from Single Images,"Invention Journal of Research Technology in Engineering & Management (IJRTEM)                                                  ISSN: 2455-3689
www.ijrtem.com ǁ Volume 1 ǁ Issue 8 ǁ
A Methodology for Extracting Standing Human Bodies from Single Images
Dr. Y. Raghavender Rao1, N. Devadas Naik2
Head ECE JNTUHCEJ Jagtityal
Asst professor Sri Chaitanya engineering college"
6d4b5444c45880517213a2fdcdb6f17064b3fa91,Harvesting Image Databases from The Web,"Journal of Information Engineering and Applications
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol 2, No.3, 2012
www.iiste.org
Harvesting Image Databases from The Web
Snehal M. Gaikwad
G.H.Raisoni College of Engg. & Mgmt.,Pune,India
Snehal S. Pathare
G.H.Raisoni College of Engg. & Mgmt.,Pune,India
Trupti A. Jachak
G.H.Raisoni College of Engg. & Mgmt.,Pune,India"
6d8c9a1759e7204eacb4eeb06567ad0ef4229f93,"Face Alignment Robust to Pose, Expressions and Occlusions","Face Alignment Robust to Pose, Expressions and
Occlusions
Vishnu Naresh Boddeti†, Myung-Cheol Roh†, Jongju Shin, Takaharu Oguri, Takeo Kanade"
6dd0597f8513dc100cd0bc1b493768cde45098a9,Learning to parse images of articulated bodies,"Learning to parse images of articulated bodies
Deva Ramanan
Toyota Technological Institute at Chicago
Chicago, IL 60637"
6db59b031406546682a773baed2caed529aaf37c,Inferring the semantics of direction signs in public places,"Inferring the Semantics of Direction Signs in Public Places
J´erˆome Maye∗, Luciano Spinello∗†, Rudolph Triebel∗, and Roland Siegwart∗
Autonomous Systems Lab, ETH Zurich, Switzerland
email: {jerome.maye, rudolph.triebel,
Social Robotics Lab, Department of Computer Science, University of Freiburg, Germany
email:"
6d2b633743178bd5aac1073b60d81ceb41933a4a,Carried Object Detection Based on an Ensemble of Contour Exemplars,"Carried Object Detection based on an Ensemble
of Contour Exemplars
Farnoosh Ghadiri1, Robert Bergevin1, Guillaume-Alexandre Bilodeau2
LVSN-REPARTI, Universit(cid:19)e Laval
LITIV lab., Polytechnique Montr(cid:19)eal"
6dfa82f00ec6faee1db319c1e306ae779cfc1c36,"The Role of Methodology and Spatiotemporal Scale in Understanding Environmental Change in Peri-Urban Ouagadougou, Burkina Faso","Remote Sens. 2013, 5, 1465-1483; doi:10.3390/rs5031465
OPEN ACCESS
ISSN 2072-4292
www.mdpi.com/journal/remotesensing
Article
The Role of Methodology and Spatiotemporal Scale in
Understanding Environmental Change in Peri-Urban
Ouagadougou, Burkina Faso
Yonatan Kelder 1,*, Thomas Theis Nielsen 1 and Rasmus Fensholt 2
Roskilde University, Universitetsvej 1, ENSPAC House 0.2, Roskilde 4000, Denmark;
E-Mail:
Copenhagen University, Institute for Geography and Geology, Øster Voldgade 10,
Copenhagen K 1350, Denmark; E-Mail:
*  Author to whom correspondence should be addressed; E-Mail:
Tel.: +45-30-49-14-92.
Received: 18 January 2013; in revised form: 24 February 2013 / Accepted: 15 March 2013 /
Published: 19 March 2013"
6d7ba173121edd5defadfde04f7c1e7bc72859c2,The study of autism as a distributed disorder.,"MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES
RESEARCH REVIEWS 13: 85 – 95 (2007)
THE STUDY OF AUTISM AS A
DISTRIBUTED DISORDER
Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, California
Department of Cognitive Science, University of California, San Diego, California
Ralph-Axel Mu¨ ller1,2*
Past autism research has often been dedicated to tracing the
auses of the disorder to a localized neurological abnormality, a single
functional network, or a single cognitive-behavioral domain.
In this
review, I argue that autism is a ‘‘distributed disorder’’ on various levels of
study (genetic, neuroanatomical, neurofunctional, behavioral). ‘‘Localizing’’
models are therefore not promising. The large array of potential genetic
risk factors suggests that multiple (or all) emerging functional brain net-
works are affected during early development. This is supported by wide-
spread growth abnormalities throughout the brain. Interactions during
development between affected functional networks and atypical experi-
ential effects (associated with atypical behavior) in children with autism
further complicate the neurological bases of the disorder, resulting in"
6dc3b8a5fdceaea4b32df8552cbb5a22ef83c197,Speech-Based Visual Question Answering,"Speech-Based Visual Question Answering
Ted Zhang
KU Leuven
Dengxin Dai
ETH Zurich
Tinne Tuytelaars
KU Leuven
Marie-Francine Moens
KU Leuven"
6d6a106caef228b3eee1f5765740938a534db828,Density-based clustering: A ‘landscape view’ of multi-channel neural data for inference and dynamic complexity analysis,"RESEARCH ARTICLE
Density-based clustering: A ‘landscape view’ of
multi-channel neural data for inference and
dynamic complexity analysis
Gabriel Baglietto1,2*, Guido Gigante3,4, Paolo Del Giudice1,3
INFN-Roma1, Italian National Institute for Nuclear Research (INFN), Rome, Italy, 2 IFLYSIB Instituto de
Fı´sica de Lı´quidos y Sistemas Biolo´gicos (UNLP-CONICET), La Plata, Argentina, 3 Italian Institute of Health
(ISS), Rome, Italy, 4 Mperience srl, Rome, Italy"
6d618657fa5a584d805b562302fe1090957194ba,Human Facial Expression Recognition based on Principal Component Analysis and Artificial Neural Network,"Full Paper
NNGT Int. J. of Artificial Intelligence , Vol. 1, July 2014
Human Facial Expression Recognition based
on Principal Component Analysis and
Artificial Neural Network
Laboratory of Automatic and Signals Annaba (LASA) , Department of electronics, Faculty of Engineering,
Zermi.Narima, Ramdani.M, Saaidia.M
Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria.
E-Mail :"
6d7dabc58f53c0233d6d593a8fee76d1c7f44033,Robust Observation Detection for Single Object Tracking: Deterministic and Probabilistic Patch-Based Approaches,"Sensors 2012, 12, 15638-15670; doi:10.3390/s121115638
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
Robust Observation Detection for Single Object Tracking:
Deterministic and Probabilistic Patch-Based Approaches
Mohd Asyraf Zulkifley 1,*, David Rawlinson 2 and Bill Moran 2
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
Department of Electrical and Electronic Engineering, The University of Melbourne, VIC 3010,
Australia; E-Mails: (D.R.); (B.M.)
* Author to whom correspondence should be addressed; E-Mail:
Tel.: +603-8921-6335.
Received: 18 September 2012; in revised form: 5 November 2012 / Accepted: 5 November 2012 /
Published: 12 November 2012
the problems of blurring, moderate deformation,"
6d66c98009018ac1512047e6bdfb525c35683b16,Face Recognition Based on Fitting a 3D Morphable Model,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 9, SEPTEMBER 2003
Face Recognition Based on
Fitting a 3D Morphable Model
Volker Blanz and Thomas Vetter, Member, IEEE"
0172867f4c712b33168d9da79c6d3859b198ed4c,Expression and illumination invariant preprocessing technique for Face Recognition,"Technique for Face Recognition
Computer and System Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt
A. Abbas, M. I. Khalil, S. Abdel-Hay, H. M. Fahmy
Expression and Illumination Invariant Preprocessing"
013e9e0f712d8caa89dd0881ab8dcf90d687ba50,Face Recognition using LBP and LVQ Classifier,"Face Recognition using LBP and LVQ Classifier
Abdul Quyoom
Department of Computer Science Engineering
Central University of Rajasthan
Ajmer, Rajasthan, India
each  human"
01b5d63b60bcc35aa8bead42ea52a517f879bfc9,Solving Uncalibrated Photometric Stereo Using Total Variation,"Noname manuscript No.
(will be inserted by the editor)
Solving Uncalibrated Photometric Stereo using Total
Variation
Yvain Qu´eau · Fran¸cois Lauze · Jean-Denis Durou
the date of receipt and acceptance should be inserted later"
0145dc4505041bf39efa70ea6d95cf392cfe7f19,Human action segmentation with hierarchical supervoxel consistency,"Human Action Segmentation with Hierarchical Supervoxel Consistency
Jiasen Lu1, Ran Xu1 Jason J. Corso2
Department of Computer Science and Engineering, SUNY at Buffalo. 2Department of EECS, University of Michigan.
Detailed analysis of human action, such as classification, detection and lo-
alization has received increasing attention from the community; datasets
like J-HMDB [1] have made it plausible to conduct studies analyzing the
impact that such deeper information has on the greater action understanding
problem. However, detailed automatic segmentation of human action has
omparatively been unexplored. In this paper, we introduce a hierarchical
MRF model to automatically segment human action boundaries in videos
“in-the-wild” (see Fig. 1).
We first propose a human motion saliency representation which incor-
porates two parts: foreground motion and human appearance information.
For foreground motion estimation, we propose a new motion saliency fea-
ture by using long-term trajectories to build a camera motion model, and
then measure the motion saliency via the deviation from the camera model.
For human appearance information, we use a DPM person detector trained
on PASCAL VOC 2007 and construct a saliency map by averaging the nor-
malized detection score of all the scale and all components.
Then, to segment the human action, we start by applying hierarchical"
01bef320b83ac4405b3fc5b1cff788c124109fb9,Translating Head Motion into Attention - Towards Processing of Student's Body-Language,"de Lausanne
RLC D1 740, CH-1015
Lausanne
de Lausanne
RLC D1 740, CH-1015
Lausanne
de Lausanne
RLC D1 740, CH-1015
Lausanne
Translating Head Motion into Attention - Towards
Processing of Student’s Body-Language
Mirko Raca
CHILI Laboratory
Łukasz Kidzi´nski
CHILI Laboratory
Pierre Dillenbourg
CHILI Laboratory
École polytechnique fédérale
École polytechnique fédérale
École polytechnique fédérale"
014844a9e6ae39a101fb79f103aa047699f88246,Interpretable Counting for Visual Question Answering,"Under review as a conference paper at ICLR 2018
INTERPRETABLE COUNTING FOR VISUAL QUESTION
ANSWERING
Anonymous authors
Paper under double-blind review"
017229c2df23c542b30c59f4a5eeb747e3d34729,Efficient Object Recognition using Convolution Neural Networks Theorem,"International Journal of Computer Applications (0975 – 8887)
Volume 161 – No 2, March 2017
Efficient Object Recognition using Convolution Neural
Networks Theorem
Aarushi Thakral
VIT University
Vellore
Tamil Nadu
Shaurya Shekhar
VIT University
Vellore
Tamil Nadu
to  overcome"
0183eff3a60f44bc6e4bcade37518f6470af3437,Human Identification Using Temporal Information Preserving Gait Template,"Human Identification Using Temporal
Information Preserving Gait Template
Chen Wang, Junping Zhang, IEEE Member, Liang Wang, IEEE Senior Member,
Jian Pu, and Xiaoru Yuan, IEEE Member"
01c9f0be6a300f385274b72a5463a650e51e300a,Support Vector Data Description based on PCA features for face detection,"SUPPORT VECTOR DATA DESCRIPTION BASED ON PCA FEATURES FOR FACE
DETECTION
Ver´onica Vilaplana and Ferran Marqu´es
phone: + (34)934011066, fax: + (34)934016447, email:
Jordi Girona, 1-3, 08034 Barcelona, SPAIN
Image Processing Group, Universitat Polit`ecnica de Catalunya
web: gps-tsc.upc.es/imatge"
01c8d7a3460422412fba04e7ee14c4f6cdff9ad7,Rule Based System for Recognizing Emotions Using Multimodal Approach,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 7, 2013
Rule Based System for Recognizing Emotions Using
Multimodal Approach
Preeti Khanna
Information System
SBM, SVKM’s NMIMS
Mumbai, India"
01d785bb989850019001a418a16202fd7502ac14,Hierarchical object detection and tracking with an Implicit Shape Model,"Hierarchical object detection and tracking with an Implicit Shape
Model
K. Jüngling1, S. Becker1, and M. Arens1
Object Recognition, Fraunhofer IOSB, Ettlingen, Germany"
01f5689a4010ae14ca444c36bec81f12ce528912,"Extended Fast Search Clustering Algorithm: Widely Density Clusters, No Density Peaks","EXTENDED FAST SEARCH CLUSTERING
ALGORITHM: WIDELY DENSITY
CLUSTERS, NO DENSITY PEAKS
Zhang WenKai1 and Li Jing2
,2School of Computer Science and Technology, University of Science and
Technology of China, Hefei, 230026, China"
0163d847307fae508d8f40ad193ee542c1e051b4,Classemes and Other Classifier-Based Features for Efficient Object Categorization,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007
Classemes and Other Classifier-based
Features for Efficient Object Categorization
- Supplementary material -
Alessandro Bergamo, and Lorenzo Torresani, Member, IEEE
LOW-LEVEL FEATURES
We extract the SIFT [1] features for our descriptor
ccording to the following pipeline. We first convert
each image to gray-scale, then we normalize the con-
trast by forcing the 0.01% of lightest and darkest pixels
to be mapped to white and black respectively, and
linearly rescaling the values in between. All images
exceeding 786,432 pixels of resolution are downsized
to this maximum value while keeping the aspect ratio.
The 128-dimensional SIFT descriptors are computed
from the interest points returned by a DoG detec-
tor [2]. We finally compute a Bag-Of-Word histogram
of these descriptors, using a K-means vocabulary of
500 words.
CLASSEMES"
01c4cf9c7c08f0ad3f386d88725da564f3c54679,Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV),"Interpretability Beyond Feature Attribution:
Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler
Fernanda Viegas Rory Sayres"
017ce398e1eb9f2eed82d0b22fb1c21d3bcf9637,Face Recognition with Harmonic De-lighting,"FACE RECOGNITION WITH HARMONIC DE-LIGHTING
Laiyun Qing1,2, Shiguang Shan2, Wen Gao1,2
ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080
Graduate School, CAS, Beijing, China, 100080
Emails: {lyqing, sgshan, wgao}jdl.ac.cn"
014e1186209e4f942f3b5ba29b6b039c8e99ad88,Social interactions: A first-person perspective,"Social Interactions: A First-Person
Perspective
Alireza Fathi, Jessica K. Hodgins, James M. Rehg
CVPR 2012
Bora Çelikkale"
0135747b4d3c9a2d983f7d0d9f4c39e094825149,Embedded wavelet-based face recognition under variable position,"Embedded wavelet-based face recognition under variable
position
Pascal Cotreta, Stéphane Chevobbea and Mehdi Darouicha
CEA, LIST, Laboratoire Adéquation Algorithme Architecture, Gif-sur-Yvette, F-91191 France"
014e3d0fa5248e6f4634dc237e2398160294edce,What does 2D geometric information really tell us about 3D face shape?,"Int J Comput Vis manuscript No.
(will be inserted by the editor)
What does 2D geometric information really tell us about
D face shape?
Anil Bas1 · William A. P. Smith1
Received: date / Accepted: date"
01ababc0985143ad57320b0599fb2f581d79d3c2,Unobtrusive Low Cost Pupil Size Measurements using Web cameras,"Unobtrusive Low Cost Pupil Size Measurements using Web cameras
Sergios Petridis, Theodoros Giannakopoulos and Costantine D. Spyropoulos
National Center for Scientific Research ""Demokritos""
Unobtrusive every day health monitoring can be of important use for the elderly population. In
particular, pupil size may be a valuable source of information, since, apart from pathological
ases, it can reveal the emotional state, the fatigue and the ageing. To allow for unobtrusive
monitoring to gain acceptance, one should seek for ef‌f‌icient methods of monitoring using com-
mon low-cost hardware. This paper describes a method for monitoring pupil sizes using a
ommon web camera in real time. Our method works by first detecting the face and the eyes
rea. Subsequently, optimal iris and sclera location and radius, modelled as ellipses, are found
using ef‌f‌icient filtering. Finally, the pupil center and radius is estimated by optimal filtering
within the area of the iris. Experimental result show both the ef‌f‌iciency and the effectiveness
of our approach.
Keywords: video analysis, eye tracking, pupil size estimation, physiological measurements
Motivation
Unobtrusive every day health monitoring can be of im-
portant use for the elderly population.
In particular, pupil
size may be a valuable source of information, since, apart
from pathological cases, it can reveal the emotional state, the"
016473c5b809ff55304a2923c36eaf58f02f02e4,DensePose: Dense Human Pose Estimation In The Wild,"DensePose: Dense Human Pose Estimation In The Wild
Rıza Alp G¨uler∗
Natalia Neverova
Iasonas Kokkinos
INRIA-CentraleSup´elec
Facebook AI Research
Facebook AI Research
Figure 1: Dense pose estimation aims at mapping all human pixels of an RGB image to the 3D surface of the human body.
spondences for 50K images, and train DensePose-RCNN to densely regress UV coordinates at multiple frames per second.
Right: Partitioning and UV parametrization of the body surface."
013ae78fc6bd26a13799fe2e07a6ad363aca9ba7,Inspiring Computer Vision System Solutions,"Inspiring Computer Vision System Solutions
Julian Zilly 1 Amit Boyarski 2 Micael Carvalho 3 Amir Atapour Abarghouei 4 Konstantinos Amplianitis 5
Aleksandr Krasnov 6 Massimiliano Mancini 7 Hernán Gonzalez 8 Riccardo Spezialetti 9
Carlos Sampedro Pérez 10 Hao Li 11"
0155c2921f060a95c0eca8c64bf62a1eaac591e4,Spatiotemporal CNNs for Pornography Detection in Videos,"Spatiotemporal CNNs for Pornography
Detection in Videos
Murilo Varges da Silva1,2 and Aparecido Nilceu Marana3
UFSCar - Federal University of Sao Carlos, Sao Carlos, SP, Brazil
IFSP - Federal Institute of Education of Sao Paulo, Birigui, SP, Brazil
UNESP - Sao Paulo State University, Bauru, SP, Brazil"
011e6146995d5d63c852bd776f782cc6f6e11b7b,Fast Training of Triplet-Based Deep Binary Embedding Networks,"Fast Training of Triplet-based Deep Binary Embedding Networks
Bohan Zhuang, Guosheng Lin, Chunhua Shen∗, Ian Reid
The University of Adelaide; and Australian Centre for Robotic Vision"
01350214f850f43d72268df4f98b05901fbbe06c,1 Deep convolutional neural networks for detection of 2 polar mesocyclones from satellite mosaics 3,"Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2018                   doi:10.20944/preprints201809.0361.v1
Article
Deep convolutional neural networks for detection of
polar mesocyclones from satellite mosaics
Mikhail Krinitskiy 1,*, Polina Verezemskaya 1,2, Kirill Grashchenkov1,3, Natalia Tilinina1,
Sergey Gulev1 and Matthew Lazzara 4
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia;
Research Computing Center of Lomonosov Moscow State University, Moscow, Russia
Moscow Institute of Physics and Technology, Moscow, Russia
University of Wisconsin-Madison and Madison Area Technical College, Madison, Wisconsin, USA
*  Correspondence: Tel.: +7-926-141-6200"
01f42436042ddaa48998c87109cbe46cad6e7e52,Schedtask: a hardware-assisted task scheduler,"SchedTask: A Hardware-Assisted Task Scheduler
Prathmesh Kallurkar∗
Microarchitecture Research Lab
Intel Corporation
Smruti R. Sarangi
Department of Computer Science
Indian Institute of Technology Delhi"
014b4335d055679bc680a6ceb6f1a264d8ce8a4a,Are You Sure You Want To Do That? Classification with Verification,"Are You Sure You Want To Do That?
Classification with Verification
Harris Chan∗
Atef Chaudhury∗
Kevin Shen∗"
01959ef569f74c286956024866c1d107099199f7,VQA: Visual Question Answering,"VQA: Visual Question Answering
www.visualqa.org
Stanislaw Antol∗1, Aishwarya Agrawal∗1, Jiasen Lu, Margaret Mitchell,
Dhruv Batra, C. Lawrence Zitnick, Devi Parikh"
016860404c0926dda53b9bf4745f3eb9708fa1d2,Iterative hypothesis testing for multi-object tracking in presence of features with variable reliability,"Iterative hypothesis testing for multi-object tracking in presence of
features with variable reliability
Amit Kumar K.C.1, Damien Delannay2 and Christophe De Vleeschouwer1
ISPGroup, ELEN Department, Universit´e catholique de Louvain, Belgium
{amit.kc,
Keemotion, Belgium"
011c5bb510c9a4c24e2fc07e7464fa8493237058,Accelerating Nearest Neighbor Search on Manycore Systems,"Accelerating Nearest Neighbor Search on Manycore
Systems
Lawrence Cayton
Max Planck Institute
Tübingen, Germany"
01a152e7ca6accce4fa52e29b27feb76418583fb,Tracking Multiple High-Density Homogeneous Targets,"IEEE TRANSACTION ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. X, XXXX
Tracking multiple high-density homogeneous targets
Fabio Poiesi and Andrea Cavallaro"
0144b29bde2579e0a1b8ab3a38306c5621a5c30b,Top-Down Visual Saliency via Joint CRF and Dictionary Learning,"Top-Down Visual Saliency via Joint CRF and Dictionary Learning
Jimei Yang and Ming-Hsuan Yang
University of California at Merced"
01915181692c821cc5a0a703047bd5b07c1f9af5,Cross-Caption Coreference Resolution for Automatic Image Understanding,"Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 162–171,
Uppsala, Sweden, 15-16 July 2010. c(cid:13)2010 Association for Computational Linguistics"
0181fec8e42d82bfb03dc8b82381bb329de00631,Discriminative Subspace Clustering,"Discriminative Subspace Clustering
Vasileios Zografos∗1, Liam Ellis†1, and Rudolf Mester‡1 2
CVL, Dept. of Electrical Engineering, Link¨oping University, Link¨oping, Sweden
VSI Lab, Computer Science Department, Goethe University, Frankfurt, Germany"
01ece1dd9a0a2a7289d791625c6c7446d38584e7,A Comparative Analysis of Classification Algorithms Applied to M5AIE-Extracted Human Poses,"A Comparative Analysis of Classification Algorithms
Applied to M5AIE-Extracted Human Poses
Andr´e Brand˜ao, Leandro A. F. Fernandes, and Esteban Clua
MediaLab-UFF, Instituto de Computac¸˜ao, Universidade Federal Fluminense
Email:
CEP 24210-240 Niter´oi, RJ, Brazil"
01e812ad00b7743e9b24aa070a24023f05710b8b,A Distributed Representation Based Query Expansion Approach for Image Captioning,"Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
nd the 7th International Joint Conference on Natural Language Processing (Short Papers), pages 106–111,
Beijing, China, July 26-31, 2015. c(cid:13)2015 Association for Computational Linguistics"
019a95631c49011330773e953194a0c73c61f3f0,Impairments in monkey and human face recognition in 2-year-old toddlers with Autism Spectrum Disorder and Developmental Delay.,"DOI: 10.1111/j.1467-7687.2006.00543.x
Blackwell Publishing Ltd
Face recognition in ASD
PAPER
Impairments in monkey and human face recognition in
-year-old toddlers with Autism Spectrum Disorder and
Developmental Delay
Katarzyna Chawarska and Fred Volkmar
Child Study Center, Yale University School of Medicine, New Haven, CT, USA"
013e0fe2d203eaa33a4b42d057688815116cc6bb,Recognizing Car Fluents from Video,"Recognizing Car Fluents from Video
Bo Li1,∗, Tianfu Wu2, Caiming Xiong3,∗ and Song-Chun Zhu2
Beijing Lab of Intelligent Information Technology, Beijing Institute of Technology
Department of Statistics, University of California, Los Angeles
Metamind Inc.
{tfwu,"
0113b302a49de15a1d41ca4750191979ad756d2f,Matching Faces with Textual Cues in Soccer Videos,"­4244­0367­7/06/$20.00 ©2006 IEEE
ICME 2006"
014b8df0180f33b9fea98f34ae611c6447d761d2,Facial feature tracking and expression recognition for sign language,"Facial Feature Tracking and Expression Recognition
for Sign Language
˙Ismail Arı
Computer Engineering
Bo˜gazic.i University
˙Istanbul, Turkey
Email:
Asli Uyar
Computer Engineering
Bo˜gazic.i University
˙Istanbul, Turkey
Email:
Lale Akarun
Computer Engineering
Bo˜gazic.i University
˙Istanbul, Turkey
Email:"
01e5eb25e262afa4289d39b964c837a22a32f5a2,Cricket activity detection,"Cricket Activity Detection
Ashok Kumar(11164)
Javesh Garg(11334)
March 1, 2014"
0136bf1d3747770a7fb4fcdeaf0b4b195815ed67,Weighted Fourier Series Representation and Its Application to Quantifying the Amount of Gray Matter,"Weighted Fourier Series Representation and
Its Application to Quantifying the Amount
of Gray Matter
Moo K. Chung*, Kim M. Dalton, Li Shen, Alan C. Evans, and Richard J. Davidson"
069f2092c5d22e6d4c1e27c30e18dc63848fa3c3,A comparison of low-level features for visual attribute recognition,"Görsel Nitelik Ö˘grenmede Alt-Düzey Özniteliklerin
Kar¸sıla¸stırılması
A Comparison of Low-level Features for Visual
Attribute Recognition
Emine Gül DANACI
Bilgisayar Mühendisli˘gi Bölümü
Hacettepe Üniversitesi
Ankara, Türkiye
Nazlı ˙IK˙IZLER C˙INB˙I¸S
Bilgisayar Mühendisli˘gi Bölümü
Hacettepe Üniversitesi
Ankara, Türkiye
Özetçe —Görsel nitelik ö˘grenme ve kullanımı, son yıllarda
ilgisayarlı görü alanında sıklıkla ara¸stırılmaya ba¸slanmı¸s bir
konudur. Bu çalı¸smamızda, görsel nitelik ö˘grenmeye, hangi alt
düzey özniteliklerin daha anlamlı ve verimli sonuçlar verdi˘gini
ra¸stırmayı amaçlamaktayız. Bu kapsamda, renk ve ¸sekil bil-
gisini farklı detaylarda ele alan alt düzey özniteliklerin, nitelik
sınıflandırmaya katkısı ara¸stırılmı¸s, ve deneysel olarak de˘ger-
lendirilmi¸stir. Elde edilen sonuçlar, özellikle renk ve yerel ¸sekil"
0601416ade6707c689b44a5bb67dab58d5c27814,Feature Selection in Face Recognition: A Sparse Representation Perspective,"Feature Selection in Face Recognition: A Sparse
Representation Perspective
Allan Y. Yang
John Wright
Yi Ma
S. Shankar Sastry
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2007-99
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-99.html
August 14, 2007"
06e15d0d6f92a11bb5b46b5a3e0250cccc452c92,Diagnostic Features of Emotional Expressions Are Processed Preferentially,"Diagnostic Features of Emotional Expressions Are
Processed Preferentially
Elisa Scheller1, Christian Bu¨ chel2, Matthias Gamer2*
Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany, 2 Department of Systems Neuroscience, University Medical Center
Hamburg-Eppendorf, Hamburg, Germany"
064b797aa1da2000640e437cacb97256444dee82,Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression,"Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression
Zhiao Huang
Megvii Inc.
Erjin Zhou
Megvii Inc.
Zhimin Cao
Megvii Inc."
06f146dfcde10915d6284981b6b84b85da75acd4,Scalable Face Image Retrieval Using Attribute-Enhanced Sparse Codewords,"Scalable Face Image Retrieval using
Attribute-Enhanced Sparse Codewords
Bor-Chun Chen, Yan-Ying Chen, Yin-Hsi Kuo, Winston H. Hsu"
0697bd81844d54064d992d3229162fe8afcd82cb,User-driven mobile robot storyboarding: Learning image interest and saliency from pairwise image comparisons,"User-driven mobile robot storyboarding: Learning image interest and
saliency from pairwise image comparisons
Michael Burke1"
06cfc431b70ec6a6783284953a668984600e77e2,A Framework for Human Pose Estimation in Videos,"A Framework for Human Pose Estimation in
Videos
Dong Zhang and Mubarak Shah"
06262d6beeccf2784e4e36a995d5ee2ff73c8d11,Recognize Actions by Disentangling Components of Dynamics,"Recognize Actions by Disentangling Components of Dynamics
Yue Zhao1, Yuanjun Xiong1,2, and Dahua Lin1
CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong 2Amazon Rekognition"
0690ba31424310a90028533218d0afd25a829c8d,Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs,"Published as a conference paper at ICLR 2015
SEMANTIC IMAGE SEGMENTATION WITH DEEP CON-
VOLUTIONAL NETS AND FULLY CONNECTED CRFS
Liang-Chieh Chen
Univ. of California, Los Angeles
George Papandreou ∗
Google Inc.
Iasonas Kokkinos
CentraleSup´elec and INRIA
Kevin Murphy
Google Inc.
Alan L. Yuille
Univ. of California, Los Angeles"
063f0e6afe13df9913617dbc2230ad4263a595bc,Loneliness and Hypervigilance to Social Cues in Females: An Eye-Tracking Study,"RESEARCH ARTICLE
Loneliness and Hypervigilance to Social Cues
in Females: An Eye-Tracking Study
Gerine M. A. Lodder1*, Ron H. J. Scholte1¤a, Ivar A. H. Clemens2, Rutger C. M. E. Engels1¤b,
Luc Goossens3, Maaike Verhagen1
Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands, 2 Donders Institute for
Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands, 3 Research Group
School Psychology and Child and Adolescent Development, KU Leuven, Leuven, Belgium
¤a Current address: Praktikon, Nijmegen, The Netherlands
¤b Current address: The Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht,
The Netherlands"
06a23ffbd9752ce204197df59812b2ebd1a097ff,Feedforward semantic segmentation with zoom-out features,"Feedforward semantic segmentation with zoom-out features
Mohammadreza Mostajabi, Payman Yadollahpour and Gregory Shakhnarovich
Toyota Technological Institute at Chicago"
06de3eab314437cc3ed08c3db5171a79c1f684c6,Boosting patch-based scene text script identification with ensembles of conjoined networks,"Boosting patch-based scene text script identification with
ensembles of conjoined networks
Lluis Gomez, Anguelos Nicolaou, Dimosthenis Karatzas
Computer Vision Center, Universitat Autonoma de Barcelona. Edifici O, Campus UAB, 08193 Bellaterra (Cerdanyola)
Barcelona, Spain. E-mail:"
06774cc8b0ab364866beaf3efda1b2d012a7bcf9,MobileNetV2: Inverted Residuals and Linear Bottlenecks,"MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler Andrew Howard Menglong Zhu Andrey Zhmoginov Liang-Chieh Chen
{sandler, howarda, menglong, azhmogin,
Google Inc."
06d93a40365da90f30a624f15bf22a90d9cfe6bb,Learning from Candidate Labeling Sets,"Learning from Candidate Labeling Sets
Idiap Research Institute and EPF Lausanne
Luo Jie
Francesco Orabona
DSI, Universit`a degli Studi di Milano"
06ef2ba33ec911aa0102fb938b53bd3cc36a475f,Introducing FoxFaces: A 3-in-1 Head Dataset,
06992ca951456bb88523f702f904dfd23eb27c53,Using Mobile Platform to Detect and Alerts Driver Fatigue,"International Journal of Computer Applications (0975 – 8887)
Volume 123 – No.8, August 2015
Using Mobile Platform to Detect and Alerts
Maysoon F. Abulkhair
Department of Information
Technology, Faculty of
Computing and Information
Technology, King Abdulaziz
University
B.P. 42808 Zip Code 21551-
Girl Section, Jeddah, Saudi
Arabia
Driver Fatigue
Hesham A. Salman
Department of Information
Systems
Faculty of Computing and
Information Technology King
Abdulaziz University
Lamiaa F. Ibrahim"
06e7e99c1fdb1da60bc3ec0e2a5563d05b63fe32,WhittleSearch: Image search with relative attribute feedback,"WhittleSearch: Image Search with Relative Attribute Feedback
Adriana Kovashka, Devi Parikh and Kristen Grauman
(Supplementary Material)
Comparative Qualitative Search Results
We present three qualitative search results for human-generated feedback, in addition to those
shown in the paper. Each example shows one search iteration, where the 20 reference images are
randomly selected (rather than ones that match a keyword search, as the image examples in the
main paper illustrate). For each result, the first figure shows our method and the second figure
shows the binary feedback result for the corresponding target image. Note that for our method,
“more/less X” (where X is an attribute) means that the target image is more/less X than the
reference image which is shown.
Figures 1 and 2 show results for human-generated relative attribute and binary feedback, re-
spectively, when both methods are used to target the same “mental image” of a shoe shown in the
top left bubble. The top right grid of 20 images are the reference images displayed to the user, and
those outlined and annotated with constraints are the ones chosen by the user to give feedback.
The bottom row of images in either figure shows the top-ranked images after integrating the user’s
feedback into the scoring function, revealing the two methods’ respective performance. We see that
while both methods retrieve high-heeled shoes, only our method retrieves images that are as “open”
s the target image. This is because using the proposed approach, the user was able to comment
explicitly on the desired openness property."
064aaad2a9ac5044b333714e61955631faee87fd,Face Recognition using Radial Curves and Back Propagation Neural Network for Frontal Faces under Various Challenges,"International Journal of Computer Applications (0975 – 8887)
International Conference on Advances in Science and Technology 2015 (ICAST 2015)
Face Recognition using Radial Curves and Back
Propagation Neural Network for frontal faces under
various challenges
Latasha Keshwani
Electronics and Telecommunication Department
Datta Meghe College of Engineering, Airoli, Mumbai
University, (MS), India"
06e768d74f076b251d53b0c86fc9910d7243bdc6,Effective and efficient visual description based on local binary patterns and gradient distribution for object recognition,"Effective and ef‌f‌icient visual description based on local
inary patterns and gradient distribution for object
recognition
Chao Zhu
To cite this version:
Chao Zhu. Effective and ef‌f‌icient visual description based on local binary patterns and gradient
distribution for object recognition. Other. Ecole Centrale de Lyon, 2012. English. <NNT :
012ECDL0005>. <tel-00755644>
HAL Id: tel-00755644
https://tel.archives-ouvertes.fr/tel-00755644
Submitted on 21 Nov 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,"
066d71fcd997033dce4ca58df924397dfe0b5fd1,Iranian Face Database and Evaluation with a New Detection Algorithm,"(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:4)(cid:6)(cid:7)(cid:3)(cid:8)(cid:9)(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9)
(cid:3)(cid:4)(cid:14)(cid:6)(cid:15)(cid:16)(cid:3)(cid:17)(cid:18)(cid:3)(cid:11)(cid:5)(cid:19)(cid:4) (cid:20)(cid:5)(cid:11)(cid:21)(cid:6)(cid:3)(cid:6)(cid:22)(cid:9)(cid:20)(cid:6)(cid:10)(cid:9)(cid:11)(cid:9)(cid:8)(cid:11)(cid:5)(cid:19)(cid:4)(cid:6)(cid:23)(cid:17)(cid:24)(cid:19)(cid:2)(cid:5)(cid:11)(cid:21)(cid:25)
(cid:26)(cid:11)(cid:5)(cid:8)(cid:17)(cid:6)(cid:27)(cid:1)(cid:9)(cid:22)(cid:8)(cid:18)(cid:1)(cid:28)(cid:12)(cid:6)(cid:29)(cid:4)(cid:20)(cid:11)(cid:6)(cid:24)(cid:30)(cid:1)(cid:15)(cid:25)(cid:1)(cid:31)(cid:8)(cid:20)(cid:8) (cid:14)(cid:1)!(cid:8) (cid:8)(cid:6)(cid:4)(cid:1)""(cid:16)(cid:8)(cid:16)(cid:20)(cid:14)(cid:1)(cid:3)(cid:15)(cid:8)(cid:22)(cid:4)(cid:12)(cid:1)(cid:23)(cid:5)(cid:29)(cid:18)(cid:14)(cid:1)(cid:31)(cid:8)(cid:20)(cid:8) (cid:14)(cid:1)(cid:26)!(cid:9)(cid:13)(cid:14)(cid:1)#(cid:17)(cid:8)(cid:6)(cid:5)$(cid:1)(cid:17)(cid:4)(cid:5)%(cid:8)(cid:10)(cid:8)(cid:11)(cid:6)(cid:8)(cid:12)&(cid:30)(cid:8)(cid:16)(cid:15)(cid:15)(cid:21)(cid:27)(cid:15)(cid:17)
(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1)(cid:9)(cid:10)(cid:10)(cid:8)(cid:11)(cid:6)(cid:8)(cid:12)(cid:1)(cid:13)(cid:6)(cid:7)(cid:14) (cid:3)(cid:15)(cid:16)(cid:8)(cid:17)(cid:17)(cid:8)(cid:18)(cid:1)(cid:3)(cid:8)(cid:16)(cid:18)(cid:6)(cid:1)(cid:19)(cid:4)(cid:16)(cid:11)(cid:16)(cid:6)(cid:10)(cid:6)(cid:14)(cid:1)(cid:19)(cid:20)(cid:21)(cid:1)(cid:9)(cid:22)(cid:8)(cid:17)(cid:1)(cid:23)(cid:8)(cid:11)(cid:24)(cid:8)(cid:12)(cid:25)(cid:8)(cid:20)(cid:18)
(cid:23)(cid:12)(cid:13)(cid:11)(cid:2)(cid:3)(cid:8)(cid:11)$(cid:1)’(cid:16)(cid:6)(cid:11) ((cid:8)((cid:4)(cid:20)(cid:1)(cid:6)(cid:12)(cid:24)(cid:20)(cid:15)(cid:18))(cid:27)(cid:4)(cid:11)(cid:1)(cid:8)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:15)(cid:25)(cid:1)(cid:15)(cid:29)(cid:4)(cid:20)(cid:1)*(cid:14)+,,(cid:1)(cid:27)(cid:15)(cid:5)(cid:15)(cid:20)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1).(cid:4)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:4)(cid:18)(cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)+(cid:2)+(cid:1)(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:16))(cid:17)(cid:8)(cid:12)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:11) (cid:6)(cid:12)(cid:1)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:10)(cid:4)(cid:24).(cid:4)(cid:4)(cid:12)(cid:1)/
(cid:8)(cid:12)(cid:18) 01(cid:21)(cid:1)2(cid:4)(cid:1)(cid:12)(cid:8)(cid:17)(cid:4)(cid:18)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)4(cid:26)3(cid:19)(cid:23)5(cid:21)(cid:1)’(cid:15)(cid:1)(cid:4)(cid:29)(cid:8)(cid:5))(cid:8)(cid:24)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:4)6((cid:4)(cid:20)(cid:6)(cid:17)(cid:4)(cid:12)(cid:24)(cid:8)(cid:5)(cid:1)(cid:20)(cid:4)(cid:11))(cid:5)(cid:24)(cid:1)(cid:15)(cid:25)(cid:1)(cid:8)(cid:1)(cid:12)(cid:4).(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)
(cid:25)(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1)(cid:18)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:8)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:1)(cid:6)(cid:11)(cid:1)(cid:20)(cid:4)((cid:15)(cid:20)(cid:24)(cid:4)(cid:18)(cid:21)
(cid:26)(cid:9)(cid:27) (cid:28)(cid:19)(cid:2)(cid:14)(cid:13)$(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:26)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:14)(cid:1)3(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)3(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1)(cid:19)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:9)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:11)(cid:14)(cid:1)(cid:9)-(cid:4)(cid:1)7(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:21)
(cid:29) (cid:1)(cid:4)(cid:11)(cid:2)(cid:19)(cid:14)(cid:18)(cid:8)(cid:11)(cid:5)(cid:19)(cid:4)
8)(cid:17)(cid:8)(cid:12)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:6)(cid:11)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:17)(cid:15)(cid:11)(cid:24)(cid:1) (cid:27)(cid:15)(cid:17)(cid:17)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) )(cid:11)(cid:4)(cid:25))(cid:5)(cid:1) (cid:7)(cid:4)(cid:30)(cid:1) (cid:24)(cid:15)(cid:1) (cid:8)(cid:1)
((cid:4)(cid:20)(cid:11)(cid:15)(cid:12)9(cid:11)(cid:1) (cid:6)(cid:18)(cid:4)(cid:12)(cid:24)(cid:6)(cid:24)(cid:30)(cid:21)(cid:1) (cid:9)(cid:11)(cid:1) (cid:16))(cid:17)(cid:8)(cid:12)(cid:11)(cid:14)(cid:1) .(cid:4)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:8)(cid:10)(cid:5)(cid:4)(cid:1) (cid:24)(cid:15)(cid:1) (cid:27)(cid:8)(cid:24)(cid:4)-(cid:15)(cid:20)(cid:6)(cid:22)(cid:4)(cid:1) (cid:8)(cid:1)
((cid:4)(cid:20)(cid:11)(cid:15)(cid:12):(cid:11)(cid:1)(cid:8)-(cid:4)(cid:1)-(cid:20)(cid:15))((cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)(cid:8)(cid:1)((cid:4)(cid:20)(cid:11)(cid:15)(cid:12):(cid:11)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:8)(cid:20)(cid:4)(cid:1)(cid:15)(cid:25)(cid:24)(cid:4)(cid:12)(cid:1)
(cid:8)(cid:10)(cid:5)(cid:4)(cid:1)(cid:24)(cid:15)(cid:1)(cid:10)(cid:4)(cid:1);)(cid:6)(cid:24)(cid:4)(cid:1)((cid:20)(cid:4)(cid:27)(cid:6)(cid:11)(cid:4)(cid:1)(cid:6)(cid:12)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:4)(cid:11)(cid:24)(cid:6)(cid:17)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)<(cid:2)=(cid:21)(cid:1)(cid:26)(cid:12)(cid:1)(cid:20)(cid:4)(cid:27)(cid:4)(cid:12)(cid:24)(cid:1)(cid:30)(cid:4)(cid:8)(cid:20)(cid:11)(cid:14)(cid:1)
(cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:20)(cid:4)(cid:5)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1) .(cid:15)(cid:20)(cid:7)(cid:11)(cid:1) (cid:16)(cid:8)(cid:29)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:4)(cid:6)(cid:29)(cid:4)(cid:18)(cid:1) (cid:11))(cid:10)(cid:11)(cid:24)(cid:8)(cid:12)(cid:24)(cid:6)(cid:8)(cid:5)(cid:1)
(cid:8)(cid:24)(cid:24)(cid:4)(cid:12)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:25)(cid:20)(cid:15)(cid:17)(cid:1) (cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1) (cid:6)(cid:12)(cid:1) (cid:10)(cid:6)(cid:15)(cid:17)(cid:4)(cid:24)(cid:20)(cid:6)(cid:27)(cid:11)(cid:14)(cid:1) ((cid:8)(cid:24)(cid:24)(cid:4)(cid:20)(cid:12)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1)
(cid:8)(cid:12)(cid:18)(cid:1) (cid:27)(cid:15)(cid:17)()(cid:24)(cid:4)(cid:20) (cid:29)(cid:6)(cid:11)(cid:6)(cid:15)(cid:12)(cid:1) (cid:27)(cid:15)(cid:17)(cid:17))(cid:12)(cid:6)(cid:24)(cid:6)(cid:4)(cid:11)(cid:1) </(cid:14)(cid:1) *(cid:14)(cid:1) > (cid:8)(cid:12)(cid:18) 1=(cid:21)(cid:1) ’(cid:16)(cid:4)(cid:11)(cid:4)(cid:1)
(cid:27)(cid:15)(cid:17)(cid:17)(cid:15)(cid:12)(cid:1)(cid:6)(cid:12)(cid:24)(cid:4)(cid:20)(cid:4)(cid:11)(cid:24)(cid:11)(cid:1)(cid:8)(cid:17)(cid:15)(cid:12)-(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1)(cid:17)(cid:15)(cid:24)(cid:6)(cid:29)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1))(cid:11)(cid:1)(cid:24)(cid:15)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:1)(cid:8)(cid:1)
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) (cid:15)(cid:25)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) (cid:25)(cid:20)(cid:15)(cid:17)(cid:1) ((cid:4)(cid:15)((cid:5)(cid:4)(cid:1) (cid:6)(cid:12)(cid:1) (cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1) (cid:8)-(cid:4)(cid:11)(cid:21) ’(cid:16)(cid:4)(cid:1)
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:6)(cid:11)(cid:1)(cid:6)(cid:12)(cid:24)(cid:4)(cid:12)(cid:18)(cid:4)(cid:18)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)(cid:18)(cid:6)(cid:11)(cid:24)(cid:20)(cid:6)(cid:10))(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:24)(cid:15)(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:21)
’(cid:16)(cid:4)(cid:20)(cid:4)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:17)(cid:8)(cid:12)(cid:30)(cid:1) ()(cid:10)(cid:5)(cid:6)(cid:27)(cid:8)(cid:5)(cid:5)(cid:30)(cid:1) (cid:8)(cid:29)(cid:8)(cid:6)(cid:5)(cid:8)(cid:10)(cid:5)(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1) (cid:25)(cid:15)(cid:20)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1)"
06560d5721ecc487a4d70905a485e22c9542a522,Deep Facial Attribute Detection in the Wild: From General to Specific,"SUN, YU: DEEP FACIAL ATTRIBUTE DETECTION IN THE WILD
Deep Facial Attribute Detection in the Wild:
From General to Specific
Yuechuan Sun
Jun Yu
Department of Automation
University of Science and Technology
of China
Hefei, China"
066000d44d6691d27202896691f08b27117918b9,Vision-Based Analysis of Small Groups in Pedestrian Crowds,"Vision-based Analysis of Small Groups in
Pedestrian Crowds
Weina Ge, Robert T. Collins, Senior Member, IEEE, and R. Barry Ruback
E-mail:"
061fb1b627554f52ff8f3ebb531e326767d845ec,Globally-optimal greedy algorithms for tracking a variable number of objects,"Globally-Optimal Greedy Algorithms for Tracking a Variable Number of
Objects
Hamed Pirsiavash Deva Ramanan Charless C. Fowlkes
Department of Computer Science, University of California, Irvine"
06599d41a3256245aa0cb2e9e56b29459c2e2c69,VisualWord2Vec (Vis-W2V): Learning Visually Grounded Word Embeddings Using Abstract Scenes,Visual Word2Vec (vis-w2v): Learning Visually Grounded
06dfc1c6f62bffd5f8b8619d8c51db1ec4d25f3f,Fusing Local Patterns of Gabor Magnitude and Phase for Face Recognition,"Fusing Local Patterns of Gabor Magnitude
nd Phase for Face Recognition
Shufu Xie, Shiguang Shan, Member, IEEE, Xilin Chen, Senior Member, IEEE, and Jie Chen, Member, IEEE"
06f7e0aee7fc5807ab862432a4e5ade2cda73c4b,Flowing ConvNets for Human Pose Estimation in Videos,"Flowing ConvNets for Human Pose Estimation in Videos
Tomas Pfister1, James Charles2 and Andrew Zisserman1
Objective & Contributions
Estimate 2D upper body joint positions (wrist, elbow, shoulder, head) with high accuracy in real-time
- A better ConvNet for general image (x,y) position regression
- Spatial fusion layers that learn an implicit spatial model between predicted positions
- Optical flow for propagating position predictions from neighbouring frames
. Regress a heatmap for each position
Heatmap
ConvNet
(fully convolutional)
56 x 256 x 3
64 x 64 x N
. Represent positions by Gaussians
k joints
Idea 1: Implicit ConvNet spatial model
. Add fusion layers to learn dependencies between predicted positions
onv1
5x5x128
pool 2x2"
069c40a8ca5305c9a0734c1f6134eb19a678f4ab,LabelMe: A Database and Web-Based Tool for Image Annotation,"Int J Comput Vis (2008) 77: 157–173
DOI 10.1007/s11263-007-0090-8
LabelMe: A Database and Web-Based Tool for Image Annotation
Bryan C. Russell · Antonio Torralba ·
Kevin P. Murphy · William T. Freeman
Received: 6 September 2005 / Accepted: 11 September 2007 / Published online: 31 October 2007
© Springer Science+Business Media, LLC 2007"
06fe63b34fcc8ff68b72b5835c4245d3f9b8a016,Learning semantic representations of objects and their parts,"Mach Learn
DOI 10.1007/s10994-013-5336-9
Learning semantic representations of objects
nd their parts
Grégoire Mesnil · Antoine Bordes · Jason Weston ·
Gal Chechik · Yoshua Bengio
Received: 24 May 2012 / Accepted: 26 February 2013
© The Author(s) 2013"
069c9b3c7cf82310d3e06831208aea15f6fdfc32,Power management for mobile games on asymmetric multi-cores,"Power Management for Mobile Games
on Asymmetric Multi-Cores
Anuj Pathania, Santiago Pagani, Muhammad Shafique, J¨org Henkel
Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Corresponding Author:"
06d89147794d0889b2e031b0c6811423806f5ea0,A 3D Morphable Eye Region Model for Gaze Estimation,"A 3D Morphable Eye Region Model
for Gaze Estimation
Anonymous ECCV submission
Paper ID 93"
06aab105d55c88bd2baa058dc51fa54580746424,Image Set-Based Collaborative Representation for Face Recognition,"Image Set based Collaborative Representation for
Face Recognition
Pengfei Zhu, Student Member, IEEE, Wangmeng Zuo, Member, IEEE, Lei Zhang, Member, IEEE, Simon C.K. Shiu,
Member, IEEE, David Zhang, Fellow, IEEE"
06262d14323f9e499b7c6e2a3dec76ad9877ba04,Real-Time Pose Estimation Piggybacked on Object Detection,"Real-Time Pose Estimation Piggybacked on Object Detection
Roman Jur´anek, Adam Herout, Mark´eta Dubsk´a, Pavel Zemˇc´ık
Brno University of Technology
Brno, Czech Republic"
06e9149b7ef8bff3a4b5a18fe01da9a522f91891,SRLSP: A Face Image Super-Resolution Algorithm Using Smooth Regression With Local Structure Prior,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2601020, IEEE
Transactions on Multimedia
SRLSP: A Face Image Super-Resolution Algorithm
Using Smooth Regression with Local Structure Prior
Junjun Jiang, Member, IEEE, Chen Chen, Jiayi Ma, Member, IEEE, Zheng Wang, Zhongyuan
Wang, Member, IEEE, and Ruimin Hu, Senior Member, IEEE
traditional"
062c41dad67bb68fefd9ff0c5c4d296e796004dc,Temporal Generative Adversarial Nets with Singular Value Clipping,"Temporal Generative Adversarial Nets with Singular Value Clipping
Masaki Saito∗
Eiichi Matsumoto∗
Preferred Networks inc., Japan
{msaito, matsumoto,
Shunta Saito"
06cb0939ed5fb2b3398d54a7fcdb865fe53f414a,Bag-of-Words Image Representation: Key Ideas and Further Insight,"Chapter 2
Bag-of-Words Image Representation:
Key Ideas and Further Insight
Marc T. Law, Nicolas Thome and Matthieu Cord"
06bd34951305d9f36eb29cf4532b25272da0e677,"A Fast and Accurate System for Face Detection, Identification, and Verification","JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
A Fast and Accurate System for Face Detection,
Identification, and Verification
Rajeev Ranjan, Ankan Bansal, Jingxiao Zheng, Hongyu Xu, Joshua Gleason, Boyu Lu, Anirudh Nanduri,
Jun-Cheng Chen, Carlos D. Castillo, Rama Chellappa"
068a7c7849cb6480def2e124ac5a45564e094b2a,Multi-Scale Learning for Low-Resolution Person Re-Identification,"Multi-scale learning for low-resolution person re-identification
Li, X; Zheng, WS; Wang, X; Xiang, T; Gong, S
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/19657
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
06687e82ecc94f716d86d3e9f6bfbd30655c6631,CANDECOMP/PARAFAC Decomposition of High-Order Tensors Through Tensor Reshaping,"CANDECOMP/PARAFAC Decomposition of
High-order Tensors Through Tensor Reshaping
Anh Huy Phan∗, Petr Tichavsk´y and Andrzej Cichocki"
0694b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0,Exploiting Local Class Information in Extreme Learning Machine,"Iosifidis, A., Tefas, A., & Pitas, I. (2014). Exploiting Local Class Information
in Extreme Learning Machine. Paper presented at International Joint
Conference on Computational Intelligence (IJCCI), Rome, Italy.
Peer reviewed version
Link to publication record in Explore Bristol Research
PDF-document
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms"
0612745dbd292fc0a548a16d39cd73e127faedde,Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models,"Noname manuscript No.
(will be inserted by the editor)
Flickr30k Entities: Collecting Region-to-Phrase Correspondences for
Richer Image-to-Sentence Models
Bryan A. Plummer · Liwei Wang · Chris M. Cervantes · Juan C. Caicedo · Julia
Hockenmaier · Svetlana Lazebnik
Received: date / Accepted: date"
0683be899f3e04b8b55a501e8ffafc0484b44056,Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV,"Article
Using Deep Learning and Low-Cost RGB and
Thermal Cameras to Detect Pedestrians in Aerial
Images Captured by Multirotor UAV
Diulhio Candido de Oliveira * ID and Marco Aurelio Wehrmeister ID
Computing Systems Engineering Laboratory (LESC), Federal University of Technology—Parana (UTFPR),
Curitiba 80230-901, Brazil;
* Correspondence: Tel.: +55-41-3310-4646
Received: 27 April 2018; Accepted: 3 July 2018; Published: 12 July 2018"
06dee5ff4b41eadf5db5c6841d3441d388f08117,3D Cascade of Classifiers for Open and Closed Eye Detection in Driver Distraction Monitoring,"D Cascade of Classifiers for
Open and Closed Eye Detection
in Driver Distraction Monitoring
Mahdi Rezaei and Reinhard Klette
The .enpeda.. Project, The University of Auckland
Tamaki Innovation Campus, Auckland, New Zealand"
060820f110a72cbf02c14a6d1085bd6e1d994f6a,Fine-grained classification of pedestrians in video: Benchmark and state of the art,"Fine-Grained Classification of Pedestrians in Video: Benchmark and State of the Art
David Hall and Pietro Perona
California Institute of Technology.
The dataset was labelled with bounding boxes, tracks, pose and fine-
grained labels. To achieve this, crowdsourcing, using workers from Ama-
zon’s Mechanical Turk (MTURK) was used. A summary of the dataset’s
statistics can be found in Table 1.
Number of Frames Sent to MTURK
Number of Frames with at least 1 Pedestrian
Number of Bounding Box Labels
Number of Pose Labels
Number of Tracks
8,708
0,994
2,457
7,454
,222
Table 1: Dataset Statistics
A state-of-the-art algorithm for fine-grained classification was tested us-
ing the dataset. The results are reported as a useful performance baseline."
063a3be18cc27ba825bdfb821772f9f59038c207,The development of spontaneous facial responses to others’ emotions in infancy: An EMG study,"This is a repository copy of The development of spontaneous facial responses to others’
emotions in infancy. An EMG study.
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/125231/
Version: Published Version
Article:
Kaiser, Jakob, Crespo-Llado, Maria Magdalena, Turati, Chiara et al. (1 more author)
(2017) The development of spontaneous facial responses to others’ emotions in infancy.
An EMG study. Scientific Reports. ISSN 2045-2322
https://doi.org/10.1038/s41598-017-17556-y
Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
llows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
uthors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/
Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing including the URL of the record and the reason for the withdrawal request.
https://eprints.whiterose.ac.uk/"
060797f33c242b568189be251f9735afdc4c9f22,Robust Deep-Learning-Based Road-Prediction for Augmented Reality Navigation Systems at Night,"Robust Deep-Learning-Based Road-Prediction
for Augmented Reality Navigation Systems
Matthias Limmer1*, Julian Forster1*, Dennis Baudach1, Florian Schüle2,
Roland Schweiger1 and Hendrik P.A. Lensch3"
069ebb57ccca31ab68983e07044e65ce1a04174f,4D facial expression recognition,"011 IEEE International Conference on Computer Vision Workshops
978-1-4673-0063-6/11/$26.00 c(cid:13)2011 IEEE"
06680961e99aadb366968e5f515da58864ecd784,ENabler for Design Specifications FP 6 - IST - 2005 - 27916,"Trends Research ENabler for Design Specifications
FP6-IST-2005-27916
Deliverable
TRENDS META-DELIVERABLE 1 - STATE OF THE ART
Security Classification :   PU
Leading partner
SERAM
Issue Date
03/09/2007
Version
Authors
Approved by
Final draft
Aranzazu BERECIARTUA, Carole BOUCHARD, Marin FERECATU, Guillaume LOGEROT, Loïs RIGOUSTE, Carlotta
VITALE
Carole Bouchard
03/09/2007
META DELIVERABLE 1 - STATE OF THE ART
This document presents a State Of the Art related to
most popular products, tools and methods"
069cadd9d8e52ad2715a3551012a06e506191626,Person re-identification using semantic color names and RankBoost,"Person Re-identification using Semantic Color Names and RankBoost
Cheng-Hao Kuo1, Sameh Khamis2∗, and Vinay Shet1
Imaging and Computer Vision, Siemens Corporation, Corporate Technology1, Princeton, NJ
University of Maryland2, College Park, MD"
06f969d3858b6d14425fcbe7ff12b72e213ee240,Recognizing Cardiac Magnetic Resonance Acquisition Planes,"Recognizing cardiac magnetic resonance acquisition
planes
Jan Margeta, Antonio Criminisi, Daniel C. Lee, Nicholas Ayache
To cite this version:
Jan Margeta, Antonio Criminisi, Daniel C. Lee, Nicholas Ayache. Recognizing cardiac magnetic
resonance acquisition planes. MIUA - Medical Image Understanding and Analysis Conference
- 2014, Jul 2014, London, United Kingdom. 2014. <hal-01009952>
HAL Id: hal-01009952
https://hal.inria.fr/hal-01009952
Submitted on 19 Jun 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
06c333fc146d0a87f591c82a1f22925ccef378b1,Emotional Cues during Simultaneous Face and Voice Processing: Electrophysiological Insights,"Emotional Cues during Simultaneous Face and Voice
Processing: Electrophysiological Insights
Taosheng Liu1,2, Ana Pinheiro2,3, Zhongxin Zhao4*, Paul G. Nestor2,5, Robert W. McCarley2, Margaret A.
Niznikiewicz2*
Department of Psychology, Second Military Medical University, Shanghai, China, 2 Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry,
Boston VA Healthcare System, Brockton Division and Harvard Medical School, Brockton, Massachusetts, United States of America, 3 Neuropsychophysiology Laboratory,
CiPsi, School of Psychology, University of Minho, Braga, Portugal, 4 Department of Neurology, Neuroscience Research Center of Changzheng Hospital, Second Military
Medical University, Shanghai, China, 5 University of Massachusetts, Boston, Massachusetts, United States of America"
0628ffefb911d1446914098d7c38a094c92c8a70,An opportunistic prediction-based thread scheduling to maximize throughput/watt in AMPs,"An Opportunistic Prediction-based Thread
Scheduling to Maximize Throughput/Watt in AMPs
Arunachalam Annamalai, Rance Rodrigues, Israel Koren and Sandip Kundu
Department of Electrical and Computer Engineering, University of Massachusetts at Amherst
Email: {annamalai, rodrigues, koren,"
06ad99f19cf9cb4a40741a789e4acbf4433c19ae,SenTion: A framework for Sensing Facial Expressions,"SenTion: A framework for Sensing Facial
Expressions
Rahul Islam∗, Karan Ahuja∗, Sandip Karmakar∗, Ferdous Barbhuiya∗ ∗IIIT Guwahati
{rahul.islam, karan.ahuja, sandip,"
06e959c88dcce05847a395dc404725dd0488003d,Articulated clinician detection using 3D pictorial structures on RGB-D data,"D Pictorial Structures on RGB-D Data for
Articulated Human Detection in Operating Rooms
Abdolrahim Kadkhodamohammadi, Afshin Gangi, Michel de Mathelin and Nicolas Padoy"
06a2a3c6d44ab5572df55ce34d9b1216bc685385,GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks,"GANVO: Unsupervised Deep Monocular Visual Odometry and Depth
Estimation with Generative Adversarial Networks
Yasin Almalioglu1, Muhamad Risqi U. Saputra1, Pedro P. B. de Gusmo1, Andrew Markham1, and Niki Trigoni1"
6c3c845fe484bdb2b3549054644c7a06bd9b87b8,ENCARA: real-time detection of frontal faces,"ENCARA: REAL-TIME DETECTION OF FRONTAL FACES
M. Castrillón Santana, M. Hernández Tejera, J. Cabrera Gámez
Instituto Universitario Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería
Universidad de Las Palmas de Gran Canaria
5017 Gran Canaria - Spain"
6c27eccf8c4b22510395baf9f0d0acc3ee547862,Using CMU PIE Human Face Database to a Convolutional Neural Network - Neocognitron,"Using CMU PIE Human Face Database to a
Convolutional Neural Network - Neocognitron
José Hiroki Saito1, Tiago Vieira de Carvalho1, Marcelo Hirakuri1, André Saunite1,
Alessandro Noriaki Ide2 and Sandra Abib1
- Federal University of São Carlos - Computer Science Department - GAPIS
Rodovia Washington Luis, Km 235, São Carlos – SP - Brazil
- University of Genoa - Department of Informatics, Systems and Telematics - Neurolab
Via Opera Pia, 13 – I-16145 – Genoa - Italy"
6c0f9acd62ca9f156ca632dad6d666209eae461e,Discriminative vision-based recovery and recognition of human motion,"Discriminative Vision-Based Recovery and
Recognition of Human Motion
9-789036-528108
CTIT Dissertation Series No. 09-136
Center for Telematics and Information Technology (CTIT)
P.O. Box 217, 7500 AE Enschede, The Netherlands
Ronald Poppe"
6cbb3c47010e406de656d13fe289522bb3071bc0,Improved vehicle detection system based on customized HOG,"Improved vehicle detection system based on
ustomized HOG
Haythem AMEUR1, Abdelhamid HELALI1, Hassen MAAREF1, Anis YOUSSEF2
Laboratory of Micro-Optoelectronic and Nanostructure, University of Monastir
Tunisia, Monastir
2 TELNET Innovation Labs Tunisia, Tunis"
6ce6da7a6b2d55fac604d986595ba6979580393b,Cross Domain Knowledge Transfer for Person Re-identification,"Cross Domain Knowledge Transfer for Person Re-identification
Qiqi Xiao
Kelei Cao
Haonan Chen
Fangyue Peng
Chi Zhang"
6cd557019b7775d8647ca31260734c786fdb69ec,Visual Classifier Prediction by Distributional Semantic Embedding of Text Descriptions,"Proceedings of the 2015 Workshop on Vision and Language (VL’15), pages 48–50,
Lisbon, Portugal, 18 September 2015. c(cid:13)2015 Association for Computational Linguistics."
6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365,Privacy-Preserving Deep Inference for Rich User Data on The Cloud,"Privacy-Preserving Deep Inference for Rich User
Data on The Cloud
Seyed Ali Osia ♯, Ali Shahin Shamsabadi ♯, Ali Taheri ♯, Kleomenis Katevas ⋆,
Hamid R. Rabiee ♯, Nicholas D. Lane †, Hamed Haddadi ⋆
♯ Sharif University of Technology
⋆ Queen Mary University of London
Nokia Bell Labs & University of Oxford"
6cb68c1f7558e01966ad1e1fa81feeeae3dee666,Photo Filter Recommendation by Category-Aware Aesthetic Learning,"IEEE TRANSACTION ON MULTIMEDIA
Photo Filter Recommendation
y Category-Aware Aesthetic Learning
Wei-Tse Sun, Ting-Hsuan Chao, Yin-Hsi Kuo, Winston H. Hsu"
6c54261f601c8a569149b77d32efe6c58f2e4a2e,Preliminary evidence that the limbal ring influences facial attractiveness.,"Evolutionary Psychology
www.epjournal.net – 2011. 9(2): 137-146
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
Original Article
Preliminary Evidence that the Limbal Ring Influences Facial Attractiveness
Darren Peshek, Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA. Email:
(Corresponding author).
Negar Semmaknejad, Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA.
Donald Hoffman, Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA.
Pete Foley, Innovation Science, Procter & Gamble, Cincinnati, OH, USA."
6c62330cbd60f2cb6cb80b920104d0df3116cb3f,Robust People Tracking Using A Light Coding Depth Sensor,"Robust People Tracking Using A Light Coding Depth Sensor
Xun Changqing1, Yang Shuqiang2, and Zhang Chunyuan1
College of Computer, National University of Defence Technology, ChangSha, China
College of Electronic Science and Engineering, National University of Defence Technology, ChangSha, China"
6c52c12644321d4256306feaf784ccae6ebc4fea,Enhanced vote count circuit based on nor flash memory for fast similarity search,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
6ceacd889559cfcf0009e914d47f915167231846,The impact of visual attributes on online image diffusion,"The Impact of Visual Attributes on Online Image Diffusion
Luam Totti
Federal University of
Minas Gerais (UFMG)
Belo Horizonte, MG, Brazil
Felipe Costa
Federal University of
Minas Gerais (UFMG)
Belo Horizonte, MG, Brazil
Sandra Avila
RECOD Lab., DCA / FEEC /
UNICAMP
Campinas, SP, Brazil
Eduardo Valle
RECOD Lab., DCA / FEEC /
UNICAMP
Campinas, SP, Brazil
Wagner Meira Jr.
Federal University of
Minas Gerais (UFMG)"
6cad008ad80081dc42752e813ee6924e3c174dc7,Does Facial Resemblance Enhance Cooperation?,"Does Facial Resemblance Enhance Cooperation?
Trang Giang*, Raoul Bell*, Axel Buchner
Department of Experimental Psychology, Heinrich Heine University Du¨ sseldorf, Du¨ sseldorf, Germany"
6c304f3b9c3a711a0cca5c62ce221fb098dccff0,Attentive Semantic Video Generation Using Captions,"Attentive Semantic Video Generation using Captions
Tanya Marwah∗
IIT Hyderabad
Gaurav Mittal∗
Vineeth N. Balasubramanian
IIT Hyderabad"
6cb7648465ba7757ecc9c222ac1ab6402933d983,Visual Forecasting by Imitating Dynamics in Natural Sequences,"Visual Forecasting by Imitating Dynamics in Natural Sequences
Kuo-Hao Zeng†‡ William B. Shen† De-An Huang† Min Sun‡ Juan Carlos Niebles†
{khzeng, bshen88, dahuang,
Stanford University ‡National Tsing Hua University"
6c2b392b32b2fd0fe364b20c496fcf869eac0a98,Fully automatic face recognition framework based on local and global features,"DOI 10.1007/s00138-012-0423-7
ORIGINAL PAPER
Fully automatic face recognition framework based
on local and global features
Cong Geng · Xudong Jiang
Received: 30 May 2011 / Revised: 21 February 2012 / Accepted: 29 February 2012 / Published online: 22 March 2012
© Springer-Verlag 2012"
6c4d5ac0eed17513e3ceacd396526b8ad6c8fc09,Learning to Learn by Exploiting Prior Knowledge,"Learning to Learn by Exploiting
Prior Knowledge
Thèse n. 5587
à présenter le 07 November 2012
à la Faculté des Sciences et Techniques de L'ingénieur
laboratoire de L'Idiap
programme doctoral en Génie Électrique
École Polytechnique Fédérale de Lausanne
pour l'obtention du grade de Docteur ès Sciences
Tatiana Tommasi
cceptée sur proposition du jury :
Prof Dario Floreano, président du jury
Prof Hervé Bourlard, directeur de thèse
Dr Barbara Caputo, co-directeur de thèse
Prof Jean-Philippe Thiran, rapporteur
Prof Jim Little, rapporteur
Dr Vittorio Ferrari, rapporteur
Lausanne, EPFL, 2012"
6c984bb3243f3b8d0afd8d90cd4ce85eb8f1dd3c,3D Ear Recognition System Using Neural Network Based Self Organizing Maps,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
International Conference on Humming Bird ( 01st March 2014)
RESEARCH ARTICLE
OPEN ACCESS
D Ear Recognition System Using Neural Network Based Self
Organizing Maps
M.Sathish Babu1, Assistant Professor
Email:
Department of Computer Science and Engineering, Cape Institute of Technology."
6c38ab65df4a1bf546f1426e8a7f2f5cb5f765d3,Pathological Tremor Detection From Video,"Pathological Tremor Detection From Video
Xilin Li"
6c518aabdbba2c073eab6a3bb4120023851e524c,Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras,"Article
Person Recognition System Based on a Combination
of Body Images from Visible Light and
Thermal Cameras
Dat Tien Nguyen, Hyung Gil Hong, Ki Wan Kim and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; (D.T.N.); (H.G.H.);
(K.W.K.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Academic Editor: Vittorio M. N. Passaro
Received: 5 January 2017; Accepted: 14 March 2017; Published: 16 March 2017"
6c514a85b840c461cf6959927e6a34414e1e0f5e,Texture descriptors to distinguish radiation necrosis from recurrent brain tumors on multi-parametric MRI,"Medical Imaging 2014: Computer-Aided Diagnosis, edited by Stephen Aylward, Lubomir M. Hadjiiski,
Proc. of SPIE Vol. 9035, 90352B · © 2014 SPIE · CCC code: 1605-7422/14/$18 · doi: 10.1117/12.2043969
Proc. of SPIE Vol. 9035  90352B-1
From: http://proceedings.spiedigitallibrary.org/ on 10/02/2014 Terms of Use: http://spiedl.org/terms"
6cddc7e24c0581c50adef92d01bb3c73d8b80b41,Face Verification Using the LARK Representation,"Face Verification Using the LARK
Representation
Hae Jong Seo, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE,"
6cfc337069868568148f65732c52cbcef963f79d,Audio-Visual Speaker Localization via Weighted Clustering Israel -,"Audio-Visual Speaker Localization via Weighted
Clustering
Israel-Dejene Gebru, Xavier Alameda-Pineda, Radu Horaud, Florence Forbes
To cite this version:
Israel-Dejene Gebru, Xavier Alameda-Pineda, Radu Horaud, Florence Forbes. Audio-Visual Speaker
Localization via Weighted Clustering. IEEE Workshop on Machine Learning for Signal Processing,
Sep 2014, Reims, France. pp.1-6, 2014, <10.1109/MLSP.2014.6958874>. <hal-01053732>
HAL Id: hal-01053732
https://hal.archives-ouvertes.fr/hal-01053732
Submitted on 11 Aug 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
6cadbc0122376be3c249ecfec7de8247ffbc4fb3,Bidirectional Label Propagation over Graphs,"Int J Software Informatics, Volume 7, Issue 3 (2013), pp.419–433
International Journal of Software and Informatics, ISSN 1673-7288
(cid:176)2013 by ISCAS. All rights reserved.
Tel: +86-10-62661040
http://www.ijsi.org
Email:
Bidirectional Label Propagation over Graphs
Wei Liu1 and Tongtao Zhang2
(IBM T. J. Watson Research Center, Yorktown Heights, NY, USA)
(Columbia University, New York, NY, USA)"
6c24fed42d9a1ec283d2aa39a2dd768256a1a066,Swift: reducing the effects of latency in online video scrubbing,"Swift: Reducing the Effects of Latency in Online Video Scrubbing
Justin Matejka, Tovi Grossman, George Fitzmaurice
Autodesk Research, Toronto, Ontario, Canada
Traditional Video Scrubbing
Swift Video Scrubbing
Figure 1. An illustration of the scrubbing behavior of a traditional streaming video player and the Swift player. With the
Swift system a quick-to-download low resolution version of the video is displayed while scrubbing.
tasks  which
the  effects  of"
6c22b549d854845c5d2f17d75417e4469e6d3f83,A robust face recognition algorithm for real-world applications,"A Robust Face Recognition
Algorithm for
Real-World Applications
zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
der Fakult¨at f¨ur Informatik
der Universit¨at Fridericiana zu Karlsruhe (TH)
genehmigte
Dissertation
Hazım Kemal Ekenel
us Samsun, T¨urkei
Tag der m¨undlichen Pr¨ufung: 02.02.2009
Erster Gutachter:
Prof. Dr. A. Waibel
Zweiter Gutachter:
Prof. Dr. J. Kittler"
6cd96f2b63c6b6f33f15c0ea366e6003f512a951,A New Approach in Solving Illumination and Facial Expression Problems for Face Recognition,"A New Approach in Solving Illumination and Facial Expression Problems
for Face Recognition
Yee Wan Wong, Kah Phooi Seng, Li-Minn Ang
The University of Nottingham Malaysia Campus
Tel : 03-89248358, Fax : 03-89248017
E-mail :
Jalan Broga
3500 Semenyih, Selangor"
6c8c7065d1041146a3604cbe15c6207f486021ba,Attention Modeling for Face Recognition via Deep Learning,"Attention Modeling for Face Recognition via Deep Learning
Sheng-hua Zhong
Department of Computing, Hung Hom, Kowloon
Hong Kong, 999077 CHINA
Yan Liu
Department of Computing, Hung Hom, Kowloon
Hong Kong, 99907 CHINA
Yao Zhang
Department of Computing, Hung Hom, Kowloon
Hong Kong, 99907 CHINA
Fu-lai Chung
Department of Computing, Hung Hom, Kowloon
Hong Kong, 99907 CHINA"
6cd762e7cb1301abd0ddbb265dd9c7661ffc0458,On optimal low rank Tucker approximation for tensors: the case for an adjustable core size,"On Optimal Low Rank Tucker Approximation for Tensors:
The Case for an Adjustable Core Size
Bilian CHEN ∗
Zhening LI †
Shuzhong ZHANG ‡
August 7, 2014"
6cd7a47bbba11a994cd8e68ee5eae2fcb0033054,Driving in the Matrix: Can virtual worlds replace human-generated annotations for real world tasks?,"Driving in the Matrix: Can Virtual Worlds Replace Human-Generated
Annotations for Real World Tasks?
Matthew Johnson-Roberson1, Charles Barto2, Rounak Mehta3, Sharath Nittur Sridhar2, and Ram Vasudevan4"
3965d73c9d7c97cdb391bfd86a15bfd3534cbd32,Deep Learning for Visual Question Answering,"Deep Learning for Visual Question Answering
Avi Singh"
39803a9c075d543e19384d79fb4c36b207892179,Regression Techniques versus Discriminative Methods for Face Recognition,"Regression Techniques versus Discriminative Methods for Face
Recognition
Vitomir ˇStruc, France Miheliˇc, Rok Gajˇsek and Nikola Paveˇsi´c"
3917bf2cc075ef075d9c879fc9ec3349ea116735,Discriminant Analysis by Locally Linear Transformations,"Discriminant Analysis by Locally Linear
Transformations
Tae-Kyun Kim1,2, Josef Kittler2, Hyun-Chul Kim3, and Seok Cheol Kee1
: Samsung Advanced Institute of Technology, KOREA
: Center for Vision, Speech and Signal Processing, University of
Surrey,U.K.
: Pohang University of Science and Technology, KOREA"
390f3d7cdf1ce127ecca65afa2e24c563e9db93b,Learning Deep Representation for Face Alignment with Auxiliary Attributes,"Learning Deep Representation for Face
Alignment with Auxiliary Attributes
Zhanpeng Zhang, Ping Luo, Chen Change Loy, Member, IEEE and Xiaoou Tang, Fellow, IEEE"
39ed31ced75e6151dde41944a47b4bdf324f922b,Pose-Guided Photorealistic Face Rotation,"Pose-Guided Photorealistic Face Rotation
Yibo Hu1,2, Xiang Wu1, Bing Yu3, Ran He1,2 ∗, Zhenan Sun1,2
CRIPAC & NLPR & CEBSIT, CASIA 2University of Chinese Academy of Sciences
Noah’s Ark Laboratory, Huawei Technologies Co., Ltd.
{yibo.hu, {rhe,"
3918dcfddf2da218a615dd8f008f6fce436e06f7,Learning Sight from Sound: Ambient Sound Provides Supervision for Visual Learning,"Int J Comput Vis manuscript No.
(will be inserted by the editor)
Learning Sight from Sound:
Ambient Sound Provides Supervision for Visual Learning
Andrew Owens · Jiajun Wu · Josh H. McDermott · William T. Freeman ·
Antonio Torralba
Received: date / Accepted: date"
3918b425bb9259ddff9eca33e5d47bde46bd40aa,Learning Language from Ambiguous Perceptual Context,"Copyright
David Lieh-Chiang Chen"
39675124e4fe1be08f42bdd2e1e237e5a87839ba,"Adversarial Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation","Adversarial Collaboration: Joint Unsupervised
Learning of Depth, Camera Motion, Optical
Flow and Motion Segmentation
Anurag Ranjan1
Varun Jampani2
Kihwan Kim 2
Deqing Sun 2
Jonas Wulff 1
Michael J. Black1
Max Planck Institute for Intelligent Systems
NVIDIA Research
{aranjan, jwulff,
{vjampani, kihwank,"
39df6ca15f41e5a674ed8cd1654e699dbc8b8c11,Human tracking over camera networks: a review,"Hou et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:43
DOI 10.1186/s13634-017-0482-z
EURASIP Journal on Advances
in Signal Processing
R EV I E W
Human tracking over camera networks: a
review
Li Hou1,2,3*, Wanggen Wan1,3, Jenq-Neng Hwang4, Rizwan Muhammad1,3, Mingyang Yang1,3 and Kang Han1,3
Open Access"
39d900da87fa2f8987567d22a924fb7674f9be67,Generating Notifications for Missing Actions: Don't Forget to Turn the Lights Off!,"Generating Notifications for Missing Actions:
Don’t forget to turn the lights off!
Bilge Soran*, Ali Farhadi*†, Linda Shapiro*
*University of Washington
Allen Institute for Artificial Intelligence
{bilge, ali,
Figure 1: Our purpose is to issue notifications about missing actions given an unsegmented input stream of egocentric video.
For the latte making sequence above, our system recognizes the actions that happened so far, predicts the ongoing action,
reasons about missing actions and the associated cost, and generates notifications for the costly missing actions. In this figure,
the brackets refer to segmented action boundaries, the blue arrows show the prediction points and the graphs below show the
inter-action dependencies. The most recently completed action is marked in red, the predicted action is marked in blue, and
the missing action is marked in orange. In this example, the actor is about to miss an important action: steam milk, and a
reminder for that is given."
39d406df1823aad167a429f60ae8f1d3dc4250fa,Scaling for Multimodal 3D Object Detection,"Scaling for Multimodal 3D Object Detection
Andrej Karpathy
Stanford"
397400dd7c31e47f8dec20a742695abed297a150,An integrated vision-based architecture for home security system,"An Integrated Vision-based Architecture for Home
Security System
John See, Student Member, IEEE, and Sze-Wei Lee, Member, IEEE"
39b080aea9b342947058884ca25fb5bb1b8f6d66,Fully Automated and Highly Accurate Dense Correspondence for Facial Surfaces,"Fully Automated and Highly Accurate Dense
Correspondence for Facial Surfaces
C. Martin Grewe and Stefan Zachow
Mathematics for Life and Materials Sciences,
Zuse Institute Berlin, Germany
Fig. 1: Two facial expressions (a,b) from our database set into dense correspon-
dence using the proposed framework. High geometric and photometric details are
ccurately morphed between both expressions via a dense corresponding mesh."
39d08fa8b028217384daeb3e622848451809a422,Variational Approaches for Auto-Encoding Generative Adversarial Networks,"Variational Approaches for Auto-Encoding
Generative Adversarial Networks
Mihaela Rosca∗ Balaji Lakshminarayanan∗ David Warde-Farley
Shakir Mohamed
DeepMind"
3998c5aa6be58cce8cb65a64cb168864093a9a3e,Understanding head and hand activities and coordination in naturalistic driving videos,Intelligent Vehicles Symposium 2014
39fc0fe46ddf43f13073cbab077d981547889dc1,Using Gradient Features from Scale-invariant Keypoints on Face Recognition,"International Journal of Innovative
Computing, Information and Control
Volume 7, Number 4, April 2011
ICIC International c⃝2011 ISSN 1349-4198
pp. 1639{1649
USING GRADIENT FEATURES FROM SCALE-INVARIANT
KEYPOINTS ON FACE RECOGNITION
Shinfeng D. Lin, Jia-Hong Lin and Cheng-Chin Chiang
Department of Computer Science and Information Engineering
National Dong Hwa University
No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401, Taiwan
f david; bbmac;
Received November 2009; revised March 2010"
39dc2ce4cce737e78010642048b6ed1b71e8ac2f,Recognition of six basic facial expressions by feature-points tracking using RBF neural network and fuzzy inference system,"Recognition of Six Basic Facial Expressions by Feature-Points Tracking using
RBF Neural Network and Fuzzy Inference System
Hadi Seyedarabi*, Ali Aghagolzadeh **, Sohrab Khanmohammadi **
*Islamic Azad University of AHAR
**Elect. Eng. Faculty, Tabriz University, Tabriz, Iran"
39a76fdc4b2d4b9e8ef8f69a87d17ae930520acc,Occlusion-Aware Human Pose Estimation with Mixtures of Sub-Trees,"Occlusion-Aware Human Pose Estimation with
Mixtures of Sub-Trees
Ibrahim Radwan∗, Abhinav Dhall and Roland Goecke"
397fffa6f785762acb3cd3c96c4c6b65058b816f,Modeling mutual context of object and human pose in human-object interaction activities,"Modeling Mutual Context of Object and
Human Pose in Human-object Interaction
Activities
•  Bangpeng Yao
•  Li Fei-Fei
Presented by Sahil Shah"
3907d83f14ba9e2b8a93c3f02b04ca0b81901c4b,Semantic segmentation - using Convolutional Neural Networks and Sparse Dictionaries,"Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2017
Semantic segmentation
- using Convolutional Neural Networks
nd Sparse Dictionaries
Viktor Andersson"
391e52ac04408d3e6496614ffafd6ac89c1b6c45,Seeing 3D Chairs: Exemplar Part-Based 2D-3D Alignment Using a Large Dataset of CAD Models,"Seeing 3D chairs: exemplar part-based 2D-3D alignment
using a large dataset of CAD models
Mathieu Aubry1,∗ Daniel Maturana2 Alexei A. Efros3,∗ Bryan C. Russell4
Josef Sivic1,∗
INRIA 2Carnegie Mellon University
UC Berkeley
Intel Labs"
390e212d4a874d8d2256e55fe0dee9193e4c376a,Just in Time: Controlling Temporal Performance in Crowdsourcing Competitions,"Just in Time: Controlling Temporal Performance in
Crowdsourcing Competitions
Markus Rokicki
L3S Research Center,
Hannover, Germany
Electronics and Computer
Science, University of
Southampton, Southampton,
Sergej Zerr"
399ab5652908d99a5be1a664425f6463f67df2aa,Mechanisms of Diminished Attention to Eyes in Autism.,"Mechanisms of diminished attention to eyes in
utism
Jennifer M. Moriuchi, Emory University
Ami Klin, Emory University
Warren R Jones, Emory University
Journal Title: American Journal of Psychiatry
Volume: Volume 174, Number 1
Publisher: American Psychiatric Publishing | 2017-01-01, Pages 26-35
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1176/appi.ajp.2016.15091222
Permanent URL: https://pid.emory.edu/ark:/25593/s8mpz
Final published version: http://dx.doi.org/10.1176/appi.ajp.2016.15091222
Copyright information:
018 American Psychiatric Association
Accessed June 11, 2018 8:03 PM EDT"
397085122a5cade71ef6c19f657c609f0a4f7473,Using Segmentation to Predict the Absence of Occluded Parts,"GHIASI, FOWLKES: USING SEGMENTATION TO DETECT OCCLUSION
Using Segmentation to Predict the Absence
of Occluded Parts
Golnaz Ghiasi
Charless C. Fowlkes
Dept. of Computer Science
University of California
Irvine, CA"
39c8b34c1b678235b60b648d0b11d241a34c8e32,Learning to Deblur Images with Exemplars,"Learning to Deblur Images with Exemplars
Jinshan Pan∗, Wenqi Ren∗, Zhe Hu∗, and Ming-Hsuan Yang"
39bce1d5e4b31a555f12f0a44e92abcad73aab4f,"Explorer "" Here ' s looking at you , kid ""","""Here's looking at you, kid""
Citation for published version:
Marin-Jimenez, M, Zisserman, A & Ferrari, V 2011, ""Here's looking at you, kid"": Detecting people looking at
each other in videos. in Proceedings of the British Machine Vision Conference (BMVC): Dundee, September
011. BMVA Press, pp. 22.1-22.12. DOI: 10.5244/C.25.22
Digital Object Identifier (DOI):
0.5244/C.25.22
Link:
Link to publication record in Edinburgh Research Explorer
Document Version:
Peer reviewed version
Published In:
Proceedings of the British Machine Vision Conference (BMVC)
General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
nd / or other copyright owners and it is a condition of accessing these publications that users recognise and
bide by the legal requirements associated with these rights.
Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
ontent complies with UK legislation. If you believe that the public display of this file breaches copyright please"
3986161c20c08fb4b9b791b57198b012519ea58b,An Efficient Method for Face Recognition based on Fusion of Global and Local Feature Extraction,"International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-4 Issue-4, September 2014
An Efficient Method for Face Recognition based on
Fusion of Global and Local Feature Extraction
E. Gomathi, K. Baskaran"
3988ed2b900af26c07432d0f9f3c2679f3c532ac,Vision Meets Drones: A Challenge,"Vision Meets Drones: A Challenge
Pengfei Zhu, Longyin Wen, Xiao Bian, Haibin Ling and Qinghua Hu"
398ad0036b899aec04502c243dd129c1f3e4c21e,Object detection using voting spaces trained by few samples,"Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 12/17/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
ObjectdetectionusingvotingspacestrainedbyfewsamplesPeiXuMaoYeXueLiLishenPeiPengweiJiao"
3910b1cc849f999dc8a2c02a0313be32dd5d2b43,A Systematic Comparison of Deep Learning Architectures in an Autonomous Vehicle,"A Systematic Comparison of Deep Learning Architectures in an
Autonomous Vehicle
Michael Teti1†, William Edward Hahn1, Shawn Martin2, Christopher Teti3, and Elan Barenholtz1
such tasks, or an attempt
largely due to recent developments"
395978c1dee9fd75bbcb249e74ad6fb4d3c2b9fc,A Reliable Hybrid Technique for Human Face Detection,"Hakim A., Marsland S. and W. Guesgen H. (2010).
A RELIABLE HYBRID TECHNIQUE FOR HUMAN FACE DETECTION.
In Proceedings of the International Conference on Computer Vision Theory and Applications, pages 241-244
Copyright c(cid:13) SciTePress"
395dadff1eab9c8177f843326ec864567342eba5,Vision-Based People Detection System for Heavy Machine Applications,"Article
Vision-Based People Detection System for Heavy
Machine Applications
Vincent Fremont 1,*, Manh Tuan Bui 1, Djamal Boukerroui 1 and Pierrick Letort 2
Received: 12 October 2015; Accepted: 13 January 2016; Published: 20 January 2016
Academic Editor: Vittorio M. N. Passaro
Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7253,
Heudiasyc-CS 60 319, 60 203 Compiègne Cedex, France; (M.T.B.);
(D.B.)
Technical Center for the Mechanical Industry (CETIM), 60300 Senlis, France;
* Correspondence: Tel.: +33-344-237-917; Fax: +33-344-234-477"
39b0bce87eec467adfe5bebcfe628ff5bd397fc7,"R4-A.2: Rapid Similarity Prediction, Forensic Search & Retrieval in Video","R4-A.2: Rapid Similarity Prediction, Forensic
Search & Retrieval in Video
PARTICIPANTS
Venkatesh Saligrama
David Castañón
Ziming Zhang
Gregory Castañón
Yuting Chen
Marc Eder
Faculty/Staff
Institution
Title
Co-PI
Co-PI
Post-Doc
Graduate, Undergraduate and REU Students
Degree Pursued
Institution
Email
Month/Year of Graduation"
399a5f7500648462fd8cf1704dfaeaea9d560e7e,Spoof Detection for Finger-Vein Recognition System Using NIR Camera,"Article
Spoof Detection for Finger-Vein Recognition System
Using NIR Camera
Dat Tien Nguyen, Hyo Sik Yoon, Tuyen Danh Pham and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; (D.T.N.); (H.S.Y.);
(T.D.P.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 15 August 2017; Accepted: 27 September 2017; Published: 1 October 2017"
392c3cabe516c0108b478152902a9eee94f4c81e,Tiny images,"Computer Science and Artificial Intelligence Laboratory
Technical Report
MIT-CSAIL-TR-2007-024
April 23, 2007
Tiny images
Antonio Torralba, Rob Fergus, and William T. Freeman
m a s s a c h u s e t t s   i n s t i t u t e   o f   t e c h n o l o g y,   c a m b r i d g e ,   m a   0 213 9   u s a   —   w w w. c s a i l . m i t . e d u"
39e7ac344b17d97267ec80681aeded17e3e6d786,Joint Parsing of Cross-view Scenes with Spatio-temporal Semantic Parse Graphs,"Joint Parsing of Cross-view Scenes with Spatio-temporal Semantic Parse Graphs∗
Hang Qi1∗, Yuanlu Xu1∗, Tao Yuan1∗, Tianfu Wu2, Song-Chun Zhu1
Dept. Computer Science and Statistics, University of California, Los Angeles (UCLA)
{hangqi, tianfu
Dept. Electrical and Computer Engineering, NC State University"
39db2ff704cc30a7e94989de33ff4290ea4a6df1,Low-Cost Visual Feature Representations For Image Retrieval,"Low-Cost Visual Feature Representations For Image
Retrieval
Ramon F. Pessoa, William R. Schwartz, Jefersson A. dos Santos
Department of Computer Science
Universidade Federal de Minas Gerais (UFMG)
Belo Horizonte - Minas Gerais, Brazil, 31270-901
Email: {ramon.pessoa, william,"
39a19a687b3182054b30f36f627bc6875b09dbd3,A new boostrapping strategy for the AdaBoost-based face detector T.-J. Chin and D. Suter A new boostrapping strategy for the AdaBoost-based face detector,"Department of Electrical
Computer Systems Engineering
Technical Report
MECSE-13-2005
A new boostrapping strategy for the AdaBoost-based face
detector
T.-J. Chin and D. Suter"
39340257d9a478b3c3b736ad31df1c0a6a78c851,Parts-based object recognition seeded by frequency-tuned saliency for child detection in active safety,"Parts-based object recognition seeded by frequency-tuned saliency for
Child Detection in Active Safety
Shinko Y. Cheng, Jose Molineros, Yuri Owechko
HRL Laboratories, LLC
011 Malibu Canyon Road
Malibu CA 90265"
3964caa0a1d788eb30365972880f83b71df1ab21,Multi-Modal Obstacle Detection in Unstructured Environments with Conditional Random Fields,"Multi-Modal Obstacle Detection in Unstructured
Environments with Conditional Random Fields
Mikkel Kragh1 and James Underwood2"
39df4f8ad7add3863208a5f7b71e22ed1970ca58,Bayesian Supervised Dictionary learning‎,"Bayesian Supervised Dictionary learning
B. Babagholami-Mohamadabadi
A. Jourabloo
M. Zolfaghari
M.T. Manzuri-Shalmani
CE Dept.
Sharif University
Tehran, Iran
CE Dept.
Sharif University
Tehran, Iran
CE Dept.
Sharif University
Tehran, Iran
CE Dept.
Sharif University
Tehran, Iran"
397c395aed9d96aef064b9ceb9f0eae9421eb00a,An Evaluation of the Pedestrian Classification in a Multi-Domain Multi-Modality Setup,"Sensors 2015, 15, 13851-13873; doi:10.3390/s150613851
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
An Evaluation of the Pedestrian Classification in
Multi-Domain Multi-Modality Setup
Alina Miron 1,*, Alexandrina Rogozan 2, Samia Ainouz 2, Abdelaziz Bensrhair 2
nd Alberto Broggi 3
ISR Laboratory, University of Reading, Reading RG6 6AY, UK
INSA Rouen/LITIS laboratory - EA4108, Saint-Etienne du Rouvray 76801, France;
E-Mails: (A.R.); (S.A.);
(A.B.)
VisLab, University of Parma, Parco Area delle Scienze 181A, 43100 Parma, Italy;
E-Mail:
* Author to whom correspondence should be addressed; E-Mail:
Tel.: +44-118-378-7631.
Academic Editor: Vittorio M.N. Passaro
Received: 2 April 2015 / Accepted: 8 June 2015 / Published: 12 June 2015"
3933e323653ff27e68c3458d245b47e3e37f52fd,Evaluation of a 3 D-aided Pose Invariant 2 D Face Recognition System,"Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System
Xiang Xu, Ha A. Le, Pengfei Dou, Yuhang Wu, Ioannis A. Kakadiaris
{xxu18, hale4, pdou, ywu35,
Computational Biomedicine Lab
800 Calhoun Rd. Houston, TX, USA"
3903cbd56446436a4a3b8443c26c90fc1b69f5e0,Event driven software architecture for multi-camera and distributed surveillance research systems,"Event Driven Software Architecture for Multi-camera and Distributed
Surveillance Research Systems
Roberto Vezzani, Rita Cucchiara
University of Modena and Reggio Emilia - Italy"
3958db5769c927cfc2a9e4d1ee33ecfba86fe054,Describable Visual Attributes for Face Verification and Image Search,"Describable Visual Attributes for
Face Verification and Image Search
Neeraj Kumar, Student Member, IEEE, Alexander C. Berg, Member, IEEE,
Peter N. Belhumeur, and Shree K. Nayar, Member, IEEE"
99ced8f36d66dce20d121f3a29f52d8b27a1da6c,Organizing Multimedia Data in Video Surveillance Systems Based on Face Verification with Convolutional Neural Networks,"Organizing Multimedia Data in Video
Surveillance Systems Based on Face Verification
with Convolutional Neural Networks
Anastasiia D. Sokolova, Angelina S. Kharchevnikova, Andrey V. Savchenko
National Research University Higher School of Economics, Nizhny Novgorod, Russian
Federation"
994f7c469219ccce59c89badf93c0661aae34264,Model Based Face Recognition Across Facial Expressions,"Model Based Face Recognition Across Facial
Expressions
Zahid Riaz, Christoph Mayer, Matthias Wimmer, and Bernd Radig, Senior Member, IEEE
screens,  embedded  into  mobiles  and  installed  into  everyday
living  and  working  environments  they  become  valuable  tools
for human system interaction. A particular important aspect of
this  interaction  is  detection  and  recognition  of  faces  and
interpretation  of  facial  expressions.  These  capabilities  are
deeply  rooted  in  the  human  visual  system  and  a  crucial
uilding  block  for  social  interaction.  Consequently,  these
apabilities  are  an  important  step  towards  the  acceptance  of
many technical systems.
trees  as  a  classifier
lies  not  only"
9949ac42f39aeb7534b3478a21a31bc37fe2ffe3,Parametric Stereo for Multi-pose Face Recognition and 3D-Face Modeling,"Parametric Stereo for Multi-Pose Face Recognition and
D-Face Modeling
Rik Fransens, Christoph Strecha, Luc Van Gool
PSI ESAT-KUL
Leuven, Belgium"
9900be092f81547ad71e4124cd850048e1969063,3D Face Analysis for Facial Expression Recognition,"Author manuscript, published in ""20th International Conference on Pattern Recognition (ICPR 2010), Istanbul : Turquie (2010)"""
9958942a0b7832e0774708a832d8b7d1a5d287ae,The Sparse Matrix Transform for Covariance Estimation and Analysis of High Dimensional Signals,"The Sparse Matrix Transform for Covariance
Estimation and Analysis of High Dimensional
Signals
Guangzhi Cao*, Member, IEEE, Leonardo R. Bachega, and Charles A. Bouman, Fellow, IEEE"
99582ce8439dce17d9d6f74eb54fc5c89dbe06d9,"Hough Forests for Object Detection, Tracking, and Action Recognition","Hough Forests for Object Detection, Tracking,
nd Action Recognition
Juergen Gall Member, IEEE, Angela Yao, Nima Razavi, Luc Van Gool Member, IEEE, and
Victor Lempitsky"
99726ad232cef837f37914b63de70d8c5101f4e2,Facial Expression Recognition Using PCA & Distance Classifier,"International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014                                                                                                      570
ISSN 2229-5518
Facial Expression Recognition Using PCA & Distance Classifier
AlpeshKumar Dauda*
Dept. of Electronics & Telecomm. Engg.
Ph.D Scholar,VSSUT
BURLA, ODISHA, INDIA
Nilamani Bhoi
Reader in Dept. of Electronics & Telecomm. Engg.
VEER SURENDRA SAI UNIVERSITY OF
TECHNOLOGY
BURLA, ODISHA, INDIA"
998e829cc72080c88a780f322d6bf7ab78dbd743,Towards Real-Time Multiresolution Face/Head Detection,"´AAAAAAAAAAAAAAAAAAAAAAAA
´AAAAAAAAAAAAAAAAAAAAAAAA
ART´ICULO
Towards Real-Time Multiresolution Face/Head
Detection*
M. Castrill´on-Santana, H. Kruppa**, C. Guerra-Artal, M. Hern´andez-Tejera
Universidad de Las Palmas de Gran Canaria
Instituto Universitario de Sistemas Inteligentes
y Aplicaciones Num´ericas en Ingenier´ıa
Edificio Central del Parque Cient´ıfico-Tecnol´ogico
Campus Universitario de Tafira
5017 Las Palmas - Espa˜na"
99a3a4151abbc2e5d33d4beec88dc55a057df299,Topological analysis of discrete scalar data,"TOPOLOGICAL ANALYSIS OF
DISCRETE SCALAR DATA
DAVID GÜNTHER
DISSERTATION ZUR ERLANGUNG DES GRADES
DES DOKTORS DER INGENIEURWISSENSCHAFTEN
DER NATURWISSENSCHAFTLICH-TECHNISCHEN FAKULTÄTEN
DER UNIVERSITÄT DES SAARLANDES
SAARBRÜCKEN, 2012"
99e1fd6a378209d48c12a70229e4f6d4d83f4417,Modular Vehicle Control for Transferring Semantic Information Between Weather Conditions Using GANs,"Modular Vehicle Control for Transferring Semantic
Information Between Weather Conditions Using
Patrick Wenzel1,2∗
, Qadeer Khan1,2∗
, Daniel Cremers1,2, and Laura Leal-Taixé1
Technical University of Munich
Artisense"
99e1ab1fb08af137cad6efbc0454c6e1e68dca51,3D human action recognition and motion analysis using selective representations,"D HUMAN ACTION RECOGNITION
AND MOTION ANALYSIS USING
SELECTIVE REPRESENTATIONS
D LEIGHTLEY
PhD  2015"
99f565df31ef710a2d8a1b606e3b7f5f92ab657c,Geometry Score: A Method For Comparing Generative Adversarial Networks,"Geometry Score: A Method For Comparing Generative Adversarial Networks
Valentin Khrulkov 1 Ivan Oseledets 1 2"
99b7ff97ad54308b816e47d9bbf6704b787b8f52,Causal Flow,"Causal Flow
Yuya Yamashita, Tatsuya Harada, Member, IEEE, and Yasuo Kuniyoshi, Member, IEEE"
99df887213407f612c1f5df502b637709a29cd6b,Ensembles of exemplar-SVMs for video face recognition from a single sample per person,"Ensembles of Exemplar-SVMs for Video Face Recognition from a
Single Sample Per Person
Saman Bashbaghi, Eric Granger, Robert Sabourin
Guillaume-Alexandre Bilodeau
Laboratoire d’imagerie de vision et d’intelligence artificielle
LITIV Lab
École de technologie supérieure, Université du Québec, Montréal, Canada
Polytechnique Montréal, Montréal, Canada
{eric.granger,"
99cb716cd7687db8ef3d0403c85b1ab90869800f,Face Recognition under Pose and Expresivity Variation Using Thermal and Visible Images,"FACE RECOGNITION UNDER POSE AND EXPRESIVITY
VARIATION USING THERMAL AND VISIBLE IMAGES
Florin Marius Pop, Mihaela Gordan, Camelia Florea, Aurel Vlaicu
Centre for Multimedia Technologies and Distance Education
Technical University of Cluj-Napoca, Romania
{Mihaela.Gordan, Camelia.Florea,"
9993f1a7cfb5b0078f339b9a6bfa341da76a3168,"A Simple, Fast and Highly-Accurate Algorithm to Recover 3D Shape from 2D Landmarks on a Single Image","JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
A Simple, Fast and Highly-Accurate Algorithm to
Recover 3D Shape from 2D Landmarks on a Single
Image
Ruiqi Zhao, Yan Wang, Aleix M. Martinez"
992ebd81eb448d1eef846bfc416fc929beb7d28b,Exemplar-Based Face Parsing Supplementary Material,"Exemplar-Based Face Parsing
Supplementary Material
Brandon M. Smith Li Zhang
Jonathan Brandt Zhe Lin Jianchao Yang
University of Wisconsin–Madison
Adobe Research
http://www.cs.wisc.edu/~lizhang/projects/face-parsing/
. Additional Selected Results
Figures 1 and 2 supplement Figure 4 in our paper. In all cases, the input images come from our Helen [1] test set. We note
that our algorithm generally produces accurate results, as shown in Figures 1. However, our algorithm is not perfect and makes
mistakes on especially challenging input images, as shown in Figure 2.
In our view, the mouth is the most challenging region of the face to segment: the shape and appearance of the lips vary
widely from subject to subject, mouths deform significantly, and the overall appearance of the mouth region changes depending
on whether the inside of the mouth is visible or not. Unusual mouth expressions, like those shown in Figure 2, are not repre-
sented well in the exemplar images, which results in poor label transfer from the top exemplars to the test image. Despite these
hallenges, our algorithm generally performs well on the mouth, with large segmentation errors occurring infrequently.
. Comparisons with Liu et al. [2]
The scene parsing approach by Liu et al. [2] shares sevaral similarities with our work. Like our approach, they propose a
nonparametric system that transfers labels from exemplars in a database to annotate a test image. This begs the question, Why
not simply apply the approach from Liu et al. to face images?"
998b7c8608fb9f80177ce54230761d8c3d82b2da,SHEF-Multimodal: Grounding Machine Translation on Images,"Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 660–665,
Berlin, Germany, August 11-12, 2016. c(cid:13)2016 Association for Computational Linguistics"
9941a408ae031d1254bbc0fe7a63fac5f85fe347,Neural Processes,"Neural Processes
Marta Garnelo 1 Jonathan Schwarz 1 Dan Rosenbaum 1 Fabio Viola 1 Danilo J. Rezende 1 S. M. Ali Eslami 1
Yee Whye Teh 1"
9963af1199679e176f0836e6d63572b3a69fa7da,23 Generating Facial Expressions with Deep Belief Nets,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,500
08,000
.7 M
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact"
998f2cfb4a3bac6b38d8a4a96a3827e06a0eaadb,Geo-Supervised Visual Depth Prediction,"Geo-Supervised Visual Depth Prediction
Xiaohan Fei
Alex Wong
Stefano Soatto"
99c20eb5433ed27e70881d026d1dbe378a12b342,Semi-Supervised and Unsupervised Data Extraction Targeting Speakers: From Speaker Roles to Fame?,"ISCA Archive
http://www.isca-speech.org/archive
First Workshop on Speech, Language
nd Audio in Multimedia
Marseille, France
August 22-23, 2013
Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013."
99d3bc6d62675297693e5e57ff0770e7017f9637,Hierarchical Invariant Feature Learning with Marginalization for Person Re-Identification,"Hierarchical Invariant Feature Learning with
Marginalization for Person Re-Identification
Rahul Rama Varior, Student Member, IEEE, Gang Wang, Member, IEEE"
9990e0b05f34b586ffccdc89de2f8b0e5d427067,Auto - Optimized Multimodal Expression Recognition Framework Using 3 D Kinect Data for ASD Therapeutic Aid,"International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013
Auto-Optimized Multimodal Expression Recognition
Framework Using 3D Kinect Data for ASD Therapeutic
Amira E. Youssef, Sherin F. Aly, Ahmed S. Ibrahim, and A. Lynn Abbott
regarding
emotion
recognize"
99d7678039ad96ee29ab520ff114bb8021222a91,Political image analysis with deep neural networks,"Political image analysis with deep neural
networks
L. Jason Anastasopoulos∗
Shiry Ginosar§.
Dhruvil Badani†
Jake Ryland Williams¶
Crystal Lee‡
November 28, 2017"
9922a2ec8dfb307bb1fcb334098fd912e23b3bab,Particle-based pedestrian path prediction using LSTM-MDL models,"Particle-based Pedestrian Path Prediction using LSTM-MDL Models
Ronny Hug∗, Stefan Becker∗, Wolfgang H¨ubner∗ and Michael Arens∗"
99ae92bae7c873432a6a60238b33d494bbae13eb,Recognition of Human Pose from Images Based on Graph Spectra,"RECOGNITION OF HUMAN POSE FROM IMAGES BASED ON GRAPH SPECTRA
A. A. Zakharov a *, A. E. Barinov a, A. L. Zhiznyakov a
Murom Institut Vladimir State University, CAD Department, , 602264, Orlovskaya 23, Murom, Russian Federation, aa-
Commission VI, WG VI/4
KEY WORDS: Image Recognition, Human Pose, Spectral Graph Matching"
99227909e5733d76b0d50fc3fab975ab7a43fce3,A Cascaded Inception of Inception Network with Attention Modulated Feature Fusion for Human Pose Estimation,"A Cascaded Inception of Inception Network with Attention Modulated Feature
Fusion for Human Pose Estimation
Submission ID: 2065"
522fab628aab972f39835521e31564b4b6c64fe5,Vehicle Classification on Low-resolution and Occluded images: A low-cost labeled dataset for augmentation,"Vehicle Classification on Low-resolution and
Occluded images: A low-cost labeled dataset for
ugmentation
Anonymous Author(s)
Affiliation
Address
email"
52012b4ecb78f6b4b9ea496be98bcfe0944353cd,Using Support Vector Machine and Local Binary Pattern for Facial Expression Recognition,"JOURNAL OF COMPUTATION IN BIOSCIENCES AND ENGINEERING
Journal homepage: http://scienceq.org/Journals/JCLS.php
Research Article
Using  Support  Vector  Machine  and  Local  Binary  Pattern  for  Facial  Expression
Recognition
Open Access
Ayeni Olaniyi Abiodun 1, Alese Boniface Kayode1, Dada Olabisi Matemilayo2
1. Department of Computer Science, Federal University Technology Akure, PMB 704, Akure, Nigeria.
. Department of computer science, Kwara state polytechnic Ilorin, Kwara-State, Nigeria.
. *Corresponding author:  Ayeni Olaniyi Abiodun  Mail Id:
Received:    September 22, 2015, Accepted: December 14, 2015, Published: December 14, 2015."
5293960de53b0118ef3c8b410d27b23b9cec9bf7,Online Multi-Object Tracking with Dual Matching Attention Networks,"Online Multi-Object Tracking with
Dual Matching Attention Networks
Ji Zhu1,2, Hua Yang1(cid:63), Nian Liu3, Minyoung Kim4,
Wenjun Zhang1, and Ming-Hsuan Yang5,6
Northwestern Polytechnical University 4Massachusetts Institute of Technology
Shanghai Jiao Tong University 2Visbody Inc
5University of California, Merced 6Google Inc
{jizhu1023,"
527cc8cd2af06a9ac2e5cded806bab5c3faad9cf,Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder,"Abnormal Event Detection in Videos
using Spatiotemporal Autoencoder
Yong Shean Chong
Yong Haur Tay
Lee Kong Chian Faculty of Engineering Science,
Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia.
January 9, 2017"
529e2ce6fb362bfce02d6d9a9e5de635bde81191,Normalization of Face Illumination Based on Large-and Small-Scale Features,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
> TIP-05732-2009<
Normalization of Face Illumination Based
on Large- and Small- Scale Features
Xiaohua Xie, Wei-Shi Zheng, Member, IEEE, Jianhuang Lai*, Member, IEEE
Pong C. Yuen, Member, IEEE, Ching Y. Suen, IEEE Fellow"
52887969107956d59e1218abb84a1f834a314578,Travel Recommendation by Mining People Attributes and Travel Group Types From Community-Contributed Photos,"Travel Recommendation by Mining People
Attributes and Travel Group Types From
Community-Contributed Photos
Yan-Ying Chen, An-Jung Cheng, and Winston H. Hsu, Senior Member, IEEE"
52f71cc9c312aa845867ad1695c25a6d1d94ba0e,The invariance assumption in process-dissociation models: an evaluation across three domains.,"Journal of Experimental Psychology: General
015, Vol. 144, No. 1, 198 –221
0096-3445/15/$12.00
© 2014 American Psychological Association
http://dx.doi.org/10.1037/xge0000044
The Invariance Assumption in Process-Dissociation Models:
An Evaluation Across Three Domains
Karl Christoph Klauer, Kerstin Dittrich,
nd Christine Scholtes
Albert-Ludwigs-Universität Freiburg
Andreas Voss
Universität Heidelberg
The class of process-dissociation models, a subset of the class of multinomial processing-tree models, is
one of the best understood classes of models used in experimental psychology. A number of prominent
debates have addressed fundamental assumptions of process-dissociation models, leading, in many cases,
to conceptual clarifications and extended models that address identified issues. One issue that has so far
defied empirical clarification is how to evaluate the invariance assumption for the dominant process.
Violations of the invariance assumption have, however, the potential to bias conventional process-
dissociation analyses in different ways, and they can cause misleading theoretical interpretations and
onclusions. Based on recent advances in multinomial modeling, we propose new approaches to examine"
52e0c03dd661d032865dfedd91ca49542ccfc2a3,Improving Human Action Recognition Using Score Distribution and Ranking,"Improving Human Action Recognition
using Score Distribution and Ranking
Minh Hoai1,2 and Andrew Zisserman1
Visual Geometry Group, Dept. Engineering Science, University of Oxford.
Department of Computer Science, Stony Brook University."
523abe29cc278f9daf03fe74d1e09d9e2711b73e,Facial Recognition System: A Review,"Debolina S. De, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.10, October- 2015, pg. 7-11
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IJCSMC, Vol. 4, Issue. 10, October 2015, pg.7 – 11
REVIEW ARTICLE
Facial Recognition System: A Review
Debolina S. De
Computer Engineering Department, Mukesh Patel School of Technology Management and Engineering, India"
5251cb5349e37495b3ca29b06e6ed7422f12d126,A Pedestrian Detector Using Histograms of Oriented Gradients and a Support Vector Machine Classifier,"Proceedings of the 2007 IEEE
Intelligent Transportation Systems Conference
Seattle, WA, USA, Sept. 30 - Oct. 3, 2007
MoD2.2
-4244-1396-6/07/$25.00 ©2007 IEEE."
524634e1055637b7c22b29e7e36437f4ba80df04,Thermal to Visible Synthesis of Face Images Using Multiple Regions,"Thermal to Visible Synthesis of Face Images using Multiple Regions
Benjamin S. Riggan1,*
Nathaniel J. Short1,2
Shuowen Hu1
U.S. Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, MD 20783
Booz Allen Hamilton, 8283 Grennsboro Dr., McLean, VA 22102
*Corresponding author:"
52884a0c7913be319c1a2395f009cea47b03f128,Explorer Learning Grounded Meaning Representations with Autoencoders,"Learning Grounded Meaning Representations with Autoencoders
Citation for published version:
Silberer, C & Lapata, M 2014, 'Learning Grounded Meaning Representations with Autoencoders'. in
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Baltimore, Maryland, pp. 721-732.
Link:
Link to publication record in Edinburgh Research Explorer
Document Version:
Publisher final version (usually the publisher pdf)
Published In:
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers)
General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
nd / or other copyright owners and it is a condition of accessing these publications that users recognise and
bide by the legal requirements associated with these rights.
Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
ontent complies with UK legislation. If you believe that the public display of this file breaches copyright please
ontact providing details, and we will remove access to the work immediately and"
52b6df1fe810d36fd615eb7c47aa1fd29376e769,Graph Mining for Object Tracking in Videos,"Graph Mining for Object Tracking in Videos
Fabien Diot, Elisa Fromont, Baptiste Jeudy, Emmanuel Marilly, Olivier
Martinot
To cite this version:
Fabien Diot, Elisa Fromont, Baptiste Jeudy, Emmanuel Marilly, Olivier Martinot. Graph
Mining for Object Tracking in Videos. European Conference on Machine Learning and Prin-
iples and Practice of Knowledge Discovery in Databases, Sep 2012, Bristol, United Kingdom.
Springer, LNCS (LNAI 6321), pp.394-409, 2012. <hal-00714705v2>
HAL Id: hal-00714705
https://hal.archives-ouvertes.fr/hal-00714705v2
Submitted on 20 Sep 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,"
521120c3907677e17708c17c5b6bab9087e61c5b,"l2, 1-Norm Regularized Discriminative Feature Selection for Unsupervised Learning","(cid:2)2,1-Norm Regularized Discriminative Feature
Selection for Unsupervised Learning
Yi Yang1, Heng Tao Shen1, Zhigang Ma2, Zi Huang1, Xiaofang Zhou1
School of Information Technology & Electrical Engineering, The University of Queensland.
Department of Information Engineering & Computer Science, University of Trento.
yangyi {huang,"
5223f3485b96bffe7dd4b3aa71e63fd2b049fcf0,Is the Pedestrian going to Cross? Answering by 2D Pose Estimation,"Is the Pedestrian going to Cross? Answering by 2D Pose Estimation
Zhijie Fang and Antonio M. L´opez"
52417b0406886154f0b4e2343ad6ac18c0484ec4,Ecological legacies of civil war: 35-year increase in savanna tree cover following wholesale large-mammal declines,"Journal of Ecology 2016, 104, 79–89
doi: 10.1111/1365-2745.12483
Ecological legacies of civil war: 35-year increase in
savanna tree cover following wholesale large-mammal
declines
Joshua H. Daskin1*, Marc Stalmans2 and Robert M. Pringle1
Department of Ecology and Evolutionary Biology, 106A Guyot Hall, Princeton University Princeton, NJ 08540, USA;
nd 2Department of Scientific Services, Gorongosa National Park, Sofala Province, Mozambique
Summary
. Large mammalian herbivores (LMH) exert strong effects on plants in tropical savannas, and
many wild LMH populations are declining. However, predicting the impacts of these declines on
vegetation structure remains challenging.
. Experiments suggest that tree cover can increase rapidly following LMH exclusion. Yet it is
unclear whether these results scale up to predict ecosystem-level impacts of LMH declines, which
often alter fire regimes, trigger compensatory responses of other herbivores and accompany anthro-
pogenic land-use changes. Moreover, theory predicts that grazers and browsers should have oppos-
ing effects on tree cover, further complicating efforts to forecast the outcomes of community-wide
declines.
. We used the near-extirpation of grazing and browsing LMH from Gorongosa National Park dur-
ing the Mozambican Civil War (1977–1992) as a natural experiment to test whether megafaunal col-"
52ed30920f2f96970c4f79d6768436ed855dad42,Active image pair selection for continuous person re-identification,"ACTIVE IMAGE PAIR SELECTION FOR CONTINUOUS PERSON RE-IDENTIFICATION
Abir Das, Rameswar Panda, Amit Roy-Chowdhury
Electrical and Computer Engineering Department, University of California, Riverside, USA"
52258ec5ec73ce30ca8bc215539c017d279517cf,Recognizing Faces with Expressions: Within-class Space and Between-class Space,"Recognizing Faces with Expressions: Within-class Space and Between-class Space
Department of Computer Science and Engineering, Zhejang University, Hangzhou 310027,P.R.China
Email:
Yu  Bing      Chen  Ping      Jin  Lianfu"
526ce11a6c80716fca69bdc111f32dfbe045e400,A Survey on Dataset Recognition of 3 D Face with Missing Parts,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611
A Survey on Dataset Recognition of 3D Face with
Missing Parts
Madhura Patil
ME Student, Department of Computer Engineering, Sinhgad Academy of Engg. Pune, Maharashtra, India
possibly
recognition.3D
recognization
methodology"
52969cdd2c5eaccb534fe1296a61517b7ec42a54,Human Identification based on Ear Recognition,"Human Identification based on Ear Recognition
S. Gangaram1, and S. Viriri1,2"
526ce5c72af5e1f93b8029a26e2eed7d1ac009f5,0 Constructing Kernel Machines in the Empirical Kernel Feature Space,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
5265be9c7b8b22f4e06a01736bbedf171caee74e,Covariance of Motion and Appearance Featuresfor Spatio Temporal Recognition Tasks,"Covariance of Motion and Appearance Features
for Human Action and Gesture Recognition
Subhabrata Bhattacharya, Nasim Souly and Mubarak Shah"
524890eef6beaeb2e206c7b1bf51b58298eb55ec,Florian et al_ICMCSSE 2012_3,"Efficient and Effective Gabor Feature
Representation for Face Detection
Yasuomi D. Sato, Yasutaka Kuriya"
527ed756eba3bc77eb58d22d4cfe27da04d3bbbb,Adaptive skew-sensitive fusion of ensembles and their application to face re-identification,"Adaptive Skew-Sensitive Fusion of Ensembles and
their Application to Face Re-Identification
Miguel De-la-Torre∗†, Eric Granger∗, Robert Sabourin∗
´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montr´eal, Canada
Centro Universitario de Los Valles, Universidad de Guadalajara, Ameca, M´exico"
52144c6d20ddea70e59514c2aa9ec7dc801e5c5e,An Investigation of Face Recognition Characteristics Using PCA and ICA,"Yundi Fu et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.2, February- 2014, pg. 110-123
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IJCSMC, Vol. 3, Issue. 2, February 2014, pg.110 – 123
RESEARCH ARTICLE
An Investigation of Face Recognition
Characteristics Using PCA and ICA
Yundi Fu1, Yongli Cao1, Arun Kumar Sangaiah2
Department of Software Engineering, University of Electronic Science and Technology, China
School of Computing Science and Engineering, VIT University, Vellore, India"
529341eb910ca5125b4aa6aa83bfc5fc8bf44fe3,V&L Net 2014 The 3rd Annual Meeting Of The EPSRC Network On Vision & Language and The 1st Technical Meeting of the European Network on Integrating Vision and Language,"V&LNet2014The3rdAnnualMeetingOfTheEPSRCNetworkOnVision&LanguageandThe1stTechnicalMeetingoftheEuropeanNetworkonIntegratingVisionandLanguageAWorkshopofthe25thInternationalConferenceonComputationalLinguistics(COLING2014)ProceedingsAugust23,2014Dublin,Ireland"
529baf1a79cca813f8c9966ceaa9b3e42748c058,Triangle wise Mapping Technique to Transform one Face Image into Another Face Image,"Triangle Wise Mapping Technique to Transform one Face Image into Another Face Image
{tag}                                                                           {/tag}
International Journal of Computer Applications
© 2014 by IJCA Journal
Volume 87 - Number 6
Year of Publication: 2014
Authors:
Rustam Ali Ahmed
Bhogeswar Borah
10.5120/15209-3714
{bibtex}pxc3893714.bib{/bibtex}"
527d596a56aa238dfc450c3ebfdae31e82c6c175,Face Detection Methods,"Face Detection Methods
ZYAD SHAABAN
Department of Information Technology
College of Computers and Information Technology
University of Tabuk
Tabuk 71491
KINGDOM OF SAUDI ARABIA"
5239001571bc64de3e61be0be8985860f08d7e7e,Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling,"SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2016
Deep Appearance Models: A Deep Boltzmann
Machine Approach for Face Modeling
Chi Nhan Duong, Student, IEEE, Khoa Luu, Member, IEEE,
Kha Gia Quach, Student, IEEE, Tien D. Bui, Senior Member, IEEE"
558c587373e2ea44898f70de7858da71aa217b8d,Cross-Lingual Image Caption Generation,"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1780–1790,
Berlin, Germany, August 7-12, 2016. c(cid:13)2016 Association for Computational Linguistics"
555488f1da920bb1a06b4d19ff687805993eb7fb,Finding Speaker Face Region by Audiovisual Correlation,"Author manuscript, published in ""Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications - M2SFA2
008, Marseille : France (2008)"""
554b53f6e5e37d0f8c8eade1a962b39ce591f6ae,"COCO-CN for Cross-Lingual Image Tagging, Captioning and Retrieval","COCO-CN for Cross-Lingual Image Tagging, Captioning and
Retrieval
Xirong Li, Xiaoxu Wang, Chaoxi Xu, Weiyu Lan, Qijie Wei, Gang Yang, Jieping Xu
Key Lab of Data Engineering and Knowledge Engineering, Renmin University of China
Multimedia Computing Lab, Renmin University of China"
55ea0c775b25d9d04b5886e322db852e86a556cd,DOCK: Detecting Objects by transferring Common-sense Knowledge,"DOCK: Detecting Objects
y transferring Common-sense Knowledge
Santosh Divvala2,3[0000−0003−4042−5874], Ali Farhadi2,3[0000−0001−7249−2380], and
Krishna Kumar Singh1,3[0000−0002−8066−6835],
Yong Jae Lee1[0000−0001−9863−1270]
University of California, Davis 2University of Washington 3Allen Institute for AI
https://dock-project.github.io"
554b9478fd285f2317214396e0ccd81309963efd,Spatio-Temporal Action Localization For Human Action Recognition in Large Dataset,"Spatio-Temporal Action Localization For Human Action
Recognition in Large Dataset
Sameh MEGRHI1, Marwa JMAL 2, Azeddine BEGHDADI1 and Wided Mseddi1,2
L2TI, Institut Galil´ee, Universit´e Paris 13, France;
SERCOM, Ecole Polytechnique de Tunisie"
5582aafd943f2b67805cdb4aba9e2f288dfe0ca8,"Human Object Sketches: Datasets, Descriptors, Computational Recognition and 3d Shape Retrieval","Human Object Sketches:
Datasets, Descriptors, Computational
Recognition and 3d Shape Retrieval
vorgelegt von
Mathias Eitz, Dipl.-Inf., M.Eng.
us Friedrichshafen
von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin
zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften
– Dr.-Ing. –
genehmigte Dissertation
Promotionsausschuss:
Vorsitzender: Prof. Dr. Oliver Brock
Gutachter: Prof. Dr. Marc Alexa
Gutachter: Prof. Tamy Boubekeur, PhD
Tag der wissenschaftlichen Aussprache: 07.12.2012
Berlin 2012"
558613d96d7c125c00eae0c58c56ee6983208fd5,Identification of Unmodeled Objects from Symbolic Descriptions,"Identification of Unmodeled Objects from Symbolic Descriptions*
Andrea Baisero, Stefan Otte, Peter Englert and Marc Toussaint"
550edcdc27aff4e7ea8807356a265a0031434a49,Fully Convolutional Attention Localization Networks: Efficient Attention Localization for Fine-Grained Recognition,"Fine-Grained Recognition with Automatic and Efficient Part Attention
Xiao Liu, Tian Xia, Jiang Wang, Yi Yang, Feng Zhou and Yuanqing Lin
Baidu Research
{liuxiao12,xiatian,wangjiang03, yangyi05, zhoufeng09,"
55c68c1237166679d2cb65f266f496d1ecd4bec6,Learning to score the figure skating sports videos,"Learning to Score Figure Skating Sport Videos
Chengming Xu, Yanwei Fu, Zitian Chen,Bing Zhang, Yu-Gang Jiang, Xiangyang Xue"
55c22f9c8f76b40793a8473248873f726abd8ce9,Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks,"Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks
Jun-Yan Zhu∗
Taesung Park∗
Berkeley AI Research (BAIR) laboratory, UC Berkeley
Phillip Isola
Alexei A. Efros
Figure 1: Given any two unordered image collections X and Y , our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses
from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection
of paintings of famous artists, our method learns to render natural photographs into the respective styles."
558c4917dc9a1d34f62c0ab713b1b9a37ad04853,Action Recognition Using Multilevel Features and Latent Structural SVM,"Action Recognition Using Multilevel Features and
Latent Structural SVM
Xinxiao Wu, Dong Xu, Member, IEEE, Lixin Duan, Jiebo Luo, Fellow, IEEE, and Yunde Jia, Member, IEEE"
55dcaee65936583846e8c4fa36589df066ebadfa,Learning to Relate Literal and Sentimental Descriptions of Visual Properties,"Atlanta, Georgia, 9–14 June 2013. c(cid:13)2013 Association for Computational Linguistics
Proceedings of NAACL-HLT 2013, pages 416–425,"
555222f2ad6dae447eef04f96fa40c1b8a397150,CaloriNet: From silhouettes to calorie estimation in private environments,"CaloriNet: From silhouettes to calorie estimation in private
environments
Alessandro Masullo∗
Tilo Burghardt
Victor Ponce-López
Dima Damen
Majid Mirmehdi
Sion Hannuna
June 22, 2018"
5502dfe47ac26e60e0fb25fc0f810cae6f5173c0,Affordance Prediction via Learned Object Attributes,"Affordance Prediction via Learned Object Attributes
Tucker Hermans
James M. Rehg
Aaron Bobick"
5582bebed97947a41e3ddd9bd1f284b73f1648c2,Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization,"Visual Explanations from Deep Networks via Gradient-based Localization
Grad-CAM: Why did you say that?
Ramprasaath R. Selvaraju
Abhishek Das
Devi Parikh
Ramakrishna Vedantam
Dhruv Batra
Virginia Tech
Michael Cogswell
{ram21, abhshkdz, vrama91, cogswell, parikh,
(a) Original Image
(b) Guided Backprop ‘Cat’
(c) Grad-CAM for ‘Cat’
(d) Guided Grad-CAM ‘Cat’
(e) Occlusion Map ‘Cat’
(f) ResNet Grad-CAM ‘Cat’
(g) Original Image
(h) Guided Backprop ‘Dog’
(i) Grad-CAM for ‘Dog’
(l) ResNet Grad-CAM ‘Dog’"
5556234869c36195ffdcd29349e5dcdf695023e9,Minimum Distance between Pattern Transformation Manifolds: Algorithm and Applications,"JULY 2009
Minimum Distance between
Pattern Transformation Manifolds:
Algorithm and Applications
Effrosyni Kokiopoulou, Student Member, IEEE, and Pascal Frossard, Senior Member, IEEE"
55ef8c3c28e2afda486d8471205204927127c605,Multiview Alignment Hashing for Efficient Image Search,"Multiview Alignment Hashing for Efficient Image
Search
Li Liu, Mengyang Yu, Student Member, IEEE, and Ling Shao, Senior Member, IEEE"
5531e728850185b80835a78db2e4fd23e288f359,Towards Reading Hidden Emotions: A comparative Study of Spontaneous Micro-expression Spotting and Recognition Methods,"Reading Hidden Emotions: Spontaneous
Micro-expression Spotting and Recognition
Xiaobai Li, Student Member, IEEE, Xiaopeng Hong, Member, IEEE, Antti Moilanen, Xiaohua Huang, Student
Member, IEEE, Tomas Pfister, Guoying Zhao, Senior Member, IEEE, and Matti Pietik¨ainen, Fellow, IEEE"
5520acfa1f4e678f1abbaab67ec76e903c3d3bdc,SALSA: A Novel Dataset for Multimodal Group Behavior Analysis,"SALSA: A Novel Dataset for Multimodal Group
Behavior Analysis
Xavier Alameda-Pineda, Jacopo Staiano, Ramanathan Subramanian, Member, IEEE, Ligia Batrinca,
Elisa Ricci, Member, IEEE, Bruno Lepri, Oswald Lanz, Member, IEEE, Nicu Sebe, Senior Member, IEEE"
558719ec858120908ef40b27a5d32904a68f6dd9,Toward an Automatic Evaluation of Retrieval Performance with Large Scale Image Collections,"Towards an Automatic Evaluation of Retrieval Performance
with Large Scale Image Collections
Adrian Popescu1, Eleftherios Spyromitros-Xioufis2, Symeon Papadopoulos2, Hervé Le
Borgne1, Ioannis Kompatsiaris2
CEA, LIST, 91190 Gif-sur-Yvette, France,
CERTH-ITI, Thermi-Thessaloniki, Greece,"
559295770dc2e2e3a1348df31ac5c3f3e66f1764,Generating Multiple Hypotheses for Human 3D Pose Consistent with 2D Joint Detections,"Generating Multiple Hypotheses for Human 3D Pose Consistent with 2D Joint Detections
Johns Hopkins University
Johns Hopkins University
Alan L. Yuille
Baltimore, USA
Ehsan Jahangiri
Baltimore, USA"
551fedfeaf55e3f7a7cf19d2b21f1a56f8cbe9f6,Egocentric Vision-based Future Vehicle Localization for Intelligent Driving Assistance Systems,"Egocentric Vision-based Future Vehicle Localization
for Intelligent Driving Assistance Systems
Yu Yao1∗, Mingze Xu2∗, Chiho Choi3, David J. Crandall2, Ella M. Atkins1, and Behzad Dariush3"
55a158f4e7c38fe281d06ae45eb456e05516af50,Simile Classifiers for Face Classification,"The 22nd International Conference on Computer Graphics and Vision
GraphiCon’2012"
55cad1f4943018459b761f89afd9292d347610f2,Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz,
5543224d6f8e22e7eaabfcbc4bed9e8a9451e3f8,Automatische Bildfolgenanalyse mit statistischen Mustererkennungsverfahren,"Automatische Bildfolgenanalyse
mit statistischen
Mustererkennungsverfahren
Vom Fachbereich Elektrotechnik
der Gerhard-Mercator-Universit¨at Duisburg
zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
genehmigte Dissertation
Dipl.-Ing. Stefan Eickeler
us Duisburg
Referent: Prof. Dr. Gerhard Rigoll
Korreferent: Prof. Dr. Martin Reiser
Tag der m¨undlichen Pr¨ufung: 5. November 2001"
5550a6df1b118a80c00a2459bae216a7e8e3966c,A perusal on Facial Emotion Recognition System ( FERS ),"ISSN: 0974-2115
www.jchps.com                                                                       Journal of Chemical and Pharmaceutical Sciences
A perusal on Facial Emotion Recognition System (FERS)
School of Information Technology and Engineering, VIT University, Vellore, 632014, India
Krithika L.B
*Corresponding author: E-Mail:"
555b332252522fce0f31b0c0b7630cf4f36ba0a5,Face processing in Williams syndrome and Autism,"Face processing in Williams syndrome and Autism
Deborah Michelle Riby
Department of Psychology,
University of Stirling"
55ba5e4c07f6ecf827bfee04e96de35a170f7485,This Dissertation entitled MODELING THE HUMAN FACE THROUGH MULTIPLE VIEW THREE-DIMENSIONAL STEREOPSIS: A SURVEY AND COMPARATIVE ANALYSIS OF FACIAL RECOGNITION OVER MULTIPLE MODALITIES,"This Dissertation
entitled
MODELING THE HUMAN FACE THROUGH MULTIPLE
VIEW THREE-DIMENSIONAL STEREOPSIS: A SURVEY AND
COMPARATIVE ANALYSIS OF FACIAL RECOGNITION
OVER MULTIPLE MODALITIES
typeset with nddiss2"" v1.0 (2004/06/15) on July 26, 2006 for
Xin Chen
This LATEX 2"" class(cid:12)le conforms to the University of Notre Dame style guide-
lines established in Spring 2004. However it is still possible to generate a non-
onformant document if the published instructions are not followed! Be sure to re-
fer to the published Graduate School guidelines at http://graduateschool.nd.edu
s well.
It is YOUR resposnsibility to ensure that the Chapter titles and Table caption
titles are put in CAPS LETTERS. This class(cid:12)le does NOT do that! This way,
you have total control over how you want the symbols and sub-/superscripts in
titles and captions look like.
This summary page can be disabled by specifying the nosummary option to the class
invocation. (i.e., ndocumentclass[...,nosummary,...]fnddiss2eg)
THIS PAGE IS NOT PART OF THE THESIS, BUT"
5522073ebd53a6502cec9d716a77bb2c18aca593,Multi-view Body Part Recognition with Random Forests,"KAZEMI, BURENIUS, AZIZPOUR, SULLIVAN: MULTI-VIEW BODY PART RECOGNITION 1
Multi-view Body Part Recognition with
Random Forests
CVAP / KTH
The Royal Institute of Technology
Stockholm, Sweden
Vahid Kazemi
Magnus Burenius
Hossein Azizpour
Josephine Sullivan"
55079a93b7d1eb789193d7fcdcf614e6829fad0f,Efficient and Robust Inverse Lighting of a Single Face Image Using Compressive Sensing,"Efficient and Robust Inverse Lighting of a Single Face Image using Compressive
Sensing
Miguel Heredia Conde†, Davoud Shahlaei#, Volker Blanz# and Otmar Loffeld†
Center for Sensor Systems† (ZESS) and Institute for Vision and Graphics#, University of Siegen
57076 Siegen, Germany"
550c369cc3080c03b89d738d82f1ed50145c5aa7,"Information, Technology, and Information Worker Productivity","Information, Technology and Information Worker Productivity
NYU Stern School of Business & MIT, 44 West 4th Street Room: 8-81, New York, NY 10012
MIT Sloan School of Management, Room: E53-313, 50 Memorial Drive, Cambridge, MA 02142
Sinan Aral
Erik Brynjolfsson
Marshall Van Alstyne
Boston University & MIT, 595 Commonwealth Avenue, Boston, MA 02215
We study the fine-grained relationships among information flows, IT use, and individual information-worker produc-
tivity, by analyzing work at a midsize executive recruiting firm.  We analyze both project-level and individual-level
performance using: (1) direct observation of over 125,000 e-mail messages over a period of 10 months by individual
workers (2) detailed accounting data on revenues, compensation, project completion rates, and team membership for
over 1300 projects spanning 5 years, and (3) survey data on a matched set of the same workers’ IT skills, IT use and in-
formation sharing. These detailed data permit us to econometrically evaluate a multistage model of production and in-
teraction activities at the firm, and to analyze the relationships among communications flows, key technologies, work
practices, and output. We find that (a) the structure and size of workers’ communication networks are highly correlated
with their performance; (b) IT use is strongly correlated with productivity but mainly by allowing multitasking rather
than by speeding up work;  (c) productivity is greatest for small amounts of multitasking but beyond an optimum, mul-
titasking is associated with declining project completion rates and revenue generation; and (d) asynchronous informa-
tion seeking such as email and database use promotes multitasking while synchronous information seeking over the
phone shows a negative correlation. Overall, these data show statistically significant relationships among social net-"
551fa37e8d6d03b89d195a5c00c74cc52ff1c67a,GeThR-Net: A Generalized Temporally Hybrid Recurrent Neural Network for Multimodal Information Fusion,"GeThR-Net: A Generalized Temporally Hybrid
Recurrent Neural Network for Multimodal
Information Fusion
Ankit Gandhi1 ∗, Arjun Sharma1 ∗ , Arijit Biswas2, and Om Deshmukh1
Xerox Research Centre India; 2 Amazon Development Center India
(*-equal contribution)"
5592574c82eec9367e9173b7820ff329a27b6c21,Image Enhancement and Automated Target Recognition Techniques for Underwater Electro-Optic Imagery,"Image Enhancement and Automated Target Recognition
Techniques for Underwater Electro-Optic Imagery
Thomas Giddings (PI), Cetin Savkli and Joseph Shirron
Metron, Inc.
1911 Freedom Dr., Suite 800
Reston, VA 20190
phone: (703) 437-2428   fax: (703) 787-3518    email:
Contract Number N00014-07-C-0351
http:www.metsci.com
LONG TERM GOALS
The long-term goal of this project is to provide a flexible, accurate and extensible automated target
recognition (ATR) system for use with a variety of imaging and non-imaging sensors.  Such an ATR
system, once it achieves a high level of performance, can relieve human operators from the tedious
usiness of pouring over vast quantities of mostly mundane data, calling the operator in only when the
omputer assessment involves an unacceptable level of  ambiguity. The ATR system will provide most
leading edge algorithms for detection, segmentation, and classification while incorporating many novel
lgorithms that we are developing at Metron.  To address one of the most critical challenges in ATR
technology, the system will also provide powerful feature extraction routines designed for specific
pplications of current interest.
OBJECTIVES"
55c40cbcf49a0225e72d911d762c27bb1c2d14aa,Indian Face Age Database : A Database for Face Recognition with Age Variation,"Indian Face Age Database: A Database for Face Recognition with Age Variation
{tag}                                                                  {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 126
Number 5
Year of Publication: 2015
Authors:
Reecha Sharma, M.S. Patterh
10.5120/ijca2015906055
{bibtex}2015906055.bib{/bibtex}"
55202f10bb1d7640b0b279a4cdc8e9925cd9ef81,ICM: An Intuitive Model Independent and Accurate Certainty Measure for Machine Learning,
9717bd66ad50aedabaea0f3af784c7ba9643b686,TransFlow: Unsupervised Motion Flow by Joint Geometric and Pixel-level Estimation,"TransFlow: Unsupervised Motion Flow by Joint
Geometric and Pixel-level Estimation
Stefano Alletto*, Davide Abati, Simone Calderara, Rita Cucchiara
University of Modena and Reggio Emilia
Via P. Vivarelli 10, Modena, Italy
Luca Rigazio*
Panasonic Silicon Valley Laboratory
0900 North Tantau Avenue, Suite 200, Cupertino, CA, USA"
97692960a11d4316880fb229cca699293e133945,An efficient multi-resolution SVM network approach for object detection in aerial images,"015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17–20, 2015, BOSTON, USA
AN EFFICIENT MULTI-RESOLUTION SVM NETWORK APPROACH FOR OBJECT
DETECTION IN AERIAL IMAGES
J. Pasquet(cid:63)†
M. Chaumont∗†
G. Subsol †
M. Derras(cid:63)
LIRMM, Universit´e de Montpellier / CNRS, France
(cid:63) Berger Levrault, Lab`ege, France
Universit´e de Nˆımes, France"
970e571305ed9dde9308e559694044e204d6e2ad,Learning Finer-class Networks for Universal Representations,"GIRARD ET AL.: FINER-CLASS NETWORKS
Learning Finer-class Networks for Universal
Representations
Julien Girard12
Youssef Tamaazousti123
Hervé Le Borgne2
Céline Hudelot3
Both authors contributed equally.
CEA LIST
Vision Laboratory,
Gif-sur-Yvette, France.
CentraleSupélec,
MICS Laboratory,
Châtenay-Malabry, France."
973e3d9bc0879210c9fad145a902afca07370b86,From Emotion Recognition to Website Customizations,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 7, 2016
From Emotion Recognition to Website
Customizations
O.B.  Efremides
School  of  Web  Media
Bahrain  Polytechnic
Isa  Town,  Kingdom  of  Bahrain"
97104def2b92b430c02f595d7802f9ba23b74cc7,DispSegNet: Leveraging Semantics for End-to-End Learning of Disparity Estimation from Stereo Imagery,"DispSegNet: Leveraging Semantics for End-to-End Learning of
Disparity Estimation from Stereo Imagery
Junming Zhang1, Katherine A. Skinner2, Ram Vasudevan3 and Matthew Johnson-Roberson4"
97b8249914e6b4f8757d22da51e8347995a40637,"Large-Scale Vehicle Detection, Indexing, and Search in Urban Surveillance Videos","Large-Scale Vehicle Detection, Indexing,
nd Search in Urban Surveillance Videos
Rogerio Schmidt Feris, Associate Member, IEEE, Behjat Siddiquie, James Petterson,
Yun Zhai, Associate Member, IEEE, Ankur Datta, Lisa M. Brown, Senior Member, IEEE, and
Sharath Pankanti, Fellow, IEEE"
9728c3e32f57b54dea94fa9737c8f300de5cc468,Imbalanced Malware Images Classification: a CNN based Approach,"Imbalanced Malware Images Classification: a CNN
ased Approach
Songqing Yue
University of Wisconsin"
97bcf007516cb70d8cb17b7de6452aa06c4b9c76,GABAergic neurotransmission alterations in autism spectrum disorders,"Neurotransmitter 2015; 2: e1052. doi: 10.14800/nt.1052; © 2015 by Carla V Sesarini
http://www.smartscitech.com/index.php/nt
REVIEW
GABAergic neurotransmission alterations in autism spectrum
disorders
Carla V Sesarini
Instituto  de  Ciencias  Básicas  y  Medicina  Experimental  (ICBME),  Instituto  Universitario  del  Hospital  Italiano  de  Buenos  Aires
(HIBA), Potosi 4240 (C1199ACL), CABA, Argentina
Correspondence: Carla V Sesarini
E-mail:
Received: October 04, 2015
Published online: November 09, 2015
Autism  spectrum  disorders  (ASDs)  are  a  group  of  complex  disorders  of  neurodevelopment  characterized  by
difficulties in social interaction, verbal and nonverbal communication, and repetitive behaviors. In ASD, deficits
in social cognition and related cognitive functions would be the resultant of reduced synchronization between
rain regions. A possible explanation for ASDs is the disturbance of the delicate balance between excitation and
inhibition  in  the  developing  brain  which  may  have  profound  impact  in  neurobehavioral  phenotypes.  At  least
some forms of autism would be caused by a disproportionately high level of excitation (or weaker inhibition) in
neural circuits that mediate language and social behavior (local circuits). A more excitable cortex (more weakly
inhibited)  is  functionally  more  poorly  differentiated  and  could  lead  to  broad  ranging  abnormalities  in"
972ef9ddd9059079bdec17abc8b33039ed25c99c,A Novel on understanding How IRIS Recognition works,"International Journal of Innovations in Engineering and Technology (IJIET)
A Novel on understanding How IRIS
Recognition works
Vijay Shinde
Dept. of Comp. Science
M.P.M. College, Bhopal, India
Prof. Prakash Tanwar
Asst. Professor CSE
M.P.M. College, Bhopal, India"
97032b13f1371c8a813802ade7558e816d25c73f,Total Recall Final Report,"Total Recall Final Report
Peter Collingbourne, Nakul Durve, Khilan Gudka, Steve Lovegrove, Jiefei Ma, Sadegh Shahrbaf
Supervisor: Professor Duncan Gillies
January 11, 2006"
97b54703c267deef8c86ab6240c24d76a59864e7,Pixel Objectness: Learning to Segment Generic Objects Automatically in Images and Videos,"Pixel Objectness: Learning to Segment Generic
Objects Automatically in Images and Videos
Bo Xiong∗, Suyog Dutt Jain∗, and Kristen Grauman, Member, IEEE"
97a0aba4e9a95db17c3d4367f59aad1f02e04b55,How far did we get in face spoofing detection?,"This manuscript is a preprint version. The final version of this paper is
vailable in Engineering Applications of Artificial Intelligence, vol. 72,
pp. 368-381, 2018. DOI: 10.1016/j.engappai.2018.04.013
How far did we get in face spoofing detection?
Luiz Souza, Luciano Oliveira, Mauricio Pamplona
IVISION Lab, Federal University of Bahia
Joao Papa
RECOGNA Lab, S˜ao Paulo State University"
97f9c3bdb4668f3e140ded2da33fe704fc81f3ea,An Experimental Comparison of Appearance and Geometric Model Based Recognition,"AnExperimentalComparisonofAppearance
ndGeometricModelBasedRecognition
J.Mundy,A.Liu,N.Pillow,A.Zisserman,S.Abdallah,S.Utcke,
S.NayarandC.Rothwell
GeneralElectricCorporateResearchandDevelopment,Schenectady,NY,USA
RoboticsResearchGroup,UniversityofOxford,Oxford,UK
Dept.ofComputerScience,ColumbiaUniversity,NY,USA
INRIA,SophiaAntipolis,France"
97d811ae99bcbcf9f63c2f447041ab6d74a20b1e,Face recognition using truncated transform domain feature extraction,"The International Arab Journal of Information Technology, Vol. 12, No. 3, May 2015                                                              211
Face Recognition using Truncated Transform
Domain Feature Extraction
Rangan Kodandaram, Shashank Mallikarjun, Manikantan Krishnamuthan, and Ramachandran Sivan
Department of Electronics and Communication Engineering, M.S. Ramaiah Institute of Technology, India"
9729ff547b6882b49898c1f5abb69646edf77e71,Two Kinds of Statistics for Better Face Recognition,"Two Kinds of Statistics for Better Face Recognition
Manuel Günther, Marco K. Müller and Rolf P. Würtz
Institut für Neuroinformatik, Ruhr-Universität, 44780 Bochum, Germany"
97cf04eaf1fc0ac4de0f5ad4a510d57ce12544f5,"Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge, Deep Architectures, and Beyond","manuscript No.
(will be inserted by the editor)
Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge,
Deep Architectures, and Beyond
Dimitrios Kollias (cid:63) · Panagiotis Tzirakis † · Mihalis A. Nicolaou ∗ · Athanasios
Papaioannou(cid:107) · Guoying Zhao1 · Bj¨orn Schuller2 · Irene Kotsia3 · Stefanos
Zafeiriou4"
97d1d561362a8b6beb0fdbee28f3862fb48f1380,Age Synthesis and Estimation via Faces: A Survey,"Age Synthesis and Estimation via Faces:
A Survey
Yun Fu, Member, IEEE, Guodong Guo, Senior Member, IEEE, and
Thomas S. Huang, Fellow, IEEE"
97e7810f21a145caddc7e5168b59f0ab8894f669,Technical Report: Learning to Rank using High-Order Information,"Technical Report: Learning to Rank using
High-Order Information
Puneet K. Dokania1, Aseem Behl2, C. V. Jawahar2, and M. Pawan Kumar1
Ecole Centrale de Paris1, INRIA Saclay1, IIIT Hyderabad - India2"
97ee35db6b389a7bcc4b7975d12dbcd165226aad,Structured Learning of Human Interactions in TV Shows,"Structured Learning
of Human Interactions in TV Shows
Alonso Patron-Perez, Member, IEEE, Marcin Marszalek,
Ian Reid, Member, IEEE, and Andrew Zisserman"
97865d31b5e771cf4162bc9eae7de6991ceb8bbf,Face and Gender Classification in Crowd Video,"Face and Gender Classification in Crowd Video
Priyanka Verma
IIIT-D-MTech-CS-GEN-13-100
July 16, 2015
Indraprastha Institute of Information Technology
New Delhi
Thesis Advisors
Dr. Richa Singh
Dr. Mayank Vatsa
Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science
(cid:13) Verma, 2015
Keywords : Face Recognition, Gender Classification, Crowd database"
97ede92a6a3579f9fc8ad7c179eaaf37b3966e5a,Bicycle tracking using ellipse extraction,"Bicycle Tracking Using Ellipse Extraction
Tohid Ardeshiri, Fredrik Larsson, Fredrik Gustafsson, Thomas B. Sch¨on, Michael Felsberg
Department of Electrical Engineering
Link¨oping University
Link¨oping, Sweden
e-mail: {tohid, larsson, fredrik, schon,"
978d9a5251028da5a23fd0aed8234ed22b4918c5,Reduced Eigen Space Dimensionality for Fast Face Recognition,"www.ijemr.net
ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962
Volume-5, Issue-2, April-2015
International Journal of Engineering and Management Research
Page Number: 33-39
Reduced Eigen Space Dimensionality for Fast Face Recognition
Research Scholar, Department of Computer Science and Applications, Panjab University, Chandigarh, INDIA
Professor, Department of Computer Science and Applications, Panjab University, Chandigarh, INDIA
Davoud Aflakian1, M. Syamala Devi2"
979f63114a30d60c5c06d4c9c18c8249c3a63099,Synthetically Trained Neural Networks for Learning Human-Readable Plans from Real-World Demonstrations,"Synthetically Trained Neural Networks for Learning
Human-Readable Plans from Real-World Demonstrations
Jonathan Tremblay
Thang To
Artem Molchanov†
Stephen Tyree
Jan Kautz
Stan Birchfield"
9709d362a15414b062efa9cf4a212469af803a7a,Holistic Multi-modal Memory Network for Movie Question Answering,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Holistic Multi-modal Memory Network
for Movie Question Answering
Anran Wang, Anh Tuan Luu, Chuan-Sheng Foo, Hongyuan Zhu, Yi Tay, Vijay Chandrasekhar"
9727c74a09aad74abd67ff1d2dff083cc73d4a2e,Visual Focus of Attention in Non-calibrated Environments using Gaze Estimation,"Int J Comput Vis
DOI 10.1007/s11263-013-0691-3
Visual Focus of Attention in Non-calibrated Environments using
Gaze Estimation
Stylianos Asteriadis · Kostas Karpouzis ·
Stefanos Kollias
Received: 24 May 2012 / Accepted: 2 December 2013
© Springer Science+Business Media New York 2013"
970e723404885e94e77780766b39ee951dd7abb3,Multimodal Learning of Geometry-Preserving Binary Codes for Semantic Image Retrieval,"IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017
INVITED PAPER SpecialSectiononAward-winningPapers
Multimodal Learning of Geometry-Preserving Binary Codes for
Semantic Image Retrieval
Go IRIE†a), Hiroyuki ARAI†, Members, and Yukinobu TANIGUCHI††, Senior Member
SUMMARY
This paper presents an unsupervised approach to feature
inary coding for ef‌f‌icient semantic image retrieval. Although the majority
of the existing methods aim to preserve neighborhood structures of the fea-
ture space, semantically similar images are not always in such neighbors
ut are rather distributed in non-linear low-dimensional manifolds. More-
over, images are rarely alone on the Internet and are often surrounded by
text data such as tags, attributes, and captions, which tend to carry rich se-
mantic information about the images. On the basis of these observations,
the approach presented in this paper aims at learning binary codes for se-
mantic image retrieval using multimodal information sources while pre-
serving the essential low-dimensional structures of the data distributions in
the Hamming space. Specifically, after finding the low-dimensional struc-
tures of the data by using an unsupervised sparse coding technique, our
pproach learns a set of linear projections for binary coding by solving an"
9715aba0688195b2019d510ae3fd8da2e40f6e20,Evaluation of color spaces for person re-identification,"1st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan
978-4-9906441-1-6 ©2012 IAPR"
97d9c57576a573955c1b21b63f5b5ae44438e973,Discriminative on Multi - Manifolds,
9755554b13103df634f9b1ef50a147dd02eab02f,How Transferable Are CNN-Based Features for Age and Gender Classification?,"How Transferable are CNN-based Features for
Age and Gender Classification?
Gökhan Özbulak1, Yusuf Aytar2 and Hazım Kemal Ekenel1"
9794d69194ac772c3e92ee1f322a36feb3c16239,Hausdorff Artmap for Human Face Recognition,"HAUSDORFF ARTMAP FOR HUMAN FACE RECOGNITION
ARIT THAMMANO AND CHONGKOLNEE RUNGRUANG
Faculty of Information Technology
King Mongkut’s Institute of Technology Ladkrabang,
Bangkok, 10520 Thailand
later
received
identification  has
encompasses
ll  of"
63ebe80e020d902bc1fdc865c23a9ad7d1eac17a,Exploring the feasibility of subliminal priming on smartphones,"Exploring the Feasibility of Subliminal Priming on
Anonymised for blind review
Smartphones
Affiliation
City, Country
e-mail address"
63cf5fc2ee05eb9c6613043f585dba48c5561192,Prototype Selection for Classification in Standard and Generalized Dissimilarity Spaces Prototype Selection for Classification in Standard and Generalized Dissimilarity Spaces,"Prototype Selection for
Classification in Standard
nd Generalized
Dissimilarity Spaces"
63db312ec494988e1af0c1db5f9d9ca40ef89237,Vision Based Gesture Recognition : a Comprehensive Study,"REGULAR ISSUE
ARTICLE
VISION BASED GESTURE RECOGNITION: A COMPREHENSIVE
STUDY
A Balasundaram1*, C Chellappan 2
Research Scholar, Department of CSE, G.K.M. College of Engineering and Technology, Chennai, INDIA
Principal, G.K.M. College of Engineering and Technology, Chennai, INDIA"
63f2c3e312d07c6452bdad0a8adef1b879950500,Multi-stage Sampling with Boosting Cascades for Pedestrian Detection in Images and Videos,"Multi-stage Sampling with Boosting Cascades
for Pedestrian Detection in Images and Videos
Giovanni Gualdi, Andrea Prati, and Rita Cucchiara
University of Modena and Reggio Emilia(cid:2), Italy"
63cbfc7bfabd1e234c779f8445ea775b74d8fbe8,Adequacy of the Gradient-Descent Method for Classifier Evasion Attacks,"Adequacy of the Gradient-Descent Method for
Classifier Evasion Attacks
Yi Han
School of Computing and Information Systems
University of Melbourne
Ben Rubinstein
School of Computing and Information Systems
University of Melbourne"
63dbacac269c29b46b2b0bddbef828db025689dd,Deep Structure Inference Network for Facial Action Unit Recognition,"Deep Structure Inference Network for Facial Action Unit Recognition
Ciprian A. Corneanu1, Meysam Madadi2,3, Sergio Escalera1,2
Dept. Mathematics and Informatics, Universitat de Barcelona, Catalonia, Spain
Computer Vision Center, Edifici O, Campus UAB, 08193 Bellaterra (Barcelona), Catalonia, Spain
Dept. of Computer Science, Univ. Aut`onoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain"
6358b95b1c97df4f10f57a90913f672e44d2094b,Opponent Colors for Human Detection,"Opponent Colors for Human Detection
Rao Muhammad Anwer, David V´azquez, and Antonio M. L´opez
Computer Vision Center and Computer Science Dpt.,
Universitat Aut`onoma de Barcelona
-- www.cvc.uab.es/adas
Edifici O, 08193 Bellaterra, Barcelona, Spain"
631d21e51ca9100f1eca3c80dcf42db81cfc7e2b,Interactive Person Following and Gesture Recognition with a Flying Robot,"Interactive Person Following and
Gesture Recognition with a Flying Robot
Tayyab Naseer*, J¨urgen Sturm†, Wolfram Burgard*, and Daniel Cremers†
*Department of Computer Science, University of Freiburg, Germany
Department of Computer Science, Technical University of Munich, Germany"
637648198f9e91654ce27eaaa40512f2dc870fc1,Survey of Visual Question Answering: Datasets and Techniques,"Survey of Visual Question Answering: Datasets and Techniques
Akshay Kumar Gupta
Indian Institute of Technology Delhi"
63b89e654124eb2b8edeeb82c6373bdcf228744e,Single-Image 3D Scene Parsing Using Geometric Commonsense,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
image I3D	reconstructed	sceneFigure1:Single-view3DscenereconstructionusingGeometriccommonsense.Top:theworldisfullofcommonsenseovergeo-metricdimensions,e.g.,thatasedanisabout4.5meterslong.Bot-tom:exemplarresultoftheproposedmethod,includingsynthesizedimage(left),planarsegmentation(middle),anddepthmap(right).geometriccommonsensefor3Dsceneparsing.Suchapars-ingtaskaimstosegmentbothlow-levelsceneentities(e.g.,straightedges,semanticregions)andobject-levelsceneenti-ties(e.g.,human,vehicles)in2Dimages,andestimatetheirgeometricdimensionsinthe3Dworld[Hoiemetal.,2005;DelPeroetal.,2013;Liuetal.,2014;Wangetal.,2015a;Mottaghietal.,2016].Mostexisting3Dparsingalgo-rithms[Hoiemetal.,2008]aredesignedforaparticu-lartypeofscenecategories,e.g.,urban[Liuetal.,2014;Guptaetal.,2010],indoor[Wangetal.,2015b].Howev-er,apracticalAIsystem,e.g.,autonomousdriving,usuallyneedstodealwithawidevarietyofscenecategories.Oursolutiontotheabovechallengesismotivatedbythefactthatwehumanbeings,unconsciouslysometimes,uti-lizerichpriorknowledgeofthegeometricdimensionsofsceneentitiestounderstandthescenestructuresinimagesorvideos[Davisetal.,1993].Thisknowledgecanberoughlydividedintotwotypes:i)priordistributionsoverasingledi-mensionofobjects,e.g.,theheightofafemaleadultisabout1.75meters,orthatthelengthofasedanisabout4.5meters;ii)pair-wisecomparisonsbetweenthedimensionsofdifferentsceneentitiesatbothobject-level,e.g.,human,windows,ve-hicles,etc.,andpart-level,e.g.,straightedges,planarregions,etc.AsillustratedinFigure1,forexample,thewindowedgesonthesamefacadeareparalleltoeachotherandareorthog-onaltotheedgesontheground,abuildingishigherthanahuman,orthelengthofallsedansareroughlyequal.Theseu-naryandpair-wiseknowledge,onceacquired,arevalidacross"
63c109946ffd401ee1195ed28f2fb87c2159e63d,Robust Facial Feature Localization Using Improved Active Shape Model and Gabor Filter,"MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN
Robust Facial Feature Localization using Improved Active Shape
Model and Gabor Filter
Hui-Yu Huang
Engineering, National Formosa University,
Taiwan
E-mail:"
63db76fc3ab23beb921be682d70eb021cb6c4f16,How Polarized Have We Become? A Multimodal Classification of Trump Followers and Clinton Followers,
634f698c05d640ab355e94a9a0cf9191891b3dcb,Video Face Recognition From A Single Still Image Using an Adaptive Appearance Model Tracker,"Video Face Recognition From A Single Still Image
Using an Adaptive Appearance Model Tracker
M. Ali Akber Dewan
E. Granger, R. Sabourin
G.-L. Marcialis, F. Roli
School of Computing and Information
Systems, Athabasca University
Department of Automated Production
Engineering, École de technologie supé-
Department of Electrical and Electronic
Engineering, University of Cagliari
Edmonton, Canada
rieure, Montreal, Canada
Cagliari, Italy"
631483c15641c3652377f66c8380ff684f3e365c,Sync-DRAW: Automatic GIF Generation using Deep Recurrent Attentive Architectures,"Sync-DRAW: Automatic Video Generation using Deep Recurrent
A(cid:130)entive Architectures
Gaurav Mi(cid:138)al∗
Tanya Marwah∗
IIT Hyderabad
Vineeth N Balasubramanian
IIT Hyderabad"
636027f52ab111b2b22332ab2ec5346d03aac305,Unsupervised learning of foreground object detection,"Unsupervised learning of foreground object detection
Ioana Croitoru · Simion-Vlad Bogolin · Marius Leordeanu"
63cdf4aa1492c5c8fb109a1bf03af4844982e265,Reconstructing High-Resolution Face Models From Kinect Depth Sequences,"Reconstructing High-Resolution Face Models
From Kinect Depth Sequences
Enrico Bondi, Pietro Pala, Senior Member, IEEE, Stefano Berretti, Member, IEEE,
nd Alberto Del Bimbo, Senior Member, IEEE"
6372262685162f3f11ef7ac1882c327e98564875,A Survey of Approaches for Curve Based Facial Surface Representations For Three-Dimensional Face Recognition,"A Survey of Approaches for Curve Based Facial Surface Representations
For Three-Dimensional Face Recognition
Aouragh Salima1,3, Sbaa Salim2, Taleb-Ahmed Abdelmalik3
Department of Electrical engineering, Kasdi Merbah University, Ouargla, Algeria.
Department of Electrical engineering, Mohamed Kheider University, Biskra, Algeria.
LAMIH UMR CNRS 8201 UVHC, University of Valenciennes and Hainaut Cambrésis, France."
63c65e8584d2c3fb8833af772eb713f438cbdfe0,Exposing seam carving forgery under recompression attacks by hybrid large feature mining,"Cancún Center, Cancún, México, December 4-8, 2016
978-1-5090-4846-5/16/$31.00 ©2016 IEEE"
632fa986bed53862d83918c2b71ab953fd70d6cc,What Face and Body Shapes Can Tell About Height,"GÜNEL ET AL.: WHAT FACE AND BODY SHAPES CAN TELL ABOUT HEIGHT
What Face and Body Shapes Can Tell
About Height
Semih Günel
Helge Rhodin
Pascal Fua
CVLab
EPFL,
Lausanne, Switzerland"
63340c00896d76f4b728dbef85674d7ea8d5ab26,Discriminant Subspace Analysis: A Fukunaga-Koontz Approach,"Discriminant Subspace Analysis:
A Fukunaga-Koontz Approach
Sheng Zhang, Member, IEEE, and Terence Sim, Member, IEEE"
635bea02dae6d4402b53eb3b31930b53ef00adc0,Unsupervised Feature Learning for Dense Correspondences Across Scenes,"Unsupervised Feature Learning for Dense Correspondences
cross Scenes
Chao Zhang, Chunhua Shen, Tingzhi Shen
v1 July 2014; v2 December 2014; v3 April 2015"
63c71e317168d5b55dccaf5515ad96c9e87f7d9e,"Part-Based RDF for Direction Classification of Pedestrians, and a Benchmark","Part-based RDF for Direction Classification
of Pedestrians, and a Benchmark
Junli Tao and Reinhard Klette
The .enpeda.. Project, Tamaki Campus
The University of Auckland, Auckland, New Zealand"
63344dee49a1ab7e27ac34eefc30fb948a0bf9bb,Geometry and Illumination Modelling for Scene Understanding,"Geometry and Illumination Modelling for Scene Understanding
Principal Investigators: Jana Koˇseck´a and Dimitris Samaras
Project Summary The goal this proposal is to develop unified framework for reasoning about
objects, scenes and lighting from single and multiple views of indoors and outdoors environments.
We propose computational models for semantic parsing of scenes which incorporate information
bout the lighting and illumination to resolve the ambiguities of purely appearance based methods
nd develop class of models where partial geometry and semantic information aid the process of
recovery of illumination. The proposed work can be partitioned into three main research topics:
. Supervised approach for semantic parsing of object and non-object categories using photo-
metric, geometric and shadow cues.
. Closing the loop on estimation of Illumination using coarse object models and geometric
ontext.
. Object recognition, change detection, scene matching and 3D reconstruction with dramatic
hanges in illumination.
We propose to study the interactions between appearance, geometry and lighting in the context
of the problems outlined above and develop computational models which jointly consider these
spects. In some cases different models will serve as preprocessing stage for the follow up prob-
lems and in others they will interact jointly or in a feedback loop manner. For joint interactions
final inference for estimation of semantic categories and illumination will be formulated in Markov
Random field or Conditional Markov Random field using both photometric, geometric and illumi-"
6388c3f3559b61632942856bbede67b724542c9e,Multi-Target Tracking Using Hierarchical Convolutional Features and Motion Cues,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017
Multi-Target Tracking Using Hierarchical
Convolutional Features and Motion Cues
Heba Mahgoub, Khaled Mostafa, Khaled T. Wassif, Ibrahim Farag
Faculty of Computers and Information
Cairo University
Cairo, Egypt"
63f38f60022ab78aa5e47bd84070547409ab3cc8,The Use of Semantic Human Description as a Soft Biometric,"The Use of Semantic Human Description as a Soft Biometric
Sina Samangooei
Baofeng Guo
Mark S. Nixon"
634541661d976c4b82d590ef6d1f3457d2857b19,Advanced Techniques for Face Recognition under Challenging Environments,"AAllmmaa  MMaatteerr  SSttuuddiioorruumm  ––  UUnniivveerrssiittàà  ddii  BBoollooggnnaa
in cotutela con Università di Sassari
DOTTORATO DI RICERCA IN
INGEGNERIA ELETTRONICA, INFORMATICA E DELLE
TELECOMUNICAZIONI
Ciclo XXVI
Settore Concorsuale di afferenza: 09/H1
Settore Scientifico disciplinare: ING-INF/05
ADVANCED TECHNIQUES FOR FACE RECOGNITION
UNDER CHALLENGING ENVIRONMENTS
TITOLO TESI
YUNLIAN SUN
Presentata da:
Coordinatore Dottorato
ALESSANDRO VANELLI-CORALLI
Relatore
DAVIDE MALTONI
Relatore
MASSIMO TISTARELLI
Esame finale anno 2014"
6332a99e1680db72ae1145d65fa0cccb37256828,MASTER IN COMPUTER VISION AND ARTIFICIAL INTELLIGENCE REPORT OF THE RESEARCH PROJECT OPTION: COMPUTER VISION Pose and Face Recovery via Spatio-temporal GrabCut Human Segmentation,"MASTER IN COMPUTER VISION AND ARTIFICIAL INTELLIGENCE
REPORT OF THE RESEARCH PROJECT
OPTION: COMPUTER VISION
Pose and Face Recovery via
Spatio-temporal GrabCut Human
Segmentation
Author: Antonio Hernández Vela
Date: 13/07/2010
Advisor: Sergio Escalera Guerrero"
63488398f397b55552f484409b86d812dacde99a,Learning Universal Multi-view Age Estimator by Video Contexts,"Learning Universal Multi-view Age Estimator by Video Contexts
Zheng Song1, Bingbing Ni3, Dong Guo4, Terence Sim2, Shuicheng Yan1
Department of Electrical and Computer Engineering, 2 School of Computing, National University of Singapore;
{zheng.s,
Advanced Digital Sciences Center, Singapore; 4 Facebook"
63c022198cf9f084fe4a94aa6b240687f21d8b41,Consensus Message Passing for Layered Graphical Models,
63c7c0511e82172b6b60af21e56df68e2c6ab228,Target-based evaluation of face recognition technology for video surveillance applications,"Target-based evaluation of face recognition
technology for video surveillance applications
Dmitry Gorodnichy and Eric Granger"
0f5e10cfca126682e1bad1a07848919489df6a65,Facial emotion processing in patients with social anxiety disorder and Williams-Beuren syndrome: an fMRI study.,"Research Paper
Facial emotion processing in patients with social
nxiety disorder and Williams–Beuren syndrome:
n fMRI study
Cynthia Binelli, PhD; Armando Muñiz, MD; Susana Subira, MD, PhD;
Ricard Navines, MD, PhD; Laura Blanco-Hinojo, MSc; Debora Perez-Garcia, BSc;
Jose Crippa, MD, PhD; Magi Farré, MD, PhD; Luis Pérez-Jurado, MD, PhD;
Jesus Pujol, MD, PhD; Rocio Martin-Santos, MD, PhD
Background:  Social  anxiety  disorder  (SAD)  and  Williams–Beuren  syndrome  (WBS)  are  2  conditions  with  major  differences  in  terms  of
genetics, development and cognitive profiles. Both conditions are associated with compromised abilities in overlapping areas, including so-
ial approach, processing of social emotional cues and gaze behaviour, and to some extent they are associated with opposite behaviours in
these domains. We examined common and distinct patterns of brain activation during a facial emotion processing paradigm in patients with
SAD and WBS. Methods: We examined patients with SAD and WBS and healthy controls matched by age and laterality using functional
MRI during the processing of happy, fearful and angry faces.  Results: We included 20 patients with SAD and 20 with WBS as well as
0 matched controls in our study. Patients with SAD and WBS did not differ in the pattern of limbic activation. We observed differences in
early visual areas of the face processing network in patients with WBS and differences in the cortical prefrontal regions involved in the top–
down regulation of anxiety and in the fusiform gyrus for patients with SAD. Compared with those in the SAD and control groups, participants
in the WBS group did not activate the right lateral inferior occipital cortex. In addition, compared with controls, patients with WBS hypoacti-
vated the posterior primary visual cortex and showed significantly less deactivation in the right temporal operculum. Participants in the SAD
group showed decreased prefrontal activation compared with those in the WBS and control groups. In addition, compared with controls,"
0f0499989f3331396af94f92c29f2eda9b58d4dc,Object detection methods for robot grasping: Experimental assessment and tuning,"Object detection methods for robot
grasping: Experimental assessment and
tuning
Ferran RIGUAL a,1, Arnau RAMISA a, Guillem ALENYA a and Carme TORRAS a
Institut de Rob`otica i Inform`atica Industrial, CSIC-UPC, Barcelona"
0f4b902a2e12378e0ac0cb6fff7dd4c5f81e2c0a,Capturing facial videos with Kinect 2.0: A multithreaded open source tool and database,"Capturing Facial Videos with Kinect 2.0:
A Multithreaded Open Source Tool and Database
Daniel Merget
Tobias Eckl
Institute for Human-Machine Communication, TUM, Germany
Philipp Tiefenbacher
Martin Schwoerer
Gerhard Rigoll"
0f5bf2a208d262aa0469bd3185f6e2e56acada81,Pose Estimation and Segmentation of People in 3D Movies,"Pose Estimation and Segmentation of People in 3D
Movies
Karteek Alahari, Guillaume Seguin, Josef Sivic, Ivan Laptev
To cite this version:
Karteek Alahari, Guillaume Seguin, Josef Sivic, Ivan Laptev. Pose Estimation and Segmentation of
People in 3D Movies. ICCV - IEEE International Conference on Computer Vision, Dec 2013, Sydney,
Australia. IEEE, pp.2112-2119, 2013, <10.1109/ICCV.2013.263>. <hal-00874884>
HAL Id: hal-00874884
https://hal.inria.fr/hal-00874884
Submitted on 18 Oct 2013
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
0f65c91d0ed218eaa7137a0f6ad2f2d731cf8dab,Multi-Directional Multi-Level Dual-Cross Patterns for Robust Face Recognition,"Multi-Directional Multi-Level Dual-Cross
Patterns for Robust Face Recognition
Changxing Ding, Jonghyun Choi, Dacheng Tao, Senior Member, IEEE, and Larry S. Davis, Fellow, IEEE"
0f112e49240f67a2bd5aaf46f74a924129f03912,Age-Invariant Face Recognition,"Age-Invariant Face Recognition
Unsang Park, Member, IEEE,
Yiying Tong, Member, IEEE, and
Anil K. Jain, Fellow, IEEE"
0f07dcf92588945eb0d70893cdf0fe4a48552763,Detection- and Trajectory-Level Exclusion in Multiple Object Tracking,"Detection- and Trajectory-Level Exclusion in Multiple Object Tracking
Anton Milan1
Konrad Schindler2
Stefan Roth1
Department of Computer Science, TU Darmstadt
Photogrammetry and Remote Sensing Group, ETH Z¨urich"
0fbf59328d32e1a9950dfa08c3ec87eb94398651,Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks,"Beyond RGB: Very High Resolution Urban Remote
Sensing With Multimodal Deep Networks
Nicolas Audeberta,b,, Bertrand Le Sauxa, Sébastien Lefèvreb
ONERA, The French Aerospace Lab, F-91761 Palaiseau, France
Univ. Bretagne-Sud, UMR 6074, IRISA, F-56000 Vannes, France"
0f4cfcaca8d61b1f895aa8c508d34ad89456948e,Local appearance based face recognition using discrete cosine transform,"LOCAL APPEARANCE BASED FACE RECOGNITION USING
DISCRETE COSINE TRANSFORM  (WedPmPO4)
Author(s) :"
0fdcfb4197136ced766d538b9f505729a15f0daf,Multiple pattern classification by sparse subspace decomposition,"Multiple Pattern Classification by Sparse Subspace Decomposition
Institute of Media and Information Technology, Chiba University
Tomoya Sakai
-33 Yayoi, Inage, Chiba, Japan"
0fad544edfc2cd2a127436a2126bab7ad31ec333,Decorrelating Semantic Visual Attributes by Resisting the Urge to Share,"Decorrelating Semantic Visual Attributes by Resisting the Urge to Share
Dinesh Jayaraman
UT Austin
Fei Sha
Kristen Grauman
UT Austin"
0f085f389a52e13586fe50f2dae49e105225303f,Distribution-sensitive learning for imbalanced datasets,"Distribution-Sensitive
Learning
for Imbalanced
Datasets
Yale Songl, Louis-Philippe
Morency2, and Randall Davisl
MIT Computer Science and Artificial
Intelligence
Laboratory
USC Institute
for Creative Technology"
0f708ace6f4829e466a8a549bd23f6fcf719ab9d,Multi-shot person re-identification via relational Stein divergence,"This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:
Alavi, Azadeh, Yang, Yan, Harandi, Mehrtash, & Sanderson, Conrad
(2013)
Multi-shot person re-identification via relational stein divergence. In
ICIP 2013 Proceedings : 2013 IEEE International Conference on Image
Processing, Institute of Electrical and Electronics Engineers, Inc., Mel-
ourne Convention and Exhibition Centre, Melbourne, pp. 3542-3546.
This file was downloaded from: https://eprints.qut.edu.au/71704/
(cid:13) c(cid:13) 2013 by the Institute of Electrical and Electronics
Engineers, Inc.
Notice: Changes introduced as a result of publishing processes such as
opy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:
https://doi.org/10.1109/ICIP.2013.6738731"
0fe5d8acc77f54d60edc56c012f35517d9c861da,Interactive Stereoscopic Video Conversion,"Interactive Stereoscopic Video Conversion
Zhebin Zhang, Chen Zhou, Yizhou Wang, and Wen Gao, Fellow, IEEE
erial perspective,"
0fd1715da386d454b3d6571cf6d06477479f54fc,A Survey of Autonomous Human Affect Detection Methods for Social Robots Engaged in Natural HRI,"J Intell Robot Syst (2016) 82:101–133
DOI 10.1007/s10846-015-0259-2
A Survey of Autonomous Human Affect Detection Methods
for Social Robots Engaged in Natural HRI
Derek McColl · Alexander Hong ·
Naoaki Hatakeyama · Goldie Nejat ·
Beno Benhabib
Received: 10 December 2014 / Accepted: 11 August 2015 / Published online: 23 August 2015
© Springer Science+Business Media Dordrecht 2015"
0f08d62e882026ac83ebf26c0bd288c553873814,Multispecies Fruit Flower Detection Using a Refined Semantic Segmentation Network,"Multispecies fruit flower detection using a refined
semantic segmentation network
Philipe A. Dias1, Amy Tabb2, and Henry Medeiros1"
0f94f4934d0a26dfd243852036468ecc9bf8d22c,Low Resolution Lidar-Based Multi-Object Tracking for Driving Applications,"Low resolution lidar-based multi-object tracking
for driving applications
Iv´an del Pino(cid:63), V´ıctor Vaquero(cid:63), Beatrice Masini,
Joan Sol`a, Francesc Moreno-Noguer,
Alberto Sanfeliu, and Juan Andrade-Cetto
Institut de Rob`otica i Inform`atica Industrial, CSIC-UPC
Llorens Artigas 4-6, 08028 Barcelona, Spain.
http://www.iri.upc.edu"
0f1392c1180582a45b42e621e1526f03cc6e9ca6,Learning with Hierarchical-Deep Models,"Learning with Hierarchical-Deep Models
Ruslan Salakhutdinov, Joshua B. Tenenbaum, and Antonio Torralba"
0fb75f5cb12d1e1a909b9f698b7617bb9603002f,Design of Weight-Learning Efficient Convolutional Modules in Deep Convolutional Neural Networks and its Application to Large-Scale Visual Recognition Tasks,"Data Analysis Project
Design of Weight-Learning Ef‌f‌icient Convolutional Modules in Deep
Convolutional Neural Networks and its Application to
Large-Scale Visual Recognition Tasks
Felix Juefei-Xu
May 3, 2017"
0f366de3ea595932dad06389f6e61fe0dd8cbe74,DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field,"Article
DeepAnomaly: Combining Background Subtraction
nd Deep Learning for Detecting Obstacles and
Anomalies in an Agricultural Field
Peter Christiansen 1,*, Lars N. Nielsen 2, Kim A. Steen 3, Rasmus N. Jørgensen 1 and
Henrik Karstoft 1
Department of Engineering, Aarhus University, Aarhus 8200, Denmark;
(R.N.J.); (H.K.)
Danske Commodities, Aarhus 8000, Denmark;
AgroIntelli, Aarhus 8200, Denmark;
* Correspondence: Tel.: +45-2759-2953
Academic Editors: Gabriel Oliver-Codina, Nuno Gracias and Antonio M. López
Received: 15 September 2016; Accepted: 7 November 2016; Published: 11 November 2016"
0f92e9121e9c0addc35eedbbd25d0a1faf3ab529,MORPH-II: A Proposed Subsetting Scheme,"MORPH-II: A Proposed Subsetting Scheme
Participants: K. Kempfert, J. Fabish, K. Park, and R. Towner
Mentors: Y. Wang, C. Chen, and T. Kling
NSF-REU Site at UNC Wilmington, Summer 2017"
0ff23392e1cb62a600d10bb462d7a1f171f579d0,Toward Sparse Coding on Cosine Distance,"Toward	Sparse	Coding	on	Cosine
Distance
Jonghyun	Choi,	Hyunjong	Cho,	Jungsuk	Kwak#,
Larry	S.	Davis
UMIACS	|	University	of	Maryland,	College	Park
#Stanford	University"
0fd2956ef990443f584112fa093f85a90a43c4af,Performance Evaluation of Multi-camera Visual Tracking,"PEOPLE COUNT ESTIMATION IN SMALL CROWDS
Pietro Morerio, Lucio Marcenaro, Carlo S. Regazzoni
Department of Biophysical and Electronic Engineering
University of Genoa, Genoa, Italy"
0fcda01765c5a0b4cff99b5ed5139a6e1eddb689,Exploiting Long-Term Connectivity and Visual Motion in CRF-Based Multi-Person Tracking,"Exploiting Long-Term Connectivity and Visual
Motion in CRF-Based Multi-Person Tracking
Alexandre Heili, Student Member, IEEE, Adolfo López-Méndez, and Jean-Marc Odobez, Member, IEEE"
0fcca61391e7ee7718f5d2c05adc658f2978a2e8,Spectral Face Recognition Using Orthogonal Subspace Bases,
0f9bd0d528603654de2687d3ae2472a522607ee3,Semantics-aware visual localization under challenging perceptual conditions,"Semantics-aware Visual Localization
under Challenging Perceptual Conditions
Tayyab Naseer
Gabriel L. Oliveira
Thomas Brox
Wolfram Burgard"
0f395a49ff6cbc7e796656040dbf446a40e300aa,The Change of Expression Configuration Affects Identity-Dependent Expression Aftereffect but Not Identity-Independent Expression Aftereffect,"ORIGINAL RESEARCH
published: 22 December 2015
doi: 10.3389/fpsyg.2015.01937
The Change of Expression
Configuration Affects
Identity-Dependent Expression
Aftereffect but Not
Identity-Independent Expression
Aftereffect
Miao Song 1, 2*, Keizo Shinomori 2, Qian Qian 3, Jun Yin 1 and Weiming Zeng 1
College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University
of Technology, Kochi, Japan, 3 Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science
nd Technology, Kunming, China
The present study examined the influence of expression configuration on cross-identity
expression aftereffect. The expression configuration refers to the spatial arrangement
of facial features in a face for conveying an emotion, e.g., an open-mouth smile vs.
closed-mouth smile. In the first of two experiments, the expression aftereffect is
measured using a cross-identity/cross-expression configuration factorial design. The
facial
identities of test faces were the same or different from the adaptor, while"
0fb680b5136d80c13e8d15078ef18ca4aac269f6,Optimizing Deep Neural Network Architecture: A Tabu Search Based Approach,"Optimizing Deep Neural Network Architecture: A Tabu
Search Based Approach
Tarun Kumar Gupta and Khalid Raza*
Department of Computer Science, Jamia Millia Islamia, New Delhi-110025"
0f2a910f98e9955d2fbd4841d31b4943b91ab382,Creating and Annotating Affect Databases from Face and Body Display: A Contemporary Survey,"Creating and Annotating Affect Databases from Face and Body
Display: A Contemporary Survey
Hatice Gunes and Massimo Piccardi"
0f29710e54f714eeea5233628afc68c680d881bb,Tracking Indistinguishable Translucent Objects over Time Using Weakly Supervised Structured Learning,"Tracking indistinguishable translucent objects over time
using weakly supervised structured learning
Luca Fiaschi1, Ferran Diego1, Konstantin Gregor1, Martin Schiegg1, Ullrich Koethe1, Marta Zlatic2 and
Fred A. Hamprecht1
HCI University of Heidelberg, Germany, http://hci.iwr.uni-heidelberg.de
HHMI Janelia Farm, USA, http://janelia.org/"
0ffee18b495830d373dbc65f67a452d94938900b,Registration-based moving object detection from a moving camera,"IROS 2008 2nd Workshop on Planning, Perception and Navigation for Intelligent Vehicles
Registration-based moving object detection
from a moving camera
Angel D. Sappa, Fadi Dornaika, David Ger´onimo and Antonio L´opez"
0f5275b472344dbfc4a26a9ba73dff23844b7e84,Head movements and postures as pain behavior,"RESEARCH ARTICLE
Head movements and postures as pain
ehavior
Philipp Werner1*, Ayoub Al-Hamadi1, Kerstin Limbrecht-Ecklundt2, Steffen Walter3,
Harald C. Traue3
Neuro-Information Technology group, Institute for Information Technology and Communications, Otto-von-
Guericke University Magdeburg, Magdeburg, Germany, 2 Department of Anesthesiology, University Medical
Center Hamburg-Eppendorf, Hamburg, Germany, 3 Medical Psychology, University Clinic for Psychosomatic
Medicine and Psychotherapy, Ulm, Germany
1111111111
1111111111
1111111111
1111111111
1111111111"
0f41f1a4bd5141184ee3ed3cf8874eeb396d7862,Deep Forest: Towards An Alternative to Deep Neural Networks,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
0fd1bffb171699a968c700f206665b2f8837d953,Weakly Supervised Object Localization with Multi-Fold Multiple Instance Learning,"Weakly Supervised Object Localization with
Multi-fold Multiple Instance Learning
Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid, Fellow, IEEE"
0f82a869a80b6114bd16437dbf703bcae84da7b9,Neural Activation Constellations: Unsupervised Part Model Discovery with Convolutional Networks,"Neural Activation Constellations: Unsupervised Part Model Discovery with
Convolutional Networks
Marcel Simon and Erik Rodner
Computer Vision Group, University of Jena, Germany∗
http://www.inf-cv.uni-jena.de/constellation_model_revisited"
0fa42d4478b514b0f961e26bccbaf2b75d42e912,Extending UML for Conceptual Modeling of Annotation of Medical Images,"Extending UML for Conceptual Modeling of Annotation
International Journal of Computer Applications (0975 – 8887)
Volume 72– No.10, June 2013
of Medical Images
Mouhamed Gaith Ayadi
Riadh Bouslimi
Jalel Akaichi
Department of computer
sciences
ISG university of Tunis
Tunisia
Department of computer
sciences
ISG university of Tunis
Tunisia
Department of computer
sciences
ISG university of Tunis
Tunisia"
0f25aa473e808de72c6975fdb1e3e65180a38c05,Bag of Soft Biometrics for Person Identification New trends and challenges,"Noname manuscript No.
(will be inserted by the editor)
Bag of Soft Biometrics for Person Identi(cid:12)cation
New trends and challenges.
Antitza Dantcheva (cid:1) Carmelo Velardo (cid:1)
Angela D’Angelo (cid:1) Jean{Luc Dugelay
Received: 01.08.2010 / Accepted: 11.10.2010"
0ff14ec76e5fe7f17dce102e781ffce2738c8d4b,Real-time pedestrian detection in urban scenarios,"Real-time Pedestrian Detection in Urban Scenarios
VARGA Robert, VESA Andreea Valeria, JEONG Pangyu, NEDEVSCHI Sergiu
{robert.varga, pangyu.jeong,
Technical University of Cluj Napoca
Telephone: (800) 555–1212"
0f556558853268d86cd05bf8ea42da6d7862a024,Shade Face: Multiple image-based 3D face recognition,"UWA Research Publication
Mian, A. (2009). Shade Face: Multiple Image-based 3D Face Recognition. In R. Cipolla,
M. Hebert, X. Tang, & N. Yokoya (Eds.), Proceedings of the 2009 IEEE International
Workshop on 3-D Digital Imaging and Modeling (3DIM2009). (pp. 1833-1839). USA:
IEEE Computer Society. 10.1109/ICCVW.2009.5457505
© 2009 IEEE
This is pre-copy-editing, author-produced version of an article accepted for publication,
following peer review. The definitive published version is located at
http://dx.doi.org/10.1109/ICCVW.2009.5457505
This version was made available in the UWA Research Repository on 4 March 2015, in
ompliance with the publisher’s policies on archiving in institutional repositories.
Use of the article is subject to copyright law."
0f2ffd582674bd856247bc5482d85e6db3b49b8f,A neural signature of the creation of social evaluation.,"doi:10.1093/scan/nst051
SCAN (2014) 9, 731^736
A neural signature of the creation of social evaluation
Roman Osinsky,1 Patrick Mussel,1 Linda O¨ hrlein,1 and Johannes Hewig1,2
Department of Psychology I, Julius-Maximilians-University Wu¨rzburg, 97070 Wu¨rzburg, Germany and 2Department of Psychology,
Friedrich-Schiller-University Jena, 07743 Jena, Germany
Previous research has shown that receiving an unfair monetary offer in economic bargaining elicits also-called feedback negativity (FN). This scalp-
recorded brain potential probably reflects a bad-vs-good evaluation in the medial frontal cortex and has been linked to fundamental processes of
reinforcement learning. In the present study, we investigated whether the evaluative mechanism indexed by the FN is also involved in learning who is an
unfair vs fair bargaining partner. An electroencephalogram was recorded while participants completed a computerized version of the Ultimatum Game,
repeatedly receiving fair or unfair monetary offers from alleged other participants. Some of these proposers were either always fair or always unfair in
their offers. In each trial, participants first saw a portrait picture of the respective proposer before the monetary offer was presented. Therefore, the faces
ould be used as predictive cues for the fairness of the pending offers. We found that not only unfair offers themselves induced a FN, but also (over the
task) faces of unfair proposers. Thus, when interaction partners repeatedly behave in an unfair way, their faces acquire a negative valence, which
manifests in a basal neural mechanism of bad-vs-good evaluation.
Keywords: social evaluation; feedback negativity; ultimatum game; evaluative conditioning
INTRODUCTION
trading
example,
family, work,"
0a811063cfd674275f91006d28cb8620c781e817,Image recognition based on hidden Markov eigen-image models using variational Bayesian method,"IMAGE RECOGNITION BASED ON
HIDDEN MARKOV EIGEN-IMAGE MODELS
USING VARIATIONAL BAYESIAN METHOD
Kei Sawada, Kei Hashimoto,
Yoshihiko Nankaku, Keiichi Tokuda
Nagoya Institute of Technology
APSIPA ASC 10/30/2013"
0a2aca07c9e15de3d5924e156af9a8e1a67b4cab,Person Reidentification With Reference Descriptor,"Person Reidentification With Reference Descriptor
Le An, Member, IEEE, Mehran Kafai, Member, IEEE, Songfan Yang, Member, IEEE,
nd Bir Bhanu, Fellow, IEEE
cross
identification"
0a1e3d271fefd506b3a601bd1c812a9842385829,Face Recognition Using 3D Directional Corner Points,"Face Recognition using 3D Directional Corner Points
Author
Yu, Xun, Gao, Yongsheng, Zhou, Jun
Published
Conference Title
Pattern Recognition (ICPR), 2014 22nd International Conference on
https://doi.org/10.1109/ICPR.2014.483
Copyright Statement
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.
Downloaded from
http://hdl.handle.net/10072/66408
Link to published version
http://www.icpr2014.org/index.htm
Griffith Research Online
https://research-repository.griffith.edu.au"
0a6d344112b5af7d1abbd712f83c0d70105211d0,Constrained Local Neural Fields for Robust Facial Landmark Detection in the Wild,"Constrained Local Neural Fields for robust facial landmark detection in the wild
Tadas Baltruˇsaitis
Peter Robinson
University of Cambridge Computer Laboratory
USC Institute for Creative Technologies
5 JJ Thomson Avenue
Louis-Philippe Morency
2015 Waterfront Drive"
0a55e4191c90ec1edb8d872237a2dacd5f6eda90,"Intentional Minds: A Philosophical Analysis of Intention Tested through fMRI Experiments Involving People with Schizophrenia, People with Autism, and Healthy Individuals","HUMAN NEUROSCIENCE
Intentional minds: a philosophical analysis of intention tested
through fMRI experiments involving people with
schizophrenia, people with autism, and healthy individuals
Review ARticle
published: 02 February 2011
doi: 10.3389/fnhum.2011.00007
Bruno G. Bara1,2*, Angela Ciaramidaro1, Henrik Walter 3 and Mauro Adenzato1,2
Department of Psychology, Center for Cognitive Science, University of Turin, Turin, Italy
Neuroscience Institute of Turin, University of Turin, Turin, Italy
Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
Edited by:
Ivan Toni, Radboud University,
Netherlands
Reviewed by:
Ivan Toni, Radboud University,
Netherlands
Roel M. Willems, University of
California Berkeley, USA
*Correspondence:"
0a391c4d7aafa73324549f212cf28640ed471a81,From Caregivers to Peers: Puberty Shapes Human Face Perception.,"663142 PSSXXX10.1177/0956797616663142Picci, ScherfPuberty Shapes Human Face Perception
research-article2016
Research Article
From Caregivers to Peers: Puberty
Shapes Human Face Perception
Giorgia Picci and K. Suzanne Scherf
Department of Psychology, Pennsylvania State University
1 –13
© The Author(s) 2016
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0956797616663142
pss.sagepub.com"
0a66015112da542b9b6687e4b3c9ff73565d0844,A k-NN Approach for Scalable Image Annotation Using General Web Data,"A k-NN Approach for Scalable Image Annotation
Using General Web Data
Mauricio Villegas and Roberto Paredes
Institut Tecnol`ogic d’Inform`atica
Universitat Polit`ecnica de Val`encia
Cam´ı de Vera s/n, 46022 Val`encia, Spain"
0a058caa89d195930224148d3d2897c0c08fc668,Metric Embedding Autoencoders for Unsupervised Cross-Dataset Transfer Learning,"Metric Embedding Autoencoders for
Unsupervised Cross-Dataset Transfer Learning
Alexey Potapov1,3, Sergey Rodionov1,2, Hugo Latapie4, and Enzo Fenoglio4
SingularityNET Foundation
Novamente LLC
ITMO University, St. Petersburg, Russia
Chief Technology & Architecture Of‌f‌ice, Cisco"
0a3863a0915256082aee613ba6dab6ede962cdcd,Early and Reliable Event Detection Using Proximity Space Representation,"Early and Reliable Event Detection Using Proximity Space Representation
Maxime Sangnier
LTCI, CNRS, T´el´ecom ParisTech, Universit´e Paris-Saclay, 75013, Paris, France
J´erˆome Gauthier
LADIS, CEA, LIST, 91191, Gif-sur-Yvette, France
Alain Rakotomamonjy
Normandie Universit´e, UR, LITIS EA 4108, Avenue de l’universit´e, 76801, Saint-Etienne-du-Rouvray, France"
0ad4a9fad873e9c4914fd2464404b211f295d7b6,New insights into Laplacian similarity search,"New Insights into Laplacian Similarity Search
Xiao-Ming Wu1, Zhenguo Li2, Shih-Fu Chang1
Department of Electrical Engineering, Columbia University. 2Huawei Noah’s Ark Lab, Hong Kong.
(a) Λ = I, AP = 0.14
(b) Λ = D, AP = 0.67
(c) Λ = H, AP = 0.67
(a) Λ = I, AP = 0.27
(b) Λ = D, AP = 0.17
(c) Λ = H, AP = 0.27
Figure 1: Top 40 retrieved images on extended YaleB, with false images
highlighted in blue box (query on top left comes from the sparsest cluster).
Figure 2: Top 40 retrieved images on CIFAR-10, with positive images high-
lighted in magenta box (query on top left comes from the densest cluster).
Similarity metrics are important building blocks of many visual applica-
tions such as image retrieval, image segmentation, and manifold learning.
Well-known similarity metrics include personalized PageRank, hitting and
ommute times, and the pseudo-inverse of graph Laplacian. Despite their
popularity, the understanding of their behaviors is far from complete, and
their use in practice is mostly guided by empirical trials and error analy-
sis. This paper bridges this gap by investigating the fundamental design of"
0a6a173a1d1d36285bae97f98f4b901067d40097,Similarity learning on an explicit polynomial kernel feature map for person re-identification,"Similarity Learning on an Explicit Polynomial Kernel Feature Map for Person
Re-Identification
Dapeng Chen y, Zejian Yuan y, Gang Huaz, Nanning Zhengy, Jingdong Wang x
y Xi’an Jiaotong University
zStevens Institute of Technology
xMicrosoft Research"
0a60e76e6983e1647469172a50907023913b0c9f,Longitudinal study of amygdala volume and joint attention in 2- to 4-year-old children with autism.,"ORIGINAL ARTICLE
Longitudinal Study of Amygdala Volume and Joint
Attention in 2- to 4-Year-Old Children With Autism
Matthew W. Mosconi, PhD; Heather Cody-Hazlett, PhD; Michele D. Poe, PhD;
Guido Gerig, PhD; Rachel Gimpel-Smith, BA; Joseph Piven, MD
Context: Cerebral cortical volume enlargement has been
reported in 2- to 4-year-olds with autism. Little is known
bout the volume of subregions during this period of de-
velopment. The amygdala is hypothesized to be abnormal
in volume and related to core clinical features in autism.
Objectives: To examine amygdala volume at 2 years with
follow-up at 4 years of age in children with autism and
to explore the relationship between amygdala volume and
selected behavioral features of autism.
Design: Longitudinal magnetic resonance imaging study.
Setting: University medical setting.
Participants: Fifty autistic and 33 control (11 devel-
opmentally delayed, 22 typically developing) children be-
tween 18 and 35 months (2 years) of age followed up at
2 to 59 months (4 years) of age."
0a81810af97e8ab5b8c483209b4d0ff7210436f9,Human Joint Angle Estimation and Gesture Recognition for Assistive Robotic Vision,"Human Joint Angle Estimation and Gesture Recognition
for Assistive Robotic Vision
Alp Guler1, Nikolaos Kardaris2, Siddhartha Chandra1, Vassilis Pitsikalis2, Christian
Werner3, Klaus Hauer3, Costas Tzafestas2, Petros Maragos2, Iasonas Kokkinos1
(1) INRIA GALEN & Centrale Sup´elec Paris,
(2) National Technical University of Athens, (3) University of Heidelberg"
0adffd02029363c204a561092e1e0cc05cacfee7,A New Method for Static Video Summarization Using Local Descriptors and Video Temporal Segmentation,"A New Method for Static Video Summarization
Using Local Descriptors and Video Temporal
Segmentation
Edward J. Y. Cayllahua Cahuina
Computer Research Center
San Pablo Catholic University
Arequipa, Peru
Email:
Guillermo Camara Chavez
Department of Computer Science
Federal university of Ouro Preto
Ouro Preto, Brazil
Email:"
0a60d9d62620e4f9bb3596ab7bb37afef0a90a4f,Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates,"Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates. GCPR 2016
(cid:13) Copyright by Springer. The final publication will be available at link.springer.com
A. Freytag, E. Rodner, M. Simon, A. Loos, H. K¨uhl and J. Denzler
Chimpanzee Faces in the Wild:
Log-Euclidean CNNs for Predicting Identities
nd Attributes of Primates
Alexander Freytag1,2, Erik Rodner1,2, Marcel Simon1, Alexander Loos3,
Hjalmar S. K¨uhl4,5, and Joachim Denzler1,2,5
Computer Vision Group, Friedrich Schiller University Jena, Germany
Michael Stifel Center Jena, Germany
Fraunhofer Institute for Digital Media Technology, Germany
Max Planck Institute for Evolutionary Anthropology, Germany
5German Centre for Integrative Biodiversity Research (iDiv), Germany"
0a773ed20a5920897788dd6f0d63c20defca8ab0,ConceptLearner: Discovering visual concepts from weakly labeled image collections,"ConceptLearner: Discovering Visual Concepts from Weakly Labeled Image
Collections
Bolei Zhou†, Vignesh Jagadeesh‡, Robinson Piramuthu‡
MIT ‡eBay Research Labs"
0ad0a1293f80c838c843726eeddf5a97f33f0c89,Understanding image virality,"Understanding Image Virality
Arturo Deza
UC Santa Barbara
Devi Parikh
Virginia Tech"
0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7,Timing is everything : a spatio-temporal approach to the analysis of facial actions,"Imperial College of Science, Technology and Medicine
Department of Computing
Timing is everything
A spatio-temporal approach to the analysis of facial
ctions
Michel Fran¸cois Valstar
Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College, February 2008"
0adb5923fb1955f7ca0a85454afe17e5d25425df,Crowd motion monitoring using tracklet-based commotion measure,"CROWD MOTION MONITORING USING TRACKLET-BASED COMMOTION MEASURE
Hossein Mousavi*
Moin Nabi* Hamed Kiani
Alessandro Perina
Vittorio Murino
Pattern Analysis and Computer Vision Department (PAVIS)
Istituto Italiano di Tecnologia
Genova, Italy"
0a87d781fe2ae2e700237ddd00314dbc10b1429c,Multi-scale HOG Prescreening Algorithm for Detection of Buried Explosive Hazards in FL-IR and FL-GPR Data,"Distribution Statement A:  Approved for public release; distribution unlimited.
Multi-scale HOG Prescreening Algorithm for Detection of Buried
Explosive Hazards in FL-IR and FL-GPR Data
*University of Missouri, Electrical and Computer Engineering Department, Columbia, MO
K. Stone*, J. M. Keller*, D. Shaw*"
0ae07f24251946b2086fb992031c298ada2805de,Exemplar-AMMs: Recognizing Crowd Movements From Pedestrian Trajectories,"JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014
Exemplar-AMMs: Recognizing Crowd Movements
from Pedestrian Trajectories
Wenxi Liu, Rynson W.H. Lau, Xiaogang Wang, Dinesh Manocha"
0af65df112db18248ed24a1c0fb5fe8524015336,Contour Segment Analysis for Human Silhouette Pre-segmentation,"Author manuscript, published in ""5th International Conference on Computer Vision Theory and Applications (VISAPP 2010),
Angers : France (2010)"""
0ae3182836b1b962902d664ddd524e8554b742cf,Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model,"Integrating Context and Occlusion for Car
Detection by Hierarchical And-Or Model
Bo Li1,2, Tianfu Wu2,(cid:2), and Song-Chun Zhu2
Beijing Lab of Intelligent Information Technology, Beijing Institute of Technology
Department of Statistics, University of California, Los Angeles"
0a7a7b3f05918fb4fc33f04cb7e31232fa197f76,Fitting a Morphable Model to 3D Scans of Faces,"Fitting a Morphable Model to 3D Scans of Faces
Volker Blanz
Universit¤at Siegen,
Siegen, Germany
Kristina Scherbaum
MPI Informatik,
Saarbr¤ucken, Germany
Hans-Peter Seidel
MPI Informatik,
Saarbr¤ucken, Germany"
0a3051c8dde80975640d42dca21fac17ed60f987,A Hierarchical Switching Linear Dynamical System Applied to the Detection of Sepsis in Neonatal Condition Monitoring,
0a8ab703839ae585c2f27099616c40974cbeeda2,"Fast, Exact and Multi-scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs","Fast, Exact and Multi-Scale Inference for Semantic
Image Segmentation with Deep Gaussian CRFs
Siddhartha Chandra
Iasonas Kokkinos
INRIA GALEN & Centrale Sup´elec, Paris, France"
0a2d2b79ba39e2140c93543b8ce873f106c08e3d,Semi-Supervised Sparse Representation Based Classification for Face Recognition With Insufficient Labeled Samples,"Semi-Supervised Sparse Representation Based
Classification for Face Recognition with Insufficient
Labeled Samples
Yuan Gao, Jiayi Ma, and Alan L. Yuille Fellow, IEEE"
0af48a45e723f99b712a8ce97d7826002fe4d5a5,Toward Wide-Angle Microvision Sensors,"Toward Wide-Angle Microvision Sensors
Sanjeev J. Koppal, Member, IEEE, Ioannis Gkioulekas, Student Member, IEEE,
Travis Young, Member, IEEE, Hyunsung Park, Student Member, IEEE,
Kenneth B. Crozier, Member, IEEE, Geoffrey L. Barrows, Member, IEEE, and
Todd Zickler, Member, IEEE"
0a4ba4d5bd6e07a31fa4586322fd5e07d9f9975e,Online Bayesian Nonparametrics for Group Detection,"ZANOTTO, BAZZANI, CRISTANI, MURINO: ONLINE BNP FOR GROUP DETECTION
Online Bayesian Nonparametrics for Group
Detection
Matteo Zanotto
Loris Bazzani
Marco Cristani
Vittorio Murino
Pattern Analysis & Computer Vision
Istituto Italiano di Tecnologia
Via Morego 30 - 16163
Genova, Italy"
0aa8a0203e5f406feb1815f9b3dd49907f5fd05b,Mixture Subclass Discriminant Analysis,"Mixture subclass discriminant analysis
Nikolaos Gkalelis, Vasileios Mezaris, Ioannis Kompatsiaris"
0a7309147d777c2f20f780a696efe743520aa2db,Stories for Images-in-Sequence by using Visual and Narrative Components,"Stories for Images-in-Sequence by using Visual
nd Narrative Components (cid:63)
Marko Smilevski1,2, Ilija Lalkovski2, and Gjorgji Madjarov1,3
Ss. Cyril and Methodius University, Skopje, Macedonia
Pendulibrium, Skopje, Macedonia
Elevate Global, Skopje, Macedonia"
0a40415bdfe4bc9ef7e019e4f1442a9fb61f58b2,Automatic Discovery and Geotagging of Objects from Street View Imagery,"Automatic Discovery and Geotagging of Objects from Street View Imagery
Vladimir A. Krylov
Eamonn Kenny
Rozenn Dahyot
ADAPT Centre, School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland"
0ad90ad5d2050ebaba5b5cddeb474c7d889bec3e,A Unified Semantic Embedding: Relating Taxonomies and Attributes,"A Unified Semantic Embedding:
Relating Taxonomies and Attributes
Sung Ju Hwang∗
Disney Research
Pittsburgh, PA"
0a8c6b40d6ca75bc1995083825e362137b130624,Nonparametric Method for Data-driven Image Captioning,"Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 592–598,
Baltimore, Maryland, USA, June 23-25 2014. c(cid:13)2014 Association for Computational Linguistics"
0a1138276c52c734b67b30de0bf3f76b0351f097,Discriminant Incoherent Component Analysis,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at
http://dx.doi.org/10.1109/TIP.2016.2539502
Discriminant Incoherent Component Analysis
Christos Georgakis, Student Member, IEEE, Yannis Panagakis, Member, IEEE, and Maja Pantic, Fellow, IEEE"
0a572c16e635312f118d1a53f0ff6446402d3c32,Learning with proxy supervision for end-to-end visual learning,"Learning with Proxy Supervision for End-To-End Visual Learning
Jiˇr´ı ˇCerm´ak1∗ Anelia Angelova2"
0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a,Neural Networks Regularization Through Representation Learning,"THÈSEPour obtenir le diplôme de doctorat Spécialité Informatique Préparée au sein de « l'INSA Rouen Normandie » Présentée et soutenue parSoufiane BELHARBIThèse dirigée par Sébastien ADAM, laboratoire LITIS Neural Networks Regularization Through Representation LearningThèse soutenue publiquement le 06 Juillet 2018 devant le jury composé deSébastien ADAMProfesseur à l'Université de Rouen NormandieDirecteur de thèseClément CHATELAINMaître de conférence à l'INSA  Rouen NormandieEncadrant de thèseRomain HÉRAULTMaître de conférence à l'INSA  Rouen NormandieEncadrant de thèseElisa FROMONTProfesseur à l'Université de Rennes 1Rapporteur de thèseThierry ARTIÈRESProfesseur à l'École Centrale MarseilleRapporteur de thèseJohn LEEProfesseur à l'Université Catholique de LouvainExaminateur de thèseDavid PICARDMaître de conférences à l'École Nationale Supérieure de l'Électronique et de ses ApplicationsExaminateur de thèseFrédéric JURIEProfesseur à l' Université de Caen NormandieInvité"
0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7,"Multi-task, multi-label and multi-domain learning with residual convolutional networks for emotion recognition","Noname manuscript No.
(will be inserted by the editor)
Multi-task, multi-label and multi-domain learning with
residual convolutional networks for emotion recognition
Gerard Pons · David Masip
Received: date / Accepted: date"
0acf23485ded5cb9cd249d1e4972119239227ddb,Dual coordinate solvers for large-scale structural SVMs,"Dual coordinate solvers for large-scale structural SVMs
Deva Ramanan
UC Irvine
This manuscript describes a method for training linear SVMs (including binary SVMs, SVM regression,
nd structural SVMs) from large, out-of-core training datasets. Current strategies for large-scale learning fall
into one of two camps; batch algorithms which solve the learning problem given a finite datasets, and online
lgorithms which can process out-of-core datasets. The former typically requires datasets small enough to fit
in memory. The latter is often phrased as a stochastic optimization problem [4, 15]; such algorithms enjoy
strong theoretical properties but often require manual tuned annealing schedules, and may converge slowly
for problems with large output spaces (e.g., structural SVMs). We discuss an algorithm for an “intermediate”
regime in which the data is too large to fit in memory, but the active constraints (support vectors) are small
enough to remain in memory.
In this case, one can design rather ef‌f‌icient learning algorithms that are
s stable as batch algorithms, but capable of processing out-of-core datasets. We have developed such a
MATLAB-based solver and used it to train a series of recognition systems [19, 7, 21, 12] for articulated pose
estimation, facial analysis, 3D object recognition, and action classification, all with publicly-available code.
This writeup describes the solver in detail.
Approach: Our approach is closely based on data-subsampling algorithms for collecting hard exam-
ples [9, 10, 6], combined with the dual coordinate quadratic programming (QP) solver described in liblinear
[8]. The latter appears to be current fastest method for learning linear SVMs. We make two extensions (1)"
0aaa66501298c3df27293eca7906e93d8013b729,Fast HOG based person detection devoted to a mobile robot with a spherical camera,"Fast HOG based Person Detection devoted to a Mobile Robot with a
Spherical Camera
A. A. Mekonnen1, C. Briand1, F. Lerasle1, A. Herbulot1"
0a20e2fbe52efdb794b7566ce5233c41f4c5efc9,Monocular visual scene understanding from mobile platforms,"Monocular Visual Scene
Understanding
from Mobile Platforms
A dissertation for the degree of
Doktor-Ingenieur (Dr.-Ing.)
pproved by
TECHNISCHE UNIVERSITÄT DARMSTADT
Fachbereich Informatik
presented by
CHRISTIAN ALEXANDER WOJEK
Dipl.-Inform.
orn in Schillingsfürst, Germany
Examiner:
Prof. Dr. Bernt Schiele
Co-examiner: Prof. Dr. Luc Van Gool
Date of Submission: 14th of May, 2010
0th of June, 2010
Date of Defense:
Darmstadt, 2010"
64a6c30ca95e85427c56acb4c1c20f62c6ec0709,PersonNet: Person Re-identification with Deep Convolutional Neural Networks,"PersonNet: Person Re-identification with Deep
Convolutional Neural Networks
Lin Wu, Chunhua Shen, Anton van den Hengel"
64c9cc92ea496b9053fa5326567487b5f08bb13f,3D Human Face Recognition Using Summation Invariants,"(cid:176)2006 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collec-
tive works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works
must be obtained from the IEEE."
647c6ac5e0bfee0241d583650f18c6314f28aaee,Segmentation Driven Object Detection with Fisher Vectors,"Segmentation Driven Object Detection with Fisher Vectors
Ramazan Gokberk Cinbis
Jakob Verbeek Cordelia Schmid
LEAR, INRIA Grenoble - Rhˆone-Alpes, France
Laboratoire Jean Kuntzmann"
6412d8bbcc01f595a2982d6141e4b93e7e982d0f,"Deep Convolutional Neural Network Using Triplets of Faces, Deep Ensemble, and Score-Level Fusion for Face Recognition","Deep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, and
Score-level Fusion for Face Recognition
Bong-Nam Kang, Student Member, IEEE1, Yonghyun Kim, Student Member, IEEE2, and
Daijin Kim, Member, IEEE2
Department of Creative IT Engineering, POSTECH, Korea
Department of Computer Science and Engineering, POSTECH, Korea
{bnkang, gkyh0805,"
641f0989b87bf7db67a64900dcc9568767b7b50f,Reconstructing faces from their signatures using RBF regression,"Reconstructing Faces from their Signatures using RBF
Regression
Alexis Mignon, Fr´ed´eric Jurie
To cite this version:
Alexis Mignon, Fr´ed´eric Jurie. Reconstructing Faces from their Signatures using RBF Regres-
sion. British Machine Vision Conference 2013, Sep 2013, Bristol, United Kingdom. pp.103.1–
03.12, 2013, <10.5244/C.27.103>. <hal-00943426>
HAL Id: hal-00943426
https://hal.archives-ouvertes.fr/hal-00943426
Submitted on 13 Feb 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
64fb6c31033e38eaaa10c0f7c2b7995f8fa84de3,Visualizing Video Sounds through Sound Word Animation,"VISUALIZING VIDEO SOUNDS THROUGH
SOUND WORD ANIMATION
擬音語アニメーションによる動画音響の可視化手法
Fangzhou Wang
A Master Thesis
Submitted to
the Graduate School of the University of Tokyo
on February 20, 2014
in Partial Ful(cid:12)llment of the Requirements
for the Degree of Master of Information Science and
Technology
in Computer Science
Thesis Supervisor: Takeo Igarashi 五十嵐健夫
Professor of Computer Science"
6483ebbb9c28024431c8ada03354217453ca1b3b,Statement in Lieu of an Oath,"Universit¨at des Saarlandes
Max-Planck-Institut f¨ur Informatik
Learning to Track Humans in Videos
Master’s Thesis in Computer Science
Mihai Fieraru
supervised by
Prof. Dr. Bernt Schiele
dvised by
MSc Anna Khoreva
MSc Eldar Insafutdinov
reviewers
Prof. Dr. Bernt Schiele
Dr. Mario Fritz
Saarbr¨ucken, December 2017"
64be271fd50fce1cf8434020145a1b6e16f75c1a,Intrinsic Divergence for Face Recognition,"Centre for Theoretical Neuroscience
Technical Report
UW-CTN-TR-20090204-001
February 4, 2009
Intrinsic Divergence for Face
Recognition
Yichuan Tang and Xuan Choo
Centre for Theoretical Neuroscience, Waterloo, ON. http://compneuro.uwaterloo.ca/cnrglab"
646fa86edc22ccc452a44ac7a5953ba62fc0929b,Recognizing jumbled images: The role of local and global information in image classification,"The Role of Local and Global Information in Image Classification
Recognizing Jumbled Images:
Toyota Technological Institute, Chicago (TTIC)
Devi Parikh"
6475c1e95da0a3bd36786a32d00a893d85460e9e,Combined image- and world-space tracking in traffic scenes,"Combined Image- and World-Space Tracking in Traffic Scenes
Aljoˇsa Oˇsep, Wolfgang Mehner, Markus Mathias, and Bastian Leibe"
643abe6001946ebb7e262465edcf78d600c38f4f,The COST292 experimental framework for TRECVID 2007,"The COST292 experimental framework for TRECVID 2007
Q. Zhang1, K. Chandramouli1, U. Damnjanovic1, T. Piatrik1, E. Izquierdo1,
M. Corvaglia2, N. Adami2, R. Leonardi2, G. Yakın3, S. Aksoy3, U. Naci4,
A. Hanjalic4, S. Vrochidis5, A. Moumtzidou5, S. Nikolopoulos5, V. Mezaris5,
L. Makris5, I. Kompatsiaris5, E. Esen6, A. Alatan6, E. Spyrou7,
P. Kapsalas7, G. Tolias7, P. Mylonas7, Y. Avrithis7, B. Reljin8, G. Zajic8,
R. Jarina9, M. Kuba9, N. Aginamo10, J. Goya10, B. Mansencal11,
J. Benois-Pineau11, A. M. G. Pinheiro12, L. A. Alexandre12, P. Almeida12
October 22, 2007"
64153df77fe137b7c6f820a58f0bdb4b3b1a879b,Shape Invariant Recognition of Segmented Human Faces using Eigenfaces,"Shape Invariant Recognition of Segmented Human
Faces using Eigenfaces
Zahid Riaz, Michael Beetz, Bernd Radig
Department of Informatics
Technical University of Munich, Germany"
64c78c8bf779a27e819fd9d5dba91247ab5a902b,Tracking with multi-level features,"Tracking with multi-level features
Roberto Henschel, Laura Leal-Taix´e, Bodo Rosenhahn, Konrad Schindler"
64e0bd1210f180e0610b2a1faa188051a1de29bf,Combining Detectors for Robust Head Detection,"Combining Detectors for Robust Head Detection
Henrik Brauer, Christos Grecos and Kai von Luck
Living Place - HAW Hamburg
Berliner Tor 11
0099 Hamburg, Germany"
649eb674fc963ce25e4e8ce53ac7ee20500fb0e3,Toward correlating and solving abstract tasks using convolutional neural networks,
64f6f1cd23bbac1983ad4115475e4ef26ab86ba4,Person re-identification by unsupervised video matching,"Person Re-Identification by Unsupervised Video Matching
Xiaolong Ma1,4, Xiatian Zhu2, Shaogang Gong2, Xudong Xie1, Jianming Hu1, Kin-Man Lam3, Yisheng Zhong1"
6434b95401aea9ece22b2b29950118afc163c2db,Localized anomaly detection via hierarchical integrated activity discovery,"THIS PAPER APPEARED IN IEEE INT. CONF. ON ADVANCED VIDEO AND SIGNAL-BASED PROCESSING (AVSS), KRAKOW, 2013
Localized Anomaly Detection via Hierarchical Integrated Activity Discovery
Thiyagarajan Chockalingam1
R´emi Emonet2
http://home.heeere.com
Jean-Marc Odobez2,3
: Colorado State University – Fort Collins, CO 80523, United States
: Idiap Research Institute – CH-1920, Martigny, Switzerland
: ´Ecole Polytechnique F´ed´eral de Lausanne – CH-1015, Lausanne, Switzerland"
6497eb53fd7d3ff09190566be8099016fb49f801,Biometric Sensor Interoperability: A Case Study in 3D Face Recognition,
64cac22210861d4e9afb00b781da90cf99f9d19c,Facial Landmark Detection for Manga Images,"Noname manuscript No.
(will be inserted by the editor)
Facial Landmark Detection for Manga Images
Marco Stricker · Olivier Augereau ·
Koichi Kise · Motoi Iwata
Received: date / Accepted: date"
64d1fcc26c2af47c8ed7436fe91546ba5bfc7a1f,Disentangling Multiple Conditional Inputs in GANs,"Disentangling Multiple Conditional Inputs in GANs
Gökhan Yildirim
Urs Bergmann
Zalando Research
Zalando Research
Berlin, Germany
Berlin, Germany
Calvin Seward∗
Zalando Research
Berlin, Germany
process. Researchers have achieved control of image generation by
using GANs that are conditioned on a categorical input [12, 13].
In this paper, we employ conditional GANs to control the visual
ttributes, such as color, texture, and shape, of a generated apparel.
One of the main challenges of the conditional image generation
GANs is to isolate the effects of input attributes on the final image.
For example, we want the color of an article to stay constant, when
we tune its texture and/or shape. One possibility would be to employ
Adversarial Autoencoders [11] or DNA-GAN [17] to disentangle
the inputs. However, this requires an exhaustive dataset, in other"
641fd2edcf93fa29181952356e93a83a26012aa2,Following are some examples from CIFAR dataset : Goal : To alter the training criteria to obtain ‘ objectness ’ in the synthesis of images,"Published as a conference paper at ICLR 2017
IMPROVING GENERATIVE ADVERSARIAL NETWORKS
WITH DENOISING FEATURE MATCHING
David Warde-Farley & Yoshua Bengio(cid:63)
Montreal Institute for Learning Algorithms, (cid:63) CIFAR Senior Fellow
Universit´e de Montr´eal
Montreal, Quebec, Canada"
6472df86bed51909f7b8aa0631f910db5a627c84,Minimax and Adaptive Estimation of Covariance Operator for Random Variables Observed on a Lattice Graph,"Minimax and Adaptive Estimation of Covariance Operator for
Random Variables Observed on a Lattice Graph
T. Tony Cai∗ and Ming Yuan†
University of Pennsylvania and Georgia Institute of Technology
November 3, 2012"
6403117f9c005ae81f1e8e6d1302f4a045e3d99d,"A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets.","A Systematic Evaluation and Benchmark for
Person Re-Identification: Features, Metrics, and
Datasets
Srikrishna Karanam∗, Student Member, IEEE, Mengran Gou∗, Student Member, IEEE,
Ziyan Wu, Member, IEEE, Angels Rates-Borras, Octavia Camps, Member, IEEE,
nd Richard J. Radke, Senior Member, IEEE"
641f9c87356c0829e690272b010848242058b8bc,Object Co-detection via Efficient Inference in a Fully-Connected CRF,"Object Co-detection via Ef‌f‌icient Inference
in a Fully-Connected CRF(cid:2)
Zeeshan Hayder, Mathieu Salzmann, and Xuming He
Australian National University (ANU)
NICTA, Canberra, Australia"
6446089a2a383ad9e4315aea0199084dc61490f9,Computational analysis of human-robot interactions through first-person vision: Personality and interaction experience,"Proceedings of the 24th IEEE International
Symposium on Robot and Human Interactive Communication
Kobe, Japan, Aug 31 - Sept 4, 2015
978-1-4673-6704-2/15/$31.00 ©2015 IEEE"
645de797f936cb19c1b8dba3b862543645510544,Deep Temporal Linear Encoding Networks,"Deep Temporal Linear Encoding Networks
Ali Diba1,(cid:63), Vivek Sharma1,(cid:63), and Luc Van Gool1,2
ESAT-PSI, KU Leuven, 2CVL, ETH Z¨urich"
64bd5878170bfab423bc3fc38d693202ef4ba6b6,Monocular 3D Human Pose Estimation in the Wild Using Improved CNN Supervision,"Monocular 3D Human Pose Estimation In The Wild
Using Improved CNN Supervision
Dushyant Mehta1, Helge Rhodin2, Dan Casas3, Pascal Fua2,
Oleksandr Sotnychenko1, Weipeng Xu1, and Christian Theobalt1
MPI for Informatics, Germany
EPFL, Switzerland
Universidad Rey Juan Carlos, Spain"
90d735cffd84e8f2ae4d0c9493590f3a7d99daf1,Recognition of Faces using Efficient Multiscale Local Binary Pattern and Kernel Discriminant Analysis in Varying Environment,"Original Research Paper
American Journal of Engineering and Applied Sciences
Recognition of Faces using Efficient Multiscale Local Binary
Pattern and Kernel Discriminant Analysis in Varying
Environment
Sujata G. Bhele and
V.H. Mankar
Department of Electronics Engg, Priyadarshini College of Engg, Nagpur, India
Department of Electronics Engg, Government Polytechnic, Nagpur, India
Article history
Received: 20-06-2017
Revised: 18-07-2017
Accepted: 21-08-2017
Corresponding Author:
Sujata G. Bhele
Department of Electronics
Engg, Priyadarshini College of
Engg, Nagpur, India
Email:"
904c53ea063d7d1e13b99d55257801d69d073775,Combined Object Detection and Segmentation,"International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013
Combined Object Detection and Segmentation
Jarich Vansteenberge, Masayuki Mukunoki, and Michihiko Minoh"
9070045c1a9564a5f25b42f3facc7edf4c302483,Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker,"Everybody needs somebody: Modeling social and grouping behavior on a linear
programming multiple people tracker
Laura Leal-Taix´e, Gerard Pons-Moll and Bodo Rosenhahn
Institute for Information Processing (TNT)
Leibniz University Hannover, Germany"
90d8bf2199e7fd972dab3bd3dc6fb67536fa509b,Performance and Energy Modeling of Heterogeneous Many-core Architectures,"PERFORMANCE AND ENERGY MODELING OF HETEROGENEOUS MANY-CORE ARCHITECTURES
Performance and Energy Modeling of
Heterogeneous Many-core Architectures
Rui Pedro Gaspar Pinheiro"
904a8241ef400bd85b1ad10267a1177bbde1c048,Image-Text Dataset Generation for Image Annotation and Retrieval,"II Congreso Español de Recuperación de  la Información
CERI 2012
Image-Text Dataset Generation for Image
Annotation and Retrieval⋆
Mauricio Villegas and Roberto Paredes
Institut Tecnol`ogic d’Inform`atica
Universitat Polit`ecnica de Val`encia
Cam´ı de Vera s/n, 46022 Val`encia (Spain)"
902d1b14b076120cb21029b51ed8e63529fe686d,Performance Analysis for Facial Expression Recognition under Salt and Pepper Noise with Median Filter Approach,"PERFORMANCE ANALYSIS FOR FACIAL EXPRESSION
RECOGNITION UNDER SALT AND PEPPER NOISE WITH
MEDIAN FILTER APPROACH
AZRINI BINTI IDRIS
A project report submitted in partial
fulfillment of the requirement for the award of the
Degree of Master of Electrical Engineering
Facultyof Electrical and Electronic Engineering
UniversitiTun Hussein Onn Malaysia
JULY 2013"
90915cc93248174c4729be65159fb946d2ad5f72,"Relative Dense Tracklets for Human Action Recognition Piotr Bilinski Etienne Corvee Slawomir Bak Francois Bremond INRIA Sophia Antipolis , STARS team 2004 Route des Lucioles , BP 93 , 06902 Sophia Antipolis , France","Relative Dense Tracklets for Human Action Recognition
Piotr Bilinski
Etienne Corvee
Slawomir Bak
Francois Bremond
INRIA Sophia Antipolis, STARS team
004 Route des Lucioles, BP93, 06902 Sophia Antipolis, France"
907fbe706ec14101978a63c6252e0d75e657e8dd,The Unreasonable Effectiveness of Texture Transfer for Single Image Super-resolution,"The Unreasonable Effectiveness of Texture Transfer
for Single Image Super-resolution
Muhammad Waleed Gondal
Max Planck Institute for Intelligent Systems.
Bernhard Schölkopf
Max Planck Institute for Intelligent Systems.
Michael Hirsch
Amazon Research."
9095f633a153c0e3a5503c0373c9c1dfeeefb0cc,Fast 3D face reconstruction based on uncalibrated photometric stereo,"Multimed Tools Appl
DOI 10.1007/s11042-013-1791-3
Fast 3D face reconstruction based on uncalibrated
photometric stereo
Yujuan Sun & Junyu Dong & Muwei Jian & Lin Qi
# Springer Science+Business Media New York 2013"
90eb9f6a1b7e3dae24e438b201e6b1f671a87eb5,Single-Camera Automatic Landmarking for People Recognition with an Ensemble of Regression Trees,"Single-Camera Automatic Landmarking for People Recognition
with an Ensemble of Regression Trees
Karla Trejo, Cecilio Angulo
Universitat Polit`ecnica de Catalunya, Barcelona,
Spain
(AAM)
Active Appearance Model"
90dd771829094dad1230e32b8bc4385bfe86c4e5,A Comparison of Word Embeddings for the Biomedical Natural Language Processing,[cs.IR]  18 Jul 2018
90e994a802a0038f24c8e3735d7619ebb40e6e93,Semantic Foggy Scene Understanding with Synthetic Data,"Noname manuscript No.
(will be inserted by the editor)
Semantic Foggy Scene Understanding with Synthetic Data
Christos Sakaridis · Dengxin Dai · Luc Van Gool
Received: date / Accepted: date"
90ce227ec08053ea6acf9f9f9f53d8b7169574f2,An Introduction to Evaluating Biometric Systems,"C O V E R   F E A T U R E
An Introduction to
Evaluating
Biometric
Systems
O n the basis of media hype alone, you might
onclude that biometric passwords will soon
replace  their  alphanumeric  counterparts
with versions that cannot be stolen, forgot-
ten, lost, or given to another person. But
what if the performance estimates of these systems are
far more impressive than their actual performance?
P. Jonathon
Phillips
Alvin Martin
C.L. Wilson
Przybocki
National
Institute of
Standards and"
90e56a8515c8c2ff16f5c79c69811e283be852c7,Boosting face recognition via neural Super-Resolution,"Boosting face recognition via neural Super-Resolution
Guillaume Berger, Cl´ement Peyrard and Moez Baccouche
Orange Labs - 4 rue du Clos Courtel, 35510 Cesson-S´evign´e - France"
90fb58eeb32f15f795030c112f5a9b1655ba3624,Face and Iris Recognition in a Video Sequence Using Dbpnn and Adaptive Hamming Distance,"INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS
www.ijrcar.com
Vol.4 Issue 6, Pg.: 12-27
June 2016
INTERNATIONAL JOURNAL OF
RESEARCH IN COMPUTER
APPLICATIONS AND ROBOTICS
ISSN 2320-7345
FACE AND IRIS RECOGNITION IN A
VIDEO SEQUENCE USING DBPNN AND
ADAPTIVE HAMMING DISTANCE
S. Revathy, 2Mr. L. Ramasethu
PG Scholar, Hindusthan College of Engineering and Technology, Coimbatore, India.
Assistant Professor, Hindusthan College of Engineering and Technology, Coimbatore, India.
Email id:"
9043df1de4f6e181875011c1379d1a7f68a28d6c,People Detection from Overhead Cameras,"People Detection from Overhead
Cameras
A study of impact of occlusion on
performance
Lu Liu
in partial fulfillment of the requirements for the degree of
Master of Science
t the Delft University of Technology,
to be defended publicly on Friday August 31, 2018 at 01:00 PM.
Student number:
Thesis committee: Dr. Hayley Hung (supervisor)
621832
EEMCS
Laura Cabrera-Quiros (mentor) EEMCS
EEMCS
Prof. Marcel Reinders,
Dr. Julian Kooij,"
902114feaf33deac209225c210bbdecbd9ef33b1,Side-Information based Linear Discriminant Analysis for Face Recognition,"KAN et al.: SIDE-INFORMATION BASED LDA FOR FACE RECOGNITION
Side-Information based Linear
Discriminant Analysis for Face
Recognition
Meina Kan1,2,3
Shiguang Shan1,2
Dong Xu3
Xilin Chen1,2
Digital Media Research Center,
Institute of Computing
Technology, CAS, Beijing, China
Key Laboratory of Intelligent
Information Processing, Chinese
Academy of Sciences, Beijing,
China
School of Computer Engineering,
Nanyang Technological
University, Singapore"
90a70b38c5a1b40ac16e18628a7772923cdc5cb5,Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation,"Exact Subspace Segmentation and Outlier Detection by
Low-Rank Representation
Anonymous Author 1
Unknown Institution 1
Anonymous Author 2
Unknown Institution 2
Anonymous Author 3
Unknown Institution 3"
900175d24928921600d09985211b6b9bfea44ce0,Person re-identification by pose priors,"Person re-identification by pose priors
Sławomir Bąk
Filipe Martins
Francois Brémond
INRIA Sophia Antipolis, STARS team, 2004, route des Lucioles, BP93
06902 Sophia Antipolis Cedex - France"
909f91c1957ce2bf9d76ee2109a865e87bf17057,GMCP-Tracker: Global Multi-object Tracking Using Generalized Minimum Clique Graphs,"GMCP-Tracker: Global Multi-object Tracking
Using Generalized Minimum Clique Graphs
Amir Roshan Zamir, Afshin Dehghan, and Mubarak Shah
UCF Computer Vision Lab, Orlando, FL 32816, USA"
903210406f14a12b481524d543b14f16114797e2,Pretest of images for the beauty dimension,"Análise Psicológica (2015), 4 (XXXIII): 453-466
doi: 10.14417/ap.1052
Pretest of images for the beauty dimension
Joana Mello* / Filipe Loureiro*
* ISPA – Instituto Universitário
In this work, we present norms concerning the perceived association of two sets of image stimuli with
the concept of “beauty”: 40 objects (Study 1) and 40 photos of human faces (Study 2)1. Participants
were presented with a set of words associated with the construct of “beauty” and were subsequently
sked to judge each image on how much they considered them to be related with this construct on a
7-point scale (1 – Not at all related; 7 – Very related). The interpretation of means’ confidence intervals
distinguish between 40 images, evaluated as “ugly” – with low scores on the beauty dimension – (20
objects  and  20  faces),  and  28  images  evaluated  as  “beautiful”  –  with  high  scores  on  the  beauty
dimension – (12 objects and 16 faces). Results are summarized and photos made available to support
future research requiring beauty and/or ugly stimulus.
Key words: Norms, Beauty, Ugly, People, Objects.
Introduction
The objective of this work consists on the presentation of beauty norms of a set of images from
two categories (people and objects) for further use in different contexts and experimental settings.
Our main purpose was to present norms of a set of updated to present-days photos of faces and
objects regarding its level of activation of the “beauty” construct, i.e., of the perceived association"
9015fd773526e21e352037663de3f586ccf4e907,Fused Deep Neural Networks for Efficient Pedestrian Detection,"Fused Deep Neural Networks for Efficient
Pedestrian Detection
Xianzhi Du, Mostafa El-Khamy, Vlad I. Morariu, Jungwon Lee, and Larry Davis"
90f0646c0801f1dad43d2374d1145be8e005bdbf,Raised Middle-Finger: Electrocortical Correlates of Social Conditioning with Nonverbal Affective Gestures,"Raised Middle-Finger: Electrocortical Correlates of Social
Conditioning with Nonverbal Affective Gestures
Matthias J. Wieser1*, Tobias Flaisch2, Paul Pauli1
Department of Psychology, University of Wu¨ rzburg, Wu¨ rzburg, Germany, 2 Department of Psychology, University of Konstanz, Konstanz, Germany"
90cb074a19c5e7d92a1c0d328a1ade1295f4f311,Fully Automatic Upper Facial Action Recognition,"MIT. Media Laboratory Affective Computing Technical Report #571
Appears in IEEE International Workshop on Analysis and Modeling of Faces and Gestures , Oct 2003
Fully Automatic Upper Facial Action Recognition
Ashish Kapoor Yuan Qi Rosalind W. Picard
MIT Media Laboratory
Cambridge, MA 02139"
907475a4febf3f1d4089a3e775ea018fbec895fe,Statistical modeling for facial expression analysis and synthesis,"STATISTICAL MODELING FOR FACIAL EXPRESSION ANALYSIS AND SYNTHESIS
Bouchra Abboud, Franck Davoine, Mˆo Dang
Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne.
BP 20529, 60205 COMPIEGNE Cedex, FRANCE.
E-mail:"
90d8dbaa799430d7384425061317e0fa55bf5cbb,Representation Models and Machine Learning Techniques for Scene Classificatio,"Representation Models and
Machine Learning Techniques
for Scene Classificatio
Giovanni Maria Farinella and Sebastiano Battiato
Image Processing Lab, Dipartimento di Matematica e Informatica,
Universit`a degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy;
E-mail: {gfarinella,"
9028fbbd1727215010a5e09bc5758492211dec19,Solving the Uncalibrated Photometric Stereo Problem Using Total Variation,"Solving the Uncalibrated Photometric Stereo
Problem using Total Variation
Yvain Qu´eau1, Fran¸cois Lauze2, and Jean-Denis Durou1
IRIT, UMR CNRS 5505, Toulouse, France
Dept. of Computer Science, Univ. of Copenhagen, Denmark"
bff77a3b80f40cefe79550bf9e220fb82a74c084,Facial Expression Recognition Based on Local Binary Patterns and Local Fisher Discriminant Analysis,"Facial Expression Recognition Based on Local Binary Patterns and
Local Fisher Discriminant Analysis
SHIQING ZHANG 1, XIAOMING ZHAO 2, BICHENG LEI 1
School of Physics and Electronic Engineering
Taizhou University
Taizhou 318000
CHINA
2Department of Computer Science
Taizhou University
Taizhou 318000
CHINA"
bf4ec5068e6ff0b008a09f0c94bfaac290ae7d3b,Co-attention CNNs for Unsupervised Object Co-segmentation,Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
bf4fcd80083f3145176b64d15bab78456a7e5e43,Title Fast Randomized Algorithms for Convex Optimization and Statistical Estimation Permalink,"Fast Randomized Algorithms for Convex Optimization and
Statistical Estimation
Mert Pilanci
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2016-147
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-147.html
August 14, 2016"
bfd8bfce7c998a7bf209b7bf2e6c2e1f03c4334e,Discriminative Face Alignment,"Discriminative Face Alignment
Xiaoming Liu, Member, IEEE"
bf4f76c3da8a46783dfd2b72651e2300901ced25,Robust aggregation of GWAP tracks for local image annotation,"Robust aggregation of GWAP tracks
for local image annotation
C. Bernaschina, P. Fraternali, L. Galli, D. Martinenghi, M. Tagliasacchi
Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano, Italy"
bf1e0279a13903e1d43f8562aaf41444afca4fdc,Different Viewpoints of Recognizing Fleeting Facial Expressions with DWT,"International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056
Volume: 04 Issue: 10 | Oct -2017                     www.irjet.net                                                                 p-ISSN: 2395-0072
Different Viewpoints of Recognizing Fleeting Facial Expressions with
VAIBHAV SHUBHAM1, MR. SANJEEV SHRIVASTAVA2, DR. MOHIT GANGWAR3
information
to  get  desired
information
Introduction
---------------------------------------------------------------------***---------------------------------------------------------------------"
bf96a0f037e7472e4b6cb1dae192a5fedbbbd88a,Visual Listening In: Extracting Brand Image Portrayed on Social Media,"Visual Listening In: Extracting Brand Image
Portrayed on Social Media
Liu Liu
NYU Stern School of Business,
Daria Dzyabura
NYU Stern School of Business,
University of Washington - Foster School of Business,
Natalie Mizik
Marketing academics and practitioners recognize the importance of monitoring consumer online conversations
bout brands. The focus so far has been on user generated content in the form of text. However, images are
on their way to surpassing text as the medium of choice for social conversations. In these images, consumers
often tag brands. We propose a “visual listening in” approach to measuring how brands are portrayed on
social media (Instagram), by mining visual content posted by users. Our approach consists of two stages. We
first use two supervised machine learning methods, traditional support vector machine classifiers and deep
onvolutional neural networks, to measure brand attributes (glamorous, rugged, healthy, fun) from images.
We then apply the classifiers to brand-related images posted on social media to measure what consumers
re visually communicating about brands. We study 56 brands in the apparel and beverages categories, and
ompare their portrayal in consumer-created images with images on the firm’s of‌f‌icial Instagram account, as
well as with consumer brand perceptions measured in a national brand survey. Although the three measures
exhibit convergent validity, we find key differences between how consumers and firms portray the brands on"
bfef76d0e287fc6401d69a9f65ff174e4fbf0970,Nonnegative Matrix Factorization with Outliers,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
bfebba8356c5d20dc6a9b2f72ff66adaf63321b7,End-to-end pedestrian collision warning system based on a convolutional neural network with semantic segmentation,"End-to-End Pedestrian Collision Warning System
ased on a Convolutional Neural Network
with Semantic Segmentation
Heechul Jung
DGIST
Daegu, Republic of Korea
Min-Kook Choi
DGIST
Daegu, Republic of Korea
Kwon Soon
DGIST
Daegu, Republic of Korea
Woo Young Jung
DGIST
Daegu, Republic of Korea"
bf05e710dae791f82cc639a09dbe5ec66fed2008,Generating Video Description using Sequence-to-sequence Model with Temporal Attention,"Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 44–52, Osaka, Japan, December 11-17 2016."
bf4825474673246ae855979034c8ffdb12c80a98,"UNIVERSITY OF CALIFORNIA RIVERSIDE Active Learning in Multi-Camera Networks, With Applications in Person Re-Identification A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering","UNIVERSITY OF CALIFORNIA
RIVERSIDE
Active Learning in Multi-Camera Networks, With Applications in Person
Re-Identification
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Electrical Engineering
Abir Das
December 2015
Dissertation Committee:
Professor Amit K. Roy-Chowdhury, Chairperson
Professor Anastasios Mourikis
Professor Walid Najjar"
bfdcd4d5cc10c8c64743fc7be7e7ad6709d93b53,Evaluation of PCA and LDA techniques for Face recognition using ORL face database,"Evaluation of PCA and LDA techniques for Face
recognition using ORL face database
CSE Dept. Faculty of Engineering, Avinashilingam University, Coimbatore, India
M.Saraswathi, Dr. S. Sivakumari"
bf735bb7557e73bc6f68853cba828b55bd163726,Fusion of Zernike Moments and SIFT Features for Improved Face Recognition,"International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)
Proceedings published in International Journal of Computer Applications® (IJCA)
Fusion of Zernike Moments and SIFT Features for
Improved Face Recognition
Chandan Singh
Professor
Department of Computer
Science, Punjabi University
Patiala, India
Ekta Walia
Asst. Prof., Department of
Computer Science, South
Asian University, New Delhi,
Neerja Mittal
Asst. Prof., Department of
CSE&IT, RBIEBT, Kharar,
Distt. Mohali, India
India"
bfffcd2818a1679ac7494af63f864652d87ef8fa,Neural Importance Sampling,"Neural Importance Sampling
THOMAS MÜLLER, Disney Research & ETH Zürich
BRIAN MCWILLIAMS, Disney Research
FABRICE ROUSSELLE, Disney Research
MARKUS GROSS, Disney Research & ETH Zürich
JAN NOVÁK, Disney Research
We propose to use deep neural networks for generating samples in Monte
Carlo integration. Our work is based on non-linear independent compo-
nents estimation (NICE), which we extend in numerous ways to improve
performance and enable its application to integration problems. First, we
introduce piecewise-polynomial coupling transforms that greatly increase
the modeling power of individual coupling layers. Second, we propose to
preprocess the inputs of neural networks using one-blob encoding, which
stimulates localization of computation and improves inference. Third, we de-
rive a gradient-descent-based optimization for the KL and the χ 2 divergence
for the specific application of Monte Carlo integration with unnormalized
stochastic estimates of the target distribution. Our approach enables fast and
ccurate inference and efficient sample generation independently of the di-
mensionality of the integration domain. We show its benefits on generating
natural images and in two applications to light-transport simulation: first,"
bf15ba4db09fd805763738ec2cb48c09481785dd,Training Deep Neural Network in Limited Precision,"Training Deep Neural Network in Limited Precision
Hyunsun Park∗, Jun Haeng Lee∗, Youngmin Oh, Sangwon Ha, Seungwon Lee
Samsung Advanced Institute of Technology
Samsung-ro 130, Suwon-si, Republic of Korea
{h-s.park,"
bf5940d57f97ed20c50278a81e901ae4656f0f2c,Query-Free Clothing Retrieval via Implicit Relevance Feedback,"Query-free Clothing Retrieval via Implicit
Relevance Feedback
Zhuoxiang Chen, Zhe Xu, Ya Zhang, Member, IEEE, and Xiao Gu"
bff354d05823c83215183c8824faefbc093de011,A new efficient SVM and its application to real-time accurate eye localization,"Proceedings of International Joint Conference on Neural Networks, San Jose, California, USA, July 31 – August 5, 2011
A New Efficient SVM and Its Application to
Real-time Accurate Eye Localization
Shuo Chen and Chengjun Liu"
bfa763e7cec812f855c712895fa48eae89a34a00,Face Retrieval using Frequency Decoded Local Descriptor,"PREPRINT: ACCEPTED IN MULTIMEDIA TOOLS AND APPLICATIONS, SPRINGER
Face Retrieval using Frequency Decoded Local
Descriptor
Shiv Ram Dubey"
bfb98423941e51e3cd067cb085ebfa3087f3bfbe,Sparseness helps: Sparsity Augmented Collaborative Representation for Classification,"Sparseness helps: Sparsity Augmented
Collaborative Representation for Classification
Naveed Akhtar, Faisal Shafait, and Ajmal Mian"
bf4e6ec60e5603324f6a40d2a060420322dbdd62,Kinects and Human Kinetics: A New Approach for Studying Crowd Behavior,"Kinects and Human Kinetics: A New Approach for
Studying Crowd Behavior
Stefan Seera,b,∗, Norbert Br¨andlea, Carlo Rattib
Austrian Institute of Technology (AIT), Giefinggasse 2, 1210 Vienna, Austria
MIT Senseable City Lab, Massachusetts Institute of Technology (MIT), 77
Massachusetts Avenue, 02139 Cambridge, MA, USA"
bff9d100e99dd6a99ec26ca867694075b1dcac92,Passive Multimodal 2-D+3-D Face Recognition Using Gabor Features and Landmark Distances,"Passive Multimodal 2-D+3-D Face Recognition
Using Gabor Features and Landmark Distances
Sina Jahanbin, Member, IEEE, Hyohoon Choi, Member, IEEE, and Alan C. Bovik, Fellow, IEEE"
bf8bcda2e4d04b6bd6f5e70622e972baf525a1c7,Three decades of Cognition & Emotion: A brief review of past highlights and future prospects.,"COGNITION AND EMOTION, 2018
VOL. 32, NO. 1, 1–12
https://doi.org/10.1080/02699931.2018.1418197
nd future prospects
Klaus Rothermunda and Sander L. Kooleb
Institute of Psychology, Friedrich-Schiller-Universität Jena, Jena, Germany; bDepartment of Psychology, VU Amsterdam,
Amsterdam, the Netherlands"
d3e9c5a63215a9c46bc61ec04df5285ac355e42c,Integration of visual and depth information for vehicle detection,pport (cid:13)(cid:13)de recherche(cid:13)ISSN0249-6399ISRNINRIA/RR--7703--FR+ENGRoboticsINSTITUTNATIONALDERECHERCHEENINFORMATIQUEETENAUTOMATIQUEIntegrationofvisualanddepthinformationforvehicledetectionAlexandrosMakris—MathiasPerrollaz—IgorParomtchik—ChristianLaugierN°7703July2011
d3c1612ae08241dadf6abd650663f4f9351abaf9,Early Start Intention Detection of Cyclists Using Motion History Images and a Deep Residual Network,"Early Start Intention Detection of Cyclists Using Motion History
Images and a Deep Residual Network
Stefan Zernetsch, Viktor Kress, Bernhard Sick and Konrad Doll"
d33c9fe66bad7a90e34e8bc1332b73147a30d202,Trace alignment algorithms for offline workload analysis of heterogeneous architectures,"Trace Alignment Algorithms for Offline Workload Analysis
of Heterogeneous Architectures
Muhammet Mustafa Ozdal
Intel Corporation
Hillsboro, OR 97124
Aamer Jaleel
Intel Corporation
Hudson, MA
Paolo Narvaez
Intel Corporation
Hudson, MA
Steven Burns
Intel Corporation
Hillsboro, OR
Ganapati Srinivasa
Intel Corporation
Hillsboro, OR"
d3b73e06d19da6b457924269bb208878160059da,Implementation of an Automated Smart Home Control for Detecting Human Emotions via Facial Detection,"Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015
1-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my )
Paper No.
IMPLEMENTATION OF AN AUTOMATED SMART HOME
CONTROL FOR DETECTING HUMAN EMOTIONS VIA FACIAL
DETECTION
Lim Teck Boon1, Mohd Heikal Husin2, Zarul Fitri Zaaba3 and Mohd Azam
Osman4
Universiti Sains Malaysia, Malaysia,
Universiti Sains Malaysia, Malaysia,
Universiti Sains Malaysia, Malaysia,
Universiti Sains Malaysia, Malaysia,"
d3612bcc772761b611365fe21c42eafb181338ef,Face and Street Detection with Asymmetric Haar Features,"Face and Street Detection with Asymmetric Haar Features
Geovany A. Ramirez
University of Texas at El Paso
500 W University Ave - El Paso TX 79968
500 W University Ave - El Paso TX 79968
Olac Fuentes
University of Texas at El Paso"
d3d71a110f26872c69cf25df70043f7615edcf92,Learning Compact Feature Descriptor and Adaptive Matching Framework for Face Recognition,"Learning Compact Feature Descriptor and Adaptive
Matching Framework for Face Recognition
Zhifeng Li, Senior Member, IEEE, Dihong Gong, Xuelong Li, Fellow, IEEE, and Dacheng Tao, Fellow, IEEE
improvements"
d33beb4f1477374fbcffd8e9df74ca2547eb77ee,Feature Selection for Tracker-Less Human Activity Recognition,"Feature Selection for tracker-less human activity
recognition(cid:63)
Plinio Moreno, Pedro Ribeiro, and Jos´e Santos-Victor
Instituto de Sistemas e Rob´otica & Instituto Superior T´ecnico
Portugal"
d3b18ba0d9b247bfa2fb95543d172ef888dfff95,Learning and Using the Arrow of Time,"Learning and Using the Arrow of Time
Donglai Wei1, Joseph Lim2, Andrew Zisserman3 and William T. Freeman4,5
Harvard University 2University of Southern California
University of Oxford 4Massachusetts Institute of Technology 5Google Research
Figure 1: Seeing these ordered frames from videos, can you tell whether each video is playing forward or backward? (answer
elow1). Depending on the video, solving the task may require (a) low-level understanding (e.g. physics), (b) high-level
reasoning (e.g. semantics), or (c) familiarity with very subtle effects or with (d) camera conventions. In this work, we learn
nd exploit several types of knowledge to predict the arrow of time automatically with neural network models trained on
large-scale video datasets."
d3e51c0cfd6ae3d3082c2aa27fa1c73fa9662fdf,Isometry-invariant Surface Matching : Numerical Algorithms and Applications,"ISOMETRY-INVARIANT SURFACE
MATCHING: NUMERICAL ALGORITHMS
AND APPLICATIONS
MICHAEL M. BRONSTEIN
Technion - Computer Science Department - Ph.D. Thesis  PHD-2007-04 - 2007"
d3761354b7df1228eabf46032fd01a4109229d43,Selection of optimal narrowband multispectral images for face recognition. (Sélection des bandes spectrales optimales pour la reconnaissance des visages),"UNIVERSITY OF BURGUANDY
SPIM doctoral school
PhD from the University of Burgundy in
Computer Science
Presented by:
Hamdi Bouchech
Defense Date: January 26, 2015
Selection of optimal narrowband multispectral images for face
recognition
Thesis supervisor:
Dr. Sebti Foufou
Jury:
Frederic Morain-Nicolier, Professeur a I’IUT de Troyes, Rapporteur.
Pierre BONTON, Professeur à  l’ Université Blaise Pascal, retraité ,  Rapporteur.
Saida Bouakaz, Professeur à  l’ Université Claude Bernard Lyon 1, Examinatrice.
Pierre Gouton, Professeur à  l’ Université de Bourgogne, Examinateur.
Yassine Ruichek, Professeur à  l’ Université de Technologie de Belfort-Montbéliard,
Examinateur.
Sebti Foufou, Professeur à  l’ Université de Bourgogne, directeur de thèse."
d348197e47a8e081bd3f12a22bc52b055ecd8302,Unified Framework for Automated Person Re-identification and Camera Network Topology Inference in Camera Networks,"Unified Framework for Automated Person Re-identification and
Camera Network Topology Inference in Camera Networks
Yeong-Jun Cho, Jae-Han Park*, Su-A Kim*, Kyuewang Lee and Kuk-Jin Yoon
Computer Vision Laboratory, GIST, South Korea
{yjcho, qkrwogks, suakim, kyuewang,"
d3797366259182070c598e95cef8fff1ddb21f65,Distance-based Camera Network Topology Inference for Person Re-identification,"Distance-based Camera Network Topology Inference for Person Re-identification
Yeong-Jun Cho and Kuk-Jin Yoon
Computer Vision Laboratory, GIST, South Korea
{yjcho,"
d309e414f0d6e56e7ba45736d28ee58ae2bad478,Efficient Two-Stream Motion and Appearance 3 D CNNs for Video Classification,"Efficient Two-Stream Motion and Appearance 3D CNNs for
Video Classification
Ali Diba
ESAT-KU Leuven
Ali Pazandeh
Sharif UTech
Luc Van Gool
ESAT-KU Leuven, ETH Zurich"
d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9,STAIR Actions: A Video Dataset of Everyday Home Actions,
d3d887aebeeae44cefd5c2bdbb388d9ce109e335,Image Manipulation with Perceptual Discriminators,"Image Manipulation with
Perceptual Discriminators
Diana Sungatullina(cid:63), Egor Zakharov(cid:63), Dmitry Ulyanov, and Victor Lempitsky
Skolkovo Institute of Science and Technology, Moscow, Russia
{d.sungatullina, egor.zakharov, dmitry.ulyanov,"
d3c004125c71942846a9b32ae565c5216c068d1e,Recognizing Age-Separated Face Images: Humans and Machines,"RESEARCH ARTICLE
Recognizing Age-Separated Face Images:
Humans and Machines
Daksha Yadav1, Richa Singh2, Mayank Vatsa2*, Afzel Noore1
. West Virginia University, Morgantown, West Virginia, United States of America, 2. IIIT Delhi, New Delhi,
Delhi, India"
d350a9390f0818703f886138da27bf8967fe8f51,Lighting design for portraits with a virtual light stage,"LIGHTING DESIGN FOR PORTRAITS WITH A VIRTUAL LIGHT STAGE
Davoud Shahlaei, Marcel Piotraschke, Volker Blanz
Institute for Vision and Graphics, University of Siegen, Germany"
d33fcdaf2c0bd0100ec94b2c437dccdacec66476,Neurons With Paraboloid Decision Boundaries for Improved Neural Network Classification Performance.,"Neurons with Paraboloid Decision Boundaries for
Improved Neural Network Classification
Performance
Nikolaos Tsapanos, Anastasios Tefas, Member, IEEE, Nikolaos Nikolaidis, Member, IEEE, and
Ioannis Pitas, Fellow, IEEE"
d46b790d22cb59df87f9486da28386b0f99339d3,Learning Face Deblurring Fast and Wide,"Learning Face Deblurring Fast and Wide
Meiguang Jin
University of Bern
Switzerland
Michael Hirsch†
Amazon Research
Germany
Paolo Favaro
University of Bern
Switzerland"
d40bd8d44fe78952769a9bb04fe74ce38ef07534,Locally Adaptive Learning Loss for Semantic Image Segmentation,"Locally Adaptive Learning Loss for Semantic Image Segmentation
Jinjiang Guo1,2, Pengyuan Ren1, Aiguo Gu1, Jian Xu1, Weixin Wu1
Beijing NetPosa Technologies Co., Ltd. Beijing, China
Institut National des Sciences Appliqu´ees de Lyon, Lyon, France
{renpengyuan, guaiguo, xujian,"
d41c11ebcb06c82b7055e2964914b9af417abfb2,CDI-Type I: Unsupervised and Weakly-Supervised Discovery of Facial Events,"CDI-Type I: Unsupervised and Weakly-Supervised
Introduction
Discovery of Facial Events
The face is one of the most powerful channels of nonverbal communication. Facial expression has been a
focus of emotion research for over a hundred years [12]. It is central to several leading theories of emotion
[18, 31, 54] and has been the focus of at times heated debate about issues in emotion science [19, 24, 50].
Facial expression figures prominently in research on almost every aspect of emotion, including psychophys-
iology [40], neural correlates [20], development [11], perception [4], addiction [26], social processes [30],
depression [49] and other emotion disorders [55], to name a few. In general, facial expression provides cues
bout emotional response, regulates interpersonal behavior, and communicates aspects of psychopathology.
Because of its importance to behavioral science and the emerging fields of computational behavior
science, perceptual computing, and human-robot interaction, significant efforts have been applied toward
developing algorithms that automatically detect facial expression. With few exceptions, previous work on
facial expression relies on supervised approaches to learning (i.e. event categories are defined in advance
in labeled training data). While supervised learning has important advantages, two critical limitations may
e noted. One, because labeling facial expression is highly labor intensive, progress in automated facial
expression recognition and analysis is slowed. For the most detailed and comprehensive labeling or coding
systems, such as Facial Action Coding System (FACS), three to four months is typically required to train
coder (’coding’ refers to the labeling of video using behavioral descriptors). Once trained, each minute
of video may require 1 hour or more to code [9]. No wonder relatively few databases are yet available,"
d497b9e50dc2aacfb1693ca4de6ebf904404d98d,Patch Based Approaches for Visual Object Class Recognition - a Survey,"ALBERT-LUDWIGS-UNIVERSIT ¨AT FREIBURG
INSTITUT F ¨UR INFORMATIK
Lehrstuhl f¨ur Mustererkennung und Bildverarbeitung
Patch Based Approaches for the Recognition of Visual Object
Classes - A Survey
Internal Report 2/06
Alexandra Teynor
November, 2006"
d488dad9fa81817c85a284b09ebf198bf6b640f9,FCHD: A fast and accurate head detector,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
FCHD: A fast and accurate head detector
Aditya Vora, Johnson Controls Inc."
d444368421f456baf8c3cb089244e017f8d32c41,CNN for IMU assisted odometry estimation using velodyne LiDAR,"CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR
Martin Velas, Michal Spanel, Michal Hradis, and Adam Herout"
d48bd355d091e7ae75ade4e878fe346741e7da1a,Can You Spot the Semantic Predicate in this Video ?,"Can You Spot the Semantic Predicate in this Video?
Christopher Reale, Claire Bonial, Heesung Kwon and Clare R. Voss
U.S. Army Research Lab, Adelphi, Maryland 20783
{claire.n.bonial.civ, heesung.kwon.civ,"
d4ced2086ccd9259ade8fabdba14e0e4d9fc0c40,A Mobile Imaging System for Medical Diagnostics,"A Mobile Imaging System for Medical
Diagnostics
Sami Varjo and Jari Hannuksela
The Center for Machine Vision Research
Department of Computer Science and Engineering
P.O. Box 4500, FI-90014 University of Oulu"
d40c4e370d35264e324e4e3d5df59e51518c9979,A Transfer Learning based Feature-Weak-Relevant Method for Image Clustering,"A Transfer Learning based Feature-Weak-Relevant Method for
Image Clustering
Bo Dong, Xinnian Wang
Dalian Maritime University
Dalian, China"
d4885ca24189b4414031ca048a8b7eb2c9ac646c,"Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN","Ef‌f‌icient Facial Representations for Age, Gender
nd Identity Recognition in Organizing Photo
Albums using Multi-output CNN
Andrey V. Savchenko
Samsung-PDMI Joint AI Center, St. Petersburg Department of Steklov Institute of
Mathematics
National Research University Higher School of Economics
Nizhny Novgorod, Russia"
d45dc3546702db7fcef8d4863db319ca84cc8d3d,How emotional are you? Neural Architectures for Emotion Intensity Prediction in Microblogs,"How emotional are you? Neural Architectures for Emotion Intensity
Prediction in Microblogs
Devang Kulshreshtha∗, Pranav Goel∗, and Anil Kumar Singh
Indian Institute of Technology (Banaras Hindu University) Varanasi
{devang.kulshreshtha.cse14, pranav.goel.cse14,
Varanasi, Uttar Pradesh, India"
d4001826cc6171c821281e2771af3a36dd01ffc0,Modélisation de contextes pour l'annotation sémantique de vidéos. (Context based modeling for video semantic annotation),"Modélisation de contextes pour l’annotation sémantique
de vidéos
Nicolas Ballas
To cite this version:
Nicolas Ballas. Modélisation de contextes pour l’annotation sémantique de vidéos. Autre [cs.OH].
Ecole Nationale Supérieure des Mines de Paris, 2013. Français. <NNT : 2013ENMP0051>. <pastel-
00958135>
HAL Id: pastel-00958135
https://pastel.archives-ouvertes.fr/pastel-00958135
Submitted on 11 Mar 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
d458c49a5e34263c95b3393386b5d76ba770e497,A Comparative Analysis of Gender Classification Techniques,"Middle-East Journal of Scientific Research 20 (1): 01-13, 2014
ISSN 1990-9233
© IDOSI Publications, 2014
DOI: 10.5829/idosi.mejsr.2014.20.01.11434
A Comparative Analysis of Gender Classification Techniques
Sajid Ali Khan, Maqsood Ahmad, Muhammad Nazir and Naveed Riaz
Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan"
d4e4369babdba158bfdce1b605f92d6b1b665be4,The amygdala and the relevance detection theory of autism: an evolutionary perspective,"REVIEW ARTICLE
published: 30 December 2013
doi: 10.3389/fnhum.2013.00894
The amygdala and the relevance detection theory of autism:
n evolutionary perspective
Tiziana Zalla1* and Marco Sperduti 2,3
Institut Jean Nicod, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, Paris, France
Laboratoire Mémoire et Cognition, Institut de Psychologie, Université Paris Descartes, Boulogne-Billancourt, France
Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Paris, France
Edited by:
Corrado Corradi-Dell’Acqua, University
of Geneva, Switzerland
Reviewed by:
Sebastian B. Gaigg, City University
London, UK
Bhismadev Chakrabarti, University of
Reading, UK
Danilo Bzdok, Research Center Jülich,
Germany
*Correspondence:"
d4f8168242f688af29bcbbe1cc5aec7cd12a601c,Edinburgh Research Explorer Visually Grounded Meaning Representations,"Visually Grounded Meaning Representations
Citation for published version:
Silberer, C, Ferrari, V & Lapata, M 2016, 'Visually Grounded Meaning Representations' IEEE Transactions
on Pattern Analysis and Machine Intelligence. DOI: 10.1109/TPAMI.2016.2635138
Digital Object Identifier (DOI):
0.1109/TPAMI.2016.2635138
Link:
Link to publication record in Edinburgh Research Explorer
Document Version:
Peer reviewed version
Published In:
IEEE Transactions on Pattern Analysis and Machine Intelligence
General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
nd / or other copyright owners and it is a condition of accessing these publications that users recognise and
bide by the legal requirements associated with these rights.
Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
ontent complies with UK legislation. If you believe that the public display of this file breaches copyright please
ontact providing details, and we will remove access to the work immediately and"
d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4e,A Lightened CNN for Deep Face Representation,"A Lightened CNN for Deep Face Representation
Xiang Wu
School of Computer and Communication Engineering
University of Science and Technology Beijing, Beijing, China
Ran He, Zhenan Sun
National Laboratory of Pattern Recognition
Institute of Automation Chinese Academy of Sciences, Beijing, China
{rhe,"
d409d8978034de5e5e8f9ee341d4a00441e3d05f,Annual research review: re-thinking the classification of autism spectrum disorders.,"Journal of Child Psychology and Psychiatry 53:5 (2012), pp 490–509
doi:10.1111/j.1469-7610.2012.02547.x
Annual Research Review: Re-thinking the
lassification of autism spectrum disorders
Center for Autism and the Developing Brain, Weill-Cornell Medical College and New York Presbyterian Hospital/
Westchester Division, White Plains, NY, USA
Catherine Lord and Rebecca M. Jones
Background: The nosology of autism spectrum disorders (ASD) is at a critical point in history as the
field seeks to better define dimensions of social-communication deficits and restricted/repetitive
ehaviors on an individual
level for both clinical and neurobiological purposes. These different
dimensions also suggest an increasing need for quantitative measures that accurately map their dif-
ferences, independent of developmental factors such as age, language level and IQ. Method: Psycho-
metric measures, clinical observation as well as genetic, neurobiological and physiological research
from toddlers, children and adults with ASD are reviewed. Results: The question of how to conceptu-
lize ASDs along dimensions versus categories is discussed within the nosology of autism and the
proposed changes to the DSM-5 and ICD-11. Differences across development are incorporated into the
new classification frameworks. Conclusions: It is crucial to balance the needs of clinical practice in
ASD diagnostic systems, with neurobiologically based theories that address the associations between
social-communication and restricted/repetitive dimensions in individuals. Clarifying terminology,"
d45fbd818f032566e9e8f8bdc0f658cdd6873e8f,Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks,"Full-body High-resolution Anime Generation
with Progressive Structure-conditional
Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li,
Hiroto Honda, and Yusuke Uchida
DeNA Co., Ltd., Tokyo, Japan"
d4b88be6ce77164f5eea1ed2b16b985c0670463a,A Survey of Different 3D Face Reconstruction Methods,"TECHNICAL REPORT JAN.15.2016
A Survey of Different 3D Face Reconstruction
Methods
Amin Jourabloo
Department of Computer Science and Engineering"
d42142285c46207a16bd4294e437d504e419a9b7,Varying image description tasks : spoken versus written descriptions,"Varying image description tasks: spoken versus written descriptions
Emiel van Miltenburg
Vrije Universiteit Amsterdam
Ruud Koolen
Tilburg University
Emiel Krahmer
Tilburg University"
d4dd4600e8f4ecfd11fa4a4a702b1f08bc9ec6f7,Combining intention and emotional state inference in a dynamic neural field architecture for human-robot joint action,"Special issue on Grounding Emotions in Robots
Combining intention and emotional
state inference in a dynamic neural
field architecture for human-robot
joint action
Adaptive Behavior
016, Vol. 24(5) 350–372
Ó The Author(s) 2016
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1059712316665451
db.sagepub.com
Rui Silva1, Luı´s Louro1, Tiago Malheiro1, Wolfram Erlhagen2 and
Estela Bicho1"
d4712c75a1a51ecbc74e362747926a16a2cd36ed,Automated Human Recognition by Gait using Neural Network,"Image Processing Theory, Tools & Applications
Automated Human Recognition by Gait using Neural Network
Jang-Hee Yoo
Information Security
Research Division, ETRI
S. Korea
Ki-Young Moon
Information Security
Research Division, ETRI
S. Korea"
d4c657ce3b7e47237201393aa6bba0e19442bfd2,Interpolation Based Tracking for Fast Object Detection in Videos,"Interpolation Based Tracking for Fast Object
Detection In Videos
Rahul Jain, Pramod Sankar K.*, C. V. Jawahar
Center for Visual Information Technology
pramod
IIIT-Hyderabad, INDIA"
d44ca9e7690b88e813021e67b855d871cdb5022f,"Selecting, Optimizing and Fusing 'Salient' Gabor Features for Facial Expression Recognition","QUT Digital Repository:
http://eprints.qut.edu.au/
Zhang, Ligang and Tjondronegoro, Dian W. (2009) Selecting, optimizing and
fusing ‘salient’ Gabor features for facial expression recognition. In: Neural
Information Processing (Lecture Notes in Computer Science), 1-5 December
009, Hotel Windsor Suites Bangkok, Bangkok.
©  Copyright 2009 Springer-Verlag GmbH Berlin Heidelberg"
d4901683e2c2552fc2d62d4eb3b1f5d5fa60a5ff,ScaleNet: Scale Invariant Network for Semantic Segmentation in Urban Driving Scenes,
ba0d84d97eeec7774534b91da78b10c5d924fdc8,Classification with Repulsion Tensors: A Case Study on Face Recognition,"Classification with Repulsion Tensors: A Case Study on Face
Recognition
Hawren Fang∗
March 16, 2016"
bad7254ae08f8bf1305e70c7de28374f67f151fd,Ré-identification de personnes à partir des séquences vidéo. (Person re-identification from video sequence),"Ré-identification de personnes à partir des séquences
vidéo
Mohamed Ibn Khedher
To cite this version:
Mohamed Ibn Khedher. Ré-identification de personnes à partir des séquences vidéo. Réseaux et
télécommunications [cs.NI]. Institut National des Télécommunications, 2014. Français. <NNT :
014TELE0018>. <tel-01149691>
HAL Id: tel-01149691
https://tel.archives-ouvertes.fr/tel-01149691
Submitted on 7 May 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
bafb8812817db7445fe0e1362410a372578ec1fc,Image-Quality-Based Adaptive Face Recognition,"Image-Quality-Based Adaptive Face Recognition
Harin Sellahewa and Sabah A. Jassim"
bac5906adc227e390f2f70705e990a3e1ec369df,Active Control of Camera Parameters for Object Detection Algorithms,"Active Control of Camera Parameters for Object
Detection Algorithms
Yulong Wu, John Tsotsos
Department of Electrical Engineering and Computer Science
York Univeristy
Toronto, ON M3J 1P3
Email: {yulong,"
ba8e0bda11af08b6037666b67cf54ae1f780822d,Spatial Pyramid Matching,"Author manuscript, published in ""Object Categorization: Computer and Human Vision Perspectives Cambridge University Press (Ed.)
(2009) 401--415"""
ba99c37a9220e08e1186f21cab11956d3f4fccc2,A Fast Factorization-Based Approach to Robust PCA,"A Fast Factorization-based Approach to Robust PCA
Department of Computer Science, Southern Illinois University,Carbondale, IL 62901 USA
Chong Peng, Zhao Kang, and Qiang Cheng
Email:"
ba816806adad2030e1939450226c8647105e101c,MindLAB at the THUMOS Challenge,"MindLAB at the THUMOS Challenge
Fabi´an P´aez
Jorge A. Vanegas
Fabio A. Gonz´alez
MindLAB Research Group
MindLAB Research Group
MindLAB Research Group
Bogot´a, Colombia
Bogot´a, Colombia
Bogot´a, Colombia"
ba051292ca6e8c689542831479e436be7035c147,Superpixel Sampling Networks,"Superpixel Sampling Networks
Varun Jampani1, Deqing Sun1, Ming-Yu Liu1,
Ming-Hsuan Yang1,2, Jan Kautz1
NVIDIA
UC Merced"
baf0af0ac2f2fbbf0c04141e12886ff850d77413,Feature-based 3d Slam,"KERNEL{BASED CLASSIFIERS WITH
APPLICATIONS TO FACE DETECTION
TH(cid:18)ESE No 3141 (2004)
PR(cid:19)ESENT(cid:19)EE (cid:18)A LA FACULT(cid:19)E SCIENCES ET TECHNIQUES DE L’ING(cid:19)ENIEUR
INSTITUT DE TRAITEMENT DES SIGNAUX
SECTION DE G(cid:19)ENIE (cid:19)ELECTRIQUE ET (cid:19)ELECTRONIQUE
(cid:19)ECOLE POLYTECHNIQUE F(cid:19)ED(cid:19)ERALE DE LAUSANNE
POUR L’OBTENTION DU GRADE DE DOCTEUR (cid:18)ES SCIENCES
Vlad POPOVICI
DEA de sciences des syst(cid:18)emes et des calculateurs, Universit(cid:19)e Technique de Cluj-Napoca, Roumanie
et de nationalit(cid:19)e roumaine
ccept(cid:19)ee sur proposition du jury:
Prof. J.-P. Thiran, directeur de th(cid:18)ese
Dr. S. Bengio, rapporteur
Prof. J. Kittler, rapporteur
Prof. M. Kunt, rapporteur
Lausanne, EPFL
D(cid:19)ecembre 2004"
badcd992266c6813063c153c41b87babc0ba36a3,Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks,"Recent Advances in Object Detection in the Age
of Deep Convolutional Neural Networks
Shivang Agarwal(∗
,1), Jean Ogier du Terrail(∗
,1,2), Fr´ed´eric Jurie(1)
(∗) equal contribution
(1)Normandie Univ, UNICAEN, ENSICAEN, CNRS
(2)Safran Electronics and Defense
September 11, 2018"
ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906,Uporaba emotivno pogojenega računalništva v priporočilnih sistemih,"ELEKTROTEHNI ˇSKI VESTNIK 78(1-2): 12–17, 2011
EXISTING SEPARATE ENGLISH EDITION
Uporaba emotivno pogojenega raˇcunalniˇstva v
priporoˇcilnih sistemih
Marko Tkalˇciˇc, Andrej Koˇsir, Jurij Tasiˇc
Univerza v Ljubljani, Fakulteta za elektrotehniko, Trˇzaˇska 25, 1000 Ljubljana, Slovenija
Univerza v Ljubljani, Fakulteta za raˇcunalniˇstvo in informatiko, Trˇzaˇska 25, 1000 Ljubljana, Slovenija
E-poˇsta:
Povzetek. V ˇclanku predstavljamo rezultate treh raziskav, vezanih na izboljˇsanje delovanja multimedijskih
priporoˇcilnih sistemov s pomoˇcjo metod emotivno pogojenega raˇcunalniˇstva (ang. affective computing).
Vsebinski priporoˇcilni sistem smo izboljˇsali s pomoˇcjo metapodatkov, ki opisujejo emotivne odzive uporabnikov.
Pri skupinskem priporoˇcilnem sistemu smo dosegli znaˇcilno izboljˇsanje v obmoˇcju hladnega zagona z uvedbo
nove mere podobnosti, ki temelji na osebnostnem modelu velikih pet (ang. five factor model). Razvili smo tudi
sistem za neinvazivno oznaˇcevanje vsebin z emotivnimi parametri, ki pa ˇse ni zrel za uporabo v priporoˇcilnih
sistemih.
Kljuˇcne besede: priporoˇcilni sistemi, emotivno pogojeno raˇcunalniˇstvo, strojno uˇcenje, uporabniˇski profil,
emocije
Uporaba emotivnega raˇcunalniˇstva v priporoˇcilnih
sistemih
In this paper we present the results of three investigations of"
baeb207ea6f4b52eea129b9d8597d4b7a0891ad6,"Sparse , Smart Contours to Represent and Edit Images","Sparse, Smart Contours to Represent and Edit Images
Tali Dekel 1
Chuang Gan 2
Dilip Krishnan 1
Ce Liu 1 William T. Freeman 1,3
Google Research 2 MIT-Watson AI Lab 3 MIT-CSAIL
Reconstruction from Sparse Contour Represenation
Editing in the Contour Domain
.4% px
.5% px
(a) Source
(b) Contours
(c) Source Reconstuction
(d) Edited/blended Contours
(e) Recon. from Edit
Reference
Figure 1. Our method produces high quality reconstructions of images from information along a small number of contours: a source
(512×512) image in (a) is reconstructed in (c) from gradient information stored at the set of colored contours in (b)2, which are less than
5% of the pixels. The model synthesizes hair texture, facial lines and shading even in regions where no input information is provided.
Our model allows for semantically intuitive editing in the contour domain. Top-right: a caricature-like result (e) is created by moving and"
ba1cf2d0493f25da61bd816f92712291999c0ef6,Simple online and realtime tracking with a deep association metric,"SIMPLE ONLINE AND REALTIME TRACKING WITH A DEEP ASSOCIATION METRIC
Nicolai Wojke†, Alex Bewley(cid:5), Dietrich Paulus†
University of Koblenz-Landau†, Queensland University of Technology(cid:5)"
bade9b38c45afd4f988e246974427685f3ff599f,Pairwise Rotation Hashing for High-dimensional Features,"Pairwise Rotation Hashing for High-dimensional
Features
Kohta Ishikawa, Ikuro Sato, and Mitsuru Ambai
Denso IT Laboratory, Inc."
badd371a49d2c4126df95120902a34f4bee01b00,Parallel Separable 3D Convolution for Video and Volumetric Data Understanding,"GONDA, WEI, PARAG, PFISTER: PARALLEL SEPARABLE 3D CONVOLUTION
Parallel Separable 3D Convolution for Video
nd Volumetric Data Understanding
Harvard John A. Paulson School of
Engineering and Applied Sciences
Camabridge MA, USA
Felix Gonda
Donglai Wei
Toufiq Parag
Hanspeter Pfister"
ba87bcf4bf799001641b7afd7d1025600f57c4a1,A Hybrid Architecture for Tracking People in Real-time Using a Video Surveillance Camera: Application for Behavioural Marketing,"Signal & Image Processing : An International Journal (SIPIJ) Vol.6, No.6, December 2015
A HYBRID ARCHITECTURE FOR TRACKING
PEOPLE IN REAL-TIME USING A VIDEO
SURVEILLANCE CAMERA: APPLICATION FOR
BEHAVIOURAL MARKETING
Kheireddine AZIZ1, Djamal MERAD2, Jean-Luc DAMOISEAUX3 and
Pierre DRAP2
SeaTech Toulon, Toulon University, La Gardes, France
LSIS Lab, Aix-Marseille University, Marseille, France
IUT R&T, Aix-Marseille University, Marseille, France"
bab47c7bf80c9310f947cbdaf71b3c983c497b68,Systematic Parameter Optimization and Application of Automated Tracking in Pedestrian Dominant Situations Date of submission : 2014-0801,"Systematic Parameter Optimization and Application of Automated
Tracking in Pedestrian Dominant Situations
Date of submission: 2014-08-01
Dariush Ettehadieh*
M.Sc. Student,
Polytechnique Montréal,
500, Chemin de Polytechnique, Montreal
phone : 1-514-266-5544
Bilal Farooq
Assistant Professor,
Polytechnique Montréal
500, Chemin de Polytechnique, Montreal
phone : 1-514-340-4711 ext. 4802
Nicolas Saunier
Associate Professor,
Polytechnique Montréal
500, Chemin de Polytechnique, Montreal
phone : 1-514-340-4711 ext. 4962
5029 Words + 4 Figures + 3 Tables = 6779
Submitted for presentation to the 94th Annual Meeting of the Transportation Research Board and publication in"
ba7c01e1432bffc2fcde824d0b0ebd25ad7238c3,Face Recognition Techniques : A Review,"International Journal of Engineering Research and Development
e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com
Volume 4, Issue 7 (November 2012), PP. 70-78
Face Recognition Techniques: A Review
Rajeshwar Dass, 2Ritu Rani, 3Dharmender Kumar
,2,3 Deen Bandhu Chotu Ram University of Science & Technology Murthal, Haryana, India"
a079309d28b6f8753ca26a789bd0bc43de9bd9f8,Interpretable Counting for Visual Question Answering,"Published as a conference paper at ICLR 2018
INTERPRETABLE COUNTING FOR VISUAL QUESTION
ANSWERING
Alexander Trott, Caiming Xiong∗, & Richard Socher
Salesforce Research
Palo Alto, CA"
a0f94e9400938cbd05c4b60b06d9ed58c3458303,Value-Directed Human Behavior Analysis from Video Using Partially Observable Markov Decision Processes,"Value-Directed Human Behavior Analysis
from Video Using Partially Observable
Markov Decision Processes
Jesse Hoey and James J. Little, Member, IEEE"
a022eff5470c3446aca683eae9c18319fd2406d5,Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description sémantique des traits visuels humains),"017-ENST-0071
EDITE - ED 130
Doctorat ParisTech
T H È S E
pour obtenir le grade de docteur délivré par
TÉLÉCOM ParisTech
Spécialité « SIGNAL et IMAGES »
présentée et soutenue publiquement par
Grigory ANTIPOV
le 15 décembre 2017
Apprentissage Profond pour la Description Sémantique des Traits
Visuels Humains
Directeur de thèse : Jean-Luc DUGELAY
Co-encadrement de la thèse : Moez BACCOUCHE
Mme Bernadette DORIZZI, PRU, Télécom SudParis
Mme Jenny BENOIS-PINEAU, PRU, Université de Bordeaux
M. Christian WOLF, MC/HDR, INSA de Lyon
M. Patrick PEREZ, Chercheur/HDR, Technicolor Rennes
M. Moez BACCOUCHE, Chercheur/Docteur, Orange Labs Rennes
M. Jean-Luc DUGELAY, PRU, Eurecom Sophia Antipolis"
a06ef8ef4838c048b814563f7cca479c7d4513f2,Multi-module Singular Value Decomposition for Face Recognition,"ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY
An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.
www.computerscijournal.org
ISSN: 0974-6471
April  2014,
Vol. 7, No. (1):
Pgs. 09-14
Multi-module  Singular Value  Decomposition
for  Face  Recognition
A. NAMACHIVAYAM and KALIYAPERUMAL KARTHIKEYAN
Eritrea Institute of Technology, Asmara, Eritrea, North East Africa.
(Received: March 20, 2014; Accepted: March 30, 2014)"
a0c37f07710184597befaa7e6cf2f0893ff440e9,Fast Retinomorphic Event Stream for Video Recognition and Reinforcement Learning,
a010835842ac0e49eade395f056e1e33d45b6ea5,Four Way Local Binary Pattern for Gender Classification Using Periocular Images,"Four Way Local Binary Pattern for
Gender Classification Using Periocular
Images
Md. Siyam Sajeeb Khan
(2014-1-60-024)
Rifat Mehreen Amin
(2014-1-60-003)
Department of Computer Science and Engineering
East West University
Aftabnagar, Dhaka-1212, Bangladesh
August, 2017"
a0a950f513b4fd58cee54bccc49b852943ffd02c,Image Inpainting using Block-wise Procedural Training with Annealed Adversarial Counterpart,"Image Inpainting using Block-wise Procedural Training with Annealed
Adversarial Counterpart
Chao Yang1, Yuhang Song1, Xiaofeng Liu2, Qingming Tang3, and C.-C. Jay Kuo1
USC, 2Carnegie Mellon University, 3Toyota Technological Institute at Chicago,"
a012b41fc54060e11744db20ef6d191b290f1879,Unconstrained Face Recognition From Blurred and Illumination with Pose Variant Face Image Using SVM,"ISSN(Online): 2320-9801
ISSN (Print):  2320-9798
International Journal of Innovative Research in Computer and Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol.2, Special Issue 1, March 2014
Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)
Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014
Organized by
Unconstrained Face Recognition From Blurred and
Illumination with Pose Variant Face Image Using
Dept. of CSE, PG Student (SE), Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu, India1
C.Indhumathi1"
a0e3775fd5d5df951ac7f65d3a9165bf4b96fbd8,Towards Automatic Image Editing: Learning to See another You,"Towards Automatic Image Editing: Learning to See another You
Amir Ghodrati1∗, Xu Jia1∗, Marco Pedersoli2†, Tinne Tuytelaars1
KU Leuven, ESAT-PSI, iMinds
INRIA"
a0b2df8f72ff672cb0760c5221657a5f48f0ec5d,Searching Image Databases Using Appearance Models,"Searching Image Databases
Using Appearance Models
A thesis submitted to the University of Manchester for the degree of
Doctor of Philosophy in the Faculty of Medicine, Dentistry, Nursing
nd Pharmacy
Ian M. Scott
Division of Imaging Science and Biomedical Engineering"
a01ba008252d2ce32f326f50c208c9ad9d5c78a6,Detecting Sudden Pedestrian Crossings and Avoiding Accidents Using Arm 11,"K. Sri Krishna Aditya et al Int. Journal of Engineering Research and Applications       www.ijera.com
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1213-1216
RESEARCH ARTICLE                                                                               OPEN ACCESS
Detecting Sudden Pedestrian Crossings and Avoiding Accidents
Using Arm 11
K. Sri Krishna Aditya1, T. Surya Kavita2, U. Yedukondalu3
Assistant Professor, 2Associate Professor, 3Head of the Department E.C.E.
Aditya Engineering College, 2Aditya Engineering College, 3Aditya Engineering College"
a0fd85b3400c7b3e11122f44dc5870ae2de9009a,Learning Deep Representation for Face Alignment with Auxiliary Attributes,"Learning Deep Representation for Face
Alignment with Auxiliary Attributes
Zhanpeng Zhang, Ping Luo, Chen Change Loy, Member, IEEE and Xiaoou Tang, Fellow, IEEE"
a0dfb8aae58bd757b801e2dcb717a094013bc178,Reconocimiento de expresiones faciales con base en la dinámica de puntos de referencia faciales,"Reconocimiento de expresiones faciales con base
en la din´amica de puntos de referencia faciales
E. Morales-Vargas, C.A. Reyes-Garcia, Hayde Peregrina-Barreto
Instituto Nacional de Astrof´ısica ´Optica y Electr´onica,
Divisi´on de Ciencias Computacionales, Tonantzintla, Puebla,
M´exico
Resumen. Las expresiones faciales permiten a las personas comunicar
emociones, y es pr´acticamente lo primero que observamos al interactuar
on alguien. En el ´area de computaci´on, el reconocimiento de expresiones
faciales es importante debido a que su an´alisis tiene aplicaci´on directa en
´areas como psicolog´ıa, medicina, educaci´on, entre otras. En este articulo
se presenta el proceso de dise˜no de un sistema para el reconocimiento de
expresiones faciales utilizando la din´amica de puntos de referencia ubi-
ados en el rostro, su implementaci´on, experimentos realizados y algunos
de los resultados obtenidos hasta el momento.
Palabras clave: Expresiones faciales, clasificaci´on, m´aquinas de soporte
vectorial,modelos activos de apariencia.
Facial Expressions Recognition Based on Facial
Landmarks Dynamics"
a03cfd5c0059825c87d51f5dbf12f8a76fe9ff60,Simultaneous Learning and Alignment: Multi-Instance and Multi-Pose Learning,"Simultaneous Learning and Alignment:
Multi-Instance and Multi-Pose Learning?
Boris Babenko1 Piotr Doll´ar1,2
Zhuowen Tu3
Serge Belongie1,2
Comp. Science & Eng.
Univ. of CA, San Diego
Electrical Engineering
California Inst. of Tech.
Lab of Neuro Imaging
Univ. of CA, Los Angeles"
a090d61bfb2c3f380c01c0774ea17929998e0c96,On the dimensionality of video bricks under varying illumination,"On the Dimensionality of Video Bricks under Varying Illumination
Beijing Lab of Intelligent Information Technology, School of Computer Science,
Youdong Zhao, Xi Song, Yunde Jia
Beijing Institute of Technology, Beijing 100081, PR China
{zyd458, songxi,"
a05a770bb2b7778e195a578006482926dfc1af82,Learning to Recognize Pedestrian Attribute,"Learning to Recognize Pedestrian Attribute
Yubin Deng, Ping Luo, Chen Change Loy, Member, IEEE, and Xiaoou Tang, Fellow, IEEE"
a016fbe8d09402316c7b38946ccd502d76aa8c74,Using a Single RGB Frame for Real Time 3D Hand Pose Estimation in the Wild,"Using a single RGB frame for real time 3D hand pose estimation in the wild
Paschalis Panteleris1
Iason Oikonomidis1
Institute of Computer Science, FORTH
Computer Science Department, UOC
Antonis Argyros1,2"
a0798a0a422520241cc02282946882dd1ef853cd,Full Quantification of Left Ventricle via Deep Multitask Learning Network Respecting Intra- and Inter-Task Relatedness,"Full Quantification of Left Ventricle via Deep
Multitask Learning Network Respecting
Intra- and Inter-Task Relatedness
Wufeng Xue, Andrea Lum, Ashley Mercado, Mark Landis, James Warrington,
nd Shuo Li*
Department of Medical Imaging, Western University, ON, Canada
Digital Imaging Group of London, ON, Canada"
a0541d4a28d90a17cd3eaa9d1797882eacc8ccf0,Improving Person Re-identification via Pose-Aware Multi-shot Matching,"Improving Person Re-identification via Pose-aware Multi-shot Matching
Yeong-Jun Cho and Kuk-Jin Yoon
Computer Vision Laboratory, GIST, South Korea
{yjcho,"
a0e5afb1237d47f7a8ac66e7b5ada24cec5222cb,Semantic pooling for image categorization using multiple kernel learning,"SEMANTIC POOLING FOR IMAGE CATEGORIZATION USING MULTIPLE KERNEL
LEARNING
Thibaut Durand(1,2), David Picard(1), Nicolas Thome(2), Matthieu Cord(2)
(1) ETIS, UMR 8051 / ENSEA, Universit´e Cergy-Pontoise, CNRS, F-95000, Cergy,
(2) Sorbonne Universit´es, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France"
a06761b3181a003c2297d8e86c7afc20e17fd2c6,Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors,"Article
Convolutional Neural Network-Based Human
Detection in Nighttime Images Using Visible Light
Camera Sensors
Jong Hyun Kim, Hyung Gil Hong and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; (J.H.K.); (H.G.H.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Academic Editor: Vittorio M. N. Passaro
Received: 31 March 2017; Accepted: 4 May 2017; Published: 8 May 2017"
a000149e83b09d17e18ed9184155be140ae1266e,Action Recognition in Realistic Sports Videos,"Chapter 9
Action Recognition in Realistic
Sports Videos
Khurram Soomro and Amir R. Zamir"
a01f9461bc8cf8fe40c26d223ab1abea5d8e2812,Facial Age Estimation Through the Fusion of Texture and Local Appearance Descriptors,"Facial Age Estimation Through the Fusion of Texture
nd local appearance Descriptors
Ivan Huerta1, Carles Fern´andez2, and Andrea Prati1
DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy
Herta Security, Pau Claris 165 4-B, 08037 Barcelona, Spain"
a0e03c5b647438299c79c71458e6b1776082a37b,Areas of Attention for Image Captioning,"transformerFigure1.Weproposeanattentionmechanismthatjointlypredictsthenextcaptionwordandthecorrespondingregionateachtime-stepgiventheRNNstate(top).BesidesimplementingourmodelusingattentionareasdefinedoverCNNactivationgridsorobjectproposals,asusedinpreviouswork,wealsopresentaend-to-endtrainableconvolutionalspatialtransformerapproachtocomputeimagespecificattentionareas(bottom).typeorlocation,objectproperties,andtheirinteractions.Neuralencoder-decoderbasedapproaches,similartothoseusedinmachinetranslation[30],havebeenfoundveryeffectiveforthistask,seee.g.[19,23,32].Thesemethodsuseaconvolutionalneuralnetwork(CNN)toen-codetheinputimageintoacompactrepresentation.Are-currentneuralnetwork(RNN)isusedtodecodethisrepre-sentationword-by-wordintoanaturallanguagedescriptionoftheimage.Whileeffective,thesemodelsarelimitedinthattheimageanalysisis(i)static,i.e.doesnotchangeovertimeasthedescriptionisproduced,and(ii)notspatiallylo-calized,i.e.describesthesceneasawholeinsteadoffo-cousingonlocalaspectsrelevanttopartsofthedescription.Attentionmechanismscanaddresstheselimitationsbydy-namicallyfocusingondifferentpartsoftheinputastheout-putsequenceisgenerated.Suchmechanismsareeffectiveforavarietyofsequentialpredictiontasks,includingma-1"
a759570e6ef674cd93068020c2e6bd036961f7c6,SPEECH-COCO: 600k Visually Grounded Spoken Captions Aligned to MSCOCO Data Set,"SPEECH-COCO: 600k Visually Grounded Spoken Captions Aligned to
MSCOCO Data Set
William N. Havard1, Laurent Besacier1, Olivier Rosec2
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
Voxygen, France"
a702fc36f0644a958c08de169b763b9927c175eb,Facial expression recognition using Hough forest,"FACIAL EXPRESSION RECOGNITION USING HOUGH FOREST
Chi-Ting Hsu1, Shih-Chung Hsu1, and Chung-Lin Huang1,2
.  Department of Electrical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan
Email:
.  Department of Applied Informatics and Multimedia, Asia University, Taichung, Taiwan"
a7790555c65be0fc5b5de9bcb1dc550f4919ce3f,Literature Survey for Face Detection under Illumination Variation,"International Journal of Scientific Research Engineering & Technology (IJSRET)
Volume 2 Issue 10   pp 659-664 January 2014
www.ijsret.org            ISSN 2278 – 0882
Literature Survey for Face Detection under Illumination Variation
J.SHYNU, P.KANNAN
PG Scholar Department of ECE, PET Engineering College, India
Professor Department of ECE, PET Engineering College, India"
a7267bc781a4e3e79213bb9c4925dd551ea1f5c4,Proceedings of eNTERFACE 2015 Workshop on Intelligent Interfaces,"Proceedings of eNTERFACE’15
The 11th Summer Workshop
on Multimodal Interfaces
August 10th - September 4th, 2015
Numediart Institute, University of Mons
Mons, Belgium"
a7a1d3036c542824f2c681c3bf08f5b85f05d9e9,A Fast and Precise HOG-Adaboost Based Visual Support System Capable to Recognize Pedestrian and Estimate Their Distance,"A fast and precise HOG-Adaboost based based visual support
system capable to recognize Pedestrian and estimate their distance.
Yokohama City University, Graduate School of Nanobioscience, 22-2 Seto Kanazawa-ku, 236-0027 Yokohama, Japan
Takahisa Kishino1, Sun Zhe1,Ruggero Micheletto1"
a784a0d1cea26f18626682ab108ce2c9221d1e53,Anchored Regression Networks Applied to Age Estimation and Super Resolution,"Anchored Regression Networks applied to Age Estimation and Super Resolution
Eirikur Agustsson
D-ITET, ETH Zurich
Switzerland
Radu Timofte
D-ITET, ETH Zurich
Merantix GmbH
Luc Van Gool
D-ITET, ETH Zurich
ESAT, KU Leuven"
a77e9f0bd205a7733431a6d1028f09f57f9f73b0,Multimodal feature fusion for CNN-based gait recognition: an empirical comparison,"Multimodal feature fusion for CNN-based gait recognition: an
empirical comparison
F.M. Castroa,, M.J. Mar´ın-Jim´enezb, N. Guila, N. P´erez de la Blancac
Department of Computer Architecture, University of Malaga, Spain, 29071
Department of Computing and Numerical Analysis, University of Cordoba, Spain, 14071
Department of Computer Science and Artificial Intelligence, University of Granada, Spain, 18071"
a7d23c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51,A Summary of literature review : Face Recognition,"Postgraduate Annual Research Seminar 2007 (3-4 July 2007)
A Summary of literature review : Face Recognition
Kittikhun Meethongjan & Dzulkifli Mohamad
Faculty of Computer Science & Information System,
University Technology of Malaysia, 81310 Skudai, Johor, Malaysia."
a77e0db38ed7ad95a3bca95fea72048985c54508,DART: Distribution Aware Retinal Transform for Event-based Cameras,"SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
DART: Distribution Aware Retinal Transform for
Event-based Cameras
Bharath Ramesh*, Hong Yang, Garrick Orchard, Ngoc Anh Le Thi, and Cheng Xiang, Member, IEEE"
a7fe834a0af614ce6b50dc093132b031dd9a856b,Orientation Driven Bag of Appearances for Person Re-identification,"Orientation Driven Bag of Appearances for Person
Re-identification
Liqian Ma, Hong Liu†, Member, IEEE, Liang Hu, Can Wang, Qianru Sun"
a7664247a37a89c74d0e1a1606a99119cffc41d4,Modal Consistency based Pre-Trained Multi-Model Reuse,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
a7bfb6426359140a0bc0c84741ad9a3ac83eff04,Object-Level Context Modeling For Scene Classification with Context-CNN,"Object-Level Context Modeling For Scene Classification with Context-CNN
Syed Ashar Javed1 and Anil Kumar Nelakanti2
IIIT Hyderabad, 2Amazon"
a71e3cf566de457336aab9dd6a5f5d6282b4a6af,Visual Abstraction for Zero-Shot Learning,
a73bc57fb0aa429ba5f7f12b6d02e2c6274cabdd,A Superior Tracking Approach: Building a Strong Tracker through Fusion,"A Superior Tracking Approach:
Building a Strong Tracker through Fusion
Christian Bailer1, Alain Pagani1, and Didier Stricker1,2
German Research Center for Artificial Intelligence, Kaiserslautern, Germany
University of Kaiserslautern, Germany"
a7152589980ec27375023d719eec6acc04b7d4fd,Generating Facial Expressions,"Generating Facial Expressions
Jonathan Suit
Georgia Tech"
a7a6eb53bee5e2224f2ecd56a14e3a5a717e55b9,Face Recognition Using Multi-viewpoint Patterns for Robot Vision,"1th International Symposium of Robotics Research (ISRR2003), pp.192-201, 2003
Face Recognition Using Multi-viewpoint Patterns for
Robot Vision
Kazuhiro Fukui and Osamu Yamaguchi
Corporate Research and Development Center, TOSHIBA Corporation
, KomukaiToshiba-cho, Saiwai-ku, Kawasaki 212-8582 Japan"
a7e274db8f1389b95469588995f18c1c42b62534,VideoStory Embeddings Recognize Events when Examples are Scarce,
a7e78f80e0e37d0c17bc09058c27996e32e4454e,UNAM at SemEval-2018 Task 10: Unsupervised Semantic Discriminative Attribute Identification in Neural Word Embedding Cones,"Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 977–984
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics"
a758b744a6d6962f1ddce6f0d04292a0b5cf8e07,"Study on Human Face Recognition under Invariant Pose, Illumination and Expression using LBP, LoG and SVM","ISSN XXXX XXXX © 2017 IJESC
Research Article                                                                                                                              Volume 7 Issue No.4
Study on Human Face Recognition under Invariant Pose, Illumination
nd Expression using LBP, LoG and SVM
Amrutha
Depart ment of Co mputer Science & Engineering
Mangalore Institute of Technology & Engineering , Moodabidri, Mangalore, India
INTRODUCTION
RELATED WORK
Abstrac t:
Face  recognition  system  uses  human  face  for  the  identification  of  the   user.  Face  recognition  is  a  difficu lt  task  there  is  no  unique
method  that  provide  accurate  an  accurate  and  effic ient  solution  in  all  the  situations  like  the  face  image  with  differen t  pose ,
illu mination  and  exp ression.  Local  Binary  Pattern  (LBP)  and  Laplac ian  of  Gaussian  (Lo G)  operators.  Support  Vector  Machine
lassifier  is  used  to  recognize  the  human  face.  The  Lo G  algorith m  is  used  to preprocess the  image  to  detect  the  edges of  the  face
image to get the image information. The  LBP operator divides the face  image into several blocks to generate the features informat ion
on  pixe l  level  by  creating  LBP  labels  for  all  the  blocks  of  image  is  obtained  by  concatenating  all  the  individual  local  histo grams.
Support Vector Machine classifier  (SVM )  is used to classify t he image. The a lgorith m performances is verified under the constraints
like illu mination, e xp ression and pose variation
Ke ywor ds:  Face  Recognition,  Local  Binary  Pattern,  Laplac ian  of  Gaussian,  histogram,  illu mination,  pose  angle,  exp ression
variations, SVM ."
a73a16203b644353a287a4759bc951450e67d700,BodyNet: Volumetric Inference of 3D Human Body Shapes,"BodyNet: Volumetric Inference of
D Human Body Shapes
G¨ul Varol1,*
Ersin Yumer2,‡
Duygu Ceylan2
Bryan Russell2
Jimei Yang2
Ivan Laptev1,*
Cordelia Schmid1,†
Inria, France
Adobe Research, USA"
a764cba765648c6e36782b02393ea2eed5cd69c7,Contributions to large-scale learning for image classification. (Contributions à l'apprentissage grande échelle pour la classification d'images),"CONTRIBUTIONSTOLARGE-SCALELEARNINGFORIMAGECLASSIFICATIONZeynepAkataPhDThesisl’´EcoleDoctoraleMath´ematiques,SciencesetTechnologiesdel’Information,InformatiquedeGrenoble"
a7663528eb6c9b79a68b94800e30da952c0b6bb2,IFQ-Net : Integrated Fixed-point Quantization Networks for Embedded Vision,"IFQ-Net: Integrated Fixed-point Quantization Networks for Embedded Vision
Hongxing Gao, Wei Tao, Dongchao Wen
Canon Information Technology (Beijing) Co., LTD
Tse-Wei Chen, Kinya Osa, Masami Kato
Device Technology Development Headquarters, Canon Inc."
a7e8ce268c16ea8c10e4c5ccd8d6e53702423faa,The Ciona17 Dataset for Semantic Segmentation of Invasive Species in a Marine Aquaculture Environment,"The Ciona17 Dataset for Semantic Segmentation
of Invasive Species in a Marine Aquaculture Environment
Angus Galloway∗, Graham W. Taylor∗, Aaron Ramsay†, Medhat Moussa∗
School of Engineering
University of Guelph
Guelph, ON, Canada
{gallowaa, gwtaylor,
Department of Agriculture and Fisheries
Government of PEI
Montague, PEI, Canada"
a75ee7f4c4130ef36d21582d5758f953dba03a01,Human face attributes prediction with Deep Learning,"DD2427 Final Project Report
Mohamed Abdulaziz Ali Haseeb
DD2427 Final Project Report
Human face attributes prediction with Deep
Learning
Mohamed Abdulaziz Ali Haseeb"
a726858df7c9503116504206577a938df1a67815,Unsupervised Vehicle Re-Identification using Triplet Networks,"Unsupervised Vehicle Re-Identification using Triplet Networks
Pedro Antonio Mar´ın-Reyes
Andrea Palazzi
University of Las Palmas de Gran Canaria
University of Modena and Reggio Emilia
Luca Bergamini
Simone Calderara
University of Modena and Reggio Emilia
University of Modena and Reggio Emilia
Javier Lorenzo-Navarro
Rita Cucchiara
University of Las Palmas de Gran Canaria
University of Modena and Reggio Emilia"
a760ce8baddf2da7946d2ed6f02ac3927f39a9da,Face Recognition Using a Unified 3D Morphable Model,"Face Recognition Using a Unified 3D Morphable Model
Hu, G., Yan, F., Chan, C-H., Deng, W., Christmas, W., Kittler, J., & Robertson, N. M. (2016). Face Recognition
Using a Unified 3D Morphable Model. In Computer Vision – ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII (pp. 73-89). (Lecture Notes in
Computer Science; Vol. 9912). Springer Verlag. DOI: 10.1007/978-3-319-46484-8_5
Published in:
Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14,
016, Proceedings, Part VIII
Document Version:
Peer reviewed version
Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal
Publisher rights
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-46484-8_5
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.
Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to"
a71106ef95103276fac010c10291f6dd6fd9d9f5,Social status level and dimension interactively influence person evaluations indexed by P300s.,"ISSN: 1747-0919 (Print) 1747-0927 (Online) Journal homepage: http://www.tandfonline.com/loi/psns20
Social status level and dimension interactively
influence person evaluations indexed by P300s
Ivo Gyurovski, Jennifer Kubota, Carlos Cardenas-Iniguez & Jasmin Cloutier
To cite this article: Ivo Gyurovski, Jennifer Kubota, Carlos Cardenas-Iniguez & Jasmin Cloutier
(2017): Social status level and dimension interactively influence person evaluations indexed by
To link to this article:  http://dx.doi.org/10.1080/17470919.2017.1326400
Accepted author version posted online: 02
May 2017.
Published online: 15 May 2017.
Submit your article to this journal
Article views: 11
View related articles
View Crossmark data
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=psns20
Download by: [University of Chicago Library]
Date: 22 May 2017, At: 09:19"
a775da3e6e6ea64bffab7f9baf665528644c7ed3,Human Face Pose Estimation based on Feature Extraction Points,"International Journal of Computer Applications (0975 – 8887)
Volume 142 – No.9, May 2016
Human Face Pose Estimation based on Feature
Extraction Points
Guneet Bhullar
Research scholar,
Department of ECE
SBSSTC, Moga Road,
Ferozepur, Punjab, India"
a703d51c200724517f099ee10885286ddbd8b587,Fuzzy neural networks(FNN)-based approach for personalized facial expression recognition with novel feature selection method,"Fuzzy Neural Networks(FNN)-based Approach for
Personalized Facial Expression Recognition with
Novel Feature Selection Method
Dae-Jin Kim and Zeungnam Bien
Div. of EE, Dept. of EECS, KAIST
73-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
Kwang-Hyun Park
Human-friendly Welfare Robotic System Engineering Research Center, KAIST
73-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea"
a70fa8af52e4cc32dae09e6e753f1dd3ec198327,Neural Task Representations as Weak Supervision for Model Agnostic Cross-Lingual Transfer,"Neural Task Representations as Weak Supervision for Model Agnostic
Cross-Lingual Transfer
Sujay Kumar Jauhar
Microsoft Research AI
Redmond, WA, USA
Michael Gamon
Microsoft Research AI
Redmond, WA, USA
Patrick Pantel∗
Facebook Inc.
Seattle, WA, USA"
a7eee3222623778294461102d0dc770d4e09a7c5,A novel fusion-based method for expression-invariant gender classification,"978-1-4244-2354-5/09/$25.00 ©2009 IEEE
ICASSP 2009"
b878518814fee31ce8cb61040301e7a921892156,A Gaussian Feature Adaptive Integrated PCA-ICA Approach for Facial Recognition,"Vaishali et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.5, May- 2015, pg. 401-406
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
IJCSMC, Vol. 4, Issue. 5, May 2015, pg.401 – 406
RESEARCH ARTICLE
ISSN 2320–088X
A Gaussian Feature Adaptive Integrated PCA-ICA
Approach for Facial Recognition
Student, Dept. of ECE, ITM University Gurgaon Haryana
Vaishali
Dr. Rekha Vig
Asstt. Prof, Dept. of ECE, ITM University Gurgaon Haryana"
b871d1b8495025ff8a6255514ed39f7765415935,Application of Completed Local Binary Pattern for Facial Expression Recognition on Gabor Filtered Facial Images,"Application of Completed Local Binary Pattern for Facial Expression
Recognition on Gabor Filtered Facial Images
Tanveer Ahsan, 2Rifat Shahriar, *3Uipil Chong
Dept. of Electrical and Computer Engineering, University of Ulsan, Ulsan, Republic of Korea"
b85901174fa83c76ae994603228ba5b4f299a1af,"Sos, Lost in a High Dimensional Space","SOS, LOST IN A HIGH DIMENSIONAL SPACE
Anne Hendrikse"
b8dba0504d6b4b557d51a6cf4de5507141db60cf,Comparing Performances of Big Data Stream Processing Platforms with RAM3S,"Comparing Performances of Big Data Stream
Processing Platforms with RAM3S"
b8b46df1b013c30d791972ee109425a94e3adc06,"Automaticity, Control, and the Social Brain","C H A P T E R   1 9
Automaticity, Control,
nd the Social Brain
Robert P. Spunt and Matthew D. Lieberman
The  social  world  is  good  at  keeping  the
human  brain  busy,  posing  cognitive  chal-
lenges that are complex, frequent, and enor-
mously important to our well-being. In fact,
the  computational  demands  of  the  social
world  may  be  the  principal  reason  why
the  human  brain  has  evolved  to  its  present
form and function relative to other primates
(Dunbar,  1993).  Importantly,  the  human
rain  is  often  able  to  make  sense  of  the
social world without having to do too much
work. This is because many of its processes
re  automatically  initiated  by  the  presence
of relevant social stimuli and run to comple-
tion  without  much,  if  any,  conscious  inter-
vention (Bargh & Chartrand, 1999; Gilbert,"
b89862f38fff416d2fcda389f5c59daba56241db,A Web Survey for Facial Expressions Evaluation,"A Web Survey for Facial Expressions Evaluation
Matteo Sorci
Gianluca Antonini
Jean-Philippe Thiran
Ecole Polytechnique Federale de Lausanne
Signal Processing Institute
Ecublens, 1015 Lausanne, Switzerland
Ecole Polytechnique Federale de Lausanne, Operation Research Group
Michel Bierlaire
Ecublens, 1015 Lausanne, Switzerland
June 9, 2008"
b8612b5c1aa0970b5d99340ad19d7fcede1b0854,"Fusion of Speech, Faces and Text for Person Identification in TV Broadcast","Fusion of speech, faces and text for
person identification in TV broadcast
Herv´e Bredin1, Johann Poignant2, Makarand Tapaswi3, Guillaume Fortier4,
Viet Bac Le5, Thibault Napoleon6, Hua Gao3, Claude Barras1, Sophie Rosset1,
Laurent Besacier2, Jakob Verbeek4, Georges Qu´enot2, Fr´ed´eric Jurie6, and
Hazim Kemal Ekenel3
Univ Paris-Sud / CNRS-LIMSI UPR 3251, BP 133, F-91403 Orsay, France
UJF-Grenoble 1 / UPMF-Grenoble 2 / Grenoble INP / CNRS-LIG UMR 5217,
F-38041 Grenoble, France
Karlsruher Institut fur Technologie, Karlsruhe, Germany
INRIA Rhone-Alpes, 655 Avenue de lEurope, F-38330 Montbonnot, France
5 Vocapia Research, 3 rue Jean Rostand, Parc Orsay Universit´e, F-91400 Orsay,
6 Universit´e de Caen / GREYC UMR 6072, F-14050 Caen Cedex, France
France"
b82a4a0457170258aaf622b81e6f739a220398eb,Probe Strongly Similar Neutral Strongly Dissimilar Quasi-similar Quasi-dissimilar Push Pull,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2605058, IEEE
Transactions on Multimedia
Person Re-identification via Ranking Aggregation
of Similarity Pulling and Dissimilarity Pushing
Mang Ye, Chao Liang(cid:3), Yi Yu, Zheng Wang, Qingming Leng,
Chunxia Xiao, Member, IEEE, Jun Chen, Ruimin Hu, Senior Member, IEEE"
b88771387d5c0f09ea9a2ccc743b11471fb257b4,An interactive facial-expression training platform for individuals with autism spectrum disorder,"An Interactive Facial-Expression Training Platform
for Individuals with Autism Spectrum Disorder
Christina Tsangouri*, Wei Li+, Zhigang Zhu*
* Dept. of Comp. Sci.. and +Dept of Electrical Eng..
City College of New York, New York, USA"
b8a5839f6b1e051f430f2b89d5a1a7e49a10655a,DCFNet: Deep Neural Network with Decomposed Convolutional Filters,"DCFNet: Deep Neural Network with Decomposed Convolutional Filters
Qiang Qiu 1 Xiuyuan Cheng 1 Robert Calderbank 1 Guillermo Sapiro 1"
b8969d6e5658b360111f33d3f85eac63afcd7252,WESPE: Weakly Supervised Photo Enhancer for Digital Cameras,"WESPE: Weakly Supervised Photo Enhancer for Digital Cameras
Andrey Ignatov, Nikolay Kobyshev, Kenneth Vanhoey, Radu Timofte, Luc Van Gool
ETH Zurich
{andrey, nk, vanhoey, timofter,"
b8053da77bf1a5b4c87fddf6140be0a612cfc164,Multi-Pose Face Recognition Using Hybrid Face Features Descriptor,"MULTI-POSE FACE RECOGNITION USING
HYBRID FACE FEATURES DESCRIPTOR
I Gede Pasek Suta WIJAYA[1,2], Keiichi UCHIMURA[2] and Gou KOUTAKI[2]"
b8b202fa955801da840afc9f523d439d14d87cc1,A Novel Approach for Monocular 3D Object Tracking in Cluttered Environment,"International Journal of Computational Intelligence Research
ISSN 0973-1873 Volume 13, Number 5 (2017), pp. 851-864
© Research India Publications
http://www.ripublication.com
A Novel Approach for Monocular 3D Object
Tracking in Cluttered Environment
Navneet S. Ghedia
Research scholar, Gujarat Technological University, Gujarat, India.
Dr. C.H. Vithalani
Professor and Head of EC Dept., Government Engineering College, Rajkot, India.
Dr. Ashish Kothari
Associate Professor and Head of EC Dept., Atmiya Institute of Technology and
Science, Rajkot, Gujarat, India."
b8f3f6d8f188f65ca8ea2725b248397c7d1e662d,Selfie Detection by Synergy-Constraint Based Convolutional Neural Network,"Selfie Detection by Synergy-Constriant Based
Convolutional Neural Network
Yashas Annadani, Vijaykrishna Naganoor, Akshay Kumar Jagadish and Krishnan Chemmangat
Electrical and Electronics Engineering, NITK-Surathkal, India."
b85580ff2d8d8be0a2c40863f04269df4cd766d9,HCMUS team at the Multimodal Person Discovery in Broadcast TV Task of MediaEval 2016,"HCMUS team at the Multimodal Person Discovery in
Broadcast TV Task of MediaEval 2016
Vinh-Tiep Nguyen, Manh-Tien H. Nguyen, Quoc-Huu Che, Van-Tu Ninh,
Tu-Khiem Le, Thanh-An Nguyen, Minh-Triet Tran
Faculty of Information Technology
University of Science, Vietnam National University-Ho Chi Minh city
{nhmtien, cqhuu, nvtu,"
b8471908880c916ebc70ac900e9446705ed258f4,Transitional and translational studies of risk for anxiety.,"Review
TRANSITIONAL AND TRANSLATIONAL STUDIES
OF RISK FOR ANXIETY
B. J. Casey Ph.D.,
Erika J. Ruberry B.S., Victoria Libby B.A., Charles E. Glatt M.D., Ph.D., Todd Hare Ph.D.,
Fatima Soliman M.D., Ph.D., Stephanie Duhoux Ph.D., Helena Frielingsdorf M.D., Ph.D., and Nim Tottenham
Ph.D.
Adolescence reflects a period of increased rates of anxiety, depression, and
suicide. Yet most teens emerge from this period with a healthy, positive outcome.
In this article, we identify biological factors that may increase risk for some
individuals during this developmental period by: (1) examining changes in
neural circuitry underlying core phenotypic features of anxiety as healthy
individuals transition into and out of adolescence; (2) examining genetic factors
that may enhance the risk for psychopathology in one individual over another
using translation from mouse models to human neuroimaging and behavior;
nd (3) examining the effects of early experiences on core phenotypic features of
nxiety using human neuroimaging and behavioral approaches. Each of these
pproaches alone provides only limited information on genetic and environ-
mental influences on complex human behavior across development. Together,
they reflect an emerging field of translational developmental neuroscience in"
b856c493c2e5cbb71791f56763886e5e0d40295c,Unsupervised Domain Adaptive Re-Identification: Theory and Practice,"Unsupervised Domain Adaptive Re-Identification:
Theory and Practice
Liangchen Song12∗ Cheng Wang23∗ Lefei Zhang1 Bo Du1
Qian Zhang2 Chang Huang2 Xinggang Wang3
Wuhan University 2Horizon Robotics
Huazhong Univ. of Science and Technology"
b8e35566129299c3591af0fd4f127e5e0d0b5774,3D Facial Image Comparison using Landmarks,"D Facial Image Comparison using Landmarks
A study to the discriminating value of the characteristics
of 3D facial landmarks and their automated detection.
Alize Scheenstra
Master thesis: INF/SCR-04-54
Netherlands Forensic Institute
Institute of Information and Computing Sciences
Utrecht University
February 2005"
b831a08a7098b64485587541485859c9213e6dc2,Applications of 3D morphable models for faces with expressions,"Applications of 3D morphable models for faces with expressions
B. Chu1,2, S. Romdhani1 et L. Chen2
Morpho, SAFRAN Group
1 boulevard Galliéni 92130 Issy-Les-Moulineaux - France
{baptiste.chu,
Université de Lyon, CNRS
Ecole Centrale de Lyon, LIRIS UMR5205, F-69134
Lyon, France
{baptiste.chu,"
b8a53daa97fb917a89c351c47f0b197573e20023,Recognizing Faces---An Approach Based on Gabor Wavelets,"Recognizing Faces --- An Approach Based on Gabor
Wavelets
By LinLin Shen, BSc, MSc
Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy
July 2005"
b8f09ff53e5a1700492100b8cd1b9e9783485376,Clustered Multi-task Feature Learning for Attribute Prediction,"#1105
CVPR 2016 Submission #1105. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
#1105
Clustered Multi-task Feature Learning for Attribute Prediction
Anonymous CVPR submission
Paper ID 1105"
b8aef59bac4035013bcdaa9b56d665fc8b4e187d,Optimal Bayes Classification of High Dimensional Data in Face Recognition,"Optimal Bayes Classification of High Dimensional Data in Face
Recognition
GRIFT Research Group, CRISTAL Laboratory, National School of Computer Sciences, University of Manouba,
Wissal Drira and Faouzi Ghorbel
Manouba, Tunisia
Keywords:
Face  Classification,  Bayes,  Feature  Extraction,  Reduction  Dimension,  L2  Probabilistic  Dependence
Measure."
b8a829b30381106b806066d40dd372045d49178d,A Probabilistic Framework for Joint Pedestrian Head and Body Orientation Estimation,"A Probabilistic Framework for Joint Pedestrian Head
nd Body Orientation Estimation
Fabian Flohr, Madalin Dumitru-Guzu, Julian F. P. Kooij, and Dariu M. Gavrila"
b8a4e7c21c3163b7595dac0cb00cf518e2dd82b5,Coupling Fall Detection and Tracking in Omnidirectional Cameras,"Coupling Fall Detection and Tracking in
Omnidirectional Cameras
removed for blind review
No Institute Given"
b88e0c3a6a95e5193085a258cd281802852e5a4a,Progression in large Age-gap face verification,"International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017                     www.irjet.net                                                                 p-ISSN: 2395-0072
Progression in large Age-gap face verification
Neha Rahman1, Ankit Chaora2
,2 Dept. of Electronics and Telecommunication Engineering, Rungta College of Engineering and Technology
M.tech Scholar, Digital Electronics, 2Assistant Professor
Bhilai, India
techniques,  database,  machine
research projects.
.  The
increasing  need  for  surveillance  related
pplications  due  to  drug  trafficking  and  terrorist
ctivities etc.
.  The availability of real time hardware.
.  The re-emergence of neural network classifiers with
emphasis on real time computation and adaptation.
---------------------------------------------------------------------***---------------------------------------------------------------------
.  The increase in emphasis on civilian or commercial"
b1d89015f9b16515735d4140c84b0bacbbef19ac,Too Far to See? Not Really!—Pedestrian Detection With Scale-Aware Localization Policy,"Too Far to See? Not Really!
— Pedestrian Detection with Scale-aware
Localization Policy
Xiaowei Zhang, Li Cheng, Bo Li, and Hai-Miao Hu"
b12431e61172443c534ea523a4d7407e847b5c5b,Yüz Tanımaya Dayalı Kişi Bazlı Test Otomasyonu,"Y¨uz Tanımaya Dayalı Ki¸si Bazlı Test
Otomasyonu
Alphan C¸ amlı1, Damla G¨ulen1, Nihat ¨Uk1, and Anıl G¨undo˘gdu1
Siemens A.S., Istanbul 34870, Turkey"
b1e27fade89e973f4087ed9a243981b0e713b22c,Functional neuroanatomy and the rationale for using EEG biofeedback for clients with Asperger's syndrome.,"Appl Psychophysiol Biofeedback (2010) 35:39–61
DOI 10.1007/s10484-009-9095-0
Functional Neuroanatomy and the Rationale for Using EEG
Biofeedback for Clients with Asperger’s Syndrome
Lynda Thompson Æ Michael Thompson Æ
Andrea Reid
Published online: 1 July 2009
Ó Springer Science+Business Media, LLC 2009
nd Oberman"
b18f94c5296a9cebe9e779d50d193fd180f78ed9,Forecasting Interactive Dynamics of Pedestrians with Fictitious Play,"Forecasting Interactive Dynamics of Pedestrians with Fictitious Play
Wei-Chiu Ma1 De-An Huang2 Namhoon Lee3 Kris M. Kitani4
Stanford
Oxford"
b14b672e09b5b2d984295dfafb05604492bfaec5,Apprentissage de Modèles pour la Classification et la Recherche d ’ Images Learning Image Classification and Retrieval Models,LearningImageClassificationandRetrievalModelsThomasMensink
b183914d0b16647a41f0bfd4af64bf94a83a2b14,Extensible video surveillance software with simultaneous event detection for low and high density crowd analysis,"Extensible Video Surveillance Software with
Simultaneous Event Detection for Low and High
Density Crowd Analysis
Anuruddha L. Hettiarachchi, Heshani O. Thathsarani, Pamuditha U. Wickramasinghe,
Dilranjan S. Wickramasuriya and Ranga Rodrigo
Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka
Email: 090184v, 090518c, 090560v, 090561b,"
b196f95a4274533b7f931a509eaf5507358945f9,Transformation-Invariant Analysis of Visual Signals with Parametric Models,"POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCESacceptée sur proposition du jury:Prof. P. Vandergheynst, président du juryProf. P. Frossard, directeur de thèseProf. D. Kressner, rapporteur Dr G. Peyré, rapporteur Prof. M. B. Wakin, rapporteurTransformation-Invariant Analysis of Visual Signals with Parametric ModelsTHÈSE NO 5844 (2013)ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNEPRÉSENTÉE LE 4 OCTOBRE 2013 À LA  FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEURLABORATOIRE DE TRAITEMENT DES SIGNAUX 4PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUESuisse2013PARElif VURAL"
b13254c2c9ca90f57e385d34abc7fe78d74e5222,Real-Time Multi-object Tracking with Occlusion and Stationary Objects Handling for Conveying Systems,"Real-time Multi-Object Tracking with Occlusion and
Stationary Objects Handling for Conveying Systems
Adel Benamara, Serge Miguet, Mihaela Scuturici
To cite this version:
Adel Benamara, Serge Miguet, Mihaela Scuturici. Real-time Multi-Object Tracking with Occlu-
sion and Stationary Objects Handling for Conveying Systems. 12th International Symposium
on Visual Computing (ISVC’16), Dec 2016, Las Vegas, NV, United States. .
HAL Id: hal-01385529
https://hal.archives-ouvertes.fr/hal-01385529
Submitted on 26 Oct 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
b11e97d5a12046ded77bc4dc0f762ac3c34e65cb,Blur and Illumination Invariant Robust Face Recognition Using Support Vector Machine (svm),"Vetri--International Journal of Computer Science information and Engg., Technologies ISSN 2277-4408 || 01032014-011
BLUR AND ILLUMINATION INVARIANT ROBUST
FACE RECOGNITION USING SUPPORT VECTOR
MACHINE (SVM)
A.Vetri Selvi1 , N.Priyalakshmi2, S.Reshmi3
, G.Nandhini4,
1, 2, 3  UG Scholars, Department of Information Technology, Sri Ramakrishna Engineering College, Coimbatore, India.
4  Assistant  Professor,  Department  of  Information  Technology,  Sri  Ramakrishna  Engineering  College,  Coimbatore,
India."
b1a3b19700b8738b4510eecf78a35ff38406df22,Automatic Analysis of Facial Actions: A Survey,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2731763, IEEE
Transactions on Affective Computing
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014
Automatic Analysis of Facial Actions: A Survey
Brais Martinez, Member, IEEE, Michel F. Valstar, Senior Member, IEEE, Bihan Jiang,
nd Maja Pantic, Fellow, IEEE"
b166ce267ddb705e6ed855c6b679ec699d62e9cb,Sample group and misplaced atom dictionary learning for face recognition,"Turk J Elec Eng & Comp Sci
(2017) 25: 4421 { 4430
⃝ T (cid:127)UB_ITAK
doi:10.3906/elk-1702-49
Sample group and misplaced atom dictionary learning for face recognition
Meng WANG1;2, Zhengping HU1;(cid:3)
, Zhe Sun1, Mei ZHU2, Mei SUN2
Department of Information Science & Engineering, Faculty of Electronics & Communication, Yanshan University,
Department of Physics & Electronics Engineering, Faculty of Electronics & Communication, Taishan University,
Qinhuangdao, P.R. China
Tai’an, P.R. China
Received: 04.02.2017
(cid:15)
Accepted/Published Online: 01.06.2017
(cid:15)
Final Version: 05.10.2017"
b16ff1331f961b2067c9464c491b7cbe90694758,Automatic plankton image classification combining multiple view features via multiple kernel learning,"Zheng et al. BMC Bioinformatics 2017, 18(Suppl 16):570
DOI 10.1186/s12859-017-1954-8
RESEARCH
Open Access
Automatic plankton image classification
ombining multiple view features via multiple
kernel learning
Haiyong Zheng1, Ruchen Wang1, Zhibin Yu1, Nan Wang1, Zhaorui Gu1 and Bing Zheng2*
From 16th International Conference on Bioinformatics (InCoB 2017)
Shenzhen, China. 20-22 September 2017
including phytoplankton and zooplankton, are the main source of food for organisms in the"
b15a06d701f0a7f508e3355a09d0016de3d92a6d,Facial contrast is a cue for perceiving health from the face.,"Running head:  FACIAL CONTRAST LOOKS HEALTHY
Facial contrast is a cue for perceiving health from the face
Richard Russell1, Aurélie Porcheron2,3, Jennifer R. Sweda1, Alex L. Jones1, Emmanuelle
Mauger2, Frederique Morizot2
Gettysburg College, Gettysburg, PA, USA
CHANEL Recherche et Technologie, Chanel PB
Université Grenoble Alpes
Author Note
Richard Russell, Jennifer R. Sweda, and Alex L. Jones, Department of Psychology,
Gettysburg College.  Aurélie Porcheron, Emmanuelle Mauger, and Frederique Morizot,
CHANEL Recherche et Technologie, Chanel PB.  Aurélie Porcheron, Laboratoire de
Psychologie et NeuroCognition, Université Grenoble Alpes.
Corresponding author:  Richard Russell, Department of Psychology, Box 407, Gettysburg
College, Gettysburg, PA 17325, USA.  Email:
This is a prepublication copy.  This article may not exactly replicate the authoritative document
published in the APA journal. It is not the copy of record.  The authoritative document can be
found through this DOI: http://psycnet.apa.org/doi/10.1037/xhp0000219"
b137480d2ccf3b53433de208815ce891d95af912,Visual Sentences for Pose Retrieval Over Low-Resolution Cross-Media Dance Collections,"Visual Sentences for Pose Retrieval over
Low-resolution Cross-media Dance Collections
Reede Ren, Member, IEEE, John Collomosse, Member, IEEE"
b17b20c3a3804482a1af3be897758d4f3be26677,Self-calibrating 3D context for retrieving people with luggage,"Self-Calibrating 3D Context for Retrieving People with Luggage
Johannes Schels∗ , Joerg Liebelt∗
EADS Innovation Works
M¨unchen, Germany
Rainer Lienhart
University of Augsburg
Augsburg, Germany"
b13499d60e7be1d593ec91fc952b9c32ce62bd57,Gambit: A Robust Chess-Playing Robotic System,"Gambit: A Robust Chess-Playing Robotic System
Cynthia Matuszek, Brian Mayton, Roberto Aimi, Marc Peter Deisenroth, Liefeng Bo,
Robert Chu, Mike Kung, Louis LeGrand, Joshua R. Smith, Dieter Fox"
b1444b3bf15eec84f6d9a2ade7989bb980ea7bd1,Local Directional Relation Pattern for Unconstrained and Robust Face Retrieval,"LOCAL DIRECTIONAL RELATION PATTERN
Local Directional Relation Pattern for
Unconstrained and Robust Face Retrieval
Shiv Ram Dubey, Member, IEEE"
b1edff56936e5d306e51479142b98cc2414c1a56,Human-Centered Autonomous Vehicle Systems: Principles of Effective Shared Autonomy,"Human-Centered Autonomous Vehicle Systems:
Principles of E(cid:128)ective Shared Autonomy
Massachuse(cid:138)s Institute of Technology (MIT)
Lex Fridman
Figure 1: Principles of shared autonomy used for the design and development of the Human-Centered Autonomous Vehicle."
b1451721864e836069fa299a64595d1655793757,Criteria Sliders: Learning Continuous Database Criteria via Interactive Ranking,"Criteria Sliders: Learning Continuous
Database Criteria via Interactive Ranking
James Tompkin,1∗ Kwang In Kim,2∗ Hanspeter Pfister,3 and Christian Theobalt4
Brown University 2University of Bath
Harvard University 4Max Planck Institute for Informatics"
b1ec55cbf2e9a6785e1f1f2fc060e4171ec88b4b,Implicit Discrimination of Basic Facial Expressions of Positive/Negative Emotion in Fragile X Syndrome and Autism Spectrum Disorder.,"015, Vol. 120, No. 4, 328–345
EAAIDD
DOI: 10.1352/1944-7558-120.4.328
Implicit Discrimination of Basic Facial Expressions of
Positive/Negative Emotion in Fragile X Syndrome and
Autism Spectrum Disorder
Hayley Crawford, Joanna Moss, Giles M. Anderson, Chris Oliver, and Joseph P. McCleery"
b1ffa7a926e129f8dccdd6f258fea034cbee9160,Minimizing hallucination in histogram of Oriented Gradients,"Minimizing hallucination in Histogram of Oriented Gradients
Sławomir B ˛ak Michał Koperski
INRIA Sophia Antipolis, STARS group
François Brémond
004, route des Lucioles, BP93
06902 Sophia Antipolis Cedex - France
Javier Ortiz"
b1bd58bb76ae9e4504622a941e1da21a24b5cfdd,"International conference on Advanced Computing , Communication and Networks ’ 11 1087 Face Recognition Using Incremental Principal Component Analysis","International conference on Advanced Computing, Communication and Networks’11
Face Recognition Using Incremental Principal Component Analysis
Satish S. Banait1, Vivek Kshirsagar2, Meghana Nagori3, Archana R. Ugale4
Dept. of Computer Engg. KK Wagh Institute of Engg. Education & Research Centre, Nashik
, 3 Dept. of Computer Science & Engineering, Govt. College Of Engineering, Aurangabad, India
Dept. of Computer Engg. MET’s BKC College of Engg., Nashik
space
-  IN
feature"
b1ffd13e8f68401a603eea9806bc37e396a3c77d,Face Generation with Conditional Generative Adversarial Networks,"Face Generation with Conditional Generative Adversarial Networks
Xuwen Cao, Subramanya Rao Dulloor, Marcella Cindy Prasetio"
b19f24ec92388513d1516d71292559417c776006,Causalgan: Learning Causal Implicit Gener-,"Under review as a conference paper at ICLR 2018
CAUSALGAN: LEARNING CAUSAL IMPLICIT GENER-
ATIVE MODELS WITH ADVERSARIAL TRAINING
Anonymous authors
Paper under double-blind review"
b19e83eda4a602abc5a8ef57467c5f47f493848d,Heat Kernel Based Local Binary Pattern for Face Representation,"JOURNAL OF LATEX CLASS FILES
Heat Kernel Based Local Binary Pattern for
Face Representation
Xi Li†, Weiming Hu†, Zhongfei Zhang‡, Hanzi Wang§"
b18efa91e9893ae5fdfcaf880bae5c569fab4d18,Visual Scanning of Dynamic Affective Stimuli in Autism Spectrum Disorders,"Georgia State University
ScholarWorks Georgia State University
Psychology Dissertations
Department of Psychology
8-1-2012
Visual Scanning of Dynamic Affective Stimuli in
Autism Spectrum Disorders
Susan M. McManus
Georgia State University
Follow this and additional works at: http://scholarworks.gsu.edu/psych_diss
Recommended Citation
McManus, Susan M., ""Visual Scanning of Dynamic Affective Stimuli in Autism Spectrum Disorders."" Dissertation, Georgia State
University, 2012.
http://scholarworks.gsu.edu/psych_diss/105
This Dissertation is brought to you for free and open access by the Department of Psychology at ScholarWorks Georgia State University. It has been
ccepted for inclusion in Psychology Dissertations by an authorized administrator of ScholarWorks Georgia State University. For more information,
please contact"
ddc8f480898a846c2a6ba0dddd7d733ce35f0e19,Dense Pose Transfer,"Dense Pose Transfer
Natalia Neverova1, Rıza Alp G¨uler2, and Iasonas Kokkinos1
Facebook AI Research, Paris, France, {nneverova,
INRIA-CentraleSup´elec, Paris, France,"
dde5125baefa1141f1ed50479a3fd67c528a965f,Synthesizing Normalized Faces from Facial Identity Features,"Synthesizing Normalized Faces from Facial Identity Features
Forrester Cole1 David Belanger1,2 Dilip Krishnan1 Aaron Sarna1 Inbar Mosseri1 William T. Freeman1,3
Google, Inc. 2University of Massachusetts Amherst 3MIT CSAIL
{fcole, dbelanger, dilipkay, sarna, inbarm,"
ddefb92908e6174cf48136ae139efbb4bd198896,Feature-wise Bias Amplification,"Under review as a conference paper at ICLR 2019
FEATURE-WISE BIAS AMPLIFICATION
Anonymous authors
Paper under double-blind review"
dd8084b2878ca95d8f14bae73e1072922f0cc5da,"Model Distillation with Knowledge Transfer in Face Classification, Alignment and Verification","Model Distillation with Knowledge Transfer from
Face Classification to Alignment and Verification
Chong Wang∗, Xipeng Lan and Yangang Zhang
Beijing Orion Star Technology Co., Ltd. Beijing, China
{chongwang.nlpr, xipeng.lan,"
dd7ed20a65d811dcf863f796d6dcbe873f57e7c4,Object Detection Via Structural Feature Selection and Shape Model,"Object Detection via Structural Feature
Selection and Shape Model
Huigang Zhang, Xiao Bai, Jun Zhou, Senior Member, IEEE, Jian Cheng and
Huijie Zhao"
ddf55fc9cf57dabf4eccbf9daab52108df5b69aa,Methodology and Performance Analysis of 3-D Facial Expression Recognition Using Statistical Shape Representation,"International Journal of Grid and Distributed Computing
Vol. 4, No. 3, September, 2011
Methodology and Performance Analysis of 3-D Facial Expression
Recognition Using Statistical Shape Representation
Wei Quan, Bogdan J. Matuszewski, Lik-Kwan Shark
ADSIP Research Centre, University of Central Lancashire
{WQuan, BMatuszewski1,
Charlie Frowd
School of Psychology, University of Central Lancashire"
dd72ed9a30e4d04703487df29a8762940bd79967,Image Retrieval based on LBP Transitions,"International Journal of Computer Applications (0975 – 8887)
Volume 101– No.16, September 2014
Image Retrieval based on LBP Transitions
A. Srinivasa Rao
Assoc.Prof in CSE Dept.
MSSISTCE
Mylavaram, Vijayawada
V.Venkata Krishna
Professor in CSE Dept.
GIET, Rajahmundry
Andhra Pradesh, India
A.Obulesu
Asst.Prof in CSE Dept.
AGI (Autonomous), Hyderabad
Telanganastate, India"
ddea3c352f5041fb34433b635399711a90fde0e8,Facial Expression Classification using Visual Cues and Language,"Facial Expression Classification using Visual Cues and Language
Abhishek Kar
Advisor: Dr. Amitabha Mukerjee
Department of Computer Science and Engineering, IIT Kanpur"
dde24967490f58c8d10b2a00f12bf9103bd9b4a6,Evaluation of Shape Features for Efficient Classification Based on Rotational Invariant Using Texton Model,"Dr. P Chandra Sekhar Reddy, International Journal of Computer Science and Mobile Computing, Vol.5 Issue.8, August- 2016, pg. 282-295
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IMPACT FACTOR: 5.258
IJCSMC, Vol. 5, Issue. 8, August 2016, pg.282 – 295
EVALUATION OF SHAPE FEATURES FOR
EFFICIENT CLASSIFICATION BASED ON
ROTATIONAL INVARIANT USING TEXTON MODEL
Dr. P Chandra Sekhar Reddy
Professor, CSE Dept.
Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad"
ddbd24a73ba3d74028596f393bb07a6b87a469c0,Multi-region Two-Stream R-CNN for Action Detection,"Multi-region two-stream R-CNN
for action detection
Xiaojiang Peng, Cordelia Schmid
Inria(cid:63)"
ddf099f0e0631da4a6396a17829160301796151c,Learning Face Image Quality from Human Assessments,"IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
Learning Face Image Quality from
Human Assessments
Lacey Best-Rowden, Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
dd0a334b767e0065c730873a95312a89ef7d1c03,Eigenexpressions: Emotion Recognition Using Multiple Eigenspaces,"Eigenexpressions: Emotion Recognition using Multiple
Eigenspaces
Luis Marco-Gim´enez1, Miguel Arevalillo-Herr´aez1, and Cristina Cuhna-P´erez2
University of Valencia. Computing Department,
Burjassot. Valencia 46100, Spain,
Universidad Cat´olica San Vicente M´artir de Valencia (UCV),
Burjassot. Valencia. Spain"
dda7bb490171a1d3364928fb8143bbe021146c5f,Local Shape Spectrum Analysis for 3D Facial Expression Recognition,"Local Shape Spectrum Analysis for 3D Facial Expression Recognition
Department of Information and Communication Technologies, Pompeu Fabra University, Barcelona, Spain
Dmytro Derkach and Federico M. Sukno"
dd8d53e67668067fd290eb500d7dfab5b6f730dd,A Parameter-Free Framework for General Supervised Subspace Learning,"A Parameter-Free Framework for General
Supervised Subspace Learning
Shuicheng Yan, Member, IEEE, Jianzhuang Liu, Senior Member, IEEE, Xiaoou Tang, Senior Member, IEEE,
nd Thomas S. Huang, Life Fellow, IEEE"
ddcb77d09e4e9e2a948f9ffe7eaa5554dceb8ce3,Revisiting Cross Modal Retrieval,
ddbfea5302fcb5cbc2ca4c498a592ddb063b9eff,L Ow Supervision Visual Learning through Cooperative Agents,"Low-supervision visual learning through cooperative agents
Ashish Bora
Abhishek Sinha"
ddbb6e0913ac127004be73e2d4097513a8f02d37,Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis,"IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 3, SEPTEMBER 1999
Face Detection Using Quantized Skin Color
Regions Merging and Wavelet Packet Analysis
Christophe Garcia and Georgios Tziritas, Member, IEEE"
ddfde5d6f4e720aeb770a20e4197db3a0c279958,Learning Convolutional Text Representations for Visual Question Answering,"Learning Convolutional Text Representations for Visual Question Answering
Zhengyang Wang∗
Shuiwang Ji†"
dd54255065cf93895661c40073cdd031af7dd7e8,"GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose","GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose
Zhichao Yin and Jianping Shi
SenseTime Research
{yinzhichao,"
dc53c4bb04e787a0d45dd761ba2101cc51c17b82,Multiple-Person Tracking by Detection,"http://excel.fit.vutbr.cz
Multiple-Person Tracking by Detection
Jakub Vojvoda*"
dc3cd4e110b526cb59bd7527d540120c5fae77ce,Adversarially Tuned Scene Generation,"Adversarially Tuned Scene Generation
VSR Veeravasarapu1, Constantin Rothkopf2, Ramesh Visvanathan1
Center for Cognition and Computation, Dept. of Computer Science, Goethe University, Frankfurt
Center for Cognitive Science & Dept. of Psychology, Technical University Darmstadt."
dcf17cc3b4f8519a6789c1ea086689bcbc1d6f11,Unsupervised Learning of Deep Feature Representation for Clustering Egocentric Actions,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
dceaef5e7cbfc4d0150c2d765cc3df4349b8b2bd,Sentiment Analysis Using Social Multimedia,"Chapter 2
Sentiment Analysis Using Social
Multimedia
Jianbo Yuan, Quanzeng You and Jiebo Luo"
dcace6f0611b77177f4aff4bb650afab0a819575,3D Face Recognition,BMVC 2006 doi:10.5244/C.20.89
dcd88a249b480d2e25326cdd11c5879fa31865cc,A Cross-Modal Distillation Network for Person Re-identification in RGB-Depth,"A Cross-Modal Distillation Network for Person
Re-identification in RGB-Depth
Frank Hafner
, Amran Bhuiyan,
, Julian F. P. Kooij
, Eric Granger
, Member, IEEE"
dc550f361ae82ec6e1a0cf67edf6a0138163382e,Emotion Based Music Player,"ISSN XXXX XXXX © 2018 IJESC
Research Article                                                                                                                           Volume 8 Issue No.3
Vijay Chakole1, Aniket Choudhary2, Kalyani Trivedi3, Kshitija Bhoyar4, Ruchita Bodele5, Sayali Karmore6
Emotion Based Music Player
Professor1, UG Student2, 3, 4, 5, 6
Department of Electronics Engineering
K.D.K. College of Engineering Nagpur, India"
dc6263270cd23a51d8fffdfd7e408250442b40f3,"SimpleElastix: A User-Friendly, Multi-lingual Library for Medical Image Registration","SimpleElastix: A user-friendly, multi-lingual library for medical image
registration
Kasper Marstal1, Floris Berendsen2, Marius Staring2 and Stefan Klein1
Biomedical Imaging Group Rotterdam (BIGR), Department of Radiology & Medical Informatics,
Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, the Netherlands,
Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center,
PO Box 9600, 2300 RC Leiden, the Netherlands,"
dc6c47d15ffc0fd59e51ed03556c3566afe5710b,Robust Object Recognition Through Symbiotic Deep Learning In Mobile Robots *,"CONFIDENTIAL. Limited circulation. For review only.
Preprint submitted to 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Received March 1, 2018."
dcb44fc19c1949b1eda9abe998935d567498467d,Ordinal Zero-Shot Learning,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
labelunseen labelFigure1:Supervisionintensityfordifferentlabels.Greenrepre-sentsseenlabelsandredrepresentsunseenlabels.Thegroundtruthlabelofthisinstanceis“Good”,soithasthestrongestsupervisionintensity.Although“Common”isanunseenlabel,itstillhascertainsupervisioninformationbecauseitiscloselyrelatedto“Good”.classifier;[ZhangandSaligrama,2016]learnsajointlatentspaceusingstructuredlearning.Thedifficultyinobtainingthesideinformationorusingothertechniquestoprocessthesideinformationarethemostseriousissuesformanyexistingzero-shotlearningmethods.Fortheattribute-basedmethods,humanexpertsareneededtolabelattributesandthisisverytime-consumingandnoteasytoobtainthediscriminativecategory-levelattributes.Somemethodsdiscoverattributesinteractively[ParikhandGrau-man,2011][Bransonetal.,2010],butthisalsorequiresla-borioushumanparticipation.Althoughmanyalgorithmscandiscoverattribute-relatedconceptsontheWeb[Rohrbachetal.,2010][Bergetal.,2010],theycanalsobebiasedorlackinformationthatiscriticaltoaparticulartask[ParikhandGrauman,2011].Forthetextcorpora-basedmethods,theyfirstrequirealargelanguagecorpora,suchasWikipedia,andthenneedtolearnwordrepresentation[Socheretal.,2013]orusestandardNaturalLanguageProcessing(NLP)techniquestoproduceclassdescriptions[Elhoseinyetal.,2013].Itishardtoguaranteethecorrectnessofsuchclassdescriptionsforzero-shotlearning.Conclusively,althoughsideinforma-tionishelpfulforzero-shotlearning,ithasmanydisadvan-tages.Generatingthesesideinformationisverytediousandsometimeswecannotknowwhichsideinformationistrulywanted.IfwedependonhumanlabororNLPtechniques,noisysideinformationwillbecomealmostinevitableandin-fluencethefinalperformance.Toavoidtheseproblems,itisimportanttosolvezero-shotlearninginwhateverpossiblecasesthathavesomepropertieswecanutilizetoavoidusingsideinformation."
dcce157aa2e5db081b36fd16544a038becb408ab,Fast and Accurate Pedestrian Detection in a Truck's Blind Spot Camera,"Fast and Accurate Pedestrian Detection
in a Truck’s Blind Spot Camera
Kristof Van Beeck1,2(B) and Toon Goedem´e1,2
EAVISE, KU Leuven - Campus De Nayer, J. De Nayerlaan 5, 2860
ESAT/PSI - VISICS, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
Sint-katelijne-waver, Belgium"
dc452f3e531c4057c930f0538d5652ad9034d1aa,Quality metrics for practical face recognition,"1st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan
978-4-9906441-0-9 ©2012 ICPR"
dc7a4d5ba20ca07d29c360b26e1e72afae9a77be,The ApolloScape Open Dataset for Autonomous Driving and its Application,"The ApolloScape Open Dataset for Autonomous
Driving and its Application
Xinyu Huang*, Peng Wang*, Xinjing Cheng, Dingfu Zhou, Qichuan Geng, Ruigang Yang"
dc6d518585c18504b2e69223c062cdd691c79bbd,Domain Adaptation Through Synthesis for Unsupervised Person Re-identification,
dc771cd7780538953811a5b6ae0e901ca68cce3d,Multiple People Tracking Using Hierarchical Deep Tracklet Re-identification,"Multiple People Tracking Using Hierarchical Deep Tracklet Re-identification
Maryam Babaee∗
Ali Athar∗
Gerhard Rigoll
Institute for Human-Machine Communication, Technical University of Munich
Arcisstrasse 21, Munich, Germany"
dcba9cd587be2ed5437370e12e3591bdde86dc3c,Template for Regular Entry,"TEMPLATE FOR REGULAR ENTRY
(ENCYCLOPEDIA OF DATABASE SYSTEMS)
TITLE OF ENTRY
Automatic Image Annotation
BYLINE
Nicolas Hervé and Nozha Boujemaa, INRIA Paris-Rocquencourt, IMEDIA project, France.
http://www-rocq.inria.fr/imedia/
SYNONYMS
Multimedia Content Enrichment, Image Classification, Object Detection and Recognition,
Auto-annotation
DEFINITION
The widespread search engines, in the professional as well as the personal context, used to work
on the basis of textual information associated or extracted from indexed documents. Nowadays,
most of the exchanged or stored documents have multimedia content. To reduce the technological
gap so that these engines still can work on multimedia content, it is very convenient developing
methods capable to generate automatically textual annotations and metadata.  These methods will
then allow to enrich the  upcoming new content or to post-annotate the existing  content with
dditional information extracted automatically if ever this existing content is partly or not annotated.
A broad diversity in the typology of manual annotation is usually found in image databases. Part of
them   is   representing   contextual   information.   The   author,   date,   place   or   technical   shooting"
dc2e805d0038f9d1b3d1bc79192f1d90f6091ecb,Face Recognition and Facial Attribute Analysis from Unconstrained Visual Data,
dc23beb1e5c7402b1a9d5a7c854e62a253d0815e,Microscopic crowd simulation : evaluation and development of algorithms. (Simulation microscopique de foules : évaluation et développement d'algorithmes),"Microscopic crowd simulation : evaluation and
development of algorithms
David Wolinski
To cite this version:
David Wolinski. Microscopic crowd simulation : evaluation and development of algorithms. Data
Structures and Algorithms [cs.DS]. Université Rennes 1, 2016. English. <NNT : 2016REN1S036>.
<tel-01420105>
HAL Id: tel-01420105
https://tel.archives-ouvertes.fr/tel-01420105
Submitted on 20 Dec 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
dcc064b8bf7744801ae7dfe4cbfd11b7e5a5b673,Men's physical strength moderates conceptualizations of prospective foes in two disparate societies.,"Hum Nat
DOI 10.1007/s12110-014-9205-4
Men’s Physical Strength Moderates Conceptualizations
of Prospective Foes in Two Disparate Societies
Daniel M. T. Fessler & Colin Holbrook &
Matthew M. Gervais
# Springer Science+Business Media New York 2014"
dc041f307d467918ba684d3c425fb23016f3b28e,A Survey of 3D Face Recognition Methods,"A Survey of 3D Face Recognition Methods
Alize Scheenstra1, Arnout Ruifrok2, and Remco C. Veltkamp1
Utrecht University, Institute of Information and Computing Sciences,
Padualaan 14, 3584 CH Utrecht, The Netherlands
Netherlands Forensic Institute,
Laan van Ypenburg 6, 2497 GB Den Haag, The Netherlands,"
dc090aea412cef17c7a68ec84c34797806feab24,A mixture of gated experts optimized using simulated annealing for 3D face recognition,"978-1-4577-1302-6/11/$26.00 ©2011 IEEE
D FACE RECOGNITION
. INTRODUCTION"
dc9f29118e38602c03bb2866f8b12ce478aad52c,Large scale evolution of convolutional neural networks using volunteer computing,"Large Scale Evolution of Convolutional Neural
Networks Using Volunteer Computing
Travis Desell∗
March 17, 2017"
dc22de0ed56958013234cf7128952390fb47345a,Towards dense object tracking in a 2D honeybee hive,"Towards dense object tracking in a 2D honeybee hive
Katarzyna Bozek a, Laetitia Hebert a, Alexander S Mikheyev a & Greg J Stephens a,b∗
Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
Department of Physics and Astronomy, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
From human crowds to cells in tissue, the detection and ef‌f‌icient tracking of multiple objects
in dense configurations is an important and unsolved problem. In the past, limitations of image
nalysis have restricted studies of dense groups to tracking a single or subset of marked individ-
uals, or to coarse-grained group-level dynamics, all of which yield incomplete information. Here,
we combine convolutional neural networks (CNNs) with the model environment of a honeybee hive
to automatically recognize all individuals in a dense group from raw image data. We create new,
dapted individual labeling and use the segmentation architecture U-Net with a loss function depen-
dent on both object identity and orientation. We additionally exploit temporal regularities of the
video recording in a recurrent manner and achieve near human-level performance while reducing
the network size by 94% compared to the original U-Net architecture. Given our novel applica-
tion of CNNs, we generate extensive problem-specific image data in which labeled examples are
produced through a custom interface with Amazon Mechanical Turk. This dataset contains over
75,000 labeled bee instances across 720 video frames at 2 FPS, representing an extensive resource
location error of ∼ 7% of a typical body dimension, and orientation error of 12◦, approximating the
variability of human raters. Our results provide an important step towards ef‌f‌icient image-based
dense object tracking by allowing for the accurate determination of object location and orientation"
dca246cd06666a331b0203cb09a6ef51727bfdcc,The micro-foundations of email communication networks,"The Micro-Foundations of Email
Communication Networks
Ofer Engel
London School of Economics and Political Science
Department of Management
Information Systems and Innovation Group
Thesis submitted for the degree of
PhilosophiæDoctor (PhD)
013 June"
dc974c31201b6da32f48ef81ae5a9042512705fe,Am I Done? Predicting Action Progress in Videos,"Am I done? Predicting Action Progress in Video
Federico Becattini1, Tiberio Uricchio1, Lorenzo Seidenari1,
Alberto Del Bimbo1, and Lamberto Ballan2
Media Integration and Communication Center, Univ. of Florence, Italy
Department of Mathematics “Tullio Levi-Civita”, Univ. of Padova, Italy"
b66418ecc37ea0c79da5425e9ceac939ca9075ae,Efficient Gait-based Gender Classification through Feature Selection,"EFFICIENT GAIT-BASED GENDER CLASSIFICATION
THROUGH FEATURE SELECTION∗
Ra´ul Mart´ın-F´elez, Javier Ortells, Ram´on A. Mollineda and J. Salvador S´anchez
Institute of New Imaging Technologies and Dept. Llenguatges i Sistemes Inform`atics
Universitat Jaume I. Av. Sos Baynat s/n, 12071, Castell´o de la Plana, Spain
{martinr, jortells, mollined,
Keywords:
Gender classification, Gait, ANOVA, Feature selection."
b6ecc8d34ebc8895378abe2b8f35e3a0691f5d26,Annotation Methodologies for Vision and Language Dataset Creation,"Annotation Methodologies for Vision and Language Dataset Creation
Gitit Kehat
Computer Science Department
Brandeis University
Waltham, MA. 02453 USA
James Pustejovsky
Computer Science Department
Brandeis University
Waltham, MA. 02453 USA"
b691463de5e30e7efd18b9d02cbf83c805834fe7,Evaluation of Penalty Functions for Semi-global Matching Cost Aggregation,"EVALUATION OF PENALTY FUNCTIONS FOR SEMI-GLOBAL MATCHING
COST AGGREGATION
Christian Banz, Peter Pirsch, and Holger Blume
Institute of Microelectronic Systems
Leibniz Universität Hannover, Hannover, Germany
KEY WORDS: Stereoscopic, Quality, Matching, Vision, Reconstruction, Camera, Disparity Estimation, Semi-Global Matching"
b6b1b0632eb9d4ab1427278f5e5c46f97753c73d,Generalização cartográfica automatizada para um banco de dados cadastral,"UNIVERSIDADE FEDERAL DE SANTA CATARINA -UFSC
DEPARTAMENTO DE ENGENHARIA CIVIL
PROGRAMA DE PÓS-GRADUAÇÃO EM
ENGENHARIA CIVIL - PPGEC
AREA DE CONCENTRAÇÃO: CADASTRO TÉCNICO E
GESTÃO TERRITORIAL
GENERALIZAÇÃO CARTOGRÁFICA AUTOMATIZADA
PARA UM BANCO DE DADOS CADASTRAL
Tese  submetida  à  Universidade  Federal  de
Santa  Catarina  como  requisito  exigido  pelo
Programa  de  Pós-Graduação  em  Engenharia
Civil  -  PPGEC,  para  a  obtenção  do  Título  de
DOUTOR em Engenharia Civil.
Mariane Alves Dal Santo
Orientador: Prof. Dr. Carlos Loch
Florianópolis, dezembro de 2007"
b63411ed70ba315b87a716e1809faea48e70a982,"A Survey on Object Detect , Track and Identify Using Video Surveillance","IOSR Journal of Engineering (IOSRJEN)
e-ISSN: 2250-3021, p-ISSN: 2278-8719, www.iosrjen.org
Volume 2, Issue 10 (October 2012), PP 71-76
A  Survey on Object Detect, Track and Identify Using Video
Surveillance
Chandrashekhar D.Badgujar1, Dipali P.Sapkal2
1,2(Computer Science and Engineering G.H.R.E.M, Jalgoan)"
b651814360e3899cd9206bfd23621aca6551e69c,Improving Feature Level Likelihoods using Cloud Features,"IMPROVING FEATURE LEVEL LIKELIHOODS USING CLOUD
FEATURES
Heydar Maboudi Afkham1, Stefan Carlsson1, Josephine Sullivan1
Computer Vision and Active Perception Lab., KTH, Stockholm, Sweden
Keywords:
Feature inference, Latent models, Clustering"
b69badabc3fddc9710faa44c530473397303b0b9,Unsupervised Image-to-Image Translation Networks,"Unsupervised Image-to-Image Translation Networks
Ming-Yu Liu, Thomas Breuel,
Jan Kautz
NVIDIA"
b6fd905efd5da32bd32047896074a821477cb564,An Human Perceptive Model for Person Re-identification,"An Human Perceptive Model for Person Re-identification
Angelo Cardellicchio1, Tiziana D’Orazio1, Tiziano Politi2 and Vito Ren`o1
National Research Council, Institute of Intelligent Systems for Automation, Bari, Italia
Politecnico di Bari, Bari, Italia
Keywords:
Color Analysis, Feature Extraction, Histograms."
b62486261104d5136aea782ee8596425b5f228da,Modelling perceptions of criminality and remorse from faces using a data-driven computational approach.,"Cognition and Emotion
ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20
Modelling perceptions of criminality and remorse
from faces using a data-driven computational
pproach
Friederike Funk, Mirella Walker & Alexander Todorov
To cite this article: Friederike Funk, Mirella Walker & Alexander Todorov (2017) Modelling
perceptions of criminality and remorse from faces using a data-driven computational approach,
Cognition and Emotion, 31:7, 1431-1443, DOI: 10.1080/02699931.2016.1227305
To link to this article:  http://dx.doi.org/10.1080/02699931.2016.1227305
View supplementary material
Published online: 07 Sep 2016.
Submit your article to this journal
Article views: 235
View related articles
View Crossmark data
Citing articles: 1 View citing articles
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=pcem20
Download by: [Princeton University]"
b63041d05b78a66724fbcb2803508999bf885d6b,Deep Sets,"Deep Sets
Manzil Zaheer 1 2 Satwik Kottur 2 Siamak Ravanbhakhsh 2 Barnabas Poczos 2 Ruslan Ssalakhutdinov 2
Alexander Smola 1 2"
b61b4eb2e28b9cf35578498e1bbcc35ec0a07651,Backtracking ScSPM Image Classifier for Weakly Supervised Top-Down Saliency,"Backtracking ScSPM Image Classifier for Weakly Supervised Top-down Saliency
Hisham Cholakkal
Jubin Johnson
Deepu Rajan
Multimedia Lab, School of Computer Science and Engineering
Nanyang Technological University Singapore
{hisham002, jubin001,"
b6aa94b81b2165e492cc2900e05dd997619bfe7a,Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks,"Automatic temporal segment
detection via bilateral long short-
term memory recurrent neural
networks
Bo Sun
Siming Cao
Jun He
Lejun Yu
Liandong Li
Bo Sun, Siming Cao, Jun He, Lejun Yu, Liandong Li, “Automatic temporal segment
detection via bilateral long short-term memory recurrent neural networks,” J.
Electron. Imaging 26(2), 020501 (2017), doi: 10.1117/1.JEI.26.2.020501.
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/03/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx"
b632d47eb7421a3d622b0f1ceb009e4415ccc84d,Deep Perceptual Mapping for Cross-Modal Face Recognition,"(will be inserted by the editor)
Deep Perceptual Mapping for Cross-Modal Face
Recognition
M. Saquib Sarfraz · Rainer Stiefelhagen
the date of receipt and acceptance should be inserted later"
b6ef46621d8660eb53836202fa58f04fa20adfd7,Disgust and Anger Relate to Different Aggressive Responses to Moral Violations,"692000 PSSXXX10.1177/0956797617692000Molho et al.Moral Emotions and Aggressive Tactics
research-article2017
Research Article
Disgust and Anger Relate to Different
Aggressive Responses to Moral Violations
Catherine Molho1, Joshua M. Tybur1, Ezgi Güler2,
Daniel Balliet1, and Wilhelm Hofmann3
Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam;
Department of Political and Social Sciences, European University Institute; and 3Social Cognition
Center Cologne, University of Cologne
Psychological Science
017, Vol. 28(5) 609 –619
© The Author(s) 2017
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0956797617692000
https://doi.org/10.1177/0956797617692000
www.psychologicalscience.org/PS"
b69f7660985be23abda72990cb1f367778960275,Object Recognition based on Principal Component Analysis to Image Patches,"International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    1096
ISSN 2229-5518
Object Recognition based on Principal
Component Analysis to Image Patches
R.Ahilapriyadharsini
Mepco Schlenk Engineering
College,
Sivakasi, India
S.Arivazhagan
M.Gowthami
Mepco Schlenk Engineering
Renganayagi Varatharaj College of
College,
Sivakasi, India
Engineering, Salvarpatti,
Sivakasi, India."
b613b30a7cbe76700855479a8d25164fa7b6b9f1,Identifying User-Specific Facial Affects from Spontaneous Expressions with Minimal Annotation,"Identifying User-Specific Facial Affects from
Spontaneous Expressions with Minimal Annotation
Michael Xuelin Huang, Grace Ngai, Kien A. Hua, Fellow, IEEE, Stephen C.F. Chan, Member, IEEE
nd Hong Va Leong, Member, IEEE Computer Society"
b640c36acc0e748553f78280fce7a840965c5cec,Text Detection from Natural Image using MSER and BOW,"International Journal of Emerging Engineering Research and Technology
Volume 3, Issue 11, November 2015, PP 152-156
ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online)
Text Detection from Natural Image using MSER and BOW
K.Sowndarya Lahari, 2M.Haritha, 3P.Prasanna Murali Krishna
(M.Tech), DECS, DR.Sgit, Markapur, India.
Associate Professor, Department of ECE, DR.Sgit, Markapur, India.
.3H.O.D Department of ECE, DR.Sgit, Markapur, India."
b66a93884f80a243f50da97e33211693a317dc45,Deep Learning for Generic Object Detection: A Survey,"Deep Learning for Generic Object Detection: A Survey
Li Liu 1,2 · Wanli Ouyang 3 · Xiaogang Wang 4 ·
Paul Fieguth 5 · Jie Chen 2 · Xinwang Liu 1 · Matti Pietik¨ainen 2
Received: 12 September 2018"
b6f682648418422e992e3ef78a6965773550d36b,"CBMM Memo No . 061 February 8 , 2017 Full interpretation of minimal images","February 8, 2017"
b610e52b0a8fa11af3d01944c0383f015cade9c0,Multimodal 2 D - 3 D Face Recognition,"International Journal of Future Computer and Communication, Vol. 2, No. 6, December 2013
Multimodal 2D-3D Face Recognition
Gawed M. Nagi, Rahmita Rahmat, Muhamad Taufik, and Fatimah Khalid
technology"
b67e2ccd0f05df5358464b9b38da3bcb9feda1ab,FaceID@home: cycle-sharing for facial recognition,"ycle-sharing for facial recognition
FaceID-BOINC: adapta¸c˜ao de algoritmos de reconhecimento facial (eigenfaces) para execu¸c˜ao
em m´aquinas multicore e GPUs integrado num cliente para plataforma BOINC
Nuno Miguel Abreu Teixeira - 55397
Instituto Superior T´ecnico"
b64cc1f0772e9620ecf916019de85b7adb357b7a,Fast Face-Swap Using Convolutional Neural Networks,"Fast Face-swap Using Convolutional Neural Networks
Iryna Korshunova1,2
Wenzhe Shi1
{iryna.korshunova,
Twitter
Joni Dambre2
Lucas Theis1
IDLab, Ghent University
{wshi,"
b6aaaf6290ba0ca13be61d122907617f1ea86315,Embedded Face Recognition Using Cascaded Structures PROEFSCHRIFT,"Embedded Face Recognition
Using Cascaded Structures
PROEFSCHRIFT
ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
ommissie aangewezen door het College voor
Promoties in het openbaar te verdedigen op
dinsdag 3 oktober 2006 om 16.00 uur
Fei Zuo
geboren te Xi’an, China"
b6dc1cd3cabdfea7363d41773a315a0d241dc836,Local Context Priors for Object Proposal Generation,"Local Context Priors for Object Proposal
Generation
Marko Ristin1, Juergen Gall2, and Luc Van Gool1,3
ETH Zurich
MPI for Intelligent Systems
KU Leuven"
b648d73edd1a533decd22eec2e7722b96746ceae,weedNet: Dense Semantic Weed Classification Using Multispectral Images and MAV for Smart Farming,"weedNet: Dense Semantic Weed Classification Using Multispectral
Images and MAV for Smart Farming
Inkyu Sa1, Zetao Chen2, Marija Popovi´c1, Raghav Khanna1, Frank Liebisch3, Juan Nieto1, Roland Siegwart1"
b67e0ae9d64ec06b3e1c25c7f7e8b86020612d33,Vocabulary-informed Visual Feature Augmen-,"Under review as a conference paper at ICLR 2018
VOCABULARY-INFORMED VISUAL FEATURE AUGMEN-
TATION FOR ONE-SHOT LEARNING"
a93ecf7b9780989c709714dde0f93f4d81eea640,Unconstrained Face Recognition Using SVM Across Blurred And Illuminated Images With Pose Variation,"International Journal of Innovative Research in Computer and Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol.2, Special Issue 1, March 2014
Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)
Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014
Organized by
Unconstrained Face Recognition Using SVM
Across Blurred And Illuminated Images With Pose
Variation
Nadeena M1, S.Sangeetha, M.E, 2
ISSN(Online): 2320-9801
ISSN (Print):  2320-9798
II M.E CSE, Dhanalakshmi Srinivasan College of Engineering, Coimbatore, India1
Assistant Professor, Dhanalakshmi Srinivasan College of Engineering, Coimbatore, India 2"
a9d3547ab16a9cc936bf5991bf8fb475eadce931,Face Recognition using DWT with HMM,"Eng. & Tech. Journal, Vol.30, No.1, 2012
Face Recognition using DWT with HMM
Dr. Eyad I. Abbas
Department of Electrical Engineering, University of Technology/ Baghdad
Hameed R. Farhan
Department of Electrical Engineering, Engineering College, University of Kerbala/ Kerbala
Received on: 19/6/2011 & Accepted on: 3/11/2011"
a9e28863c7fb963b40a379c5a4e0da00eb031933,A Corpus of Natural Language for Visual Reasoning,"Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 217–223
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 217–223
Vancouver, Canada, July 30 - August 4, 2017. c(cid:13)2017 Association for Computational Linguistics
Vancouver, Canada, July 30 - August 4, 2017. c(cid:13)2017 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17-2034
https://doi.org/10.18653/v1/P17-2034"
a91caf771905ddff8cb271f04e7ede1a8b6d529b,Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training,"Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via
Adversarial Training
Department of Biomedical Engineering
Department of Computer Science
Faisal Mahmood1 Richard Chen2 Nicholas J. Durr1
Johns Hopkins University (JHU)
{faisalm, rchen40,"
a9791544baa14520379d47afd02e2e7353df87e5,The Need for Careful Data Collection for Pattern Recognition in Digital Pathology,"Technical Note
The Need for Careful Data Collection for Pattern Recognition in
Digital Pathology
Raphaël Marée1
Department of Electrical Engineering and Computer Science, Montefiore Institute, University of Liège, 4000 Liège, Belgium
Received: 08 December 2016
Accepted: 15 March 2017
Published: 10 April 2017"
a9d6d62f4f3f12ed565e5d75f8c4b7a202a3d809,Action and intention recognition of pedestrians in urban traffic,"Action and intention recognition of pedestrians in urban traffic
Dimitrios Varytimidis1, Fernando Alonso-Fernandez1, Boris Duran2 and Cristofer Englund1,2∗"
a97f3d2313affd35c889c57f2ebe21e7ba2b5bbb,Real-Time Semantic Mapping for Autonomous Off-Road Navigation,"Real-time Semantic Mapping for Autonomous
Off-Road Navigation
Daniel Maturana, Po-Wei Chou, Masashi Uenoyama and Sebastian Scherer"
a9eb6e436cfcbded5a9f4b82f6b914c7f390adbd,A Model for Facial Emotion Inference Based on Planar Dynamic Emotional Surfaces,"(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.6, 2016
A Model for Facial Emotion Inference Based on
Planar Dynamic Emotional Surfaces
Ruivo,  J.  P.  P.
Escola  Polit´ecnica
Negreiros,  T.
Escola  Polit´ecnica
Barretto,  M.  R.  P.
Escola  Polit´ecnica
Tinen,  B.
Escola  Polit´ecnica
Universidade de S˜ao Paulo
Universidade de S˜ao Paulo
Universidade de S˜ao Paulo
Universidade de S˜ao Paulo
S˜ao Paulo, Brazil
S˜ao Paulo, Brazil
S˜ao Paulo, Brazil
S˜ao Paulo, Brazil"
a9ebeca46445b8af728118b05e56d95d4985000c,Restricted Isometry Property of Subspace Projection Matrix Under Random Compression,"Restricted Isometry Property of Subspace Projection
Matrix Under Random Compression
Xinyue Shen, Student Member, IEEE, and Yuantao Gu, Member, IEEE"
a91fd02ed2231ead51078e3e1f055d8be7828d02,The Robust Manifold Defense: Adversarial Training using Generative Models,"The Robust Manifold Defense:
Adversarial Training using Generative Models
Andrew Ilyas
Ajil Jalal
Eirini Asteri
MIT EECS
UT Austin
UT Austin
Constantinos Daskalakis
Alexandros G. Dimakis
MIT EECS
UT Austin
December 27, 2017
Problems worthy of attack,
prove their worth by fighting back."
a9ad8f6c6bf110485921b17f9790241b1548487c,Automatic Skin Tone Extraction for Visagism Applications,
a955033ca6716bf9957b362b77092592461664b4,Video Based Face Recognition Using Artificial Neural Network,"ISSN(Online): 2320-9801
ISSN (Print):  2320-9798
International Journal of Innovative Research in Computer
nd Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Video Based Face Recognition Using Artificial
Vol. 3, Issue 6, June 2015
Neural Network
Santhy Mol T, Neethu Susan Jacob
Pursuing M.Tech, Dept. of CSE, Caarmel Engineering College, MG University, Kerala, India
Assistant Professor, Dept of CSE, Caarmel Engineering College, MG University, Kerala, India"
a956ff50ca958a3619b476d16525c6c3d17ca264,A novel bidirectional neural network for face recognition,"A Novel Bidirectional Neural Network for Face Recognition
JalilMazloum, Ali Jalali and Javad Amiryan
Electrical and Computer Engineering Department
ShahidBeheshti University
Tehran, Iran"
a90226c41b79f8b06007609f39f82757073641e2,Β-vae: Learning Basic Visual Concepts with a Constrained Variational Framework,"Under review as a conference paper at ICLR 2017
β-VAE: LEARNING BASIC VISUAL CONCEPTS WITH A
CONSTRAINED VARIATIONAL FRAMEWORK
Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, Alexander Lerchner
Google DeepMind
{irinah,lmatthey,arkap,cpburgess,glorotx,"
a98316980b126f90514f33214dde51813693fe0d,Collaborations on YouTube: From Unsupervised Detection to the Impact on Video and Channel Popularity,"Collaborations on YouTube: From Unsupervised Detection to the
Impact on Video and Channel Popularity
Christian Koch, Moritz Lode, Denny Stohr, Amr Rizk, Ralf Steinmetz
Multimedia Communications Lab (KOM), Technische Universität Darmstadt, Germany
E-Mail: {Christian.Koch | Denny.Stohr | Amr.Rizk |"
a93781e6db8c03668f277676d901905ef44ae49f,Recent Data Sets on Object Manipulation: A Survey.,"Recent Datasets on Object Manipulation: A Survey
Yongqiang Huang, Matteo Bianchi, Minas Liarokapis and Yu Sun"
a969efee78149357ec109c1de2238a0cc670858a,Automatic 2.5-D Facial Landmarking and Emotion Annotation for Social Interaction Assistance,"Automatic 2.5-D Facial Landmarking and Emotion
Annotation for Social Interaction Assistance
Xi Zhao, Member, IEEE, Jianhua Zou, Member, IEEE, Huibin Li, Student Member, IEEE,
Emmanuel Dellandréa, Member, IEEE, Ioannis A. Kakadiaris, Senior Member, IEEE,
nd Liming Chen, Senior Member, IEEE"
a99cf14afb556187233f772fa9bf561d7cf0c088,A Survey on Sclera Vein Recognition Techniques,"INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN COMPUTER SCIENCE AND APPLICATIONS
ISSN 2321-872X ONLINE ISSN 2321-8932 PRINT
VOLUME  2, ISSUE 12, DECEMBER 2014.
A SURVEY ON SCLERA VEIN RECOGNITION TECHNIQUES
Dr.S.BABU 1        S.SUBA 2
Associate Professor / CSE, IFET College of Engineering, Viluppuram, Tamilnadu, India
PG Scholar, IFET College of Engineering, Viluppuram, Tamilnadu, India"
a9d2c96cead937e53e614abb9fd051574a55c77a,Ensembling Visual Explanations for,"In Proceedings of the NIPS 2017 workshop on Visually-Grounded Interaction and
Language (ViGIL), December 2017."
a94c3091be2090df6144bd121e41e7dfa96ec0e9,Enhanced visual functioning in autism: an ALE meta-analysis.,"Enhanced Visual Functioning in Autism:
An ALE Meta-Analysis
Fabienne Samson,1 Laurent Mottron,1 Isabelle Soulie` res,1,2
nd Thomas A. Zeffiro2
Centre d’Excellence en Troubles Envahissants du De´veloppement de l’Universite´ de Montre´al
Neural Systems Group, Massachusetts General Hospital, Boston, Massachusetts
(CETEDUM), Montre´al, QC, Canada"
a9adb6dcccab2d45828e11a6f152530ba8066de6,Aydınlanma Alt-uzaylarına dayalı Gürbüz Yüz Tanıma Illumination Subspaces based Robust Face Recognition,"Aydınlanma Alt-uzaylarına dayalı Gürbüz Yüz Tanıma
Illumination Subspaces based Robust Face Recognition
D. Kern, H.K. Ekenel, R. Stiefelhagen
Interactive Systems Labs, Universität Karlsruhe (TH)
76131 Karlsruhe, Almanya
web: http://isl.ira.uka.de/face_recognition
Özetçe
yönlerine
ydınlanma
kaynaklanan
sonra,  yüz  uzayı
Bu çalışmada aydınlanma alt-uzaylarına dayalı bir yüz tanıma
sistemi  sunulmuştur.  Bu  sistemde,
ilk  olarak,  baskın
ydınlanma yönleri, bir topaklandırma algoritması kullanılarak
öğrenilmiştir.  Topaklandırma  algoritması  sonucu  önden,  sağ
ve  sol  yanlardan  olmak  üzere  üç  baskın  aydınlanma  yönü
gözlemlenmiştir.  Baskın
karar
-yüzün  görünümündeki"
a95dc0c4a9d882a903ce8c70e80399f38d2dcc89,Review and Implementation of High-Dimensional Local Binary Patterns and Its Application to Face Recognition,"TR-IIS-14-003
Review and Implementation of
High-Dimensional Local Binary
Patterns and Its Application to
Face Recognition
Bor-Chun Chen, Chu-Song Chen, Winston Hsu
July. 24,    2014    ||    Technical Report No. TR-IIS-14-003
http://www.iis.sinica.edu.tw/page/library/TechReport/tr2014/tr14.html"
a9286519e12675302b1d7d2fe0ca3cc4dc7d17f6,Learning to Succeed while Teaching to Fail: Privacy in Closed Machine Learning Systems,"Learning to Succeed while Teaching to Fail:
Privacy in Closed Machine Learning Systems
Jure Sokoli´c, Qiang Qiu, Miguel R. D. Rodrigues, and Guillermo Sapiro"
a949b8700ca6ba96ee40f75dfee1410c5bbdb3db,Instance-Weighted Transfer Learning of Active Appearance Models,"Instance-weighted Transfer Learning of Active Appearance Models
Daniel Haase, Erik Rodner, and Joachim Denzler
Computer Vision Group, Friedrich Schiller University of Jena, Germany
Ernst-Abbe-Platz 2-4, 07743 Jena, Germany"
a94aac3caccebd82413dd05707ef8bf525dc46b9,Evaluation of the UR3D algorithm using the FRGC v2 data set,"Evaluation of the UR3D algorithm using the FRGC v2 data set
G. Passalis, I.A. Kakadiaris, T. Theoharis, G. Toderici and N. Murtuza
Visual Computing Lab, Dept. of Computer Science, Univ. of Houston, Houston, TX 77204, USA"
a92b5234b8b73e06709dd48ec5f0ec357c1aabed,Disjoint Multi-task Learning Between Heterogeneous Human-Centric Tasks,
a9453721f35f364e176a5aaa7bdb622f72fbcaec,Learning Articulated Motion Models from Visual and Lingual Signals,"Learning Articulated Motion Models from Visual and Lingual Signals
Zhengyang Wu
Georgia Tech
Atlanta, GA 30332
Mohit Bansal
TTI-Chicago
Chicago, IL 60637
Matthew R. Walter
TTI-Chicago
Chicago, IL 60637"
a94b832facb57ea37b18927b13d2dd4c5fa3a9ea,Domain transfer convolutional attribute embedding,"April 3, 2018
Journal of Experimental & Theoretical Artificial Intelligence
To appear in the Journal of Experimental & Theoretical Artificial Intelligence
Vol. 00, No. 00, Month 20XX, 1–23
Domain transfer convolutional attribute embedding
Fang Sua ∗ , Jing-Yan Wangb
School of Economics and Management, Shaanxi University of Science & Technology, Xi’an,
New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
ShaanXi Province, P.R.C, 710021
(v5.0 released July 2015)
In this paper, we study the problem of transfer learning with the attribute data. In the trans-
fer learning problem, we want to leverage the data of the auxiliary and the target domains
to build an effective model for the classification problem in the target domain. Meanwhile,
the attributes are naturally stable cross different domains. This strongly motives us to learn
effective domain transfer attribute representations. To this end, we proposed to embed the
ttributes of the data to a common space by using the powerful convolutional neural net-
work (CNN) model. The convolutional representations of the data points are mapped to the
orresponding attributes so that they can be effective embedding of the attributes. We also
represent the data of different domains by a domain-independent CNN, ant a domain-specific
CNN, and combine their outputs with the attribute embedding to build the classification"
a9f5acdcf1fbc9563aaad943cbe1c195b796aa62,Learning Fashion By Simulated Human Supervision,"Learning Fashion By Simulated Human Supervision
Eli Alshan Sharon Alpert Assaf Neuberger Nathaniel Bubis Eduard Oks
{alshan, alperts, neuberg, bubis,
Amazon Lab126"
a91d0ebc1255d6de1c4588767b3b5e1fc630e56f,eTRIMS Scene Interpretation Datasets,"Universit¨at Hamburg
Technical Report FBI-HH-M-345/10
eTRIMS Scene Interpretation
Datasets
Johannes Hartz
Patrick Koopmann
Arne Kreutzmann
Kasim Terzi´c
{hartz | koopmann |
informatik.uni-hamburg.de
November 15, 2010"
a9978df0b4df4d7b04bc4e9464c67f9ff7c31d3d,From Traditional to Interactive Playspaces,"FROM TRADITIONAL TO
FROM TRADITIONAL TO
INTERACTIVE PLAYSPACES
INTERACTIVE PLAYSPACES
Automatic Analysis of Player Behavior in the
Interactive Tag Playground
CTIT Ph.D. Thesis Series No. 16-386
ISSN: 1381-3617
Alejandro Moreno"
a9e53a7533c9c743b57b6668c11be0c73525f188,Enhanced Feature Sets for Face Recognition with varying Lighting Conditions and Noise,"Enhanced Feature Sets for Face Recognition with varying Lighting Conditions and Noise  ISSN  2278 – 3806
Enhanced Feature Sets for Face Recognition with
varying Lighting Conditions and Noise
Final ME (CSE), 2Head of Department of Computer Science and Engineering
S.Vishnupriya1  Dr.k.Lakshmi2
Periyar Maniammai University, Thanjavur, Tamilnadu, India."
a975f1aea5dbb748955da0e17eef8d2270a49f25,Object Recognition,"OBJECT RECOGNITION
Object recognition is a subproblem of the more general
problem of perception, and can be defined as follows. Given
scene consisting of one or more objects, can we identify
nd localize those objects that are sufficiently visible to
the sensory system? It is generally assumed that a de-
scription of each object to be recognized is available to the
omputer and can be used to facilitate the task of iden-
tification and localization. These descriptions can either
e model-based or appearance-based, or a combination of
oth. Model-based object representation is based on geo-
metric features, whereas appearance-based representation
uses a large set of images for training but does not require
ny insight into the geometric structure of the objects. Ob-
ject recognition is a key component of many intelligent vi-
sion systems, such as those used in hand-eye coordination
for bin picking, inspection, and mobile robotics.
Various types of object recognition problems can be
stated based on the dimensionality of their spatial descrip-
tion: (1) recognition of a 2-D object from a single 2-D im-"
a9c120de41679fe336e2779f3e6fe4b04945cb3a,A Robust Multilinear Model Learning Framework for 3D Faces,"A Robust Multilinear Model Learning Framework for 3D Faces∗
Timo Bolkart
Stefanie Wuhrer
Saarland University, Germany
Inria Grenoble Rhˆone-Alpes, France"
a9f63dcae167630b0c6ba4131897539151217e2b,Testing a Method for Statistical Image Classification in Image Retrieval,"Testing a Method for Statistical Image
Classification in Image Retrieval
Christoph Rasche, Constantin Vertan
Laboratorul de Analiza si Prelucrarea Imaginilor
Universitatea Politehnica din Bucuresti
Bucuresti 061071, RO"
a9f03e4bb90addab234423994bfd8c25854484ea,Object Based Image Retrieval Using Lbp and Fuzzy Clustering Method,"Volume1, Issue 3, 15 May- 15 August 2015
International Journal In Applied Studies And
Production Management
ISSN 2394-840X
OBJECT BASED IMAGE RETRIEVAL USING LBP AND FUZZY
CLUSTERING METHOD
Jiwanjot kaur Bhinder
Department of Computer Science & Engg, RIMT(IET) Mandigobindgarh
Kirti joshi
Department of Computer Science & Engg, RIMT(IET) Mandigobindgarh"
d55cce6ecbad2c6ecccbaa1cb0d14ae3a46b1454,Multimodal representation learning with neural networks,"Multimodal representation learning with
neural networks
John Edilson Arevalo Ovalle
National University of Colombia
Engineering School, Systems and Industrial Engineering Departament
Bogot´a, Colombia"
d5813a4a0cca115b05e03d8d8c1ac8bf07176e96,Supplementary Material: Reinforced Video Captioning with Entailment Rewards,"Supplementary Material: Reinforced Video Captioning with Entailment
Rewards
Ramakanth Pasunuru and Mohit Bansal
UNC Chapel Hill
{ram,
Attention-based Baseline Model
(Cross-Entropy)
Reinforcement Learning (Policy
Gradient)
Our attention baseline model is similar to the Bah-
danau et al. (2015) architecture, where we encode
input frame level video features to a bi-directional
LSTM-RNN and then generate the caption using a
single layer LSTM-RNN, with an attention mech-
nism. Let {f1, f2, ..., fn} be the frame-level fea-
tures of a video clip and {w1, w2, ..., wm} be the
sequence of words forming a caption. The distri-
ution of words at time step t given the previously
generated words and input video frame-level fea-
tures is given as follows:"
d50c6d22449cc9170ab868b42f8c72f8d31f9b6c,Dynamic Multi-Task Learning with Convolutional Neural Network,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
d5bef023a7d1032a5c717109a9c1b600ee1e8a71,Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography—What Can be Interpreted from the Available Information?,"Brain Sci. 2015, 5, 92-117; doi:10.3390/brainsci5020092
OPEN ACCESS
rain sciences
ISSN 2076-3425
www.mdpi.com/journal/brainsci/
Review
Autism Spectrum Disorder (ASD) and Fragile X Syndrome
(FXS): Two Overlapping Disorders Reviewed through
Electroencephalography—What Can be Interpreted
from the Available Information?
Niamh Mc Devitt 1,2,*, Louise Gallagher 1,3,4,5,6 and Richard B. Reilly 1,2,3,7
School of Medicine, Trinity College, the University of Dublin, Dublin, Ireland;
E-Mails: (L.G.); (R.B.R.)
Trinity Centre for Bioengineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
Trinity College Institute for Neuroscience, Trinity College Dublin, the University of Dublin,
Dublin, Ireland
Department of Psychiatry, Trinity College Dublin, the University of Dublin, Dublin, Ireland
5  Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James’ Hospital,
Dublin, Ireland
6  Linn Dara Child and Adolescent Mental Health Services, Cherry Orchard Hospital Dublin 10,"
d522c162bd03e935b1417f2e564d1357e98826d2,Weakly supervised object extraction with iterative contour prior for remote sensing images,"He et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:19
http://asp.eurasipjournals.com/content/2013/1/19
RESEARCH
Open Access
Weakly supervised object extraction with
iterative contour prior for remote sensing
images
Chu He1,2*, Yu Zhang1, Bo Shi1, Xin Su3, Xin Xu1 and Mingsheng Liao2"
d5d3c1b299e81b4ab96d052f8a37013305b731d9,Performance Evaluation of Human Detection Systems for Robot Safety,"J Intell Robot Syst
DOI 10.1007/s10846-016-0334-3
Performance Evaluation of Human Detection Systems
for Robot Safety
William Shackleford · Geraldine Cheok ·
Tsai Hong · Kamel Saidi · Michael Shneier
Received: 9 April 2015 / Accepted: 11 January 2016
© Springer Science+Business Media Dordrecht (outside the USA) 2016"
d59f18fcb07648381aa5232842eabba1db52383e,Robust Facial Expression Recognition Using Spatially Localized Geometric Model,"International Conference on Systemics, Cybernetics and Informatics, February 12–15, 2004
ROBUST FACIAL EXPRESSION RECOGNITION USING SPATIALLY
LOCALIZED GEOMETRIC MODEL
Department of Electrical Engineering
Dept. of Computer Sc. and Engg.
Ashutosh Saxena
IIT Kanpur
Kanpur 208016, India
Kanpur 208016, India
Ankit Anand
IIT Kanpur
Prof. Amitabha Mukerjee
Dept. of Computer Sc. and Engg.
IIT Kanpur
Kanpur 208016, India
While  approaches  based  on  3D  deformable  facial  model  have
chieved expression recognition rates of as high as 98% [2], they
re  computationally  inefficient  and  require  considerable  apriori
training  based  on  3D  information,  which  is  often  unavailable.
Recognition  from  2D  images  remains  a  difficult  yet  important"
d5579b2708a1c713e1b2feb8646533ce26085a3a,Effective Use of Dilated Convolutions for Segmenting Small Object Instances in Remote Sensing Imagery,"Effective Use of Dilated Convolutions for Segmenting Small Object Instances in
Remote Sensing Imagery
Ryuhei Hamaguchi  Aito Fujita  Keisuke Nemoto
Tomoyuki Imaizumi  Shuhei Hikosaka
PASCO CORPORATION, Japan
{riyhuc2734, aaitti6875, koetio8807, tiommu4352,"
d588dd4f305cdea37add2e9bb3d769df98efe880,Audio - Visual Authentication System over the Internet Protocol,"Audio-Visual Authentication System over the
Internet Protocol
Yee Wan Wong, Kah Phooi Seng, and Li-Minn Ang
bandoned.
illumination  based
is  developed  with  the  objective  to"
d5de20cca347d6c5e6f662292e4d52e765ff5cee,Learning Tensors in Reproducing Kernel Hilbert Spaces with Multilinear Spectral Penalties,
d59a9d80e7d8c875d2b73241a8b02078ea6ad0a7,A Deep Learning Perspective on the Origin of Facial Expressions,"BREUER, KIMMEL: A DEEP LEARNING PERSPECTIVE ON FACIAL EXPRESSIONS
A Deep Learning Perspective on the Origin
of Facial Expressions
Ran Breuer
Ron Kimmel
Department of Computer Science
Technion - Israel Institute of Technology
Technion City, Haifa, Israel
Figure 1: Demonstration of the filter visualization process."
d55d6ccefe797317996805ebf58a74587b158950,Distribution-based Label Space Transformation for Multi-label Learning,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Distribution-based Label Space Transformation for
Multi-label Learning
Zongting Lyu, Yan Yan, and Fei Wu"
d5444f9475253bbcfef85c351ea9dab56793b9ea,BoxCars: Improving Fine-Grained Recognition of Vehicles using 3-D Bounding Boxes in Traffic Surveillance,"IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
BoxCars: Improving Fine-Grained Recognition
of Vehicles using 3D Bounding Boxes
in Traffic Surveillance
Jakub Sochor, Jakub ˇSpaˇnhel, Adam Herout
in contrast"
d53994f28deb2800120fab8a42852813b3b8c081,Does the Left Hair Part Look Better ( or Worse ) Than the Right ?,"Article
Does the Left Hair Part Look Better
(or Worse) Than the Right?
Social Psychological and
Personality Science
ª The Author(s) 2018
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1948550618762500
journals.sagepub.com/home/spp
Jeremy A. Frimer1"
d5ab6aa15dad26a6ace5ab83ce62b7467a18a88e,Optimized Structure for Facial Action Unit Relationship Using Bayesian Network,"World Journal of Computer Application and Technology 2(7): 133-138, 2014
DOI: 10.13189/wjcat.2014.020701
http://www.hrpub.org
Optimized Structure for Facial Action Unit Relationship
Using Bayesian Network
Yee Koon Loh*, Shahrel A. Suandi
Intelligent Biometric Group, School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Pulau
*Corresponding Author:
Pinang, Malaysia
Copyright © 2014 Horizon Research Publishing All rights reserved."
d5fe9c84710b71a754676b2ee67cec63e8cd184b,FPGA Implementation of a HOG-based Pedestrian Recognition System,"Sebastian Bauer, Ulrich Brunsmann, Stefan Schlotterbeck-Macht
Aschaffenburg University of Applied Sciences, Aschaffenburg, Germany
Faculty of Engineering
FPGA Implementation of a HOG-based
Pedestrian Recognition System
FPGA Implementation of a HOG-based
Pedestrian Recognition System
{sebastian.bauer, ulrich.brunsmann, stefan.schlotterbeck-macht}
terms  of
With  respect  to  road  crash  statistics,  on-board
pedestrian  detection  is  a  key  task  for  future
dvanced  driver  assistance  systems.
In  this
paper,  we  describe  the  implementation  of  a  real-
time pedestrian recognition system that combines
FPGA-based  extraction  of  image  features  with  a
CPU-based  object  localization  and  classification
framework.
features,  we  have
implemented"
d5d6b3959958adb1333fa1a72227378ad3f7c16d,Collaborative Contributions for Better Annotations,
d56fe69cbfd08525f20679ffc50707b738b88031,Training of multiple classifier systems utilizing partially labeled sequential data sets,"Training of multiple classifier systems utilizing
partially labelled sequences
Martin Schels, Patrick Schillinger, and Friedhelm Schwenker
Ulm University - Department of Neural Information Processing
89069 Ulm - Germany"
d5c6c0fb51947a2df1389f1aab7a635bf687ac1d,A Multiview Approach to Learning Articulated Motion Models,"A Multiview Approach to Learning
Articulated Motion Models
Andrea F. Daniele, Thomas M. Howard, and Matthew R. Walter"
d5de42d37ee84c86b8f9a054f90ddb4566990ec0,Asynchronous Temporal Fields for Action Recognition,"Asynchronous Temporal Fields for Action Recognition
Gunnar A. Sigurdsson1∗ Santosh Divvala2,3 Ali Farhadi2,3 Abhinav Gupta1,3
Carnegie Mellon University 2University of Washington 3Allen Institute for Artificial Intelligence
github.com/gsig/temporal-fields/"
d50a40f2d24363809a9ac57cf7fbb630644af0e5,End-to-end Trained CNN Encode-Decoder Networks for Image Steganography,"END-TO-END TRAINED CNN ENCODER-DECODER NETWORKS FOR IMAGE
STEGANOGRAPHY
Atique ur Rehman, Rafia Rahim, Shahroz Nadeem, Sibt ul Hussain
National University of Computer & Emerging Sciences (NUCES-FAST), Islamabad, Pakistan.
Reveal.ai (Recognition, Vision & Learning) Lab"
d5cf6a02f8308e948e3bcd1fd1ca660ea8ea8921,G Enerative Networks as Inverse Problems with Scattering Transforms,"Under review as a conference paper at ICLR 2018
GENERATIVE NETWORKS AS INVERSE PROBLEMS
WITH SCATTERING TRANSFORMS
Anonymous authors
Paper under double-blind review"
d5b5c63c5611d7b911bc1f7e161a0863a34d44ea,Extracting Scene-Dependent Discriminant Features for Enhancing Face Recognition under Severe Conditions,"Extracting Scene-dependent Discriminant
Features for Enhancing Face Recognition
under Severe Conditions
Rui Ishiyama and Nobuyuki Yasukawa
Information and Media Processing Research Laboratories, NEC Corporation
753, Shimonumabe, Nakahara-Ku, Kawasaki 211-8666 Japan"
d53c5a974f9fccf18f3c8f7d73522d6ca7162115,X-GAN : Improving Generative Adversarial Networks with ConveX Combinations,"X-GAN: Improving Generative Adversarial
Networks with ConveX Combinations
Oliver Blum, Biagio Brattoli, and Bj¨orn Ommer
Heidelberg University, HCI / IWR, Germany"
d59404354f84ad98fa809fd1295608bf3d658bdc,Face Synthesis from Visual Attributes via Sketch using Conditional VAEs and GANs,"International Journal of Computer Vision manuscript No.
(will be inserted by the editor)
Face Synthesis from Visual Attributes via Sketch using
Conditional VAEs and GANs
Xing Di · Vishal M. Patel
Received: date / Accepted: date"
d56407072eb9847fa44d49969129b5a4d1ef9ceb,Gaussian Process Prior Variational Autoencoders,"Gaussian Process Prior Variational Autoencoders
Francesco Paolo Casale†∗, Adrian V Dalca‡§, Luca Saglietti†¶,
Jennifer Listgarten(cid:93), Nicolo Fusi†
Microsoft Research New England, Cambridge (MA), USA
Computer Science and Artificial Intelligence Lab, MIT, Cambridge (MA), USA
§ Martinos Center for Biomedical Imaging, MGH, HMS, Boston (MA), USA;
¶ Italian Institute for Genomic Medicine, Torino, Italy
(cid:93) EECS Department, University of California, Berkeley (CA), USA."
d5856f47fe117c114e8bcfbf2abc4e80691a512c,Interpreting Complex Scenes using a Hierarchy of Prototypical Scene Models,"Interpreting Complex Scenes using a
Hierarchy of Prototypical Scene
Models
Dissertation
zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
vorgelegt an
der Technischen Fakult¨at der Universit¨at Bielefeld
Sarah Bonnin
4.10.2014"
d54f508c943b8415bfdd30d9210869ec93ff3f03,A method of illumination compensation for human face image based on quotient image,"Available online at www.sciencedirect.com
Information Sciences 178 (2008) 2705–2721
www.elsevier.com/locate/ins
A method of illumination compensation for human face
image based on quotient image q
Wang Ying-hui a,b, Ning Xiao-juan a,*, Yang Chun-xia a, Wang Qiong-fang b
School of Computer Science Engineering, Xi’an University of Technology, Xi’an 710048, China
Department of Computer Science, Shaanxi Normal University, Xi’an 710062, China
Received 23 February 2007; received in revised form 2 December 2007; accepted 14 December 2007"
d24a30ed78b749f3730e25dcef89472dd5fb439c,Improving Face Recognition Performance Using a Hierarchical Bayesian Model,"Improving Face Recognition
Performance Using a Hierarchical
Bayesian Model
Ashwini Shikaripur Nadig
Submitted to the graduate degree program in
Electrical Engineering & Computer Science and the
Graduate Faculty of the University of Kansas
School of Engineering in partial fulfillment of the
requirements for the degree of Master of Science
Thesis Committee:
Dr. Brian Potetz: Chairperson
Dr. Prasad Kulkarni
Dr. Luke Huan
Date Defended"
d2f717d1799b5cec5f1f426511527bd7e6e05d9d,Image-Based Synthesis for Deep 3D Human Pose Estimation,"Noname manuscript No.
(will be inserted by the editor)
Image-based Synthesis for Deep 3D Human Pose Estimation
Grégory Rogez · Cordelia Schmid
Received: date / Accepted: date"
d231a81b38fde73bdbf13cfec57d6652f8546c3c,SUPERRESOLUTION TECHNIQUES FOR FACE RECOGNITION FROM VIDEO by Osman,"SUPERRESOLUTION TECHNIQUES
FOR FACE RECOGNITION FROM VIDEO
Osman Gökhan Sezer
B.S., E.E., Boğaziçi University, 2003
Submitted to the Graduate School of Engineering
and Natural Sciences in partially fulfillment of
the requirement for the degree of
Master of Science
Graduate Program in Electronics Engineering and Computer Science
Sabancı University
Spring 2005"
d22785eae6b7503cb16402514fd5bd9571511654,Evaluating Facial Expressions with Different Occlusion around Image Sequence,"Evaluating Facial Expressions with Different
Occlusion around Image Sequence
Ankita Vyas, Ramchand Hablani
Department of Computer Science
Sanghvi Institute of Management & Science
Indore (MP), India
local
INTRODUCTION"
d28c12e270a06e977b59194cc6564787c87caa7e,Human Action Poselets Estimation via Color G-surf in Still Images,"HUMAN ACTION POSELETS ESTIMATION VIA COLOR G-SURF IN STILL IMAGES
M. Favorskaya *, D. Novikov, Y. Savitskaya
Institute of Informatics and Telecommunications, Siberian State Aerospace University, 31 Krasnoyarsky Rabochy av., Krasnoyarsk,
660014 Russian Federation - (favorskaya,
Commission WG V/5, WG III/3
KEY WORDS: Human Action, Poselets, Gauge-SURF, Random Forest, Still Image"
d2df37ecfbf914d5b81e2e5e342e3907c6f55a14,Can Convolution Neural Network ( CNN ) Triumph in Ear Recognition of Uniform Illumination Invariant ?,"Indonesian Journal of Electrical Engineering and Computer Science
Vol. 11, No. 2, August 2018, pp. 558~566
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v11.i2.pp558-566
      558
Can Convolution Neural Network (CNN) Triumph in Ear
Recognition of Uniform Illumination Invariant?
Nursuriati Jamil1, Ali Abd Almisreb2, Syed Mohd Zahid Syed Zainal Ariffin3, N. Md Din4,
Raseeda Hamzah5
,3,5Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA,
40450 Shah Alam, Selangor, Malaysia
,4College of Graduate Studies, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Malaysia
Article Info
Article history:
Received Mar 1, 2018
Revised Apr 21, 2018
Accepted May 1, 2018
Keywords:
Convolution Neural Network
Ear Recognition
Uniform Illumination Invariant"
d252e10024a22c8274ae67dbf37aa854d75a85f2,Joint Gender Classification and Age Estimation by Nearly Orthogonalizing Their Semantic Spaces,"Joint Gender Classification and Age Estimation
y Nearly Orthogonalizing Their Semantic
Spaces
Qing Tiana, Songcan Chena,∗
College of Computer Science and Technology, Nanjing University of Aeronautics and
Astronautics, Nanjing 210016, China"
d2eb1079552fb736e3ba5e494543e67620832c52,DeSTNet: Densely Fused Spatial Transformer Networks,"ANNUNZIATA, SAGONAS, CALÌ: DENSELY FUSED SPATIAL TRANSFORMER NETWORKS1
DeSTNet: Densely Fused Spatial
Transformer Networks1
Roberto Annunziata
Christos Sagonas
Jacques Calì
Onfido Research
Finsbury Avenue
London, UK"
d24dafe10ec43ac8fb98715b0e0bd8e479985260,"Effects of Social Anxiety on Emotional Mimicry and Contagion: Feeling Negative, but Smiling Politely","J Nonverbal Behav (2018) 42:81–99
https://doi.org/10.1007/s10919-017-0266-z
O R I G I N A L P A P E R
Effects of Social Anxiety on Emotional Mimicry
nd Contagion: Feeling Negative, but Smiling Politely
Corine Dijk1
Charlotte van Eeuwijk4
• Gerben A. van Kleef2
• Agneta H. Fischer2
• Nexhmedin Morina3
Published online: 25 September 2017
Ó The Author(s) 2017. This article is an open access publication"
d2860bb05f747e4628e95e4d84018263831bab0d,Learning to Generate Samples from Noise through Infusion Training,"Published as a conference paper at ICLR 2017
LEARNING TO GENERATE SAMPLES FROM NOISE
THROUGH INFUSION TRAINING
Florian Bordes, Sina Honari, Pascal Vincent∗
Montreal Institute for Learning Algorithms (MILA)
D´epartement d’Informatique et de Recherche Op´erationnelle
Universit´e de Montr´eal
Montr´eal, Qu´ebec, Canada"
d2b2b56dd8c1daa61152595caf759a62596a85c9,Revocable and Non-Invertible Multibiometric Template Protection based on Matrix Transformation,"Pertanika J. Sci. & Technol. 26 (1): 133 - 160 (2018)
Revocable and Non-Invertible Multibiometric Template
Protection based on Matrix Transformation
Jegede, A.1,2*, Udzir, N. I.1, Abdullah, A.1 and Mahmod, R.1
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM,
Serdang, Selangor, Malaysia
Department of Computer Science, University of Jos, 930001 Nigeria"
d20e7d7ab8e767dc1c170ca2141d8ba64a4d092b,Mental Concept in Autism,"Psychology, 2014, 5, 1392-1403
Published Online August 2014 in SciRes. http://www.scirp.org/journal/psych
http://dx.doi.org/10.4236/psych.2014.511150
“Please Draw Me a Face…” Atypical Face
Mental Concept in Autism
Emilie Meaux1*, David Bakhos2, Frédérique Bonnet-Brilhault1, Patrice Gillet3,
Emmanuel Lescanne4, Catherine Barthélémy1, Magali Batty1
UMRS Imagerie et Cerveau, Inserm U930 Equipe 1, CNRS ERL 3106, Université François Rabelais de Tours,
CHRU de Tours, Tours, France
Unité Pédiatrique d’ORL et CCF, Centre Hospitalier Régional Universitaire de Tours, Université François
Rabelais de Tours, CHRU de Tours, Tours, France
Université François Rabelais de Tours, CHRU de Tours, Tours, France
Service d’ORL et CCF Pédiatrique, CHU de Tours Gatien-de-Clocheville, Université François Rabelais de Tours,
Tours, France
Email:
Received 16 May 2014; revised 12 June 2014; accepted 5 July 2014
Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/"
d259d3652f03c7b80e29c986e9540ab00b1f1133,3D Face Detection and Recognition under Occlusion,"Dr.V.Ramaswamy1, Parashuram Baraki2
Research Guide, Jain University, Bangalore,
Doctoral Student, Jain University, Bangalore
& Asst.Professor , CS&E, Dept,
GM Institute of Technology, Davanagere
D Face Detection and Recognition under Occlusion
is  very  vital.  Three-dimensional"
d2f3ba37ef34d5d39f799f8dd3557f1eb795aedd,Learning Unified Embedding for Apparel Recognition,"Learning Unified Embedding for Apparel Recognition
Yang Song
Google
Yuan Li
Google
Xiao Zhang
Google
Bo Wu
Google
Chao-Yeh Chen
Google
Hartwig Adam
Google"
d278e020be85a1ccd90aa366b70c43884dd3f798,Learning From Less Data: Diversified Subset Selection and Active Learning in Image Classification Tasks,"Learning From Less Data: Diversified Subset Selection and
Active Learning in Image Classification Tasks
Vishal Kaushal
IIT Bombay
Mumbai, Maharashtra, India
Khoshrav Doctor
AITOE Labs
Mumbai, Maharashtra, India
Suyash Shetty
AITOE Labs
Mumbai, Maharashtra, India
Rishabh Iyer
AITOE Labs
Seattle, Washington, USA
Anurag Sahoo
AITOE Labs
Seattle, Washington, USA
Narsimha Raju
IIT Bombay
Mumbai, Maharashtra, India"
d2b86b6dc93631990e21a12278e77f002fb4b116,Aalborg Universitet Attention in Multimodal Neural Networks for Person Re-identification,"Aalborg Universitet
Attention in Multimodal Neural Networks for Person Re-identification
Lejbølle, Aske Rasch; Krogh, Benjamin; Nasrollahi, Kamal; Moeslund, Thomas B.
Published in:
018 IEEE Computer Vision and Pattern Recognition Workshops: Visual Understanding of Humans in Crowd
Scene
Publication date:
Document Version
Accepted author manuscript, peer reviewed version
Link to publication from Aalborg University
Citation for published version (APA):
Lejbølle, A. R., Krogh, B., Nasrollahi, K., & Moeslund, T. B. (2018). Attention in Multimodal Neural Networks for
Person Re-identification. In 2018 IEEE Computer Vision and Pattern Recognition Workshops: Visual
Understanding of Humans in Crowd Scene (pp. 179-187). IEEE.
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?"
d2a5b9b8f02f39f7d9ef48d234ec61f4ddc6c291,Facial surface reconstruction in 3D format,"Journal of Theoretical and Applied Computer Science
ISSN 2299-2634
Vol. 6, No. 4, 2012, pp. 37-50
http://www.jtacs.org
Facial surface reconstruction in 3D format
Nadezhda Shchegoleva
Department of Mathematical Computer Software, Saint Petersburg Electrotechnical University (LETI), Russia"
d2518b01092160cecec2e986935b0129b0bbff45,Looking around the Backyard Helps to Recognize Handwritten Digits,"#2611
CVPR 2008 Submission #2611. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
#2611
Looking around the Backyard Helps to Recognize Handwritten Digits
Anonymous CVPR submission
Paper ID 2611"
d2cda0dbb8b2e83ce3e70d818f78d2add803c661,Automatic Video Captioning via Multi-channel Sequential Encoding,"Automatic Video Captioning via Multi-channel
Sequential Encoding
Chenyang Zhang and Yingli Tian
Department of Electrical Engineering
The City College of New York
New York, NY 10031"
d2b8459b41172dc332cf00dc18a309c442347a7d,Deep Spatial Feature Reconstruction for Partial Person Re-identification: Alignment-Free Approach,"Deep Spatial Feature Reconstruction for Partial Person Re-identification:
Alignment-free Approach
Lingxiao He∗1,2, Jian Liang∗1,2, Haiqing Li1,2, and Zhenan Sun1,2,3
CRIPAC & NLPR, CASIA 2 University of Chinese Academy of Sciences, Beijing, P.R. China
Center for Excellence in Brain Science and Intelligence Technology, CAS
{lingxiao.he, jian.liang, hqli,"
aa420d32c48a3fd526a91285673cd55ca9fe2447,R 4-A . 1 : Dynamics-Based Video Analytics,"R4-A.1: Dynamics-Based Video Analytics
PARTICIPANTS
Octavia Camps
Mario Sznaier
Title
Co-PI
Co-PI
Faculty/Staff
Institution
Graduate, Undergraduate and REU Students
Oliver Lehmann
Mengran Gou
Yongfang Cheng
Yin Wang
Sadjad Ashari-Esfeden
Tom Hebble
Rachel Shaff er
Burak Yilmaz
Degree Pursued
MSEE/ PhD"
aaaeca92457a72ec4e7e538cf6393c4c1dc8e670,Life-long Learning Perception using Cloud Database Technology,"Life-long Learning Perception using Cloud Database Technology
Tim Niemueller
Stefan Schiffer
Gerhard Lakemeyer
Knowledge-based Systems Group
Safoura Rezapour Lakani
Intelligent and Interactive Systems
RWTH Aachen University (Aachen, Germany)
University of Innsbruck (Innsbruck, Austria)"
aaa021feeec2f84c4a5f3c56b4c0fecb5a85a352,A Riemannian Network for SPD Matrix Learning,"A Riemannian Network for SPD Matrix Learning
Zhiwu Huang and Luc Van Gool
Computer Vision Lab, ETH Zurich, Switzerland
{zhiwu.huang,"
aad03480c30c0a3d917d171d8d6b914026fe5105,Affordances Provide a Fundamental Categorization Principle for Visual Scenes,"Affordances
Provide
Fundamental
Categorization
Principle
Visual
Scenes
Michelle
Greene
Christopher
Baldassano
Andre
Esteva
Diane
(1) Stanford
University,
Department
Computer
Science
(2) Stanford"
aaaefba1bd0a9a9ec6c66a822d11fb907a05625c,"On Detection, Data Association and Segmentation for Multi-target Tracking.","This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2849374, IEEE
Transactions on Pattern Analysis and Machine Intelligence
On Detection, Data Association and
Segmentation for Multi-target Tracking
Yicong Tian, Member, IEEE, Afshin Dehghan, Member, IEEE, and Mubarak Shah, Fellow, IEEE"
aa5c2ac60a288132efeeb85c5af1fd0b39294eed,Directed Markov Stationary Features for visual classification,"978-1-4244-2354-5/09/$25.00 ©2009 IEEE
ICASSP 2009"
aa5efcc4331da6b1902f2c900b79120226fdcf20,A Robust Class-based Reflectance Rendering for Face Images,A ROBUST CLASS-BASED REFLECTANCE RENDERING FOR FACE IMAGES
aa2ad3df24d8d8c4a4d2fe85f0d4e635d595f0a2,PedCut: an iterative framework for pedestrian segmentation combining shape models and multiple data cues,"F. FLOHR, D. M. GAVRILA: PEDCUT
PedCut: an iterative framework for
pedestrian segmentation combining
shape models and multiple data cues
Fabian Flohr1,2
Dariu M. Gavrila1,2
www.gavrila.net
Environment Perception Department,
Daimler R&D, Ulm, Germany
Intelligent Systems Laboratory,
Univ. of Amsterdam, The Netherlands"
aa3e1824af497dc16ae27e6818a0e89c78a18371,Local Gray Code Pattern ( LGCP ) : A Robust Feature Descriptor for Facial Expression Recognition,"International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064
Local Gray Code Pattern (LGCP): A Robust
Feature Descriptor for Facial Expression
Recognition
Mohammad Shahidul Islam
Atish Dipankar University of Science & Technology, School, Department of Computer Science and Engineering, Dhaka, Bangladesh."
aa23d33983b1abd2d8a677040eb875e93c478a7f,Measuring the Objectness of Image Windows,"Measuring the objectness of image windows
Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari"
aad8d2e32f1cc21eedbdd5e8ebff9f367daa6d92,Online Multi-target Tracking by Large Margin Structured Learning,"Online Multi-Target Tracking
y Large Margin Structured Learning
Suna Kim, Suha Kwak, Jan Feyereisl, and Bohyung Han
Department of Computer Science and Engineering
POSTECH, Korea"
aaa6fe8045e1a071e1762cffe4f59e0bd508daf9,Single-Pedestrian Detection Aided by Two-Pedestrian Detection,"IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Single-Pedestrian Detection Aided by
-Pedestrian Detection
Wanli Ouyang, Member, IEEE, Xingyu Zeng and Xiaogang Wang, Member, IEEE,"
aa5fbe092f8a4dcb43c31ab93af0290900b4f0e2,Visual Question Answering using Natural Language Object Retrieval and Saliency Cues,"Visual Question Answering using Natural Language Object Retrieval and
CS381V Final Project Report
Saliency Cues
Aishwarya Padmakumar
Akanksha Saran"
aae742779e8b754da7973949992d258d6ca26216,Robust facial expression classification using shape and appearance features,"Robust Facial Expression Classification Using Shape
nd Appearance Features
S L Happy and Aurobinda Routray
Department of Electrical Engineering,
Indian Institute of Technology Kharagpur, India"
aad7f9eeb10d4f655c3e3d18d3542603ad3071b4,Deep Unsupervised Learning of Visual Similarities,"Deep Unsupervised Learning of Visual Similarities
Artsiom Sanakoyeu∗, Miguel A. Bautista, Björn Ommer
Heidelberg Collaboratory for Image Processing and Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany"
aa8cec9cec1f15f95bbe0ef4d7809e199de0f30b,Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism.,"The FASEB Journal (cid:129) Review
Vitamin D hormone regulates serotonin synthesis.
Part 1: relevance for autism
Rhonda P. Patrick1 and Bruce N. Ames1
Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland,
California, USA
Serotonin and vitamin D have been pro-"
aa32f5b0a866b04a89f75cda32e0975a541864ff,Action-Driven Object Detection with Top-Down Visual Attentions,"Action-Driven Object Detection
with Top-Down Visual Attentions
Donggeun Yoo, Student Member, IEEE, Sunggyun Park, Student Member, IEEE,
Kyunghyun Paeng, Student Member, IEEE, Joon-Young Lee, Member, IEEE,
nd In So Kweon, Member, IEEE"
aaa82dfc7942ae16c1d7155a109582505ccee4ec,Properties of Datasets Predict the Performance of Classifiers,"AGHAZADEH, CARLSSON: PROPERTIES OF DATASETS PREDICT THE PERFORMANCE ... 1
Properties of Datasets Predict the
Performance of Classifiers
Omid Aghazadeh
http://www.csc.kth.se/~omida
Stefan Carlsson
http://www.csc.kth.se/~stefanc
Computer Vision Group
Computer Vision and Active Perception
Laboratory
KTH, Sweden"
aa52910c8f95e91e9fc96a1aefd406ffa66d797d,Face Recognition System Based on 2dfld and Pca,"FACE RECOGNITION SYSTEM BASED
ON 2DFLD AND PCA
Dr. Sachin D. Ruikar
E&TC Department
Sinhgad Academy of Engineering
Pune, India
Mr. Hulle Rohit Rajiv
ME E&TC [Digital System]
Sinhgad Academy of Engineering
Pune, India"
aa6854612062edff9978b33e0a410f2717bc3027,LPT: Eye Features Localizer in an N-Dimensional Image Space,"LPT: Eye Features Localizer in an N-Dimensional Image
Space
Mohammad Mahdi Dehshibi1, Azam Bastanfard2, and Alireza Abdi3
Young Researchers Club, Islamic Azad University South Tehran Branch, Tehran, Iran
IT Research Laboratory, Faculty of Engineering, Islamic Azad University Karaj Branch, Karaj, Iran
Faculty of Electrical, Computer and IT, Islamic Azad University Qazvin Branch, Qazvin, Iran"
aafb8dc8fda3b13a64ec3f1ca7911df01707c453,Excitation Backprop for RNNs,"Excitation Backprop for RNNs
Sarah Adel Bargal∗1, Andrea Zunino∗ 2, Donghyun Kim1, Jianming Zhang3,
Vittorio Murino2,4, Stan Sclaroff1
Department of Computer Science, Boston University 2Pattern Analysis & Computer Vision (PAVIS),
Istituto Italiano di Tecnologia 3Adobe Research 4Computer Science Department, Universit`a di Verona
Figure 1: Our proposed framework spatiotemporally highlights/grounds the evidence that an RNN model used in producing a class label
or caption for a given input video. In this example, by using our proposed back-propagation method, the evidence for the activity class
CliffDiving is highlighted in a video that contains CliffDiving and HorseRiding. Our model employs a single backward pass to produce
saliency maps that highlight the evidence that a given RNN used in generating its outputs."
aa8c3eb6e821cb44ed5a15a2f09fba332e5561c6,Object Detection in Multi-view X-Ray Images,"Object Detection in Multi-View X-Ray Images
Thorsten Franzel, Uwe Schmidt, and Stefan Roth
Department of Computer Science, TU Darmstadt"
aaba2a04c025f12f839ac71fb248da0dd6985d58,A Combined Face Recognition Approach Based on Lpd and Lvp,"VOL. 10, NO. 6, APRIL 2015                                                                                                                      ISSN 1819-6608
ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.
www.arpnjournals.com
A COMBINED FACE RECOGNITION APPROACH BASED ON LPD
AND LVP
Kabilan R.1, Ravi R.2, Rajakumar G.1, Esther Leethiya Rani S.1 and Mini Minar V. C.1
Department of ECE, Francis Xavier Engineering College, Tirunelveli, Tamilnadu, India
Department of IT, Francis Xavier Engineering College, Tirunelveli, Tamilnadu, India
E-Mail:"
aadfcaf601630bdc2af11c00eb34220da59b7559,Multi-view Hybrid Embedding: A Divide-and-Conquer Approach,"Multi-view Hybrid Embedding:
A Divide-and-Conquer Approach
Jiamiao Xu∗, Shujian Yu∗, Xinge You†, Senior Member, IEEE, Mengjun Leng,
Xiao-Yuan Jing, and C. L. Philip Chen, Fellow, IEEE"
aaa4c625f5f9b65c7f3df5c7bfe8a6595d0195a5,Biometrics in ambient intelligence,"Biometrics in Ambient Intelligence
Massimo Tistarelli§ and Ben Schouten§§"
aa49556ee4f1ee3fcc9f0f713c755da30b0f505c,Exactly Robust Kernel Principal Component Analysis,"Exactly Robust Kernel Principal Component
Analysis
Jicong Fan, Tommy W.S. Chow"
aa261599d70a9e649501cae5cf46fbc56229fad8,The effect of the Distance in Pedestrian Detection,"Master in Computer Vision and Artificial Intelligence - Universitat Aut`onoma de Barcelona
September 2009
The effect of the Distance in Pedestrian Detection
David V´azquez Berm´udez
Computer Vision Center
Edifici O, Universitat Aut`onoma de Barcelona
08193, Bellaterra (Spain)
Advisors: Dr. Antonio M. L´opez and David Ger´onimo"
aa5ed6ee0b2fd53df5cab952aa368f8c4908ffeb,REACH - Realtime crowd tracking using a hybrid motion model,"REACH - Realtime Crowd tracking using a Hybrid motion model
Aniket Bera1 and Dinesh Manocha1
http://gamma.cs.unc.edu/REACH"
aae0e417bbfba701a1183d3d92cc7ad550ee59c3,A Statistical Method for 2-D Facial Landmarking,"A Statistical Method for 2-D Facial Landmarking
Hamdi Dibeklio˘glu, Student Member, IEEE, Albert Ali Salah, Member, IEEE, and Theo Gevers, Member, IEEE"
aa782f4af587ee68936f0f5361fc1448ef61bdd9,Human Tracking using Wearable Sensors in the Pocket Double blind submission,"Human Tracking using Wearable Sensors in the Pocket
Double blind submission
Address
e-mail address"
aa577652ce4dad3ca3dde44f881972ae6e1acce7,Deep Attribute Networks,"Deep Attribute Networks
Junyoung Chung
Department of EE, KAIST
Daejeon, South Korea
Donghoon Lee
Department of EE, KAIST
Daejeon, South Korea
Youngjoo Seo
Department of EE, KAIST
Daejeon, South Korea
Chang D. Yoo
Department of EE, KAIST
Daejeon, South Korea"
aa2a4f7cf8866d513053873a410879ab5b34b53a,Improving robot manipulation with data-driven object-centric models of everyday forces,"Noname manuscript No.
(will be inserted by the editor)
Improving Robot Manipulation with Data-Driven
Object-Centric Models of Everyday Forces
Advait Jain · Charles C. Kemp
Received: date / Accepted: date"
aa94f214bb3e14842e4056fdef834a51aecef39c,Reconhecimento de padrões faciais: Um estudo,"Reconhecimento de padrões faciais: Um estudo
Alex Lima Silva, Marcos Evandro Cintra
Universidade Federal
Rural do Semi-Árido
Departamento de Ciências Naturais
Mossoró, RN - 59625-900
Email:
Resumo—O reconhecimento facial tem sido utilizado em di-
versas áreas para identificação e autenticação de usuários. Um
dos principais mercados está relacionado a segurança, porém há
uma grande variedade de aplicações relacionadas ao uso pessoal,
onveniência, aumento de produtividade, etc. O rosto humano
possui um conjunto de padrões complexos e mutáveis. Para
reconhecer esses padrões, são necessárias técnicas avançadas de
reconhecimento de padrões capazes, não apenas de reconhecer,
mas de se adaptar às mudanças constantes das faces das pessoas.
Este documento apresenta um método de reconhecimento facial
proposto a partir da análise comparativa de trabalhos encontra-
dos na literatura.
iométrica é o uso da biometria para reconhecimento, identi-"
aac101dd321e6d2199d8c0b48c543b541c181b66,Using Context to Enhance the Understanding of Face Images,"USING CONTEXT TO ENHANCE THE
UNDERSTANDING OF FACE IMAGES
A Dissertation Presented
VIDIT JAIN
Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of
DOCTOR OF PHILOSOPHY
September 2010
Department of Computer Science"
afaa607aa9ad0e9dad0ce2fe5b031eb4e525cbd8,Towards an automatic face indexing system for actor-based video services in an IPTV environment,"J. Y. Choi et al.: Towards an Automatic Face Indexing System for Actor-based Video Services in an IPTV Environment
Towards an Automatic Face Indexing System for Actor-based
Video Services in an IPTV Environment
Jae Young Choi, Wesley De Neve, and Yong Man Ro, Senior Member, IEEE"
af6e351d58dba0962d6eb1baf4c9a776eb73533f,How to Train Your Deep Neural Network with Dictionary Learning,"How to Train Your Deep Neural Network with
Dictionary Learning
Vanika Singhal*, Shikha Singh+ and Angshul Majumdar#
*IIIT Delhi
Okhla Phase 3
Delhi, 110020, India
+IIIT Delhi
Okhla Phase 3
#IIIT Delhi
Okhla Phase 3
Delhi, 110020, India
Delhi, 110020, India"
af24595c0c8f1b317b6fe2f2b49417cc40094b5c,LSH Softmax : Sub-Linear Learning and Inference of the Softmax Layer in Deep Architectures,"LSH Softmax: Sub-Linear Learning and
Inference of the Softmax Layer in Deep
Daniel Levy∗
Architectures
Danlu Chen†
January 31, 2018"
af62621816fbbe7582a7d237ebae1a4d68fcf97d,Active Shape Model Based Recognition Of Facial Expression,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
International Conference on Humming Bird ( 01st March 2014)
RESEARCH ARTICLE
OPEN ACCESS
Active Shape Model Based Recognition Of Facial Expression
AncyRija V  , Gayathri. S2
AncyRijaV,Author is currently pursuing M.E (Software Engineering) in Vins Christian College of
Engineering,
e-mail:
Gayathri.S, M.E., Asst.Prof.,Department of Information Technology , Vins Christian college of Engineering."
afa57e50570a6599508ee2d50a7b8ca6be04834a,Motion in action : optical flow estimation and action localization in videos. (Le mouvement en action : estimation du flot optique et localisation d'actions dans les vidéos),"Motion in action : optical flow estimation and action
localization in videos
Philippe Weinzaepfel
To cite this version:
Philippe Weinzaepfel. Motion in action : optical flow estimation and action localization in videos.
Computer Vision and Pattern Recognition [cs.CV]. Université Grenoble Alpes, 2016. English. <NNT :
016GREAM013>. <tel-01407258>
HAL Id: tel-01407258
https://tel.archives-ouvertes.fr/tel-01407258
Submitted on 1 Dec 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
af1fa9d29512fc8f4c07efdf75d3f640567a5262,Sparse Representation for Face Recognition Based on Constraint Sampling and Face Alignment,"TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll08/12llpp62-67
Volume 18, Number 1, February 2013
Sparse Representation for Face Recognition Based on Constraint
Sampling and Face Alignment
Jing Wang, Guangda Su(cid:3), Ying Xiong, Jiansheng Chen, Yan Shang, Jiongxin Liu, and Xiaolong Ren"
af9d41c598fc5ae57b20948cf664273da4664931,A comparison of crowd commotion measures from generative models,"A Comparison of Crowd Commotion Measures from Generative Models
Sadegh Mohammadi
Hamed Kiani
Alessandro Perina
Vittorio Murino
Pattern Analysis and Computer Vision Department (PAVIS)
Istituto Italiano di Tecnologia
Genova, Italy"
afb6d1e72d5b5506867a74beeb1e661599b8fff3,Dynamic Feature Learning for Partial Face Recognition,"Dynamic Feature Learning for Partial Face Recognition
Lingxiao He1
, Haiqing Li1
, Qi Zhang1
, and Zhenan Sun1
CRIPAC & NLPR, CASIA 2 University of Chinese Academy of Sciences, Beijing, P.R. China
Center for Excellence in Brain Science and Intelligence Technology, CAS
{lingxiao.he, hqli, qi.zhang,"
af9a830f62478c3638880d9a870f0b10535b3f92,Hausdorff distance-based multiresolution maps applied to image similarity measure,"Hausdorff distance-based multiresolution maps
pplied to image similarity measure
E. Baudrier*a, G. Millonb, F. Nicolierb, R. Seulinc and S. Ruanb
LMA – University of La Rochelle, Avenue Cre´peau, 17000 La Rochelle, France
CReSTIC – URCA, IUT, 9, rue de Que´bec, 10026 Troyes Cedex, France
Le2i – CNRS UMR 5158, University of Burgundy – IUT, 12, rue de la fonderie, 71200 Le Creusot,
France"
af267b44c3ae6c2a0587310021a6180962e835d6,Shape and Symmetry Induction for 3D Objects,"Shape and Symmetry Induction for 3D Objects
Shubham Tulsiani1, Abhishek Kar1, Qixing Huang2, Jo˜ao Carreira1 and Jitendra Malik1
University of California, Berkeley 2Toyota Technological Institute at Chicago
{shubhtuls, akar, carreira,"
af8f59ceed0392159c3475c58af5b7ca8e4f6412,Facial Expression Recognition,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
afe3a0d463e2f099305c745ddbf943844583795d,Learning Visual Question Answering by Bootstrapping Hard Attention,"Learning Visual Question Answering by
Bootstrapping Hard Attention
Mateusz Malinowski, Carl Doersch, Adam Santoro, and Peter Battaglia
DeepMind, London, United Kingdom"
af97b793a61ba6e2b02d0d29503b73b5bdc2150d,Wavelet-Local binary pattern based face recognition,"I S S N   2 2 7 7 - 3 0 6 1
V o l u m e   1 6   N u m b e r   1
I N T E R N A T I O N A L   J O U R N A L   O F   C O M P U T E R S   &   T E C H N O L O G Y
Wavelet-Local binary pattern based face recognition
Azad Abdullah Ameen(1), Hardi M. M-Saleh(2) ,Zrar Kh. Abdul(3)
(1) Charmo University, College of Basic Education, Computer Department,Chamchamal, Raperin, Iraq
(2) Charmo University, College of Basic Education, Computer Department, Chamchamal, Raperin, Iraq
(3)Charmo University, College of Basic Education, Computer Department, Chamchamal, Raperin, Iraq"
af8cd04bbe4902123d7042985159a6a5da9d9fb9,Représenter pour suivre : Exploitation de représentations parcimonieuses pour le suivi multi-objets. (Representing to follow: Exploitation of parsimonious representations for multi-object tracking),"Représenter pour suivre : exploitation de représentations
parcimonieuses pour le suivi multi-objets
Loïc Pierre Fagot-Bouquet
To cite this version:
Loïc Pierre Fagot-Bouquet. Représenter pour suivre : exploitation de représentations parcimonieuses
pour le suivi multi-objets. Automatique. Université Paul Sabatier - Toulouse III, 2017. Français.
<NNT : 2017TOU30030>. <tel-01516921v2>
HAL Id: tel-01516921
https://tel.archives-ouvertes.fr/tel-01516921v2
Submitted on 4 May 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
afa004a8daaa7fc093a798bf97babdb00273e1a0,Experimental Study on Fast 2d Homography Estimation from a Few Point Correspondences,"Tutkimusraportti 111
Research Report 111
EXPERIMENTAL STUDY ON FAST 2D
HOMOGRAPHY ESTIMATION FROM A FEW
POINT CORRESPONDENCES
Joni-Kristian Kämäräinen and Pekka Paalanen
Lappeenranta University of Technology
Faculty of Technology Management
Department of Information Technology
Box 20
FIN-53851 Lappeenranta
ISBN 978-952-214-772-1 (paperback)
ISBN 978-952-214-773-8 (PDF)
ISSN 0783-8069
Lappeenranta 2009"
af34388e69800a168876f7446a621f68ca2215c0,Low-cost scene modeling using a density function improves segmentation performance,"Low-Cost Scene Modeling using a Density Function Improves Segmentation
Performance
Vivek Sharma(cid:5)(cid:63), S¸ule Yildirim-Yayilgan(cid:63), and Luc Van Gool(cid:5)∓"
af053b8cf39612cec0148e14a9c4b7a789d7db11,Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification,"Paris-Lille-3D: a large and high-quality ground truth urban point cloud
dataset for automatic segmentation and classification
Xavier Roynard, Jean-Emmanuel Deschaud and François Goulette
{xavier.roynard ; jean-emmanuel.deschaud ;
Mines ParisTech, PSL Research University, Centre for Robotics"
afb1bc830febdb9893fd938fbdb20856b4ff3922,Defoiling Foiled Image Captions,"Defoiling Foiled Image Captions
Pranava Madhyastha, Josiah Wang and Lucia Specia
Department of Computer Science
University of Sheffield, UK
{p.madhyastha, j.k.wang,"
afb51f0e173cd9ab1d41075862945ae6bc593cde,Large databases of real and synthetic images for feature evaluation and prediction,"Large databases of real and synthetic images for
feature evaluation and prediction
Biliana K. Kaneva
B.A., Computer Science and Mathematics, Smith College (2000)
M.S., Computer Science, University of Washington (2005)
Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in Electrical Engineering and Computer Science
t the Massachusetts Institute of Technology
February 2012
(cid:13) 2012 Massachusetts Institute of Technology
All Rights Reserved.
Author:
Certified by:
Certified by:
Accepted by:
Department of Electrical Engineering and Computer Science
December 22, 2011
William T. Freeman, Professor of Computer Science"
af64854f653f2c1724d04c9657adfcdabe0f8440,Structure propagation for zero-shot learning,"Structure propagation for zero-shot learning
Guangfeng Lina,∗, Yajun Chena, Fan Zhaoa
Information science department, Xian University of Technology,
5 South Jinhua Road, Xi’an, Shaanxi Province 710048, PR China"
af740db182b541eef80bb0a2dfebd1f07bb0e316,Deformable Kernel Networks for Joint Image Filtering,"Deformable Kernel Networks for Joint Image Filtering
Beomjun Kim, Jean Ponce, Bumsub Ham
To cite this version:
Beomjun Kim, Jean Ponce, Bumsub Ham. Deformable Kernel Networks for Joint Image Filtering.
018. <hal-01857016v2>
HAL Id: hal-01857016
https://hal.archives-ouvertes.fr/hal-01857016v2
Submitted on 10 Oct 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés."
afc7092987f0d05f5685e9332d83c4b27612f964,Person-independent facial expression detection using Constrained Local Models,"Person-Independent Facial Expression Detection using Constrained
Local Models
Sien. W. Chew, Patrick Lucey, Simon Lucey, Jason Saragih, Jeffrey F. Cohn and Sridha Sridharan"
b7a09eaadcb21bf9ab234d87c954e329518580c5,Learning to Fuse 2D and 3D Image Cues for Monocular Body Pose Estimation,"Learning to Fuse 2D and 3D Image Cues for Monocular Body Pose Estimation
Bugra Tekin
Pablo M´arquez-Neila
Mathieu Salzmann
Pascal Fua
EPFL, Switzerland"
b730908bc1f80b711c031f3ea459e4de09a3d324,Active Orientation Models for Face Alignment In-the-Wild,"Active Orientation Models for Face
Alignment In-the-Wild
Georgios Tzimiropoulos, Joan Alabort-i-Medina, Student Member, IEEE,
Stefanos P. Zafeiriou, Member, IEEE, and Maja Pantic, Fellow, IEEE"
b778c0e5ec6cebbabc77fc56f9b7438f2974a4ea,Altered activity of the primary visual area during gaze processing in individuals with high-functioning autistic spectrum disorder: a magnetoencephalography study.,"Altered Activity of the Primary Visual Area during Gaze Processing in
Individuals with High-Functioning Autistic Spectrum Disorder: A
Magnetoencephalography Study
Naoya Hasegawaa, Hideaki Kitamuraa, Hiroatsu Murakamib, Shigeki Kameyamab, Mutsuo
Sasagawac, Jun Egawaa, Ryu Tamuraa, Tarou Endoa, Toshiyuki Someyaa
Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences,
-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
Department of Neurosurgery, Epilepsy Center, Nishi-Niigata Chuo National Hospital, 1-14-1
Masago, Nishi-ku, Niigata 950-2085, Japan
Department of Psychiatry, Epilepsy Center, Nishi-Niigata Chuo National Hospital, 1-14-1
Masago, Nishi-ku, Niigata 950-2085, Japan
Short title:
Altered activity of the primary visual area of autistic spectrum disorder during gaze processing
Correspondence: Hideaki Kitamura
Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences,
-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
Tel: +81-25-227-2213; Fax: +81-25-227-0777;
E-mail:"
b7cf7bb574b2369f4d7ebc3866b461634147041a,From NLDA to LDA/GSVD: a modified NLDA algorithm,"Neural Comput & Applic (2012) 21:1575–1583
DOI 10.1007/s00521-011-0728-x
O R I G I N A L A R T I C L E
From NLDA to LDA/GSVD: a modified NLDA algorithm
Jun Yin • Zhong Jin
Received: 2 August 2010 / Accepted: 3 August 2011 / Published online: 19 August 2011
Ó Springer-Verlag London Limited 2011"
b7894c1f805ffd90ab4ab06002c70de68d6982ab,A comprehensive age estimation on face images using hybrid filter based feature extraction,"Biomedical Research 2017; Special Issue: S610-S618
ISSN 0970-938X
www.biomedres.info
A comprehensive age estimation on face images using hybrid filter based
feature extraction.
Karthikeyan D1*, Balakrishnan G2
Department of ECE, Srinivasan Engineering College, Perambalur, India
Department of Computer Science and Engineering, Indra Ganesan College of Engineering, Trichy, India"
b7a0e7dab11781c252e1145f3526aee388b4136d,Facing humanness: Facial width-to-height ratio predicts ascriptions of humanity.,"Journal of Personality and Social
Psychology
Facing Humanness: Facial Width-to-Height Ratio
Predicts Ascriptions of Humanity
Jason C. Deska, E. Paige Lloyd, and Kurt Hugenberg
Online First Publication, August 28, 2017. http://dx.doi.org/10.1037/pspi0000110
CITATION
Deska, J. C., Lloyd, E. P., & Hugenberg, K. (2017, August 28). Facing Humanness: Facial Width-to-
Advance online publication. http://dx.doi.org/10.1037/pspi0000110"
b7eead8586ffe069edd190956bd338d82c69f880,A Video Database for Facial Behavior Understanding,"A VIDEO DATABASE FOR FACIAL
BEHAVIOR UNDERSTANDING
D. Freire-Obreg´on and M. Castrill´on-Santana.
SIANI, Universidad de Las Palmas de Gran Canaria, Spain"
b79f3d9f8de4d1cc6679676146a40d2a8596f32d,Composing Simple Image Descriptions using Web-scale N-grams,"Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 220–228,
Portland, Oregon, USA, 23–24 June 2011. c(cid:13)2011 Association for Computational Linguistics"
b7ac537d97efcb968ca8e353ff5b0563e26b9dbe,Object-Aware Dense Semantic Correspondence,"Object-aware Dense Semantic Correspondence
Fan Yang1, Xin Li1 ∗, Hong Cheng2, Jianping Li1, Leiting Chen1
School of Computer Science & Engineering, UESTC
Center for Robotics, School of Automation Engineering, UESTC
fanyang xinli"
b797f3fa4e732d52092f9eb863350440d5de8bb1,Unsupervised Category Discovery via Looped Deep Pseudo-Task Optimization Using a Large Scale Radiology Image Database,"Unsupervised Category Discovery via Looped Deep Pseudo-Task Optimization
Using a Large Scale Radiology Image Database
Xiaosong Wang
Le Lu
Hoo-chang Shin
Lauren Kim Isabella Nogues
Jianhua Yao
Ronald Summers
Imaging Biomarkers and Computer-aided Detection Laboratory
Department of Radiology and Imaging Sciences
National Institutes of Health Clinical Center
0 Center Drive, Bethesda, MD 20892"
b7c4fe5c89df51ebd1f89a34c66b94cc6019d8e6,Model Cards for Model Reporting,"Model Cards for Model Reporting
Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben
Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, Timnit Gebru"
b7774c096dc18bb0be2acef07ff5887a22c2a848,Distance metric learning for image and webpage comparison. (Apprentissage de distance pour la comparaison d'images et de pages Web),"Distance metric learning for image and webpage
omparison
Marc Teva Law
To cite this version:
Marc Teva Law. Distance metric learning for image and webpage comparison. Image Processing. Uni-
versité Pierre et Marie Curie - Paris VI, 2015. English. <NNT : 2015PA066019>. <tel-01135698v2>
HAL Id: tel-01135698
https://tel.archives-ouvertes.fr/tel-01135698v2
Submitted on 18 Mar 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
b7f05d0771da64192f73bdb2535925b0e238d233,Robust Active Shape Model using AdaBoosted Histogram Classifiers,"MVA2005  IAPR  Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan
Robust Active Shape Model using AdaBoosted Histogram Classifiers
Yuanzhong Li
W ataru Ito
Imaging Software Technology Center
Imaging Software Technology Center
FUJI PHOTO FILM  CO., LTD.
fujifilm.co.jp
FUJI PHOTO FILM  CO., LTD.
fujifilm.co.jp"
b701f11ecf5d465c7d5c427914db2ad8c97bb8a9,JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets,"JointGAN: Multi-Domain Joint Distribution Learning with
Generative Adversarial Nets
Yunchen Pu 1 Shuyang Dai 2 Zhe Gan 3 Weiyao Wang 2 Guoyin Wang 2 Yizhe Zhang 3 Ricardo Henao 2
Lawrence Carin 2"
b755505bdd5af078e06427d34b6ac2530ba69b12,NFRAD: Near-Infrared Face Recognition at a Distance,"To appear in the International Joint Conf. Biometrics, Washington D.C., October, 2011
NFRAD: Near-Infrared Face Recognition at a Distance
Hyunju Maenga, Hyun-Cheol Choia, Unsang Parkb, Seong-Whan Leea and Anil K. Jaina,b
Dept. of Brain and Cognitive Eng. Korea Univ., Seoul, Korea
Dept. of Comp. Sci. & Eng. Michigan State Univ., E. Lansing, MI, USA 48824
{hjmaeng, ,"
b7b461f82c911f2596b310e2b18dd0da1d5d4491,K-mappings and Regression trees,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
K-MAPPINGS AND REGRESSION TREES
SAMSI and Duke University
. INTRODUCTION
rgminM1,...,MK
P1,...PK
Arthur Szlam†
.1. Partitioning Y
K(cid:2)
(cid:2)
(cid:3)
(cid:4)"
b732393cd3877f7e6d3cf3ca033a42415bd6db56,Statistical and Geometric Modeling of Spatio-Temporal Patterns for Video Understanding,
b73fdae232270404f96754329a1a18768974d3f6,Local Relation Map : A Novel Illumination Invariant Face Recognition Approach Regular Paper,
b76af8fcf9a3ebc421b075b689defb6dc4282670,Face Mask Extraction in Video Sequence,"Face Mask Extraction in Video Sequence
Yujiang Wang 1 · Bingnan Luo 1 · Jie Shen 1 · Maja Pantic 1"
b75df22c7c52b8d85dd7f155f7b495907ff3561f,Benchmark data and method for real-time people counting in cluttered scenes using depth sensors,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2018
Benchmark data and method for real-time people
ounting in cluttered scenes using depth sensors
ShiJie Sun, Naveed Akhtar, HuanSheng Song, ChaoYang Zhang, JianXin Li, Ajmal Mian
Computer Vision techniques are well-suited to the problem
of automatic people counting for public transportations. How-
ever, using conventional RGB videos for this purpose is chal-
lenged by multiple issues resulting from real-world conditions
such as clutter, occlusions, illumination variations, handling
shadows etc. In comparison to the conventional video systems,
RGB-D cameras (e.g. Kinect V1 [4], Prime Sense Camera [5])
an mitigate these issues by providing ‘depth’ information
of the scene in addition to its color video. Nevertheless,
effective people counting in real-world conditions using depth
information still remains a largely unsolved problem due to
noise and occlusion [6]."
b73a6c7083f3dbc8b355f934aaf84438c10a7963,The 54th Annual Meeting of the Association for Computational Linguistics,"The54thAnnualMeetingoftheAssociationforComputationalLinguisticsProceedingsoftheConference,Vol.2(ShortPapers)August7-12,2016Berlin,Germany"
b774d7c951b9c444572085e15f6a81a063abf123,Diversity Regularized Spatiotemporal Attention for Video-based Person Re-identification,"FeaturesSpatial  AttentionTemporal  Attention1                      2                      3                              N‘face’‘torso’‘bag’Figure1.SpatiotemporalAttention.Inchallengingvideore-identificationscenarios,apersonisrarelyfullyvisibleinallframes.However,framesinwhichonlypartofthepersonisvis-ibleoftencontainusefulinformation.Forexample,thefaceisclearlyvisibleintheframes1and2,thetorsoinframe2,andthehandbaginframes2,3andN.Insteadofaveragingfullframefeaturesacrosstime,weproposeanewspatiotemporalapproachwhichlearnstodetectasetofKdiversesalientimageregionswithineachframe(superimposedheatmaps).Anaggregaterep-resentationofeachbodypartisthenproducedbycombiningtheextractedper-frameregionsacrosstime(weightsshownaswhitetext).Ourspatiotemporalapproachcreatesacompactencodingofthevideothatexploitsusefulpartialinformationineachframebyleveragingmultiplespatialattentionmodels,andcombiningtheiroutputsusingmultipletemporalattentionmodels.personre-identification,whichisageneralizationofthestandardimage-basedre-identificationtask.InsteadofarXiv:1803.09882v1  [cs.CV]  27 Mar 2018"
b7f0d1d65763fb57ee9a3624116a42a2fe763707,Predicting psychological attributions from face photographs with a deep neural network,"Predicting psychological attributions from face
photographs with a deep neural network
Edward Grant1∗, Stephan Sahm1∗, Mariam Zabihi1∗, Marcel van Gerven1
Radboud University, Nijmegen, the Netherlands
Denotes equal contribution"
b7c4b22d44be82b2e1074c5c40b76461db4b0292,Generating Multiple Diverse Hypotheses for Human 3D Pose Consistent with 2D Joint Detections,"Generating Multiple Diverse Hypotheses for Human 3D Pose Consistent with 2D
Joint Detections
Ehsan Jahangiri, Alan L. Yuille
Johns Hopkins University, Baltimore, USA"
b705ca751a947e3b761e2305b41891051525d9df,Exploring Context with Deep Structured Models for Semantic Segmentation,"Exploring Context with Deep Structured models
for Semantic Segmentation
Guosheng Lin, Chunhua Shen, Anton van den Hengel, Ian Reid"
b7207c142b0b9f4def3ae7cd07ce50ca31d930e8,Human Age Group Prediction from Unknown Facial Image,"Volume 7, Issue 5, May 2017                                  ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
Human Age Group Prediction from Unknown Facial Image
Arumugam P, 2Muthukumar S, 3Selva Kumar S, 4Gayathri
Department of Statistics,   2, 4 Department of CSE, 3Research Scholar
, 3 Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
, 4 Varuvan Vadivelan Institute of Technology, Dharmapuri, Tamilnadu, India
DOI: 10.23956/ijarcsse/SV7I5/0103"
b768cb6fc2616f3dbe9ef4e25dedd7d95781ba66,Distribution Matching in Variational Inference,"Distribution Matching in Variational Inference
Mihaela Rosca Balaji Lakshminarayanan
Shakir Mohamed
DeepMind"
b7b23814948afc5525975ed44f3dd247100e6722,Relevant Feature Selection for Human Pose Estimation and Localization in Cluttered Images,"Relevant Feature Selection for Human Pose Estimation
nd Localization in Cluttered Images
Ryuzo Okada(cid:2) and Stefano Soatto
Computer Science Department, University of California, Los Angeles"
b7216846c743d94fcd43e1b543c9d16ae11d3c48,Engaging Image Chat: Modeling Personality in Grounded Dialogue,"Engaging Image Chat: Modeling Personality in Grounded Dialogue
Kurt Shuster Samuel Humeau Antoine Bordes Jason Weston
{kshuster, samuelhumeau, abordes, jase}
Facebook AI Research"
b7f7a4df251ff26aca83d66d6b479f1dc6cd1085,Handling missing weak classifiers in boosted cascade: application to multiview and occluded face detection,"Bouges et al. EURASIP Journal on Image and Video Processing 2013, 2013:55
http://jivp.eurasipjournals.com/content/2013/1/55
RESEARCH
Open Access
Handling missing weak classifiers in boosted
ascade: application to multiview and
occluded face detection
Pierre Bouges1*, Thierry Chateau1*, Christophe Blanc1 and Gaëlle Loosli2"
b7d425ea6b476c4af208a6b6a9e84ab17921dab4,Heuristic-based Automatic Face Detection,"HEURISTIC-BASED AUTOMATIC FACE DETECTION
Geovany Ramírez1, Vittorio Zanella1,2, Olac Fuentes2
Universidad Popular Autónoma del Estado de Puebla
1 sur #1103 Col. Santiago Puebla 72160, México
Instituto Nacional de Astrofísica Optica y Electrónica
Luis Enrique Erro #1 Sta. María  Tonantzintla Puebla 72840, México
E-mail:"
b7a827bb393361c309fbba652967dee11d16857c,Comparative Analysis of various Illumination Normalization Techniques for Face Recognition,"International Journal of Computer Applications (0975 – 8887)
Volume 28– No.9, August 2011
Comparative Analysis of various Illumination
Normalization Techniques for Face Recognition
Tripti Goel
GPMCE, Delhi
Vijay Nehra
BPSMV, Khanpur
Virendra P.Vishwakarma
JIIT, Noida
explained"
b704f8360c369e65f0826ca23dac2d4e221d8997,A Knowledge Base for Automatic Feature Recognition from Point Clouds in an Urban Scene,"Article
A Knowledge Base for Automatic Feature Recognition
from Point Clouds in an Urban Scene
Xu-Feng Xing 1,2,* ID , Mir-Abolfazl Mostafavi 1,2 ID and Seyed Hossein Chavoshi 1,2
Department of Geomatics Sciences, Université Laval, Québec, QC G1V 0A6, Canada;
(M.-A.M.); (S.H.C.)
Center for Research in Geomatics, Université Laval, Québec, QC G1V 0A6, Canada
* Correspondence: Tel.: +1-581-888-9786
Received: 4 October 2017; Accepted: 11 January 2018; Published: 16 January 2018"
b7c2173668a4c23b79450111887d8b1e4199f89c,Complex event recognition by latent temporal models of concepts,"COMPLEX EVENT RECOGNITION BY LATENT TEMPORAL MODELS OF CONCEPTS
Ehsan Zare Borzeshi1, Afshin Dehghan2, Massimo Piccardi1, and Mubarak Shah2
School of Computing and Communications, University of Technology, Sydney (UTS)1,
Centre for Research in Computer Vision, University of Central Florida (UCF)2"
db85195e171f7b75e4e6f99ed3029d31ee557e13,the influence of a verticality metaphor in the processing of happy and sad faces,"RIPS / IRSP, 27 (2), 51-77 © 2014, Presses universitaires de Grenoble
the influence of a verticality metaphor
in the processing of happy and sad faces
L’influence de la métaphore de verticalité sur le traitement
des émotions faciales de gaieté et de tristesse
Timothée Mahieu*,**
Olivier Corneille**
Vincent Y. Yzerbyt**
Key-words
Metaphorical thinking,
grounded cognition,
facial emotions, gender
Mots-clés
Pensée métaphorique,
ognition incarnée,
émotions faciales,
genre"
db227f72bb13a5acca549fab0dc76bce1fb3b948,Characteristic Based Image Search Using Re-Ranking Method,"International Refereed Journal of Engineering and Science (IRJES)
ISSN (Online) 2319-183X, (Print) 2319-1821
Volume 4, Issue 6 (June 2015), PP.169-169-174
Characteristic Based Image Search using Re-Ranking method
Chitti Babu, 2Yasmeen Jaweed, 3G.Vijay Kumar
,2,3Computer Science Engineering Dept, Sree Dattha Institute of Engineering & Science"
dbaf89ca98dda2c99157c46abd136ace5bdc33b3,Nonlinear Cross-View Sample Enrichment for Action Recognition,"Nonlinear Cross-View Sample Enrichment for
Action Recognition
Ling Wang, Hichem Sahbi
Institut Mines-T´el´ecom; T´el´ecom ParisTech; CNRS LTCI"
dbe101c7c4b5ea5986be38e4d6de70bfc4324683,1 Deep convolutional neural networks capabilities for 2 binary classification of polar mesocyclones in 3 satellite mosaics 4,"Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 October 2018                   doi:10.20944/preprints201809.0361.v3
Article
Deep convolutional neural networks capabilities for
inary classification of polar mesocyclones in
satellite mosaics
Mikhail Krinitskiy 1,*, Polina Verezemskaya 1,2, Kirill Grashchenkov1,3, Natalia Tilinina1,
Sergey Gulev1 and Matthew Lazzara 4
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia;
Research Computing Center of Lomonosov Moscow State University, Moscow, Russia
Moscow Institute of Physics and Technology, Moscow, Russia
University of Wisconsin-Madison and Madison Area Technical College, Madison, Wisconsin, USA
*  Correspondence: Tel.: +7-926-141-6200"
dbe255d3d2a5d960daaaba71cb0da292e0af36a7,Evolutionary Cost-Sensitive Extreme Learning Machine,"Evolutionary Cost-sensitive Extreme Learning
Machine
Lei Zhang, Member, IEEE, and David Zhang, Fellow, IEEE"
db480f100004e3ef075f9404041fe4f89fcf4e0c,Human Pose Estimation for RGBD Imagery with Multi-Channel Mixture of Parts and Kinematic Constraints,"Human Pose Estimation for RGBD Imagery with Multi-Channel
Mixture of Parts and Kinematic Constraints
ENRIQUE MARTINEZ-BERTI
Universitat Politecnica de Valencia
Instituto AI2
Camino de Vera s/n, Valencia
SPAIN
ANTONIO J. SNCHEZ-SALMERN
Universitat Politecnica de Valencia
CARLOS RICOLFE-VIALA
Universitat Politecnica de Valencia
Instituto AI2
Camino de Vera s/n, Valencia
SPAIN
Instituto AI2
Camino de Vera s/n, Valencia
SPAIN
Center for Research in Computer Vision
Center for Research in Computer Vision
OLIVER NINA"
db6d00f9237cce392c08b422662b48baa2ed1b80,A New Framework for Biometric Face Recognition Using Visual,"Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium, Volume 23, No.1, ISSN 2304-1382
ISBN 978-3-901509-91-9, CDROM version, Ed. B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2012
Make Harmony between Technology and Nature, and Your Mind will Fly Free as a Bird
Annals & Proceedings of DAAAM International 2012
A NEW FRAMEWORK FOR BIOMETRIC FACE RECOGNITION USING VISUAL
CRYPTOGRAPY
MIHAILESCU, M[arius] I[ulian] & PIRLOAGA, M[arian] D[orin]"
dba3ec4420a0bcca3264f75f4c975cabdbb1af74,"""Edutainment 2017"" a visual and semantic representation of 3D face model for reshaping face in images","J Vis (2018) 21:649–660
https://doi.org/10.1007/s12650-018-0476-4
R E G UL A R P A P E R
Jiang Du • Dan Song • Yanlong Tang • Ruofeng Tong • Min Tang
‘‘Edutainment 2017’’ a visual and semantic
representation of 3D face model for reshaping face
in images
Received: 15 September 2017 / Revised: 20 December 2017 / Accepted: 22 January 2018 / Published online: 16 February 2018
Ó The Visualization Society of Japan 2018"
db24a2c27656db88486479b26f99d8754a44f4b8,Age estimation via face images : a survey,"Angulu et al. EURASIP Journal on Image and Video
Processing  (2018) 2018:42
https://doi.org/10.1186/s13640-018-0278-6
EURASIP Journal on Image
nd Video Processing
REVIEW
Open Access
Age estimation via face images: a survey
Raphael Angulu1*†
, Jules R. Tapamo2 and Aderemi O. Adewumi1"
dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8,Machine Learning Techniques for Face Analysis,"Chapter 7
Machine Learning Techniques
for Face Analysis
Roberto Valenti, Nicu Sebe, Theo Gevers, and Ira Cohen"
dbb065aa2a6e6804e0ab8aee27314a6f68c4cde1,Advanced Hypothesis Testing Techniques and Their Application to Image Classification Advanced Hypothesis Testing Techniques and Their Application to Image Classification Title: Advanced Hypothesis Testing Techniques and Their Application to Image Classification Acknowledgements,"Dipartimento di Informatica e
Scienze dell’Informazione
•• ••
Advanced Hypothesis testing techniques and their
pplication to image classification
Emanuele Franceschi
Theses Series
DISI-TH-2005-XX
DISI, Universit`a di Genova
v. Dodecaneso 35, 16146 Genova, Italy
http://www.disi.unige.it/"
db458242dd526d84579aeee563355ca1a7dea5ea,Face Detection in Nighttime Images Using Visible-Light Camera Sensors with Two-Step Faster Region-Based Convolutional Neural Network,"Article
Face Detection in Nighttime Images Using
Visible-Light Camera Sensors with Two-Step Faster
Region-Based Convolutional Neural Network
Se Woon Cho, Na Rae Baek, Min Cheol Kim, Ja Hyung Koo, Jong Hyun Kim and
Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pil-dong-ro 1-gil, Jung-gu,
Seoul 04620, Korea; (S.W.C.); (N.R.B.);
(M.C.K.); (J.H.K.); (J.H.K.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 31 July 2018; Accepted: 4 September 2018; Published: 7 September 2018"
dbb7f37fb9b41d1aa862aaf2d2e721a470fd2c57,Face image analysis with convolutional neural networks,"Face Image Analysis With
Convolutional Neural Networks
Dissertation
Zur Erlangung des Doktorgrades
der Fakult¨at f¨ur Angewandte Wissenschaften
n der Albert-Ludwigs-Universit¨at Freiburg im Breisgau
Stefan Duffner"
db625c4c26c7df67c9099e78961d479532628ec7,"All-in Text: Learning Document, Label, and Word Representations Jointly","Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)
All-in Text: Learning Document, Label, and Word Representations Jointly
Jinseok Nam, Eneldo Loza Menc´ıa, Johannes F¨urnkranz
Knowledge Discovery in Scientific Literature, TU Darmstadt
Knowledge Engineering Group, TU Darmstadt
Research Training Group AIPHES, TU Darmstadt"
dbb7b563e84903dad4953a8e9f23e3c54c6d7e78,Joint Person Re-identification and Camera Network Topology Inference in Multiple Cameras,"Joint Person Re-identification and Camera Network
Topology Inference in Multiple Cameras
Yeong-Jun Cho, Su-A Kim*, Jae-Han Park*, Kyuewang Lee, Student Member, IEEE
nd Kuk-Jin Yoon, Member, IEEE"
dbd5e9691cab2c515b50dda3d0832bea6eef79f2,Image - based Face Recognition : Issues and Methods 1,"Image-basedFaceRecognition:IssuesandMethods
WenYiZhao
RamaChellappa
Sarno(cid:11)Corporation
CenterforAutomationResearch
WashingtonRoad
UniversityofMaryland
Princeton,NJ
CollegePark,MD-"
db186bd2a276a574b2246e3e4d136f8a07c53ff2,Verisimilar Percept Sequences Tests for Autonomous Driving Intelligent Agent Assessment,"Verisimilar Percept Sequences Tests for
Autonomous Driving Intelligent Agent Assessment
Thomio Watanabe
University of Sao Paulo
Denis Wolf
University of Sao Paulo"
db67edbaeb78e1dd734784cfaaa720ba86ceb6d2,SPECFACE — A dataset of human faces wearing spectacles,"SPECFACE - A Dataset of Human Faces Wearing Spectacles
Anirban Dasgupta, Shubhobrata Bhattacharya and Aurobinda Routray
Indian Institute of Technology Kharagpur
India"
db0d33590dc15de2d30cf0407b7a26ae79cd51b5,Deep Probabilistic Modeling of Natural Images using a Pyramid Decomposition,"Deep Probabilistic Modeling of Natural Images using a Pyramid Decomposition
Alexander Kolesnikov
IST Austria, Am Campus 1, Klosterneuburg, 3400 Austria
Christoph H. Lampert
IST Austria, Am Campus 1, Klosterneuburg, 3400 Austria"
a83fc450c124b7e640adc762e95e3bb6b423b310,Deep Face Feature for Face Alignment and Reconstruction,"Deep Face Feature for Face Alignment
Boyi Jiang, Juyong Zhang, Bailin Deng, Yudong Guo and Ligang Liu"
a84032e66db042a57722b4a3bc7301ebe567fb8b,"IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 01, 2015 | ISSN (online): 2321-0613","IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 01, 2015 | ISSN (online): 2321-0613
Review of Energy Enhancements of Modified LEACH
Kirti Sharma1
Department of Electronics & Communication Engineering
Maharishi Ved Vyas Engineering College, Jagadhri, India
using
minimized"
a85e9e11db5665c89b057a124547377d3e1c27ef,Dynamics of Driver's Gaze: Explorations in Behavior Modeling and Maneuver Prediction,"Dynamics of Driver’s Gaze: Explorations in
Behavior Modeling & Maneuver Prediction
Sujitha Martin, Member, IEEE, Sourabh Vora, Kevan Yuen, and Mohan M. Trivedi, Fellow, IEEE"
a8ed00afc46064b18a6bcc7aa282e554891eacf2,Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal,"Underwater Image Restoration:
Super-resolution and Deblurring via Sparse Representation and
Denoising by Means of Marine Snow Removal
Dissertation
Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing)
der Fakultät für Informatik und Elektrotechnik
der Universität Rostock
vorgelegt von
Fahimeh Farhadifard
geb. am 05.11.1985 in Mashhad/Iran
us Rostock
Rostock, den 27. Oktober 2017"
a8420e7fa53b81b8069ced8d9c743c141e2fc432,Real-Time Multiple Object Tracking - A Study on the Importance of Speed,"Real-TimeMultipleObjectTrackingAStudyontheImportanceofSpeedSAMUELMURRAYMaster’sProgramme,MachineLearningDate:September28,2017Supervisor:KevinSmithExaminer:HedvigKjellströmPrincipal:HelmutPrendinger,NationalInstituteofInformatics,TokyoSwedishtitle:IdentifieringavrörligaobjektirealtidSchoolofComputerScienceandCommunication"
a856449c724f958dbb2f0629228d26a322153ba3,Face Mask Extraction in Video Sequence,"Face Mask Extraction in Video Sequence
Yujiang Wang 1 · Bingnan Luo 1 · Jie Shen 1 · Maja Pantic 1"
a8117a4733cce9148c35fb6888962f665ae65b1e,A Good Practice Towards Top Performance of Face Recognition: Transferred Deep Feature Fusion,"IEEE TRANSACTIONS ON XXXX, VOL. XX, NO. XX, XX 201X
A Good Practice Towards Top Performance of Face
Recognition: Transferred Deep Feature Fusion
Lin Xiong1∗†, Jayashree Karlekar1∗, Jian Zhao2∗†, Jiashi Feng2, Member, IEEE, Sugiri Pranata1, and
Shengmei Shen1"
a8788ce65d01018a0e1b4cdaf6466f495e68f7e3,A Probabilistic Retrieval Model for Word Spotting based on Direct Attribute Prediction,"A Probabilistic Retrieval Model
for Word Spotting based on
Direct Attribute Prediction
Eugen Rusakov, Leonard Rothacker, Hyunho Mo, and Gernot A. Fink
Department of Computer Science
TU Dortmund University
4221 Dortmund, Germany
Email:{eugen.rusakov, leonard.rothacker, hyunho.mo,"
a8d3dc5c68032c60ebbe3b547ac948d7cf8dd1d8,Multi-Label Zero-Shot Learning via Concept Embedding,"Multi-Label Zero-Shot Learning via Concept
Embedding
Ubai Sandouk and Ke Chen"
a87ab836771164adb95d6744027e62e05f47fd96,Understanding human-human interactions: a survey,"Understanding human-human interactions: a survey
Alexandros Stergiou
Department of Information and Computing Sciences, Utrecht University,Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands
Department of Information and Computing Sciences, Utrecht University,Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands
Ronald Poppe1"
a81d396c9210282d461f9f08b7b9794b096ecdfe,FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising,"FFDNet: Toward a Fast and Flexible Solution for
CNN based Image Denoising
Kai Zhang, Wangmeng Zuo, Senior Member, IEEE, and Lei Zhang, Fellow, IEEE"
a8e5d204549fcf93c5bea88b0f99a2e4da9648e7,Neuropeptidergic regulation of affiliative behavior and social bonding in animals.,"www.elsevier.com/locate/yhbeh
Neuropeptidergic regulation of affiliative behavior and
social bonding in animals
Miranda M. Lim 1, Larry J. Young ⁎
Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, and 954 Gatewood Road Yerkes National Primate Research Center,
Emory University, Atlanta, GA 30322, USA
Received 16 May 2006; revised 26 June 2006; accepted 27 June 2006
Available online 4 August 2006"
a88640045d13fc0207ac816b0bb532e42bcccf36,Simultaneously Learning Neighborship and Projection Matrix for Supervised Dimensionality Reduction,"ARXIV VERSION
Simultaneously Learning Neighborship and
Projection Matrix for Supervised
Dimensionality Reduction
Yanwei Pang, Senior Member, IEEE, Bo Zhou, and Feiping Nie, Senior Member, IEEE"
a8d41c63462da7dbddf4094eddaa0bb6d72d0fdc,A Semantic-based Method for Visualizing Large Image Collections.,"A Semantic-based Method for
Visualizing Large Image Collections
Xiao Xie, Xiwen Cai, Junpei Zhou, Nan Cao, Yingcai Wu"
a8eebadc262594d1ca86d5520f312c1779d00b33,Improved Minimum Squared Error Algorithm with Applications to Face Recognition,"Improved Minimum Squared Error Algorithm with
Applications to Face Recognition
Qi Zhu1,2,3, Zhengming Li1,3,4, Jinxing Liu5, Zizhu Fan1,6, Lei Yu7, Yan Chen8*
Bio-Computing Center, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China, 2 School of Optical-Electrical and Computer Engineering, University
of Shanghai for Science and Technology, Shanghai, China, 3 Key Laboratory of Network Oriented Intelligent Computation, Shenzhen, China, 4 Guangdong Industrial
Training Center, Guangdong Polytechnic Normal University, Guangzhou, China, 5 College of Information and Communication Technology, Qufu Normal University, Rizhao,
China, 6 School of Basic Science, East China Jiaotong University, Nanchang, China, 7 School of Urban Planning and Management, Harbin Institute of Technology Shenzhen
Graduate School, Shenzhen, China, 8 Shenzhen Sunwin Intelligent Co., Ltd., Shenzhen, China"
a8a30a8c50d9c4bb8e6d2dd84bc5b8b7f2c84dd8,This is a repository copy of Modelling of Orthogonal Craniofacial Profiles,"This is a repository copy of Modelling of Orthogonal Craniofacial Profiles.
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/131767/
Version: Published Version
Article:
Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634 and Duncan, Christian
(2017) Modelling of Orthogonal Craniofacial Profiles. Journal of Imaging. ISSN 2313-433X
https://doi.org/10.3390/jimaging3040055
Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
llows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
uthors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/
Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing including the URL of the record and the reason for the withdrawal request.
https://eprints.whiterose.ac.uk/"
a8638a07465fe388ae5da0e8a68e62a4ee322d68,How to predict the global instantaneous feeling induced by a facial picture?,"How to predict the global instantaneous feeling induced
y a facial picture?
Arnaud Lienhard, Patricia Ladret, Alice Caplier
To cite this version:
Arnaud Lienhard, Patricia Ladret, Alice Caplier. How to predict the global instantaneous
feeling induced by a facial picture?. Signal Processing: Image Communication, Elsevier, 2015,
pp.1-30. .
HAL Id: hal-01198718
https://hal.archives-ouvertes.fr/hal-01198718
Submitted on 14 Sep 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
a8948941f7a24c09cd7c26f3635d8571c7998570,Face recognition of Pose and Illumination changes using Extended ASM and Robust sparse coding,"IOSR Journal of Dental and Medical Sciences (IOSR-JDMS)
e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 13, Issue 3 Ver. VI. (Mar. 2014), PP 49-54
www.iosrjournals.org
Face recognition of Pose and Illumination changes using
Extended ASM and Robust sparse coding
Arulmurugan R1, Laxmi Priya M.R2
(Information Technology, Bannari Amman Institute of Technology, India)
(Information Technology, Bannari Amman Institute of Technology, India)"
a8e75978a5335fd3deb04572bb6ca43dbfad4738,Sparse Graphical Representation based Discriminant Analysis for Heterogeneous Face Recognition,"Sparse Graphical Representation based Discriminant
Analysis for Heterogeneous Face Recognition
Chunlei Peng, Xinbo Gao, Senior Member, IEEE, Nannan Wang, Member, IEEE, and Jie Li"
a8f032b300b99dedb9c0f8362557302696d5ee9a,Intelligent Video Object Classification Scheme using Offline Feature Extraction and Machine Learning based Approach,"Intelligent Video Object Classification Scheme using Offline Feature Extraction and
Machine Learning based Approach
Chandra Mani Sharma1, Alok Kumar Singh Kushwaha2 ,Rakesh Roshan3 , Rabins Porwal4 and Ashish Khare5
,3,4Department of Information Technology, Institute of Technology and Science
Ghaziabad, U.P., India
Department of Computer Engg. and Application, G.L.A. University,
Mathura, U.P., India
5 Department of Electronics and Communication, University of Allahabad,
U.P., India"
a8eeace37181dd87d5125c213add6e15fdd9d9f7,Approximate Fisher Kernels of Non-iid Image Models for Image Categorization,"Approximate Fisher Kernels of non-iid Image
Models for Image Categorization
Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid, Fellow, IEEE"
a81769a36c9ed7b6146a408eb253eb8e0d3ad41e,Super-Fine Attributes with Crowd Prototyping.,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Super-Fine Attributes
with Crowd Prototyping
Daniel Martinho-Corbishley, Mark S. Nixon and John N. Carter"
ded968b97bd59465d5ccda4f1e441f24bac7ede5,Large scale 3 D Morphable Models,"Noname manuscript No.
(will be inserted by the editor)
Large scale 3D Morphable Models
James Booth · Anastasios Roussos · Allan Ponniah · David Dunaway · Stefanos
Zafeiriou
Received: date / Accepted: date"
de0eb358b890d92e8f67592c6e23f0e3b2ba3f66,Inference-Based Similarity Search in Randomized Montgomery Domains for Privacy-Preserving Biometric Identification,"ACCEPTED BY IEEE TRANS. PATTERN ANAL. AND MACH. INTELL.
Inference-Based Similarity Search in
Randomized Montgomery Domains for
Privacy-Preserving Biometric Identification
Yi Wang, Jianwu Wan, Jun Guo, Yiu-Ming Cheung, and Pong C Yuen"
de87a5d5fbae0733806ba965b2d70fd04596f6e9,Predictive control for autonomous driving with experimental evaluation on a heavy-duty construction truck,"Predictive control for autonomous driving
with experimental evaluation on a heavy-duty construction truck
PEDRO F. LIMA
Licenciate Thesis
Stockholm, Sweden 2016"
de86a9f484addcfee57a6f5a9224aa77bd23345b,Face Recognition Using Elastic Bunch Graph Matching,"International Journal For Technological Research In Engineering
Volume 2, Issue 11, July-2015
ISSN (Online): 2347 - 4718
FACE RECOGNITION USING ELASTIC BUNCH GRAPH
MATCHING
Sandeep R1, D Jayakumar2
Dept. of ECE, Kuppam Engineering College, Chittoor, Andhra Pradesh."
de6ab8cd9d402c976082b707b1207c3ad49ae204,End-to-end Image Captioning Exploits Distributional Similarity in Multimodal Space,"MADHYASTHA ET AL.: IMAGE CAPTIONING EXPLOITS DISTRIBUTIONAL SIMILARITY 1
End-to-end Image Captioning Exploits
Multimodal Distributional Similarity
Pranava Madhyastha
Josiah Wang
Lucia Specia
Department of Computer Science
The University of Sheffield
Sheffield, UK"
de99971e61613f174c9e5aa41a2c600399f59953,Pixel-wise Attentional Gating for Scene Parsing,"Pixel-wise Attentional Gating for Scene Parsing
Department of Computer Science, University of California, Irvine, CA 92697, USA
Shu Kong, Charless Fowlkes
{skong2,"
de724211683bb92931a5d80193e5dee31ca2e045,Sampling Design For Face Recognition,"Sampling Design For Face Recognition
Yanjun Yan and Lisa A. Osadciw
EECS, Syracuse University, Syracuse, NY, USA
{yayan,"
de2faaee4f1b2ecf23149995d0146347a13b9257,Robust Unsupervised Domain Adaptation for Neural Networks via Moment Alignment,"Robust Unsupervised Domain Adaptation for Neural
Networks via Moment Alignment
Werner Zellingera,∗, Bernhard A. Moserb, Thomas Grubingerb, Edwin
Lughofera, Thomas Natschl¨agerb, Susanne Saminger-Platza
Johannes Kepler University, Linz, Austria
Software Competence Center Hagenberg GmbH, Hagenberg, Austria"
de309a1d10f819d69a4ef2c26d968d3b287c3dd5,Preprocessing and Feature Sets for Robust Face Recognition,"Preprocessing and Feature Sets for Robust Face Recognition
Xiaoyang Tan and Bill Triggs
LJK-INRIA, 655 avenue de l’Europe, Montbonnot 38330, France"
dea749f087a8c9a9baa9167b4eaff50bd3eb9d16,Physically Grounded Spatio-temporal Object Affordances,"Physically Grounded Spatio-Temporal
Object Affordances
Hema S. Koppula and Ashutosh Saxena
Department of Computer Science, Cornell University."
de95fa1dd69a2d0d2b76539357062062f8b1e7b8,Face to Age,"Face to Age
Project 1
CS395T - Deep Learning Seminar
Aishwarya Padmakumar, Ashish Bora, Amir Gholaminejad
October 9, 2016
A Century of Portraits is a dataset that contains frontal-facing American high school year-book photos
with labels to indicate the years those photos were taken [2].
In this project we train classifiers to
predict the label, given the image. We used several Deep Neural Network architectures for this task,
ll of which were finetuned with ImageNet pretraining. With VGGNet architecture, we demonstrate
significant improvements in classification accuracy reporting test set accuracy of 67.59% and mean L1
error, as compared to 11.31 % achieved by Ginosar et al. [2]. Further, we show some visualizations of
the trained model to gain insights into the learned model. The code for this project can be found at
https://github.com/AshishBora/face2year.
Introduction
Deep Neural networks have been central to large improvements in several visual learning tasks. Feature
representations learned by deep convolutional neural networks for image classification on large datasets
such as ImageNet [1] have been repeatedly demonstrated to be useful for other tasks [6]. Several down-
stream applications have also greatly benefited from these representations, either when used directly
[9, 10] or with appropriate finetuning [3, 5]."
de0aaf8c6b5dea97327e8ef8060d9a708bf564af,A Benchmark for Iris Location and a Deep Learning Detector Evaluation,"A Benchmark for Iris Location and a Deep
Learning Detector Evaluation
Evair Severo∗, Rayson Laroca∗, Cides S. Bezerra∗, Luiz A. Zanlorensi∗,
Daniel Weingaertner∗, Gladston Moreira† and David Menotti∗
Postgraduate Program in Informatics, Federal University of Paran´a (UFPR), Curitiba, Paran´a, Brazil
Computing Department, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
Email: {ebsevero, rblsantos, csbezerra, lazjunior, daniel,"
dee406a7aaa0f4c9d64b7550e633d81bc66ff451,Content-Adaptive Sketch Portrait Generation by Decompositional Representation Learning,"Content-Adaptive Sketch Portrait Generation by
Decompositional Representation Learning
Dongyu Zhang, Liang Lin, Tianshui Chen, Xian Wu, Wenwei Tan, and Ebroul Izquierdo"
dedbbb6e588e77969ab87571917d4f84a3b1722d,Multimodal Human-Human-Robot Interactions (MHHRI) Dataset for Studying Personality and Engagement,"JOURNAL OF IEEE TRANS. ON AFFECTIVE COMPUTING
Multimodal Human-Human-Robot Interactions
(MHHRI) Dataset for Studying Personality and
Engagement
Oya Celiktutan, Efstratios Skordos and Hatice Gunes"
defcfed9c43bdf8a4388daade4899ef9d3345458,Sistema de reconocimiento multimodal de emociones relacionadas al aprendizaje en dispositivos móviles,"Sistema de reconocimiento multimodal de emociones
relacionadas al aprendizaje en dispositivos móviles
María Lucía Barrón-Estrada, Ramón Zatarain-Cabada,
Claudia Guadalupe Aispuro-Gallegos
Instituto Tecnológico de Culiacán, Culiacán, Sinaloa,
México
{lbarron, rzatarain,
Resumen.  Gran  variedad  de  sistemas  reconocedores  de  emociones  han  sido
implementados,  pero  pocos  han  logrado  aplicarse  en  el  mundo  real  debido  al
elevado costo de la tecnología necesaria y al bajo porcentaje de efectividad del
reconocimiento, cuando no se trabaja con emociones espontáneas. Este artículo
presenta  la  implementación  de  un  sistema  de  reconocimiento  multimodal  de
emociones  usando  dispositivos  móviles  y  la  creación  de  una  base  de  datos
fectiva por medio de una aplicación móvil. El reconocedor puede ser integrado
fácilmente a una aplicación educativa móvil para identificar las emociones de un
usuario mientras éste interactúa con el dispositivo. Las emociones que el sistema
reconoce son compromiso y aburrimiento. La base de datos afectiva fue creada
on emociones espontáneas de estudiantes que interactuaron con una aplicación
móvil  educativa  llamada  Duolingo  y  una  aplicación  móvil  recolectora  de
información  llamada  EmoData.  El  sistema  desarrollado  tiene  un  porcentaje  de"
dedabf9afe2ae4a1ace1279150e5f1d495e565da,Robust Face Recognition With Structurally Incoherent Low-Rank Matrix Decomposition,"Robust Face Recognition With Structurally
Incoherent Low-Rank Matrix Decomposition
Chia-Po Wei, Chih-Fan Chen, and Yu-Chiang Frank Wang"
de7daa206f1dc3d5f83c5342fc08e3e92ddfa126,Index Codes for Multibiometric Pattern Retrieval,"Index Codes for Multibiometric Pattern Retrieval
Aglika Gyaourova, Student Member, IEEE, and Arun Ross, Senior Member, IEEE"
de7a148970881cbd4e6a12b6a014e3dfeee98cc9,D 4 h : Final report on WP 4,"D4h: Final report on WP4
Workpackage 4 Deliverable
Date: 30th January 2008"
de398bd8b7b57a3362c0c677ba8bf9f1d8ade583,Hierarchical Bayesian Theme Models for Multipose Facial Expression Recognition,"Hierarchical Bayesian Theme Models for
Multi-pose Facial Expression Recognition
Qirong Mao, Member, IEEE, Qiyu Rao, Yongbin Yu, and Ming Dong*, Member, IEEE"
def3b2254caea169c5cbc4b771c44f1773c004fd,Matching Adversarial Networks,"Matching Adversarial Networks
Gell´ert M´attyus and Raquel Urtasun
Uber Advanced Technologies Group and University of Toronto"
defa8774d3c6ad46d4db4959d8510b44751361d8,FEBEI - Face Expression Based Emoticon Identification CS - B657 Computer Vision,"FEBEI - Face Expression Based Emoticon Identification
CS - B657 Computer Vision
Nethra Chandrasekaran Sashikar - necsashi
Prashanth Kumar Murali - prmurali
Robert J Henderson - rojahend"
de48bb3a9974f6f1ed2aa36d066150015f9f8647,Ultrasound Image Despeckling using Local Binary Pattern Weighted Linear Filtering,"I.J. Information Technology and Computer Science, 2013, 06, 1-9
Published Online May 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijitcs.2013.06.01
Ultrasound Image Despeckling using Local
Binary Pattern Weighted Linear Filtering
Digital Image Processing Lab, Dept. of Computer Applications, Cochin University of Science and Technology, Kerala,
Simily Joseph, Kannan Balakrishnan
E-mail: {simily.joseph,
India
M.R. Balachandran Nair
Ernakulam Scan Center, Kerala, India
E-mail:
Reji Rajan Varghese
Dept. of Biomedical Engineering, Co operative Medical College, Kerala, India
E-mail:"
de26c1560db47f63ef2dc8171d7c2c52369ffede,Mathematically inspired approaches to face recognition in uncontrolled conditions : super resolution and compressive sensing,"MATHEMATICALLY INSPIRED
APPROACHES TO
FACE RECOGNITION IN
UNCONTROLLED CONDITIONS -
SUPER RESOLUTION AND
COMPRESSIVE SENSING
NADIA AL-HASSAN
Applied Computing Department
The University of Buckingham / United Kingdom
A Thesis
Submitted for the Degree of Doctor of Philosophy in Mathematical
Science to the school of Science and Medicine in the University of
Buckingham
September 2014"
b0c3bc3e3ca143444f5193735f2aad89d1776276,Training Generative Reversible Networks,"Training Generative Reversible Networks
Robin Tibor Schirrmeister 1 2 Patryk Chrab ˛aszcz 2 Frank Hutter 2 Tonio Ball 1"
b08203fca1af7b95fda8aa3d29dcacd182375385,Object and Text-guided Semantics for CNN-based Activity Recognition,"OBJECT AND TEXT-GUIDED SEMANTICS FOR CNN-BASED ACTIVITY RECOGNITION
(cid:63)Sungmin Eum †§, (cid:63)Christopher Reale †, Heesung Kwon†, Claire Bonial †, Clare Voss†
U.S. Army Research Laboratory, Adelphi, MD, USA
§Booz Allen Hamilton Inc., McLean, VA, USA"
b04d4b1e8b510180726f49a66dbaaf23c9ef64a0,Introspective Generative Modeling: Decide Discriminatively,"Introspective Generative Modeling: Decide Discriminatively
Justin Lazarow ∗
Dept. of CSE
Long Jin∗
Dept. of CSE
Zhuowen Tu
Dept. of CogSci"
b00796447d670f9413e831ffb4ed548a380816a2,Servoing across object instances: Visual servoing for object category,"Servoing Across Object Instances: Visual Servoing for Object Category
Harit Pandya1, K Madhava Krishna1 and C. V. Jawahar1"
b008d973ee93fd3b13d1148fb7533dbdbc8374d6,New Representations for Analyzing Motion and Applications,"New Representations for Analyzing Motion and Applications
Ce Liu
Submitted to the Department of Electrical Engineering and Computer Science in partial
fulfillment of the requirements for the degree of
Doctor of Philosophy
Electrical Engineering and Computer Science
t the Massachusetts Institute of Technology
June 2009
(cid:13) 2009 Massachusetts Institute of Technology
All Rights Reserved.
Signature of Author:
Certified by:
Accepted by:
Department of Electrical Engineering and Computer Science
May 1, 2009
William T. Freeman, Professor of EECS
Thesis Supervisor
Terry P. Orlando, Professor of Electrical Engineering
Chair, Department Committee on Graduate Students"
b02342a423eef6e19f473eba26b067405b525f16,Co-occurrence matrix analysis-based semi-supervised training for object detection,"CO-OCCURRENCE MATRIX ANALYSIS-BASED SEMI-SUPERVISED TRAINING FOR
OBJECT DETECTION
Min-Kook Choi1, Jaehyeong Park1, Jihun Jung1, Heechul Jung2, Jin-Hee Lee1,
Woong Jae Won1, Woo Young Jung1, Jincheol Kim3, and Soon Kwon1∗
DGIST, Daegu, Republic of Korea1
KAIST, Daejeon, Republic of Korea2
SK Telecom, Seoul, Republic of Korea3"
b0d607d5e9e79540c9f2673f2224b2d51be3393c,Kernel Truncated Regression Representation for Robust Subspace Clustering,"Kernel Truncated Regression Representation for
Robust Subspace Clustering
Liangli Zhen, Dezhong Peng, Xin Yao"
b09b693708f412823053508578df289b8403100a,Two-Stream SR-CNNs for Action Recognition in Videos,"WANG et al.: TWO-STREAM SR-CNNS FOR ACTION RECOGNITION IN VIDEOS
Two-Stream SR-CNNs for Action
Recognition in Videos
Yifan Wang1
Jie Song1
Limin Wang2
Luc Van Gool2
Otmar Hilliges1
Advanced Interactive Technologies Lab
ETH Zurich
Zurich, Switzerland
Computer Vision Lab
ETH Zurich
Zurich, Switzerland"
b0a376888a33defd6fcfe396a11e6ea6d4f99f0e,Soft Measure of Visual Token Occurrences for Object Categorization,"Soft Measure of Visual Token Occurrences for
Object Categorization
Yanjie Wang, Xiabi Liu(cid:2), and Yunde Jia
Beijing Laboratory of Intelligent Information Technology, School of Computer
Science, Beijing Institute of Technology
Tel.: +86-10-68913447, Fax: +86-10-86343158"
b05ac3b2286c30fcab385f682b3519a823857112,UvA-DARE ( Digital Academic Repository ) Spatial frequency information modulates response inhibition and decision-making processes,"UvA-DARE (Digital Academic Repository)
Spatial frequency information modulates response inhibition and decision-making
processes
Jahfari, S.; Ridderinkhof, K.R.; Scholte, H.S.
Published in:
PLoS One
0.1371/journal.pone.0076467
Link to publication
Citation for published version (APA):
Jahfari, S., Ridderinkhof, K. R., & Scholte, H. S. (2013). Spatial frequency information modulates response
inhibition and decision-making processes. PLoS One, 8(10), e76467. [e76467]. DOI:
0.1371/journal.pone.0076467
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible."
b0fafe26b03243a22e12b021266872afdb96572c,Factors of Transferability for a Generic ConvNet Representation,"Factors of Transferability for a Generic ConvNet Representation
Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, Stefan Carlsson
{azizpour, razavian, sullivan, atsuto,
Computer Vision and Active Perception (CVAP), Royal Institute of Technology (KTH), Stockholm, SE-10044 Sweden
Evidence is mounting that Convolutional Networks (ConvNets) are the most effective representation learning method for visual
recognition tasks. In the common scenario, a ConvNet is trained on a large labeled dataset (source) and the feed-forward units
ctivation of the trained network, at a certain layer of the network, is used as a generic representation of an input image for a
task with relatively smaller training set (target). Recent studies have shown this form of representation transfer to be suitable for a
wide range of target visual recognition tasks. This paper introduces and investigates several factors affecting the transferability of
such representations. It includes parameters for training of the source ConvNet such as its architecture, distribution of the training
data, etc. and also the parameters of feature extraction such as layer of the trained ConvNet, dimensionality reduction, etc. Then,
y optimizing these factors, we show that significant improvements can be achieved on various (17) visual recognition tasks. We
further show that these visual recognition tasks can be categorically ordered based on their distance from the source task such that
correlation between the performance of tasks and their distance from the source task w.r.t. the proposed factors is observed.
Index Terms—Convolutional Neural Networks, Transfer Learning, Representation Learning, Deep Learning, Visual Recognition
I. INTRODUCTION
C ONVOLUTIONAL NETWORKS (ConvNets) trace back
to the early works on digit and character recognition
[11], [23]. Prior to 2012, though, in computer vision field,
neural networks were more renowned for their propensity to"
b0d6e204c36f029300787f6334cb727325f8983a,Neural networks related to dysfunctional face processing in autism spectrum disorder,"Brain Struct Funct
DOI 10.1007/s00429-014-0791-z
O R I G I N A L A R T I C L E
Neural networks related to dysfunctional face processing
in autism spectrum disorder
Thomas Nickl-Jockschat • Claudia Rottschy •
Johanna Thommes • Frank Schneider •
Angela R. Laird • Peter T. Fox • Simon B. Eickhoff
Received: 6 September 2013 / Accepted: 28 April 2014
Ó Springer-Verlag Berlin Heidelberg 2014"
b07582d1a59a9c6f029d0d8328414c7bef64dca0,Employing Fusion of Learned and Handcrafted Features for Unconstrained Ear Recognition,"Employing Fusion of Learned and Handcrafted
Features for Unconstrained Ear Recognition
Maur´ıcio Pamplona Segundo∗†
Earnest E. Hansley∗
Sudeep Sarkar∗‡
October 24, 2017"
b0c651f23516055583060e2197756e1390455de5,Multimodal Verification of Identity for a Realistic Access Control Application,"Multimodal Verification of Identity for a
Realistic Access Control Application
Thesis submitted in partial fulfilment of the requirements for the degree
Doctor Ingeneriae
Mechanical Engineering
Rand Afrikaans University
Supervisor: Professor A.L. Nel
Nele Denys
t the
May 2004"
b0b628bda8a6c4267eeaf91420b8610400ff398f,Intact emotion facilitation for nonsocial stimuli in autism: is amygdala impairment in autism specific for social information?,"Journal of the International Neuropsychological Society (2008), 14, 42–54.
Copyright © 2008 INS. Published by Cambridge University Press. Printed in the USA.
DOI: 10.10170S1355617708080107
Intact emotion facilitation for nonsocial stimuli in autism:
Is amygdala impairment in autism specific
for social information?
MIKLE SOUTH,1,2 SALLY OZONOFF,3 YANA SUCHY,1,4 RAYMOND P. KESNER,1,4
WILLIAM M. McMAHON,2,4 and JANET E. LAINHART2,4
Department of Psychology, University of Utah, Salt Lake City, Utah
Department of Psychiatry, University of Utah School of Medicine and Utah Autism Research Project, Salt Lake City, Utah
M.I.N.D. Institute, Department of Psychiatry and Behavioral Sciences, University of California–Davis, Sacramento, California
The Brain Institute at the University of Utah, Salt Lake City, Utah
(Received April 25, 2007; Final Revision July 11, 2007; Accepted July 18, 2007)"
b0c379f740292ad2cad2c990a445f69167e18894,Knowledge distillation using unlabeled mismatched images,"Workshop track - ICLR 2017
KNOWLEDGE DISTILLATION USING UNLABELED MIS-
MATCHED IMAGES
Mandar Kulkarni(*), Kalpesh Patil(**), Shirish Karande(*)
TCS Innovation Labs, Pune, India (*), IIT Bombay, Mumbai, India(**)"
b0771b7ca52022b37a563464f823af67c0b36c03,Image Retrieval Technique Using Local Binary Pattern (LBP),"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Image Retrieval Technique Using Local Binary
Pattern (LBP)
Miss. Priyanka Pawar1, P.P.Belagali2
P.G Student, Department of Electronics Engineering, Shivaji University, Dr.J.J.M.C.O.E Jaysingpur, Kolhapur, India
Associate Professor, Department of Electronics Engineering, Shivaji University, Dr.J.J.M.C.O.E Jaysingpur, Kolhapur, India"
b07546f26a99b61c5045e313bc024b0fe7de590a,Bilinear CNNs for Fine-grained Visual Recognition,"Bilinear CNNs for Fine-grained Visual
Recognition
Tsung-Yu Lin
Aruni RoyChowdhury
Subhransu Maji"
b0c1615ebcad516b5a26d45be58068673e2ff217,How Image Degradations Affect Deep CNN-Based Face Recognition?,"How Image Degradations Affect Deep CNN-based Face
Recognition?
S¸amil Karahan1 Merve Kılınc¸ Yıldırım1 Kadir Kırtac¸1 Ferhat S¸ ¨ukr¨u Rende1
G¨ultekin B¨ut¨un1Hazım Kemal Ekenel2"
b0de0892d2092c8c70aa22500fed31aa7eb4dd3f,A Robust and Efficient Video Representation for Action Recognition,"(will be inserted by the editor)
A robust and efficient video representation for action recognition
Heng Wang · Dan Oneata · Jakob Verbeek · Cordelia Schmid
Received: date / Accepted: date"
b0623c1d8493d273d704ba1d0413db0de579ae77,Attributes-Based Re-identification,"Attributes-based Re-Identification
Ryan Layne, Timothy M. Hospedales and Shaogang Gong"
b0158b26f01d5fa18aac51ece055cad9a12f6d87,Memory-based Gait Recognition,"Pages 82.1-82.12
DOI: https://dx.doi.org/10.5244/C.30.82"
b0e7c177084be76fb73df3c4bcf1846676a2d615,Joint action recognition and pose estimation from video,"Joint Action Recognition and Pose Estimation From Video
Bruce Xiaohan Nie, Caiming Xiong and Song-Chun Zhu
Center for Vision, Cognition, Learning and Art
University of California, Los Angeles, USA"
b073313325b6482e22032e259d7311fb9615356c,Robust and accurate cancer classification with gene expression profiling,"Robust and Accurate Cancer Classification with Gene Expression Profiling
Haifeng Li
Keshu Zhang
Tao Jiang
Dept. of Computer Science
Human Interaction Research Lab
Dept. of Computer Science
University of California
Riverside, CA 92521
Motorola, Inc.
Tempe, AZ 85282
University of California
Riverside, CA 92521"
b03d5ed5b3f253703fa37d6445fab0e7cdf38ba1,Separate-Group Covariance Estimation With Insufficient Data for Object Recognition,"Separate-Group Covariance Estimation With Insufficient Data for
Object Recognition
Carlos Eduardo Thomaz1, Raul Queiroz Feitosa2, Álvaro Veiga3
,2,3Catholic University of Rio de Janeiro
Department of Electrical Engineering
Department of Computer Engineering
University of Rio de Janeiro
r. Marquês de São Vicente 225,22453-900, Rio de
r. São Francisco Xavier, 524, 20559-900, Rio de
Janeiro, Brazil
Janeiro, Brazil"
a6e7513371a49cd7b8b30bb444e8fc448c5326cb,Simple online and realtime tracking,"SIMPLE ONLINE AND REALTIME TRACKING
Alex Bewley†, Zongyuan Ge†, Lionel Ott(cid:5), Fabio Ramos(cid:5), Ben Upcroft†
Queensland University of Technology†, University of Sydney(cid:5)"
a66373beaad40fb5a8e2e1b42c5a2213b166a55c,Childhood abuse is related to working memory impairment for positive emotion in female university students.,"Childhood abuse is related to working memory impairment for positive
emotion in female university students
Cromheeke S, Herpoel LA, Mueller SC.
014; 19(1):38-48
ARTICLE IDENTIFIERS
DOI: 10.1177/1077559513511522
PMID: 24271026
PMCID: not available
JOURNAL IDENTIFIERS
LCCN: not available
pISSN: 1077-5595
eISSN: 1552-6119
OCLC ID: 30832620
CONS ID: sn 94001296
US National Library of Medicine ID: 9602869
This article was identified from a query of the SafetyLit database.
Powered by TCPDF (www.tcpdf.org)"
a66d89357ada66d98d242c124e1e8d96ac9b37a0,Failure Detection for Facial Landmark Detectors,"Failure Detection for Facial Landmark Detectors
Andreas Steger, Radu Timofte, and Luc Van Gool
Computer Vision Lab, D-ITET, ETH Zurich, Switzerland
{radu.timofte,"
a62ca056821a3179b116662b28338433ba5b5e7d,How far can we go without convolution: Improving fully-connected networks,"Under review as a conference paper at ICLR 2016
HOW FAR CAN WE GO WITHOUT CONVOLUTION: IM-
PROVING FULLY-CONNECTED NETWORKS
Zhouhan Lin & Roland Memisevic
Universit´e de Montr´eal
Canada
{zhouhan.lin,
Kishore Konda
Goethe University Frankfurt
Germany"
a649bc66524e5e61e4d34cc00159099b6b58db2f,Large-Scale Image Geolocalization,"Chapter 3
Large-Scale Image Geolocalization
James Hays and Alexei A. Efros"
a65c76169bdb8479353806556f61bf94fdec7e10,Online Object Tracking With Sparse Prototypes,"Online Object Tracking With Sparse Prototypes
Dong Wang, Huchuan Lu, Member, IEEE, and Ming-Hsuan Yang, Senior Member, IEEE"
a6f477f3c1cb2ab230fe8d89c31ae6af0b9c2346,Relevance Subject Machine: A Novel Person Re-identification Framework,"Relevance Subject Machine: A Novel Person
Re-identification Framework
Igor Fedorov, Student Member, IEEE, Ritwik Giri, Student Member, IEEE, Bhaskar D. Rao, Fellow, IEEE,
Truong Q. Nguyen, Fellow, IEEE"
a63638b26d36bab8db10bd95fb287c727bab33ec,Joint Sparse and Low-Rank Representation for Emotion Recognition,"MAY 2014
Joint Sparse and Low-Rank Representation for
Emotion Recognition
Xiang Xiang, Fabian Prada, Hao Jiang"
a60146c458adfe9207f015d7a77cb7dfb54f744f,Understanding Dynamic Social Grouping Behaviors of Pedestrians,"Understanding Dynamic Social Grouping
Behaviors of Pedestrians
Linan Feng, Student Member, IEEE, and Bir Bhanu, Fellow, IEEE"
a608c5f8fd42af6e9bd332ab516c8c2af7063c61,Age Estimation via Grouping and Decision Fusion,"Age Estimation via Grouping and Decision Fusion
Kuan-Hsien Liu, Member, IEEE, Shuicheng Yan, Senior Member, IEEE,
nd C.-C. Jay Kuo, Fellow, IEEE"
a6eb6ad9142130406fb4ffd4d60e8348c2442c29,"Video Description: A Survey of Methods, Datasets and Evaluation Metrics","Video Description: A Survey of Methods,
Datasets and Evaluation Metrics
Nayyer Aafaq, Syed Zulqarnain Gilani, Wei Liu, and Ajmal Mian"
a65e953df1dbc007862f8eaa8c12ceb225d15837,Robust Head-shoulder Detection using Deformable Part-based Models,"Robust Head-shoulder Detection using Deformable Part-based Models
Enes Dayangac, Christian Wiede, Julia Richter and Gangolf Hirtz
Faculty of Electrical Engineering and Information Technology, Technische Universit¨at Chemnitz,
Chemnitz, Germany
Keywords:
Person Detection, Head-shoulder Detection, Ambient Assisted Living, Latent SVM, DPM, ACF-Detector."
a618cc9c513762d4eb5db2f7f7b686e7e2b758ca,Learning Semi-Riemannian Metrics for Semisupervised Feature Extraction,"Learning Semi-Riemannian Metrics
for Semisupervised Feature Extraction
Wei Zhang, Zhouchen Lin, Senior Member, IEEE, and Xiaoou Tang, Fellow, IEEE"
a67e7ca0c7e1e3020169b5c59dc492e9f62f0022,3d Face Recognition Performance under Adversarial Conditions,
a6404e91af8d1644aa7eea307ffceefa715dd7ea,Human Motion Capture Using a Drone,"Human Motion Capture Using a Drone
Xiaowei Zhou, Sikang Liu, Georgios Pavlakos, Vijay Kumar, Kostas Daniilidis"
a67d54cf585c9491ab8a3e2d58d9c4b223359602,Spatial information and end-to-end learning for visual recognition. (Informations spatiales et apprentissage bout-en-bout pour la reconnaissance visuelle),"Spatial information and end-to-end learning for visual
recognition
Mingyuan Jiu
To cite this version:
Mingyuan Jiu. Spatial information and end-to-end learning for visual recognition. Computer Science
[cs]. INSA de Lyon, 2014. English. <NNT : 2014ISAL0038>. <tel-01127462>
HAL Id: tel-01127462
https://tel.archives-ouvertes.fr/tel-01127462
Submitted on 7 Mar 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
a6a6cfae45e8633c01793debf43592b7d515f65d,From ImageNet to Mining: Adapting Visual Object Detection with Minimal Supervision,"From ImageNet to Mining: Adapting Visual
Object Detection with Minimal Supervision
Alex Bewley and Ben Upcroft"
a6590c49e44aa4975b2b0152ee21ac8af3097d80,3D Interpreter Networks for Viewer-Centered Wireframe Modeling,"https://doi.org/10.1007/s11263-018-1074-6
D Interpreter Networks for Viewer-Centered Wireframe Modeling
Jiajun Wu1 · Tianfan Xue2 · Joseph J. Lim3 · Yuandong Tian4 ·
Joshua B. Tenenbaum1 · Antonio Torralba1 · William T. Freeman1,5
Received: date / Accepted: date"
a694180a683f7f4361042c61648aa97d222602db,Face recognition using scattering wavelet under Illicit Drug Abuse variations,"Face Recognition using Scattering Wavelet under Illicit Drug Abuse Variations
Prateekshit Pandey, Richa Singh, Mayank Vatsa
fprateekshit12078, rsingh,
IIIT-Delhi India"
a6ce2f0795839d9c2543d64a08e043695887e0eb,Driver Gaze Region Estimation Without Using Eye Movement,"Driver Gaze Region Estimation
Without Using Eye Movement
Lex Fridman, Philipp Langhans, Joonbum Lee, and Bryan Reimer
Massachusetts Institute of Technology (MIT)"
a6161e53d77d7cbd6e69d1b84e6d03d7041cb93e,Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime,"Dark Model Adaptation: Semantic Image Segmentation from Daytime
to Nighttime
Dengxin Dai1 and Luc Van Gool1,2"
a6eb8cb1c35d0f53f8d2c9a404e374c01275544b,NovaSearch on Medical ImageCLEF 2013,"NovaSearch on medical ImageCLEF 2013
Andr´e Mour˜ao, Fl´avio Martins and Jo˜ao Magalh˜aes
Universidade Nova de Lisboa, Faculdade de Ciˆencias e Tecnologia,
Caparica, Portugal,"
a6ebe013b639f0f79def4c219f585b8a012be04f,Facial Expression Recognition Based on Hybrid Approach,"Facial Expression Recognition Based on Hybrid
Approach
Md. Abdul Mannan, Antony Lam, Yoshinori Kobayashi, and Yoshinori Kuno
Graduate School of Science and Engineering, Saitama University,
55 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
E-mail"
a6574d111bfb12d6a9988bdbbf24639d3c4534ec,Image denoising: Can plain neural networks compete with BM3D?,"Image denoising: Can plain Neural Networks compete with BM3D?
Harold C. Burger, Christian J. Schuler, and Stefan Harmeling
Max Planck Institute for Intelligent Systems, T¨ubingen, Germany
http://people.tuebingen.mpg.de/burger/neural_denoising/"
b98aec5bbe7116fa3ae5f9b4d77cb1f1141eaabd,Appearance-Based 3D Upper-Body Pose Estimation and Person Re-identification on Mobile Robots,"Appearance-Based 3D Upper-Body Pose Estimation
nd Person Re-Identification on Mobile Robots
Christoph Weinrich, Michael Volkhardt, Horst-Michael Gross
Neuroinformatics and Cognitive Robotics Lab
Ilmenau University of Technology
Ilmenau, Germany"
b9bd9cab426f4d4a0b0d0077f6d9dca2ec01ce3c,Propositionalisation of Multi-instance Data Using Random Forests,"Propositionalisation of Multi-instance Data
using Random Forests
Eibe Frank and Bernhard Pfahringer
Department of Computer Science, University of Waikato"
b9953824b3d4cd2be77ecbc5db3f7dec3dfa031e,Guided Attention for Large Scale Scene Text Verification,"Large Scale Scene Text Verification with Guided
Attention
Dafang He1(cid:63), Yeqing Li2∗, Alexander Gorban2, Derrall Heath2, Julian Ibarz2,
Qian Yu2, Daniel Kifer1, C. Lee Giles1
The Pennsylvania State University1, Google Inc2."
b9fb66f09b358a4ce167b54eed8c596772a392d9,Modal Regression based Atomic Representation for Robust Face Recognition,"Modal Regression based Atomic Representation for
Robust Face Recognition
Yulong Wang, Yuan Yan Tang, Life Fellow, IEEE, Luoqing Li, and Hong Chen"
b9696bdba6e16959258bad17ce26e6a643be5faf,Using Photometric Stereo for Face Recognition,"International Journal of Bio-Science and Bio-Technology
Vol. 3, No. 3, September, 2011
Using Photometric Stereo for Face Recognition
Gary A. Atkinson and Melvyn L. Smith
University of the West of England, Bristol, BS16 1QY, UK"
b97f694c2a111b5b1724eefd63c8d64c8e19f6c9,Group Affect Prediction Using Multimodal Distributions,"Group Affect Prediction Using Multimodal Distributions
Saqib Nizam Shamsi
Aspiring Minds
Bhanu Pratap Singh
Univeristy of Massachusetts, Amherst
Manya Wadhwa
Johns Hopkins University"
b94e57ee9278f06c65a96ce1b586cb7a5b2b7fbb,Group Re-identification via Unsupervised Transfer of Sparse Features Encoding,"Group Re-Identification via
Unsupervised Transfer of Sparse Features Encoding
Giuseppe Lisanti∗,1, Niki Martinel∗,2, Alberto Del Bimbo1 and Gian Luca Foresti2
MICC - University of Firenze, Italy
AViReS Lab - University of Udine, Italy"
b9305c065b3c95fd0844d16a09fb9cc7c321cf58,Detecting Humans in Dense Crowds Using Locally-Consistent Scale Prior and Global Occlusion Reasoning,"Detecting Humans in Dense Crowds Using
Locally-Consistent Scale Prior and Global
Occlusion Reasoning
Haroon Idrees, Member, IEEE, Khurram Soomro, Member, IEEE, and Mubarak Shah, Fellow, IEEE"
b9d0774b0321a5cfc75471b62c8c5ef6c15527f5,Fishy Faces: Crafting Adversarial Images to Poison Face Authentication,"Fishy Faces: Crafting Adversarial Images to Poison Face Authentication
Giuseppe Garofalo
Vera Rimmer
Tim Van hamme
imec-DistriNet, KU Leuven
imec-DistriNet, KU Leuven
imec-DistriNet, KU Leuven
Davy Preuveneers
Wouter Joosen
imec-DistriNet, KU Leuven
imec-DistriNet, KU Leuven"
b9cad920a00fc0e997fc24396872e03f13c0bb9c,Face liveness detection under bad illumination conditions,"FACE LIVENESS DETECTION UNDER BAD ILLUMINATION CONDITIONS
Bruno Peixoto, Carolina Michelassi, and Anderson Rocha
University of Campinas (Unicamp)
Campinas, SP, Brazil"
b908edadad58c604a1e4b431f69ac8ded350589a,Deep Face Feature for Face Alignment,"Deep Face Feature for Face Alignment
Boyi Jiang, Juyong Zhang, Bailin Deng, Yudong Guo and Ligang Liu"
b9f2a755940353549e55690437eb7e13ea226bbf,Unsupervised Feature Learning from Videos for Discovering and Recognizing Actions,"Unsupervised Feature Learning from Videos for Discovering and Recognizing Actions
Carolina Redondo-Cabrera
Roberto J. López-Sastre"
b9e82ee9bb4cf016b5ed44b7acd2b42e1a5a6be2,Face recognition by applying wavelet subband representation and kernel associative memory,"Face Recognition by Applying Wavelet Subband
Representation and Kernel Associative Memory
Bai-Ling Zhang, Haihong Zhang, and Shuzhi Sam Ge, Senior Member, IEEE"
b941d4a85be783a6883b7d41c1afa7a9db451831,Radiofrequency ablation planning for cardiac arrhythmia treatment using modeling and machine learning approaches,"Radiofrequency ablation planning for cardiac
rrhythmia treatment using modeling and machine
learning approaches
Roc´ıo Cabrera Lozoya
To cite this version:
Roc´ıo Cabrera Lozoya. Radiofrequency ablation planning for cardiac arrhythmia treatment
using modeling and machine learning approaches. Other. Universit´e Nice Sophia Antipolis,
015. English. <NNT : 2015NICE4059>. <tel-01206478v2>
HAL Id: tel-01206478
https://tel.archives-ouvertes.fr/tel-01206478v2
Submitted on 15 Dec 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,"
b9b7b37d7edf4482a6f440e282c3418ab1913afa,ThiNet: Pruning CNN Filters for a Thinner Net.,"ACCEPTED BY IEEE TRANS. PAMI
ThiNet: Pruning CNN Filters for a Thinner Net
Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie, Jianxin Wu, Member, IEEE,
nd Weiyao Lin, Senior Member, IEEE"
b92a057606a47eb7de6ecc180e4dbf53c4a8d4b7,Face Recognition Based on 2D and 3D Features,"Face Recognition Based on 2D and 3D Features
Stefano Arca, Ra(cid:11)aella Lanzarotti, and Giuseppe Lipori
Dipartimento di Scienze dell’Informazione
Universit(cid:18)a degli Studi di Milano
Via Comelico, 39/41 20135 Milano, Italy
farca, lanzarotti,"
b9cedd1960d5c025be55ade0a0aa81b75a6efa61,Inexact Krylov Subspace Algorithms for Large Matrix Exponential Eigenproblem from Dimensionality Reduction,"INEXACT KRYLOV SUBSPACE ALGORITHMS FOR LARGE
MATRIX EXPONENTIAL EIGENPROBLEM FROM
DIMENSIONALITY REDUCTION
GANG WU∗, TING-TING FENG† , LI-JIA ZHANG‡ , AND MENG YANG§"
b95acfe00686cc6f6526fcd1f30b6f38061d3a29,Revisiting Multiple-Instance Learning Via Embedded Instance Selection,"Revisiting Multiple-Instance Learning via
Embedded Instance Selection
James Foulds and Eibe Frank
Department of Computer Science, University of Waikato, New Zealand"
b971266b29fcecf1d5efe1c4dcdc2355cb188ab0,On the Reconstruction of Face Images from Deep Face Templates.,"MAI et al.: ON THE RECONSTRUCTION OF FACE IMAGES FROM DEEP FACE TEMPLATES
On the Reconstruction of Face Images from
Deep Face Templates
Guangcan Mai, Kai Cao, Pong C. Yuen∗, Senior Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
a14260cd8c607afc6a9bd0c4df2ee22162e6d8c0,Discriminative Dictionary Learning With Ranking Metric Embedded for Person Re-Identification,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
a13a4e4cc8f4744b40668fe7cca660ae0e88537d,Explorer Multi 30 K : Multilingual English-German Image Descriptions,"Multi30K: Multilingual English-German Image Descriptions
Citation for published version:
Elliott, D, Frank, S, Sima'an, K & Specia, L 2016, Multi30K: Multilingual English-German Image
Descriptions. in Proceedings of the 5th Workshop on Vision and Language, hosted by the 54th Annual
Meeting of the Association for Computational Linguistics, 2016, August 12, Berlin, Germany.
Association for Computational Linguistics (ACL), pp. 70-74.
Link:
Link to publication record in Edinburgh Research Explorer
Document Version:
Publisher's PDF, also known as Version of record
Published In:
Proceedings of the 5th Workshop on Vision and Language, hosted by the 54th Annual Meeting of the
Association for Computational Linguistics, 2016, August 12, Berlin, Germany
General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
nd / or other copyright owners and it is a condition of accessing these publications that users recognise and
bide by the legal requirements associated with these rights.
Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
ontent complies with UK legislation. If you believe that the public display of this file breaches copyright please"
a11600deb182677f4fe586fcea59f10d032a6c6f,Active Appearance Models with Rotation Invariant Kernels,"Active Appearance Models with Rotation Invariant Kernels
Onur C. Hamsici and Aleix M. Martinez
Department of Electrical and Computer Engineering
Ohio State University, Columbus, OH 43210"
a158c1e2993ac90a90326881dd5cb0996c20d4f3,Symmetry as an Intrinsically Dynamic Feature,"OPEN ACCESS
ISSN 2073-8994
Article
Vito Di Gesu 1,2,†, Marco E. Tabacchi 1,3,* and Bertrand Zavidovique 4
DMA, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Italy
CITC, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Itlay
Istituto Nazionale di Ricerche Demopolis, via Col. Romey 7, 91100 Trapani, Italy
IEF, Université Paris IX–Orsay, Paris, France; E-Mail: (B.Z.)
Deceased on 15 March 2009.
* Author to whom correspondence should be addressed; E-Mail:
Received: 4 March 2010; in revised form: 23 March 2010 / Accepted: 29 March 2010 /
Published: 1 April 2010"
a1e198454bd0868b4da9bca7a35218dd235cfdda,3d‐facial Expression Synthesis and Its Application to Face Recognition Systems,"D‐Facial Expression Synthesis and its Application to Face Recognition Systems
Leonel Ramírez‐Valdez1, Rogelio Hasimoto‐Beltran2
,2Centro de Investigación en Matemáticas(CIMAT)
Jalisco s/n, Col. Mineral de Valenciana, Guanajuato, Gto., México 36240"
a15f4e3adb56dbbdd6f922489efef48fc5efa003,Grounding Semantic Roles in Images,"Grounding Semantic Roles in Images
Carina Silberer†♣
Manfred Pinkal†
Department of Computational Linguistics
Saarland University, Saarbr¨ucken, Germany
♣Universitat Pompeu Fabra
Barcelona, Spain"
a15d9d2ed035f21e13b688a78412cb7b5a04c469,Object Detection Using Strongly-Supervised Deformable Part Models,"Object Detection Using
Strongly-Supervised Deformable Part Models
Hossein Azizpour1 and Ivan Laptev2
Computer Vision and Active Perception Laboratory (CVAP), KTH, Sweden
INRIA, WILLOW, Laboratoire d’Informatique de l’Ecole Normale Superieure"
a1b1442198f29072e907ed8cb02a064493737158,Crowdsourcing Facial Responses to Online Videos,"Crowdsourcing Facial Responses
to Online Videos
Daniel McDuff, Student Member, IEEE, Rana El Kaliouby, Member, IEEE, and
Rosalind W. Picard, Fellow, IEEE"
a125bc46fee1bd170a0654b8856d3b78d62e9d29,Learning weighted sparse representation of encoded facial normal information for expression-robust 3D face recognition,"Learning Weighted Sparse Representation of Encoded Facial Normal
Information for Expression-Robust 3D Face Recognition
Huibin Li1,2, Di Huang1,2, Jean-Marie Morvan1,3,4, Liming Chen1,2
Universit´e de Lyon, CNRS, 2Ecole Centrale de Lyon, LIRIS UMR5205, F-69134, Lyon, France
Universit´e Lyon 1, Institut Camille Jordan, 43 blvd. du 11 Nov. 1918, F-69622 Villeurbanne - Cedex, France
King Abdullah University of Science and Technology, GMSV Research Center, Bldg 1, Thuwal 23955-6900, Saudi Arabia"
a175f20189f028a1420b76ae42f6dfe99d8d6847,Where and Why Are They Looking ? Jointly Inferring Human Attention and Intentions in Complex Tasks,"Where and Why Are They Looking? Jointly Inferring Human Attention and
Intentions in Complex Tasks
Ping Wei1,2, Yang Liu2, Tianmin Shu2, Nanning Zheng1, and Song-Chun Zhu2
School of Electronic and Information Engineering, Xi’an Jiaotong University, China
Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles"
a102edaa9fd458316637ce51a0b7aba2ee651637,Learning Human Poses from Actions,"ADITYA, JAWAHAR, PAWAN: LEARNING HUMAN POSES FROM ACTIONS
Learning Human Poses from Actions
IIIT Hyderabad
University of Oxford &
The Alan Turing Institute
Aditya Arun1
C.V. Jawahar1
M. Pawan Kumar2"
a1aac8e95cd262f974b26374ec8fe35c0f000185,Transferrable Feature and Projection Learning with Class Hierarchy for Zero-Shot Learning,"IJCV manuscript No.
(will be inserted by the editor)
Transferrable Feature and Projection Learning with Class Hierarchy for
Zero-Shot Learning
Aoxue Li · Zhiwu Lu · Jiechao Guan · Tao Xiang · Liwei Wang · Ji-Rong Wen
Received: date / Accepted: date"
a15c728d008801f5ffc7898568097bbeac8270a4,ForgetIT Deliverable Template,"www.forgetit-project.eu
ForgetIT
Concise Preservation by Combining Managed Forgetting
nd Contextualized Remembering
Grant Agreement No. 600826
Deliverable D4.4
Work-package
Deliverable
Deliverable Leader
Quality Assessor
Dissemination level
Delivery date in Annex I
Actual delivery date
Revisions
Status
Keywords
Information Consolidation and Con-
entration
D4.4:
Information analysis, consolidation"
a1e1bd4dacddc703a236681e987a09601ee1016d,Embedding Visual Hierarchy With Deep Networks for Large-Scale Visual Recognition,"Embedding Visual Hierarchy with Deep Networks
for Large-Scale Visual Recognition
Tianyi Zhao, Baopeng Zhang, Wei Zhang, Ning Zhou, Jun Yu, Jianping Fan"
a19f08d7b1ce8b451df67ec125dd9254b5a05d95,3D Face Recognition Using Multiview Keypoint Matching,"009 Advanced Video and Signal Based Surveillance
D Face Recognition Using Multiview Keypoint Matching
Michael Mayo, Edmond Zhang
Department of Computer Science, University of Waikato, New Zealand
{mmayo,"
a1669fa7d3d8f0c0cafe770c79007949cd32b245,Deep Metric Learning with BIER: Boosting Independent Embeddings Robustly,"TPAMI SUBMISSION
Deep Metric Learning with BIER:
Boosting Independent Embeddings Robustly
Michael Opitz, Georg Waltner, Horst Possegger, and Horst Bischof"
a147cec1434753777b3651101bdbda1489b09fd4,Individual differences in shifting decision criterion: a recognition memory study.,"Mem Cogn (2012) 40:1016–1030
DOI 10.3758/s13421-012-0204-6
Individual differences in shifting decision criterion:
A recognition memory study
Elissa M. Aminoff & David Clewett & Scott Freeman &
Amy Frithsen & Christine Tipper & Arianne Johnson &
Scott T. Grafton & Michael B. Miller
Published online: 4 May 2012
# Psychonomic Society, Inc. 2012"
a157ebc849d57ccff00a52a68b24e4ac8eba9536,The Contextual Loss for Image Transformation with Non-aligned Data,"The Contextual Loss for Image Transformation
with Non-Aligned Data
Roey Mechrez(cid:63) , Itamar Talmi(cid:63), Lihi Zelnik-Manor
Technion - Israel Institute of Technology
Fig. 1. Our Contextual loss is effective for many image transformation tasks: It can
make a Trump cartoon imitate Ray Kurzweil, give Obama some of Hillary’s features,
nd, turn women more masculine or men more feminine. Mutual to these tasks is the
bsence of ground-truth targets that can be compared pixel-to-pixel to the generated
images. The Contextual loss provides a simple solution to all of these tasks."
a1132e2638a8abd08bdf7fc4884804dd6654fa63,Real-Time Video Face Recognition for Embedded Devices,"Real-Time Video Face Recognition
for Embedded Devices
Gabriel Costache, Sathish Mangapuram, Alexandru
Drimbarean, Petronel Bigioi and Peter Corcoran
Tessera, Galway,
Ireland
. Introduction
This  chapter  will  address  the  challenges  of  real-time  video  face  recognition  systems
implemented  in  embedded  devices.  Topics  to  be  covered  include:  the  importance  and
hallenges of video face recognition in real life scenarios, describing a general architecture of
generic  video  face  recognition  system  and  a  working  solution  suitable  for  recognizing
faces  in  real-time  using  low  complexity  devices.  Each  component  of  the  system  will  be
described  together  with  the  system’s  performance  on  a  database  of  video  samples  that
resembles real life conditions.
. Video face recognition
Face recognition remains a very active topic in computer vision and receives attention from
large  community  of  researchers  in  that  discipline.  Many  reasons  feed  this  interest;  the
main being  the wide range of commercial, law enforcement and security applications that
require  authentication.  The  progress  made  in  recent  years  on  the  methods  and  algorithms
for data processing as well as the availability of new technologies makes it easier to study"
a19de85fa1533a1a1929b98b5fc3b1fb618dc668,Towards Improving Abstractive Summarization via Entailment Generation,
a15663e0c0a2427ac4da5161e4ed75d331a5a2be,Streaming spectral clustering,"Streaming Spectral Clustering
Shinjae Yoo
Computational Science Center
Brookhaven National Laboratory
Upton, New York 11973-5000
Email:
Hao Huang
Machine Learning Laboratory
General Electric Global Research
San Ramon, CA 94583
Email:
Shiva Prasad Kasiviswanathan
Samsung Research America
Mountain View, CA 94043
Email:"
a14ae81609d09fed217aa12a4df9466553db4859,Face Identification Using Large Feature Sets,"REVISED VERSION, JUNE 2011
Face Identification Using Large Feature Sets
William Robson Schwartz, Huimin Guo, Jonghyun Choi, and Larry S. Davis, Fellow, IEEE"
a1f1120653bb1bd8bd4bc9616f85fdc97f8ce892,Latent Embeddings for Zero-Shot Classification,"Latent Embeddings for Zero-shot Classification
Yongqin Xian1, Zeynep Akata1, Gaurav Sharma1,2,∗, Quynh Nguyen3, Matthias Hein3 and Bernt Schiele1
MPI for Informatics
IIT Kanpur
Saarland University"
a10f734e30d8dcb8506c9ea5b1074e6c668904e2,Learning Features and Parts for Fine-Grained Recognition,"Learning Features and Parts for Fine-Grained
Recognition
(Invited Paper)
Jonathan Krause∗, Timnit Gebru∗, Jia Deng †, Li-Jia Li ‡, Li Fei-Fei∗
Stanford University: {jkrause, tgebru,
University of Michigan:
Yahoo! Research:"
a1af05502eac70296ee22e5ab7e066420f5fe447,A Probabilistic Approach for Breast Boundary Extraction in Mammograms,"Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 408595, 19 pages
http://dx.doi.org/10.1155/2013/408595
Research Article
A Probabilistic Approach for Breast Boundary
Extraction in Mammograms
Hamed Habibi Aghdam, Domenec Puig, and Agusti Solanas
Department of Computer Engineering and Mathematics, Rovira i Virgili University, 43007 Tarragona, Spain
Correspondence should be addressed to Domenec Puig;
Received 31 May 2013; Revised 21 August 2013; Accepted 16 September 2013
Academic Editor: Reinoud Maex
Copyright © 2013 Hamed Habibi Aghdam et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The extraction of the breast boundary is crucial to perform further analysis of mammogram. Methods to extract the breast boundary
an be classified into two categories: methods based on image processing techniques and those based on models. The former use
image transformation techniques such as thresholding, morphological operations, and region growing. In the second category, the
oundary is extracted using more advanced techniques, such as the active contour model. The problem with thresholding methods
is that it is a hard to automatically find the optimal threshold value by using histogram information. On the other hand, active
ontour models require defining a starting point close to the actual boundary to be able to successfully extract the boundary. In this"
a1c6f88330762cc97f26585c124c6b3ac791eb89,Confidence Sets for Fine-Grained Categorization and Plant Species Identification,"Int J Comput Vis
DOI 10.1007/s11263-014-0743-3
Confidence Sets for Fine-Grained Categorization and Plant
Species Identification
Asma Rejeb Sfar · Nozha Boujemaa · Donald Geman
Received: 1 January 2014 / Accepted: 20 June 2014
© Springer Science+Business Media New York 2014"
a18c8f76f2599d6d61f26cb1d4025ea386919dfe,Video Event Detection: From Subvolume Localization To Spatio-Temporal Path Search.,"This document is downloaded from DR-NTU, Nanyang Technological
University Library, Singapore.
Title
Video event detection : from subvolume localization to
spatio-temporal path search
Author(s)
Tran, Du; Yuan, Junsong; Forsyth, David
Citation
Tran, D., Yuan, J., & Forsyth, D. (2014). Video Event
Detection: From Subvolume Localization to
Spatiotemporal Path Search. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(2), 404-
http://hdl.handle.net/10220/19322
Rights
© 2014 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other
uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any"
a1b7b23bd8f2b2ef37a9113e6b8499f0069aac85,Performance assessment of face recognition using super-resolution,"Performance Assessment of Face Recognition Using
Super-Resolution
Shuowen Hu
Robert Maschal
S. Susan Young
U.S. Army Research Laboratory
U.S. Army Research Laboratory
U.S. Army Research Laboratory
800 Powder Mill Rd.
Adelphi, MD 20783
(301)394-2526
800 Powder Mill Rd.
Adelphi, MD 20783
(301)394-0437
800 Powder Mill Rd.
Adelphi, MD 20783
(301)394-0230
Tsai Hong Hong
Jonathon P. Phillips
National Institute of Standards and"
a120cac99c85548d0749dd83b0450520949e6474,Unsupervised Eye Pupil Localization through Differential Geometry and Local Self-Similarity Matching,"Unsupervised Eye Pupil Localization through Differential
Geometry and Local Self-Similarity Matching
Marco Leo1*, Dario Cazzato1,2, Tommaso De Marco1, Cosimo Distante1
National Research Council of Italy, Institute of Optics, Arnesano, Lecce, Italy, 2 Faculty of Engineering, University of Salento, Lecce, Italy"
a1030e6e0e6995768dbcafedc712a59db090d2b4,Bayesian Sparsification of Recurrent Neural Networks,"Bayesian Sparsification of Recurrent Neural Networks
Ekaterina Lobacheva * 1 2 Nadezhda Chirkova * 1 3 Dmitry Vetrov 1 4"
a11a63e00c0e587adf4efc1425c0651c242263b7,Two More Strategies to Speed Up Connected Components Labeling Algorithms,"Two More Strategies to Speed Up Connected
Components Labeling Algorithms
Federico Bolelli, Michele Cancilla, Costantino Grana
Dipartimento di Ingegneria “Enzo Ferrari”
Universit`a degli Studi di Modena e Reggio Emilia
Via Vivarelli 10, Modena MO 41125, Italy"
a11f5e74b13a6353d14e024d06a902b9afa728b3,Yum-me: Personalized Healthy Meal Recommender System,"Yum-me: Personalized Healthy Meal Recommender System
Longqi Yang
Cornell Tech
Nicola Dell
Cornell Tech
Cheng-Kang Hsieh
Serge Belongie
Cornell Tech
Hongjian Yang
Cornell Tech
Deborah Estrin
Cornell Tech"
a1e97c4043d5cc9896dc60ae7ca135782d89e5fc,"Re-identification of Humans in Crowds using Personal, Social and Environmental Constraints","IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Re-identification of Humans in Crowds using
Personal, Social and Environmental Constraints
Shayan Modiri Assari, Member, IEEE, Haroon Idrees, Member, IEEE, and Mubarak Shah, Fellow, IEEE"
ef61e43a1cce95afdc0696879085e834b981d5de,Real time multi-object tracking using multiple cameras Semester Project,"CVLab: Computer Vision Laboratory
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne
http://cvlab.epfl.ch/
Real time multi-object tracking
using multiple cameras
Semester Project
Michalis Zervos
Supervisor  Professor Pascal Fua
Teaching Assistant  Horesh Ben Shitrit
Spring Semester
June 2012"
ef940b76e40e18f329c43a3f545dc41080f68748,A Face Recognition and Spoofing Detection Adapted to Visually-Impaired People,"Research Article                                                                                                                              Volume 7 Issue No.3
ISSN XXXX XXXX © 2017 IJESC
A Face Recognition and Spoofing Detection Adapted to Visually-
Impaired People
Rutuja R. Dengale1, Bhagyashri S. Deshmukh 2, Anuja R. Mahangade3, Shivani V. Ujja inkar4
K.K Wagh Institute of Engineering and Education Research, Nashik, India
Depart ment of Co mputer Engineering
Abstrac t:
According to estimates by the world Health organization, about 285 million people suffer fro m so me kind of v isual disabilit ies of
which 39 million are  blind, resulting in  0.7 of the word population. As many v isual impaired peoples in  the word they are  unable
to recognize the people who is standing in front of them and some peoples who have problem to re me mbe r na me of the person.
They  can  easily  recognize   the  person  using  this  system.  A   co mputer  vision  technique  and  image  ana lysis  can  help  v isually
the home using face identification and spoofing detection system. This system also provide feature to add newly  known people
nd keep records of all peoples visiting their ho me.
Ke ywor ds: face-recognition, spoofing detection, visually-impaired, system architecture.
INTRODUCTION
The  facia l  ana lysis  can  be  used  to  e xtract  very  useful  and
relevant  information  in   order  to  help  people  with  visual
impairment in several of  its tasks daily providing them with a
greater  degree  of  autonomy  and  security.  Facia l  recognition"
efd308393b573e5410455960fe551160e1525f49,Tracking Persons-of-Interest via Unsupervised Representation Adaptation,"Tracking Persons-of-Interest via
Unsupervised Representation Adaptation
Shun Zhang, Jia-Bin Huang, Jongwoo Lim, Yihong Gong, Jinjun Wang,
Narendra Ahuja, and Ming-Hsuan Yang"
ef48f1d8ec88dabbf7253cb1c8a224cb95f604af,Survey on Video Analysis of Human Walking Motion,"International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol.7, No.3 (2014), pp.99-122
http://dx.doi.org/10.14257/ijsip.2014.7.3.10
Survey on Video Analysis of Human Walking Motion
S. Nissi Paul and Y. Jayanta Singh
Dept. Computer Science Engineering and information Technology
Don Boco College of Engineering and Technology, Assam Don Bosco University
Guwahati, Assam - India"
efa2b259407b5b9171dd085061d05b72b6309eb0,"Egocentric Activity Recognition Using HOG , HOF , MBH and Combined features","International Journal on Future Revolution in Computer Science & Communication Engineering
Volume: 3 Issue: 8
_______________________________________________________________________________________________
74 – 79
ISSN: 2454-4248
Egocentric Activity Recognition Using HOG, HOF, MBH and
Combined features
K. P. Sanal Kumar
Research Scholar
Dept. of CSE
Annamalai University
R. Bhavani
Professor
Dept. of CSE
Annamalai University"
ef230e3df720abf2983ba6b347c9d46283e4b690,QUIS-CAMPI: an annotated multi-biometrics data feed from surveillance scenarios,"Page 1 of 20
QUIS-CAMPI: An Annotated Multi-biometrics Data Feed From
Surveillance Scenarios
João Neves1,*, Juan Moreno2, Hugo Proença3
IT - Instituto de Telecomunicações, University of Beira Interior
Department of Computer Science, University of Beira Interior
IT - Instituto de Telecomunicações, University of Beira Interior"
ef4ecb76413a05c96eac4c743d2c2a3886f2ae07,Modeling the importance of faces in natural images,"Modeling the Importance of Faces in Natural Images
Jin B.a, Yildirim G.a, Lau C.a, Shaji A.a, Ortiz Segovia M.b and S¨usstrunk S.a
EPFL, Lausanne, Switzerland;
Oc´e, Paris, France"
efef00465e1b2f4003e838e50f9c8fa1c8ffaf3e,SceneNet: A Perceptual Ontology for Scene Understanding,"SceneNet: A Perceptual Ontology for Scene
Understanding
Ilan Kadar and Ohad Ben-Shahar
Ben-Gurion University of the Negev"
ef2084979a3191403c1b8b48f503d06f346afb8f,Une méthode de reconnaissance des expressions du visage basée sur la perception,"Une m´ethode de reconnaissance des expressions du
visage bas´ee sur la perception
Rizwan Khan, Alexandre Meyer, Hubert Konik, Saida Bouakaz
To cite this version:
Rizwan Khan, Alexandre Meyer, Hubert Konik, Saida Bouakaz. Une m´ethode de reconnais-
sance des expressions du visage bas´ee sur la perception. RFIA 2012 (Reconnaissance des
Formes et Intelligence Artificielle), Jan 2012, Lyon, France. pp.978-2-9539515-2-3, 2012. <hal-
00660976>
HAL Id: hal-00660976
https://hal.archives-ouvertes.fr/hal-00660976
Submitted on 19 Jan 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,"
ef66ed8d8db41f67048d077fd4b772c8ba748090,Reservoir Computing Hardware with Cellular Automata,"Reservoir Computing Hardware with
Cellular Automata
Alejandro Mor´an, Christiam F. Frasser and Josep L. Rossell´o
Electronic Engineering Group, Physics Department, Universitat de les Illes Balears,
Spain.
E-mail:
June 22, 2018"
ef75007cd6e5b990d09e7f3c4ba119be6c2546fb,Lecture 20: Object Recognition 20.1 Introduction 20.2.1 Neocognitron,"Chapter 20
Lecture 20: Object recognition
0.1 Introduction
In its simplest form, the problem of recognition is posed as a binary classification task, namely distin-
guishing between a single object class and background class. Such a classification task can be turned
into a detector by sliding it across the image (or image pyramid), and classifying each local window.
Classifier based methods have defined their own family of object models. Driven by advances in
machine learning, a common practice became to through a bunch of features into the last published
lgorithm. However, soon became clear that such an approach, in which the research gave up into trying
to have a well defined physical model of the object, hold a lot of promise. In many cases, the use of a
specific classifier has driven the choice of the object representation and not the contrary. In classifier-
ased models, the preferred representations are driven by efficiency constraints and by the characteristics
of the classifier (e.g., additive models, SVMs, neural networks, etc.).
0.2 Neural networks
Although neural networks can be trained in other settings than a purely discriminative framework, some
of the first classifier based approaches used neural networks to build the classification function. Many
urrent approaches, despite of having a different inspiration, still follow an architecture motivated by
neural networks.
0.2.1 Neocognitron
The Neocognitron, developed by Fukushima in the 80 [8], consisted on a multilayered network with"
ef3697668eb643de27995827c630cfd029b10c37,Online self-supervised multi-instance segmentation of dynamic objects,"014 IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China
978-1-4799-3685-4/14/$31.00 ©2014 IEEE"
ef247c194162f76eb8d44b1f83c25a4002ab69a6,An Effective Profile Based Video Browsing System for e- Learning,"An Effective Profile Based Video Browsing System for e-
Learning
S. C. Premaratne, D. D. Karunaratna and K. P. Hewagamage
University of Colombo School of Computing, Sri Lanka"
efcedd5750f57f4c7f748783e91918e0f42da61f,Global Haar-Like Features: A New Extension of Classic Haar Features for Efficient Face Detection in Noisy Images,"Global Haar-like Features:
A New Extension of Classic Haar Features for
Ef‌f‌icient Face Detection in Noisy Images
Mahdi Rezaei(cid:63), Hossein Ziaei Nafchi‡, and Sandino Morales†
(cid:63)The University of Auckland, New Zealand
Synchromedia Laboratory, ´Ecole de Technologie Sup´erieure, Canada
The University of Auckland, New Zealand"
ef032afa4bdb18b328ffcc60e2dc5229cc1939bc,Attribute-enhanced metric learning for face retrieval,"Fang and Yuan EURASIP Journal on Image and Video
Processing  (2018) 2018:44
https://doi.org/10.1186/s13640-018-0282-x
EURASIP Journal on Image
nd Video Processing
RESEARCH
Open Access
Attribute-enhanced metric learning for
face retrieval
Yuchun Fang*
nd Qiulong Yuan"
ef9081d153f96b96183666a5086c63cecf2f33e6,3D Face Recognition Using Radon Transform and Symbolic PCA,"International Journal of Electronics and Computer Science Engineering           2342
Available Online at www.ijecse.org                                                       ISSN- 2277-1956
D Face Recognition Using Radon Transform and
Symbolic PCA
P. S. Hiremath  1, Manjunath Hiremath  2
2Departmentof Computer Science
Gulbarga University, Gulbarga-585106
Karnataka, India"
ef5531711a69ed687637c48930261769465457f0,Studio2Shop: from studio photo shoots to fashion articles,"Studio2Shop: from studio photo shoots to fashion articles
Julia Lasserre1, Katharina Rasch1 and Roland Vollgraf
Zalando Research, Muehlenstr. 25, 10243 Berlin, Germany
Keywords:
omputer vision, deep learning, fashion, item recognition, street-to-shop"
ef559d5f02e43534168fbec86707915a70cd73a0,DeepInsight: Multi-Task Multi-Scale Deep Learning for Mental Disorder Diagnosis,"DING, HUO, HU, LU: DEEPINSIGHT
DeepInsight: Multi-Task Multi-Scale Deep
Learning for Mental Disorder Diagnosis
Mingyu Ding1
Yuqi Huo2
Jun Hu2
Zhiwu Lu1
School of Information
Renmin University of China
Beijing, 100872, China
Beijing Key Laboratory
of Big Data Management
nd Analysis Methods
Beijing, 100872, China"
efa08283656714911acff2d5022f26904e451113,Active Object Localization in Visual Situations,"Active Object Localization in Visual Situations
Max H. Quinn, Anthony D. Rhodes, and Melanie Mitchell"
ef52f1e2b52fd84a7e22226ed67132c6ce47b829,Online Eye Status Detection in the Wild with Convolutional Neural Networks,
efe208a03e2f75ddcebf8bb0f10b1c0bea4824be,A data set for evaluating the performance of multi-class multi-object video tracking,"A data set for evaluating the performance of multi-class multi-object
video tracking
Avishek Chakrabortya, Victor Stamatescua, Sebastien C. Wongb, Grant Wigleya, David Kearneya
Computational Learning Systems Laboratory, School of Information Technology and Mathematical
Sciences, University of South Australia, Mawson Lakes, SA, Australia; bDefence Science and
Technology Group, Edinburgh, SA, Australia"
efa65394d0ec5a16ecd57075951016502c541c0d,The Gap of Semantic Parsing: A Survey on Automatic Math Word Problem Solvers,"The Gap of Semantic Parsing: A Survey on Automatic
Math Word Problem Solvers
Dongxiang Zhang, Lei Wang, Nuo Xu, Bing Tian Dai and Heng Tao Shen"
ef999ab2f7b37f46445a3457bf6c0f5fd7b5689d,Improving face verification in photo albums by combining facial recognition and metadata with cross-matching,"Calhoun: The NPS Institutional Archive
DSpace Repository
Theses and Dissertations
. Thesis and Dissertation Collection, all items
017-12
Improving face verification in photo albums by
ombining facial recognition and metadata
with cross-matching
Bouthour, Khoubeib
Monterey, California: Naval Postgraduate School
http://hdl.handle.net/10945/56868
Downloaded from NPS Archive: Calhoun"
ef473c96dde98e2015b2d135a17a2d734319649a,Playlist Generation using Facial Expression Analysis and Task Extraction,"Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/05/2018 16:53:32
U M CS"
ef4b5bcaad4c36d7baa7bc166bd1712634c7ad71,Towards Spatio-temporal Face Alignment in Unconstrained Conditions,
efbe52289f71eca9a0aaa8a5362f73334fa6b23c,Face recognition based on LDA in manifold subspace,"EAI Endorsed Transactions
on Context-aware Systems and Applications
Research Article
Face recognition based on LDA in manifold subspace
Hung Phuoc Truong1, Tue-Minh Dinh Vo1 and Thai Hoang Le1, *
Faculty of Information Technology, University of Science – Vietnam National University Ho Chi Minh city, 227 Nguyen
Van Cu street, HCMc, Vietnam"
c32b5f8d400cdfd4459b0dfdeccf011744df0b4b,Object Tracking Using Local Multiple Features and a Posterior Probability Measure,"Article
Object Tracking Using Local Multiple Features and a
Posterior Probability Measure
Wenhua Guo *, Zuren Feng and Xiaodong Ren
Systems Engineering Institute, State Key Laboratory for Manufacturing Systems Engineering,
Xi’an Jiaotong University, Xi’an 710049, China; (Z.F.); (X.R.)
* Correspondence: Tel.: +86-29-8266-7771
Academic Editors: Xue-Bo Jin, Shuli Sun, Hong Wei and Feng-Bao Yang
Received: 20 February 2017; Accepted: 28 March 2017; Published: 31 March 2017"
c32fb755856c21a238857b77d7548f18e05f482d,Multimodal Emotion Recognition for Human-Computer Interaction: A Survey,"Multimodal Emotion Recognition for Human-
Computer Interaction: A Survey
School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China.
Michele Mukeshimana, Xiaojuan Ban, Nelson Karani, Ruoyi Liu"
c33289788ca69a55c7eefe6e672c82a0cac5a299,Semantic Video CNNs Through Representation Warping,"Semantic Video CNNs through Representation Warping
Raghudeep Gadde1,3, Varun Jampani1,4 and Peter V. Gehler1,2,3
MPI for Intelligent Systems,
University of W¨urzburg
Bernstein Center for Computational Neuroscience,
NVIDIA"
c3c73bb626efec988aadbac519c61810710282fe,Saccadic movements using eye-tracking technology in individuals with autism spectrum disorders: pilot study.,"Arq Neuropsiquiatr 2006;64(3-A):559-562
SACCADIC MOVEMENTS USING EYE-TRACKING
TECHNOLOGY IN INDIVIDUALS WITH AUTISM
SPECTRUM DISORDERS
Pilot study
Marcos T. Mercadante, Elizeu C. Macedo, Patrícia M. Baptista,
Cristiane S. Paula, José S. Schwartzman"
c3beae515f38daf4bd8053a7d72f6d2ed3b05d88,ACL 2014 52nd Annual Meeting of the Association for Computational Linguistics TACL Papers,"ACL201452ndAnnualMeetingoftheAssociationforComputationalLinguisticsTACLPapersJune23-25,2014Baltimore,Maryland,USA"
c3dc4f414f5233df96a9661609557e341b71670d,Utterance independent bimodal emotion recognition in spontaneous communication,"Tao et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:4
http://asp.eurasipjournals.com/content/2011/1/4
RESEARCH
Utterance independent bimodal emotion
recognition in spontaneous communication
Jianhua Tao*, Shifeng Pan, Minghao Yang, Ya Li, Kaihui Mu and Jianfeng Che
Open Access"
c3a1a3d13bf1cb2b9c054857b857c3fb9d7176f6,Détection de marqueurs affectifs et attentionnels de personnes âgées en interaction avec un robot. (Audio-visual detection of emotional (laugh and smile) and attentional markers for elderly people in social interaction with a robot),"Détection de marqueurs affectifs et attentionnels de
personnes âgées en interaction avec un robot
Fan Yang
To cite this version:
Fan Yang. Détection de marqueurs affectifs et attentionnels de personnes âgées en interaction
vec un robot.
Intelligence artificielle [cs.AI]. Université Paris-Saclay, 2015. Français. <NNT :
015SACLS081>. <tel-01280505>
HAL Id: tel-01280505
https://tel.archives-ouvertes.fr/tel-01280505
Submitted on 29 Feb 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,"
c348118690d2e6544ec1e68f904dbf9e5b6397bd,Video-to-Video Synthesis,"Video-to-Video Synthesis
Ting-Chun Wang1, Ming-Yu Liu1, Jun-Yan Zhu2, Guilin Liu1,
Andrew Tao1, Jan Kautz1, Bryan Catanzaro1
NVIDIA, 2MIT CSAIL"
c380aa240ebcdb8bf2cad4f30bcef2390fada091,Empty Cities: Image Inpainting for a Dynamic-Object-Invariant Space,"Empty Cities: Image Inpainting for a Dynamic-Object-Invariant Space
Berta Bescos1, Jos´e Neira1, Roland Siegwart2 and Cesar Cadena2"
c3dc704790e1a170919087baab0ad10d7df6c24e,Oxytocin in the socioemotional brain: implications for psychiatric disorders,"C l i n i c a l   r e s e a r c h
Oxytocin in the socioemotional brain:
implications for psychiatric disorders
Peter Kirsch, PhD
Introduction
During  recent  years,  the  neuropeptide  oxytocin
(OXT) has attracted enormous interest in neuroscien-
tific research on social and emotional processes. Given
the generally increased interest in social cognition in
the area of psychiatric research, the number of publi-
ations focusing on OXT in the context of mental dis-
orders has also increased markedly in recent years. The
role of OXT in the context of childbirth and lactation
has long been studied; however, two lines of research
have motivated investigation into the role of OXT in
social behavior. First, animal research initiated by In-
sel  and Young1  on  the  role  of  OXT  in  maternal  be-
havior and bonding revealed that OXT in the central
nervous  system  modulates  social  behavior.  Second,
in human research, a startling paper by Kosfeld et al2"
c3de7c38493cfe67654411d77f47069cfa7b077b,Multiple context mere exposure: Examining the limits of liking.,"ISSN: 1747-0218 (Print) 1747-0226 (Online) Journal homepage: http://www.tandfonline.com/loi/pqje20
Multiple context mere exposure: Examining the
limits of liking
Daniel de Zilva, Ben R. Newell & Chris J. Mitchell
To cite this article: Daniel de Zilva, Ben R. Newell & Chris J. Mitchell (2015): Multiple context
mere exposure: Examining the limits of liking, The Quarterly Journal of Experimental
Psychology, DOI: 10.1080/17470218.2015.1057188
To link to this article:  http://dx.doi.org/10.1080/17470218.2015.1057188
Accepted online: 29 Jun 2015.Published
online: 06 Jul 2015.
Submit your article to this journal
Article views: 43
View related articles
View Crossmark data
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=pqje20
Download by: [UNSW Library]
Date: 05 October 2015, At: 22:09"
c34911e9fefd987470edf8f620d9ce8f0030339d,"
Autism, Emotion Recognition and the Mirror
Neuron System: The Case of Music
				","Copyright © 2009 by MJM
MJM 2009 12(2): 87-98
FoCuS rEViEW
Autism, Emotion Recognition and the Mirror
Neuron System: The Case of Music
Istvan Molnar-Szakacs*, Martha J. Wang, Elizabeth A. Laugeson,
Katie Overy, Wai-Ling Wu, Judith Piggot"
c3b037fd6fb4542f7ed18c194a03ae328bcca423,Random Binary Mappings for Kernel Learning and Efficient SVM,"Random Decision Stumps for
Kernel Learning and Efficient SVM
Gemma Roig *
Xavier Boix *
Luc Van Gool
Computer Vision Lab, ETH Zurich, Switzerland
* Both first authors contributed equally."
c3b3636080b9931ac802e2dd28b7b684d6cf4f8b,Face Recognition via Local Directional Pattern,"International Journal of Security and Its Applications
Vol. 7, No. 2, March, 2013
Face Recognition via Local Directional Pattern
Dong-Ju Kim*, Sang-Heon Lee and Myoung-Kyu Sohn
Division of IT Convergence, Daegu Gyeongbuk Institute of Science & Technology
50-1, Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu, Korea."
c3341286ece958e6b05df56d788456b61313380b,Estimating Attention of Faces due to its Growing Level of Emotions,"Estimating Attention of Faces due to its Growing Level of Emotions
Ravi Kant Kumar*, Jogendra Garain, Dakshina Ranjan Kisku and Goutam Sanyal
Department of Computer Science and Engineering
National Institute of Technology
Durgapur, India
E-mail: {vit.ravikant, jogs.cse, drkisku,
imperative
nd  feeling  [2]  of  a  person  at  that  moment.  Facial
expression  plays  an
in  non-verbal
ommunication as well as to predicting the behavior of the
person.  During  a  group  discussion,  our  attention
utomatically  goes  towards  those  participants  who  put
more  stressed  on  his  words  or  talk  in  a  sentimental  or
emphatic  voice.  Same  phenomenon  occurs  with  the  non-
verbal  visual  communication.  The  face  reflecting  the
higher  expression  of  a  particular  emotion  draws  more
ttention  [3,  4]  in  the  discussion.  A  particular  object  (It
lso  may  be  face),  which  gives  us  more  visualization  is
onsider as a salient object and this phenomenon is called"
c390fb954a07ecee473e0704ac065875121f6137,Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization,"IEEE TRANSACTIONS ON XXXX, VOL. XX, NO. X, APRIL 2015
Heterogeneous Tensor Decomposition for
Clustering via Manifold Optimization
Yanfeng Sun, Junbin Gao, Xia Hong, Bamdev Mishra and Baocai Yin"
c398684270543e97e3194674d9cce20acaef3db3,Comparative Face Soft Biometrics for Human Identification,"Chapter 2
Comparative Face Soft Biometrics for
Human Identification
Nawaf Yousef Almudhahka, Mark S. Nixon and Jonathon S. Hare"
c3285a1d6ec6972156fea9e6dc9a8d88cd001617,Extreme 3D Face Reconstruction: Seeing Through Occlusions,
c3ea346826467f04779e55679679c7c7e549c8a2,Learning Short-Cut Connections for Object Counting,"OÑORO-RUBIO, NIEPERT, LÓPEZ-SASTRE: LEARNING SHORT-CUT CONNECTIONS. . .
Learning Short-Cut Connections for Object
Counting
Daniel Oñoro-Rubio1
Mathias Niepert1
Roberto J. López-Sastre2
SysML,
NEC Lab Europe,
Heidelberg, Germany
GRAM,
University of Alcalá,
Alcalá de Henares, Spain"
c3b5ec36a29b320a576f6b9e58188b505becb4aa,Practical Gauss-Newton Optimisation for Deep Learning,"Practical Gauss-Newton Optimisation for Deep Learning
Aleksandar Botev 1 Hippolyt Ritter 1 David Barber 1 2"
c391029d67e5a0c352f9f328b838cb19528336fe,Responding to Other People’s Direct Gaze: Alterations in Gaze Behavior in Infants at Risk for Autism Occur on Very Short Timescales,"J Autism Dev Disord (2017) 47:3498–3509
DOI 10.1007/s10803-017-3253-7
ORIGINAL PAPER
Responding to Other People’s Direct Gaze: Alterations in Gaze
Behavior in Infants at Risk for Autism Occur on Very Short
Timescales
Pär Nyström1
· Sven Bölte2,3 · Terje Falck‑Ytter1,2 · The EASE Team
Published online: 4 September 2017
© The Author(s) 2017. This article is an open access publication"
c3bcc4ee9e81ce9c5c0845f34e9992872a8defc0,A New Scheme for Image Recognition Using Higher-Order Local Autocorrelation and Factor Analysis,"MVA2005  IAPR  Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan
A New Scheme for Image Recognition Using Higher-Order Local
Autocorrelation and Factor Analysis
Naoyuki Nomotoy, Yusuke Shinoharay, Takayoshi Shirakiy, Takumi Kobayashiy, Nobuyuki Otsuy yyy
yThe University of Tokyo
Tokyo, Japan
yyyAIST
Tukuba, Japan
f shiraki, takumi, otsug"
c324986c8599fee2f6da7b59751e89ed9624afa3,Dual Quaternions as Constraints in 4D-DPM Models for Pose Estimation,"Article
Dual Quaternions as Constraints in 4D-DPM Models
for Pose Estimation
Enrique Martinez-Berti *, Antonio-José Sánchez-Salmerón and Carlos Ricolfe-Viala
Departamento de Ingeniería de Sistemas y Automática, Instituto de Automática e informática Industrial,
Universitat Politècnica de València, València, 46022, Spain ; (A.-J.S.-S.);
(C.R.-V.)
* Correspondence:
Received: 1 June 2017; Accepted: 13 August 2017; Published: 19 August 2017"
c32383330df27625592134edd72d69bb6b5cff5c,Intrinsic Illumination Subspace for Lighting Insensitive Face Recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 2, APRIL 2012
Intrinsic Illumination Subspace for Lighting
Insensitive Face Recognition
Chia-Ping Chen and Chu-Song Chen, Member, IEEE"
c3955d74f2a084a8ddcbd7e73952c326e81804b2,Mutual Information Neural Estimation,"Mutual Information Neural Estimation
Mohamed Ishmael Belghazi 1 Aristide Baratin 1 2 Sai Rajeswar 1 Sherjil Ozair 1 Yoshua Bengio 1 3 4
Aaron Courville 1 3 R Devon Hjelm 1 4"
c32f04ccde4f11f8717189f056209eb091075254,Analysis and Synthesis of Behavioural Specific Facial Motion,"Analysis and Synthesis of Behavioural Specific
Facial Motion
Lisa Nanette Gralewski
A dissertation submitted to the University of Bristol in accordance with the requirements
for the degree of Doctor of Philosophy in the Faculty of Engineering, Department of
Computer Science.
February 2007
71657 words"
c338045f80ab3465bdc381f2b1791744b060fbb3,A Diffusion and Clustering-Based Approach for Finding Coherent Motions and Understanding Crowd Scenes,"A Diffusion and Clustering-based Approach for
Finding Coherent Motions and Understanding
Crowd Scenes
Weiyao Lin, Yang Mi, Weiyue Wang, Jianxin Wu, Jingdong Wang, and Tao Mei"
c34ec5dd51880acf72336e85e4e45da5fcfc75f4,LEGO: Learning Edge with Geometry all at Once by Watching Videos,"LEGO: Learning Edge with Geometry all at Once by Watching Videos
Zhenheng Yang1 Peng Wang2 Yang Wang2 Wei Xu3 Ram Nevatia1
University of Southern California 2Baidu Research
National Engineering Laboratory for Deep Learning Technology and Applications"
c3d60c8b1dff411982ccd8875496f1e74d2cefc4,Multi-view X-ray R-CNN,"Multi-view X-ray R-CNN
Jan-Martin O. Steitz[0000−0002−3549−312X], Faraz
Saeedan[0000−0002−8932−2983], and Stefan Roth[0000−0001−9002−9832]
Department of Computer Science, TU Darmstadt, Darmstadt, Germany"
c317181fa1de2260e956f05cd655642607520a4f,Objective Classes for Micro-Facial Expression Recognition,"Research Article
Research
Article for submission to journal
Subject Areas:
omputer vision, pattern recognition,
feature descriptor
Keywords:
micro-facial expression, expression
recognition, action unit
Moi Hoon Yap
e-mail:
Objective Classes for
Micro-Facial Expression
Recognition
Adrian K. Davison1, Walied Merghani2 and
Moi Hoon Yap3
Centre for Imaging Sciences, University of
Manchester, Manchester, United Kingdom
Sudan University of Science and Technology,
Khartoum, Sudan"
c36f933a46e1d1c51785295bb97154df9ceada36,"Optimizing Program Performance via Similarity, Using a Feature-Agnostic Approach","Optimizing Program Performance via Similarity,
Using a Feature-agnostic Approach
Rosario Cammarota, Laleh Aghababaie Beni
Alexandru Nicolau, and Alexander V. Veidenbaum
Department of Computer Science, University of California Irvine, Irvine, USA"
c33522fc5d2cf92c5a10f32ba9416365944cdb85,Scaling the Scattering Transform: Deep Hybrid Networks,"Scaling the Scattering Transform: Deep Hybrid Networks
Edouard Oyallon
D´epartement Informatique
Ecole Normale Sup´erieure
Eugene Belilovsky
University of Paris-Saclay
INRIA and KU Leuven
Paris, France
Sergey Zagoruyko
Universit´e Paris-Est
´Ecole des Ponts ParisTech
Paris, France"
c3599c91d0e3473178c1578b731b03e4be5d3ff1,Improving Resource Efficiency in Cloud Computing a Dissertation Submitted to the Department of Electrical Engineering and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"IMPROVING RESOURCE EFFICIENCY IN CLOUD COMPUTING
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL
ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Christina Delimitrou
August 2015"
c30e4e4994b76605dcb2071954eaaea471307d80,Feature Selection for Emotion Recognition based on Random Forest,
c37a971f7a57f7345fdc479fa329d9b425ee02be,A Novice Guide towards Human Motion Analysis and Understanding,"A Novice Guide towards Human Motion Analysis and Understanding
Dr. Ahmed Nabil Mohamed"
c35724d227eb1e3d680333469fb9b94c677e871f,Multi-view Generative Adversarial Networks,"Under review as a conference paper at ICLR 2017
MULTI-VIEW GENERATIVE ADVERSARIAL NET-
WORKS
Mickaël Chen
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
Ludovic Denoyer
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France"
c3fb2399eb4bcec22723715556e31c44d086e054,Face recognition based on SIGMA sets of image features,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
. INTRODUCTION"
c3293ef751d3fb041bd3016fbc3fa5cc16f962fa,Inferencing Based on Unsupervised Learning of Disentangled Representations,"Accepted as a conference paper at the European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN) 2018
Inferencing Based on Unsupervised Learning
of Disentangled Representations
Tobias Hinz and Stefan Wermter ∗
Universit¨at Hamburg, Department of Informatics, Knowledge Technology
Vogt-Koelln-Str. 30, 22527 Hamburg, Germany
http://www.informatik.uni-hamburg.de/WTM/"
c37de914c6e9b743d90e2566723d0062bedc9e6a,Joint and Discriminative Dictionary Learning for Facial Expression Recognition,"©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-455
Joint  and  Discriminative  Dictionary  Learning
Expression Recognition
for  Facial
Sriram Kumar, Behnaz Ghoraani, Andreas Savakis"
c4f632a1b6faa43c217e63c58a4764511104c303,Extracting Pathlets FromWeak Tracking Data,"Extracting Pathlets From Weak Tracking Data∗
Kevin Streib
James W. Davis
Dept. of Computer Science and Engineering
Ohio State University, Columbus, OH 43210"
c4a024d73902462275879fa6133bff22134fcc7e,When crowds hold privileges: Bayesian unsupervised representation learning with oracle constraints,"When crowds hold privileges: Bayesian unsupervised
representation learning with oracle constraints
Theofanis Karaletsos
Computational Biology Program, Sloan Kettering Institute
275 York Avenue, New York, USA
Serge Belongie
Cornell Tech
11 Eighth Avenue #302, New York, USA
Gunnar R¨atsch
Computational Biology Program, Sloan Kettering Institute
275 York Avenue, New York, USA"
c44e2fa02f0b578a2cc92795fe6a4c578f65dc97,A Method for Copyright Protection of Line Drawings,"A Method for Copyright Protection of Line Drawings
Weihan Sun*, Koichi Kise*
* Graduate School of Engineering, Osaka Prefecture University, Osaka
E-mail:"
c4f1fcd0a5cdaad8b920ee8188a8557b6086c1a4,The Ignorant Led by the Blind: A Hybrid Human–Machine Vision System for Fine-Grained Categorization,"Int J Comput Vis (2014) 108:3–29
DOI 10.1007/s11263-014-0698-4
The Ignorant Led by the Blind: A Hybrid Human–Machine Vision
System for Fine-Grained Categorization
Steve Branson · Grant Van Horn · Catherine Wah ·
Pietro Perona · Serge Belongie
Received: 7 March 2013 / Accepted: 8 January 2014 / Published online: 20 February 2014
© Springer Science+Business Media New York 2014"
c46bcb02f92612cf525fd84c6cc79b0638c2eac9,New Fuzzy LBP Features for Face Recognition,"New Fuzzy LBP Features for Face Recognition
Abdullah Gubbia, Mohammed Fazle Azeemb Zahid Ansaric
Department of Electronics and Communications, P.A. College of Engineering, Mangalore, India,
Contact:
Department of Electrical Engineering, Aligarh Muslim University, Aligarh, India,
Department of Computer Science, P.A. College of Engineering, Mangalore, India,
zahid
Contact:
Contact:
There are many Local texture features each very in way they implement and each of the Algorithm trying
improve the performance. An attempt is made in this paper to represent a theoretically very simple and com-
putationally effective approach for face recognition. In our implementation the face image is divided into 3x3
sub-regions from which the features are extracted using the Local Binary Pattern (LBP) over a window, fuzzy
membership function and at the central pixel. The LBP features possess the texture discriminative property
nd their computational cost is very low. By utilising the information from LBP, membership function, and
entral pixel, the limitations of traditional LBP is eliminated. The bench mark database like ORL and Shef‌f‌ield
Databases are used for the evaluation of proposed features with SVM classifier. For the proposed approach K-fold
nd ROC curves are obtained and results are compared.
Keywords : Face Recognition, Fuzzy Logic, Information Set, Local Binary Pattern, SVM.
. INTRODUCTION"
c4c4e5ff454584ae6a68d25b36bfc860e9a893a0,"Real-Time Facial Recognition System—Design, Implementation and Validation","Journal of Signal Processing Theory and Applications
(2013) 1: 1-18
doi:10.7726/jspta.2013.1001
Research Article
Real-Time Facial Recognition System—Design,
Implementation and Validation
M. Meenakshi*
Received 29 August 2012; Published online November 10, 2012
© The author(s) 2012. Published with open access at uscip.org"
c43862db5eb7e43e3ef45b5eac4ab30e318f2002,Provable Self-Representation Based Outlier Detection in a Union of Subspaces,"Provable Self-Representation Based Outlier Detection in a Union of Subspaces
Chong You, Daniel P. Robinson, Ren´e Vidal
Johns Hopkins University, Baltimore, MD, 21218, USA"
c4827fe8002ea61a2748b78369afe3a0747d1a0c,Towards Optimal Naive Bayes Nearest Neighbor,"Towards Optimal Naive Bayes Nearest Neighbor
R´egis Behmo1, Paul Marcombes1,2, Arnak Dalalyan2, and V´eronique Prinet1
NLPR / LIAMA, Institute of Automation, Chinese Academy of Sciences(cid:2)
IMAGINE, LIGM, Universit´e Paris-Est"
c4dcf41506c23aa45c33a0a5e51b5b9f8990e8ad,Understanding Activity: Learning the Language of Action,"Understanding Activity: Learning the Language of Action
Randal Nelson and Yiannis Aloimonos
Univ. of Rochester and Maryland
.1 Overview
Understanding observed activity is an important
problem, both from the standpoint of practical applications,
nd as a central issue in attempting to describe the
phenomenon of intelligence. On the practical side, there are a
large number of applications that would benefit from
improved machine ability to analyze activity. The most
prominent are various surveillance scenarios. The current
emphasis on homeland security has brought this issue to the
forefront, and resulted in considerable work on mostly low-
level detection schemes. There are also applications in
medical diagnosis and household assistants that, in the long
run, may be even more important. In addition, there are
numerous scientific projects, ranging from monitoring of
weather conditions to observation of animal behavior that
would be facilitated by automatic understanding of activity.
From a scientific standpoint, understanding activity"
c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f,Towards Unconstrained Face Recognition Using 3D Face Model,"Towards Unconstrained Face Recognition
Using 3D Face Model
Zahid Riaz1, M. Saquib Sarfraz2 and Michael Beetz1
Intelligent Autonomous Systems (IAS), Technical University of Munich, Garching
Computer Vision Research Group, COMSATS Institute of Information
Technology, Lahore
Germany
Pakistan
. Introduction
Over the last couple of decades, many commercial systems are available to identify human
faces. However, face recognition is still an outstanding challenge against different kinds of
real world variations especially facial poses, non-uniform lightings and facial expressions.
Meanwhile the face recognition technology has extended its role from biometrics and security
pplications to human robot interaction (HRI). Person identity is one of the key tasks while
interacting with intelligent machines/robots, exploiting the non intrusive system security
nd authentication of the human interacting with the system. This capability further helps
machines to learn person dependent traits and interaction behavior to utilize this knowledge
for tasks manipulation. In such scenarios acquired face images contain large variations which
demands an unconstrained face recognition system.
Fig. 1. Biometric analysis of past few years has been shown in figure showing the"
c48bde5b9ff17b708ab3e4f7c62a31a46c77f2f1,Nested Sparse Quantization for Efficient Feature Coding,"Nested Sparse Quantization
for Ef‌f‌icient Feature Coding
Xavier Boix1(cid:63), Gemma Roig1(cid:63), and Luc Van Gool1,2 (cid:63)(cid:63)
Computer Vision Lab, ETH Zurich, Switzerland,
KU Leuven, Belgium"
c4f3375dab1886f37f542d998e61d8c30a927682,Beyond Shared Hierarchies: Deep Multitask Learning through Soft Layer Ordering,"Under review as a conference paper at ICLR 2018
BEYOND SHARED HIERARCHIES: DEEP MULTITASK
LEARNING THROUGH SOFT LAYER ORDERING
Anonymous authors
Paper under double-blind review"
c4fed8f23bc9ff1ffc27edb12970963ecf2dead9,Statistical Models and Optimization Algorithms for High-Dimensional Computer Vision Problems,
c4d3033356066ef8133f03f4060bb8cad842918f,Inference of quantized neural networks on heterogeneous all-programmable devices,"Inference of Quantized Neural Networks
on Heterogeneous All-Programmable Devices
Thomas B. Preußer
Marie Skłodowska-Curie Fellow
Xilinx Research Labs
Giulio Gambardella
Xilinx Research Labs
Dublin, Ireland
Nicholas Fraser
Xilinx Research Labs
Dublin, Ireland
Michaela Blott
Xilinx Research Labs
Dublin, Ireland
Dublin, Ireland"
c4a5932f33e6f4ccbfc7218fac58350a530d0ad6,Face Recognition using Discriminant Face Features Extraction method,"Face Recognition using Discriminant Face Features Extraction method
Miss. Poonam S. Sharma1, Prof. Nitin R. Chopde2
Student of Master of Engineering in (CSE), G.H. Raisoni college of Engineering and Technology,
2Assistant professor Department of (CSE), G.H. Raisoni College of Engineering and Technology,
Amravati, India
Amravati, India"
c48c452f26e54f37faaf025ca3c76b33ce3e40f6,Incremental learning of latent structural SVM for weakly supervised image classification,"INCREMENTAL LEARNING OF LATENT STRUCTURAL SVM FOR WEAKLY SUPERVISED
IMAGE CLASSIFICATION
Thibaut Durand (1)
Nicolas Thome (1)
Matthieu Cord (1)
David Picard (2)
(1) Sorbonne Universit´es, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
(2) ETIS/ENSEA, University of Cergy-Pontoise, CNRS, UMR 8051, France"
c43490eb0a3ce18fb2326ef1d0828664b60e73e2,Is This Car Looking at You? How Anthropomorphism Predicts Fusiform Face Area Activation when Seeing Cars,"RESEARCH ARTICLE
Is This Car Looking at You? How
Anthropomorphism Predicts Fusiform Face
Area Activation when Seeing Cars
Simone Ku¨ hn1*, Timothy R. Brick1, Barbara C. N. Mu¨ ller2,3, Ju¨ rgen Gallinat4,5
. Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195,
Berlin, Germany, 2. Behavioural Science Institute, Radboud University of Nijmegen, P. O. Box 9104, 6500 HE,
Nijmegen, Netherlands, 3. Department of Psychology, Ludwig-Maximilian University, Leopoldstrasse 13,
80802, Mu¨ nchen, Germany, 4. Clinic for Psychiatry and Psychotherapy, Charite´ University Medicine, St.
Hedwig-Krankenhaus, Große Hamburger Straße 5–11, 10115, Berlin, Germany, 5. Clinic and Policlinic for
Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg,
Germany"
c4b3a1cf8842da8c64f7abf4a352583d5fd9762c,Gait recognition using sub-vector quantisation technique,"Int. J. Machine Intelligence and Sensory Signal Processing, Vol. 1, No. 1, 2013
Gait recognition using sub-vector quantisation
technique
Neel K. Pandey*
Department of Electrical Engineering and Trades,
Faculty of Engineering and Trades,
Manukau Institute of Technology,
Private Bag 94006, Manukau 2241, Auckland, New Zealand
E-mail:
*Corresponding author
Waleed H. Abdulla and Zoran Salcic
Department of Electrical and Computer Engineering,
The University of Auckland,
Private Bag 92019, Auckland Mail Centre,
Auckland 1142, New Zealand
E-mail:
E-mail:"
c45183ec95f89aff793a2629a0520006b4153d6a,Entropy-based template analysis in face biometric identification systems,"SIViP (2013) 7:493–505
DOI 10.1007/s11760-013-0451-4
ORIGINAL PAPER
Entropy-based template analysis in face biometric identification
systems
Maria De Marsico · Michele Nappi · Daniel Riccio ·
Genoveffa Tortora
Received: 19 December 2011 / Revised: 7 June 2012 / Accepted: 10 October 2012 / Published online: 17 March 2013
© Springer-Verlag London 2013"
c4baa3d2fe702d3e96c500274f7fd9e63f8b3d6d,Pedestrian Detection Optimization Based on Random Filtering,"Pedestrian Detection Optimization Based on
Random Filtering
Victor Hugo Cunha de Melo, Samir Le˜ao, William Robson Schwartz
Universidade Federal de Minas Gerais
Department of Computer Science
Belo Horizonte, Minas Gerais, Brazil
Email: {victorhcmelo, samirleao,"
ea9cecb5b619cfa4afef6c70e193c2303696a4f9,Integration of Probabilistic Pose Estimates from Multiple Views,"Integration of Probabilistic Pose Estimates From
Multiple Views
¨Ozg¨ur Erkent, Dadhichi Shukla and Justus Piater
Institute of Computer Science,
University of Innsbruck"
ea94d834f912f092618d030f080de8395fe39b3f,Joint autoencoders : a flexible meta-learning framework,"Under review as a conference paper at ICLR 2018
JOINT AUTOENCODERS: A FLEXIBLE META-LEARNING
FRAMEWORK
Anonymous authors
Paper under double-blind review"
ea3503e9dc74b30b4c98a89843fe2ea0dc9221ab,Human Action Recognition Using LBP-TOP as Sparse Spatio-Temporal Feature Descriptor,"Human Action Recognition Using LBP-TOP as Sparse
Spatio-Temporal Feature Descriptor
Riccardo Mattivi and Ling Shao
Philips Research, Eindhoven, The Netherlands"
eabdefeb685dd71a39417bf40247d206af4f9b9e,"Of Kith and Kin: Perceptual Enrichment, Expectancy, and Reciprocity in Face Perception.","657250 PSRXXX10.1177/1088868316657250Personality and Social Psychology ReviewCorrell et al.
research-article2016
Article
Of Kith and Kin: Perceptual Enrichment,
Expectancy, and Reciprocity in Face
Perception
Personality and Social Psychology Review
1 –25
© 2016 by the Society for Personality
nd Social Psychology, Inc.
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1088868316657250
pspr.sagepub.com
Joshua Correll1, Sean M. Hudson1, Steffanie Guillermo1,
nd Holly A. Earls1"
eac6aee477446a67d491ef7c95abb21867cf71fc,A Survey of Sparse Representation: Algorithms and Applications,"JOURNAL
A survey of sparse representation: algorithms and
pplications
Zheng Zhang, Student Member, IEEE, Yong Xu, Senior Member, IEEE,
Jian Yang, Member, IEEE, Xuelong Li, Fellow, IEEE, and David Zhang, Fellow, IEEE"
ead587db6b2b76726e98b17cb1fbf973a34ddf31,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
ea533fac61db537fe1e1f351c98ae28db7272705,Theoretical Informatics and Applications Eye Localization for Face Recognition *,"Theoretical Informatics and Applications
Informatique Th´eorique et Applications
Will be set by the publisher
EYE LOCALIZATION FOR FACE RECOGNITION ∗
PAOLA CAMPADELLI, RAFFAELLA LANZAROTTI, GIUSEPPE LIPORI 1"
ea5dd7125c73756d7d81e49fa9826198f533cff7,Appearance tracking by transduction in surveillance scenarios,"8th IEEE International Conference on Advanced Video and Signal-Based Surveillance, 2011
978-1-4577-0845-9/11/$26.00 c(cid:13)2011 IEEE"
eabbf37742b79147c3bcf42d376dbceaae869a01,Recurrent Multimodal Interaction for Referring Image Segmentation,"Recurrent Multimodal Interaction for Referring Image Segmentation
Chenxi Liu1
Zhe Lin2 Xiaohui Shen2
Jimei Yang2 Xin Lu2 Alan Yuille1
Johns Hopkins University1 Adobe Research2
{cxliu,
{zlin, xshen, jimyang,"
ea079334121a0ba89452036e5d7f8e18f6851519,Unsupervised incremental learning of deep descriptors from video streams,"UNSUPERVISED INCREMENTAL LEARNING OF DEEP DESCRIPTORS
FROM VIDEO STREAMS
Federico Pernici and Alberto Del Bimbo
MICC – University of Florence"
eac1b644492c10546a50f3e125a1f790ec46365f,"Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for Action Classification and Detection","Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for
Action Classification and Detection
Mohammadreza Zolfaghari , Gabriel L. Oliveira, Nima Sedaghat, and Thomas Brox
University of Freiburg
Freiburg im Breisgau, Germany"
eadf6cb8f16c507e4a73db33da201cde3d9b2f5a,PAD-Net: Multi-Tasks Guided Prediction-and-Distillation Network for Simultaneous Depth Estimation and Scene Parsing,"PAD-Net: Multi-Tasks Guided Prediction-and-Distillation Network
for Simultaneous Depth Estimation and Scene Parsing
Dan Xu1, Wanli Ouyang2, Xiaogang Wang3, Nicu Sebe1
The University of Trento, 2The University of Sydney, 3The Chinese University of Hong Kong
{dan.xu,"
ea8cb4a79b211fb288f747bdd64b3fc36e11c0fc,Automatic Facial Action Unit Recognition by Modeling Their Semantic And Dynamic Relationships,"Chapter 10
Automatic Facial Action Unit Recognition
y Modeling Their Semantic And Dynamic
Relationships
Yan Tong, Wenhui Liao, and Qiang Ji"
ea939d72d55c095e57fedaaf2aa49f596002c196,A Part based Modeling Approach for Invoice Parsing,
ea638559b6dd6b5520f9abe2674b92c07873a157,Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks,"Semantic Segmentation of Earth Observation
Data Using Multimodal and Multi-scale Deep
Networks
Nicolas Audebert1,2, Bertrand Le Saux1, S´ebastien Lef`evre2
ONERA, The French Aerospace Lab, F-91761 Palaiseau, France -
{nicolas.audebert,bertrand.le
Univ. Bretagne-Sud, UMR 6074, IRISA, F-56000 Vannes, France -"
eaaf411826d129c2a31d997dc3f5f708a8186656,SDALF: Modeling Human Appearance with Symmetry-Driven Accumulation of Local Features,"SDALF: Modeling Human Appearance with
Symmetry-Driven Accumulation of Local
Features
Loris Bazzani and Marco Cristani and Vittorio Murino"
eaaec63bb86ee87d56f5844951143485ce84a4ea,GANtruth – an unpaired image-to-image translation method for driving scenarios,"GANtruth – an unpaired image-to-image translation
method for driving scenarios
Anonymous Author(s)
Affiliation
Address
email"
ea482bf1e2b5b44c520fc77eab288caf8b3f367a,Flexible Orthogonal Neighborhood Preserving Embedding,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
ea6f5c8e12513dbaca6bbdff495ef2975b8001bd,Applying a Set of Gabor Filter to 2D-Retinal Fundus Image to Detect the Optic Nerve Head (ONH),"Applying a Set of Gabor Filter to 2D-Retinal Fundus Image
to Detect the Optic Nerve Head (ONH)
Rached Belgacem1,2*, Hédi Trabelsi2, Ines Malek3, Imed Jabri1
Higher National School of engineering of Tunis, ENSIT, Laboratory LATICE (Information Technology and Communication and
Electrical Engineering LR11ESO4), University of Tunis EL Manar. Adress: ENSIT 5, Avenue Taha Hussein, B. P. : 56, Bab
Menara, 1008 Tunis; 2University of Tunis El-Manar, Tunis with expertise in Mechanic, Optics, Biophysics, Conference Master
ISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis
ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouheïr Safi – 1006; 3Faculty of Medicine of Tunis; Address: 15
Rue Djebel Lakhdhar. La Rabta. 1007, Tunis - Tunisia
Corresponding author:
Rached Belgacem,
High Institute of Medical Technologies
of Tunis, ISTMT, and High National
School Engineering of Tunis,
Information Technology and
Communication Technology and
Electrical Engineering, University of
Tunis El-Manar, ENSIT 5, Avenue Taha
Hussein, B. P.: 56, Bab Menara, 1008
Tunis, Tunisia,"
ea8abe31f3cac058cf757f16e1eefa11295322bc,Ensemble of Deep Learned Features for Melanoma Classification,"Ensemble of Deep Learned Features for Melanoma
Classification
Loris Nanni1*, Alessandra Lumini2, Stefano Ghidoni1
Department  of  Information  Engineering,  University  of  Padua,  via  Gradenigo  6/B,  35131
Padova, Italy.
Department  of  Computer  Science  and  Engineering,  University  of  Bologna,  via  Sacchi  3,
7521, Cesena (FC), Italy."
ead2701e883174028a1b1b25472bc83bedc330aa,"Face Recognition Methods Based on Feedforward Neural Networks, Principal Component Analysis and Self-Organizing Map","RADIOENGINEERING, VOL. 16, NO. 1, APRIL 2007
Face Recognition Methods Based on Feedforward
Neural Networks, Principal Component Analysis
nd Self-Organizing Map
Miloš ORAVEC, Jarmila PAVLOVIČOVÁ
Dept. of Telecommunications, Faculty of Electrical Engineering and Information Technology, Slovak University of
Technology, Ilkovičova 3, 812 19 Bratislava, Slovak Republic"
eafda8a94e410f1ad53b3e193ec124e80d57d095,Observer-Based Measurement of Facial Expression With the Facial Action Coding System,"Jeffrey F. Cohn
Zara Ambadar
Paul Ekman
Observer-Based Measurement of Facial Expression
With the Facial Action Coding System
Facial expression has been a focus of emotion research for over
hundred years (Darwin, 1872/1998). It is central to several
leading theories of emotion (Ekman, 1992; Izard, 1977;
Tomkins, 1962) and has been the focus of at times heated
debate about issues in emotion science (Ekman, 1973, 1993;
Fridlund, 1992; Russell, 1994). Facial expression figures
prominently in research on almost every aspect of emotion,
including psychophysiology (Levenson, Ekman, & Friesen,
990), neural bases (Calder et al., 1996; Davidson, Ekman,
Saron, Senulis, & Friesen, 1990), development (Malatesta,
Culver, Tesman, & Shephard, 1989; Matias & Cohn, 1993),
perception (Ambadar, Schooler, & Cohn, 2005), social pro-
esses (Hatfield, Cacioppo, & Rapson, 1992; Hess & Kirouac,
000), and emotion disorder (Kaiser, 2002; Sloan, Straussa,
Quirka, & Sajatovic, 1997), to name a few."
ea0785c2d4ac8f8d6415cffdb83547bfc4e7adba,Spontaneous Facial Expression Recognition using Sparse Representation,"Spontaneous Facial Expression Recognition using Sparse Representation
Univ. Grenoble Alpes, GIPSA-Lab, F-38000 Grenoble, France CNRS, GIPSA-Lab, F-38000 Grenoble, France
Dawood Al Chanti1 and Alice Caplier1
Keywords:
Dictionary learning, Random projection, Spontaneous facial expression, Sparse representation."
ea85378a6549bb9eb9bcc13e31aa6a61b655a9af,Template Protection for PCA - LDA - based 3 D Face Recognition System,"Diplomarbeit
Template Protection for PCA-LDA-based 3D
Face Recognition System
Daniel Hartung
Technische Universität Darmstadt
Fachbereich Informatik
Fachgebiet Graphisch-Interaktive Systeme
Fraunhoferstraße 5
64283 Darmstadt
Betreuer: Dipl.-Ing. Xuebing Zhou
Prüfer: Prof. Dr. techn. Dieter W. Fellner"
ea2ee5c53747878f30f6d9c576fd09d388ab0e2b,Viola-Jones Based Detectors: How Much Affects the Training Set?,"Viola-Jones based Detectors: How much affects
the Training Set?
Modesto Castrill´on-Santana, Daniel Hern´andez-Sosa, Javier Lorenzo-Navarro
SIANI
Edif. Central del Parque Cient´ıfico Tecnol´ogico
Universidad de Las Palmas de Gran Canaria
5017 - Spain"
eace134548f9be17c243b06f133bfac76a797676,ADNet: A Deep Network for Detecting Adverts,"ADNet: A Deep Network for Detecting Adverts
Murhaf Hossari(cid:63)1, Soumyabrata Dev(cid:63)1, Matthew Nicholson1, Killian McCabe1,
Atul Nautiyal1, Clare Conran1, Jian Tang3, Wei Xu3, and Fran¸cois Piti´e1,2
The ADAPT SFI Research Centre, Trinity College Dublin
Department of Electronic & Electrical Engineering, Trinity College Dublin
Huawei Ireland Research Center, Dublin"
ea5eaaadb8bc928fb7543d6fa24f9f4a229ff979,Mirror Neuron Forum.,"Perspectives on Psychological
Science
http://pps.sagepub.com/
Vittorio Gallese, Morton Ann Gernsbacher, Cecilia Heyes, Gregory Hickok and Marco Iacoboni
Mirror Neuron Forum
Perspectives on Psychological Science
DOI: 10.1177/1745691611413392
2011 6: 369
The online version of this article can be found at:
http://pps.sagepub.com/content/6/4/369
Perspectives on Psychological Science
can be found at:
Additional services and information for
Email Alerts:
Subscriptions:
Reprints:
Permissions:
http://pps.sagepub.com/cgi/alerts
http://pps.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav"
ea3353efbe7b856ced106718d04ea7d83e2a2310,A Survey of Video Object Tracking,"International Journal of Control and Automation
Vol. 8, No. 9 (2015), pp. 303-312
http://dx.doi.org/10.14257/ijca.2015.8.9.29
A Survey of Video Object Tracking
Meng Li, Zemin Cai1, Chuliang Wei and Ye Yuan
Department of Electronic Engineering, College of Engineering, Shantou
University, China
Guangdong Provicial Key Laboratory of Digital Signal and Image Processing
Techniques, China
Corresponding author,"
ea572991a75acfc8a8791955f670d2c48db49023,Arbitrary-Shape Object Localization Using Adaptive Image Grids,"Arbitrary-Shape Object Localization using
Adaptive Image Grids
Chunluan Zhou and Junsong Yuan
School of EEE, Nanyang Technology University, Singapore"
ea099ee1183145131e29009f2af0e4b13ac583f0,Effects of exposure to facial expression variation in face learning and recognition,"Psychological Research (2015) 79:1042–1053
DOI 10.1007/s00426-014-0627-8
O R I G I N A L A R T I C L E
Effects of exposure to facial expression variation in face learning
nd recognition
Chang Hong Liu • Wenfeng Chen • James Ward
Received: 25 July 2014 / Accepted: 6 November 2014 / Published online: 15 November 2014
Ó The Author(s) 2014. This article is published with open access at Springerlink.com"
eae625274767cb695fa2121ccdcb30828ffc9b66,Social Context Modulates Facial Imitation of Children’s Emotional Expressions,"RESEARCH ARTICLE
Social Context Modulates Facial Imitation of
Children’s Emotional Expressions
Peter A. Bos*, Nadine Jap-Tjong, Hannah Spencer, Dennis Hofman
Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands"
ea9857a5e5c72d435054a5a73e50dafb755a2597,Comparative study of histogram distance measures for re-identification,"Comparative study of histogram distance measures for re-identification
Pedro A. Mar´ın-Reyes, Javier Lorenzo-Navarro, Modesto Castrill´on-Santana
Instituto Universitario SIANI
Universidad de Las Palmas de Gran Canaria"
ea2d43aa2490331cd1406e1432ce706c53139323,Tracked Instance Search,"TRACKED INSTANCE SEARCH
Andreu Girbau†
Ryota Hinami(cid:63)
Shin’ichi Satoh(cid:63)
Universitat Polit`ecnica de Catalunya, Barcelona
(cid:63) National Institute of Informatics, Tokyo"
ea251fc90da36fdbaf7be76f449a9e0dac1d42ef,Brain mechanisms for processing direct and averted gaze in individuals with autism.,"J Autism Dev Disord
DOI 10.1007/s10803-011-1197-x
O R I G I N A L P A P E R
Brain Mechanisms for Processing Direct and Averted Gaze
in Individuals with Autism
Naomi B. Pitskel • Danielle Z. Bolling • Caitlin M. Hudac •
Stephen D. Lantz • Nancy J. Minshew • Brent C. Vander Wyk •
Kevin A. Pelphrey
Ó Springer Science+Business Media, LLC 2011"
e1f794bacd01eecb623bead652bdc9f86e17944e,Affective Environment for Java Programming Using Facial and EEG Recognition,"Affective Environment for Java Programming
Using Facial and EEG Recognition
María Lucía Barrón-Estrada, Ramón Zatarain-Cabada, Claudia Guadalupe
Aispuro-Gallegos, Catalina de la Luz Sosa-Ochoa, Mario Lindor-Valdez
Instituto Tecnológico de Culiacán, Culiacán, Sinaloa,
Mexico
{lbarron, rzatarain, m03171007, m07170739,"
e1e5d64318ec0a493995fb83ef4f433ddde82e77,Affects the Gaze-cueing Effect,"(cid:5)(cid:36)(cid:57)(cid:50)(cid:44)(cid:39)(cid:44)(cid:49)(cid:42)(cid:3)(cid:50)(cid:53)(cid:3)(cid:36)(cid:51)(cid:51)(cid:53)(cid:50)(cid:36)(cid:38)(cid:43)(cid:44)(cid:49)(cid:42)(cid:3)(cid:40)(cid:60)(cid:40)(cid:54)(cid:5)(cid:34)(cid:3)(cid:44)(cid:49)(cid:55)(cid:53)(cid:50)(cid:57)(cid:40)(cid:53)(cid:54)(cid:44)(cid:50)(cid:49)(cid:18)(cid:40)(cid:59)(cid:55)(cid:53)(cid:36)(cid:57)(cid:40)(cid:53)(cid:54)(cid:44)(cid:50)(cid:49)
(cid:36)(cid:41)(cid:41)(cid:40)(cid:38)(cid:55)(cid:54)(cid:3)(cid:55)(cid:43)(cid:40)(cid:3)(cid:42)(cid:36)(cid:61)(cid:40)(cid:16)(cid:38)(cid:56)(cid:40)(cid:44)(cid:49)(cid:42)(cid:3)(cid:40)(cid:41)(cid:41)(cid:40)(cid:38)(cid:55)
(cid:16)(cid:16)(cid:48)(cid:68)(cid:81)(cid:88)(cid:86)(cid:70)(cid:85)(cid:76)(cid:83)(cid:87)(cid:3)(cid:39)(cid:85)(cid:68)(cid:73)(cid:87)(cid:16)(cid:16)
(cid:38)(cid:82)(cid:74)(cid:81)(cid:76)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:51)(cid:85)(cid:82)(cid:70)(cid:72)(cid:86)(cid:86)(cid:76)(cid:81)(cid:74)
(cid:3)
(cid:3)
(cid:48)(cid:68)(cid:81)(cid:88)(cid:86)(cid:70)(cid:85)(cid:76)(cid:83)(cid:87)(cid:3)(cid:49)(cid:88)(cid:80)(cid:69)(cid:72)(cid:85)(cid:29)
(cid:41)(cid:88)(cid:79)(cid:79)(cid:3)(cid:55)(cid:76)(cid:87)(cid:79)(cid:72)(cid:29)
(cid:36)(cid:85)(cid:87)(cid:76)(cid:70)(cid:79)(cid:72)(cid:3)(cid:55)(cid:92)(cid:83)(cid:72)(cid:29)
(cid:46)(cid:72)(cid:92)(cid:90)(cid:82)(cid:85)(cid:71)(cid:86)(cid:29)
(cid:38)(cid:82)(cid:85)(cid:85)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:71)(cid:76)(cid:81)(cid:74)(cid:3)(cid:36)(cid:88)(cid:87)(cid:75)(cid:82)(cid:85)(cid:29)
(cid:38)(cid:82)(cid:85)(cid:85)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:71)(cid:76)(cid:81)(cid:74)(cid:3)(cid:36)(cid:88)(cid:87)(cid:75)(cid:82)(cid:85)(cid:3)(cid:54)(cid:72)(cid:70)(cid:82)(cid:81)(cid:71)(cid:68)(cid:85)(cid:92)
(cid:44)(cid:81)(cid:73)(cid:82)(cid:85)(cid:80)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:29)
(cid:38)(cid:82)(cid:85)(cid:85)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:71)(cid:76)(cid:81)(cid:74)(cid:3)(cid:36)(cid:88)(cid:87)(cid:75)(cid:82)(cid:85)(cid:10)(cid:86)(cid:3)(cid:44)(cid:81)(cid:86)(cid:87)(cid:76)(cid:87)(cid:88)(cid:87)(cid:76)(cid:82)(cid:81)(cid:29)
(cid:38)(cid:82)(cid:85)(cid:85)(cid:72)(cid:86)(cid:83)(cid:82)(cid:81)(cid:71)(cid:76)(cid:81)(cid:74)(cid:3)(cid:36)(cid:88)(cid:87)(cid:75)(cid:82)(cid:85)(cid:10)(cid:86)(cid:3)(cid:54)(cid:72)(cid:70)(cid:82)(cid:81)(cid:71)(cid:68)(cid:85)(cid:92)
(cid:44)(cid:81)(cid:86)(cid:87)(cid:76)(cid:87)(cid:88)(cid:87)(cid:76)(cid:82)(cid:81)(cid:29)
(cid:41)(cid:76)(cid:85)(cid:86)(cid:87)(cid:3)(cid:36)(cid:88)(cid:87)(cid:75)(cid:82)(cid:85)(cid:29)
(cid:41)(cid:76)(cid:85)(cid:86)(cid:87)(cid:3)(cid:36)(cid:88)(cid:87)(cid:75)(cid:82)(cid:85)(cid:3)(cid:54)(cid:72)(cid:70)(cid:82)(cid:81)(cid:71)(cid:68)(cid:85)(cid:92)(cid:3)(cid:44)(cid:81)(cid:73)(cid:82)(cid:85)(cid:80)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:29)
(cid:50)(cid:85)(cid:71)(cid:72)(cid:85)(cid:3)(cid:82)(cid:73)(cid:3)(cid:36)(cid:88)(cid:87)(cid:75)(cid:82)(cid:85)(cid:86)(cid:29)
(cid:50)(cid:85)(cid:71)(cid:72)(cid:85)(cid:3)(cid:82)(cid:73)(cid:3)(cid:36)(cid:88)(cid:87)(cid:75)(cid:82)(cid:85)(cid:86)(cid:3)(cid:54)(cid:72)(cid:70)(cid:82)(cid:81)(cid:71)(cid:68)(cid:85)(cid:92)(cid:3)(cid:44)(cid:81)(cid:73)(cid:82)(cid:85)(cid:80)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:29)"
e19b60e5b8083828285a2baa781ceaad27f6353c,The accuracy and value of machine-generated image tags: design and user evaluation of an end-to-end image tagging system,"The Accuracy and Value of Machine-Generated Image Tags
Design and User Evaluation of an End-to-End Image Tagging System
Lexing Xie, Apostol Natsev, Matthew Hill, John R. Smith
IBM Watson Research Center, Hawthorne, NY, USA
{xlx, natsev, mh,
Alex Phillips
IBM Global Business Services, United Kingdom"
e18cc09c3d3d79df6cd40ea5cf13ad40eacb8a73,Visual Transfer Learning: Informal Introduction and Literature Overview,"Visual Transfer Learning: Informal Introduction
nd Literature Overview
Erik Rodner
University of Jena, Germany
August 2011"
e151c99b5e55bfc03047a2c6c2118cd9e4ad829b,Perspectives on Deep Multimodel Robot Learning,"Perspectives on Deep Multimodel
Robot Learning
Wolfram Burgard, Abhinav Valada, Noha Radwan, Tayyab Naseer, Jingwei Zhang,
Johan Vertens, Oier Mees, Andreas Eitel and Gabriel Oliveira"
e1e60501677ae67c6a682bac2c17e4fc904ee380,Performance Analysis of Local Binary Pattern Variants in Texture Classification,"Performance Analysis of Local Binary Pattern
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)
Volume 06, Issue 05, May 2017, ISSN: 2278 – 1323
Variants in Texture Classification
Ch. Sudha Sree1, M. V. P Chandra Sekhara Rao2
,2Department of CA, Department of CSE, R.V.R &J.C College of Engineering
Guntur, India"
e1371af87f6d5e22ef6d8c5f9977f5e924f176f6,Bidirectional Retrieval Made Simple Jônatas Wehrmann,"Bidirectional Retrieval Made Simple
Jˆonatas Wehrmann
School of Technology
Rodrigo C. Barros
School of Technology
Pontif´ıcia Universidade Cat´olica
Pontif´ıcia Universidade Cat´olica
do Rio Grande do Sul
do Rio Grande do Sul"
e1725b71f3f127d6a49d24f14bee05aada1e2f96,Part-Based Deep Hashing for Large-Scale Person Re-Identification,"Part-based Deep Hashing for Large-scale
Person Re-identification∗
Fuqing Zhu, Xiangwei Kong, Member, IEEE, Liang Zheng, Member, IEEE, Haiyan Fu, Member, IEEE,
Qi Tian, Fellow, IEEE,"
e1660c10ae661cf951602232b36047b19198f599,Web Image Search Using Attribute Assisted Re- Ranking Model,"Vol-2 Issue-1 2016
IJARIIE-ISSN(O)-2395-4396
Web Image  Search Using  Attribute Assisted  Re-
Ranking  Model
Ganesh  R Nagare1, Ashok  V Markad 2
Information Technology, Amrutvahini College of Engineering, Maharashtra, India"
e1f790bbedcba3134277f545e56946bc6ffce48d,Image Retrieval Using Attribute Enhanced Sparse Code Words,"International Journal of Innovative Research in Science,
Engineering and Technology
(An ISO 3297: 2007 Certified Organization)
Vol. 3, Issue 5, May 2014
Sparse Code Words
ISSN: 2319-8753
Image Retrieval Using Attribute Enhanced
M.Balaganesh1, N.Arthi2
Associate Professor, Department of Computer Science and Engineering, SRV Engineering College, sembodai, india1
P.G. Student, Department of Computer Science and Engineering, SRV Engineering College, sembodai, India 2"
e135f8118145b6a2e2a6a2088c04c26ca6d38642,Dynamic Biometrics Fusion at Feature Level for Video-Based Human Recognition,
e10662a59b5f8e1f5684409023f11ca727647320,Performance Evaluation of Deep Learning Networks for Semantic Segmentation of Traffic Stereo-Pair Images,"Performance Evaluation of Deep Learning Networks for
Semantic Segmentation of Traffic Stereo-Pair Images
Vlad Taran, Nikita Gordienko, Yuriy Kochura, Yuri Gordienko, Alexandr Rokovyi, Oleg
Alienin, Sergii Stirenko
National Technical University of Ukraine ""Igor Sikorsky Kyiv Polytechnic Institute"",
Kyiv, Ukraine
Semantic  image  segmentation  is  one  the  most  demanding  task,  especially  for  analysis  of  traffic  conditions
for  self-driving  cars.  Here  the  results  of  application  of  several  deep  learning  architectures  (PSPNet  and
ICNet)  for  semantic  image  segmentation  of  traffic  stereo-pair  images  are  presented.  The  images  from
Cityscapes  dataset  and  custom  urban  images  were  analyzed  as  to  the  segmentation  accuracy  and  image
inference time. For the models pre-trained on Cityscapes dataset,  the inference time was equal in the limits
of  standard  deviation,  but  the  segmentation  accuracy  was  different  for  various  cities  and  stereo  channels
even. The distributions of accuracy (mean intersection over union — mIoU) values for each city and channel
re asymmetric, long-tailed, and have many extreme outliers, especially for PSPNet network in comparison
to  ICNet  network.  Some  statistical  properties  of  these  distributions  (skewness,  kurtosis)  allow  us  to
distinguish these two networks and open the question about relations between architecture of deep learning
networks and statistical distribution of the predicted results (mIoU here). The results obtained demonstrated
the  different  sensitivity  of  these  networks  to:  (1)  the  local  street  view  peculiarities  in  different  cities  that
should be  taken  into  account during  the  targeted  fine  tuning  the  models  before  their  practical  applications,
(2) the right and left data channels in stereo-pairs. For both networks, the difference in the predicted results"
e17783170ecc48253fa16123a041ae298184f4ff,Graph Embedding Algorithms Based on Neighborhood Discriminant Embedding for Face Recognition,"International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 4 (2012) pp. 374–382
(cid:13) MIR Labs, www.mirlabs.net/ijcisim/index.html
Graph Embedding Algorithms Based on
Neighborhood Discriminant Embedding for Face
Recognition
Dexing Zhong1,2, Jiuqiang Han1, Yongli Liu1 and Shengbin Li2
Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong University,
8 Xianning West Road, Xian, 710049 P. R. China
State Key Laboratory of Ministry of Health for Forensic Sciences, Xian Jiaotong University,
76 Yanta West Road, Xian, 710061 P. R. China"
e1e2b6a8944a4e6f195b6f7371ee9e6b0684ae6b,Generating Personalized Virtual Agent in Speech Dialogue System for People with Dementia,"Generating Personalized Virtual Agent
in Speech Dialogue System for People
with Dementia
Shota Nakatani1(B), Sachio Saiki1, Masahide Nakamura1, and Kiyoshi Yasuda2
Graduate School of System Informatics Kobe University,
-1 Rokkodai, Nada, Kobe, Japan
Chiba Rosai Hospital, 2-16 Tatsumidai-higashi, Ichihara, Japan"
e19ebad4739d59f999d192bac7d596b20b887f78,Learning Gating ConvNet for Two-Stream based Methods in Action Recognition,"Learning Gating ConvNet for Two-Stream based Methods in Action
Recognition
Jiagang Zhu1,2, Wei Zou1, Zheng Zhu1,2"
e1cb110c45c4416f7aff490db2674abe1460259e,Hard-Aware Point-to-Set Deep Metric for Person Re-identification,"Hard-AwarePoint-to-SetDeepMetricforPersonRe-identificationRuiYu1,ZhiyongDou1,SongBai1,ZhaoxiangZhang2,YongchaoXu1(),andXiangBai1("
e163118b4a5b8016754134215433eee1f2c0065a,3-D Shape Matching for Face Analysis and Recognition,"-D Shape Matching for Face Analysis and Recognition
Wei Quan, Bogdan J. Matuszewski and Lik-Kwan Shark
Robotics and Computer Vision Research Laboratory, Applied Digital Signal and Image Processing (ADSIP) Research
Centre, University of Central Lancashire, Preston PR1 2HE, U.K.
Keywords:
Face  Recognition,  Shape  Matching  and  Modelling,  Isometric  Embedding  Representation,  Non-Rigid
Deformation Registration."
e1fb8ab53996f06e9a35de6b553333bd6279bcbd,Learning Multilayer Channel Features for Pedestrian Detection,"Learning Multilayer Channel Features for
Pedestrian Detection
Jiale Cao, Yanwei Pang, and Xuelong Li"
e1d726d812554f2b2b92cac3a4d2bec678969368,Human Action Recognition Bases on Local Action Attributes,"J Electr Eng Technol.2015; 10(?): 30-40
http://dx.doi.org/10.5370/JEET.2015.10.2.030
ISSN(Print)
975-0102
ISSN(Online)  2093-7423
Human Action Recognition Bases on Local Action Attributes
Jing  Zhang*, Hong Liu*, Weizhi Nie† Lekha Chaisorn**, Yongkang Wong**
nd Mohan S Kankanhalli**"
e1140b86c64549cbcd138f868c82ee8aad77d103,Occlusion Handling using Semantic Segmentation and Visibility-Based Rendering for Mixed Reality,"Occlusion Handling using Semantic Segmentation and
Visibility-Based Rendering for Mixed Reality
Menandro Roxas
Tomoki Hori
Taiki Fukiage
Tokyo, Japan
Yasuhide Okamoto
Takeshi Oishi
(cid:140)e University of Tokyo"
e1f815c50a6c0c6d790c60a1348393264f829e60,Pedestrian Detection and Tracking in Surveillance Video,"PEDESTRIAN DETECTION AND TRACKING IN
SURVEILLANCE VIDEO
PENNY CHONG
A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Science (Hons.)
Applied Mathematics with Computing
Lee Kong Chian Faculty of Engineering and Science
Universiti Tunku Abdul Rahman
April 2016"
e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2,Ranking with Adaptive Neighbors,"TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214
0?/?? pp???–???
DOI: 10.26599/TST.2018.9010000
Volume 1, Number 1, Septembelr 2018
Ranking with Adaptive Neighbors
Muge Li, Liangyue Li, and Feiping Nie∗"
e1e1b3683ac278386cf1569e97f9aced0923f4a0,Hyperdrive: A Systolically Scalable Binary-Weight CNN Inference Engine for mW IoT End-Nodes,"Hyperdrive: A Systolically Scalable Binary-Weight
CNN Inference Engine for mW IoT End-Nodes
Renzo Andri∗, Lukas Cavigelli∗, Davide Rossi†, Luca Benini∗†
Integrated Systems Laboratory, ETH Zurich, Zurich, Switzerland
DEI, University of Bologna, Bologna, Italy"
cd01a0018f2b8f1211e8dfe311c28e32773c58dc,Globally-Optimal Inlier Set Maximisation for Simultaneous Camera Pose and Feature Correspondence,"Globally-Optimal Inlier Set Maximisation for
Simultaneous Camera Pose and Feature Correspondence
Dylan Campbell1,2, Lars Petersson1,2, Laurent Kneip1 and Hongdong Li1
Australian National University*
Data61 – CSIRO"
cd9666858f6c211e13aa80589d75373fd06f6246,A Novel Time Series Kernel for Sequences Generated by LTI Systems,"A Novel Time Series Kernel for
Sequences Generated by LTI Systems
Liliana Lo Presti, Marco La Cascia
V.le delle Scienze Ed.6, DIID, Universit´a degli studi di Palermo, Italy"
cd2c1e542ae8c08cfb8baea3dff788d143232de8,Multiview Human Synthesis From a Single View,"Multiview Human Synthesis From a Singleview
Si Wen (06246679), Tiancong Zhou (06247022), Honghao Qiu (06246258)
{wensi, longztc,"
cd36768795c696c990ff5c89be8d8b3b205858bd,CliCR: A Dataset of Clinical Case Reports for Machine Reading Comprehension,"CliCR: A Dataset of Clinical Case Reports for Machine
Reading Comprehension∗
Simon ˇSuster and Walter Daelemans
Computational Linguistics & Psycholinguistics Research Center,
University of Antwerp, Belgium"
cd6978bf6b98794552bd52d166b5e04626fb6d6d,A Review on Face Recognition in various Illuminations,"A Review on Face Recognition in various
Illuminations
Saurabh D. Parmar , Vaishali j. kalariya
CE/IT Department-School of Engineering,R.K. University,Rajkot"
cd0a04c0af9b6c523884415ba54bff370fd02fab,Generalized Sparselet Models for Real-Time Multiclass Object Recognition,"Generalized Sparselet Models for Real-Time
Multiclass Object Recognition
Hyun Oh Song, Ross Girshick, Stefan Zickler, Christopher Geyer, Pedro Felzenszwalb, and Trevor Darrell"
cd444ee7f165032b97ee76b21b9ff58c10750570,Table of Contents.,"UNIVERSITY OF CALIFORNIA,
IRVINE
Relational Models for Human-Object Interactions and Object Affordances
DISSERTATION
submitted in partial satisfaction of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
in Computer Science
Chaitanya Desai
Dissertation Committee:
Professor Deva Ramanan, Chair
Professor Charless Fowlkes
Professor Padhraic Smyth
Professor Serge Belongie"
cd0f7b3f545cc4bfa5e2d7185789e8ead7e3cee2,"Children’s and Adults’ Predictions of Black, White, and Multiracial Friendship Patterns","Journal of Cognition and Development
ISSN: 1524-8372 (Print) 1532-7647 (Online) Journal homepage: http://www.tandfonline.com/loi/hjcd20
Children’s and Adults’ Predictions of Black, White,
nd Multiracial Friendship Patterns
Steven O. Roberts, Amber D. Williams & Susan A. Gelman
To cite this article: Steven O. Roberts, Amber D. Williams & Susan A. Gelman (2017) Children’s
nd Adults’ Predictions of Black, White, and Multiracial Friendship Patterns, Journal of Cognition
nd Development, 18:2, 189-208, DOI: 10.1080/15248372.2016.1262374
To link to this article:  http://dx.doi.org/10.1080/15248372.2016.1262374
Accepted author version posted online: 22
Nov 2016.
Published online: 22 Nov 2016.
Submit your article to this journal
Article views: 91
View related articles
View Crossmark data
Citing articles: 1 View citing articles
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=hjcd20
Download by: [University of Michigan]"
cd596a2682d74bdfa7b7160dd070b598975e89d9,Mood Detection: Implementing a facial expression recognition system,"Mood Detection: Implementing a facial
expression recognition system
Neeraj Agrawal, Rob Cosgriff and Ritvik Mudur
. Introduction
Facial  expressions  play  a  significant  role  in  human  dialogue.  As  a  result,  there  has  been
onsiderable work done on the recognition of emotional expressions and the  application of this
research  will  be  beneficial  in  improving  human-machine  dialogue.  One  can  imagine  the
improvements  to  computer  interfaces,  automated  clinical  (psychological)  research  or  even
interactions between humans and autonomous robots.
Unfortunately,  a  lot  of  the  literature  does  not  focus  on  trying  to  achieve  high  recognition  rates
cross  multiple  databases.  In  this  project  we  develop  our  own  mood  detection  system  that
ddresses  this  challenge.  The  system  involves  pre-processing  image  data  by  normalizing  and
pplying a simple mask, extracting certain (facial) features using PCA and Gabor filters and then
using SVMs for classification and recognition of expressions. Eigenfaces for each class are used
to  determine  class-specific  masks  which  are  then  applied  to  the  image  data  and  used  to  train
multiple,  one  against  the  rest,  SVMs.  We  find  that  simply  using  normalized  pixel  intensities
works well with such an approach.
Figure 1 – Overview of our system design
. Image pre-processing
We performed pre-processing on the images used to train and test our algorithms as follows:"
cd490432e35ed5c5b7d80e1525e2780d7467ffb6,Background Estimation of Lost Values Using Kinect’s Sensor in an Inpainting Technique,"International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 – 0882
Vo lu me 3, Issue 8, Nove mber 2014
BACKGROUND ESTIMATION OF LOST VALUES USING
KINECT’S SENSOR IN AN INPAINTING TECHNIQUE
* PG Schola r, Dept of EEE [Embedded systems technologies], #Assistant Professsor,
Dept of EEE, Kongunadu College Of Engineering & Technology,Trichy, Ta mil Nadu, India
*S.Kavitha, #Ms.S.Hemalatha"
cd5ef3aeebc231e2c833ef55cf0571aa990c5ff8,Image Quality Assessment Techniques Improve Training,"Under review as a conference paper at ICLR 2018
IMAGE QUALITY ASSESSMENT TECHNIQUES IMPROVE
TRAINING AND EVALUATION OF ENERGY-BASED
GENERATIVE ADVERSARIAL NETWORKS
Anonymous authors
Paper under double-blind review"
cda4fb9df653b5721ad4fe8b4a88468a410e55ec,Gabor wavelet transform and its application,"Gabor wavelet transform and its application
Wei-lun Chao R98942073"
cd855c776240150f4dba7a5975c7011a9c6737ac,On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors: A Deep Learning Approach,"On Accurate and Reliable Anomaly Detection for Gas Turbine
Combustors: A Deep Learning Approach
Weizhong Yan1 and Lijie Yu2
General Electric Global Research Center, Niskayuna, New York 12309, USA
General Electric Power & Water Engineering, Atlanta, Georgia 30339, USA"
cdba015be9db1e047a51b7e06403528b3551587e,SHOG - Spherical HOG Descriptors for Rotation Invariant 3D Object Detection,"SHOG - Spherical HOG Descriptors for
Rotation Invariant 3D Object Detection
Henrik Skibbe1,3, Marco Reisert2 and Hans Burkhardt1,3
Department of Computer Science, University of Freiburg, Germany
Dept. of Diagnostic Radiology, Medical Physics, University Medical Center, Freiburg
Center for Biological Signalling Studies (BIOSS), University of Freiburg"
cd3005753012409361aba17f3f766e33e3a7320d,Multilinear Biased Discriminant Analysis: A Novel Method for Facial Action Unit Representation,"Multilinear Biased Discriminant Analysis: A Novel Method for Facial
Action Unit Representation
Mahmoud Khademi†, Mehran Safayani†and Mohammad T. Manzuri-Shalmani†
: Sharif University of Tech., DSP Lab,"
cd687ddbd89a832f51d5510c478942800a3e6854,A game to crowdsource data for affective computing,"A Game to Crowdsource Data for Affective Computing
Chek Tien Tan
Hemanta Sapkota
Daniel Rosser
Yusuf Pisan
Games Studio, Faculty of Engineering and IT, University of Technology, Sydney"
cd4252d1f0a124dcc91af28f527ad1fa7be3a195,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
cd7a7be3804fd217e9f10682e0c0bfd9583a08db,Women also Snowboard: Overcoming Bias in Captioning Models,"Women also Snowboard:
Overcoming Bias in Captioning Models
Lisa Anne Hendricks * 1 Kaylee Burns * 1 Kate Saenko 2 Trevor Darrell 1 Anna Rohrbach 1"
cca228b47a603a9b9e2a1e3a1b278b35612d078d,Randomized Face Recognition on Partially Occluded Images,"Randomized Face Recognition on Partially
Occluded Images
Ariel Morelli Andres, Sebastian Padovani, Mariano Tepper, Marta Mejail, and
Julio Jacobo
Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Argentina."
ccfcbf0eda6df876f0170bdb4d7b4ab4e7676f18,A Dynamic Appearance Descriptor Approach to Facial Actions Temporal Modeling,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JUNE 2011
A Dynamic Appearance Descriptor Approach to
Facial Actions Temporal Modelling
Bihan Jiang, Student Member, IEEE, Michel Valstar, Member, IEEE, Brais Martinez, Member, IEEE, and
Maja Pantic, Fellow, IEEE"
ccd5bd5ce40640ebc6665b97a86ba3d28e457d11,Contributions to a fast and robust object recognition in images. (Contributions à une reconnaissance d'objet rapide et robuste en images),"Contributions to a fast and robust object recognition in
images
J´erˆome Revaud
To cite this version:
J´erˆome Revaud. Contributions to a fast and robust object recognition in images. Other [cs.OH].
INSA de Lyon, 2011. English. <NNT : 2011ISAL0042>. <tel-00694442>
HAL Id: tel-00694442
https://tel.archives-ouvertes.fr/tel-00694442
Submitted on 4 May 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de
recherche fran¸cais ou ´etrangers, des laboratoires"
cc5f4d5aa9c3ffa75a335f3305a1caf9cbdeb71f,Learning Hierarchical Representations for Video Analysis Using Deep Learning,"LEARNING HIERARCHICAL REPRESENTATIONS FOR VIDEO ANALYSIS USING DEEP
LEARNING
YANG YANG
B.S. Beijing University of Technology, 2008
A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science
t the University of Central Florida
Orlando, Florida
Summer Term
Major Professor: Mubarak Shah"
cc34b0ab84e82a6d8ebce08eff1b7556026b5352,Face Recognition using Gaussian Hermite Moments,"Special Issue of International Journal of Computer Applications (0975 – 8887)
on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012
D Face Recognition using Gaussian Hermite Moments
Naouar Belghini
Faculty of Technical Sciences
B.P. 2202 – Road of Imouzzer
Fez – Morocco
Arsalane Zarghili
Faculty of Technical Sciences
B.P. 2202 – Road of Imouzzer
Fez – Morocco
Jamal Kharroubi
Faculty of Technical Sciences
B.P. 2202 – Road of Imouzzer
Fez – Morocco"
ccf5852bfb55e1fa6760f76139ab44dab89f2a17,"Recognize Faces across Multi - View Videos and under Varying Illumination , Facial Expressions","Recognize Faces across Multi-View Videos and
under Varying Illumination, Facial Expressions
Research Scholar, Dept. Electronics & Communication Engineering,
Mr. Steven Lawrence Fernandes1
Karunya University,
Coimbatore, Tamil Nadu, India
Professor, Dept. Electronics & Communication Engineering,
Dr. G. Josemin Bala2
Karunya University,
Coimbatore, Tamil Nadu, India"
cc392ab1cfaee298e05488a4a1d84ece12220880,A new multi-scale fuzzy model for Histogram-Based Descriptors,"A NEW MULTI-SCALE FUZZY MODEL FOR HISTOGRAM-BASED DESCRIPTORS
Lunshao Chaia, Zhen Qinb, Honggang Zhanga, Jun Guoa, Bir Bhanub
Beijing University of Posts and Telecomuunictions, Beijing, 100876, China
University of California at Riverside, Riverside, CA 92521, USA"
cc3e1a6376928138dff5582b7a56d40cfb3b7367,Cost-Effective Features for Reidentification in Camera Networks,"Cost-effective features for
re-identification in camera networks
Syed Fahad Tahir and Andrea Cavallaro"
cc2df3a03ee731478ed48838c284ad4548563308,Towards a Better Metric for Evaluating Question Generation Systems,"Towards a Better Metric for Evaluating Question Generation Systems
Preksha Nema†‡ Mitesh M. Khapra†‡
IIT Madras, India
Robert Bosch Center for Data Science and Artificial Intelligence, IIT Madras"
ccd2152c77ae65e4d3d0988990f6e243133a5efc,Learning Human Activities and Poses with Interconnected Data,"Copyright
Chao-Yeh Chen"
cc3c273bb213240515147e8be68c50f7ea22777c,Gaining Insight Into Films Via Topic Modeling & Visualization,"Gaining Insight Into Films
Via Topic Modeling & Visualization
MISHA RABINOVICH, MFA
YOGESH GIRDHAR, PHD
KEYWORDS Collaboration, computer vision, cultural
nalytics, economy of abundance, interactive data
visualization
We moved beyond misuse when the software actually
ecame useful for film analysis with the addition of audio
nalysis, subtitle analysis, facial recognition, and topic
modeling. Using multiple types of visualizations and
back-and-fourth workflow between people and AI
we arrived at an approach for cultural analytics that
an be used to review and develop film criticism. Finally,
we present ways to apply these techniques to Database
Cinema and other aspects of film and video creation.
PROJECT DATE 2014
URL http://misharabinovich.com/soyummy.html"
cc8e378fd05152a81c2810f682a78c5057c8a735,Expression Invariant Face Recognition System based on Topographic Independent Component Analysis and Inner Product Classifier,"International Journal of Computer Sciences and Engineering    Open Access
Research Paper                                          Volume-5, Issue-12                                          E-ISSN: 2347-2693
Expression Invariant Face Recognition System based on Topographic
Independent Component Analysis and Inner Product Classifier
Aruna Bhat
Department of Electrical Engineering, IIT Delhi, New Delhi, India
*Corresponding Author:
Available online at: www.ijcseonline.org
Received: 07/Nov/2017, Revised: 22/Nov/2017, Accepted: 14/Dec/2017, Published: 31/Dec/2017"
cc5a62bd7c45a9ca479506acb572566331354fa3,Eye localization through multiscale sparse dictionaries,"Eye Localization through Multiscale Sparse Dictionaries
Fei Yang, Junzhou Huang, Peng Yang and Dimitris Metaxas"
ccf43c62e4bf76b6a48ff588ef7ed51e87ddf50b,Nutraceuticals and Cosmeceuticals for Human Beings–An Overview,"American Journal of Food Science and Health
Vol. 2, No. 2, 2016, pp. 7-17
http://www.aiscience.org/journal/ajfsh
ISSN: 2381-7216 (Print); ISSN: 2381-7224 (Online)
Nutraceuticals and Cosmeceuticals for Human
Beings–An Overview
R. Ramasubramania Raja*
Department of Pharmacognosy, Narayana Pharmacy College, Nellore, India"
cc622a0ac114821be935ca9c66cc177b93e18876,Anomaly Detection Based on Trajectory Analysis Using Kernel Density Estimation and Information Bottleneck Techniques,"Anomaly Detection Based on Trajectory Analysis
Using Kernel Density Estimation and Information
Bottleneck Techniques
Yuejun Guo, Qing Xu(cid:3), Yu Yang, Sheng Liang, Yu Liu, Mateu Sbert"
cc09cf5831fcae802ed2905a61ab502956655bbe,Shape-based instance detection under arbitrary viewpoint,"Shape-based instance detection under arbitrary
viewpoint
Edward Hsiao and Martial Hebert"
cc31db984282bb70946f6881bab741aa841d3a7c,Learning Grimaces by Watching TV,"ALBANIE, VEDALDI: LEARNING GRIMACES BY WATCHING TV
Learning Grimaces by Watching TV
Samuel Albanie
http://www.robots.ox.ac.uk/~albanie
Andrea Vedaldi
http://www.robots.ox.ac.uk/~vedaldi
Engineering Science Department
Univeristy of Oxford
Oxford, UK"
cc246025ec8e1d32ecfbeefaba0727fdf73cd9cb,Vehicle Tracking by Simultaneous Detection and Viewpoint Estimation,"Vehicle Tracking by Simultaneous Detection and
Viewpoint Estimation
Ricardo Guerrero-G´omez-Olmedo1, Roberto L´opez-Sastre1, Saturnino
Maldonado-Basc´on1, and Antonio Fern´andez-Caballero2
GRAM, Department of Signal Theory and Communications, UAH, Alcal´a de Henares, Spain.
Department of Computing Systems, UCLM, Albacete, Spain."
cc9f473584c1a7f224b42d4a3a3ea2864173cc28,Hephaestus: Data Reuse for Accelerating Scientific Discovery,"Hephaestus: Data Reuse for
Accelerating Scientific Discovery
Jennie Duggan
Northwestern EECS"
cc91001f9d299ad70deb6453d55b2c0b967f8c0d,Performance Enhancement of Face Recognition in Smart TV Using Symmetrical Fuzzy-Based Quality Assessment,"OPEN ACCESS
ISSN 2073-8994
Article
Performance Enhancement of Face Recognition in Smart TV
Using Symmetrical Fuzzy-Based Quality Assessment
Yeong Gon Kim, Won Oh Lee, Ki Wan Kim, Hyung Gil Hong and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu,
Seoul 100-715, Korea; E-Mails: (Y.G.K.); (W.O.L.);
(K.W.K.); (H.G.H.)
*  Author to whom correspondence should be addressed; E-Mail:
Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735.
Academic Editor: Christopher Tyler
Received: 31 March 2015 / Accepted: 21 August 2015 / Published: 25 August 2015"
cc96eab1e55e771e417b758119ce5d7ef1722b43,An Empirical Study of Recent Face Alignment Methods,"An Empirical Study of Recent
Face Alignment Methods
Heng Yang, Xuhui Jia, Chen Change Loy and Peter Robinson"
cc4a2cab31ed06d0d8723df0bdf8cd0ece71bbe9,Analysis of Using Metric Access Methods for Visual Search of Objects in Video Databases,"Analysis of Using Metric Access Methods for Visual Search
of Objects in Video Databases
Henrique Batista da Silva 1
Zenilton Kleber Gonçalves do Patrocínio Júnior 2
Silvio Jamil Ferzoli Guimarães 2"
cc2bb4318191a04e3fc82c008c649f5b90151e4d,Beyond Shared Hierarchies: Deep Multitask Learning through Soft Layer Ordering,"Published as a conference paper at ICLR 2018
BEYOND SHARED HIERARCHIES: DEEP MULTITASK
LEARNING THROUGH SOFT LAYER ORDERING
Elliot Meyerson & Risto Miikkulainen
The University of Texas at Austin and Sentient Technologies, Inc.
{ekm,"
cca198ae698e7956992f2fb326c04965b2964a18,Learning Pain from Emotion: Transferred HoT Data Representation for Pain Intensity Estimation,"Learning Pain from Emotion: Transferred HoT
Data Representation for Pain Intensity
Estimation
Corneliu Florea1, Laura Florea1, and Constantin Vertan1
Image Processing and Applications Laboratory,
{corneliu.florea; laura.florea; constantin.vertan}
University “Politehnica” of Bucharest,"
e6d50d65a87425e7f0b4ec08c53d200f12f75590,The Neural Dynamics of Facial Identity Processing: Insights from EEG-Based Pattern Analysis and Image Reconstruction,"New Research
Sensory and Motor Systems
The Neural Dynamics of Facial Identity
Processing: Insights from EEG-Based Pattern
Analysis and Image Reconstruction
Dan Nemrodov,1 Matthias Niemeier,1 Ashutosh Patel,1 and Adrian Nestor1
DOI:http://dx.doi.org/10.1523/ENEURO.0358-17.2018
Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4,
Canada"
e64b683e32525643a9ddb6b6af8b0472ef5b6a37,Face Recognition and Retrieval in Video,"Face Recognition and Retrieval in Video
Caifeng Shan"
e68b1fdc4e515f947c96f65ec7ac2521edbc06b2,ROS Wrapper for Real-Time Multi-Person Pose Estimation with a Single Camera,"Technical Report
IRI--TR-17-02
ROS Wrapper
for Real-Time Multi-Person
Pose Estimation
with a Single Camera
Autor
Miguel Arduengo
Sven Jens Jorgensen
Supervisors
Kimberly Hambuchen
Luis Sentis
Francesc Moreno
Guillem Alenyà
July 2017
Institut de Robòtica i Informàtica Industrial"
e6d8f332ae26e9983d5b42af4466ff95b55f2341,Pose-Normalized Image Generation for Person Re-identification,"Pose-Normalized Image Generation for Person Re-identification
Xuelin Qian1, Yanwei Fu1, Tao Xiang2, Wenxuan Wang1
Jie Qiu3, Yang Wu3, Yu-Gang Jiang1, Xiangyang Xue1
Fudan University; 2Queen Mary University of London;
Nara Institute of Science and Technology;"
e63f4867c73eff9ff7cdf31246585a6915acef57,Digging Into Self-Supervised Monocular Depth Estimation,"Digging Into Self-Supervised
Monocular Depth Estimation
Cl´ement Godard
Oisin Mac Aodha
Gabriel J. Brostow"
e6af98d1567dad534262ec0863264bb26157533f,On Multi-scale Differential Features and Their Representations for Image Retrieval and Recognition,"ON MULTI-SCALE DIFFERENTIAL FEATURES AND THEIR
REPRESENTATIONS FOR IMAGE RETRIEVAL AND RECOGNITION
A Dissertation Presented
SRINIVAS S. RAVELA
Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of
DOCTOR OF PHILOSOPHY
February 2003
Department of Computer Science"
e624c73e3057a1de75e9d6d7e813771154ff1375,Incorporating Scalability in Unsupervised Spatio- Temporal Feature Learning,"INCORPORATING SCALABILITY IN UNSUPERVISED SPATIO-TEMPORAL FEATURE
LEARNING
Sujoy Paul, Sourya Roy and Amit K. Roy-Chowdhury
Dept. of Electrical and Computer Engineering, University of California, Riverside, CA 92521"
e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227,Pairwise Relational Networks for Face Recognition,"Pairwise Relational Networks for Face
Recognition
Bong-Nam Kang1[0000−0002−6818−7532], Yonghyun Kim2[0000−0003−0038−7850],
nd Daijin Kim1,2[0000−0002−8046−8521]
Department of Creative IT Engineering, POSTECH, Korea
Department of Computer Science and Engineering, POSTECH, Korea"
e68083909381a8fbd0e4468aa06204ac00a0e6fc,Visual Identification by Signature Tracking,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 2, FEBRUARY 2003
Visual Identification by Signature Tracking
Mario E. Munich, Member, IEEE, and Pietro Perona, Member, IEEE"
e6865b000cf4d4e84c3fe895b7ddfc65a9c4aaec,"Tobias Siebenlist , Kathrin Knautz Chapter 15 . The critical role of the cold - start problem and incentive systems in emotional Web 2 . 0 services","Tobias Siebenlist, Kathrin Knautz
Chapter 15. The critical role of the
old-start problem and incentive systems
in emotional Web 2.0 services"
e6d689054e87ad3b8fbbb70714d48712ad84dc1c,Robust Facial Feature Tracking,"Robust Facial Feature Tracking
Fabrice Bourel, Claude C. Chibelushi, Adrian A. Low
School of Computing, Staffordshire University
Stafford ST18 0DG"
e6868f172df3736e052fec4c00b63780b3d739fe,Effects of a Common Variant in the CD38 Gene on Social Processing in an Oxytocin Challenge Study: Possible Links to Autism,"Effects of a Common Variant in the CD38 Gene on Social
Processing in an Oxytocin Challenge Study: Possible Links
to Autism
Carina Sauer*,1, Christian Montag2, Christiane Wo¨ rner1, Peter Kirsch1,3 and Martin Reuter2,3
Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany;
Department of Differential and Biological Psychology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
The intranasal application of oxytocin (OT) has been shown to influence behavioral and neural correlates of social processing. These
effects are probably mediated by genetic variations within the OT system. One potential candidate could be the CD38 gene, which codes
for a transmembrane protein engaged in OT secretion processes. A common variation in this gene (rs3796863) was recently found to
e associated with autism spectrum disorders (ASD). Using an imaging genetics approach, we studied differential effects of an intranasal
OT application on neural processing of social stimuli in 55 healthy young men depending on their CD38 gene variant in a double-blind
placebo-controlled crossover design. Genotype had a significant influence on both behavioral and neuronal measures of social processing.
Homozygotic risk allele carriers showed slower reaction times (RT) and higher activation of left fusiform gyrus during visual processing of
social stimuli. Under OT activation differences between genotypes were more evident (though not statistically significantly increased) and
RT were accelerated in homozygotic risk allele carriers. According to our data, rs3796863 mainly influences fusiform gyrus activation, an
rea which has been widely discussed in ASD research. OT seems to modulate this effect by enhancing activation differences between
llele groups, which suggests an interaction between genetic makeup and OT availability on fusiform gyrus activation. These results
support recent approaches to apply OT as a pharmacological treatment of ASD symptoms.
Keywords: oxytocin; CD38; social processing; imaging genetics; autism
INTRODUCTION"
e63a0ea338dfc7293ddd68074baf250e99d0c6d5,Nonlinear Supervised Dimensionality Reduction via Smooth Regular Embeddings,"Nonlinear Supervised Dimensionality Reduction via
Smooth Regular Embeddings
Department of Electrical and Electronics Engineering, METU, Ankara
Cem ¨Ornek and Elif Vural"
e6d48d23308a9e0a215f7b5ba6ae30ee5d2f0ef5,Multi-person Tracking by Online Learned Grouping Model with Non-linear Motion Context,"IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH YEAR
Multi-person Tracking by Online Learned Grouping
Model with Non-linear Motion Context
Xiaojing Chen, Zhen Qin, Le An, Member, IEEE, and Bir Bhanu, Fellow, IEEE"
e6ca412a05002b51d358c2e3061913c3dab6b810,MoFA: Model-Based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction,
e6dc1200a31defda100b2e5ddb27fb7ecbbd4acd,Flexible Manifold Embedding: A Framework for Semi-Supervised and Unsupervised Dimension Reduction,"Flexible Manifold Embedding: A Framework
for Semi-Supervised and Unsupervised
Dimension Reduction
Feiping Nie, Dong Xu, Member, IEEE, Ivor Wai-Hung Tsang, and Changshui Zhang, Member, IEEE
, the linear regression function ("
e6e5a6090016810fb902b51d5baa2469ae28b8a1,Title Energy-Efficient Deep In-memory Architecture for NAND Flash Memories,"Title
Energy-Efficient Deep In-memory Architecture for NAND
Flash Memories
Archived version
Accepted manuscript: the content is same as the published
paper but without the final typesetting by the publisher
Published version
Published paper
Authors (contact)
0.1109/ISCAS.2018.8351458"
e688a6535dbdd6ce6928bc4eb2978f39628e5302,Hand Drawn Sketch Classification Using Convolutional Neural Networks,"SUPPLEMENT ISSUE
ARTICLE
HAND DRAWN SKETCH CLASSIFICATION USING
CONVOLUTIONAL NEURAL NETWORKS
Habibollah Agh Atabay*
Department of Computer, Gonbad Kavous University, Gonbad Kavous, IRAN"
e6aadde93aedc06525523415e574507cf5c8cc44,End-to-end optimization of goal-driven and visually grounded dialogue systems,"End-to-end optimization of goal-driven and visually grounded dialogue systems
Florian Strub
Univ. Lille, CNRS, Centrale Lille, Inria,
UMR 9189 - CRIStAL, F-59000 Lille, France
Harm de Vries
University of Montreal
Jeremie Mary
Univ. Lille, CNRS, Centrale Lille, Inria,
UMR 9189 - CRIStAL, F-59000 Lille, France
Bilal Piot
DeepMind"
e605242319ba495bc5f47abe9f1c08d508d83627,Importance-Aware Semantic Segmentation for Autonomous Driving System,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5,Improving Facial Landmark Detection via a Super-Resolution Inception Network,"Improving Facial Landmark Detection via a
Super-Resolution Inception Network
Martin Knoche, Daniel Merget, Gerhard Rigoll
Institute for Human-Machine Communication
Technical University of Munich, Germany"
e6beb5d95fa262b8717cc264d79a879285db15d4,Towards Transparent AI Systems: Interpreting Visual Question Answering Models,"Towards Transparent AI Systems:
Interpreting Visual Question Answering Models
Yash Goyal, Akrit Mohapatra, Devi Parikh, Dhruv Batra
{ygoyal, akrit, parikh,
Virginia Tech"
e68ef9597613cd2b6cf76e81c13eb061ee468485,Latent Convolutional Models,"Published as a conference paper at ICLR 2019
LATENT CONVOLUTIONAL MODELS
ShahRukh Athar
Skolkovo Institute of Science and Technology (Skoltech), Russia
Evgeny Burnaev
Victor Lempitsky∗"
f9f08511f77c29ff948e146434dfb23608d3deb5,Question Answering Using Match-LSTM and Answer Pointer,"Question Answering Using Match-LSTM and Answer Pointer
Annie Hu, Cindy Wang, and Brandon Yang
{anniehu, ciwang,
CodaLab: anniehu
March 21, 2016
Introduction
Machine comprehension of text is a significant problem in natural language processing today –
in this project, we tackle machine reading comprehension as applied to question answering. Our
goal is: given a question and a context paragraph, to extract from the paragraph the answer to
the question.
As an oracle, on the dataset we used, humans score over 86.8% accuracy (EM) on the test
set for this task, while the best models only achieve roughly 75%. Existing approaches to this
extractive Question Answering problem typically involve an encoding layer that encodes the
question and paragraph into a sequence, some additional layer that accounts for interaction
etween the question and paragraph, and a final decoding layer that extracts the answer from
the paragraph [2][3][4][7]. In this paper, we will follow a similar structure, using LSTMs in our
encoding and decoding layers, and calculating attention as our interaction layer.
Dataset
The dataset used is the recently released Stanford Question Answering Dataset (SQuAD)[1].
The context paragraphs are extracted from Wikipedia, while questions and answers are human-"
f984a9bb5c6e7b8a055b810bff468d7f8d80a7ff,Face identification by using fusing Photographic and Thermal Images,"www.jchps.com                                                                    Journal of Chemical and Pharmaceutical Sciences
Face identification by using fusing Photographic and Thermal Images
M. Parisa Beham, 2M.R.H. Prasanna, 2SM.Mansoor Roomi and 1H. Jebina
ISSN: 0974-2115
Vickram College of Engineering, Tamilnadu, India.
Thiagarajar College of Engineering, Tamilnadu, India.
*Corresponding Author:E-Mail"
f95616b1593467f5b11689582d934da34e6ad1ee,Interactive Language Acquisition with One-shot Visual Concept Learning through a Conversational Game,"Interactive Language Acquisition with One-shot Visual Concept Learning
through a Conversational Game
Haichao Zhang†, Haonan Yu†, and Wei Xu †§
§ National Engineering Laboratory for Deep Learning Technology and Applications, Beijing China
Baidu Research - Institue of Deep Learning, Sunnyvale USA"
f96b3122f66c01cb78643d7e1b412e1bae16f2c4,Affective Robots : Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines,"World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering
Vol:12, No:6, 2018
Affective Robots: Evaluation of Automatic Emotion
Recognition Approaches on a Humanoid Robot
towards Emotionally Intelligent Machines
Silvia Santano Guill´en, Luigi Lo Iacono, Christian Meder"
f98cbf32989387733529fa4fc943f0a7e97b5c07,To Know and To Learn - About the Integration of Knowledge Representation and Deep Learning for Fine-Grained Visual Categorization,
f9129b3858c14b5f6cca1fcbf31c4816d94a5038,A Robust 3D-2D Interactive Tool for Scene Segmentation and Annotation,"A Robust 3D-2D Interactive Tool for Scene
Segmentation and Annotation
Duc Thanh Nguyen, Binh-Son Hua∗, Lap-Fai Yu, Member, IEEE, and Sai-Kit Yeung, Member, IEEE"
f98a975642972ce24e42e6957f63be556c11dd31,Dynamic Obstacle Detection of Road Scenes using Equi-Height Mosaicking Image,"Electronic Letters on Computer Vision and Image Analysis 13(2):13-14, 2014
Dynamic Obstacle Detection of Road Scenes
using Equi-Height Mosaicking Image
Min Woo Park and Soon Ki Jung
School of Computer Science and Engineering, Kyungpook National University,
80 Daehak-ro, Bukgu, Daegu, Republic of Korea
Advisor/s: Soon Ki Jung
Date and location of PhD thesis defense: 3 December 2013, Kyungpook National University
Received 30 January 2014; accepted 25 May 2014"
f95f5e43f34e1bfb425b6491fc09558c44d2973d,Soft Layer-Specific Multi-Task Summarization with Entailment and Question Generation,"Soft Layer-Specific Multi-Task Summarization
with Entailment and Question Generation
Han Guo∗
Ramakanth Pasunuru∗
UNC Chapel Hill
{hanguo, ram,
Mohit Bansal"
f9bee6e61833c0323c9175402b73442d27ab9eb8,D Human Poses Estimation from a Single 2 D Silhouette,
f9028b47a4755a7349108b1dc281f13add5c6c12,Atypical gaze patterns in children and adults with autism spectrum disorders dissociated from developmental changes in gaze behaviour,"Downloaded from
http://rspb.royalsocietypublishing.org/
on June 9, 2017
Proc. R. Soc. B
doi:10.1098/rspb.2010.0587
Published online
Atypical gaze patterns in children and
dults with autism spectrum disorders
dissociated from developmental changes
in gaze behaviour
Tamami Nakano1,2, Kyoko Tanaka3, Yuuki Endo1, Yui Yamane1,
Takahiro Yamamoto4, Yoshiaki Nakano4, Haruhisa Ohta2,5,
Nobumasa Kato2,5 and Shigeru Kitazawa1,2,*
Department of Neurophysiology, and 3Department of Pediatrics, Juntendo University
School of Medicine, Tokyo, Japan
CREST, JST, Saitama, Japan
Japanese Institute for Education and Treatment, Tokyo, Japan
5Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
Eye tracking has been used to investigate gaze behaviours in individuals with autism spectrum disorder
(ASD). However, traditional analysis has yet to find behavioural characteristics shared by both children"
f921e6f5085f1ebbd8289081e499240a89bf6c43,Three-Dimensional Face Recognition in the Presence of Facial Expressions: An Annotated Deformable Model Approach,"Three-Dimensional Face Recognition
in the Presence of Facial Expressions:
An Annotated Deformable Model Approach
Ioannis A. Kakadiaris, Member, IEEE, Georgios Passalis, George Toderici,
Mohammed N. Murtuza, Yunliang Lu, Nikos Karampatziakis, and Theoharis Theoharis"
f9fdc63934841a0c4d8d29fdea80e1972ffcfe1e,Pedestrian Using Catadioptric Sensor 12,"Journal of Theoretical and Applied Information Technology
0th April 2018. Vol.96. No 8
© 2005 – ongoing  JATIT & LLS
ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195
PEDESTRIAN USING CATADIOPTRIC SENSOR
2BOUI MAROUANE, 2HADJ-ABDELKADER HICHAM, 2ABABSA FAKHR-EDDINE,
ABOUYAKHF EL HOUSSINE
LIMIARF University Mohammed V-Rabat
IBISC, University of Evry, France
E-mail:"
f9784db8ff805439f0a6b6e15aeaf892dba47ca0,"Comparing the performance of Emotion-Recognition Implementations in OpenCV, Cognitive Services, and Google Vision APIs","Comparing the performance of Emotion-Recognition Implementations
in OpenCV, Cognitive Services, and Google Vision APIs
LUIS ANTONIO BELTRÁN PRIETO, ZUZANA KOMÍNKOVÁ OPLATKOVÁ
Department of Informatics and Artificial Intelligence
Tomas Bata University in Zlín
Nad Stráněmi 4511, 76005, Zlín
CZECH REPUBLIC"
f935225e7811858fe9ef6b5fd3fdd59aec9abd1a,Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces.,"www.elsevier.com/locate/ynimg
Spatiotemporal dynamics and connectivity pattern differences
etween centrally and peripherally presented faces
Lichan Liu and Andreas A. Ioannides*
Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan
Received 4 May 2005; revised 26 January 2006; accepted 6 February 2006
Available online 24 March 2006
Most neuroimaging studies on face processing used centrally presented
images with a relatively large visual field. Images presented in this way
ctivate widespread striate and extrastriate areas and make it difficult
to study spatiotemporal dynamics and connectivity pattern differences
from various parts of the visual field. Here we studied magneto-
encephalographic responses in humans to centrally and peripherally
presented faces for testing the hypothesis that processing of visual
stimuli with facial expressions of emotions depends on where the
stimuli are presented in the visual field. Using our tomographic and
statistical parametric mapping analyses, we identified occipitotemporal
reas activated by face stimuli more than by control conditions. V1/V2
ctivity was significantly stronger for lower than central and upper
visual field presentation. Fusiform activity, however, was significantly"
f95ba7673789d1b4118d30e360a5a37fd75d3961,Face Recognition using Modified Generalized Hough Transform and Gradient Distance Descriptor,"Face Recognition using Modified Generalized Hough Transform
nd Gradient Distance Descriptor
Marian Moise, Xue Dong Yang and Richard Dosselmann
Department of Computer Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada
Keywords:
Face Recognition, Generalized Hough Transform, Image Descriptors."
f93606d362fcbe62550d0bf1b3edeb7be684b000,Nearest Neighbor Classifier Based on Nearest Feature Decisions,"The Computer Journal Advance Access published February 1, 2012
© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email:
doi:10.1093/comjnl/bxs001
Nearest Neighbor Classifier Based
on Nearest Feature Decisions
Alex Pappachen James1,∗ and Sima Dimitrijev2
Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and
Queensland Micro- and Nanotechnology Centre and Griffith School of Engineering, Griffith University,
Management, Kerala, India
Nathan, Australia
Corresponding author:
High feature dimensionality of realistic datasets adversely affects the recognition accuracy of nearest
neighbor (NN) classifiers. To address this issue, we introduce a nearest feature classifier that shifts
the NN concept from the global-decision level to the level of individual features. Performance
omparisons with 12 instance-based classifiers on 13 benchmark University of California Irvine
lassification datasets show average improvements of 6 and 3.5% in recognition accuracy and
rea under curve performance measures, respectively. The statistical significance of the observed
performance improvements is verified by the Friedman test and by the post hoc Bonferroni–Dunn
test. In addition, the application of the classifier is demonstrated on face recognition databases, a"
f94feceb5b725c6b303b758a0e5e90215b0174d3,Learning Non-maximum Suppression,"Learning non-maximum suppression
Jan Hosang
Rodrigo Benenson
Bernt Schiele
Max Planck Institut für Informatik
Saarbrücken, Germany"
f997a71f1e54d044184240b38d9dc680b3bbbbc0,Deep Cross Modal Learning for Caricature Verification and Identification(CaVINet),"Deep Cross Modal Learning for Caricature Verification and
Identification(CaVINet)
https://lsaiml.github.io/CaVINet/
Jatin Garg∗
Indian Institute of Technology Ropar
Himanshu Tolani∗
Indian Institute of Technology Ropar
Skand Vishwanath Peri∗
Indian Institute of Technology Ropar
Narayanan C Krishnan
Indian Institute of Technology Ropar"
f96970f75b0f37787a47073bf7d02111f45abe83,3 D Face Recognition Performance under Adversarial Conditions,
f9d1f12070e5267afc60828002137af949ff1544,Maximum Entropy Binary Encoding for Face Template Protection,"Maximum Entropy Binary Encoding for Face Template Protection
Rohit Kumar Pandey
Yingbo Zhou
Bhargava Urala Kota
Venu Govindaraju
University at Buffalo, SUNY
{rpandey, yingbozh, buralako,"
f0f876b5bf3d442ef9eb017a6fa873bc5d5830c8,"LOH and Behold: Web-Scale Visual Search, Recommendation and Clustering Using Locally Optimized Hashing","LOH and Behold: Web-scale visual search,
recommendation and clustering using Locally
Optimized Hashing
Yannis Kalantidis:, Lyndon Kennedy;‹, Huy Nguyen:,
Clayton Mellina: and David A. Shamma§‹
:Computer Vision and Machine Learning Group, Flickr, Yahoo
;Futurewei Technologies Inc.
§CWI: Centrum Wiskunde & Informatica, Amsterdam"
f00e51ec0e3894bdb2977a01824f37b15bb82c6e,A Gaussian Approximation of Feature Space for Fast Image Similarity,"Computer Science and ArtificialIntelligence LaboratoryTechnical Reportmassachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.eduMIT-CSAIL-TR-2012-032October 1, 2012A Gaussian Approximation of Feature Space for Fast Image Similarity Michael Gharbi, Tomasz Malisiewicz, Sylvain Paris, and FrØdo Durand"
f0ca04fe6de04a46f44dabd8744b4163e8e0b4d3,Low-Resolution and Low-Quality Face Super-Resolution in Monitoring Scene via Support-Driven Sparse Coding,"J Sign Process Syst (2014) 75:245–256
DOI 10.1007/s11265-013-0804-9
Low-Resolution and Low-Quality Face Super-Resolution
in Monitoring Scene via Support-Driven Sparse Coding
Junjun Jiang & Ruimin Hu & Zhen Han & Zhongyuan Wang
Received: 25 April 2013 / Revised: 2 June 2013 / Accepted: 4 June 2013 / Published online: 26 June 2013
# Springer Science+Business Media New York 2013"
f006161327d3ea3484064c1a86e4c87c729fd7b8,Rough Sets Methods in Feature Reduction and Classification,"Int. J. Appl. Math. Comput. Sci., 2001, Vol.11, No.3, 565{582
ROUGH SETS METHODS IN FEATURE REDUCTION
AND CLASSIFICATION
Roman W. (cid:145)WINIARSKI(cid:3)
The paper presents an application of rough sets and statistical methods to fea-
ture reduction and pattern recognition. The presented description of rough sets
theory emphasizes the role of rough sets reducts in feature selection and data
reduction in pattern recognition. The overview of methods of feature selection
emphasizes feature selection criteria, including rough set-based methods. The
paper also contains a description of the algorithm for feature selection and re-
duction based on the rough sets method proposed jointly with Principal Compo-
nent Analysis. Finally, the paper presents numerical results of face recognition
experiments using the learning vector quantization neural network, with feature
selection based on the proposed principal components analysis and rough sets
methods.
Keywords: rough sets, feature selection, classi(cid:12)cation
. Introduction
One of the fundamental steps in classi(cid:12)er design is reduction of pattern dimensional-
ity through feature extraction and feature selection (Cios et al., 1998; Kittler, 1986;
Langley and Sage, 1994; Liu and Motoda, 1999). Feature selection is often isolated as"
f08266cea120e8aa091983da5269ee5e35febe75,Semantic Diversity versus Visual Diversity in Visual Dictionaries,"Semantic Diversity versus Visual Diversity
in Visual Dictionaries
Ot´avio A. B. Penatti, Sandra Avila, Member, IEEE, Eduardo Valle, Ricardo da S. Torres, Member, IEEE"
f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4,The EuroCity Persons Dataset: A Novel Benchmark for Object Detection,"The EuroCity Persons Dataset:
A Novel Benchmark for Object Detection
Markus Braun, Sebastian Krebs, Fabian Flohr, and Dariu M. Gavrila"
f0865d11131a84ef1d91e1c8b5718692f153267d,Explaining Autism Spectrum Disorders,"Articles in PresS. J Neurophysiol (May 28, 2014). doi:10.1152/jn.00242.2014
EXPLAINING AUTISM SPECTRUM DISORDERS
Explaining autism spectrum disorders: central coherence versus predictive coding theories.
Target Article: Stevenson, R. A., Siemann, J. K., Schneider, B. C., Eberly, H. E., Woynaroski, T. G.,
Camarata, S. M., & Wallace, M. T. (2014). Multisensory Temporal Integration in Autism Spectrum
Disorders. The Journal of Neuroscience, 34(3), 691-697. doi: 10.1523/jneurosci.3615-13.2014
Jason S. Chan* & Marcus J. Naumer
Institute of Medical Psychology
Goethe-University, Frankfurt
KEYWORDS: Autism Spectrum Disorder, Multisensory Integration, Temporal Binding Window
Acknowledgements: This was funded by the Hessian initiative for the development of scientific and
economic excellence (LOEWE) Neuronal Coordination Research Focus Frankfurt (NeFF).
*Corresponding author:
Jason Chan
Copyright © 2014 by the American Physiological Society."
f0cee87e9ecedeb927664b8da44b8649050e1c86,Image Ordinal Classification and Understanding: Grid Dropout with Masking Label,"label:(1, 0, 1, 0, 1, 1, 1, 1, 1)Masking label:(0, 1, 1, 1, 0, 1, 1, 1, 1)Entire imageInput imageNeuron dropout’s gradCAMGrid dropout’s gradCAMFig.1.Above:imageordinalclassificationwithrandomlyblackoutpatches.Itiseasyforhumantorecognizetheageregardlessofthemissingpatches.Themaskinglabelisalsousefultoimageclassification.Bottom:griddropout’sgrad-CAMisbetterthanthatofneurondropout.Thatistosay,griddropoutcanhelplearningfeaturerepresentation.problem[1].Withtheproliferationofconvolutionalneuralnetwork(CNN),workshavebeencarriedoutonordinalclas-sificationwithCNN[1][2][3].Thoughgoodperformanceshavebeenloggedwithmoderndeeplearningapproaches,therearetwoproblemsinimageordinalclassification.Ononehand,theamountofordinaltrainingdataisverylim-itedwhichprohibitstrainingcomplexmodelsproperly,andtomakemattersworse,collectinglargetrainingdatasetwithordinallabelisdifficult,evenharderthanlabellinggenericdataset.Therefore,insufficienttrainingdataincreasestheriskofoverfitting.Ontheotherhand,lessstudiesareconductedtounderstandwhatdeepmodelshavelearnedonordinaldata978-1-5386-1737-3/18/$31.00c(cid:13)2018IEEE"
f0f4f16d5b5f9efe304369120651fa688a03d495,Temporal Generative Adversarial Nets,"Temporal Generative Adversarial Nets
Masaki Saito∗
Eiichi Matsumoto∗
Preferred Networks inc., Japan
{msaito,"
f0d29be1a93158d320bef285442f63bb090f6c31,An Online and Flexible Multi-Object Tracking Framework using Long Short-Term Memory,"An Online and Flexible Multi-Object Tracking Framework using Long
Short-Term Memory
Xingyu Wan, Jinjun Wang, Sanping Zhou
Xi’an Jiaotong University
Institute of Artificial Intelligence and Robotics
8 West Xianning Road, Xi’an, Shaanxi, China, 710049"
f0ae807627f81acb63eb5837c75a1e895a92c376,Facial Landmark Detection using Ensemble of Cascaded Regressions,"International Journal of Emerging Engineering Research and Technology
Volume 3, Issue 12, December 2015, PP 128-133
ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online)
Facial  Landmark  Detection  using  Ensemble  of  Cascaded
Regressions
Martin Penev1*, Ognian Boumbarov2
Faculty of Telecommunications, Technical University, Sofia, Bulgaria
Faculty of Telecommunications, Technical University, Sofia, Bulgaria"
f06f3e1cef2d04af915a932e83b22e46a45f3b73,Action understanding and social learning in Autism: a developmental perspective,"Life Span and Disability / XIV, 1 (2011), 7-29
Action understanding and social learning in Autism:
developmental perspective
Giacomo Vivanti1 & Sally J. Rogers2"
f0dd265dfbe9ffe86ca56ba053335626720059a3,CNN Fixations: An unraveling approach to visualize the discriminative image regions,"CNN Fixations: An unraveling approach to
visualize the discriminative image regions
Konda Reddy Mopuri*, Utsav Garg*, R. Venkatesh Babu, Senior Member, IEEE"
f0aac566e3d2c06759b8f4f45a270d5af93b9705,Ear Structure Feature Extraction Based on Multi-scale Hessian Matrix,"International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol.9, No.5 (2016), pp.159-172
http://dx.doi.org/10.14257/ijsip.2016.9.5.14
Ear Structure Feature Extraction Based on Multi-scale Hessian
Matrix
,Ban Xiaojuan*1, Wang Guosheng3 and Tian Ying2
Ma Chi1,2,3
School of Computer & Communication Engineering, University of Science and
College of Software, University of Science and Technology LiaoNing, Anshan,
Technology Beijing, Beijing, China
Beihai Yinhe Industry Investment Co.,Ltd., Beihai, China
China"
f0d18a5d205c23d1309387dfbd4ecfbcf3b1687e,Atypical neural modulation in the right prefrontal cortex during an inhibitory task with eye gaze in autism spectrum disorder as revealed by functional near-infrared spectroscopy.,"Terms of Use: https://journals.spiedigitallibrary.org/terms-of-use
Atypicalneuralmodulationintherightprefrontalcortexduringaninhibitorytaskwitheyegazeinautismspectrumdisorderasrevealedbyfunctionalnear-infraredspectroscopyTakahiroIkedaMasahiroHiraiTakeshiSakuradaYukifumiMondenTatsuyaTokudaMasakoNagashimaHideoShimoizumiIppeitaDanTakanoriYamagataTakahiroIkeda,MasahiroHirai,TakeshiSakurada,YukifumiMonden,TatsuyaTokuda,MasakoNagashima,HideoShimoizumi,IppeitaDan,TakanoriYamagata,“Atypicalneuralmodulationintherightprefrontalcortexduringaninhibitorytaskwitheyegazeinautismspectrumdisorderasrevealedbyfunctionalnear-infraredspectroscopy,”Neurophoton.5(3),035008(2018),doi:10.1117/1.NPh.5.3.035008."
f09432b7f470268c28d3d4ebd17a44773b678900,Structured Attentions for Visual Question Answering,"Structured Attentions for Visual Question Answering
Chen Zhu, Yanpeng Zhao, Shuaiyi Huang, Kewei Tu, Yi Ma
{zhuchen, zhaoyp1, huangsy, tukw,
ShanghaiTech University"
f07956d0031ff046c5c719296f7916d7897fdd21,A Flexible Real-Time Control System for Autonomous Vehicles,"A Flexible Real-Time Control System for Autonomous Vehicles.
Johannes Meyer, Armin Strobel
Institute of Flight Systems and Automatic Control, Technische Universität Darmstadt, Germany 1"
f0b77702c8f2249ee1f48e51ff9b86faffe177c9,Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation,"Reformulating Level Sets as Deep Recurrent Neural Network Approach
to Semantic Segmentation
Ngan Le 1 Kha Gia Quach 1 2 Khoa Luu 1 Marios Savvides 1 Chenchen Zhu 1"
f040e4fcedca0c07788ecb6e92ad246b9c1697a9,Real-time Multiple Head Tracking Using Texture and Colour Cues,"REAL-TIME MULTIPLE HEAD TRACKING
USING TEXTURE AND COLOUR CUES
Vasil Khalidov        Jean-Marc Odobez
Idiap-RR-02-2017
FEBRUARY 2017
Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12   www.idiap.ch"
f0a0f341fa1f91ee58a5020297bea02f8863cb26,Learning Deep Semantic Embeddings for Cross-Modal Retrieval,"Proceedings of Machine Learning Research 77:471–486, 2017
ACML 2017
Learning Deep Semantic Embeddings for Cross-Modal
Retrieval
Cuicui Kang
No.89A Minzhuang Road, Beijing, China
Shengcai Liao∗
No.95 Zhuangguancun East Road, Beijing, China
Zhen Li, Zigang Cao, Gang Xiong
No.89A Minzhuang Road, Beijing, China
Editors: Yung-Kyun Noh and Min-Ling Zhang"
f0cc615b14c97482faa9c47eb855303c71ff03a7,Tracklet clustering for robust multiple object tracking using distance dependent Chinese restaurant processes,"SIViP
DOI 10.1007/s11760-015-0817-x
ORIGINAL PAPER
Tracklet clustering for robust multiple object tracking
using distance dependent Chinese restaurant processes
Ibrahim Saygin Topkaya1 · Hakan Erdogan1 · Fatih Porikli2,3
Received: 4 June 2015 / Revised: 19 August 2015 / Accepted: 10 September 2015
© Springer-Verlag London 2015"
f0483ebab9da2ba4ae6549b681cf31aef2bb6562,3c-gan: an Condition-context-composite Generative Adversarial Networks for Gen-,"Under review as a conference paper at ICLR 2018
C-GAN: AN
CONDITION-CONTEXT-COMPOSITE
GENERATIVE ADVERSARIAL NETWORKS FOR GEN-
ERATING IMAGES SEPARATELY
Anonymous authors
Paper under double-blind review"
f04cffcd0cc68e28cf05827ab998cf84b1ab0f3d,Crowdsourced Data Preprocessing with R and Amazon Mechanical Turk,"CONTRIBUTED RESEARCH ARTICLES
Crowdsourced Data Preprocessing with R
nd Amazon Mechanical Turk
y Thomas J. Leeper"
f0b30a9bb9740c2886d96fc44d6f35b8eacab4f3,Are You Sure You Want To Do That ? Classification with Interpretable Queries,"Are You Sure You Want To Do That?
Classification with Interpretable Queries
Anonymous Author(s)
Affiliation
Address
email"
f736b7cf8388f20bfe9619d63d9c4ce070091863,Automated Crowd Detection in Stadium Arenas,"AUTOMATED CROWD DETECTION IN STADIUM ARENAS
Loris Nanni, 1 Sheryl Brahnam, 2 Stefano Ghidoni, 1 Emanuele Menegatti1
DIE, University of Padua, Via Gradenigo, 6 - 35131- Padova – Italy e-mail: {loris.nanni, ghidoni,
CIS, Missouri State University, 901 S. National, Springfield, MO 65804, USA e-mail:"
f73b15d33b9dcf329cf605815be7493b162b1fab,SLMotion - An extensible sign language oriented video analysis tool,"SLMotion – An extensible sign language oriented video analysis tool
Matti Karppa∗, Ville Viitaniemi∗, Marcos Luzardo∗, Jorma Laaksonen∗, Tommi Jantunen†
Department of Information and Computer Science,
Aalto University School of Science, Espoo, Finland,
Sign Language Centre, Department of Languages,
University of Jyv¨askyl¨a, Finland,
We present a software toolkit called SLMotion which provides a framework for automatic and semiautomatic analysis, feature extraction
nd annotation of individual sign language videos, and which can easily be adapted to batch processing of entire sign language corpora.
The program follows a modular design, and exposes a Numpy-compatible Python application programming interface that makes it easy
nd convenient to extend its functionality through scripting. The program includes support for exporting the annotations in ELAN
format. The program is released as free software, and is available for GNU/Linux and MacOS platforms."
f79267b0f4c0110051c93f9faabe436215e4fc28,Selective Feature Connection Mechanism: Concatenating Multi-layer CNN Features with a Feature Selector,"Selective Feature Connection Mechanism:
Concatenating Multi-layer CNN Features with a Feature Selector
Chen Du1,2, Chunheng Wang1, Cunzhao Shi1, Baihua Xiao1
Institute of Automation, Chinese Academy of Sciences(CASIA)
University of Chinese Academy of Sciences(UCAS)
{duchen2016, chunheng.wang, cunzhao.shi,"
f74dbf3481fc3228ea821da232128b98ad5f7a60,Using low-level motion for high-level vision,"Using Low-Level Motion for
High-Level Vision
Ben Daubney
A dissertation submitted to the University of Bristol in accordance with the
requirements for the degree of Doctor of Philosophy in the Faculty of Engineering,
Department of Computer Science.
July 2009"
f79c4bf83371627ba139b61eb427463b93cd687b,Learning from Few Examples for Visual Recognition Problems,"Learning from Few Examples for Visual
Recognition Problems
Erik Rodner
Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)
vorgelegt dem Rat der Fakultät für Mathematik und Informatik
der Friedrich-Schiller-Universität Jena"
f740bac1484f2f2c70777db6d2a11cf4280081d6,Soft Locality Preserving Map (SLPM) for Facial Expression Recognition,"Soft Locality Preserving Map (SLPM) for Facial Expression
Recognition
Cigdem Turana,*, Kin-Man Lama, Xiangjian Heb
Centre for Signal Processing, Department of Electronic and Information Engineering, The Hong
Kong Polytechnic University, Kowloon, Hong Kong
Computer Science, School of Electrical and Data Engineering, University of Technology, Sydney,
Australia
E-mail addresses: (C. Turan), (K.-M. Lam),
(X. He)"
f79c97e7c3f9a98cf6f4a5d2431f149ffacae48f,Title On color texture normalization for active appearance models,"Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published
version when available.
Title
On color texture normalization for active appearance models
Author(s)
Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile
Publication
009-05-12
Publication
Information
Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color
Texture Normalization for Active Appearance Models. Image
Processing, IEEE Transactions on, 18(6), 1372-1378.
Publisher
Link to
publisher's
version
http://dx.doi.org/10.1109/TIP.2009.2017163
Item record
http://hdl.handle.net/10379/1350"
f7db1a670a99fd68dc3c6478eb9aeadc2838a897,Based Pose Invariant Face Recognition,"FEATURE BASED POSE INVARIANT FACE RECOGNITION
Berk G¨okberk
BS. in Computer Engineering, Bo˘gazi¸ci University, 1999
Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science
Computer Engineering
Bo˘gazi¸ci University"
f7580def2dd84a6a083188aadd9c66c99925860b,Effective Use of Synthetic Data for Urban Scene Semantic Segmentation,"Effective Use of Synthetic Data for
Urban Scene Semantic Segmentation(cid:63)
Fatemeh Sadat Saleh1,2[0000−0002−3695−9876], Mohammad Sadegh
Aliakbarian1,2,3[0000−0003−3948−6418], Mathieu Salzmann4[0000−0002−8347−8637],
Lars Petersson2[0000−0002−0103−1904], and Jose M. Alvarez5[0000−0002−7535−6322]
ANU, 2 Data61-CSIRO, 3 ACRV, 4 CVLab, EPFL, 5 NVIDIA"
f7514435495cd76552a4de01652a08ff8c2863c7,Recognition of Emotions From Facial Expression and Situational Cues in Children with Autism,"Dissertations
Loyola University Chicago
Loyola eCommons
Theses and Dissertations
Recognition of Emotions From Facial Expression
nd Situational Cues in Children with Autism
Dina Tell
Loyola University Chicago
Recommended Citation
Tell, Dina, ""Recognition of Emotions From Facial Expression and Situational Cues in Children with Autism"" (2009). Dissertations.
Paper 234.
http://ecommons.luc.edu/luc_diss/234
This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in
Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2009 Dina Tell"
f755d9b2b7ef66ffdf7504b34167b95d0685c18d,Efficient Online Subspace Learning With an Indefinite Kernel for Visual Tracking and Recognition,"Efficient Online Subspace Learning With
n Indefinite Kernel for Visual
Tracking and Recognition
Stephan Liwicki, Student Member, IEEE, Stefanos Zafeiriou, Member, IEEE,
Georgios Tzimiropoulos, Member, IEEE, and Maja Pantic, Fellow, IEEE"
f7dcadc5288653ec6764600c7c1e2b49c305dfaa,Interactive Image Search with Attributes by,"Copyright
Adriana Ivanova Kovashka"
f7de943aa75406fe5568fdbb08133ce0f9a765d4,Biometric Identification and Surveillance1,"Project 1.5: Human Identification at a Distance - Hornak, Adjeroh, Cukic, Gautum, & Ross
Project 1.5
Biometric Identification and Surveillance1
Don Adjeroh, Bojan Cukic, Arun Ross – West Virginia University
Year 5 Deliverable
Technical Report:
Research Challenges in Biometrics
Indexed biography of relevant biometric research literature
Donald Adjeroh, Bojan Cukic, Arun Ross
April, 2014
""This research was supported by the United States Department of Homeland Security through the National Center for Border Security
nd Immigration (BORDERS) under grant number 2008-ST-061-BS0002. However, any opinions, findings, and conclusions or
recommendations in this document are those of the authors and do not necessarily reflect views of the United States Department of
Homeland Security."""
f75852386e563ca580a48b18420e446be45fcf8d,Illumination Invariant Face Recognition,"ILLUMINATION INVARIANT FACE RECOGNITION
Raghuraman Gopalan
ENEE 631: Digital Image and Video Processing
Instructor: Dr. K. J. Ray Liu
Term Project - Spring 2006
INTRODUCTION
The  performance  of  the  Face  Recognition  algorithms  is  severely  affected  by  two
important  factors:  the  change  in  Pose  and  Illumination  conditions  of  the  subjects.  The
hanges in Illumination conditions of the subjects can be so drastic that, the variation in
lighting will be of the similar order as that of the variation due to the change in subjects
[1] and this can result in misclassification.
For example, in the acquisition of the face of a person from a real time video, the
mbient  conditions  will  cause  different  lighting  variations  on  the  tracked  face.  Some
examples  of  images  with  different  illumination  conditions  are  shown  in  Fig.  1.  In  this
project, we study some algorithms that are capable of performing Illumination Invariant
Face Recognition. The performances of these algorithms were compared on the CMU-
Illumination dataset [13], by using the entire face as the input to the algorithms. Then, a
model  of  dividing  the  face  into  four  regions  is  proposed  and  the  performance  of  the
lgorithms on these new features is analyzed."
f79ab9baccd466d86460214c5cee9f3be0af4064,Image Segmentation of Medical Images using Automatic Fuzzy C-Mean Clustering,"IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 03, 2015 | ISSN (online): 2321-0613
Image Segmentation of Medical Images using Automatic Fuzzy C-Mean
Clustering
Padmini Umorya1 Rajesh Singh2
Research Scholar 2Assistant Professor
,2Department of Computer Science and Engineering
,2NITM College Gwalior, India"
f7c9bafc66dc8d8002cbb2ea926378bce2b3b251,Emotion Detection Using EEG Signal Analysis,"International Journal of Electronics Communication and Computer Technology (IJECCT)
Volume 5 Issue 2 (March 2015)
Emotion Detection Using EEG Signal Analysis
‘Review’
K.S. Bhagat
Assistant Professor,
Dr. P.M. Mahajan
Assistant Professo,
Gunjal P. Waghulade
M.E. IVth Semester,
J.T. Mahajan College of ngineering,
J.T. Mahajan College of ngineering,
J.T. Mahajan College of ngineering,
Faizpur, India
Faizpur, India
Faizpur, India"
f7a37cf724aef23d0e714a35d54352243e5b52ee,Entire Reflective Object Surface Structure Understanding,"Q.LU ET AL.: ENTIRE REFLECTIVE OBJECT SURFACE STRUCTURE UNDERSTANDING 1
Entire Reflective Object Surface Structure
Understanding
Qinglin Lu1
Olivier Laligant1
Eric Fauvet1
Anastasia Zakharova2
University of Burgundy
Le2i UMR 6306 CNRS
2,Rue de la Fonderie,71200,France
INSA Rouen LMI EA3226
Avenue de l’Université,76800,France"
f77c9bf5beec7c975584e8087aae8d679664a1eb,Local Deep Neural Networks for Age and Gender Classification,"Local Deep Neural Networks for Age and Gender Classification
Zukang Liao, Stavros Petridis, Maja Pantic
March 27, 2017"
f727b12c905ac585de60811048c9f9dd4188b498,R4-A.2: Rapid Forensic Search & Retrieval in Video Archives,"R4-A.2: Rapid Forensic Search & Retrieval in Video
Archives"
f7ba77d23a0eea5a3034a1833b2d2552cb42fb7a,LOTS about attacking deep features,"This is a pre-print of the original paper accepted at the International Joint Conference on Biometrics (IJCB) 2017.
LOTS about Attacking Deep Features
Andras Rozsa, Manuel G¨unther, and Terrance E. Boult
Vision and Security Technology (VAST) Lab
University of Colorado, Colorado Springs, USA"
f727837e03a039d9bcec6d02cd87256f5a5854a4,"Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning","Deep Convolutional Neural Networks for
Computer-Aided Detection: CNN Architectures,
Dataset Characteristics and Transfer Learning
Hoo-Chang Shin, Member, IEEE, Holger R. Roth, Mingchen Gao, Le Lu, Senior Member, IEEE, Ziyue Xu,
Isabella Nogues, Jianhua Yao, Daniel Mollura, Ronald M. Summers*"
f77b3e6b6eb4bc6d6bfeed290a1bc533bb97968a,Real Time Violence Detection in Video with ViF and Horn-Schunck,"Real Time Violence Detection in Video with ViF and
Horn-Schunck
Vicente Machaca Arceda Universidad Nacional de San Agustín Arequipa, Perú
Karla Fernández Fabián Universidad Nacional de San Agustín Arequipa, Perú
Juan Carlos Gutíerrez Universidad Nacional de San Agustín Arequipa, Perú"
f724cbf5035e2df0dbe9a4992a0100465f5c6db5,Scalable Multicore k-NN Search via Subspace Clustering for Filtering,"Parallel Graph Partitioning for Complex Networks
Henning Meyerhenke, Peter Sanders, and Christian Schulz"
f77563386ac293620ce2b90b5d7250ab5d8f9f50,Regression-based Hypergraph Learning for Image Clustering and Classification,"IEEE TRANSACTIONS ON
Regression-based Hypergraph Learning for Image
Clustering and Classification
Sheng Huang Student Member, IEEE, Dan Yang, Bo Liu, Xiaohong Zhang"
f774f80fa4b5a8760084921f093730da519c6681,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
e819d8ec94ff9b07f81bcfcf6eb66301aa271805,Optimised Blurred Object Tracking Using Anfis,"VOL. 11, NO. 13, JULY 2016                                                                                                                   ISSN 1819-6608
ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.
www.arpnjournals.com
OPTIMISED BLURRED OBJECT TRACKING USING ANFIS
Department of Electronics and Communication, Sathyabama University, Chennai, India
S. Rajaprabha and M. Sugadev
E-Mail:"
e8686663aec64f4414eba6a0f821ab9eb9f93e38,Improving shape-based face recognition by means of a supervised discriminant Hausdorff distance,"IMPROVING SHAPE-BASED FACE RECOGNITION BY MEANS OF A SUPERVISED
DISCRIMINANT HAUSDORFF DISTANCE
J.L. Alba
, A. Pujol
, A. L´opez
nd J.J. Villanueva
Signal Theory and Communications Department, University of Vigo, Spain
Centre de Visio per Computador, Universitat Autonoma de Barcelona, Spain
Digital Pointer MVT"
e80635b9b48df5ad263c51ecec62d7d4bd7327fd,"Keepon A Playful Robot for Research , Therapy , and Entertainment","Int J Soc Robot (2009) 1: 3–18
DOI 10.1007/s12369-008-0009-8
O R I G I N A L PA P E R
Keepon
A Playful Robot for Research, Therapy, and Entertainment
Hideki Kozima · Marek P. Michalowski ·
Cocoro Nakagawa
Accepted: 28 October 2008 / Published online: 19 November 2008
© Springer 2008"
e8304700fd89461ec9ecf471179ad87f08f3c2f7,Chapter 1 . Learning to Learn New Models of Human Activities in Indoor Settings (,"Chapter 1
Learning to learn new
models of human activities in
indoor settings1
Introduction
Biological cognitive systems have the great capability to recognize and in-
terpret unknown situations. Equally, they can integrate new observations
easily within their existing knowledge base. Autonomous artificial agents to
large extent still lack such capacities. In this paper, we work towards this
direction, as we do not only detect abnormal situations, but are also able to
learn new concepts during runtime.
We aim at the interpretation of human behavior in indoor environments.
Possible applications go from the main IM2 scenario, i.e. analysis and un-
derstanding of meetings, to monitoring of elderly or handicapped people in
their homes in order to ensure their well-being. The indoor setting triggers
interesting issues, such as the adaptation of pre-trained knowledge to a par-
ticular room scene filmed with a different camera or to an unknown person
with an individual behavior style, whereas real abnormalities must still be
detected.
One main limitation of automated surveillance approaches is their need"
e8d898a6adcd526874e0a41840b69760506a98a1,Computer Vision Methods as an Aid to Visually Impaired Users Title: Computer Vision Methods as an Aid to Visually Impaired Users,"Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi
Computer Vision methods as an aid to visually impaired users
Giovanni Fusco
Theses Series
DIBRIS-TH-2013-03
DIBRIS, Universit`a di Genova
Via Opera Pia, 13 16145 Genova, Italy
http://www.dibris.unige.it/"
e8e8d8a619eea66c41a1a2bdc0a921a3b6d74836,"Restoring Degraded Face Images: A Case Study in Matching Faxed, Printed, and Scanned Photos","Restoring Degraded Face Images: A Case Study in
Matching Faxed, Printed, and Scanned Photos
Thirimachos Bourlai, Member, IEEE, Arun Ross, Senior Member, IEEE, and Anil K. Jain, Fellow, IEEE"
e8d1d2a61c5a259440ef9fcd301093b43e87efa1,Periocular Biometrics in the Visible Spectrum,"Periocular Biometrics in the Visible Spectrum
Unsang Park, Member, IEEE, Raghavender Reddy Jillela, Student Member, IEEE, Arun Ross, Senior Member, IEEE,
nd Anil K. Jain, Fellow, IEEE"
e8fdacbd708feb60fd6e7843b048bf3c4387c6db,Deep Learning,"Deep Learning
Andreas Eilschou
Hinnerup Net A/S
www.hinnerup.net
July 4, 2014
Introduction
Deep learning is a topic in the field of artificial intelligence (AI) and is a relatively
new research area although based on the popular artificial neural networks (supposedly
mirroring brain function). With the development of the perceptron in the 1950s and
960s by Frank RosenBlatt, research began on artificial neural networks. To further
mimic the architectural depth of the brain, researchers wanted to train a deep multi-
layer neural network – this, however, did not happen until Geoffrey Hinton in 2006
introduced Deep Belief Networks [1].
Recently, the topic of deep learning has gained public interest. Large web companies such
s Google and Facebook have a focused research on AI and an ever increasing amount
of compute power, which has led to researchers finally being able to produce results
that are of interest to the general public. In July 2012 Google trained a deep learning
network on YouTube videos with the remarkable result that the network learned to
recognize humans as well as cats [6], and in January this year Google successfully used
deep learning on Street View images to automatically recognize house numbers with"
e8632e5bf43f7c59f4e1978833db8aa405c76c58,Saliency and Gist Features for Target Detection in Satellite Images,"Saliency and Gist Features for Target
Detection in Satellite Images
Zhicheng Li and Laurent Itti"
e849b9b3e65130712e23afb872ac925e1e9a6b73,"Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds","Journal of Machine Learning Research x (2012) xxx
Submitted xx/xx; Published xx/xx
Image denoising with multi-layer perceptrons, part 1:
omparison with existing algorithms and with bounds
Harold Christopher Burger
Christian J. Schuler
Stefan Harmeling
Max Planck Institute for Intelligent Systems
Spemannstr. 38
72076 T¨ubingen, Germany
Editor:"
e810ddd9642db98492bd6a28b08a8655396c1555,Facing facts: neuronal mechanisms of face perception.,"Review
Acta Neurobiol Exp 2008, 68: 229–252
Facing facts: Neuronal mechanisms of face perception
Monika Dekowska1, Michał Kuniecki2, and Piotr Jaśkowski3*
Kazimierz Wielki University of Bydgoszcz, Poland; 2Department of Psychophysiology, Jagiellonian University,
Kraków, Poland; 3Department of Cognitive Psychology, University of Finance and Management, Warszawa, Poland,
*Email:
The face is one of the most important stimuli carrying social meaning. Thanks to the fast analysis of faces, we are able to
judge physical attractiveness and features of their owners’ personality, intentions, and mood. From one’s facial expression
we can gain information about danger present in the environment. It is obvious that the ability to process efficiently one’s
face is crucial for survival. Therefore, it seems natural that in the human brain there exist structures specialized for face
processing.  In  this  article,  we  present  recent  findings  from  studies  on  the  neuronal  mechanisms  of  face  perception  and
recognition in the light of current theoretical models. Results from brain imaging (fMRI, PET) and electrophysiology (ERP,
MEG) show that in face perception particular regions (i.e. FFA, STS, IOA, AMTG, prefrontal and orbitofrontal cortex) are
involved.  These  results  are  confirmed  by  behavioral  data  and  clinical  observations  as  well  as  by  animal  studies.  The
developmental findings reviewed in this article lead us to suppose that the ability to analyze face-like stimuli is hard-wired
nd improves during development. Still, experience with faces is not sufficient for an individual to become an expert in face
perception.  This  thesis  is  supported  by  the  investigation  of  individuals  with  developmental  disabilities,  especially  with
utistic spectrum disorders (ASD).
Key words: face perception, emotion perception"
e8b2a98f87b7b2593b4a046464c1ec63bfd13b51,CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection,"CMS-RCNN: Contextual Multi-Scale
Region-based CNN for Unconstrained Face
Detection
Chenchen Zhu*, Student, IEEE, Yutong Zheng*, Student, IEEE,
Khoa Luu, Member, IEEE, Marios Savvides, Senior Member, IEEE"
e8ff87c9072d67dcbcd5491b1e5a0cecc2ee309d,A Survey on Gaze Estimation Techniques in Smartphone,"International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056
Volume: 04 Issue: 04 | Apr -2017                     www.irjet.net                                                                p-ISSN: 2395-0072
A Survey on Gaze Estimation Techniques in Smartphone
Akshay A Gawande1, Prof.Gangotri Nathaney2
M.Tech Scholar, CSE Department, WCOEM, Nagpur, India1
Assistant Professor, CSE Department, WCOEM, Nagpur, India2
image  dataset
interest.  Many  of
field  mobile  technology  and  digital
The  goal  of  this  system  to  get  correct  gaze  point  with
minimum  of  error  rate  and  allow  handicap  people  to
operate  mobile  easily  by  eyes  .The  proposed  system
onsist  of  collecting  some  steps  as:  Collecting  people
different  position  eye
,preprocessing,
feature  extraction,  regression.  This  paper  is  organized  as
follows:  Section  2  comprises  Previous  Work;  section  3
omprises Methodology and Conclusion is in section 4.
---------------------------------------------------------------------***---------------------------------------------------------------------
use  eye  trackers  to  identify  what  customer's  gaze  is"
e8dda897372e6b4cf903234c7a9c40117711d8d8,What do you think of my picture? Investigating factors of influence in profile images context perception,"What do you think of my picture? Investigating factors
of influence in profile images context perception
Filippo Mazza, Matthieu Perreira da Silva, Patrick Le Callet, Ingrid
Heynderickx
To cite this version:
Filippo Mazza, Matthieu Perreira da Silva, Patrick Le Callet, Ingrid Heynderickx. What do you
think of my picture? Investigating factors of influence in profile images context perception. Human
Vision and Electronic Imaging XX, Mar 2015, San Francisco, United States. Proc. SPIE 9394, Hu-
man Vision and Electronic Imaging XX, 9394, <http://spie.org/EI/conferencedetails/human-vision-
electronic-imaging>. <10.1117/12.2082817>. <hal-01149535>
HAL Id: hal-01149535
https://hal.archives-ouvertes.fr/hal-01149535
Submitted on 7 May 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est"
e8d2d991dcfb12b287ab06d282a86802e565780c,Inducing Behavior Change in Children with Autism Spectrum Disorders by Monitoring their Attention,"Inducing behavior change in children with autism spectrum disorders by
monitoring their attention
Margarida Lucas da Silva12, Hugo Silva3 and Daniel Gonc¸alves12
Instituto Superior T´ecnico, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
INESC-ID, R. Alves Redol, 9, 1000-029 Lisboa, Portugal
Instituto de Telecomunicac¸ ˜oes, Instituto Superior T´ecnico, Av. Rovisco Pais, 1, Torre Norte - Piso 10, 1049-001, Lisboa,
Portugal
Keywords:
Human Behavior Analysis, Autism Spectrum Disorders, Inducing Behavior Change."
e84e49c9530897fad7927a06ac4a48ddaf0adf0f,Searching for Efficient Multi-Scale Architectures for Dense Image Prediction,"Searching for Efficient Multi-Scale
Architectures for Dense Image Prediction
Liang-Chieh Chen Maxwell D. Collins
Barret Zoph
Florian Schroff
Yukun Zhu
Hartwig Adam
George Papandreou
Jonathon Shlens
Google Inc."
e8af37ac6e0a5b7f04b6824bb1f74e4f363b99b5,On the replication of CycleGAN,"Bachelor thesis
Computer Science
Radboud University
On the replication of CycleGAN
Author:
Robin Elbers
s4225678
First supervisor/assessor:
MSc. Jacopo Acquarelli
Second assessor:
Prof. Tom Heskes
August 10, 2018"
e8e8f40ceff8b71d5dafa6b680d40690dfae940c,title : Guidelines for studying developmental prosopagnosia in adults and children,"Article	type:		Focus	Article
Article	title:	Guidelines	for	studying	developmental	prosopagnosia	in	adults
nd	children
First	author:	Full	name	and	affiliation;	plus	email	address	if
orresponding	author
Kirsten	A.	Dalrymple*
Institute	of	Child	Development,	University	of	Minnesota,	Minneapolis,	USA
Second	author:	Full	name	and	affiliation;	plus	email	address	if
orresponding	author
Romina	Palermo*
School	of	Psychology,	and	ARC	Centre	of	Excellence	in	Cognition	and	its	Disorders
University	of	Western	Australia,	Crawley,	Australia
Please	note	that	both	authors	would	like	to	be	listed	as	“corresponding	authors”."
e819a577c57c83a133a0a0e81180d14dc13b82e9,Pyramid Histogram of Oriented Gradients based Human Ear Identification,"Pyramid Histogram of Oriented Gradients based Human Ear Identification
Pyramid Histogram of Oriented Gradients based Human
Ear Identification
Partha Pratim Sarangi1, B.S.P. Mishra1 and Sachidanada Dehuri2
School of Computer Engineering KIIT University, Bhubaneswar , Emails:
Department of ICT FM University, Balasore, Email:"
e8d1b134d48eb0928bc999923a4e092537e106f6,Weighted Multi-region Convolutional Neural Network for Action Recognition with Low-latency Online Prediction,"WEIGHTED MULTI-REGION CONVOLUTIONAL NEURAL NETWORK FOR ACTION
RECOGNITION WITH LOW-LATENCY ONLINE PREDICTION
Yunfeng Wang(cid:63), Wengang Zhou(cid:63), Qilin Zhang†, Xiaotian Zhu(cid:63), Houqiang Li(cid:63)
(cid:63)University of Science and Technology of China, Hefei, Anhui, China
HERE Technologies, Chicago, Illinois, USA"
e855856d4b61b6a732005418f543c49195cb1542,Novel Method for Eyeglasses Detection in Frontal Face Images,"Novel Method for Eyeglasses Detection in Frontal
Face Images
R. L. Parente, L. V. Batista
Centro de Inform´atica - CI
Universidade Federal da Para´ıba - UFPB
Jo˜ao Pessoa, Brazil
I. Andreza, E. Borges, R. Marques
VSoft Research Group
VSoft Technology
Jo˜ao Pessoa, Brazil
{igorlpa90, erickvagnerr,"
e8039e1531dd86da960be26d59718d2452f9943b,Scene Parsing and Fusion-Based Continuous Traversable Region Formation,"Scene parsing and fusion-based continuous
traversable region formation
Xuhong Xiao, Gee Wah Ng, Yuan Sin Tan, Yeo Ye Chuan
0 Science Park Drive, DSO national Laboratories, Singapore 118230"
e8c6c3fc9b52dffb15fe115702c6f159d955d308,Linear Subspace Learning for Facial Expression Analysis,"Linear Subspace Learning for
Facial Expression Analysis
Caifeng Shan
Philips Research
The Netherlands
. Introduction
Facial  expression,  resulting  from  movements  of  the  facial  muscles,  is  one  of  the  most
powerful, natural, and immediate means for human beings to communicate their emotions
nd intentions. Some examples of facial expressions are shown in Fig. 1. Darwin (1872) was
the  first  to  describe  in  detail  the  specific  facial  expressions  associated  with  emotions  in
nimals  and  humans;  he  argued  that  all  mammals  show  emotions  reliably  in  their  faces.
Psychological  studies  (Mehrabian,  1968;  Ambady  &  Rosenthal,  1992)  indicate  that  facial
expressions, with other non-verbal cues, play a major and fundamental role in face-to-face
ommunication.
Fig. 1. Facial expressions of George W. Bush.
Machine  analysis  of  facial  expressions,  enabling  computers  to  analyze  and  interpret  facial
expressions  as  humans  do,  has  many  important  applications  including  intelligent  human-
omputer  interaction,  computer  animation,  surveillance  and  security,  medical  diagnosis,
law  enforcement,  and  awareness  system  (Shan,  2007).  Driven  by  its  potential  applications
nd  theoretical  interests  of  cognitive  and  psychological  scientists,  automatic  facial"
e8691980eeb827b10cdfb4cc402b3f43f020bc6a,Segmentation Guided Attention Networks for Visual Question Answering,"Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics- Student Research Workshop, pages 43–48
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics- Student Research Workshop, pages 43–48
Vancouver, Canada, July 30 - August 4, 2017. c(cid:13)2017 Association for Computational Linguistics
Vancouver, Canada, July 30 - August 4, 2017. c(cid:13)2017 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17-3008
https://doi.org/10.18653/v1/P17-3008"
e8baf6ddd2e651350b843fedfe58f761848d3524,Design And Implementation Of Multiposes Face Recognization System,"Pritika V.Mamankar et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.4, April- 2015, pg. 387-394
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
IJCSMC, Vol. 4, Issue. 4, April 2015, pg.387 – 394
RESEARCH ARTICLE
ISSN 2320–088X
Design And Implementation Of Multiposes Face
Recognization System
Ms. Pritika V.Mamankar
Master of Engineering Scholar, Information Technology Department, Sipna College of Engg. and Technology, Amravati, India
Assistant Professor of CSE Department, Computer Science and Engineering Department, Sipna College of Engg. and
Prof. H R. Vyawahare
Technology, Amravati, India"
e8867f819f39c1838bba7d446934258035d4101c,Face recognition performance with superresolution.,"Face recognition performance with superresolution
Shuowen Hu,1,* Robert Maschal,1 S. Susan Young,1 Tsai Hong Hong,2
nd P. Jonathon Phillips2
United States Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA
NIST, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
*Corresponding author:
Received 29 September 2011; revised 19 April 2012; accepted 24 April 2012;
posted 30 April 2012 (Doc. ID 155384); published 20 June 2012
With the prevalence of surveillance systems, face recognition is crucial to aiding the law enforcement com-
munity and homeland security in identifying suspects and suspicious individuals on watch lists. However,
face recognition performance is severely affected by the low face resolution of individuals in typical sur-
veillance footage, oftentimes due to the distance of individuals from the cameras as well as the small pixel
ount of low-cost surveillance systems. Superresolution image reconstruction has the potential to improve
face recognition performance by using a sequence of low-resolution images of an individual’s face in the
same pose to reconstruct a more detailed high-resolution facial image. This work conducts an extensive
performance evaluation of superresolution for a face recognition algorithm using a methodology and ex-
perimental setup consistent with real world settings at multiple subject-to-camera distances. Results show
that superresolution image reconstruction improves face recognition performance considerably at the
examined midrange and close range.
OCIS codes:"
e8f753208fc354fa9aeb3fa9c6acb3d45e7eac7b,Definite Description Lexical Choice: taking Speaker's Personality into account,"Definite Description Lexical Choice:
taking Speaker’s Personality into account
Alex Gwo Jen Lan, Ivandr´e Paraboni
University of S˜ao Paulo, School of Arts, Sciences and Humanities
S˜ao Paulo, Brazil"
facdb71e8175c33ec54c2248fa6cfc319e27cfa5,Accelerating Machine Learning Research with MI-Prometheus,"Accelerating Machine Learning Research with
MI-Prometheus
Tomasz Kornuta Vincent Marois Ryan L. McAvoy Younes Bouhadjar
Alexis Asseman
Vincent Albouy
IBM Research AI, Almaden Research Center, San Jose, USA
T.S. Jayram Ahmet S. Ozcan
{tkornut, vmarois, mcavoy, byounes, jayram,
{alexis.asseman,"
fab7f1af3d67c7b7cf76ec1d8dfcb265da61a572,Towards Recommender Systems for Police Photo Lineup,"Towards Recommender Systems for Police Photo Lineup
Ladislav Peska
Department of Software Engineering
Hana Trojanova
Department of Psychology
Faculty of Mathematics and Physics, Charles University, Prague
Faculty of Arts, Charles University, Prague
Czech Republic
Czech Republic"
facf25e1880d23eb993d4ad507256ebbc7e0d82d,CURE-OR: Challenging Unreal and Real Environments for Object Recognition,"Citation D. Temel, J. Lee, and G. AlRegib, “CURE-OR: Challenging unreal and real environments
for object recognition,” 2018 17th IEEE International Conference on Machine Learning
nd Applications (ICMLA), Orlando, Florida, USA, 2018.
Dataset
https://ghassanalregib.com/cure-or/
ICMLA,
uthor={D. Temel and J. Lee and G. AlRegib},
ooktitle={2018 17th IEEE International Conference on Machine Learning and Applications
(ICMLA)},
title={CURE-OR: Challenging unreal and real environments for object recognition},
year=2018,}
Copyright c(cid:13)2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.
Contact
https://ghassanalregib.com/
http://cantemel.com/"
fa1b849697115ceede0a08ac552ea25ce2bf33a1,A N Approach to F Ace R Ecognition of 2 - D Images Using E Igen F Aces and Pca,"Signal & Image Processing : An International Journal (SIPIJ) Vol.3, No.2, April 2012
AN APPROACH TO FACE RECOGNITION OF 2-D
IMAGES USING EIGEN FACES AND PCA
Annapurna Mishra1, Monorama Swain2 and Bodhisattva Dash3
Department of Electronics & Telecommunication Engineering
Silicon Institute of Technology, Bhubaneswar, India"
fa11590fea86049fff1eb412642753422738c584,Depression-related difficulties disengaging from negative faces are associated with sustained attention to negative feedback during social evaluation and predict stress recovery,"RESEARCH ARTICLE
Depression-related difficulties disengaging
from negative faces are associated with
sustained attention to negative feedback
during social evaluation and predict stress
recovery
Alvaro Sanchez*, Nuria Romero, Rudi De Raedt
Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium"
fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6,Draft: Evaluation Guidelines for Gender Classification and Age Estimation,"Draft: Evaluation Guidelines for Gender
Classification and Age Estimation
Tobias Gehrig, Matthias Steiner, Hazım Kemal Ekenel
{tobias.gehrig,
July 1, 2011
Introduction
In previous research on gender classification and age estimation did not use a
standardised evaluation procedure. This makes comparison the different ap-
proaches dif‌f‌icult.
Thus we propose here a benchmarking and evaluation protocol for gender
lassification as well as age estimation to set a common ground for future re-
search in these two areas.
The evaluations are designed such that there is one scenario under controlled
labratory conditions and one under uncontrolled real life conditions.
The datasets were selected with the criteria of being publicly available for
research purposes.
File lists for the folds corresponding to the individual benchmarking proto-
ols will be provided over our website at http://face.cs.kit.edu/befit. We
will provide two kinds of folds for each of the tasks and conditions: one set of
folds using the whole dataset and one set of folds using a reduced dataset, which"
fa23122db319440fb5a7253e19709f992b4571b9,Human Age Estimation via Geometric and Textural Features,"HUMAN AGE ESTIMATION VIA GEOMETRIC
AND TEXTURAL FEATURES
Merve Kilinc1 and Yusuf Sinan Akgul2
TUBITAK BILGEM UEKAE, Anibal Street, 41470, Gebze, Kocaeli, Turkey
GIT Vision Lab∗, Department of Computer Engineering, Gebze Institute of Technology, 41400, Kocaeli, Turkey
Keywords:
Age Estimation, Age Classification, Geometric Features, LBP, Gabor, LGBP, Cross Ratio, FGNET, MORPH."
fa4ff855ca125b986bcb2bc6b71bef2ae8fde1cf,"3d Integral Invariant Signatures and Their Application on Face Recognition Dedication I Am Grateful for the Support and Guidance I Have Received from Dr. Irina A. Kogan, and I Also Express My Gratitude To",
fa08a4da5f2fa39632d90ce3a2e1688d147ece61,Supplementary material for “ Unsupervised Creation of Parameterized Avatars ” 1 Summary of Notations,"Supplementary material for
“Unsupervised Creation of Parameterized Avatars”
Summary of Notations
Tab. 1 itemizes the symbols used in the submission. Fig. 2,3,4 of the main text illustrate many of these
symbols.
DANN results
Fig. 1 shows side by side samples of the original image and the emoji generated by the method of [1].
As can be seen, these results do not preserve the identity very well, despite considerable effort invested in
finding suitable architectures.
Multiple Images Per Person
Following [4], we evaluate the visual quality that is obtained per person and not just per image, by testing
TOS on the Facescrub dataset [3]. For each person p, we considered the set of their images Xp, and selected
the emoji that was most similar to their source image, i.e., the one for which:
||f (x) − f (e(c(G(x))))||.
rgmin
Fig. 2 depicts the results obtained by this selection method on sample images form the Facescrub dataset
(it is an extension of Fig. 7 of the main text). The figure also shows, for comparison, the DTN [4] result for
the same image.
Detailed Architecture of the Various Networks
In this section we describe the architectures of the networks used in for the emoji and avatar experiments."
fa83597bf71dbeb606bca6593bcef8ecd51e8661,Michael Kamaraj and G. Balakrishnan: Multiple Target Tracking Using Cost Minimization Techniques,"MICHAEL KAMARAJ AND G. BALAKRISHNAN: MULTIPLE TARGET TRACKING USING COST MINIMIZATION TECHNIQUES
MULTIPLE TARGET TRACKING USING COST MINIMIZATION TECHNIQUES
Department of Computer Applications, Pavendar Bharathidasan College of Engineering and Technology, India
Department of Computer Science and Engineering, Indra Ganesan College of Engineering, India
Michael Kamaraj1 and G. Balakrishnan2"
fa2603efaf717974c77162c93d800defae61a129,Face recognition/detection by probabilistic decision-based neural network,"Face Recognition/Detection by Probabilistic
Decision-Based Neural Network
Shang-Hung Lin, Sun-Yuan Kung, Fellow, IEEE, and Long-Ji Lin"
fac36fa1b809b71756c259f2c5db20add0cb0da0,Transferring GANs: Generating Images from Limited Data,"Transferring GANs: generating images from
limited data
Yaxing Wang, Chenshen Wu, Luis Herranz, Joost van de Weijer,
Abel Gonzalez-Garcia, Bogdan Raducanu
{yaxing, chenshen, lherranz, joost, agonzgarc,
Computer Vision Center
Universitat Aut`onoma de Barcelona, Spain"
faf40ce28857aedf183e193486f5b4b0a8c478a2,Automated Human Identification Using Ear Imaging,"Imperial Journal of Interdisciplinary Research (IJIR)
Vol.2, Issue-1 , 2016
ISSN : 2454-1362 , www.onlinejournal.in
Automated Human Identification Using Ear Imaging
Priya Thakare
SITS.Narhe
Abhijit Patil
SITS, Narhe.
Priya More
SITS, Narhe.
Vivek Patil
SITS, Narhe.
Akshay Shende
SITS, Narhe.
Reliability
in  human  authentication
from  airport  surveillance
important aspect for the security requirements in various
pplications  ranging
electronic  banking.  Many  physical  characteristics  of"
fa24bf887d3b3f6f58f8305dcd076f0ccc30272a,Interval Insensitive Loss for Ordinal Classification,"JMLR: Workshop and Conference Proceedings 39:189–204, 2014
ACML 2014
Interval Insensitive Loss for Ordinal Classification
Kostiantyn Antoniuk
Vojtˇech Franc
V´aclav Hlav´aˇc
Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech
Technical University in Prague, Technick´a 2, 166 27 Prague 6 Czech Republic
Editor: Dinh Phung and Hang Li"
fa8c73899c22b461cc062a10b6df20fccb18800c,A Novel Framework for Face Recognition in Real-Time Environments,"International Journal of Scientific and Research Publications, Volume 3, Issue 8, August 2013
ISSN 2250-3153
A Novel Framework for Face Recognition in Real-Time
Environments
Tmt.Maithili Easwaran*, Dr.B.Poorna**
*Department of Computer Applications, S.A.Engineering College, TN, INDIA
** Department of Computer applications, Shankarlal Sundarbai Shasun Jain College for Women, TN, INDIA
i.e.,
(PCA)-based"
fafe69a00565895c7d57ad09ef44ce9ddd5a6caa,Gaussian Mixture Models for Human Face Recognition under Illumination Variations,"Applied Mathematics, 2012, 3, 2071-2079
http://dx.doi.org/10.4236/am.2012.312A286 Published Online December 2012 (http://www.SciRP.org/journal/am)
Gaussian Mixture Models for Human Face Recognition
under Illumination Variations
Information Systems and Decision Sciences Department, Mihaylo College of Business and Economics,
California State University, Fullerton, USA
Email:
Sinjini Mitra
Received August 18, 2012; revised September 18, 2012; accepted September 25, 2012"
fab6e12a913223b69e1b9f0672df6c89275b1ed0,Initial Development of a Learners’ Ratified Acceptance of Multibiometrics Intentions Model (RAMIM),"Interdisciplinary Journal of E-Learning and Learning Objects
IJELLO special series of Chais Conference 2009 best papers
Volume 5, 2009
Initial Development of a Learners’ Ratified
Acceptance of Multibiometrics Intentions Model
(RAMIM)
Yair Levy
GSCIS,
Nova Southeastern University,
Ft. Lauderdale, FL, USA
Michelle M. Ramim
Nova Southeastern University,
Huizenga School of Business,
Ft. Lauderdale, FL, USA"
fab0d19c58815eccb0db7215fe45d6a32066ca1c,Inferring Human Attention by Learning Latent Intentions,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
the mug's statuschecking the book's statuslocating the dispenserFigure1:Humanattentionandintentionsina3Dscene.thedispenser,hisattentionsweepsfromthetabletothedis-penser;whilefetchingwaterfromthedispenser,hisintentionistocheckifthemugisfullandhisattentionsteadilyfocusesonthemug.Thedrivingrulesofintentionsactingonattentioncanbeindependentofactivitycategories.Forexample,inFigure1,theattentiondrivenbytheintentioncheckingstatusalwayspresentsassteadilyfocusing,evenindifferentactivities.Thisphenomenonmakesitpossibletoinfertheattentionwiththesamerulesacrossdifferentactivities.However,thesedrivingrulesarehiddenandshouldbelearnedfromdata.Thispaperproposesaprobabilisticmethodtoinfer3Dhu-manattentionbyjointlymodelingattention,intentions,andtheirinteractions.Theattentionandintentionarerepresent-edwithfeaturesextractedfromhumanskeletonsandscenevoxels.Humanintentionsaretakenaslatentvariableswhichguidethemotionsandformsofhumanattention.Conversely,thehumanattentionrevealstheintentionfeatures.Attentioninferenceismodeledasajointoptimizationwithlatenthu-manintentions.WeadoptanEM-based[Bishop,2006]approachtolearnthemodelparametersandminethelatentintentions.Giv-enanRGB-DvideowithhumanskeletonscapturedbytheKinectcamera,ajoint-statedynamicprogrammingalgorithm"
faa111d749eb228c686643e4667dd1bc21c724f2,Condensed from Video Sequences for Place Recognition,"Boosting Descriptors Condensed from Video Sequences for Place Recognition
Tat-Jun Chin, Hanlin Goh and Joo-Hwee Lim
Institute for Infocomm Research
1 Heng Mui Keng Terrace, Singapore 119613.
{tjchin, hlgoh,"
faca1c97ac2df9d972c0766a296efcf101aaf969,Sympathy for the Details: Dense Trajectories and Hybrid Classification Architectures for Action Recognition,"Sympathy for the Details: Dense Trajectories and Hybrid
Classification Architectures for Action Recognition
C´esar Roberto de Souza1,2, Adrien Gaidon1, Eleonora Vig3, Antonio Manuel L´opez2
Computer Vision Group, Xerox Research Center Europe, Meylan, France
Centre de Visi´o per Computador, Universitat Aut`onoma de Barcelona, Bellaterra, Spain
German Aerospace Center, Wessling, Germany
{cesar.desouza,"
fa60521dabd2b64137392b4885e4d989f4b86430,Physics-Based Generative Adversarial Models for Image Restoration and Beyond,"Physics-Based Generative Adversarial Models
for Image Restoration and Beyond
Jinshan Pan, Yang Liu, Jiangxin Dong, Jiawei Zhang,
Jimmy Ren, Jinhui Tang, Yu-Wing Tai and Ming-Hsuan Yang"
fabbc7f921d77b5aa9157310df29ad81367fe92d,Title of Dissertation : EFFICIENT IMAGE AND VIDEO REPRESENTATIONS FOR RETRIEVAL,
fa9f1b236d0a252d4a56e26e8a9a41d496803413,Face Recognition Method with Two-Dimensional HMM,"FACE RECOGNITION METHOD WITH
TWO-DIMENSIONAL HMM
Janusz Bobulski1
Czestochowa University of Technology
Institute of Computer and Information Science
Dabrowskiego Street 73, 42-200 Czestochowa, Poland."
fa24a04f1e8095d47e2d2ce0076bf47bdd6f997a,Wavelet Based Face Recognition for Low Quality Images,"International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Vol. 2, Issue 1, January  2013
Wavelet Based Face Recognition for Low
ISSN: 2278 – 8875
Quality Images
M.Karthika, 2K.Shanmugapriya, 3Dr.S.Valarmathy,  4M.Arunkumar
PG Scholar, Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu,India
PG Scholar, Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu,India
Professor and Head, Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu, India
Assistant Professor, Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu, India"
fab60b3db164327be8588bce6ce5e45d5b882db6,Maximum A Posteriori Estimation of Distances Between Deep Features in Still-to-Video Face Recognition,"Maximum A Posteriori Estimation of Distances
Between Deep Features in Still-to-Video Face
Recognition
Andrey V. Savchenko
National Research University Higher School of Economics
Laboratory of Algorithms and Technologies for Network Analysis,
6 Rodionova St., Nizhny Novgorod, Russia
Natalya S. Belova
National Research University Higher School of Economics
0 Myasnitskaya St., Moscow, Russia
September 2, 2018"
fad895771260048f58d12158a4d4d6d0623f4158,Audio-visual emotion recognition for natural human-robot interaction,"Audio-Visual Emotion
Recognition For Natural
Human-Robot Interaction
Dissertation zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
vorgelegt von
Ahmad Rabie
n der Technischen Fakultät der Universität Bielefeld
5. März 2010"
fac0151ed0494caf10c7d778059f176ba374e29c,Recognising Complex Mental States from Naturalistic Human-Computer Interactions,"Copyright and use of this thesis
This thesis must be used in accordance with the
provisions of the Copyright Act 1968.
Reproduction of material protected by copyright
may be an infringement of copyright and
opyright owners may be entitled to take
legal action against persons who infringe their
opyright.
Section 51 (2) of the Copyright Act permits
n authorized officer of a university library or
rchives to provide a copy (by communication
or otherwise) of an unpublished thesis kept in
the library or archives, to a person who satisfies
the authorized officer that he or she requires
the reproduction for the purposes of research
or study.
The Copyright Act grants the creator of a work
number of moral rights, specifically the right of
ttribution, the right against false attribution and
the right of integrity."
fae4185a5fc540b057ea9e0402223e653327d0f9,Structured Edge Detection for Improved Object Localization using the Discriminative Generalized Hough Transform,
ff8315c1a0587563510195356c9153729b533c5b,Zapping Index:Using Smile to Measure Advertisement Zapping Likelihood,"Zapping Index:Using Smile to Measure
Advertisement Zapping Likelihood
Songfan Yang, Member, IEEE, Mehran Kafai, Member, IEEE,
Le An, Student Member, IEEE, and Bir Bhanu, Fellow, IEEE"
ff2e25cb67209de8ae922abdfc31f922b130276e,Information Granulation and Pattern Recognition,"Chapter 25
Information Granulation and Pattern Recognition
Andrzej Skowron,1 Roman W. Swiniarski2
Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
San Diego State University, Department of Mathematical and Computer Sciences, 5500
Campanile Drive, San Diego, CA 92182, USA
Summary. We discuss information granulation applications in pattern recognition. The chap-
ter consists of two parts. In the first part, we present applications of rough set methods for
feature selection in pattern recognition. We emphasize the role of different forms of reducts
that are the basic constructs of the rough set approach in feature selection. In the overview
of methods for feature selection, we discuss feature selection criteria based on the rough set
pproach and the relationships between them and other existing criteria. Our algorithm for
feature selection used in the application reported is based on an application of the rough set
method to the result of principal component analysis used for feature projection and reduc-
tion. Finally, the first part presents numerical results of face recognition experiments using a
neural network, with feature selection based on proposed principal component analysis and
rough set methods. The second part consists of an outline of an approach to pattern recog-
nition with the application of background knowledge specified in natural language. The ap-
proach is based on constructing approximations of reasoning schemes. Such approximations
re called approximate reasoning schemes and rough neural networks."
ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a,Towards Video Captioning with Naming: A Novel Dataset and a Multi-modal Approach,"Towards Video Captioning with Naming: a
Novel Dataset and a Multi-Modal Approach
Stefano Pini, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
Dipartimento di Ingegneria “Enzo Ferrari”
Universit`a degli Studi di Modena e Reggio Emilia"
fffefc1fb840da63e17428fd5de6e79feb726894,Fine-Grained Age Estimation in the wild with Attention LSTM Networks,"Fine-Grained Age Estimation in the wild with
Attention LSTM Networks
Ke Zhang, Member, IEEE, Na Liu, Xingfang Yuan, Student Member, IEEE, Xinyao Guo, Ce Gao,
nd Zhenbing Zhao Member, IEEE,"
ff398e7b6584d9a692e70c2170b4eecaddd78357,Title of dissertation : FACE RECOGNITION AND VERIFICATION IN UNCONSTRAINED ENVIRIONMENTS,
ff70cfaf3e085a6c32bfa7ebedb98adfb7658210,TABULA RASA Trusted Biometrics under Spoofing Attacks,"TABULA RASA
Trusted Biometrics under Spoofing Attacks
http://www.tabularasa-euproject.org/
Funded under the 7th FP (Seventh Framework Programme)
[Trustworthy Information and Communication Technologies]
Theme ICT-2009.1.4
D3.2: Evaluation of baseline non-ICAO
iometric systems
Due date: 30/09/2011
Project start date: 01/11/2010 Duration: 42 months
WP Manager: Abdenour Hadid Revision: 0
Submission date: 30/09/2011
Author(s): Federico Alegre, Xuran Zhao, Nick Evans (EURECOM);
John Bustard, Mark Nixon (USOU); Abdenour Hadid (UOULU); William
Ketchantang, Sylvaine Picard, St´ephane Revelin (MORPHO); Ale-
jandro Riera, Aureli Soria-Frisch (STARLAB); Gian Luca Marcialis
(UNICA)
Project funded by the European Commission
in the 7th Framework Programme (2008-2010)
Dissemination Level"
ffd81d784549ee51a9b0b7b8aaf20d5581031b74,Performance Analysis of Retina and DoG Filtering Applied to Face Images for Training Correlation Filters,"Performance Analysis of Retina and DoG
Filtering Applied to Face Images for Training
Correlation Filters
Everardo Santiago Ram(cid:19)(cid:16)rez1, Jos(cid:19)e (cid:19)Angel Gonz(cid:19)alez Fraga1, Omar (cid:19)Alvarez
Xochihua1, Everardo Gutierrez L(cid:19)opez1, and Sergio Omar Infante Prieto2
Facultad de Ciencias, Universidad Aut(cid:19)onoma de Baja California,
Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia Playitas,
Ensenada, Baja California, C.P. 22860
{everardo.santiagoramirez,angel_fraga,
Facultad de Ingenier(cid:19)(cid:16)a, Arquitectura y Dise~no, Universidad Aut(cid:19)onoma de Baja
California, Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia
Playitas, Ensenada, Baja California, C.P. 22860"
fff854b3d8f8e916162dc5451cf6f46caf50002b,Multi-task Learning for Universal Sentence Embeddings: A Thorough Evaluation using Transfer and Auxiliary Tasks,"Multi-task Learning for Universal Sentence Embeddings: A Thorough
Evaluation using Transfer and Auxiliary Tasks
Wasi Uddin Ahmad†, Xueying Bai∗, Zhechao Huang§, Chao Jiang∗, Nanyun Peng(cid:63), Kai-Wei Chang†
§Fudan University, ∗University of Virginia
(cid:63)University of Southern California, †University of California, Los Angeles"
ffdaa12d37c720561f74d23fc3b5d47afa268000,Pose Proposal Networks,"Pose Proposal Networks
Taiki Sekii[0000−0002−1895−3075]
Konica Minolta, Inc."
ff4e8a8333e4ef506318160248c068250963806d,Gender recognition from face images using texture descriptors for human computer interaction,"www.jchps.com                                                                    Journal of Chemical and Pharmaceutical Sciences
Gender recognition from face images using texture descriptors
ISSN: 0974-2115
for human computer interaction
M.Annalakshmi1*, S.M.M.Roomi2, and S.S.Priya1
&3Department of Electronics and Communication Engineering, Sethu Institute of Technology, Pulloor, Kariapatti
Department of Electronics and Communication Engineering, Thiagarajar College of Engineering, Madurai 625
– 626 115, Virudhunagar – District, Tamilnadu, India.
*Corresponding author: E-Mail:
015, Tamilnadu, India"
ff01bc3f49130d436fca24b987b7e3beedfa404d,Fuzzy System-Based Face Detection Robust to In-Plane Rotation Based on Symmetrical Characteristics of a Face,"Article
Fuzzy System-Based Face Detection Robust to
In-Plane Rotation Based on Symmetrical
Characteristics of a Face
Hyung Gil Hong, Won Oh Lee, Yeong Gon Kim, Ki Wan Kim, Dat Tien Nguyen and
Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; (H.G.H.); (W.O.L.); (Y.G.K.);
(K.W.K.); (D.T.N.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Academic Editor: Angel Garrido
Received: 15 June 2016; Accepted: 29 July 2016; Published: 3 August 2016"
ffd73d1956163a4160ec2c96b3ab256f79fc92e8,Attributes as Semantic Units between Natural Language and Visual Recognition,"Attributes as Semantic Units between
Natural Language and Visual Recognition
Marcus Rohrbach"
ffc06713436afc4e08bf4afa401ac52db674c5da,Neural Adaptive Content-aware Internet Video Delivery,"Neural Adaptive Content-aware
Internet Video Delivery
Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han, KAIST
https://www.usenix.org/conference/osdi18/presentation/yeo
This paper is included in the Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’18).October 8–10, 2018 • Carlsbad, CA, USAISBN 978-1-931971-47-8Open access to the Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation is sponsored by USENIX."
ff269353b4e49274ff85dfb98b531888c98da365,Master : a Mobile Autonomous Scientist for Terretrial and Extra-terrestrial Research,"MASTER: A MOBILE AUTONOMOUS SCIENTIST FOR TERRETRIAL AND EXTRA-
TERRESTRIAL RESEARCH
Iain Wallace (1), Mark Woods  (2)
(1) SCISYS, 23 Clothier Road, Bristol, BS4 5SS, UK, Email:
(2) SCISYS, 23 Clothier Road, Bristol, BS4 5SS, UK, Email:
paper
includes
utonomy.  The
INTRODUCTION"
ff3fa31882bb9c7573a38c7d0883503a464522a6,Imcube @ MediaEval 2015 Placing Task: Hierarchical Approach for Geo-referencing Large-Scale Datasets,"Imcube MediaEval 2015 Placing Task: A Hierarchical
Approach for Geo-referencing Large-Scale Datasets
Pascal Kelm, Sebastian Schmiedeke, and Lutz Goldmann
{kelm, schmiedeke,
Imcube Labs GmbH
Berlin, Germany"
fff12919cf912347776b70aa76af7635280dc401,Are object detection assessment criteria ready for maritime computer vision?,"Are object detection assessment criteria ready
for maritime computer vision?
Dilip K. Prasad1,∗, Deepu Rajan2, and Chai Quek2"
ffcb92719dcd993dda292ca82d4585950ea22ac9,Handwritten Digit Recognition Using Convolutional Neural Networks,"ISSN(Online): 2320-9801
ISSN (Print):  2320-9798
International Journal of Innovative Research in Computer
nd Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol. 4, Issue 2, February 2016
Handwritten Digit Recognition Using
Convolutional Neural Networks
Haider A. Alwzwazy1, Hayder M. Albehadili2, Younes S. Alwan3, Naz E. Islam4
M.E Student, Dept. of Electrical and Computer Eng. University of Missouri-Columbia, MO, USA1,2,3
Professor, Dept. of Electrical and Computer Eng. University of Missouri-Columbia, MO, USA4"
ff7de2ea4d21e7d32d7f07e07fd278bebf6b5d66,Comparative survey of visual object classifiers,"Comparative survey of visual object classifiers
Laboratory Le2i, Universite Bourgogne - Franche-Comte,
Hiliwi Leake Kidane
1000 Dijon, France,"
ffae2fe85d3c93610ac6270db2ddf1f2f6779ea8,Learning pullback HMM distances for action recognition,"#****
ICCV 2011 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
Learning pullback HMM distances for action recognition
Anonymous ICCV submission
Paper ID ****"
ffc9d6a5f353e5aec3116a10cf685294979c63d9,Eigenphase-based face recognition: a comparison of phase- information extraction methods,"Eigenphase-based face recognition: a comparison of phase-
information extraction methods
Slobodan Ribarić, Marijo Maračić
Faculty of Electrical Engineering and Computing,
University of Zagreb, Unska 3, 10 000 Zagreb
E-mail:"
ff25c6602305ac46e9c35ffa4e30b14d679a5413,Face Templates Creation for Surveillance Face Recognition System,"Face Templates Creation for Surveillance Face Recognition System
Department of Radio Electronics, Brno University of Technology, Brno, Czech Republic
Department of Telecommunications, Brno University of Technology, Brno, Czech Republic
Tobias Malach1,2 and Jiri Prinosil3
EBIS, spol. s r.o., Brno, Czech Republic
Keywords:
Face  Templates,  Template  Database  Creation,  Face  Recognition  System  Application,  Real-world
Conditons."
ff8ef43168b9c8dd467208a0b1b02e223b731254,BreakingNews: Article Annotation by Image and Text Processing,"BreakingNews: Article Annotation by
Image and Text Processing
Arnau Ramisa*, Fei Yan*, Francesc Moreno-Noguer,
nd Krystian Mikolajczyk"
ff9195f99a1a28ced431362f5363c9a5da47a37b,Serial dependence in the perception of attractiveness,"Journal of Vision (2016) 16(15):28, 1–8
Serial dependence in the perception of attractiveness
Ye Xia
Department of Psychology, University of California,
Berkeley, CA, USA
Allison Yamanashi Leib
Department of Psychology, University of California,
Berkeley, CA, USA
David Whitney
Department of Psychology, University of California,
Berkeley, CA, USA
Helen Wills Neuroscience Institute, University of
California, Berkeley, CA, USA
Vision Science Group, University of California,
Berkeley, CA, USA
The perception of attractiveness is essential for choices
of food, object, and mate preference. Like perception of
other visual features, perception of attractiveness is
stable despite constant changes of image properties due
to factors like occlusion, visual noise, and eye"
ff3ec3607b77a1dbb685cf90dd23a273d622dda5,Visual Attribute Extraction Using Human Pose Estimation,"Visual Attribute Extraction using Human Pose
Estimation
Angelo Nodari, Marco Vanetti, and Ignazio Gallo
Universit`a dell’Insubria, Dipartimento di Scienze Teoriche e Applicate
via Mazzini 5, 21100 Varese, Italy"
ff4dec12d0ba0bb1d2c6bbc194545819bc9c1e5a,Face Recognition at a Distance: System Issues,"Chapter 6
Face Recognition at a Distance:
System Issues
Meng Ao, Dong Yi, Zhen Lei, and Stan Z. Li"
ffc8f9fe66a14aa0657e59e219364b5a852ecb8f,On the Utility of Context (or the Lack Thereof) for Object Detection,"On the Utility of Context (or the Lack Thereof) for Object Detection
Ehud Barnea and Ohad Ben-Shahar
Dept. of Computer Science, Ben-Gurion University
Beer-Sheva, Israel
{barneaeh,"
ff83aade985b981fbf2233efbbd749600e97454c,Towards Understanding Adversarial Learning for Joint Distribution Matching,"ALICE: Towards Understanding Adversarial
Learning for Joint Distribution Matching
Chunyuan Li1, Hao Liu2, Changyou Chen3, Yunchen Pu1, Liqun Chen1,
Ricardo Henao1 and Lawrence Carin1
Duke University 2Nanjing University 3University at Buffalo"
ffcbedb92e76fbab083bb2c57d846a2a96b5ae30,Sparse Dictionary Learning and Domain Adaptation for Face and Action Recognition,
ff7bc7a6d493e01ec8fa2b889bcaf6349101676e,Facial expression recognition with spatiotemporal local descriptors_v3.rtf,"Facial expression recognition with spatiotemporal local
descriptors
Guoying Zhao, Matti Pietikäinen
Machine  Vision  Group,  Infotech  Oulu  and  Department  of  Electrical  and
Information Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland
{gyzhao,"
ff46c41e9ea139d499dd349e78d7cc8be19f936c,A Novel Method for Movie Character Identification and its Facial Expression Recognition,"International Journal of Modern Engineering Research (IJMER)
www.ijmer.com              Vol.3, Issue.3, May-June. 2013 pp-1339-1342             ISSN: 2249-6645
A Novel Method for Movie Character Identification and its
Facial Expression Recognition
M. Dharmateja Purna, 1 N. Praveen2
M.Tech, Sri Sunflower College of Engineering & Technology, Lankapalli
Asst. Professor, Dept. of ECE, Sri Sunflower College of Engineering & Technology, Lankapalli"
ffb2d596c22be7b0ed8f809fdfbeaa95bd4db835,"The BDD-Nexar Collective: A Large-Scale, Crowsourced, Dataset of Driving Scenes","The BDD-Nexar Collective: A Large-Scale, Crowsourced,
Dataset of Driving Scenes
Vashisht Madhavan
Trevor Darrell
Fisher Yu, Ed.
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2017-113
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-113.html
May 29, 2017"
ff5dd6f96e108d8233220cc262bc282229c1a582,Robust Facial Marks Detection Method Using AAM And SURF,"Ziaul Haque Choudhury, K.M. Mehata / International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622   www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.708-715
Robust Facial Marks Detection Method Using AAM And SURF
Ziaul Haque Choudhury, K.M. Mehata
Dept. of Information Technology, B.S. Abdur Rahman University, Chennai-48, India
Dept. of Computer Science & Engineering, B.S. Abdur Rahman University, Chennai-48, India"
ffe8a4cef9dec30ddd2c956c2f63b128a4568f84,Intensity Video Guided 4D Fusion for Improved Highly Dynamic 3D Reconstruction,"Intensity Video Guided 4D Fusion for
Improved Highly Dynamic 3D Reconstruction
Jie Zhang, Christos Maniatis, Luis Horna and Robert B. Fisher"
c5af99522e324b72c8a563a5d6b7c9a0101efb65,Exploring Human Vision Driven Features for Pedestrian Detection,"(cid:13) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
urrent or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
ollective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works."
c54e8c7a4f9c2ebd8787aecafa4cfdb35bfd49e0,Effective Use of Bidirectional Language Modeling for Medical Named Entity Recognition,"Effective Use of Bidirectional Language Modeling for
Medical Named Entity Recognition
Devendra Singh Sachan1,*, Pengtao Xie1, and Eric P Xing1
Petuum Inc, Pittsburgh, 15222, USA"
c588c89a72f89eed29d42f34bfa5d4cffa530732,Attributes2Classname: A Discriminative Model for Attribute-Based Unsupervised Zero-Shot Learning,"Attributes2Classname: A discriminative model for attribute-based
unsupervised zero-shot learning
Berkan Demirel1,3, Ramazan Gokberk Cinbis2, Nazli Ikizler-Cinbis3
HAVELSAN Inc., 2Bilkent University, 3Hacettepe University"
c52aa6b9c7b89782f2316ce8ef2156fa06a3696d,Learning Semantic Part-Based Models from Google Images,"Learning Semantic Part-Based Models
from Google Images
Davide Modolo and Vittorio Ferrari"
c5420ef59d7508d82e53671b0d623027eb58e6ed,Learning to Reweight Examples for Robust Deep Learning,"Learning to Reweight Examples for Robust Deep Learning
Mengye Ren 1 2 Wenyuan Zeng 1 2 Bin Yang 1 2 Raquel Urtasun 1 2"
c5318c79bc1b880e8356211b837b684f1ee6e5c4,Acquiring Common Sense Spatial Knowledge Through Implicit Spatial Templates,"Acquiring Common Sense Spatial Knowledge through Implicit Spatial Templates
Department of Computer Science
Computer Vision Laboratory
Guillem Collell
KU Leuven
Luc Van Gool
ETH Zurich
Marie-Francine Moens
Department of Computer Science
KU Leuven"
c55a6c98887b3079647d0edb4778d81bab6708f6,Self-Similarity Representation of Faces for Kin Relationships,"HCTL Open International Journal of Technology Innovations and Research (IJTIR)
http://ijtir.hctl.org
Volume 16, July 2015
e-ISSN: 2321-1814, ISBN (Print): 978-1-943730-43-8
Self-Similarity Representation
of Faces for Kin
Relationships
Pratibha Chaskar1, Dr. Manjusha Deshmukh2"
c5decf0a3906c85b6540e96c9c7003957c6d395b,Optimizing the Trade-off between Single-Stage and Two-Stage Object Detectors using Image Difficulty Prediction,"Optimizing the Trade-off between
Single-Stage and Two-Stage Deep Object Detectors
using Image Difficulty Prediction
Petru Soviany, Radu Tudor Ionescu
Department of Computer Science
University of Bucharest, Romania
E-mails:"
c574c72b5ef1759b7fd41cf19a9dcd67e5473739,"COGNIMUSE: a multimodal video database annotated with saliency, events, semantics and emotion with application to summarization","Zlatintsi et al. EURASIP Journal on Image and Video Processing  (2017) 2017:54
DOI 10.1186/s13640-017-0194-1
EURASIP Journal on Image
nd Video Processing
RESEARCH
Open Access
COGNIMUSE: a multimodal video
database annotated with saliency, events,
semantics and emotion with application to
summarization
Athanasia Zlatintsi1*
Niki Efthymiou1, Katerina Pastra4, Alexandros Potamianos1 and Petros Maragos1
, Petros Koutras1, Georgios Evangelopoulos2, Nikolaos Malandrakis3,"
c5b05718963f4edff80456c441796e4199ad8d41,Sampling and Ontologically Pooling Web Images for Visual Concept Learning,"Sampling and Ontologically Pooling Web Images for
Visual Concept Learning
Shiai Zhu, Chong-Wah Ngo, and Yu-Gang Jiang"
c5a561c662fc2b195ff80d2655cc5a13a44ffd2d,Using Language to Learn Structured Appearance Models for Image Annotation,"Using Language to Learn Structured Appearance
Models for Image Annotation
Michael Jamieson, Student Member, IEEE, Afsaneh Fazly, Suzanne Stevenson, Sven Dickinson, Member, IEEE,
Sven Wachsmuth, Member, IEEE"
c5e4467b5830d7dad4e940f0766ae728f22e38fc,Object recognition and localization,"Object recognition and localization
Badri Narayana Patro
Dept. of Electrical Engineering
Ganesh Boddupally
Dept. of Electrical Engineering"
c5637543e80f97c9ddab8b54a635cf71941e2786,Self-Calibrating View-Invariant Gait Biometrics,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS
Self-Calibrating View-Invariant Gait Biometrics
Michela Goffredo, Member, IEEE, Imed Bouchrika, Member, IEEE, John N. Carter, Member, IEEE, and
Mark S. Nixon, Associate Member, IEEE"
c528e6285ed170c9a838446c062c8dfbe31c546e,Real Time 3 D Head Pose Estimation : Recent Achievements and Future Challenges,"REAL TIME 3D HEAD POSE ESTIMATION:
RECENT ACHIEVEMENTS AND FUTURE CHALLENGES
Gabriele Fanelli, Juergen Gall, Luc Van Gool
Computer Vision Laboratory - ETH Zurich"
c542fa8c4cfaff6a8d8efa9678e42e1b9ead8aa9,griffith . edu . au Face Recognition using Ensemble String Matching,"Griffith Research Online
https://research-repository.griffith.edu.au
Face Recognition using Ensemble String
Matching
Author
Chen, Weiping, Gao, Yongsheng
Published
Journal Title
IEEE Transactions on Image Processing
https://doi.org/10.1109/TIP.2013.2277920
Copyright Statement
Copyright 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.
Downloaded from
http://hdl.handle.net/10072/54416"
c53a512b4d7dee0d8d0f3e5bf2c6ace7a00cbbae,"Content-Based Video Indexing and Retrieval using Key frames Texture, Edge and Motion Features","International Journal of Current Engineering and Technology
©2016 INPRESSCO®, All Rights Reserved
Research Article
Content-Based Video Indexing and Retrieval using Key frames Texture,
Edge and Motion Features
M.Ravinder†* and T.Venugopal‡
E-ISSN 2277 – 4106, P-ISSN 2347 – 5161
Available at http://inpressco.com/category/ijcet
(R.Hamid et al., 2007; G. Lavee et al., 2009; J. Tang et al.,
009; X. Chen et al., 2009).
JNTUK, Kakinada, Andhra Pradesh, India
Department of CSE, JNTUHCES, Sultanpur, Medak, Telangana, India
Accepted 25 April 2016, Available online 30 April 2016, Vol.6, No.2 (April 2016)"
c593c6080c75133191a27381a58cd07c97aa935b,Gender Classification Using a Min-Max Modular Support Vector Machine with Incorporating Prior Knowledge,"SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS
Gender Classification Using a Min-Max Modular
Support Vector Machine with Incorporating
Prior Knowledge
Hui-Cheng Lian and ∗Bao-Liang Lu, Senior Member, IEEE"
c5d9ac2f52c9fc229890798b9d6e4d899b72c525,Image Enhancement Technique using Adaptive Multiscale Retinex for Face Recognition Systems,"Image Enhancement Technique using Adaptive
Multiscale Retinex for Face Recognition Systems
Khairul Anuar Ishak1, Salina Abdul Samad1
M. A. Hannan1 and Maizura Mohd Sani2
Dept. of Electrical, Electronics and Systems Engineering
Faculty of Engineering and Built Environment, University Kebangsaan Malaysia
3600, UKM Bangi, Selangor, Malaysia
Institute of Microengineering and Nanoelectronics, University Kebangsaan Malaysia
3600, UKM Bangi, Selangor, Malaysia"
c5c379a807e02cab2e57de45699ababe8d13fb6d,Facial Expression Recognition Using Sparse Representation,"Facial Expression Recognition Using Sparse Representation
SHIQING ZHANG 1, XIAOMING ZHAO 2, BICHENG LEI 1
School of Physics and Electronic Engineering
Taizhou University
Taizhou 318000
CHINA
2Department of Computer Science
Taizhou University
Taizhou 318000
CHINA"
c5ea084531212284ce3f1ca86a6209f0001de9d1,Audio-visual speech processing for multimedia localisation,"Audio-Visual Speech Processing for
Multimedia Localisation
Matthew Aaron Benatan
Submitted in accordance with the requirements
for the degree of Doctor of Philosophy
The University of Leeds
School of Computing
September 2016"
c5c0cda46a77a7ea8c1f6d4d762b189ef424ffa4,Semantic 3 D Reconstruction of Heads,"Semantic 3D Reconstruction of Heads
Fabio Maninchedda1, Christian H¨ane2,(cid:63), Bastien Jacquet3,(cid:63),
Ama¨el Delaunoy(cid:63), Marc Pollefeys1,4
ETH Zurich
UC Berkeley
Kitware SAS
Microsoft"
c52f2a00fdbfb7fb10252796dbede6403e780da6,Input Convex Neural Networks,"Input Convex Neural Networks
Brandon Amos 1 Lei Xu 2 * J. Zico Kolter 1"
c50c034d264083757eadeee5d0b94d933fe78544,Query by string word spotting based on character bi-gram indexing,"Query by String word spotting based on character
i-gram indexing
Computer Vision Center, Dept. Ci`encies de la Computaci´o
Universitat Aut`onoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
Suman K. Ghosh and Ernest Valveny
Email:"
c5844de3fdf5e0069d08e235514863c8ef900eb7,A Study on Similarity Computations in Template Matching Technique for Identity Verification,"Lam S K et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2659-2665
A Study on Similarity Computations in Template
Matching Technique for Identity Verification
Lam, S. K., Yeong, C. Y., Yew, C. T., Chai, W. S., Suandi, S. A.
Intelligent Biometric Group, School of Electrical and Electronic Engineering
Engineering Campus, Universiti Sains Malaysia
4300 Nibong Tebal, Pulau Pinang, MALAYSIA
Email:"
c590c6c171392e9f66aab1bce337470c43b48f39,Emotion Recognition by Machine Learning Algorithms using Psychophysiological Signals,"Emotion Recognition by Machine Learning Algorithms using
Psychophysiological Signals
Eun-Hye Jang, 2Byoung-Jun Park, 3Sang-Hyeob Kim, 4Jin-Hun Sohn
, 2, 3 BT Convergence Technology Research Department, Electronics and Telecommunications
Research Institute, 138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Republic of Korea,
*4Department of Psychology/Brain Research Institute, Chungnam National University 220,
Gung-dong, Yuseong-gu, Daejeon, 305-765, Republic of Korea,"
c591cb28d12b7ee53af4e5c2050b74071527c248,The face of fear and anger: Facial width-to-height ratio biases recognition of angry and fearful expressions.,"The Face of Fear and Anger: Facial Width-to-Height
Ratio Biases Recognition of Angry and Fearful
Expressions
Jason C. Deska, E. Paige Lloyd, and Kurt Hugenberg
Online First Publication, May 11, 2017. http://dx.doi.org/10.1037/emo0000328
CITATION
Deska, J. C., Lloyd, E. P., & Hugenberg, K. (2017, May 11). The Face of Fear and Anger: Facial
online publication. http://dx.doi.org/10.1037/emo0000328"
c55dcc587a53ff82cf3f79d84e7df67f4c8f77ed,TabletGaze: A Dataset and Baseline Algorithms for Unconstrained Appearance-based Gaze Estimation in Mobile Tablets,"TabletGaze: A Dataset and Baseline Algorithms
for Unconstrained Appearance-based Gaze
Estimation in Mobile Tablets
Qiong Huang, Student Member, IEEE, Ashok Veeraraghavan, Member, IEEE,
nd Ashutosh Sabharwal, Fellow, IEEE"
c50630e485d3c7785ea9e1f3bff35ea00e926a56,Deep Image Retrieval: Learning Global Representations for Image Search,"Deep Image Retrieval:
Learning global representations for image search
Albert Gordo, Jon Almaz´an, Jerome Revaud, and Diane Larlus
Computer Vision Group, Xerox Research Center Europe"
c5c6ec48ae98d86171360b19e3ec03738c712f53,Infinite Hidden Conditional Random Fields for Human Behavior Analysis,"Infinite Hidden Conditional Random Fields for
Human Behavior Analysis
Konstantinos Bousmalis, Student Member, IEEE,
Stefanos Zafeiriou, Member, IEEE,
Louis-Philippe Morency, Member, IEEE,
nd Maja Pantic, Fellow, IEEE"
c2c3ff1778ed9c33c6e613417832505d33513c55,"Multimodal Biometric Person Authentication Using Fingerprint, Face Features","Multimodal Biometric Person Authentication
Using Fingerprint, Face Features
Tran Binh Long1, Le Hoang Thai2, and Tran Hanh1
Department of Computer Science, University of Lac Hong 10 Huynh Van Nghe,
DongNai 71000, Viet Nam
Department of Computer Science, Ho Chi Minh City University of Science
27 Nguyen Van Cu, HoChiMinh 70000, Viet Nam"
c21db705a33212768c63be11747d075371c7307f,A Content-Based Late Fusion Approach Applied to Pedestrian Detection,"A Content-Based Late Fusion Approach Applied to
Pedestrian Detection
Jessica Sena, Artur Jord˜ao, William Robson Schwartz
Smart Surveillance Interest Group
Department of Computer Science, Universidade Federal de Minas Gerais
Av. Presidente Antˆonio Carlos, 6627 - Pampulha, Belo Horizonte, Brazil"
c2adfc55e0ab9be6e8f5e4ebeb20770dca307cef,"The effect of diagnosis, age, and symptom severity on cortical surface area in the cingulate cortex and insula in autism spectrum disorders.","http://jcn.sagepub.com/
The Effect of Diagnosis, Age, and Symptom Severity on Cortical Surface Area in the Cingulate Cortex
nd Insula in Autism Spectrum Disorders
Krissy A.R. Doyle-Thomas, Azadeh Kushki, Emma G. Duerden, Margot J. Taylor, Jason P. Lerch, Latha V. Soorya, A.
Ting Wang, Jin Fan and Evdokia Anagnostou
J Child Neurol
2013 28: 729 originally published online 25 July 2012
DOI: 10.1177/0883073812451496
The online version of this article can be found at:
http://jcn.sagepub.com/content/28/6/729
Published by:
http://www.sagepublications.com
Additional services and information for
can be found at:
Email Alerts:
http://jcn.sagepub.com/cgi/alerts
Subscriptions:
http://jcn.sagepub.com/subscriptions
Reprints:
http://www.sagepub.com/journalsReprints.nav"
c27f64eaf48e88758f650e38fa4e043c16580d26,Title of the proposed research project: Subspace analysis using Locality Preserving Projection and its applications for image recognition,"Title of the proposed research project: Subspace analysis using Locality Preserving
Projection and its applications for image recognition
Research area: Data manifold learning for pattern recognition
Contact Details:
Name: Gitam C Shikkenawis
Email Address:
University:  Dhirubhai  Ambani  Institute  of  Information  and  Communication  Technology
(DA-IICT), Gandhinagar."
c2d065bc8067384c40b3e8146cadc9a0c4c1d633,SLC25A12 expression is associated with neurite outgrowth and is upregulated in the prefrontal cortex of autistic subjects,"& 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00
www.nature.com/mp
ORIGINAL ARTICLE
SLC25A12 expression is associated with neurite
outgrowth and is upregulated in the prefrontal cortex
of autistic subjects
A-M Lepagnol-Bestel1, G Maussion1, B Boda2, A Cardona3, Y Iwayama4, A-L Delezoide5, J-M Moalic1,
D Muller2, B Dean6, T Yoshikawa4,7, P Gorwood1, JD Buxbaum8,9, N Ramoz1 and M Simonneau1
INSERM U675, IFR2, Faculte´ de Me´ decine Xavier Bichat, Paris, France; 2Department of Basic Neuroscience, Centre Medical
Universitaire, Geneva, Switzerland; 3Histotechnology and Pathology Unit, Institut Pasteur, Paris, France; 4Laboratory for
AP-HP, Paris, France; 6The Rebecca L Cooper Research Laboratories, Mental Health Research Institute of Victoria, Parkville,
VIC, Australia; 7CREST, Japan Science and Technology Agency, Saitama, Japan; 8Department of Psychiatry, Mount Sinai
School of Medicine, New York, NY, USA and 9Department of Neuroscience, Mount Sinai School of Medicine, New York,
NY, USA
in the BA46 prefrontal cortex but not
Autism is a neurodevelopmental disorder with a strong genetic component, probably involving
several genes. Genome screens have provided evidence of linkage to chromosome 2q31–q33,
which includes the SLC25A12 gene. Association between autism and single-nucleotide
polymorphisms in SLC25A12 has been reported in various studies. SLC25A12 encodes the
mitochondrial aspartate/glutamate carrier functionally important"
c231d8638e8b5292c479d20f7dd387c53e581a1a,Multi-View Data Generation Without View Supervision,"MULTI-VIEW DATA GENERATION WITHOUT VIEW
SUPERVISION
Micka¨el Chen, Ludovic Denoyer
Sorbonne Universit´es, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
Thierry Arti`eres
Ecole Centrale Marseille - Laboratoire d’Informatique Fondamentale (Aix-Marseille Univ.), France."
c223b2b7d38dc4e0ad418c404b2d3c43c62213bc,Trade-off Between GPGPU based Implementations of Multi Object Tracking Particle Filter,"Trade-off between GPGPU based implementations of
multi object tracking particle filter
Petr Jecmen, Frédéric Lerasle, Alhayat Ali Mekonnen
To cite this version:
Petr Jecmen, Frédéric Lerasle, Alhayat Ali Mekonnen. Trade-off between GPGPU based implemen-
tations of multi object tracking particle filter. International Conference on Computer Vision Theory
nd Applications, Feb 2017, Porto, Portugal. 10p., 2017. <hal-01763095>
HAL Id: hal-01763095
https://hal.laas.fr/hal-01763095
Submitted on 10 Apr 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
c2fb2cb5487ad404b8e66daf74198496c40bef32,Learning to Transfer Privileged Information,"Learning to Transfer Privileged Information
Viktoriia Sharmanska1∗, Novi Quadrianto2, and Christoph Lampert1,
Institute of Science and Technology Austria, Austria
SMiLe CLiNiC, University of Sussex, UK"
c220f457ad0b28886f8b3ef41f012dd0236cd91a,Crystal Loss and Quality Pooling for Unconstrained Face Verification and Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Crystal Loss and Quality Pooling for
Unconstrained Face Verification and Recognition
Rajeev Ranjan, Member, IEEE, Ankan Bansal, Hongyu Xu, Member, IEEE,
Swami Sankaranarayanan, Member, IEEE, Jun-Cheng Chen, Member, IEEE,
Carlos D Castillo, Member, IEEE, and Rama Chellappa, Fellow, IEEE"
c28f57d0a22e54fdd3c4a57ecb1785dda49f0e5e,From Scores to Face Templates: A Model-Based Approach,"From Scores to Face Templates:
A Model-Based Approach
Pranab Mohanty, Student Member, IEEE, Sudeep Sarkar, Senior Member, IEEE, and
Rangachar Kasturi, Fellow, IEEE"
c254b4c0f6d5a5a45680eb3742907ec93c3a222b,A Fusion-based Gender Recognition Method Using Facial Images,"A Fusion-based Gender Recognition Method
Using Facial Images
Benyamin Ghojogh, Saeed Bagheri Shouraki, Hoda Mohammadzade*, Ensieh Iranmehr"
c259693737ce52e2e37972e15334cbe78b653e69,Image Processing Supports HCI in Museum Application,"Image Processing Supports HCI in Museum Application
Niki Martinel, Marco Vernier, Gian Luca Foresti and Elisabetta Lamedica
Department of Mathematics and Computer Science, University of Udine, Via Delle Scienze 206, Udine, Italy
{niki.martinel, marco.vernier,
Keywords:
Augmented Reality: Information Visualization: User Interface Design: Mobile HCI."
c29487c5eb0cdb67d92af1bc0ecbcf825e2abec3,3-D Face Recognition With the Geodesic Polar Representation,"-D Face Recognition With the
Geodesic Polar Representation
Iordanis Mpiperis, Sotiris Malassiotis, and Michael G. Strintzis, Fellow, IEEE
therefore,"
c2b1007824fa7ce3a7a94209f0be0902a3454bae,Project Description 1 Introduction,"Project Description
Introduction
Recognizing human action is a key component in many vision applications, such as video surveil-
lance, 3D human pose estimation and video indexing. From the human-centered computing (HCC)
point of view, an automatic action recognition system can provide an interface between artificial
gents and human users accounting for perception and action in a novel interaction paradigm.
Although significant progress has been made in action recognition [1], the problem remains inher-
ently challenging due to significant intra-class variations, viewpoint change, partial occlusion and
ackground dynamic variations. A key limitation of many action-recognition approaches is that
their models are learned from single 2D view video features on individual datasets and thus un-
ble to handle arbitrary view change or scale and background variations. Also, since they are not
generalizable across different datasets, retraining is necessary for any new dataset.
Our research is motivated by the requirement of view-invariant action recognition and the fact that
the existing human motion capture data provides useful knowledge to understand the intrinsic motion
structure (Fig. 2). In particular, we address the problem of modeling and analyzing human motion
in the joint-trajectories space. Our view-invariant recognition system has the following functions
(Fig. 1),
(1) Given a labeled Mocap sequences with M markers in 3D, which is a 3M -dimensional sequential
data, the low dimensional manifold structure (i.e., geodesics distance, intrinsic dimensionality, etc)
is learnt by using Tensor Voting. This is an offline process, as shown in Fig. 1."
c2f2c89d7615df07b540748d6c53485c4cbfa9c0,An Experience Report on Requirements-Driven Model-Based Synthetic Vision Testing,"An Experience Report on Requirements-Driven
Model-Based Synthetic Vision Testing
Markus Murschitz and Oliver Zendel and Martin Humenberger
nd Christoph Sulzbachner and Gustavo Fern´andez Dom´ınguez 1"
c2b9d6742e504491800cee44adb05d2d706fc209,Semantic-Based Web Mining For Image Retrieval Using Enhanced Support Vector Machine,"International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 5 (2016) pp 3276-3281
© Research India Publications.  http://www.ripublication.com
Semantic-Based Web Mining For Image Retrieval Using Enhanced Support
Vector Machine
Ph.D Research Scholar, Research Department of Computer Science,
NGM College, Pollachi, Coimbatore, Tamil Nadu, India.
P. Sumathi
R. Manickachezian
Associate Professor, Research Department of Computer Science,
NGM College, Pollachi, Coimbatore, Tamil Nadu, India."
c2eed73654b544a705b194ade58cd82488c6c5b9,"Scene Understanding by Labeling Pixels Key Insights ˽ Recent Progress on Image Understanding, a Long-standing Challenge of Ai, Is Enabling Numerous New Applications in Robot Perception, Surveillance and Environmental Monitoring, Content- Based Image Search, and Social-media Summarization","ontributed articles
DOI:10.1145/2629637
Pixels labeled with a scene’s semantics and
geometry let computers describe what they see.
BY STEPHEN GOULD AND XUMING HE
Scene
Understanding
y Labeling
Pixels
PROGRAMMING COMPUTERS TO automatically interpret
the content of an image is a long-standing challenge in
rtificial intelligence and computer vision. That difficulty
is echoed in a well-known anecdote from the early years
of computer-vision research in which an undergraduate
student at MIT was asked to spend his summer getting a
omputer to describe what it “saw” in images obtained
from a video camera.35 Almost 50 years later researchers
re still grappling with the same problem.
A scene can be described in many ways and include
details about objects, regions, geometry, location,"
c2b8b49526e3dd537b641a6495e49a3d1a0ebbf2,Extended Feature-Fusion Guidelines to Improve Image-Based Multi-Modal Biometrics,"Extended Feature-Fusion Guidelines to Improve
Image-Based Multi-Modal Biometrics
Dane Brown
Council for Scientific and Industrial Research
Information Security
Pretoria, South Africa"
c238f871c029d8c33949f8410f8cf3bf79ffc102,No Blind Spots: Full-Surround Multi-Object Tracking for Autonomous Vehicles using Cameras & LiDARs,"No Blind Spots: Full-Surround Multi-Object
Tracking for Autonomous Vehicles using
Cameras & LiDARs
Akshay Rangesh, Member, IEEE, and Mohan M. Trivedi, Fellow, IEEE"
c2d35b387518496d8100f70e82597b002eba600e,Online Multi-player Tracking in Monocular Soccer Videos,"Available online at www.sciencedirect.com
AASRI Procedia 00 (2014) 000–000
014 AASRI Conference on Sports Engineering and Computer Science (SECS 2014)
Online Multi-player Tracking in Monocular Soccer Videos
Michael Herrmanna,*, Martin Hoerniga, Bernd Radiga
Technische Universität München, Image Understanding and Knowledge-Based Systems, Boltzmannstr. 3, D-85748 Garching, Germany"
c20b2ec72ebf798e9567a145465e37a755fc34d8,Fully Automatic Multi-person Human Motion Capture for VR Applications,"Fully Automatic Multi-person Human Motion Capture
for VR Applications
Ahmed Elhayek1,2, Onorina Kovalenko1, Pramod Murthy1,2, Jameel Malik1,2, and
Didier Stricker1,2
German Research Centre for Artificial Intelligence (DFKI), Kaiserslautern, Germany
University of Kaiserslautern, Germany
{ahmed.elhayek, onorina.kovalenko, pramod.murthy,
jameel.malik,"
c2e9300b0e72dca0b95ccd4181fc2a7a5178dea7,Improving Bilayer Product Quantization for Billion-Scale Approximate Nearest Neighbors in High Dimensions,"Improving Bilayer Product Quantization
for Billion-Scale Approximate Nearest Neighbors in High
Dimensions
Artem Babenko
Yandex
Moscow Institute of Physics and Technology
Victor Lempitsky
Skolkovo Institute of Science and Technology"
c2cb38fc68b877a96be99b814e8ee437e585f5b2,Mining on Manifolds: Metric Learning without Labels,"Mining on Manifolds: Metric Learning without Labels
Ahmet Iscen1 Giorgos Tolias1 Yannis Avrithis2 Ondˇrej Chum1
VRG, FEE, CTU in Prague
Inria Rennes"
c2e6daebb95c9dfc741af67464c98f1039127627,Efficient Measuring of Facial Action Unit Activation Intensities using Active Appearance Models,"MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN
Ef‌f‌icient Measuring of Facial Action Unit Activation Intensities
using Active Appearance Models
Daniel Haase1, Michael Kemmler1, Orlando Guntinas-Lichius2, Joachim Denzler1
Computer Vision Group, Friedrich Schiller University of Jena, Germany
Department of Otolaryngology, University Hospital Jena, Germany"
f65896855e5df3db5422b57ab360287efa213066,Detection of Uncontrolled Motion Behavior in Human Crowds,"IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308
DETECTION OF UNCONTROLLED MOTION BEHAVIOR IN HUMAN
CROWDS
Vijitha V. A1
Student of M. Tech., Computer Science & Engineering, Sahyadri College of Engineering & Management, Karnataka,
India"
f6ba16aee3c40b69dc88c947ae59811104b1bd49,Skeletal Tracking using Microsoft Kinect,"Skeletal Tracking using Microsoft Kinect
Abhishek Kar
Advisors: Dr. Amitabha Mukerjee & Dr. Prithwijit Guha
Department of Computer Science and Engineering, IIT Kanpur"
f6f06be05981689b94809130e251f9e4bf932660,An Approach to Illumination and Expression Invariant Multiple Classifier Face Recognition,"An Approach to Illumination and Expression Invariant
International Journal of Computer Applications (0975 – 8887)
Volume 91 – No.15, April 2014
Multiple Classifier Face Recognition
Dalton Meitei Thounaojam
National Institute of Technology
Silchar
Assam: 788010
India
Hidangmayum Saxena Devi
National Institute of Technology
Silchar
Assam: 788010
India
Romesh Laishram
Manipur Institute of Technology
Imphal West: 795001
India"
f6742010372210d06e531e7df7df9c01a185e241,Dimensional Affect and Expression in Natural and Mediated Interaction,"Dimensional Affect and Expression in
Natural and Mediated Interaction
Michael J. Lyons
Ritsumeikan, University
Kyoto, Japan
October, 2007"
f6ca29516cce3fa346673a2aec550d8e671929a6,Algorithm for Face Matching Using Normalized Cross - Correlation,"International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013
Algorithm for Face Matching Using Normalized
Cross-Correlation
C. Saravanan, M. Surender"
f614f9ba33554cfd1a474be03520319b51651a35,Cardiac interoceptive learning is modulated by emotional valence perceived from facial expressions,"Social Cognitive and Affective Neuroscience, 2018, 677–686
doi: 10.1093/scan/nsy042
Advance Access Publication Date: 6 April 2018
Original article
Cardiac interoceptive learning is modulated by
emotional valence perceived from facial expressions
Amanda C. Marshall, Antje Gentsch, Lena Schro¨ der, and
Simone Schu¨ tz-Bosbach
General and Experimental Psychology Unit, Department of Psychology, Ludwig-Maximilians University
Munich, D-80802 Munich, Germany
Correspondence should be addressed to Amanda C. Marshall, General and Experimental Psychology Unit, Department of Psychology, Ludwig-
Maximilians-University Munich, Leopoldstr. 13, D-80802 Munich, Germany. E-mail:"
f6684367e7925cd90fb8974640d41823191c7cff,CNN-based Pore Detection and Description for High-Resolution Fingerprint Recognition,"Automatic Dataset Annotation to Learn CNN Pore
Description for Fingerprint Recognition
Gabriel Dahia
Maur´ıcio Pamplona Segundo
Department of Computer Science, Federal University of Bahia"
f67a73c9dd1e05bfc51219e70536dbb49158f7bc,A Gaussian Mixture Model for Classifying the Human Age using DWT and Sammon Map,"Journal of Computer Science 10 (11): 2292-2298, 2014
ISSN: 1549-3636
© 2014 Nithyashri and Kulanthaivel, This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
A GAUSSIAN MIXTURE MODEL FOR CLASSIFYING THE
HUMAN AGE USING DWT AND SAMMON MAP
J. Nithyashri and 2G. Kulanthaivel
Department of Computer Science and Engineering, Sathyabama University, Chennai, India
Department of Electronics Engineering, NITTTR, Chennai, India
Received 2014-05-08; Revised 2014-05-23; Accepted 2014-11-28"
f663ad5467721159263c1cde261231312893f45d,UvA-DARE ( Digital Academic Repository ) Gaze Embeddings for Zero-Shot Image Classification,"UvA-DARE (Digital Academic Repository)
Gaze Embeddings for Zero-Shot Image Classification
Karessli, N.; Akata, Z.; Schiele, B.; Bulling, A.
Published in:
0th IEEE Conference on Computer Vision and Pattern Recognition
0.1109/CVPR.2017.679
Link to publication
Citation for published version (APA):
Karessli, N., Akata, Z., Schiele, B., & Bulling, A. (2017). Gaze Embeddings for Zero-Shot Image Classification. In
0th IEEE Conference on Computer Vision and Pattern Recognition: CVPR 2017 : 21-26 July 2016, Honolulu,
Hawaii : proceedings (pp. 6412-6421). Piscataway, NJ: IEEE. DOI: 10.1109/CVPR.2017.679
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.
Download date: 18 Nov 2018"
f672d6352a5864caab5a5a286fbc1ce042b55c16,Stabilizing GAN Training with Multiple Random Projections,"Under review as a conference paper at ICLR 2018
Stabilizing GAN Training with
Multiple Random Projections
Anonymous authors
Paper under double-blind review"
f66bc143d85d2b1d9aafec20f598a21d2b90b0c0,Seeing 3 D Objects in a Single 2 D Image,"Accepted for publication in the Proceedings of the 12th International Conference of Computer Vision, 2009
Seeing 3D Objects in a Single 2D Image
Diego Rother
Johns Hopkins University"
f6785ffe6fe2c30887637a61061a64f4d6725979,BAR: Bayesian Activity Recognition using variational inference,"BAR: Bayesian Activity Recognition using variational
inference
Ranganath Krishnan
Mahesh Subedar
Omesh Tickoo
Intel Labs
Hillsboro, OR (USA)"
f6c70635241968a6d5fd5e03cde6907022091d64,Measuring Deformations and Illumination Changes in Images with Applications to Face Recognition,
f636c087091847bd4ccd6d196ada6c0894b52d88,Rate-Accuracy Trade-Off in Video Classification with Deep Convolutional Neural Networks,"Rate-Accuracy Trade-Off In Video Classification
With Deep Convolutional Neural Networks
Mohammad Jubran, Alhabib Abbas, Aaron Chadha and Yiannis Andreopoulos, Senior Member, IEEE"
f6ce34d6e4e445cc2c8a9b8ba624e971dd4144ca,Cross-Label Suppression: A Discriminative and Fast Dictionary Learning With Group Regularization,"Cross-label Suppression: A Discriminative and Fast
Dictionary Learning with Group Regularization
Xiudong Wang and Yuantao Gu∗
April 24, 2017"
f67afec4226aba674e786698b39b85b124945ddd,Spatial Variational Auto-Encoding via Matrix-Variate Normal Distributions,"Spatial Variational Auto-Encoding via Matrix-Variate
Normal Distributions
Zhengyang Wang
School of Electrical Engineering
nd Computer Science
Washington State University
Pullman, WA 99163
Hao Yuan
School of Electrical Engineering
nd Computer Science
Washington State University
Pullman, WA 99163
Shuiwang Ji
School of Electrical Engineering
nd Computer Science
Washington State University
Pullman, WA 99163"
f6fa97fbfa07691bc9ff28caf93d0998a767a5c1,K2-means for Fast and Accurate Large Scale Clustering,"k2-means for fast and accurate large scale clustering
Eirikur Agustsson
Computer Vision Lab
D-ITET
ETH Zurich
Radu Timofte
Computer Vision Lab
D-ITET
ETH Zurich
Luc Van Gool
ESAT, KU Leuven
D-ITET, ETH Zurich"
f6cf2108ec9d0f59124454d88045173aa328bd2e,Robust User Identification Based on Facial Action Units Unaffected by Users' Emotions,"Robust user identification based on facial action units
unaffected by users’ emotions
Ricardo Buettner
Aalen University, Germany"
f614b449ee2fd45974214014c109d993aab73343,A Mathematical Motivation for Complex-Valued Convolutional Networks,"A Mathematical Motivation for
Complex-valued Convolutional Networks
Joan Bruna, Soumith Chintala, Yann LeCun, Serkan Piantino, Arthur Szlam, Mark Tygert
Facebook Artificial Intelligence Research, 1 Facebook Way, Menlo Park, California 94025
Keywords: deep learning, neural networks, harmonic analysis"
f68f20868a6c46c2150ca70f412dc4b53e6a03c2,Differential Evolution to Optimize Hidden Markov Models Training: Application to Facial Expression Recognition,"Differential Evolution to Optimize
Hidden Markov Models Training:
Application to Facial Expression
Recognition
Khadoudja Ghanem, Amer Draa, Elvis Vyumvuhore and
Ars`ene Simbabawe
MISC Laboratory, Constantine 2 University, Constantine, Algeria
The base system in this paper uses Hidden Markov
Models (HMMs) to model dynamic relationships among
facial features in facial behavior interpretation and un-
derstanding field. The input of HMMs is a new set
of derived features from geometrical distances obtained
from detected and automatically tracked facial points.
Numerical data representation which is in the form of
multi-time series is transformed to a symbolic repre-
sentation in order to reduce dimensionality, extract the
most pertinent information and give a meaningful repre-
sentation to humans. The main problem of the use of
HMMs is that the training is generally trapped in local
minima, so we used the Differential Evolution (DE)"
f6cf220b8ef17e0a4bef0ff5aadc40eec9653159,Automated System for interpreting Non-verbal Communication in Video Conferencing,"Chetana Gavankar et al / International Journal on Computer Science and Engineering Vol.2(1), 2010, 22-27
Automated System for interpreting Non-verbal
Communication in Video Conferencing
Chetana Gavankar
Senior Lecturer,
Department of Information Technology
Cummins College of Engineering for Women
Karve Nagar, Pune - 411052
for  more  effective"
e909b9e0bbfc37d0b99acad5014e977daac7e2bd,Adversarial Training of Variational Auto-Encoders for High Fidelity Image Generation,"Adversarial Training of Variational Auto-encoders for
High Fidelity Image Generation
Salman H. Khan†, Munawar Hayat ‡, Nick Barnes †
Data61 - CSIRO and ANU, Australia, ‡University of Canberra, Australia,"
e9ac109c395ededb23dfc78fe85d76eeb772ee7e,A Multilevel Mixture-of-Experts Framework for Pedestrian Classification,"A Multilevel Mixture-of-Experts Framework for
Pedestrian Classification
Markus Enzweiler and Dariu M. Gavrila"
e9ed17fd8bf1f3d343198e206a4a7e0561ad7e66,Cognitive Learning for Social Robot through Facial Expression from Video Input,"International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (362-365), Impact Factor: 1.252, Available online at: www.erpublications.com
Cognitive Learning for Social Robot through
Facial Expression from Video Input
Neeraj Rai1, Deepak Rai2
Department of Automation & Robotics, 2Department of Computer Science & Engg.
,2Ajay Kumar Garg Engineering College, Ghaziabad, UP, India"
e988be047b28ba3b2f1e4cdba3e8c94026139fcf,Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition,"Multi-Task Convolutional Neural Network for
Pose-Invariant Face Recognition
Xi Yin and Xiaoming Liu Member, IEEE,"
e9d43231a403b4409633594fa6ccc518f035a135,Deformable Part Models with CNN Features,"Deformable Part Models with CNN Features
Pierre-Andr´e Savalle1, Stavros Tsogkas1,2, George Papandreou3, Iasonas
Kokkinos1,2
Ecole Centrale Paris,2 INRIA, 3TTI-Chicago (cid:63)"
e96a3d4df7f6956ba185107747c3d7c16d1ed845,Unite the People: Closing the Loop Between 3D and 2D Human Representations,"Unite the People: Closing the Loop Between 3D and 2D Human Representations
Christoph Lassner1,2
Javier Romero3,*
Martin Kiefel2
Federica Bogo4,*
Michael J. Black2
Peter V. Gehler5,*
Bernstein Center for Computational Neuroscience, T¨ubingen, Germany
MPI for Intelligent Systems, T¨ubingen, Germany
Body Labs Inc., New York, United States
Microsoft, Cambridge, UK
5University of W¨urzburg, Germany"
e941ee2d584938e6509c0676466023f8b43b9486,Appearance based tracking with background subtraction,"The 8th International
Computer Science
April 26-28,  2013. Colombo,
Sri Lanka
& Education (ICCSE 2013)
Conference on
SuD1.4
Appearance Based Tracking with Background
Dileepa Joseph Jayamanne
Subtraction
Jayathu Samarawickrama
Ranga Rodrigo
Electronic
Engineering
Telecommunication
Electronic
Engineering
Telecommunication
Telecommunication
Electronic"
e91c7dbd33a3047c70d550e201ebdf4353cbe929,Re-identification for Online Person Tracking by Modeling Space-Time Continuum,"Re-identification for Online Person Tracking by Modeling Space-Time
Continuum
Neeti Narayan, Nishant Sankaran, Srirangaraj Setlur and Venu Govindaraju
University at Buffalo, SUNY
{neetinar, n6, setlur,"
e9dc096762f503cfe0d56066c02d27082665b3cf,Face Sketch to Photo Matching Using LFDA,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Face Sketch to Photo Matching Using LFDA
Pushpa Gopal Ambhore1, Lokesh Bijole2
Research Scholor of Amravati University,
Computer Engineering Department Padm. Dr. V. B. Kolte Coe Malkapur Maharashtra, India
Assistant Professor, Computer Engineering Department Padm. Dr.V.B. Kolte coe Malkapur Maharashtra, India"
e917bb1f7efdfc448b8b63c52e8f643e68630a11,3D information is valuable for the detection of humans in video streams,"D information is valuable for the detection of humans
in video streams
Sébastien Piérard
Antoine Lejeune
Marc Van Droogenbroeck
INTELSIG Laboratory
Montefiore Institute
University of Liège, Belgium
INTELSIG Laboratory
Montefiore Institute
University of Liège, Belgium
INTELSIG Laboratory
Montefiore Institute
University of Liège, Belgium
Email :
Email :
Email :"
e9ae8bbfec913300eedede3ec48acb56c15ebdea,DisguiseNet : A Contrastive Approach for Disguised Face Verification in the Wild,"DisguiseNet : A Contrastive Approach for Disguised Face Verification in the Wild
Skand Vishwanath Peri
Abhinav Dhall
Learning Affect and Semantic Image AnalysIs (LASII) Group,
Indian Institute of Technology Ropar, India"
e9fcd15bcb0f65565138dda292e0c71ef25ea8bb,Analysing Facial Regions for Face Recognition Using Forensic Protocols,"Repositorio Institucional de la Universidad Autónoma de Madrid
https://repositorio.uam.es
Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:
Highlights on Practical Applications of Agents and Multi-Agent Systems:
International Workshops of PAAMS. Communications in Computer and
Information Science, Volumen 365. Springer, 2013. 223-230
DOI:    http://dx.doi.org/10.1007/978-3-642-38061-7_22
Copyright:  © 2013 Springer-Verlag
El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription"
e939fb6b762de242b22e295940e0d9d7d259e442,Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos,"Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised
Learning from Monocular Videos
Vincent Casser∗1
Soeren Pirk
Reza Mahjourian2
Anelia Angelova
Institute for Applied Computational Science, Harvard University; Google Brain
Google Brain
University of Texas at Austin; Google Brain
{pirk, rezama,"
e94804b7f2515740671a678239eccdb79a050272,Generating a Fusion Image: One's Identity and Another's Shape,"Generating a Fusion Image: One’s Identity and Another’s Shape
Donggyu Joo∗
School of Electrical Engineering, KAIST, South Korea
Doyeon Kim∗
{jdg105, doyeon kim,
Junmo Kim"
e9363f4368b04aeaa6d6617db0a574844fc59338,BenchIP: Benchmarking Intelligence Processors,"BENCHIP: Benchmarking Intelligence
Processors
Jinhua Tao1, Zidong Du1,2, Qi Guo1,2, Huiying Lan1, Lei Zhang1
Shengyuan Zhou1, Lingjie Xu3, Cong Liu4, Haifeng Liu5, Shan Tang6
Allen Rush7,Willian Chen7, Shaoli Liu1,2, Yunji Chen1, Tianshi Chen1,2
ICT CAS,2Cambricon,3Alibaba Infrastructure Service, Alibaba Group
IFLYTEK,5JD,6RDA Microelectronics,7AMD"
f17d6db4844f26a023f92b8771a1c33cea91b9e4,1 Million Captioned Dutch Newspaper Images,"Million Captioned Dutch Newspaper Images
Desmond Elliott∗† and Martijn Kleppe‡
ILLC, University of Amsterdam; †CWI; ‡Erasmus University Rotterdam"
f13552e2e2843716e7a1c7c2492cfcc6e86aa03c,Reinforced Pipeline Optimization: Behaving Optimally,"Under review as a conference paper at ICLR 2019
REINFORCED PIPELINE OPTIMIZATION: BEHAVING
OPTIMALLY WITH NON-DIFFERENTIABILITIES
Anonymous authors
Paper under double-blind review"
f1ec3752535e0aa6aafe3930974a22250e652ca1,Gender and emotion recognition with implicit user signals,"Gender and Emotion Recognition with Implicit User Signals
Maneesh Bilalpur
International Institute of Information
Technology
Hyderabad, India
Seyed Mostafa Kia
Donders Institute, Radboud
University
Nijmegen, Netherlands
Manisha Chawla
Centre for Cognitive Science, Indian
Institute of Technology
Gandhinagar, India
Tat-Seng Chua
School of Computing, National
University of Singapore
Singapore
Ramanathan Subramanian
University of Glasgow & Advanced
Digital Sciences Center"
f18c34458460b9b62b51213b9165b37c057c5837,Unsupervised Object Discovery and Co-Localization by Deep Descriptor Transforming,"Noname manuscript No.
(will be inserted by the editor)
Unsupervised Object Discovery and Co-Localization
y Deep Descriptor Transforming
Xiu-Shen Wei · Chen-Lin Zhang · Jianxin Wu · Chunhua Shen ·
Zhi-Hua Zhou
Received: date / Accepted: date"
f16a605abb5857c39a10709bd9f9d14cdaa7918f,Fast greyscale road sign model matching and recognition,"Fast greyscale road sign model matching
nd recognition
Sergio Escalera and Petia Radeva
Centre de Visió per Computador
Edifici O – Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain"
f1aa120fb720f6cfaab13aea4b8379275e6d40a2,InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image,"InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image
Hyeongwoo Kim1
Justus Thies2
Max-Planck-Institute for Informatics
Michael Zollhöfer1
Christian Richardt3
University of Erlangen-Nuremberg 3 University of Bath
Christian Theobalt1
Ayush Tewari1
Figure 1. Our single-shot deep inverse face renderer InverseFaceNet obtains a high-quality geometry, reflectance and illumination estimate
from just a single input image. We jointly recover the face pose, shape, expression, reflectance and incident scene illumination. From left to
right: input photo, our estimated face model, its geometry, and the pointwise Euclidean error compared to Garrido et al. [14]."
f1a05136c8b8f9334a4b3d9de2a4b192d2c762c2,Scene Classification via Hypergraph-Based Semantic Attributes Subnetworks Identification,"Scene Classification via Hypergraph-Based
Semantic Attributes Subnetworks Identification
Sun-Wook Choi, Chong Ho Lee, and In Kyu Park
Department of Information and Communication Engineering
Inha University, Incheon 402-751, Korea"
f1ba2fe3491c715ded9677862fea966b32ca81f0,Face Tracking and Recognition in Videos : HMM Vs KNN,"ISSN: 2321-7782 (Online)
Volume 1, Issue 7, December 2013
International Journal of Advance Research in
Computer Science and Management Studies
Research Paper
Available online at: www.ijarcsms.com
Face Tracking and Recognition in Videos:
HMM Vs KNN
Madhumita R. Baviskar
Assistant Professor
Department of Computer Engineering
MIT College of Engineering (Pune University)
Pune - India"
f1471a408369689e2fc956b417dce24e47557a38,A Novel Face Template Protection Algorithm Based on the Fusion of Chaos Theory and RSA Encryption,"International Journal of Security and Its Applications
Vol. 10, No. 6 (2016) pp.315-330
http://dx.doi.org/10.14257/ijsia.2016.10.6.30
A Novel Face Template Protection Algorithm Based on the Fusion
of Chaos Theory and RSA Encryption
Liu Yunan1, Zhao Fudong2, Xu Yanli3 and Cao Yu2*
.School of Foreign Languages, Harbin University of Science and Technology,
Harbin, 150080, China
.School of Automation, Harbin University of Science and Technology, Harbin,
50080, China
.School of Foreign Languages, Northeast Forestry University, Harbin, 150040,
China"
f1c2ba8c7797c4844fa61068b3ce9d319e6ced3f,Human Head Tracking Based on Inheritance and Evolution Concept,"MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN
Human Head Tracking Based on Inheritance and Evolution Concept
Yi Hu,      Tetsuya Takamori
Fujifilm Corporation, Japan
798, Miyanodai, Kaisei-machi, Ashigarakami-gun, Kanagawa, 258-8538 JAPAN
{yi_hu,"
f19527b2ceabf50831e78ac04161107c936efb2b,Discriminative Sparse Neighbor Approximation for Imbalanced Learning,"Discriminative Sparse Neighbor Approximation
for Imbalanced Learning
Chen Huang, Chen Change Loy, Member, IEEE, and Xiaoou Tang, Fellow, IEEE"
f1d090fcea63d9f9e835c49352a3cd576ec899c1,Single-hidden Layer Feedforward Neual network training using class geometric information,"Iosifidis, A., Tefas, A., & Pitas, I. (2015). Single-Hidden Layer Feedforward
Neual Network Training Using Class Geometric Information. In . J. J.
Merelo, A. Rosa, J. M. Cadenas, A. Dourado, K. Madani, & J. Filipe (Eds.),
Computational Intelligence: International Joint Conference, IJCCI 2014
Rome, Italy, October 22-24, 2014 Revised Selected Papers. (Vol. III, pp.
51-364). (Studies in Computational Intelligence; Vol. 620). Springer. DOI:
0.1007/978-3-319-26393-9_21
Peer reviewed version
Link to published version (if available):
0.1007/978-3-319-26393-9_21
Link to publication record in Explore Bristol Research
PDF-document
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html"
f157daaffa1754aae5963d9c49247142b07c8d4a,Dct-based Reduced Face for Face Recognition,"International Journal of Information Technology and Knowledge Management
January-June 2012, Volume 5, No. 1, pp. 97-100
DCT-BASED  REDUCED  FACE  FOR  FACE  RECOGNITION
Vikas Maheshkar1, Sushila Kamble2, Suneeta Agarwal3, and Vinay Kumar Srivastava4"
f174b24860b4cacbe047d3a5650cf8866d2244d9,Monocular Depth Estimation by Learning from Heterogeneous Datasets,"Monocular Depth Estimation by Learning from Heterogeneous
Datasets
Akhil Gurram1,2, Onay Urfalioglu2, Ibrahim Halfaoui2, Fahd Bouzaraa2 and Antonio M. L´opez1"
f113aed343bcac1021dc3e57ba6cc0647a8f5ce1,A Survey on Mining of Weakly Labeled Web Facial Images and Annotation,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611
A Survey on Mining of Weakly Labeled Web Facial
Images and Annotation
Tarang Boharupi1, Pranjali Joshi2
Pune Institute of Computer Technology, Pune, India
Professor, Pune Institute of Computer Technology, Pune, India
the  proposed  system  which"
f1052df3e311b7caa563685e741e0a1bb6b288df,A Hierarchical Fusion Strategy based Multimodal Biometric System,"The International Arab Conference on Information Technology (ACIT’2013)
A Hierarchical Fusion Strategy based Multimodal
Biometric System
Youssef Elmir, 2Zakaria Elberrichi and 2Réda Adjoudj
Faculty of Sciences and Technology, University of Adrar, Algeria
Faculty of Technology, Djillali Liabès University of Sidi Bel Abbès, Algeria"
f19777e37321f79e34462fc4c416bd56772031bf,Literature Review of Image Compression Algorithm,"International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012                                                                                         1
ISSN 2229-5518
Literature Review of Image Compression Algorithm
Dr. B. Chandrasekhar
Padmaja.V.K
email:                                                           email::
Jawaharlal Technological University, Anantapur"
f16921c1c6e8bce89bce7679cbd824d65b494e4d,The face of love: spontaneous accommodation as social emotion regulation.,"Personality and Social Psychology
Bulletin
http://psp.sagepub.com/
The Face of Love : Spontaneous Accommodation as Social Emotion Regulation
Pers Soc Psychol Bull
Michael Häfner and Hans IJzerman
2011 37: 1551 originally published online 21 July 2011
DOI: 10.1177/0146167211415629
The online version of this article can be found at:
http://psp.sagepub.com/content/37/12/1551
Published by:
http://www.sagepublications.com
On behalf of:
Society for Personality and Social Psychology
Additional services and information for
Personality and Social Psychology Bulletin
can be found at:
Email Alerts:
http://psp.sagepub.com/cgi/alerts
Subscriptions:"
f11d070cdc9ee12b201757ca4a50a3682967ba0c,Spatial Language Understanding with Multimodal Graphs using Declarative Learning based Programming,"Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing, pages 33–43
Copenhagen, Denmark, September 7–11, 2017. c(cid:13)2017 Association for Computational Linguistics"
f19ab817dd1ef64ee94e94689b0daae0f686e849,Blickrichtungsunabhängige Erkennung von Personen in Bild- und Tiefendaten,"TECHNISCHE UNIVERSIT¨AT M ¨UNCHEN
Lehrstuhl f¨ur Mensch-Maschine-Kommunikation
Blickrichtungsunabh¨angige Erkennung von
Personen in Bild- und Tiefendaten
Andre St¨ormer
Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik
der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigten Dissertation.
Vorsitzender:
Univ.-Prof. Dr.-Ing. Thomas Eibert
Pr¨ufer der Dissertation:
. Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll
. Univ.-Prof. Dr.-Ing. Horst-Michael Groß,
Technische Universit¨at Ilmenau
Die Dissertation wurde am 16.06.2009 bei der Technischen Universit¨at M¨unchen einge-
reicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 30.10.2009
ngenommen."
f196a79c5e4b570013e4aa031cdd0fc0c98fc07d,Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions,"Interactively Picking Real-World Objects with
Unconstrained Spoken Language Instructions
Jun Hatori∗, Yuta Kikuchi∗, Sosuke Kobayashi∗, Kuniyuki Takahashi∗,
Yuta Tsuboi∗, Yuya Unno∗, Wilson Ko, Jethro Tan†"
f1c76d97caa6f882764c1382c622a2dfb6aade43,CoreRank: Redeeming &#x201C;Sick Silicon&#x201D; by Dynamically Quantifying Core-Level Healthy Condition,"CoreRank: Redeeming “Sick Silicon”
y Dynamically Quantifying Core-Level
Healthy Condition
Guihai Yan, Member, IEEE, Faqiang Sun, Huawei Li, Senior Member, IEEE, and
Xiaowei Li, Senior Member, IEEE"
f1bb2c95dc270ffa9c2f88e29ae5d2178b4459cb,A Generative Model of People in Clothing,"A Generative Model of People in Clothing
Christoph Lassner1, 2
Gerard Pons-Moll2
Peter V. Gehler3,*
BCCN, Tübingen
MPI for Intelligent Systems, Tübingen 3University of Würzburg
Figure 1: Random examples of people generated with our model. For each row, sampling is conditioned on the silhouette
displayed on the left. Our proposed framework also supports unconditioned sampling as well as conditioning on local
ppearance cues, such as color."
f131a654bbf4c8de0679d3c6054c10bba4a919d4,Vision-based Driver Assistance Systems,"Vision-based Driver Assistance Systems
.enpeda.. (Environment Perception and Driver Assistance) Project
CITR, Auckland, New Zealand
Reinhard Klette
5 February 2015"
e79847c3bf3ffefe9304e212d8dda7aaa29eaada,From Deterministic to Generative: Multi-Modal Stochastic RNNs for Video Captioning,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
From Deterministic to Generative: Multi-Modal
Stochastic RNNs for Video Captioning
Jingkuan Song, Yuyu Guo, Lianli Gao, Xuelong Li, IEEE Fellow Alan Hanjalic, IEEE Fellow Heng Tao Shen"
e7906370eae8655fb69844ae1a3d986c9f37c902,Face recognition using Deep Learning,"POLYTECHNIC UNIVERSITY OF CATALONIA
MASTER THESIS
Face recognition using Deep
Learning
Author:
Xavier SERRA
Advisor:
Javier CASTÁN
Tutor:
Sergio ESCALERA
This master thesis has been developed at GoldenSpear LLC
January 2017"
e76798bddd0f12ae03de26b7c7743c008d505215,Joint Max Margin and Semantic Features for Continuous Event Detection in Complex Scenes,
e75cd1379b07d77358e5a2f4a042f624066603b6,Weakly-Supervised Learning of Visual Relations,"Weakly-supervised learning of visual relations
Julia Peyre1,2
Ivan Laptev1,2
Cordelia Schmid2,4
Josef Sivic1,2,3"
e778e618862ea1c9a97e89e942228c4de98c9a86,Automated Pruning for Deep Neural Network Compression,"Automated Pruning for Deep Neural Network Compression
Franco Manessi1†, Alessandro Rozza1†, Simone Bianco2, Paolo Napoletano2, Raimondo Schettini2
lastminute.com group — Strategic Analytics
{first name.last
Universit`a degli Studi di Milano Bicocca — DISCo {first name.last"
e74bddccc40e65b31081a1599cbe7385d5d3e1c0,Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering,"Bottom-Up and Top-Down Attention for Image Captioning
nd Visual Question Answering
Peter Anderson1∗
Xiaodong He2
Chris Buehler3
Damien Teney4
Mark Johnson5
Stephen Gould1
Lei Zhang3
Australian National University 2JD AI Research 3Microsoft Research 4University of Adelaide 5Macquarie University"
e7cac91da51b78eb4a28e194d3f599f95742e2a2,"Positive Feeling, Negative Meaning: Visualizing the Mental Representations of In-Group and Out-Group Smiles","RESEARCH ARTICLE
Positive Feeling, Negative Meaning:
Visualizing the Mental Representations of In-
Group and Out-Group Smiles
Andrea Paulus1☯*, Michaela Rohr1☯, Ron Dotsch2,3, Dirk Wentura1
Saarland University, Saarbrücken, Germany, 2 Utrecht University, Utrecht, the Netherlands,
Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
☯ These authors contributed equally to this work."
e7dc0d5545e6e028b03a82d2f5bb3bccc995a0d7,A New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients,"Archive of SID
A  New  Fast  and  Efficient  HMM-Based  Face  Recognition
System Using a 7-State HMM Along With SVD Coefficients
H. Miar-Naimi* and P. Davari*"
e7f00f6e5994c5177ec114ee353cc7064d40a78f,Back to Basic: Do Children with Autism Spontaneously Look at Screen Displaying a Face or an Object?,"Hindawi Publishing Corporation
Autism Research and Treatment
Volume 2013, Article ID 835247, 7 pages
http://dx.doi.org/10.1155/2013/835247
Research Article
Back to Basic: Do Children with Autism Spontaneously Look at
Screen Displaying a Face or an Object?
Marie Guimard-Brunault,1,2,3,4 Nadia Hernandez,3 Laetitia Roché,3 Sylvie Roux,3
Catherine Barthélémy,1,2,3 Joëlle Martineau,2,3 and Frédérique Bonnet-Brilhault1,2,3
CHRU de Tours, Centre Universitaire de P´edopsychiatrie, 2 Boulevard Tonnell´e, 37044 Tours Cedex 9, France
Universit´e Franc¸ois Rabelais de Tours, 60 rue du Plat D’Etain, 37020 Tours Cedex 1, France
UMR Inserm U 930, ´Equipe 1: Imagerie et Cerveau, Universit´e Franc¸ois Rabelais de Tours, Tours, France
UMR Inserm U 930, ´Equipe 1: Imagerie et Cerveau, CHRU de Tours-Hˆopital Bretonneau, 2 boulevard Tonnell´e,
Bˆat B1A, 1er Etage, 37044 Tours Cedex 9, France
Correspondence should be addressed to Marie Guimard-Brunault;
Received 29 June 2013; Revised 29 September 2013; Accepted 21 October 2013
Academic Editor: Elizabeth Aylward
Copyright © 2013 Marie Guimard-Brunault et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited."
e72e852dca333d66559dbcfb050140fac5affe4f,Anatomical Landmark Tracking by One-shot Learned Priors for Augmented Active Appearance Models,"DataωLDAFull AAMAUGMENTED AAMSubset AAMLocal TrackingextractionlearnmodelOne-shotDetectortraintrainLower LegContraintsEipolar ConstraintsDistance ConstraintsTorso ConstraintsFigure1:BasedonfewannotatedbiplanarrecordedtrainingimagesanAugmentedAAM(HaaseandDenzler,2013)istrained,consistingofanatomicalknowledge,afullmulti-viewAAMmodel,anAAMmodelofthetorsoland-marksubset,epipolarconstraintsandalocaltracking-by-detectionpriorintroducedinthispaper.In(HaaseandDenzler,2013)ActiveAppearanceModels(AAM)(Cootesetal.,2001)havebeenap-pliedtoseveralbipedalbirdlocomotiondatasets.OnecrucialconclusionofthisworkisthatAAMsneedsubstantialconstraintsfromvarioussources.Withthesupportofadditionalanatomicalknowledge,i.e.re-gionsegmentation,multi-viewacquisition,andlocallandmarktracking,fortheanimalslowerlimbsys-tem,theresultingAugmentedAAM(HaaseandDen-zler,2013)providesrobustresultsforthemajorityoftheprocesseddatasets.However,theappliedonlinetrackingapproach(Amthoretal.,2012)suffersfrom246MothesO.andDenzlerJ.AnatomicalLandmarkTrackingbyOne-shotLearnedPriorsforAugmentedActiveAppearanceModels.DOI:10.5220/0006133302460254InProceedingsofthe12thInternationalJointConferenceonComputerVision,ImagingandComputerGraphicsTheoryandApplications(VISIGRAPP2017),pages246-254ISBN:978-989-758-227-1Copyrightc(cid:13)2017bySCITEPRESS–ScienceandTechnologyPublications,Lda.Allrightsreserved"
e78394213ae07b682ce40dc600352f674aa4cb05,Expression-invariant three-dimensional face recognition,"Expression-invariant three-dimensional face recognition
Alexander M. Bronstein
Email:
Michael M. Bronstein
Ron Kimmel
Computer Science Department,
Technion – Israel Institute of Technology,
Haifa 32000, Israel
One of the hardest problems in face recognition is dealing with facial expressions. Finding an
expression-invariant representation of the face could be a remedy for this problem. We suggest
treating faces as deformable surfaces in the context of Riemannian geometry, and propose to ap-
proximate facial expressions as isometries of the facial surface. This way, we can define geometric
invariants of a given face under different expressions. One such invariant is constructed by iso-
metrically embedding the facial surface structure into a low-dimensional flat space. Based on this
pproach, we built an accurate three-dimensional face recognition system that is able to distinguish
etween identical twins under various facial expressions. In this chapter we show how under the
near-isometric model assumption, the dif‌f‌icult problem of face recognition in the presence of facial
expressions can be solved in a relatively simple way.
0.1 Introduction
It is well-known that some characteristics or behavior patterns of the human body are strictly"
e79a34f9942172ad97c5fadca3701db3e29d32e2,Fusiform Correlates of Facial Memory in Autism,"NIH Public Access
Author Manuscript
Behav Sci (Basel). Author manuscript; available in PMC 2014 April 21.
Published in final edited form as:
Behav Sci (Basel). ; 3(3): 348–371. doi:10.3390/bs3030348.
Fusiform Correlates of Facial Memory in Autism
Haley G. Trontel1, Tyler C. Duffield2, Erin D. Bigler2,3,4,*, Alyson Froehlich5, Molly B.D.
Prigge5, Jared A. Nielsen5, Jason R. Cooperrider5, Annahir N. Cariello5, Brittany G.
Travers6, Jeffrey S. Anderson7, Brandon A. Zielinski8, Andrew Alexander6,11, Nicholas
Lange9,10, and Janet E. Lainhart11,12
Department of Psychology, University of Montana, Missoula, MT 59812, USA;
Department of Psychology, Brigham Young University, Provo, UT 84604,
USA; (T.C.D.); (E.D.B.) 3Neuroscience Center,
Brigham Young University, Provo, UT 84604, USA 4The Brain Institute of Utah, University of
Utah, Salt Lake City, UT 84112, USA 5Department of Psychiatry, University of Utah, Salt Lake
City, UT 84112, USA; (A.F.);
(M.B.D.P); (J.A.N.); (J.R.C.);
(A.N.C.) 6Department of Medical Physics, University of Wisconsin,
Madison, WI 53706, USA; (B.G.T.); (A.A.)
7Department of Radiology, University of Utah, Salt Lake City, UT 84112, USA;"
e7f4951c1106bff0460665ef67d11fb9c2d07c41,Machine Vision-Based Analysis of Gaze and Visual Context: an Application to Visual Behavior of Children with Autism Spectrum Disorders,"Machine Vision-Based Analysis of Gaze and
Visual Context: an Application to Visual
Behavior of Children with Autism Spectrum
Disorders
Basilio Noris
MSc/BSc in Computer Science, Université de Lausanne, 2005
Dissertation
Submitted to the School of Engineering
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
Ecole Polytechnique Fédérale de Lausanne (EPFL)
t the
(Swiss Federal Insitute of Technology Lausanne)
Supervisor:
Prof. Aude Billard
Examiners:
Prof. Thierry Pun
Prof. Jacqueline Nadel
Prof. Nouchine Hadjikhani
President of the jury:"
e719e1ed86bf2214512d5631e31716effe2e23d2,Learning to Estimate 3D Human Pose and Shape from a Single Color Image,"Learning to Estimate 3D Human Pose and Shape from a Single Color Image
Georgios Pavlakos1, Luyang Zhu2, Xiaowei Zhou3, Kostas Daniilidis1
University of Pennsylvania 2 Peking University 3 Zhejiang University"
e7b6887cd06d0c1aa4902335f7893d7640aef823,Modelling of Facial Aging and Kinship: A Survey,"Modelling of Facial Aging and Kinship: A Survey
Markos Georgopoulos, Yannis Panagakis, and Maja Pantic,"
e746447afc4898713a0bcf2bb560286eb4d20019,Leveraging Virtual and Real Person for Unsupervised Person Re-identification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, NOVEMBER 2018
Leveraging Virtual and Real Person for
Unsupervised Person Re-identification
Fengxiang Yang, Zhun Zhong, Zhiming Luo, Sheng Lian, and Shaozi Li"
e72c5fb54c3d14404ebd1bf993e51d0056f6c429,Tempered Adversarial Networks,
e72d35ae7c1f477ce4341a5fb3a15bcfe0481a0e,Behavioral Consistency Extraction for Face Verification,"Behavioral Consistency Extraction for Face
Verification
Hui Fang and Nicholas Costen
Manchester Metropolitan University
Department of Computing and Mathematics,
Manchester, U.K."
e7721f40fed05aae4d49d84e9ebc94ced7015aac,Design and Implementation of Resampling Techniques for Face Recognition using Classical LDA Algorithm in MATLAB,"International Journal of Computer Applications (0975 – 8887)
Volume 152 – No.6, October 2016
Design and Implementation of Resampling Techniques
for Face Recognition using Classical LDA Algorithm in
MATLAB
S. R Bichwe
Dept. of Electronics &
Communication
Kavikulguru Institute of
Technology & Science,
Ramtek, Maharashtra
Sugandha Satija
Dept. of Information
Technology
Kavikulguru Institute of
Technology & Science,
Ramtek, Maharashtra
Madhavi R. Bichwe
Dept of Computer Science &
Technology"
cb4fc4d49783f2049c48a062169f04eb744443ec,Paying More Attention to Saliency: Image Captioning with Saliency and Context Attention,"Paying More Attention to Saliency: Image Captioning with
Saliency and Context Attention
MARCELLA CORNIA, University of Modena and Reggio Emilia
LORENZO BARALDI, University of Modena and Reggio Emilia
GIUSEPPE SERRA, University of Udine
RITA CUCCHIARA, University of Modena and Reggio Emilia
Image captioning has been recently gaining a lot of attention thanks to the impressive achievements shown by
deep captioning architectures, which combine Convolutional Neural Networks to extract image representations,
nd Recurrent Neural Networks to generate the corresponding captions. At the same time, a significant research
effort has been dedicated to the development of saliency prediction models, which can predict human eye
fixations. Even though saliency information could be useful to condition an image captioning architecture, by
providing an indication of what is salient and what is not, research is still struggling to incorporate these two
techniques. In this work, we propose an image captioning approach in which a generative recurrent neural
network can focus on different parts of the input image during the generation of the caption, by exploiting
the conditioning given by a saliency prediction model on which parts of the image are salient and which are
ontextual. We show, through extensive quantitative and qualitative experiments on large scale datasets, that
our model achieves superior performances with respect to captioning baselines with and without saliency,
nd to different state of the art approaches combining saliency and captioning.
CCS Concepts: • Computing methodologies → Scene understanding; Natural language generation;
Additional Key Words and Phrases: saliency, visual saliency prediction, image captioning, deep learning."
cbca355c5467f501d37b919d8b2a17dcb39d3ef9,Super-resolution of Very Low Resolution Faces from Videos,"CANSIZOGLU, JONES: SUPER-RESOLUTION OF VERY LR FACES FROM VIDEOS
Super-resolution of Very Low-Resolution
Faces from Videos
Esra Ataer-Cansizoglu
Michael Jones
Mitsubishi Electric Research Labs
(MERL)
Cambridge, MA, USA"
cb3d38cd18c99aca9c2a228aeb4998f394c7b1b3,Impairments in facial affect recognition associated with autism spectrum disorders: a meta-analysis.,"# Cambridge University Press 2014
doi:10.1017/S0954579414000479
Impairments in facial affect recognition associated with autism
spectrum disorders: A meta-analysis
LEAH M. LOZIER, JOHN W. VANMETER, AND ABIGAIL A. MARSH
Georgetown University"
cba90ec61155a233fee33b529401e65d9481213a,Houdini: Fooling Deep Structured Prediction Models,"Houdini: Fooling Deep Structured Prediction Models
Moustapha Cisse
Facebook AI Research
Natalia Neverova*
Facebook AI Research"
cb4418b5bddaaceb92caea9e72c8cc528ce4e3cc,Generative Semantic Manipulation with Contrasting GAN,"Generative Semantic Manipulation with Contrasting
Xiaodan Liang, Hao Zhang, Eric P. Xing
Carnegie Mellon University and Petuum Inc.
{xiaodan1, hao,"
cb658e9e0823dc7afe66b593307b230cc2747790,Nouveau modèle pour la datation automatique de photographies à partir de caractéristiques visuelles,"Nouveau modèle pour la datation
utomatique de photographies
à partir de caractéristiques visuelles1
Paul MARTIN* — Antoine DOUCET** — Frédéric JURIE*
* Laboratoire GREYC [UMR 6072], Université de Caen Normandie, FRANCE 14032
{paul.martin ;
** Laboratoire L3i, Université de La Rochelle, FRANCE 17042
RÉSUMÉ. Nous présentons, dans cet article, une méthode de datation de photographies par
l’usage du contenu visuel de celles-ci. Nous nous sommes inspirés de travaux récents de la
vision par ordinateur. Nous avons amélioré la méthode de classification utilisée dans ces tra-
vaux en dépassant une limite intrinsèque de leur approche. En effet, ils considèrent la datation
d’images comme un problème de classification multi-classes, pour lequel une classe repré-
sente un ensemble d’années, mais ignorant l’ordre relatif sous-jacent à l’information tempo-
relle. Dans leur approche soit une prédiction est bonne (période valide) soit elle est mauvaise
(période invalide) mais aucune différence n’est faite entre se tromper d’une décennie ou de
plusieurs. Nos travaux, s’appuient sur des avancées récentes en classification ordinale. Nous
onsidérons les dates comme des attributs à la fois ordonnés et relatifs et nous proposons un
adre spécifique pour les manipuler."
cb1214e42fa81977bc21f4b3c8e194a9b68278f5,Visually Aligned Word Embeddings for Improving Zero-shot Learning,"Qiao et al.: Visually Aligned Word Embeddings. Appearing in Proc. British Mach. Vis. Conf. 2017
Visually Aligned Word Embeddings for Improving
Zero-shot Learning
School of Computer Science, University of
Adelaide, Australia
Ruizhi Qiao
Lingqiao Liu
Chunhua Shen
Anton van den Hengel"
cb310356d1c5f567b2a8796b708f6e1e10fa1917,Serotonin and the neural processing of facial emotions in adults with autism: an fMRI study using acute tryptophan depletion.,"ORIGINAL ARTICLE
Serotonin and the Neural Processing
of Facial Emotions in Adults With Autism
An fMRI Study Using Acute Tryptophan Depletion
Eileen M. Daly, BA; Quinton Deeley, PhD; Christine Ecker, MSc, PhD; Michael Craig, PhD; Brian Hallahan, MRCPsych;
Clodagh Murphy, MRCPsych; Patrick Johnston, PhD; Debbie Spain, MSc; Nicola Gillan, MSc; Michael Brammer, PhD;
Vincent Giampietro, PhD; Melissa Lamar, PhD; Lisa Page, MRCPsych; Fiona Toal, MRCPsych; Anthony Cleare, PhD;
Simon Surguladze, MD, PhD; Declan G. M. Murphy, FRCPsych
Context: People with autism spectrum disorders (ASDs)
have lifelong deficits in social behavior and differences
in behavioral as well as neural responses to facial expres-
sions of emotion. The biological basis to this is incom-
pletely understood, but it may include differences in the
role of neurotransmitters such as serotonin, which modu-
late facial emotion processing in health. While some in-
dividuals with ASD have significant differences in the sero-
tonin system, to our knowledge, no one has investigated
its role during facial emotion processing in adults with
ASD and control subjects using acute tryptophan deple-
tion (ATD) and functional magnetic resonance imaging."
cb8b2db657cd6b6ccac13b56e2ca62b7d88eda68,Log Hyperbolic Cosine Loss Improves Varia-,"Under review as a conference paper at ICLR 2019
LOG HYPERBOLIC COSINE LOSS IMPROVES VARIA-
TIONAL AUTO-ENCODER
Anonymous authors
Paper under double-blind review"
cbcf5da9f09b12f53d656446fd43bc6df4b2fa48,Face Recognition using Gray level Co-occurrence Matrix and Snap Shot Method of the Eigen Face,"ISSN: 2277-3754
ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)
Volume 2, Issue 6, December 2012
Face Recognition using Gray level Co-occurrence
Matrix and Snap Shot Method of the Eigen Face
Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kanchipuram, India
M. Madhu, R. Amutha
SSN College of Engineering, Chennai, India"
cb004e9706f12d1de83b88c209ac948b137caae0,Face Aging Effect Simulation Using Hidden Factor Analysis Joint Sparse Representation,"Face Aging Effect Simulation using Hidden Factor
Analysis Joint Sparse Representation
Hongyu Yang, Student Member, IEEE, Di Huang, Member, IEEE, Yunhong Wang, Member, IEEE, Heng Wang,
nd Yuanyan Tang, Fellow, IEEE"
cb11a150fc245958799e763069a6ae3080814d40,3d Face Recognition from Range Image,
cb3ba84146d1324e1cdbde3764ca3b354ee09a2a,"On the Interplay Between Throughput, Fairness and Energy Efficiency on Asymmetric Multicore Processors","On the interplay between throughput,
fairness and energy ef‌f‌iciency on
symmetric multicore processors
J. C. Saez1, A. Pousa2, A. E. de Giusti2, M. Prieto-Matias1
ArTeCS Group, Facultad de Inform´atica, Complutense University of Madrid
III-LIDI, Facultad de Inform´atica, National University of La Plata
Email:
Asymmetric single-ISA multicore processors (AMPs), which integrate high-
performance big cores and low-power small cores, were shown to deliver
higher performance per watt than symmetric multicores. Previous work has
highlighted that this potential of AMP systems can be realizable by scheduling
the various applications in a workload on the most appropriate core type. A
number of scheduling schemes have been proposed to accomplish different goals,
such as system throughput optimization, enforcing fairness or reducing energy
onsumption. While the interrelationship between throughput and fairness on
AMPs has been comprehensively studied, the impact that optimizing energy
ef‌f‌iciency has on the other two aspects is still unclear. To fill this gap, we carry out
comprehensive analytical and experimental study that illustrates the interplay
etween throughput, fairness and energy ef‌f‌iciency on AMPs. Our analytical
study allowed us to define the energy-ef‌f‌iciency factor (EEF) metric, which aids"
cb7bbede1c2eae831dd73440f439955c4310837f,Cross-Cultural and Cultural-Specific Production and Perception of Facial Expressions of Emotion in the Wild,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Cross-Cultural and Cultural-Specific Production
nd Perception of Facial Expressions of Emotion
in the Wild
Ramprakash Srinivasan, Aleix M. Martinez"
cbd20c2199062724eee841016f1575cb7d5309b4,Dropout training for SVMs with data augmentation,"JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MAY 2015
Dropout Training for SVMs with
Data Augmentation
Ning Chen and Jun Zhu, Member, IEEE, Jianfei Chen and Ting Chen"
cb2e10d1a6792354bc0ce24ee99ecf2142d16f9b,Enhancing Real-Time Human Detection Based on Histograms of Oriented Gradients,"Enhancing Real-time Human Detection based
on Histograms of Oriented Gradients
Marco Pedersoli1, Jordi Gonz`alez2, Bhaskar Chakraborty1, and Juan J.
Villanueva1
Computer Vision Center and Departament d’Inform`atica. Universitat Aut`onoma
de Barcelona, 08193 Bellaterra, Spain
Institut de Rob`otica i Inform`atica Industrial(UPC-CSIC), Edifici U Parc
Tecnol`ogic de Barcelona. 08028, Spain.
Summary. In this paper we propose a human detection framework based on an
enhanced version of Histogram of Oriented Gradients (HOG) features. These feature
descriptors are computed with the help of a precalculated histogram of square-blocks.
This novel method outperforms the integral of oriented histograms allowing the
alculation of a single feature four times faster. Using Adaboost for HOG feature
selection and Support Vector Machine as weak classifier, we build up a real-time
human classifier with an excellent detection rate.
Introduction
Human detection is the task of finding presence and position of human beings
in images. Many applications take advantage of it, mainly in the videosurvel-
liance and human-computer iteration domains. Thus, human detection is the
first step of the full process of Human Sequence Evaluation [5]."
cbdca5e0f1fd3fd745430497d372a2a30b7bb0c5,Towards Distributed Coevolutionary GANs,"Towards Distributed Coevolutionary GANs
Abdullah Al-Dujaili, Tom Schmiedlechner, Erik Hemberg and Una-May O’Reilly
CSAIL, MIT, USA"
cb30c1370885033bc833bc7ef90a25ee0900c461,FaceOff: Anonymizing Videos in the Operating Rooms,"FaceOff: Anonymizing Videos in the Operating
Rooms
Evangello Flouty1, Odysseas Zisimopoulos1, and Danail Stoyanov1,2
Wellcome / ESPRC Centre for Interventional and Surgical Sciences, London,
Digital Surgery, London, United Kingdom
United Kingdom"
cb6be69c67b0b15ebbda89a126f4dd62a4d32958,Igure Qa : a N a Nnotated F Igure D Ataset for V Isual R Easoning,"Workshop track - ICLR 2018
FIGUREQA: AN ANNOTATED FIGURE DATASET FOR
VISUAL REASONING
Samira Ebrahimi Kahou1∗, Vincent Michalski2∗†, Adam Atkinson1,
Ákos Kádár3†, Adam Trischler1, Yoshua Bengio3
Microsoft Research Montréal
Université de Montréal, MILA
Tilburg University"
cb38b4a5e517b4bcb00efbb361f4bdcbcf1dca2c,Learning towards Minimum Hyperspherical Energy,"Learning towards Minimum Hyperspherical Energy
Weiyang Liu1,*, Rongmei Lin2,*, Zhen Liu1,*, Lixin Liu3,*, Zhiding Yu4, Bo Dai1,5, Le Song1,6
Georgia Institute of Technology 2Emory University
South China University of Technology 4NVIDIA 5Google Brain 6Ant Financial"
cb53c8a85d58ccb2635be5b7ff978ea6e8b78cde,Face Recognition Based on Wavelet Transform and Regional Directional Weighted Local Binary Pattern,"Face Recognition Based on Wavelet Transform
nd Regional Directional Weighted Local Binary
Pattern
Wu Fengxiang
North China Career Academy of Water Resources, Henan Zhengzhou, China
Email:
independent  application  technology  area"
cb08f679f2cb29c7aa972d66fe9e9996c8dfae00,Action Understanding with Multiple Classes of Actors,"JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014
Action Understanding
with Multiple Classes of Actors
Chenliang Xu, Member, IEEE, Caiming Xiong, and Jason J. Corso, Senior Member, IEEE"
cbae3eaf926aede9bec7ce2e28c35c1c50b1b43f,Fast RGB-D people tracking for service robots,"Noname manuscript No.
(will be inserted by the editor)
Fast RGB-D People Tracking for Service Robots
Matteo Munaro · Emanuele Menegatti
Received: date / Accepted: date"
cb84229e005645e8623a866d3d7956c197f85e11,Disambiguating Visual Verbs,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MONTH 201X
Disambiguating Visual Verbs
Spandana Gella, Frank Keller, and Mirella Lapata"
cb94ea16f12bde2de91d3cf3fac03a20b02611b1,Element-wise Bilinear Interaction for Sentence Matching,"Proceedings of the 7th Joint Conference on Lexical and Computational Semantics (*SEM), pages 107–112
New Orleans, June 5-6, 2018. c(cid:13)2018 Association for Computational Linguistics"
cb96c819f20f05ad0d85bba91f86795162f63445,Noisy Ocular Recognition Based on Three Convolutional Neural Networks,"Article
Noisy Ocular Recognition Based on Three
Convolutional Neural Networks
Min Beom Lee, Hyung Gil Hong and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; (M.B.L.); (H.G.H.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 18 October 2017; Accepted: 14 December 2017; Published: 17 December 2017"
cbe859d151466315a050a6925d54a8d3dbad591f,Gaze shifts as dynamical random sampling,"GAZE SHIFTS AS DYNAMICAL RANDOM SAMPLING
Giuseppe Boccignone
Mario Ferraro
Dipartimento di Scienze dell’Informazione
Universit´a di Milano
Via Comelico 39/41
0135 Milano, Italy"
cb8567f074573a0d66d50e75b5a91df283ccd503,Large Margin Learning in Set-to-Set Similarity Comparison for Person Reidentification,"Large Margin Learning in Set to Set Similarity
Comparison for Person Re-identification
Sanping Zhou, Jinjun Wang, Rui Shi, Qiqi Hou, Yihong Gong, Nanning Zheng"
cb4f0656ce177161667759b46e20aec5488550fa, Learning with single view . . . ,"Washington University in St. Louis
School of Engineering and Applied Science
Department of Computer Science and Engineering
Dissertation Examination Committee:
Kilian Q. Weinberger, Chair
John Blitzer
John Cunningham
Tao Ju
Robert Pless
Bill Smart
Learning with Single View Co-training and Marginalized Dropout
Minmin Chen
A dissertation presented to the Graduate School of Arts and Sciences
of Washington University in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
May 2013
Saint Louis, Missouri"
cb34481714bc7194ac108a1568d34e120f256405,Audio Visual Scene-Aware Dialog (AVSD) Challenge at DSTC7,"Audio Visual Scene-Aware Dialog (AVSD) Challenge at DSTC7
Huda Alamri∗†, Vincent Cartillier∗, Raphael Gontijo Lopes∗, Abhishek Das∗, Jue Wang†,
Irfan Essa∗, Dhruv Batra∗, Devi Parikh∗,
Anoop Cherian†, Tim K. Marks†, Chiori Hori†
School of Interactive Computing, Georgia Tech
Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA"
f881d2a04de838c8950a279e1ed8c0f9886452af,Multi-Stage Variational Auto-Encoders for Coarse-to-Fine Image Generation,"Multi-Stage Variational Auto-Encoders for
Coarse-to-Fine Image Generation
Lei Cai
Hongyang Gao
Washington State University
Washington State University
Pullman, WA 99164
Pullman, WA 99164
Shuiwang Ji
Washington State University
Pullman, WA 99164"
f81f5da2a1e4eb80b465b8dffca4c9e583a8a8a6,"Rapid Object Detection Systems , Utilising Deep Learning and Unmanned Aerial Systems ( Uas ) for Civil Engineering Applications","RAPID OBJECT DETECTION SYSTEMS, UTILISING DEEP LEARNING AND
UNMANNED AERIAL SYSTEMS (UAS) FOR CIVIL ENGINEERING APPLICATIONS
UCL Department of Civil, Environmental & Geomatic Engineering, Gower Street, London, WC1E 6BT – (david.griffiths.16,
David Griffiths*, Jan Boehm
Commission II, WG II/6
KEY WORDS: Object detection, Deep Learning, Unmanned Aerial Systems, Railway, Rapid"
f86c65bc2753ae71826a0dafbf46a75d22fb5b5b,Fearful Faces do Not Lead to Faster Attentional Deployment in Individuals with Elevated Psychopathic Traits,"J Psychopathol Behav Assess (2017) 39:596–604
DOI 10.1007/s10862-017-9614-x
Fearful Faces do Not Lead to Faster Attentional Deployment
in Individuals with Elevated Psychopathic Traits
Sylco S. Hoppenbrouwers 1 & Jaap Munneke 2,3 & Karen A. Kooiman 4 & Bethany Little 4 &
Craig S. Neumann 5 & Jan Theeuwes 4
Published online: 30 June 2017
# The Author(s) 2017. This article is an open access publication"
f842b13bd494be1bbc1161dc6df244340b28a47f,An Improved Face Recognition Technique Based on Modular Multi-directional Two-dimensional Principle Component Analysis Approach,"An Improved Face Recognition Technique Based
on Modular Multi-directional Two-dimensional
Principle Component Analysis Approach
Department of    Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, 521041, China
Xiaoqing Dong
Department of    Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, 521041, China
Email:
Hongcai Chen
Email:"
f86d8385a6170b98e434a121fb7d12facb2c8426,Frank-Wolfe Algorithm for Exemplar Selection,"Frank-Wolfe Algorithm for Exemplar Selection
Gary Cheng
UC Berkeley
Armin Askari
UC Berkeley
Laurent El Ghaoui
Kannan Ramchandran
UC Berkeley
UC Berkeley"
f884a67187929e7dda66091c13867ed0a8a36d01,Weighted-Fusion-Based Representation Classifiers for Hyperspectral Imagery,"Remote Sens. 2015, 7, 14806-14826; doi:10.3390/rs71114806
OPEN ACCESS
ISSN 2072-4292
www.mdpi.com/journal/remotesensing
Article
Weighted-Fusion-Based Representation Classifiers for
Hyperspectral Imagery
Bing Peng 1, Wei Li 1,*, Xiaoming Xie 1,*, Qian Du 2 and Kui Liu 3
College of Information Science and Technology, Beijing University of Chemical Technology,
Beijing 100029, China; E-Mail:
Department of Electrical and Computer Engineering, Mississippi State University, Starkville,
MS 39762, USA; E-Mail:
Intelligent Fusion Technology, Germantown, MD 20876, USA; E-Mail:
*  Authors to whom correspondence should be addressed; E-Mails: (W.L.);
(X.X.); Tel.: +86-010-6443-3717 (W.L.); +86-010-6441-3467 (X.X.).
Academic Editors: Magaly Koch and Prasad S. Thenkabail
Received: 17 June 2015 / Accepted: 30 October 2015 / Published: 6 November 2015"
f8ea0f76f2044168040fcd0a9e81072c88cde4a4,Nonlinear Feature Extraction using Multilayer Perceptron based Alternating Regression for Classification and Multiple-output Regression Problems,
f8c94afd478821681a1565d463fc305337b02779,Design and Implementation of Robust Face Recognition System for Uncontrolled Pose and Illumination Changes,"www.semargroup.org,
www.ijsetr.com
ISSN 2319-8885
Vol.03,Issue.25
September-2014,
Pages:5079-5085
Design and Implementation of Robust Face Recognition System for
Uncontrolled Pose and Illumination Changes
VIJAYA BHASKAR TALARI
, VENKATESWARLU PRATTI
PG Scholar, Dept of ECE, LITAM, JNTUK, Andhrapradesh, India, Email:
Assistant Professor, Dept of ECE, LITAM, JNTUK, Andhrapradesh, India, Email:"
f8eedcca6263062b6bab11ead255f719452f1c81,Motion in action : optical flow estimation and action localization in videos. (Le mouvement en action : estimation du flot optique et localisation d'actions dans les vidéos),"Motion in action : optical flow estimation and action
localization in videos
Philippe Weinzaepfel
To cite this version:
Philippe Weinzaepfel. Motion in action : optical flow estimation and action localization in videos.
Computer Vision and Pattern Recognition [cs.CV]. Université Grenoble Alpes, 2016. English. <NNT :
016GREAM013>. <tel-01407258>
HAL Id: tel-01407258
https://tel.archives-ouvertes.fr/tel-01407258
Submitted on 1 Dec 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
f8cfabecbe587c611de2696a37f96e3f77ac8555,NEMGAN: Noise Engineered Mode-matching GAN,"NEMGAN: Noise Engineered Mode-matching GAN
Deepak Mishra∗, Prathosh AP∗, Aravind J, Prashant Pandey
& Santanu Chaudhury
Department of Electrical Engineering
Indian Institute of Technology Delhi
New Delhi, India"
f8106b414d81df11ef2e9c26dd83f812711eec35,Inferring Analogous Attributes: Large-Scale Transfer of Category-Specific Attribute Classifiers,"Inferring Analogous Attributes:
Large-Scale Transfer of Category-Specific Attribute Classifiers
Chao-Yeh Chen and Kristen Grauman"
f827b596b4099b0490ab46a9dd2922db2b708963,Pathologies of Neural Models Make Interpretation Difficult,"Pathologies of Neural Models Make Interpretations Difficult
Shi Feng1 Eric Wallace1 Alvin Grissom II2 Mohit Iyyer3,4
Pedro Rodriguez1 Jordan Boyd-Graber1
University of Maryland 2Ursinus College
UMass Amherst 4Allen Institute for Artificial Intelligence"
f879556115284946637992191563849e840789d1,Geometry Guided Adversarial Facial Expression Synthesis,"Geometry Guided Adversarial Facial Expression Synthesis
Lingxiao Song1,2
Zhihe Lu1,3 Ran He1,2,3
Zhenan Sun1,2
Tieniu Tan1,2,3
National Laboratory of Pattern Recognition, CASIA
Center for Research on Intelligent Perception and Computing, CASIA
Center for Excellence in Brain Science and Intelligence Technology, CAS"
f8ec92f6d009b588ddfbb47a518dd5e73855547d,Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition,"J Inf Process Syst, Vol.10, No.3, pp.443~458, September 2014
ISSN 1976-913X (Print)
ISSN 2092-805X (Electronic)
Extreme Learning Machine Ensemble Using
Bagging for Facial Expression Recognition
Deepak Ghimire* and Joonwhoan Lee*"
f8796b8e8246ce41efb2904c053fe0ea2868e373,A Variational U-Net for Conditional Appearance and Shape Generation,"A Variational U-Net for Conditional Appearance and Shape Generation
Patrick Esser∗, Ekaterina Sutter∗, Bj¨orn Ommer
Heidelberg Collaboratory for Image Processing
IWR, Heidelberg University, Germany"
f8b26b2ec62cf76f58f95938233bc22ae1902144,UvA-DARE ( Digital Academic Repository ) Visual Tracking : An Experimental Survey Smeulders,"UvA-DARE (Digital Academic Repository)
Visual Tracking: An Experimental Survey
Smeulders, A.W.M.; Chu, D.M.; Cucchiara, R.; Calderara, S.; Dehghan, A.; Shah, M.
Published in:
IEEE Transactions on Pattern Analysis and Machine Intelligence
0.1109/TPAMI.2013.230
Link to publication
Citation for published version (APA):
Smeulders, A. W. M., Chu, D. M., Cucchiara, R., Calderara, S., Dehghan, A., & Shah, M. (2014). Visual
Tracking: An Experimental Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7),
442-1468. DOI: 10.1109/TPAMI.2013.230
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.
Download date: 26 Apr 2018"
f89e5a8800b318fa03289b5cc67df54b956875b4,Do GANs actually learn the distribution? An empirical study,"Do GANs actually learn the distribution? An empirical study
Sanjeev Arora
Yi Zhang
July 4, 2017"
f8ed5f2c71e1a647a82677df24e70cc46d2f12a8,Artificial Neural Network Design and Parameter Optimization for Facial Expressions Recognition,"International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011                                                                                         1
ISSN 2229-5518
Artificial Neural Network Design and Parameter
Optimization for Facial Expressions Recognition
Ammar A. Alzaydi"
f8ec2079838520fcb9394574bdd956ac9d3d5832,Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks,"Visual Dynamics: Stochastic Future Generation
via Layered Cross Convolutional Networks
Tianfan Xue*, Jiajun Wu*, Katherine L. Bouman, and William T. Freeman"
f809f9e5a03817d238718723a7b4ac04abcd3f12,Highly Efficient 8-bit Low Precision Inference,"Under review as a conference paper at ICLR 2019
HIGHLY EFFICIENT 8-BIT LOW PRECISION INFERENCE
OF CONVOLUTIONAL NEURAL NETWORKS
Anonymous authors
Paper under double-blind review"
f8f872044be2918de442ba26a30336d80d200c42,Facial Emotion Recognition Techniques : A Survey,"IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 03, 2015 | ISSN (online): 2321-0613
Facial Emotion Recognition Techniques: A Survey
Namita Rathore1 Rohit Miri2
,2Department of Computer Science and Engineering
,2Dr C V Raman Institute of Science and Technology
defense
systems,
surveillance"
f8a2a6b821a092ac43acd4e7366fe7c1e9285317,Attribute-controlled face photo synthesis from simple line drawing,"ATTRIBUTE-CONTROLLED FACE PHOTO SYNTHESIS FROM SIMPLE LINE DRAWING
Qi Guo Ce Zhu Zhiqiang Xia Zhengtao Wang Yipeng Liu
School of Electronic Engineering / Center for Robotics
University of Electronic Science and Technology of China (UESTC), Chengdu, China"
f8a5bc2bd26790d474a1f6cc246b2ba0bcde9464,"KDEF-PT: Valence, Emotional Intensity, Familiarity and Attractiveness Ratings of Angry, Neutral, and Happy Faces","ORIGINAL RESEARCH
published: 19 December 2017
doi: 10.3389/fpsyg.2017.02181
KDEF-PT: Valence, Emotional
Intensity, Familiarity and
Attractiveness Ratings of Angry,
Neutral, and Happy Faces
Margarida V. Garrido* and Marília Prada
Instituto Universitário de Lisboa (ISCTE-IUL), CIS – IUL, Lisboa, Portugal
The Karolinska Directed Emotional Faces (KDEF)
is one of the most widely used
human facial expressions database. Almost a decade after the original validation study
(Goeleven et al., 2008), we present subjective rating norms for a sub-set of 210 pictures
which depict 70 models (half female) each displaying an angry, happy and neutral facial
expressions. Our main goals were to provide an additional and updated validation
to this database, using a sample from a different nationality (N = 155 Portuguese
students, M = 23.73 years old, SD = 7.24) and to extend the number of subjective
dimensions used to evaluate each image. Specifically, participants reported emotional
labeling (forced-choice task) and evaluated the emotional intensity and valence of the
expression, as well as the attractiveness and familiarity of the model (7-points rating"
f8ddeb23343cde8e2a9fdd87e877f0ce5461b42b,Illumination and Pose Invariant Face Recognition: A Technical Review,"International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
ISSN: 2150-7988 Vol.2 (2010), pp.029-038
http://www.mirlabs.org/ijcisim
Illumination and Pose Invariant Face Recognition: A Technical Review
Kavita. R. Singh
Department of Computer
Technology, YCCE, Nagpur(M.S),
41 110, India
Mukesh. A. Zaveri
Computer Engineering
Department, S.V.National Institute
of Technology, Surat(Gujarat),
29507, India
Mukesh. M. Raghuwanshi
NYSS College of Engineering and
Research, Nagpur(M.S), 441 110,
India"
f8d68084931f296abfb5a1c4cd971f0b0294eaa4,Unconditional Generative Models,"Published as a conference paper at ICLR 2018
LATENT CONSTRAINTS:
LEARNING TO GENERATE CONDITIONALLY FROM
UNCONDITIONAL GENERATIVE MODELS
Jesse Engel
Google Brain
San Francisco, CA, USA
Matthew D. Hoffman
Google Inc.
San Francisco, CA, USA
Adam Roberts
Google Brain
San Francisco, CA, USA"
ce54dd2b0c6c75208ac77420233419066dd0117f,Issn 2348-375x Ear Segmentation Using Differential Box Counting Approach,"Geetha et al. UJEAS 2014, 02 (01): Page 77-78
ISSN 2348-375X
Unique Journal of Engineering and Advanced Sciences
Available online: www.ujconline.net
Research Article
EAR SEGMENTATION USING DIFFERENTIAL BOX COUNTING APPROACH
Geetha Prem P1*, Manikandaprabu N2, Dhivya P3, Deepa A4
PG Scholar, AVS Engineering College, TN, India
Lecturer, Senthur Polytechnic College, TN, India
Asso. Prof/ECE, AVS Engineering College, Salem
ME (Communication Systems), Sona College of Technology, Salem
Received: 28-12-2013; Revised: 24-01-2014; Accepted: 20-02-2014
*Corresponding Author: P. Prem Geetha, PG Scholar, AVS Engineering College, TN, India Email:"
ceac97de889ed2f65af62f61a007651d03b36b6c,Diagnostic Accuracy of Content Based Dermatoscopic Image Retrieval with Deep Classification Features,"Diagnostic Accuracy of Content Based Dermatoscopic Image Retrieval with
Deep Classification Features
Tschandl P, Argenziano G, Razmara M, Yap J
Final version available at https://doi.org/10.1111/bjd.17189
Citation:
tschandl cbir2018,
Author=”Tschandl, P. and Argenziano, G. and Razmara, M. and Yap, J. ”,
Title=”Diagnostic Accuracy of Content Based Dermatoscopic Image Retrieval with Deep Classification Features”,
Journal=”Br J Dermatol”,
Year=”2018”"
cefd107b19201cd9f403e2f9332c690e81f770b5,A Survey on Databases for Facial Expression Analysis,
cef2b5ab841568755233994b12cf046c408f881e,Techniques for Statistical Shape Model Building and Fusion,"TECHNIQUES
STATISTICAL SHAPE MODEL
BUILDING AND FUSION
Constantine Butakoff
(Kostantyn Butakov)"
ce57cc478421adf85a9058a0cc8fad8ebfd81c52,Multimodal Attribute Extraction,"Multimodal Attribute Extraction
Robert L. Logan IV
University of California
Irvine, CA
Samuel Humeau
Diffbot
Mountain View, CA
Sameer Singh
University of California
Irvine, CA
Introduction
Given the large collections of unstructured and semi-structured data available on the web, there is a
rucial need to enable quick and efficient access to the knowledge content within them. Traditionally,
the field of information extraction has focused on extracting such knowledge from unstructured text
documents, such as job postings, scientific papers, news articles, and emails. However, the content
on the web increasingly contains more varied types of data, including semi-structured web pages,
tables that do not adhere to any schema, photographs, videos, and audio. Given a query by a user,
the appropriate information may appear in any of these different modes, and thus there’s a crucial
need for methods to construct knowledge bases from different types of data, and more importantly,
Motivated by this goal, we introduce the task of multimodal attribute extraction. Provided contextual"
ce391bcdb64f7659ddc5a0c2e5c73854c1e8031c,Zur Erlangung Des Grades Des,"FILTERING AND OPTIMIZATION
STRATEGIES FOR MARKERLESS
HUMAN MOTION CAPTURE WITH
SKELETON-BASED SHAPE MODELS.
DISSERTATION
ZUR ERLANGUNG DES GRADES DES
DOKTORS DER INGENIEURWISSENSCHAFTEN (DR.-ING.)
DER NATURWISSENSCHAFTLICH-TECHNISCHEN FAKULT ¨ATEN
DER UNIVERSIT ¨AT DES SAARLANDES
VORGELEGT VON
JUERGEN GALL
SAARBR ¨UCKEN"
ce316d2366ec1b95ee91a98b4f426e6c00cdcdc4,Hierarchical Energy-transfer Features,"Hierarchical Energy-Transfer Features
Radovan Fusek, Eduard Sojka, Karel Mozdˇreˇn and Milan ˇSurkala
Technical University of Ostrava, FEECS, Department of Computer Science
7. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
{radovan.fusek, eduard.sojka, karel.mozdren,
Keywords:
Object Detection, Recognition, SVM, Image Descriptors, Feature Selection."
ceb02a8f874c84ece88fcc7be1530a581b1cd1b0,A Novel Geometry-based Algorithm for Robust Grasping in Extreme Clutter Environment,"A Novel Geometry-based Algorithm for Robust Grasping in Extreme Clutter
Environment
Olyvia Kundua, Swagat Kumara,∗
TATA Consultancy Services, Bangalore, India 560066"
ce85d953086294d989c09ae5c41af795d098d5b2,Bilinear Analysis for Kernel Selection and Nonlinear Feature Extraction,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Bilinear Analysis for Kernel Selection and
Nonlinear Feature Extraction
Shu Yang, Shuicheng Yan, Member, IEEE, Chao Zhang, and Xiaoou Tang, Senior Member, IEEE"
ceb4040acf7f27b4ca55da61651a14e3a1ef26a8,Angry Crowds: Detecting Violent Events in Videos,"Angry Crowds:
Detecting Violent Events in Videos
Sadegh Mohammadi1, Alessandro Perina1,2, Hamed Kiani1, Vittorio Murino1,3
Pattern Analysis and Computer Vision (PAVIS),
Istituto Italiano di Tecnologia, Genova, Italy
Microsoft Corp,
WDG Core Data Science, Redmond
Dept. of Computer Science,
University of Verona, Italy
As supplementary material, we selected a few testing video clips from Vio-
lence in crowds (VIC) [1] dataset to illustrate the effectiveness of the proposed
Aggression Force compared to the Interaction Force (SFM) [2] and Optical Flow
for the task of violent detection in video sequences. The scenarios depicted in
the attached video are captured under very challenging situations including low
image quality, cluttered background, densely crowded scenes, camera motion,
occlusions, large scale/illumination variations.
The qualitative results in video format can be seen in ”video.avi”, highlight-
ing two major advantages of Aggression Force compared to Social Force and
Optical Flowing.
Firstly, the SFM and Optical Flow are very sensitive to footages captured"
cee700093d6672df48d169ef194861026fe31e8e,Hashing on Nonlinear Manifolds,"Hashing on Nonlinear Manifolds
Fumin Shen, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, Zhenmin Tang, Heng Tao Shen
in the Hamming space. This means that many algorithms
which are based on such pairwise comparisons can be made
more efficient, and applied to much larger datasets. Due to the
flexibility of hash codes, hashing techniques can be applied
in many ways. one can, for example, efficiently perform
similarity search by exploring only those data points falling
into the close-by buckets to the query by the Hamming
distance, or use the binary representations for other tasks like
image classification."
ceedb191328ac4d968853b948a32b5689c2ac2a2,Semisupervised Dimensionality Reduction and Classification Through Virtual Label Regression,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 3, JUNE 2011
Semisupervised Dimensionality Reduction and
Classification Through Virtual Label Regression
Feiping Nie, Dong Xu, Xuelong Li, Senior Member, IEEE, and Shiming Xiang"
ce0cc5f078c5224b9599caf518d74ae3023be0a6,Review on computer vision techniques in emergency situations,"(will be inserted by the editor)
Review on Computer Vision Techniques in Emergency Situations
Laura Lopez-Fuentes · Joost van de Weijer · Manuel Gonz´alez-Hidalgo · Harald
Skinnemoen · Andrew D. Bagdanov
Received: date / Accepted: date"
ce4853f2214ee1f4c47a97ff45d4e53f6ffd5087,Models and Methods for Bayesian Object Matching,"Helsinki University of Technology Laboratory of Computational Engineering Publications
Teknillisen korkeakoulun Laskennallisen tekniikan laboratorion julkaisuja
Espoo 2005
REPORT B52
MODELS AND METHODS FOR BAYESIAN OBJECT
MATCHING
Toni Tamminen
AB TEKNILLINEN KORKEAKOULU
TEKNISKA H(cid:214)GSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSIT˜T HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI"
ceaa5eb51f761b5f84bd88b58c8f484fcd2a22d6,UC San Diego UC San Diego Electronic Theses and Dissertations Title Interactive learning and prediction algorithms for computer vision applications,"UC San Diego
UC San Diego Electronic Theses and Dissertations
Title
Inhibitions of ascorbate fatty acid derivatives on three rabbit muscle glycolytic enzymes
Permalink
https://escholarship.org/uc/item/8x33n1gj
Author
Pham, Duyen-Anh
Publication Date
011-01-01
Peer reviewed|Thesis/dissertation
eScholarship.org
Powered by the California Digital Library
University of California"
cef092bf9beed65e379ab48ef2b43498d4aaea92,Process Monitoring in the Intensive Care Unit: Assessing Patient Mobility Through Activity Analysis with a Non-Invasive Mobility Sensor,"Process Monitoring in the Intensive Care Unit:
Assessing Patient Mobility Through Activity
Analysis with a Non-Invasive Mobility Sensor
Austin Reiter1(B), Andy Ma1, Nishi Rawat2, Christine Shrock2,
nd Suchi Saria1
The Johns Hopkins University, Baltimore, MD, USA
Johns Hopkins Medical Institutions, Baltimore, MD, USA"
ce12bbb8ce974df4b64f18e478d7fa99b722de03,A Hybrid Data Association Framework for Robust Online Multi-Object Tracking,"A Hybrid Data Association Framework for Robust
Online Multi-Object Tracking
Min Yang, Yuwei Wu∗, and Yunde Jia Member, IEEE,"
ce9a61bcba6decba72f91497085807bface02daf,Eigen-harmonics faces: face recognition under generic lighting,"Eigen-Harmonics Faces: Face Recognition under Generic Lighting
Laiyun Qing1,2, Shiguang Shan2, Wen Gao1,2
Graduate School, CAS, Beijing, China, 100080
ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080
Emails: {lyqing, sgshan, wgao}jdl.ac.cn"
cef6cffd7ad15e7fa5632269ef154d32eaf057af,Emotion Detection Through Facial Feature Recognition,"Emotion Detection Through Facial Feature
Recognition
James Pao
through  consistent"
ce3ee08f4d937a6dcb2d6dd0a1ca100920f312e6,Literature Survey On Contactless Palm Vein Recognition,"International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep-Oct 2015
RESEARCH  ARTICLE
Literature Survey On Contactless Palm Vein Recognition
Roshni C Rahul [1], Merin  Cherian [2], Manu Mohan C M [3]
Department of Computer Science [1], Department of Science [2], Department of Electronics [3]
OPEN  ACCESS
Mahatma Gandhi University
Kerala - India"
cebfafea92ed51b74a8d27c730efdacd65572c40,Matching 2.5D face scans to 3D models,"JANUARY 2006
Matching 2.5D Face Scans to 3D Models
Xiaoguang Lu, Student Member, IEEE, Anil K. Jain, Fellow, IEEE, and
Dirk Colbry, Student Member, IEEE"
ce0dbe6b1abecb54dcc98dbe652aa63d190dbc94,Part-Based Models for Finding People and Estimating Their Pose,"Part-based models for finding people and
estimating their pose
Deva Ramanan"
ced4853617ba6af27f5447f9c4de07c3e05e8c3b,Real-Time Joint Semantic Segmentation and Depth Estimation Using Asymmetric Annotations,"Real-Time Joint Semantic Segmentation and Depth Estimation Using
Asymmetric Annotations
Vladimir Nekrasov1, Thanuja Dharmasiri2, Andrew Spek2, Tom Drummond2, Chunhua Shen1 and Ian Reid1"
cea85314294f9731661a419f627cb99331ad9c50,Race recognition using local descriptors,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
ce54e891e956d5b502a834ad131616786897dc91,Face Recognition Using LTP Algorithm,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611
Face Recognition Using LTP Algorithm
Richa Sharma1, Rohit Arora2
ECE & KUK
Assistant Professor (ECE)
Volume 4 Issue 12, December 2015
Licensed Under Creative Commons Attribution CC BY
www.ijsr.net
  Variation  in  luminance:  Third  main  challenge  that
ppears in face recognition process is the luminance. Due
to variation in the luminance the representation get varied
from  the  original  image.  The  person  with  same  poses
expression and seen from same viewpoint can be appear
very different due to variation in lightening."
ce6d23894f88349443e7c9fe512ca81291bb2e00,VIENA2: A Driving Anticipation Dataset,"VIENA2: A Driving Anticipation Dataset
Mohammad Sadegh Aliakbarian1,2,4, Fatemeh Sadat Saleh1,4, Mathieu
Salzmann3, Basura Fernando2, Lars Petersson1,4, and Lars Andersson4
ANU, 2ACRV, 3CVLab, EPFL, 4Data61-CSIRO"
ce06015fc0eb2add064ef93c9b97ad063c03aef4,Person Re-identification in Surveillance Videos using Multi-part Color Descriptor,"International Journal of Computer Applications (0975 – 8887)
Volume 121 – No.16, July 2015
Person Re-identification in Surveillance Videos
using Multi-part Color Descriptor
P.K. Sathish
S. Balaji
Computer Science and Engineering Dept.
Centre for Emerging Technologies, Jain University
Christ University
Bengaluru- 560074"
ce073cb70eec80d87c9e07a4ec2d4162d91e23a6,Positive Definite Matrices: Data Representation and Applications to Computer Vision,"Positive Definite Matrices: Data Representation
nd Applications to Computer Vision
Anoop Cherian and Suvrit Sra"
ce6f459462ea9419ca5adcc549d1d10e616c0213,A Survey on Face Identification Methodologies in Videos,"A Survey on Face Identification Methodologies in
Videos
Student, M.Tech  CSE ,Department of Computer Science
& Engineering ,G.H.Raisoni College of Engineering &
Technology for Women, Nagpur, Maharashtra, India.
Deepti Yadav"
ce933821661a0139a329e6c8243e335bfa1022b1,Temporal Modeling Approaches for Large-scale Youtube-8M Video Understanding,"Temporal Modeling Approaches for Large-scale
Youtube-8M Video Understanding
Fu Li, Chuang Gan, Xiao Liu, Yunlong Bian, Xiang Long, Yandong Li, Zhichao Li, Jie Zhou, Shilei Wen
Baidu IDL & Tsinghua University"
cea50611ba73b5775cc2fe1e9c27990a0bb20cf8,Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary,"Gabor Feature based Sparse Representation for
Face Recognition with Gabor Occlusion
Dictionary
Meng Yang, Lei Zhang ⋆
Biometric Research Center, Dept. of Computing, The Hong Kong Polytechnic
University, Hong Kong,"
e0d2a28bdcb1996f9659ce2d5fcdace3d369cff6,Fusion Scheme for Semantic and Instance-level Segmentation,"Fusion Scheme for Semantic and Instance-level Segmentation
Arthur Daniel Costea ∗, Andra Petrovai ∗ and Sergiu Nedevschi
Image Processing and Pattern Recognition Research Center
Technical University of Cluj-Napoca, Romania
{arthur.costea, andra.petrovai,"
e000dd1aec1c7b1e9e781ec7ea66f2bde72faa5e,Ear Recognition: A Complete System,"Ear Recognition: A Complete System
Ayman Abazaa,b and MaryAnn F. Harrisona
West Virginia High Tech Foundation, 1000 Technology Drive, Fairmont, USA;
Cairo University, Cairo, Egypt"
e0e8c7145c9b389dad2f4e1982f2b9c31b766503,Augmenting Crowd-Sourced 3 D Reconstructions using Semantic Detections,"Augmenting Crowd-Sourced 3D Reconstructions using Semantic Detections
True Price1
Department of Computer Science, UNC Chapel Hill
Johannes L. Sch¨onberger2
Zhen Wei1 Marc Pollefeys2
Department of Computer Science, ETH Z¨urich
Jan-Michael Frahm1
Microsoft"
e0dedb6fc4d370f4399bf7d67e234dc44deb4333,Supplementary Material: Multi-Task Video Captioning with Video and Entailment Generation,"Supplementary Material: Multi-Task Video Captioning with Video and
Entailment Generation
Ramakanth Pasunuru and Mohit Bansal
UNC Chapel Hill
{ram,
Experimental Setup
.1 Datasets
.1.1 Video Captioning Datasets
YouTube2Text or MSVD The Microsoft Re-
search Video Description Corpus (MSVD) or
YouTube2Text (Chen and Dolan, 2011) is used
for our primary video captioning experiments. It
has 1970 YouTube videos in the wild with many
diverse captions in multiple languages for each
video. Caption annotations to these videos are
ollected using Amazon Mechanical Turk (AMT).
All our experiments use only English captions. On
verage, each video has 40 captions, and the over-
ll dataset has about 80, 000 unique video-caption
pairs. The average clip duration is roughly 10 sec-"
e096b11b3988441c0995c13742ad188a80f2b461,DeepProposals: Hunting Objects and Actions by Cascading Deep Convolutional Layers,"Noname manuscript No.
(will be inserted by the editor)
DeepProposals: Hunting Objects and Actions by Cascading
Deep Convolutional Layers
Amir Ghodrati · Ali Diba · Marco Pedersoli · Tinne Tuytelaars · Luc
Van Gool
Received: date / Accepted: date"
e0aa9ab8f00b2bf0dd1b6ffd5c00e5a15b6a67e1,Robust Visual Tracking via Hierarchical Convolutional Features,"Robust Visual Tracking
via Hierarchical Convolutional Features
Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang"
e0eb1d66f244456063409264ed795d9893565011,Inhibited Softmax for Uncertainty Estimation in Neural Networks,"Electronic Preprint
INHIBITED SOFTMAX FOR UNCERTAINTY ESTIMATION
IN NEURAL NETWORKS
Marcin Mo˙zejko, Mateusz Susik & Rafał Karczewski
Sigmoidal"
e043d79f4dc41c9decaf637d8ffdd11f8ed59f2b,Distance metric learning for image and webpage comparison. (Apprentissage de distance pour la comparaison d'images et de pages Web),"Distance metric learning for image and webpage
omparison
Marc Teva Law
To cite this version:
Marc Teva Law. Distance metric learning for image and webpage comparison. Image Processing. Uni-
versité Pierre et Marie Curie - Paris VI, 2015. English. <NNT : 2015PA066019>. <tel-01135698v2>
HAL Id: tel-01135698
https://tel.archives-ouvertes.fr/tel-01135698v2
Submitted on 18 Mar 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
e0cac58f3855cd84b9d28f508b2f7711e0d7e44a,3a: a Person Re-identification System via Attribute Augmentation and Aggregation,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
e0181f7596b475f7c7d31fd1eccad8e9b7379180,Facial Expression Recognition for Traumatic Brain Injured Patients,
e00bdb0b046c4d21517ca808a4233a6fd5f3faee,Efficient Retina-like Resampling from Cartesian Images,"VII Workshop de Vis˜ao Computacional – WVC 2011
Efficient Retina-like Resampling from Cartesian Images
Hugo Vieira Neto, Diogo Rosa Kuiaski and Gustavo Benvenutti Borba
Graduate School of Electrical Engineering and Applied Computer Science
Federal University of Technology - Paran´a, Brazil"
e09c7bbf1bef602018928acb395f09448a0366b8,Learning beautiful (and ugly) attributes,"MARCHESOTTI, PERRONNIN: LEARNING BEAUTIFUL (AND UGLY) ATTRIBUTES
Learning beautiful (and ugly) attributes
Luca Marchesotti
Florent Perronnin
Xerox Research Centre Europe
Meylan, France"
e05444e51d292bda871388c22b97400ed4cf73a8,An Overview of Recent Approaches in Person Re-Identification,An Overview of Recent Approaches in Person Re-Identification
e0939b4518a5ad649ba04194f74f3413c793f28e,Mind-reading machines : automated inference of complex mental states Rana,"Technical Report
UCAM-CL-TR-636
ISSN 1476-2986
Number 636
Computer Laboratory
Mind-reading machines:
utomated inference
of complex mental states
Rana Ayman el Kaliouby
July 2005
5 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500
http://www.cl.cam.ac.uk/"
e01ac06aa1f0b193a620bf70c5dad91128a1bc90,CAPTAIN: Comprehensive Composition Assistance for Photo Taking,"International Journal on Computer Vision manuscript No.
(will be inserted by the editor)
CAPTAIN: Comprehensive Composition Assistance for Photo
Taking
Farshid Farhat · Mohammad Mahdi Kamani · James Z. Wang
Received: date / Accepted: date"
e0e71b59a34c97d15e5ff148fb9a43b892d45bd5,Facial Expression Emotion Detection for Real-Time Embedded Systems,"Article
Facial Expression Emotion Detection for Real-Time
Embedded Systems †
Saeed Turabzadeh 1, Hongying Meng 1,* ID , Rafiq M. Swash 1 ID , Matus Pleva 2 ID and Jozef Juhar 2 ID
Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK;
(S.T.); (R.M.S.)
Department of Electronics and Multimedia Telecommunications, Technical University of Kosice, Letna 9,
04001 Kosice, Slovakia; (M.P.); (J.J.)
* Correspondence: Tel.: +44-1895-265496
This paper is an extended version of our paper in Proceedings of Innovative Computing Technology
(INTECH 2017), Luton, UK, 16–18 August 2017; with permission from IEEE.
Received: 15 December 2017; Accepted: 22 January 2018; Published: 26 January 2018"
e0ed0e2d189ff73701ec72e167d44df4eb6e864d,Recognition of static and dynamic facial expressions: a study review,"Recognition of static and dynamic facial expressions: a study review
Estudos de Psicologia, 18(1), janeiro-março/2013, 125-130
Nelson Torro Alves
Federal University of Paraíba"
e018c7f468a9b61cd6e7dcbc40b332a8a25808ae,Face Recognition by Face Bunch Graph Method,"Face Recognition by Face Bunch Graph Method
JIRI STASTNY*, VLADISLAV SKORPIL**
* Department of Automation and Computer Science,
** Department of Telekommunications,
Brno University of Technology,
Purkynova 118,  612 00 Brno,
CZECH  REPUBLIC,"
e065a2cb4534492ccf46d0afc81b9ad8b420c5ec,SFace: An Efficient Network for Face Detection in Large Scale Variations,"SFace: An Ef‌f‌icient Network for Face Detection
in Large Scale Variations
Jianfeng Wang12∗, Ye Yuan 1†, Boxun Li†, Gang Yu† and Sun Jian†
College of Software, Beihang University∗
Megvii Inc. (Face++)†"
e013c650c7c6b480a1b692bedb663947cd9d260f,Robust Image Analysis With Sparse Representation on Quantized Visual Features,"Robust Image Analysis With Sparse Representation
on Quantized Visual Features
Bing-Kun Bao, Guangyu Zhu, Jialie Shen, and Shuicheng Yan, Senior Member, IEEE"
e01058388d139e027482a7d89a2997606f7ef4fd,Global-residual and Local-boundary Refinement Networks for Rectifying Scene Parsing Predictions,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
Input (b) FCN Based Model (c) GRN (d) Input (f) LRN (e) FCN Based Model Figure1:ResultofFCNbasedmodel(b)hasinconsistentlabelsinwall,curtainandbedsidetable,whichcanberefinedbytheproposedGRN(c).ResultofFCNbasedmodel(e)hasimpreciseanddiscon-tinuousobjectboundariesofcabinet,tableandchairs,whichcanberefinedbytheproposedLRN(f).stepinmanypracticalframeworks.Forexample,inobjectdetection,bounding-boxrefinement[GidarisandKomodakis,2015]iswidelyusedin[Heetal.,2016][Belletal.,2016][Shrivastavaetal.,2016],bringingsignificantimprovementofbounding-boxlocalizationandscoring.Inspiredbyitssuccess,wedesigntwonewrefinementnetworksparticularlyforrectifyingtheparsingpredictions,frombothglobalandlocalviewsrespectively.Eachofthetwonetworkscanbeemployedaftertheexistingparsingframeworksindividually.Moreover,cascadingthemtogetherforrefinementcangainmorepreciseparsingresults.Firstly,weconsiderperformingrefinementfromtheglobalview.Inconsistentparsingresultsareverycommoninpre-dictionsofexistingsceneparsingframeworks,asshowninFigure1(b).Toaddressthisproblem,wedesigntheGlobal-residualRefinementNetwork(GRN)throughexploit-ingglobalcontextualinformationandspatiallayoutrelation-shipsduringrefining.ThisnetworktakestheoriginalimagesandtheKconfidencemaps(i.e.,theoutputofthelastlayerbeforeSoftMaxlayer,eachforoneoftheKsemanticclasses)asinput.Thenoutputstheglobalparsingresidual,whichwillbeaddedtotheinputconfidencemapstoobtaintheglobalrectifyingresults.Thisnetworkeffectivelycapturesglobalcontextualinformationbyiterativelyusingadeepneuralnet-workwithlargereceptivefields.AfterglobalrefinementbyGRN,somemislabelingcanbecorrectedandsomeinconsis-"
e00526ff149bd61f6811ba2f2145ed22d9306319,Personal Space Regulation in Childhood Autism Spectrum Disorders,"Personal Space Regulation in Childhood Autism
Spectrum Disorders
Erica Gessaroli1,2, Erica Santelli3, Giuseppe di Pellegrino1,4*, Francesca Frassinetti1,2*
Department of Psychology, University of Bologna, Bologna, Italy, 2 Fondazione Salvatore Maugeri, Clinica del Lavoro e della Riabilitazione, Istituto di Ricovero
e  Cura  a  Carattere  Scientifico,  Mantova,  Castel  Goffredo,  Italy,  3  Centro  Autismo,  Reggio  Emilia,  Italy,  4  Center  for  Studies  and  Research  in  Cognitive
Neuroscience, Cesena, Italy"
e0739088d578b2abf583e30953ffa000620cca98,Efficient Pedestrian Detection in Urban Traffic Scenes,"Efficient Pedestrian Detection in Urban Traffic Scenes
Dissertation
Erlangung des Doktorgrades (Dr. rer. nat.)
Mathematisch-Naturwissenschaftlichen Fakult¨at
Rheinischen Friedrich-Wilhelms-Universit¨at Bonn
vorgelegt von
Shanshan Zhang
Jiangxi, V.R. China
Bonn, 2014"
e0082ae9e466f7c855fb2c2300215ced08f61432,Generative Temporal Models with Spatial Memory for Partially Observed Environments,"Generative Temporal Models with Spatial Memory
for Partially Observed Environments
Marco Fraccaro 1 * Danilo Jimenez Rezende 2 Yori Zwols 2 Alexander Pritzel 2 S. M. Ali Eslami 2 Fabio Viola 2"
e076f818b090e42036821c69727cfa3b7da49373,Social Groups Detection in Crowd through Shape-Augmented Structured Learning,"Social Groups Detection in Crowd Through
Shape-Augmented Structured Learning
Francesco Solera and Simone Calderara
DIEF University of Modena and Reggio Emilia, Italy"
e0515dc0157a89de48e1120662afdd7fe606b544,Perception Science in the Age of Deep Neural Networks,"SPECIALTY GRAND CHALLENGE
published: 02 February 2017
doi: 10.3389/fpsyg.2017.00142
Perception Science in the Age of
Deep Neural Networks
Rufin VanRullen 1, 2*
Centre National de la Recherche Scientifique, UMR 5549, Faculté de Médecine Purpan, Toulouse, France, 2 Université de
Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Toulouse, France
Keywords: perception, neuroscience, psychology, neural networks, deep learning, artificial intelligence
For decades, perception was considered a unique ability of biological systems, little understood in
its inner workings, and virtually impossible to match in artificial systems. But this status quo was
upturned in recent years, with dramatic improvements in computer models of perception brought
bout by “deep learning” approaches. What does all the ruckus about a “new dawn of artificial
intelligence” imply for the neuroscientific and psychological study of perception? Is it a threat, an
opportunity, or maybe a little of both?
WHILE WE WERE SLEEPING...
My personal journey in the field of perception science started about 20 years ago. For as long as
I can remember, we perception scientists have exploited in our papers and grant proposals the
lack of human-level artificial perception systems, both as a justification for scientific inquiry, and
s a convenient excuse for using a cautious, methodical approach—i.e., “baby steps.” Visual object"
e0e511a5d58a8d090ad169be4fcfdbeaef097a70,Leveraging Cognitive Computing for Gender and Emotion Detection,"Leveraging Cognitive Computing for Gender and
Emotion Detection
Andrea Corriga1, Simone Cusimano1, Francesca M. Malloci1, Lodovica
Marchesi1 and Diego Reforgiato Recupero1
Department of Mathematics and Computer Science,
University of Cagliari, Via Ospedale 72, 09124, Cagliari"
4640dfc0bfe7923c08d0c762a9c33b52b9029409,Head Movement and Facial Expression Transfer from 2D Video to a 3D Model,"Head Movement and Facial Expression Transfer
from 2D Video to a 3D Model
Mairead Grogan
A dissertation submitted to the University of Dublin, Trinity College,
in partial fulfilment of the requirements for the degree of
Master of Science in Computer Science (Interactive Entertainment Technology)
University of Dublin, Trinity College"
46a4551a6d53a3cd10474ef3945f546f45ef76ee,Robust and continuous estimation of driver gaze zone by dynamic analysis of multiple face videos,"014 IEEE Intelligent Vehicles Symposium (IV)
June 8-11, 2014. Dearborn, Michigan, USA
978-1-4799-3637-3/14/$31.00 ©2014 IEEE"
4686bdcee01520ed6a769943f112b2471e436208,Fast search based on generalized similarity measure,"Utsumi et al. IPSJ Transactions on Computer Vision and
Applications  (2017) 9:11
DOI 10.1186/s41074-017-0024-5
IPSJ Transactions on Computer
Vision and Applications
EXPRESS PAPER
Open Access
Fast search based on generalized
similarity measure
Yuzuko Utsumi*†, Tomoya Mizuno†, Masakazu Iwamura and Koichi Kise"
4688787d064e59023a304f7c9af950d192ddd33e,Investigating the Discriminative Power of Keystroke Sound,"Investigating the Discriminative Power of Keystroke
Sound
Joseph Roth Student Member, IEEE,, Xiaoming Liu, Member, IEEE, Arun Ross, Senior Member, IEEE,
nd Dimitris Metaxas, Member, IEEE"
46d0a519da10160a20a3070cc53e5b9401066526,Incremental Learning of Random Forests for Large-Scale Image Classification,"Incremental Learning of Random Forests for
Large-Scale Image Classification
Marko Ristin, Matthieu Guillaumin, Juergen Gall, Member, IEEE and Luc Van Gool, Member, IEEE"
46f2611dc4a9302e0ac00a79456fa162461a8c80,Spatio-Temporal Channel Correlation Networks for Action Classification,"for Action Classification
Ali Diba1,4,(cid:63), Mohsen Fayyaz3,(cid:63), Vivek Sharma2, M.Mahdi Arzani4, Rahman
Yousefzadeh4, Juergen Gall3, Luc Van Gool1,4
ESAT-PSI, KU Leuven, 2CV:HCI, KIT, Karlsruhe, 3University of Bonn, 4Sensifai"
46c52f92e10fd2f2dddda162ad7995a1658e1245,Finding Socio-Textual Associations Among Locations,"Series ISSN: 2367-2005
0.5441/002/edbt.2017.12"
46a01565e6afe7c074affb752e7069ee3bf2e4ef,Local Descriptors Encoded by Fisher Vectors for Person Re-identification,"Local Descriptors Encoded by Fisher Vectors for Person
Re-identification
Bingpeng Ma, Yu Su, Fr´ed´eric Jurie
To cite this version:
Bingpeng Ma, Yu Su, Fr´ed´eric Jurie. Local Descriptors Encoded by Fisher Vectors for Person
Re-identification. 12th European Conference on Computer Vision (ECCV) Workshops, 2012,
Italy. pp.413-422, 2012, <10.1007/978-3-642-33863-2 41>. <hal-00806066>
HAL Id: hal-00806066
https://hal.archives-ouvertes.fr/hal-00806066
Submitted on 29 Mar 2013
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
46994b489f7c673d031f6ef644e84ebe5d843d93,A learning-based visual saliency prediction model for stereoscopic 3D video (LBVS-3D),"A Learning-Based Visual Saliency Prediction
Model for Stereoscopic 3D Video (LBVS-3D)
Amin Banitalebi-Dehkordi, Mahsa T. Pourazad, and Panos Nasiopoulos"
46386d4aa6a2b96106ab1d18658103622b24f9d8,Google Street View images support the development of vision-based driver assistance systems,"Google Street View Images Support the Development of
Vision-Based Driver Assistance Systems
Jan Salmen∗, Sebastian Houben∗, and Marc Schlipsing∗"
462e4d0b35bf571bfc35dcd8e9bd589dca07a464,"Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation","Inverted Residuals and Linear Bottlenecks: Mobile Networks for
Classification, Detection and Segmentation
Mark Sandler Andrew Howard Menglong Zhu Andrey Zhmoginov Liang-Chieh Chen
{sandler, howarda, menglong, azhmogin,
Google Inc."
46282f10271875647219b641dac2cc01c7dc8ab2,Psychopathic traits are associated with reduced fixations to the eye region of fearful faces.,"018, Vol. 127, No. 1, 43–50
0021-843X/18/$12.00
© 2018 American Psychological Association
http://dx.doi.org/10.1037/abn0000322
Psychopathic Traits Are Associated With Reduced Fixations to the Eye
Region of Fearful Faces
Monika Dargis, Richard C. Wolf, and Michael Koenigs
University of Wisconsin–Madison
Impairments in processing fearful faces have been documented in both children and adults with
psychopathic traits, suggesting a potential mechanism by which psychopathic individuals develop callous
nd manipulative interpersonal and affective traits. Recently, research has demonstrated that psycho-
pathic traits are associated with reduced fixations to the eye regions of faces in samples of children and
ommunity-dwelling adults, however this relationship has not yet been established in an offender sample
with high levels of psychopathy. In the current study, we employed eye-tracking with paradigms
involving the identification and passive viewing of facial expressions of emotion, respectively, in a
sample of adult male criminal offenders (n ⫽ 108) to elucidate the relationship between visual processing
of fearful facial expressions and interpersonal and affective psychopathic traits. We found that the
interpersonal-affective traits of psychopathy were significantly related to fewer fixations to the eyes of
fear faces during the emotion recognition task. This association was driven particularly by the interper-
sonal psychopathic traits (e.g., egocentricity, deceitfulness), whereas fear recognition accuracy was"
4669b079c3ca15aba08130c36ead597014f7341a,GrabCut-Based Human Segmentation in Video Sequences,"Sensors 2012, 12, 15376-15393; doi:10.3390/s121115376
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
GrabCut-Based Human Segmentation in Video Sequences
Antonio Hern´andez-Vela 1,2,⋆, Miguel Reyes 1,2, V´ıctor Ponce 1,2 and Sergio Escalera 1,2
Departamento MAIA, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain;
E-Mails: (M.R.); (V.P.); (S.E.)
Centre de Visi´o per Computador, Campus UAB, Edifici O, 08193 Bellaterra, Barcelona, Spain
* Author to whom correspondence should be addressed; E-Mail:
Tel.: +34-93-402-1897; Fax: +34-93-402-1601.
Received: 4 September 2012; in revised form: 1 November 2012 / Accepted: 6 November 2012 /
Published: 9 November 2012"
463bfb0b55c085cda77c2c6e1583abb64baa5d0a,Learning Arbitrary Potentials in CRFs with Gradient Descent,"Learning Arbitrary Potentials in CRFs with Gradient Descent
M˚ans Larsson1
Fredrik Kahl1,2
Chalmers Univ. of Technology 2Lund Univ.
Shuai Zheng3 Anurag Arnab3
Oxford Univ.
Philip Torr3 Richard Hartley4
Australian National Univ."
46f5bb35ea99c62320199b1f0924a4e7c0b001d3,Perspective-Aware CNN For Crowd Counting,"Perspective-Aware CNN For Crowd Counting
Miaojing Shi, Zhaohui Yang, Chao Xu, Member, IEEE, and Qijun Chen, Senior Member, IEEE"
465b75fa4b84948e19d8bf2ebf4fe4459c3c87ae,A deformation model to reduce the effect of expressions in 3D face recognition,"Vis Comput (2011) 27: 333–345
DOI 10.1007/s00371-010-0530-2
O R I G I NA L A RT I C L E
A deformation model to reduce the effect of expressions in 3D face
recognition
Yueming Wang · Gang Pan · Jianzhuang Liu
Published online: 5 November 2010
© Springer-Verlag 2010"
466a5add15bb5f91e0cfd29a55f5fb159a7980e5,Video Repeat Recognition and Mining by Visual Features,"Video Repeat Recognition and Mining by Visual
Features
Xianfeng Yang1and Qi Tian"
46b031a3e368f25dd1e42f70f21165fef7b16de2,"Faces in the mirror, from the neuroscience of mimicry to the emergence of mentalizing.","doi 10.4436/jass.94037
Vol. 94 (2016), pp. 113-126
Faces in the mirror, from the neuroscience of mimicry
to the emergence of mentalizing
Antonella Tramacere & Pier Francesco Ferrari
University of Parma, Dep. of Neuroscience, via Volturno 39, 43100, Parma, Italy
e-mail:
Summary - In the current opinion paper, we provide a comparative perspective on specific aspects
of primate empathic abilities, with particular emphasis on the mirror neuron system associated with
mouth/face actions and expression. Mouth and faces can be very salient communicative classes of stimuli
that allow an observer access to the emotional and physiological content of other individuals. We thus
describe patterns of activations of neural populations related to observation and execution of specific
mouth actions and emotional facial expressions in some species of monkeys and in humans. Particular
ttention is given to dynamics of face-to-face interactions in the early phases of development and to
the differences in the anatomy of facial muscles among different species of primates. We hypothesize
that increased complexity in social environments and patterns of social development have promoted
specializations of facial musculature, behavioral repertoires related to production and recognition of
facial emotional expression, and their neural correlates. In several primates, mirror circuits involving
parietal-frontal regions, insular regions, cingulate cortices, and amygdala seem to support automatic
forms of embodied empathy, which probably contribute to facial mimicry and behavioural synchrony."
46f3b113838e4680caa5fc8bda6e9ae0d35a038c,Automated Dermoscopy Image Analysis of Pigmented Skin Lesions,"Cancers 2010, 2, 262-273; doi:10.3390/cancers2020262
OPEN ACCESS
ancers
ISSN 2072-6694
www.mdpi.com/journal/cancers
Review
Automated Dermoscopy Image Analysis of Pigmented Skin
Lesions
Alfonso Baldi 1,2,*, Marco Quartulli 3, Raffaele Murace 2, Emanuele Dragonetti 2,
Mario Manganaro 3, Oscar Guerra 3 and Stefano Bizzi 3
Department of Biochemistry, Section of Pathology, Second University of Naples, Via L. Armanni
5, 80138 Naples, Italy
Futura-onlus, Via Pordenone 2, 00182 Rome, Italy; E-Mail:
ACS, Advanced Computer Systems, Via della Bufalotta 378, 00139 Rome, Italy
*  Author to whom correspondence should be addressed; E-Mail:
Fax: +390815569693.
Received: 23 February 2010; in revised form: 15 March 2010 / Accepted: 25 March 2010 /
Published: 26 March 2010"
4602bbec65b0c718d5887fdf2381fb7cee77a64d,Explicit Occlusion Modeling for 3D Object Class Representations,"Explicit Occlusion Modeling for 3D Object Class Representations
M. Zeeshan Zia1, Michael Stark2, and Konrad Schindler1
Photogrammetry and Remote Sensing, ETH Z¨urich, Switzerland
Stanford University and Max Planck Institute for Informatics"
46471a285b1d13530f1885622d4551b48c19fc67,Generating Artificial Data for Private Deep Learning,"Generating Artificial Data for Private Deep Learning
Ecole Polytechnique Fédérale de Lausanne
Ecole Polytechnique Fédérale de Lausanne
Aleksei Triastcyn
Artificial Intelligence Laboratory
Lausanne, Switzerland
Boi Faltings
Artificial Intelligence Laboratory
Lausanne, Switzerland"
46d728356b5090bc28461b30cb21a08c3a690195,"Deep Multi-patch Aggregation Network for Image Style, Aesthetics, and Quality Estimation","Deep Multi-Patch Aggregation Network
for Image Style, Aesthetics, and Quality Estimation
Xin Lu(cid:63)
James Z. Wang(cid:63)
(cid:63)The Pennsylvania State University, University Park, Pennsylvania
Zhe Lin† Xiaohui Shen† Radom´ır Mˇech†
Adobe Research, San Jose, California
{xinlu, {zlin, xshen,"
46a553e670027e838716e5a1a39577d7cd7a4893,Face Recognition using TSF Model and DWT based Multilevel Illumination Normalization,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611
Face Recognition using TSF Model and DWT based
Multilevel Illumination Normalization
Midhun Madhusoodanan1, Jini Cheriyan2
M.Tech Scholar (Signal Processing), Department of Electronics and Communication, TKM Institute of Technology,
MusaliarHills, Karuvelil P.O, Ezhukone, Kollam-691505, Kerala, India
Assistant Professor, Department of Electronics and Communication, TKM Institute of Technology,
Musaliar Hills, Karuvelil P.O, Ezhukone, Kollam-691505, Kerala, India
recognition
is  a"
4684c487758df6b6bf4b69f3fe22e1aad874378a,A Discriminative Voting Scheme for Object Detection using Hough Forests,"VIJAY KUMAR B G, IOANNIS PATRAS:
A Discriminative Voting Scheme for Object
Detection using Hough Forests
Vijay Kumar.B.G
Dr Ioannis Patras
Multimedia Vision Research Group
Queen Mary, UoL
London, UK"
46df854f57b6553b4b3238779e46bf2a3a3fffcf,3D Face Recognition using ICP and Geodesic Computation Coupled Approach,"D Face Recognition using ICP and Geodesic
Computation Coupled Approach
Karima Ouji‡, Boulbaba Ben Amor§, Mohsen Ardabilian§,
Faouzi Ghorbel‡, and Liming Chen§
§LIRIS, Laboratoire d’InfoRmatique en Image et Systmes d’information,
6, av. Guy de Collongue, 69134 Ecully, France.
GRIFT, Groupe de Recherche en Images et Formes de Tunisie,
Ecole Nationale des Sciences de l’Informatique, Tunisie.
Key words: 3D face recognition, Iterative Closest Point, Geodesics computa-
tion, biometric evaluation"
46538b0d841654a0934e4c75ccd659f6c5309b72,A Novel Approach to Generate Face Biometric Template Using Binary Discriminating Analysis,"Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.1, February 2014
A NOVEL APPROACH TO GENERATE FACE
BIOMETRIC TEMPLATE USING BINARY
DISCRIMINATING ANALYSIS
Shraddha S. Shinde1 and Prof. Anagha P. Khedkar2
P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India.
Associate Professor, Department of Computer Engineering,
MCERC, Nashik (M.S.), India"
469ee1b00f7bbfe17c698ccded6f48be398f2a44,SURVEy: Techniques for Aging Problems in Face Recognition,"MIT International Journal of Computer Science and Information Technology, Vol. 4, No. 2, August 2014, pp. 82-88
ISSN 2230-7621©MIT Publications
SURVEy: Techniques for
Aging Problems in Face Recognition
Aashmi
Sakshi Sahni
Sakshi Saxena
Scholar, Computer Science Engg. Dept.
Moradabad Institute of Technology
Scholar, Computer Science Engg. Dept.
Moradabad Institute of Technology
Scholar, Computer Science Engg. Dept.
Moradabad Institute of Technology
Moradabad, U.P., INDIA
Moradabad, U.P., INDIA
Moradabad, U.P., INDIA
E-mail:
E-mail:
E-mail:"
468aaa87ccdba65f3115bd0864f7772b6706c00e,A Survey on Heterogeneous Face Matching : NIR Images to VIS Images,"International Journal of Computer Applications (0975 – 8887)
Emerging Trends In Computing 2016
Heterogeneous Face Matching: NIR images to VIS
Images
Sandhya  R.Waddhavane
M.E Student
Department of Computer Engineering
KKWIEER, Nashik, India.
Savitribai Phule Pune University,Pune
S.M.Kamalapur, PhD
Associate Professor
Department of Computer Engineering
KKWIEER, Nashik, India.
Savitribai Phule Pune University,Pune"
46c3e8c2b2042b193659c0a613adc72100a2f301,Vision for Robotics By Danica Kragic and Markus Vincze,"Foundations and Trends R(cid:1) in
Robotics
Vol. 1, No. 1 (2010) 1–78
(cid:1) 2009 D. Kragic and M. Vincze
DOI: 10.1561/2300000001
Vision for Robotics
By Danica Kragic and Markus Vincze
Contents
Introduction
.1 Scope and Outline
Historical Perspective
.1 Early Start and Industrial Applications
.2 Biological Influences and Affordances
.3 Vision Systems
What Works
.1 Object Tracking and Pose Estimation
.2 Visual Servoing–Arms and Platforms
.3 Reconstruction, Localization, Navigation, and
Visual SLAM
.4 Object Recognition"
4679f4a7da1cf45323c1c458b30d95dbed9c8896,Recognizing Facial Expressions Using Model-Based Image Interpretation,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
4682fee7dc045aea7177d7f3bfe344aabf153bd5,Tabula rasa: Model transfer for object category detection,"Tabula Rasa: Model Transfer for
Object Category Detection
Yusuf Aytar & Andrew Zisserman,
Department of Engineering Science
Oxford
(Presented by Elad Liebman)"
460845e06ca99f292fa2265beb4e535d20ba16f8,Object Detection for Comics using Manga109 Annotations,"Object Detection for Comics using Manga109
Annotations
Toru Ogawa · Atsushi Otsubo · Rei
Narita · Yusuke Matsui · Toshihiko
Yamasaki · Kiyoharu Aizawa"
46106d9f9d9b90401b7984794536e2f45fff1dbe,Learning Distance Functions for Automatic Annotation of Images,"Learning Distance Functions for
Automatic Annotation of Images
Josip Krapac and Fr´ed´eric Jurie
INRIA Rhˆone-Alpes, 655, Avenue de l’Europe, 38334 Saint Ismier Cedex, France"
463a1ca5f819af35e71ae47ea0e57293691507d3,Soft Biometrics Classification Using Denoising Convolutional Autoencoders and Support Vector Machines,"Soft Biometrics Classification Using Denoising
Convolutional Autoencoders and Support Vector
Machines
Nelson Marcelo Romero Aquino1, Matheus Gutoski2
Leandro Takeshi Hattori3 and Heitor Silv´erio Lopes4
Federal University of Technology - Paran´a
Av. Sete de Setembro, 3165 - Rebou¸cas CEP 80230-901"
4634bf44a0c994e2bed89686225f8cef601a0224,NLM at ImageCLEF 2018 Visual Question Answering in the Medical Domain,"NLM at ImageCLEF 2018 Visual Question
Answering in the Medical Domain
Asma Ben Abacha, Soumya Gayen, Jason J Lau, Sivaramakrishnan
Rajaraman, and Dina Demner-Fushman
Lister Hill National Center for Biomedical Communications,
National Library of Medicine, Bethesda, MD, USA."
469d249a40639d4ffb62abfb2c25f5aab0812fa4,Image Inspired Poetry Generation in XiaoIce,"Image Inspired Poetry Generation in XiaoIce∗
Wen-Feng Cheng1,2, Chao-Chung Wu2, Ruihua Song1, Jianlong Fu1, Xing Xie1, Jian-Yun Nie3
{wencheng, rsong, jianf,
Microsoft, 2National Taiwan University, 3University of Montreal"
466212a84d5b60f4517e8ab3e4473c3c9e081897,Thermal-Visible Registration of Human Silhouettes: a Similarity Measure Performance Evaluation,"Thermal-Visible Registration of Human Silhouettes: a
Similarity Measure Performance Evaluation
Guillaume-Alexandre Bilodeaua,∗, Atousa Torabib, Pierre-Luc St-Charlesa,
Dorra Riahia
LITIV Lab., Department of Computer and Software Engineering,
´EcolePolytechnique de Montr´eal,
P.O. Box 6079, Station Centre-ville, Montr´eal
Qu´ebec, Canada, H3C 3A7
LISA, Dept. IRO,
Universit´e de Montr´eal,
Montr´eal, Qu´ebec, Canada, H2C 3J7"
2c9179fec33f69a5c1a453034dc7d3d3302839d3,Exploiting Hierarchical Dense Structures on Hypergraphs for Multi-Object Tracking,"Exploiting Hierarchical Dense Structures
on Hypergraphs for Multi-Object Tracking
Longyin Wen, Zhen Lei, Siwei Lyu, Stan Z. Li, Fellow, IEEE, and Ming-Hsuan Yang"
2cdc1b728c90d4da31f924879a39d00008d52daa,A Side of Data with My Robot: Three Datasets for Mobile Manipulation in Human Environments,"A Side of Data with My Robot: Three Datasets for Mobile Manipulation in Human Environments
Matei Ciocarlie, Member, IEEE, Caroline Pantofaru, Member, IEEE, Kaijen Hsiao, Member, IEEE,
Gary Bradski, Member, IEEE, Peter Brook, and Ethan Dreyfuss"
2ce2560cf59db59ce313bbeb004e8ce55c5ce928,Anthropometric 3D Face Recognition,"Int J Comput Vis
DOI 10.1007/s11263-010-0360-8
Anthropometric 3D Face Recognition
Shalini Gupta · Mia K. Markey · Alan C. Bovik
Received: 3 July 2009 / Accepted: 20 May 2010
© Springer Science+Business Media, LLC 2010"
2cc0e431d7cc0bcb926b9a19e7be8a3592d670d4,NovaMedSearch: a multimodal search engine for medical case-based retrieval,"NovaMedSearch: A multimodal search engine for medical
ase-based retrieval
André Mourão
Flávio Martins
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
Departamento de Informática
Caparica, Portugal"
2c8743089d9c7df04883405a31b5fbe494f175b4,Real-time full-body human gender recognition in (RGB)-D data,"Washington State Convention Center
Seattle, Washington, May 26-30, 2015
978-1-4799-6922-7/15/$31.00 ©2015 IEEE"
2c5ff99e7e9769677df3eeab9f198e3ead016c35,Registration of 3D facial surfaces using covariance matrix pyramids,"Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA
978-1-4244-5040-4/10/$26.00 ©2010 IEEE"
2c93c8da5dfe5c50119949881f90ac5a0a4f39fe,Advanced local motion patterns for macro and micro facial expression recognition,"Advanced local motion patterns for macro and micro facial
expression recognition
B. Allaerta,∗, IM. Bilascoa, C. Djerabaa
Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL -
Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France"
2c34bf897bad780e124d5539099405c28f3279ac,Robust Face Recognition via Block Sparse Bayesian Learning,"Robust Face Recognition via Block Sparse Bayesian Learning
Taiyong Li1,2, Zhilin Zhang3,4,∗
School of Financial Information Engineering, Southwestern University of Finance and Economics, Chengdu 610074,
China
Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093-0407,
Samsung R&D Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA"
2cc4ae2e864321cdab13c90144d4810464b24275,Face Recognition Using Optimized 3D Information from Stereo Images,"Face Recognition Using Optimized 3D
Information from Stereo Images
Changhan Park1 and Joonki Paik2
Advanced Technology R&D Center, Samsung Thales Co., Ltd., 2Graduate School of
Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul
Korea
. Introduction
Human  biometric  characteristics  are  unique,  so  it  can  not  be  easily  duplicated  [1].  Such
information
includes;  facial,  hands,  torso,  fingerprints,  etc.  Potential  applications,
economical  efficiency,  and  user  convenience  make  the  face  detection  and  recognition
technique an important commodity compared to other biometric features [2], [3]. It can also
use a low-cost personal computer (PC) camera instead of expensive equipments, and require
minimal user interface. Recently, extensive research using 3D face data has been carried out
in  order  to  overcome  the  limits  of  2D  face  detection  and  feature  extraction  [2],  which
includes  PCA  [3],  neural  networks  (NN)  [4],  support  vector  machines  (SVM)  [5],  hidden
markov models (HMM) [6], and linear discriminant analysis (LDA) [7]. Among them, PCA
nd  LDA  methods  with  self-learning  method  are  most  widely  used  [3].  The  frontal  face
image  database  provides  fairly  high  recognition  rate.  However,  if  the  view  data  of  facial
rotation,  illumination  and  pose  change  is  not  acquired,  the  correct  recognition  rate"
2cac8ab4088e2bdd32dcb276b86459427355085c,A Face-to-Face Neural Conversation Model,"A Face-to-Face Neural Conversation Model
Hang Chu1
Daiqing Li1 Sanja Fidler1
University of Toronto 2Vector Institute
{chuhang1122, daiqing,"
2c2786ea6386f2d611fc9dbf209362699b104f83,1)local Feature Representations for Facial Expression Recognition Based on Differences of Gray Color Values of Neighboring Pixels,1)LOCAL FEATURE REPRESENTATIONS FOR FACIAL EXPRESSION RECOGNITION BASED ON DIFFERENCES OF GRAY COLOR VALUES OF NEIGHBORING PIXELS        Mohammad Shahidul Islam          A Dissertation Submitted in Partial  Fulfillment of the Requirement for the Degree of  Doctor of Philosophy (Computer Science and Information Systems) School of Applied Statistics National Institute of Development Administration 2013
2c92839418a64728438c351a42f6dc5ad0c6e686,Pose-Aware Face Recognition in the Wild,"Pose-Aware Face Recognition in the Wild
Iacopo Masi1
Prem Natarajan2
USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA
G´erard Medioni1
Stephen Rawls2
USC Information Sciences Institute (ISI), Marina Del Rey, CA"
2c848cc514293414d916c0e5931baf1e8583eabc,An automatic facial expression recognition system evaluated by different classifiers,"An automatic facial expression recognition system
evaluated by different classifiers
Caroline Silva∗, Andrews Sobral∗ and Raissa Tavares Vieira†
Programa de P´os-Graduac¸˜ao em Mecatrˆonica
Universidade Federal da Bahia,
Email:
Email:
Department of Electrical Engineering - EESC/USP
Email:"
2cd03c6e78d09bb98872bb34bb70e08c32dc5f7e,Pedestrian Alignment Network for Large-scale Person Re-identification,"Noname manuscript No.
(will be inserted by the editor)
Pedestrian Alignment Network for
Large-scale Person Re-identification
Zhedong Zheng · Liang Zheng · Yi Yang
Received: date / Accepted: date"
2c883977e4292806739041cf8409b2f6df171aee,Are Haar-Like Rectangular Features for Biometric Recognition Reducible?,"Aalborg Universitet
Are Haar-like Rectangular Features for Biometric Recognition Reducible?
Nasrollahi, Kamal; Moeslund, Thomas B.
Published in:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
DOI (link to publication from Publisher):
0.1007/978-3-642-41827-3_42
Publication date:
Document Version
Early version, also known as pre-print
Link to publication from Aalborg University
Citation for published version (APA):
Nasrollahi, K., & Moeslund, T. B. (2013). Are Haar-like Rectangular Features for Biometric Recognition
Reducible? In J. Ruiz-Shulcloper, & G. Sanniti di Baja (Eds.), Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications (Vol. 8259, pp. 334-341). Springer Berlin Heidelberg: Springer Publishing
Company.  Lecture Notes in Computer Science, DOI: 10.1007/978-3-642-41827-3_42
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research."
2cdd9e445e7259117b995516025fcfc02fa7eebb,Temporal Exemplar-Based Bayesian Networks for Facial Expression Recognition,"Title
Temporal Exemplar-based Bayesian Networks for facial
expression recognition
Author(s)
Shang, L; Chan, KP
Citation
Proceedings - 7Th International Conference On Machine
Learning And Applications, Icmla 2008, 2008, p. 16-22
Issued Date
http://hdl.handle.net/10722/61208
Rights
This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.;
International Conference on Machine Learning and Applications
Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of
this material is permitted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
omponent of this work in other works must be obtained from"
2c98165dd72bac574ed463b00f1dd4c276808cb4,Efficient Object Pixel-Level Categorization Using Bag of Features,"Ef‌f‌icient Object Pixel-Level Categorization using
Bag of Features
David Aldavert1, Arnau Ramisa2, Ricardo Toledo1, and Ramon Lopez de
Mantaras2
Computer Vision Center (CVC)
Dept. Ci`encies de la Computaci´o
Universitat Aut`onoma de Barcelona (UAB), 08193, Bellaterra, Spain
Artificial Intelligence Research Institute (IIIA-CSIC)
Campus de la UAB, 08193, Bellaterra, Spain"
2c07d9a383e0bb7e1c8ba07084ba8bcf71af2aad,Robust Ear Recognition via Nonnegative Sparse Representation of Gabor Orientation Information,"Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 131605, 11 pages
http://dx.doi.org/10.1155/2014/131605
Research Article
Robust Ear Recognition via Nonnegative Sparse Representation
of Gabor Orientation Information
Baoqing Zhang, Zhichun Mu, Hui Zeng, and Shuang Luo
School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
Correspondence should be addressed to Zhichun Mu; muzc
Received 21 December 2013; Accepted 18 January 2014; Published 24 February 2014
Academic Editors: S. Kobashi and A. Materka
Copyright © 2014 Baoqing Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Orientation information is critical to the accuracy of ear recognition systems. In this paper, a new feature extraction approach is
investigated for ear recognition by using orientation information of Gabor wavelets. The proposed Gabor orientation feature can
not only avoid too much redundancy in conventional Gabor feature but also tend to extract more precise orientation information of
the ear shape contours. Then, Gabor orientation feature based nonnegative sparse representation classification (Gabor orientation
+ NSRC) is proposed for ear recognition. Compared with SRC in which the sparse coding coefficients can be negative, the
nonnegativity of NSRC conforms to the intuitive notion of combining parts to form a whole and therefore is more consistent"
2c5d1e0719f3ad7f66e1763685ae536806f0c23b,AENet: Learning Deep Audio Features for Video Analysis,"AENet: Learning Deep Audio Features for Video
Analysis
Naoya Takahashi, Member, IEEE, Michael Gygli, Member, IEEE, and Luc Van Gool, Member, IEEE"
2c8f24f859bbbc4193d4d83645ef467bcf25adc2,Classification in the Presence of Label Noise: A Survey,"Classification in the Presence of
Label Noise: a Survey
Benoît Frénay and Michel Verleysen, Member, IEEE"
2c564f5241b0905baafc3677e7ca15c27fd2c6e7,An Integrated Approach to Contextual Face Detection,"AN INTEGRATED APPROACH TO CONTEXTUAL FACE
DETECTION.
Santi Segu´ı1, Michal Drozdzal1,2, Petia Radeva1,2 and Jordi Vitri`a1,2
Computer Vision Center, Universitat Aut`onoma de Barcelona, Bellaterra, Spain
Dept. Matem`atica Aplicada i An`alisi, Universitat de Barcelona, Barcelona, Spain
{ssegui, michal, petia,
Keywords:
face detection, object detection."
2c7932c2096669113328a75d1ad1d1bfb8f86ad0,Multi30K: Multilingual English-German Image Descriptions,"Proceedings of the 5th Workshop on Vision and Language, pages 70–74,
Berlin, Germany, August 12 2016. c(cid:13)2016 Association for Computational Linguistics"
2c786b32a621a52fc7d00499e4b056f149a4fba7,Face Recognition with Decision Tree-Based Local Binary Patterns,"Face Recognition with Decision Tree-based Local
Binary Patterns
Daniel Maturana, Domingo Mery and ´Alvaro Soto
Department of Computer Science, Pontificia Universidad Cat´olica de Chile"
2cf7383e238fe37516e2607c4741f79a230834bf,A new Sparse Coding Approach for Human Face and Action Recognition,"A new Sparse Coding Approach for Human Face and Action
Recognition
Mohsen Nikpour*
Department of Electrical and Computer Engineering, Babol Noushirvani University of Technology, Babol, Iran
Mohammad Reza Karami Molaei
Department of Electrical and Computer Engineering, Babol Noushirvani University of Technology, Babol, Iran
Reza Ghaderi
Department of nuclear Engineering, Shahid Beheshti University of Tehran, Tehran, Iran
Received: 27/Jul/2016            Revised: 07/Jan/2017            Accepted: 14/Jan/2017"
2cdd5b50a67e4615cb0892beaac12664ec53b81f,Mirror mirror: crowdsourcing better portraits,"To appear in ACM TOG 33(6).
Mirror Mirror: Crowdsourcing Better Portraits
Jun-Yan Zhu1
Aseem Agarwala2
Alexei A. Efros1
Eli Shechtman2
Jue Wang2
University of California, Berkeley1 Adobe2
Figure 1: We collect thousands of portraits by capturing video of a subject while they watch movie clips designed to elicit a range of positive
emotions. We use crowdsourcing and machine learning to train models that can predict attractiveness scores of different expressions. These
models can be used to select a subject’s best expressions across a range of emotions, from more serious professional portraits to big smiles."
2c5b5a5e4b8cd001e535118c2fa90bff95d51648,Combining Facial Dynamics With Appearance for Age Estimation,"Combining Facial Dynamics With Appearance
for Age Estimation
Hamdi Dibeklio˘glu, Member, IEEE, Fares Alnajar, Student Member, IEEE,
Albert Ali Salah, Member, IEEE, and Theo Gevers, Member, IEEE"
2cdde47c27a8ecd391cbb6b2dea64b73282c7491,Order-aware Convolutional Pooling for Video Based Action Recognition,"ORDER-AWARE CONVOLUTIONAL POOLING FOR VIDEO BASED ACTION RECOGNITION
Order-aware Convolutional Pooling for Video Based
Action Recognition
Peng Wang, Lingqiao Liu, Chunhua Shen, and Heng Tao Shen"
2cc8371c483f76fff65a5fb1c9cc89e974ce83ea,Ridiculously Fast Shot Boundary Detection with Fully Convolutional Neural Networks,"Ridiculously Fast Shot Boundary Detection with Fully Convolutional Neural
Networks
Michael Gygli
gifs.com
Zurich, Switzerland"
2cad358676854505517307314728e8920fe53d77,Mixture of Ridge Regressors for Human Pose Estimation,"#1754
CVPR 2012 Submission #1754. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
#1754
Mixture of Ridge Regressors
for Human Pose Estimation
Anonymous CVPR submission
Paper ID 1754"
2cf5f2091f9c2d9ab97086756c47cd11522a6ef3,MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation,"MPIIGaze: Real-World Dataset and Deep
Appearance-Based Gaze Estimation
Xucong Zhang, Yusuke Sugano∗, Mario Fritz, Andreas Bulling"
2c72096bbecd70000f919b1cec3f31a649c94fd5,Neural Network Interpretation via Fine Grained Textual Summarization,"Neural Network Interpretation via Fine-Grained Textual Summarization
Pei Guo, Connor Anderson, Kolton Pearson, Ryan Farrell
Brigham Young University"
2c2bf22e2f0a1817475aefb37e0c4e0404e8d479,Structured Prediction of 3D Human Pose with Deep Neural Networks,"TEKIN ET AL.: STRUCTURED PREDICTION OF 3D HUMAN POSE
Structured Prediction of 3D Human Pose
with Deep Neural Networks
Bugra Tekin∗1
Isinsu Katircioglu∗1
Mathieu Salzmann1
Vincent Lepetit2
Pascal Fua1
CVLab
EPFL,
Lausanne, Switzerland
CVARLab
TU Graz,
Graz, Austria"
2c4b96f6c1a520e75eb37c6ee8b844332bc0435c,Automatic Emotion Recognition in Robot-Children Interaction for ASD Treatment,"Automatic Emotion Recognition in Robot-Children Interaction for ASD
Treatment
Marco Leo, Marco Del Coco, Pierluigi Carcagn`ı, Cosimo Distante
ISASI UOS Lecce
Campus Universitario via Monteroni sn, 73100 Lecce Italy
Massimo Bernava, Giovanni Pioggia
ISASI UOS Messina
Giuseppe Palestra
Univerisita’ di Bari
Marine Institute, via Torre Bianca, 98164 Messina Italy
Via Orabona 4, 70126 Bari, Italy"
2cc17e1ccb5f1f67f8ce882e683d8c66475330be,Multitarget tracking with the von Mises-Fisher filter and probabilistic data association,"JOURNAL OF ADVANCES IN INFORMATION FUSION
Multitarget tracking with the von Mises-Fisher filter
nd probabilistic data association
Ivan Markovi´c, Mario Bukal, Josip ´Cesi´c and Ivan Petrovi´c"
2c0a71b5e111d2c7d99c3f23989d317a0d845adc,N-best maximal decoders for part models,"N-best maximal decoders for part models
Dennis Park Deva Ramanan
UC Irvine"
795cea6b95af22238600aa129b1975e83c531858,Sentence Directed Video Object Codetection,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Sentence Directed Video Object Codetection
Haonan Yu, Student Member, IEEE and Jeffrey Mark Siskind, Senior Member, IEEE"
7950d67f7104e9bd82d957f0ed80f11982802397,Coupled Action Recognition and Pose Estimation from Multiple Views,"Noname manuscript No.
(will be inserted by the editor)
Coupled Action Recognition and Pose Estimation from
Multiple Views
Angela Yao (cid:1) Juergen Gall (cid:1) Luc Van Gool
Received: date / Accepted: date"
79d3e7321e50be745bef92ba1405b486bd1f133d,Emotion Recognition in Simulated Social Interactions,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2018.2799593, IEEE
> TAFFC-2017-04-0117.R1 <
Transactions on Affective Computing
Emotion Recognition in Simulated Social
Interactions
C. Mumenthaler, D. Sander, and A. S. R. Manstead"
790aa543151312aef3f7102d64ea699a1d15cb29,Confidence-Weighted Local Expression Predictions for Occlusion Handling in Expression Recognition and Action Unit Detection,"Confidence-Weighted Local Expression Predictions for
Occlusion Handling in Expression Recognition and Action
Unit detection
Arnaud Dapogny1
Kevin Bailly1
Séverine Dubuisson1
Sorbonne Universités, UPMC Univ Paris 06, CNRS, ISIR UMR 7222
place Jussieu 75005 Paris"
791eb376d4db96376eba3ef804657c5f0ba7229a,SAFE: Secure authentication with Face and Eyes,"SAFE: Secure Authentication with Face and Eyes
Arman Boehm(cid:91), Dongqu Chen§, Mario Frank(cid:91), Ling Huang†,
Cynthia Kuo(cid:93), Tihomir Lolic(cid:91), Ivan Martinovic(cid:63), Dawn Song(cid:91)
(cid:91) University of California, Berkeley; † Intel Labs; (cid:93) Nokia Research; (cid:63) Oxford University; § Yale University"
796d5d1f6052cd600e183471a2354751883d8d5d,Feature Extraction Techniques Implementation Review and Case Study,"ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)
Volume 4, Issue 12, December 2015
Feature Extraction Techniques
Implementation Review and Case Study
Uma Bhati
Department of Computer Science & Engineering
JSS Academy of Technical Education
Noida-201301
Krishna Nand Chaturvedi
Department of Computer Science & Engineering
JSS Academy of Technical Education
Noida-201301
utilizing
recognition"
7954a1bd6e693da8f2ae69ad01233e937d600e9b,The Lov\'asz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks,"Accepted as a conference paper at CVPR 2018
The Lov´asz-Softmax loss: A tractable surrogate for the optimization of the
intersection-over-union measure in neural networks
Maxim Berman Amal Rannen Triki Matthew B. Blaschko
Dept. ESAT, Center for Processing Speech and Images
KU Leuven, Belgium"
792e656d2297d3b00da73c7a606eb6f539311c25,Force from Motion: Decoding Control Force of Activity in a First Person Video,"Force from Motion: Decoding Control Force of
Activity in a First Person Video
Hyun Soo Park and Jianbo Shi"
79f6a8f777a11fd626185ab549079236629431ac,Pradeep RavikumarDiscriminative Object Categorization with External Semantic Knowledge,"Copyright
Sung Ju Hwang"
7910d3a86e03f4c41fbbe8029fab115547be151b,Taming Adversarial Domain Transfer with Structural Constraints for Image Enhancement,"Taming Adversarial Domain Transfer
with Structural Constraints for Image Enhancement
Elias Vansteenkiste and Patrick Kern
Brighter.AI
Torstrasse 177, Berlin
{elias,
Figure 1: Our domain transfer techniques applied to the night-to-day, removing rain and removing fog applications"
79fc892abaf44a84a758268efd4d1b9e6b64ecf5,Leveraging Random Label Memorization for Unsupervised Pre-Training,"Leveraging Random Label Memorization for Unsupervised Pre-Training
Vinaychandran Pondenkandath * 1 Michele Alberti * 1 Sammer Puran 1 Rolf Ingold 1 Marcus Liwicki 1 2"
79e39f3d0577b9c5a47b93eb6d75bec04d14c07a,Person tracking and following with 2D laser scanners,"Person Tracking and Following with 2D Laser Scanners
Angus Leigh1, Joelle Pineau1, Nicolas Olmedo2, and Hong Zhang2"
794cf037dac115755cd15295d8c5fc1c00242548,The City Infant Faces Database: A validated set of infant facial expressions,"Behav Res (2018) 50:151–159
DOI 10.3758/s13428-017-0859-9
The City Infant Faces Database: A validated set of infant
facial expressions
Rebecca Webb 1 & Susan Ayers 1 & Ansgar Endress 2
Published online: 15 February 2017
# The Author(s) 2017. This article is published with open access at Springerlink.com"
79b50cd468fcdba8f3c841c9d28d84ff66fd97fd,What do Deep Networks Like to See?,"What do Deep Networks Like to See?
Sebastian Palacio∗
Federico Raue Damian Borth Andreas Dengel
Joachim Folz∗
German Research Center for Artificial Intelligence (DFKI)
J¨orn Hees
TU Kaiserslautern"
79bd7fd2b40aadea84bced07f813ffc28c88bc85,Low Rank Matrix Recovery with Simultaneous Presence of Outliers and Sparse Corruption,"Low Rank Matrix Recovery with Simultaneous
Mostafa Rahmani, Student Member, IEEE and George K. Atia, Member, IEEE"
79c959833ff49f860e20b6654dbf4d6acdee0230,Hide-and-Seek: A Data Augmentation Technique for Weakly-Supervised Localization and Beyond,"Hide-and-Seek: A Data Augmentation Technique
for Weakly-Supervised Localization and Beyond
Krishna Kumar Singh, Hao Yu, Aron Sarmasi, Gautam Pradeep, and Yong Jae Lee, Member, IEEE"
79b669abf65c2ca323098cf3f19fa7bdd837ff31,Efficient tensor based face recognition,"Deakin Research Online
This is the published version:
Rana, Santu, Liu, Wanquan, Lazarescu, Mihai and Venkatesh, Svetha 2008, Efficient tensor
ased face recognition, in ICPR 2008 : Proceedings of the 19th International Conference on
Pattern Recognition, IEEE, Washington, D. C., pp. 1-4.
Available from Deakin Research Online:
http://hdl.handle.net/10536/DRO/DU:30044585
Reproduced with the kind permissions of the copyright owner.
Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.
Copyright : 2008, IEEE"
790bce6cbe30ef9bc4431c988d0d747da1c6bb1d,Salient Object Detection Using Window Mask Transferring with Multi-layer Background Contrast,"Salient Object Detection using Window Mask
Transferring with Multi-layer Background
Contrast
Quan Zhou1, Shu Cai1, Shaojun Zhu2, and Baoyu Zheng1
College of Telecom & Inf Eng, Nanjing Univ of Posts & Telecom, P.R. China
Dept. of Comput & Inf Sci, University of Pennsylvania Philadelphia, PA, USA"
79f02a006c77f2d7fece8302bf54d851269a515a,A Study of Deep CNN-Based Classification of Open and Closed Eyes Using a Visible Light Camera Sensor,"Article
A Study of Deep CNN-Based Classification of Open
nd Closed Eyes Using a Visible Light Camera Sensor
Ki Wan Kim, Hyung Gil Hong, Gi Pyo Nam and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; (K.W.K.); (H.G.H.); (G.P.N.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 2 June 2017; Accepted: 28 June 2017; Published: 30 June 2017"
79fc3c10ce0d0f48b25c8cf460048087c97e2e90,Variational Bi-domain Triplet Autoencoder,"Variational learning across domains with triplet
information
Rita Kuznetsova1,2, Oleg Bakhteev1,2 and Alexandr Ogaltsov2,3
Moscow Institute of Physics and Technology
National Research University Higher School of Economics
{rita.kuznetsova,
Antiplagiat Company"
79dd787b2877cf9ce08762d702589543bda373be,Face detection using SURF cascade,"Face Detection Using SURF Cascade
Jianguo Li, Tao Wang, Yimin Zhang
Intel Labs China"
7917a7549f00306db8775d2d559460fc93dbde5a,DaP 2018 Proceedings of the Workshop on Dialogue and Perception,"DaP 2018
Proceedings of the Workshop on
Dialogue and Perception
Christine Howes, Simon Dobnik and Ellen Breitholtz (eds.)
Gothenburg, 14–15 June 2018"
7985ac55e170273dd0ffa6bd756e588bab301d57,Mind's eye: A recurrent visual representation for image caption generation,"Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation
Xinlei Chen1, C. Lawrence Zitnick2
Carnegie Mellon University. 2Microsoft Research Redmond.
A good image description is often said to “paint a picture in your mind’s
eye.” The creation of a mental image may play a significant role in sentence
omprehension in humans [3]. In fact, it is often this mental image that is
remembered long after the exact sentence is forgotten [5, 7]. As an illus-
trative example, Figure 1 shows how a mental image may vary and increase
in richness as a description is read. Could computer vision algorithms that
omprehend and generate image captions take advantage of similar evolving
visual representations?
Recently, several papers have explored learning joint feature spaces for
images and their descriptions [2, 4, 9]. These approaches project image
features and sentence features into a common space, which may be used
for image search or for ranking image captions. Various approaches were
used to learn the projection, including Kernel Canonical Correlation Anal-
ysis (KCCA) [2], recursive neural networks [9], or deep neural networks
[4]. While these approaches project both semantics and visual features to
common embedding, they are not able to perform the inverse projection.
That is, they cannot generate novel sentences or visual depictions from the"
79d13b74952449667c769be76dac9065db1acc22,"Fine-grained Recognition: Data, Recognition, and Application a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy","FINE-GRAINED RECOGNITION:
DATA, RECOGNITION, AND APPLICATION
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Jonathan Krause
October 2016"
796e333796024acf662fe76c4761607eaaa98a5d,Nested multi-instance image classification,"Nested multi-instance image classification
Anonymous Authors"
794fd0fb684f90704e108677edb40d3ff6a85f8c,"EyeLad: Remote Eye Tracking Image Labeling Tool - Supportive Eye, Eyelid and Pupil Labeling Tool for Remote Eye Tracking Videos","EyeLad:Remote Eye Tracking Image Labeling Tool
Supportive eye, eyelid and pupil labeling tool for remote eye tracking videos.
Wolfgang Fuhl1, Thiago Santini1, David Geisler1, Thomas K¨ubler1, and Enkelejda Kasneci1
{wolfgang.fuhl, thiago.santini, david.geisler, thomas.kuebler,
Perception Engineering, University of Tbingen, Tbingen, Germany
Keywords:
data labeling, image processing, feature tracking, object detection, eye tracking data, remote eye tracking"
793e896c2f66fb66bfc6c834f2678cf349af4e20,Incorporating Computation Time Measures During Heterogeneous Features Selection in a Boosted Cascade People Detector,"Incorporating Computation Time Measures during
Heterogeneous Features Selection in a Boosted Cascade
People Detector
Alhayat Ali Mekonnen, Frédéric Lerasle, Ariane Herbulot, Cyril Briand
To cite this version:
Alhayat Ali Mekonnen, Frédéric Lerasle, Ariane Herbulot, Cyril Briand. Incorporating Computation
Time Measures during Heterogeneous Features Selection in a Boosted Cascade People Detector. Inter-
national Journal of Pattern Recognition and Artificial Intelligence, World Scientific Publishing, 2016,
0 (8), pp.1655022. <10.1142/S0218001416550223>. <hal-01300472>
HAL Id: hal-01300472
https://hal.archives-ouvertes.fr/hal-01300472
Submitted on 11 Apr 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents"
7960336aed2aa701c147ccfe36d153046f1500bc,Occlusion Reasoning for Multiple Object Visual Tracking,"OCCLUSION REASONING
FOR MULTIPLE OBJECT VISUAL TRACKING
ZHENG WU
Dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
BOSTON
UNIVERSITY"
79f12f28b060221f3b80ea1b7b16779ef9362ca8,Investigations of face expertise in the social developmental disorders.,"Jason J.S. Barton,
MD, PhD, FRCPC
Rebecca L. Hefter, BSc
Mariya V.
Cherkasova, BSc
Dara S. Manoach,
Address correspondence and
reprint requests to Dr. Jason
J.S. Barton, Neuro-
ophthalmology Section D, VGH
Eye Care Center, 2550 Willow
Street, Vancouver, BC Canada
V5Z 3N9
Investigations of face expertise in the
social developmental disorders"
79e7f1e13e8aafee6558729804cf1284134815b3,Deep Representation Learning for Domain Adaptation of Semantic Image Segmentation,"BENBIHI, GEIST, PRADALIER: DEEP REPRESENTATION LEARNING
Deep Representation Learning for Domain
Adaptation of Semantic Image Segmentation
Assia Benbihi1
Matthieu Geist2
Cedric Pradalier1
UMI 2958 GT-CNRS – GeorgiaTech
Lorraine
Metz, France
Université de Lorraine
CNRS LIEC UNR 7360,
Metz, France"
79335495e54446541a3655d145911beba7c29d7d,The face inversion effect in opponent-stimulus rivalry,"ORIGINAL RESEARCH ARTICLE
published: 15 May 2014
doi: 10.3389/fnhum.2014.00295
The face inversion effect in opponent-stimulus rivalry
Malte Persike*, Bozana Meinhardt-Injac and Günter Meinhardt
Research Methods and Statistics, Department of Psychology, Institute of Psychology, Johannes Gutenberg University Mainz, Mainz, Germany
Edited by:
Davide Rivolta, University of East
London, UK
Reviewed by:
Guillaume A. Rousselet, University
of Glasgow, UK
Timo Stein, Charité
Universitätsmedizin Berlin, Germany
*Correspondence:
Malte Persike, Research Methods
nd Statistics, Department of
Psychology, Institute of Psychology,
Johannes Gutenberg University
Mainz, Mainz, Rheinland-Pfalz,"
7918698ffa86cdd6123bc2f1f613be1ab38c0d2f,Learning to Recognize Faces in Realistic Conditions,"Learning to Recognize Faces in Realistic Conditions
Anonymous Author(s)
Affiliation
Address
email"
79ade61f677dcadfc2b46444d2e0275d25ca1f06,Nonnegative Tucker decomposition with alpha-divergence,"NONNEGATIVE TUCKER DECOMPOSITION WITH ALPHA-DIVERGENCE
Yong-Deok Kim §, Andrzej Cichocki †, Seungjin Choi §
§ Department of Computer Science, POSTECH, Korea
Brain Science Institute, RIKEN, Japan"
795bd86fc22ec544e7cd9b3d3c2ccabe72de54ec,Max Margin AND / OR Graph Learning for Efficient Articulated Object,"Noname manuscript No.
(will be inserted by the editor)
Max Margin AND/OR Graph Learning for Efficient Articulated Object
Parsing
Long (Leo) Zhu · Yuanhao Chen · Chenxi Lin · Alan Yuille
the date of receipt and acceptance should be inserted later"
79815f31f42708fd59da345f8fa79f635a070730,Autoregressive Quantile Networks for Generative Modeling,"Autoregressive Quantile Networks for Generative Modeling
Georg Ostrovski * 1 Will Dabney * 1 R´emi Munos 1"
2d919473cf43e2522b2366271b778ce6ce7dc75c,Appearance-Based Re-identification of Humans in Low-Resolution Videos Using Means of Covariance Descriptors,"Appearance-based Re-Identification of Humans in Low-Resolution Videos
using Means of Covariance Descriptors
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB
J¨urgen Metzler
76131 Karlsruhe, Germany"
2d8ffa4a27b3e3b792b2d2516bbcb1a47c114846,Multi-view Laplacian Eigenmaps Based on Bag-of-Neighbors For RGBD Human Emotion Recognition,"JOURNAL OF LATEX CLASS FILES
Multi-view Laplacian Eigenmaps
Based on Bag-of-Neighbors
For RGBD Human Emotion Recognition
Shenglan Liu, Member, IEEE, Shuai Guo, Hong Qiao, Senior Member, IEEE, Yang Wang, Bin Wang,
Wenbo Luo, Mingming Zhang, Keye Zhang, and Bixuan Du"
2dfc48168c0de9e6c7135293c95b7d794fcfbbbf,Query-Driven Locally Adaptive Fisher Faces and Expert-Model for Face Recognition,"-4244-1437-7/07/$20.00 ©2007 IEEE
I - 141
ICIP 2007"
2d27e2d8188743c4e3ca30fda5c25e70775f03e8,FollowMe: Person following and gesture recognition with a quadrocopter,"FollowMe: Person Following and
Gesture Recognition with a Quadrocopter
Tayyab Naseer*, J¨urgen Sturm†, and Daniel Cremers†
*Department of Computer Science, University of Freiburg, Germany
Department of Computer Science, Technical University of Munich, Germany"
2db0d42192618d0c7419321fac06b887d96dea53,Image Set Classification for Low Resolution Surveillance,"Image Set Classification
for Low Resolution Surveillance
Uzair Nadeem, Syed Afaq Ali Shah, Mohammed Bennamoun, Roberto Togneri
nd Ferdous Sohel"
2d532fd0636fd49dd893c9dff7fe615f974ec826,Causal Inference in Nonverbal Dyadic Communication with Relevant Interval Selection and Granger Causality,"Causal Inference in Nonverbal Dyadic Communication with Relevant
Interval Selection and Granger Causality
Lea M¨uller1, Maha Shadaydeh1∗, Martin Th¨ummel1, Thomas Kessler2, Dana Schneider2 and Joachim
Denzler1,3
Computer Vision Group, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
Department of Social Psychology, Friedrich Schiller University of Jena, Humboldtstrasse 26, 07743 Jena, Germany
Michael Stifel Center, Ernst-Abbe-Platz 2, 07743 Jena, Germany
Keywords:
Nonverbal emotional communication, Granger causality, maximally coherent intervals"
2d54dc50bbc1a0a63b6f1000bc255f88d57a7a63,It's All Fun and Games until Someone Annotates: Video Games with a Purpose for Linguistic Annotation,"Transactions of the Association for Computational Linguistics, 2 (2014) 449–463. Action Editor: Mirella Lapata.
Submitted 10/2013; Revised 03/2014; Revised 08/2014; Published 10/2014. c(cid:13)2014 Association for Computational Linguistics."
2d294c58b2afb529b26c49d3c92293431f5f98d0,Maximum Margin Projection Subspace Learning for Visual Data Analysis,"Maximum Margin Projection Subspace Learning
for Visual Data Analysis
Symeon Nikitidis, Anastasios Tefas, Member, IEEE, and Ioannis Pitas, Fellow, IEEE"
2df731a01db3caf45105c40ac266f76fe1871470,Affective issues in adaptive educational environments,"Neapolis University
HEPHAESTUS Repository
School of Information Sciences
http://hephaestus.nup.ac.cy
Book chapters
Affective Issues in Adaptive Educational Environments
Leontidis, Makis
IGI Global
http://hdl.handle.net/11728/6301
Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository"
2d51b52b3eeae8877d1a76ca564a35b8e5051c9d,AU recognition on 3D faces based on an extended statistical facial feature model,"AU Recognition on 3D Faces Based On An Extended Statistical Facial
Feature Model
Xi Zhao, Emmanuel Dellandr´ea, Liming Chen and Dimitris Samaras"
2da845c75bf9ff02bd27b6e2ceb4732e89b05fad,Linear Support Tensor Machine With LSK Channels: Pedestrian Detection in Thermal Infrared Images,"Linear Support Tensor Machine:
Pedestrian Detection in Thermal Infrared Images
Sujoy Kumar Biswas, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE"
2d690c63b00e68782666ebf86ac0756fad100a18,Multiple-view face hallucination by a novel regression analysis in tensor space,"The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016
Multiple-View Face Hallucination by a Novel
Regression Analysis in Tensor Space
Faculty of Engineering and Technology, Panyapiwat Institute of Management, Thailand
Parinya Sanguansat"
2d6130f043e69849fc0443bb489c5d21f933eddd,Convolutional LSTM Networks for Video-based Person Re-identification,"Noname manuscript No.
(will be inserted by the editor)
Deep Recurrent Convolutional Networks for Video-based Person
Re-identification: An End-to-End Approach
Lin Wu · Chunhua Shen · Anton van den Hengel"
2d1f710ba593833cdb0b63880f60146504cf1dc5,Linguistically-driven Framework for Computationally Efficient and Scalable Sign Recognition,"Linguistically-driven Framework for Computationally
Efficient and Scalable Sign Recognition
Dimitris Metaxas*, Mark Dilsizian*, Carol Neidle**
*Rutgers University, **Boston University
*Rutgers University, CBIM, Department of Computer Science, 617 Bowser Road, Piscataway, NJ  08854
**Boston University Linguistics, 621 Commonwealth Ave., Boston, MA  02215"
2dc62458979dfc00ec195258ea8809077c5de442,Robust Painting Recognition and Registration for Mobile Augmented Reality,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007
Robust Painting Recognition and Registration
for Mobile Augmented Reality
Niki Martinel*, Student Member, IEEE, Christian Micheloni, Member, IEEE,
nd Gian Luca Foresti, Senior Member, IEEE"
2d120c8c74bc029a14fb0726ef103c873a5090eb,Real-Time Gender Classification by Face,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 3, 2016
Real-Time Gender Classification by Face
Eman Fares Al Mashagba
Computer Sciences Department
Zarqa University
Zarqa, Jordan"
2d88e7922d9f046ace0234f9f96f570ee848a5b5,Detection under Privileged Information,"Building Better Detection with Privileged Information
Z. Berkay Celik
Department of CSE
The Pennsylvania State
University
Patrick McDaniel
Department of CSE
The Pennsylvania State
University
Rauf Izmailov
Applied Communication
Sciences
Basking Ridge, NJ, US
Nicolas Papernot
Department of CSE
The Pennsylvania State
University
Ananthram Swami
Army Research
Laboratory"
2d0dfa8779aefa1a9a89a1b400188fa9114b4c0a,Functional Map of the World,"Functional Map of the World
Gordon Christie1
Neil Fendley1
The Johns Hopkins University Applied Physics Laboratory
James Wilson2
Ryan Mukherjee1
DigitalGlobe"
2dbb4b45b6a392268ce45d16fb944a652d434bd2,Maximal Cliques that Satisfy Hard Constraints with Application to Deformable Object Model Learning,"Maximal Cliques that Satisfy Hard Constraints with
Application to Deformable Object Model Learning
Xinggang Wang1∗ Xiang Bai1 Xingwei Yang2† Wenyu Liu1 Longin Jan Latecki3
Dept. of Electronics and Information Engineering, Huazhong Univ. of Science and Technology, China
Image Analytics Lab, GE Research, One Research Circle, Niskayuna, NY 12309, USA
Dept. of Computer and Information Sciences, Temple Univ., USA"
2d3d4883350a48708cdc0c260479110e5eed965a,Leveraging Visual Question Answering for Image-Caption Ranking,"Leveraging Visual Question Answering for
Image-Caption Ranking
Xiao Lin Devi Parikh
Virginia Tech"
2d12efd5aef4c180ecfaf65184eb7b56e5a40329,3D Object Recognition Based on Image Features: A Survey,"D Object Recognition Based on Image Features: A
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May 2014
Survey
Dept. of Information Systems, Faculty of Computers and
Khaled Alhamzi
Information, Mansoura University
Mansoura, Egypt
Kalhamzi {at} yahoo.com
Mohammed Elmogy
Dept. of Information Technology, Faculty of Computers and
Information, Mansoura University
Mansoura, Egypt
Dept. of Information Systems, Faculty of Computers and
Sherif Barakat
Information, Mansoura University
Mansoura, Egypt"
2d1b8f60f2724efd6c9344870fb60e8525157d70,Parallel Multiscale Autoregressive Density Estimation,"Parallel Multiscale Autoregressive Density Estimation
Scott Reed 1 A¨aron van den Oord 1 Nal Kalchbrenner 1 Sergio G´omez Colmenarejo 1 Ziyu Wang 1
Yutian Chen 1 Dan Belov 1 Nando de Freitas 1"
2d05e768c64628c034db858b7154c6cbd580b2d5,FACIAL EXPRESSION RECOGNITION : Machine Learning using C #,"Neda Firoz et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.8, August- 2015, pg. 431-446
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
IJCSMC, Vol. 4, Issue. 8, August 2015, pg.431 – 446
RESEARCH ARTICLE
ISSN 2320–088X
FACIAL EXPRESSION RECOGNITION:
Machine Learning using C#
Author: Neda Firoz
Advisor: Dr. Prashant Ankur Jain"
2d95cf1df9701de410792997205c71208bde98d9,Visual-Inertial based autonomous navigation of an Unmanned Aerial Vehicle in GPS-Denied environments,"FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO
Visual-Inertial based autonomous
navigation of an Unmanned Aerial
Vehicle in GPS-Denied environments
Francisco de Babo Martins
EEC0035 - PREPARAÇÃO DA DISSERTAÇÃO
Mestrado Integrado em Engenharia Electrotécnica e de Computadores
Supervisor: Luís Teixeira
February 18, 2015"
2d42b5915ca18fdc5fa3542bad48981c65f0452b,Generalization and Equilibrium in Generative Adversarial Nets (GANs),"Generalization and Equilibrium in Generative Adversarial Nets
(GANs)
Sanjeev Arora∗
Rong Ge †
Yingyu Liang‡
Tengyu Ma§
Yi Zhang¶"
2d072cd43de8d17ce3198fae4469c498f97c6277,Random Cascaded-Regression Copse for Robust Facial Landmark Detection,"Random Cascaded-Regression Copse for Robust
Facial Landmark Detection
Zhen-Hua Feng, Student Member, IEEE, Patrik Huber, Josef Kittler, Life Member, IEEE, William Christmas,
nd Xiao-Jun Wu"
2d71e0464a55ef2f424017ce91a6bcc6fd83f6c3,A Survey on:Image Process using Two-Stage Crawler,"International Journal of Computer Applications (0975 – 8887)
National Conference on Advancements in Computer & Information Technology (NCACIT-2016)
A Survey on: Image Process using Two- Stage Crawler
Nilesh Wani
Assistant Professor
SPPU, Pune
Department of Computer Engg
Department of Computer Engg
Department of Computer Engg
Dipak Bodade
BE Student
SPPU, Pune
Savita Gunjal
BE Student
SPPU, Pune
Varsha Mahadik
BE Student
Department of Computer Engg
SPPU, Pune
dditional"
2d84c0d96332bb4fbd8acced98e726aabbf15591,UNIVERSITY OF CALIFORNIA RIVERSIDE Investigating the Role of Saliency for Face Recognition A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering,"UNIVERSITY OF CALIFORNIA
RIVERSIDE
Investigating the Role of Saliency for Face Recognition
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Electrical Engineering
Ramya Malur Srinivasan
March 2015
Dissertation Committee:
Professor Amit K Roy-Chowdhury, Chairperson
Professor Ertem Tuncel
Professor Conrad Rudolph
Professor Tamar Shinar"
2d8d089d368f2982748fde93a959cf5944873673,Visually Guided Spatial Relation Extraction from Text,"Proceedings of NAACL-HLT 2018, pages 788–794
New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics"
2d8eff4b085b57788e2f4485c81eb80910f94da0,The impact of organizational performance on the emergence of Asian American leaders.,"Journal of Applied Psychology
The Impact of Organizational Performance on the
Emergence of Asian American Leaders
Seval Gündemir, Andrew M. Carton, and Astrid C. Homan
Online First Publication, September 24, 2018. http://dx.doi.org/10.1037/apl0000347
CITATION
Gündemir, S., Carton, A. M., & Homan, A. C. (2018, September 24). The Impact of Organizational
Performance on the Emergence of Asian American Leaders. Journal of Applied Psychology.
Advance online publication. http://dx.doi.org/10.1037/apl0000347"
2df4d05119fe3fbf1f8112b3ad901c33728b498a,Multi-task Learning for Structured Output Prediction,"Facial landmark detection using structured output deep
neural networks
Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien
Adam∗2
LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France
LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France.
September 24, 2015"
2d7d8c468bdf123b50ea473fe78a178bfc50724c,Evaluating multi-modal deep learning systems with microworlds,"Research proposal: Evaluating multi-modal deep
learning systems with micro-worlds
Alexander Kuhnle
University of Cambridge (United Kingdom)
6th November 2016"
2d9a49666bd72e7ba06579d9411ceb2df5205466,3D Face Mesh Modeling from Range Images for 3D Face Recognition,"-4244-1437-7/07/$20.00 ©2007 IEEE
IV - 509
ICIP 2007"
2d22a60e69ebdb3fde056adcf4f6a08ccdb6106f,Robust Facial Expression Recognition,"IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014
ISSN: 2320 – 8791 (Impact Factor: 1.479)
www.ijreat.org
Robust Facial Expression Recognition
Mr. Mukund Kumar1, Ms. D. Udaya2
, 2Computer Science and Engineering, Dr. Pauls Engineering College,Villupuram"
2d6d4899c892346a9bc8902481212d7553f1bda4,Neural Face Editing with Intrinsic Image Disentangling SUPPLEMENTARY MATERIAL,"Neural Face Editing with Intrinsic Image Disentangling
SUPPLEMENTARY MATERIAL
Zhixin Shu1 Ersin Yumer2 Sunil Hadap2 Kalyan Sunkavalli2 Eli Shechtman 2 Dimitris Samaras1,3
Stony Brook University 2Adobe Research 3 CentraleSup´elec, Universit´e Paris-Saclay
. Implementation: more details
In this section, we provide more details regarding
the implementation of the rendering layers fshading and
fimage-formation as described in the paper.
.1. Shading Layer
The shading layer is rendered with a spherical harmonics
illumination representation [6, 2, 7, 1].
where
= c3n2
z − c5
= 2c1nxnz
= c1n2
x − c1n2
The forward process is described by equations (3),(4),
nd (5) in the main paper. We now provide the backward
process, i.e., the partial derivatives ∂Si"
41308edf82ae645923efea2d6979d076b975ee25,Convolutional Scale Invariance for Semantic Segmentation,"Convolutional Scale Invariance
for Semantic Segmentation
Ivan Kre(cid:20)so, Denis (cid:20)Cau(cid:20)sevi(cid:19)c, Josip Krapac and Sini(cid:20)sa (cid:20)Segvi(cid:19)c
Faculty of Electrical Engineering and Computing
University of Zagreb, Croatia"
4188bd3ef976ea0dec24a2512b44d7673fd4ad26,Nonlinear Non-Negative Component Analysis Algorithms,"Nonlinear Non-Negative Component
Analysis Algorithms
Stefanos Zafeiriou, Member, IEEE, and Maria Petrou, Senior Member, IEEE"
41000c3a3344676513ef4bfcd392d14c7a9a7599,A Novel Approach For Generating Face Template Using Bda,"A NOVEL APPROACH FOR GENERATING FACE
TEMPLATE USING BDA
Shraddha S. Shinde1 and Prof. Anagha P. Khedkar2
P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India.
Associate Professor, Department of Computer Engineering, MCERC, Nashik (M.S.),
India"
418b468b804379e8a600bca0395e01bffb7e08de,Class-specific kernel linear regression classification for face recognition under low-resolution and illumination variation conditions,"Chou et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:28
DOI 10.1186/s13634-016-0328-0
Open Access
R ES EAR CH
Class-specific kernel linear regression
lassification for face recognition under
low-resolution and illumination variation
onditions
Yang-Ting Chou, Shih-Ming Huang and Jar-Ferr Yang*"
416c647cd9f8c1d77db8676195dff7ae5dfc1fd8,Grammatical Facial Expressions Recognition with Machine Learning,"Grammatical Facial Expressions Recognition with Machine Learning
Fernando de Almeida Freitas
Incluir Tecnologia
Itajub´a, MG, Brazil
Universidade de S˜ao Paulo
S˜ao Paulo, SP, Brazil
Clodoaldo Aparecido de Moraes Lima
Sarajane Marques Peres
Felipe Venˆancio Barbosa
Universidade de S˜ao Paulo
S˜ao Paulo, SP, Brazil"
414722ddd809b460d5b397eaf454fbb697cfb881,Dimensionality Reduction and Classification through PCA and LDA,"International Journal of Computer Applications (0975 – 8887)
Volume 122 – No.17, July 2015
Dimensionality Reduction and Classification
through PCA and LDA
Telgaonkar Archana H.
PG Student
Department of CS and IT
Dr. BAMU, Aurangabad"
41f6368bc4ec5e334c81a9d16185205b3acecee3,Machine Learning Methods from Group to Crowd Behaviour Analysis,"Machine learning methods from group to crowd
ehaviour analysis
Luis Felipe Borja-Borja1, Marcelo Saval-Calvo2, and Jorge Azorin-Lopez2
Universidad Central del Ecuador,
Ciudadela Universitaria Av. Am´erica, Quito, Ecuador
Computer Technology Department, University of Alicante,
Carretera San Vicente s/n, 03690, San Vicente del Raspeig (Spain)"
41dd2ca8929bfdae49a4bf85de74df4723ef9c3b,Correction by Projection: Denoising Images with Generative Adversarial Networks,"CORRECTION BY PROJECTION: DENOISING IMAGES
WITH GENERATIVE ADVERSARIAL NETWORKS
Subarna Tripathi
Zachary C. Lipton
Truong Q. Nguyen
UC San Diego
UC San Diego
UC San Diego"
4129e1075c7856d8bebbf0655ae00a4843109429,A Tale of Two Losses : Discriminative Deep Feature Learning for Person Re-Identification,"A Tale of Two Losses: Discriminative Deep Feature Learning for
Person Re-Identification
Borgia, A., Hua, Y., & Robertson, N. (2017). A Tale of Two Losses: Discriminative Deep Feature Learning for
Person Re-Identification. In Irish Machine Vision and Image Processing Conference 2017: Proceedings
Published in:
Irish Machine Vision and Image Processing Conference 2017: Proceedings
Document Version:
Peer reviewed version
Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal
Publisher rights
© 2017 National University of Ireland Maynooth.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.
Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the"
414715421e01e8c8b5743c5330e6d2553a08c16d,PoTion : Pose MoTion Representation for Action Recognition,"PoTion: Pose MoTion Representation for Action Recognition
Philippe Weinzaepfel2
Inria∗
NAVER LABS Europe
J´erˆome Revaud2 Cordelia Schmid1
Vasileios Choutas1,2"
41f7c03519a2b108c064a2126daf627edde14c1e,Generic Object Detection using AdaBoost,"Generic Object Detection using AdaBoost
Ben Weber
Department of Computer Science
University of California, Santa Cruz
Santa Cruz, CA 95064"
4196e0b77f88ea01cd868c535befb52c2722454f,3D Facial similarity: Automatic assessment versus perceptual judgments,"D Facial Similarity: Automatic Assessment versus Perceptual
Judgments
Anush K. Moorthy, Anish Mittal, Sina Jahanbin, Kristen Grauman and Alan C. Bovik"
41ab4939db641fa4d327071ae9bb0df4a612dc89,Interpreting Face Images by Fitting a Fast Illumination-Based 3D Active Appearance Model,"Interpreting Face Images by Fitting a Fast
Illumination-Based 3D Active Appearance
Model
Salvador E. Ayala-Raggi, Leopoldo Altamirano-Robles, Janeth Cruz-Enriquez
Instituto Nacional de Astrof´ısica, ´Optica y Electr´onica,
Luis Enrique Erro #1, 72840 Sta Ma. Tonantzintla. Pue., M´exico
Coordinaci´on de Ciencias Computacionales
{saraggi, robles,"
41a5e043d499967f405e823b959e2ac4fdf9ff71,Extending Recognition in a Changing Environment,"Extending Recognition in a Changing Environment
Department of Computer Science and Applied Mathematics, The Weizmann Institue of Science, Rehovot, Israel
Daniel Harari and Shimon Ullman
{danny.harari,
Keywords:
Object Recognition, Video Analysis, Dynamic Model Update, Unsupervised Learning, Bayesian Model."
41a6196f88beced105d8bc48dd54d5494cc156fb,Using facial images for the diagnosis of genetic syndromes: A survey,"015 International Conference on
Communications, Signal
Processing, and their Applications
(ICCSPA 2015)
Sharjah, United Arab Emirates
7-19 February 2015
IEEE Catalog Number:
ISBN:
CFP1574T-POD
978-1-4799-6533-5"
41ddd29d9e56bb87b9f988afc75cd597657b2600,R4-A.3: Human Detection & Re-Identification for Mass Transit Environments,"R4-A.3: Human Detection & Re-Identification for
Mass Transit Environments
PARTICIPANTS
Rich Radke
Title
Faculty/Staff
Institution
Graduate, Undergraduate and REU Students
Srikrishna Karanam
Eric Lam
Degree Pursued
Institution
Email
Month/Year of Graduation
5/2017
5/2017
PROJECT DESCRIPTION
Project Overview
The computer vision research problem of human re-identification or “re-id” is generally posed as follows:
Given a cropped rectangle of pixels representing a human in one view, a re-id algorithm produces a similarity"
41decbe12a8aa7996163636e09d1ce1372c271cd,Attentive Fashion Grammar Network for Fashion Landmark Detection and Clothing Category Classification,"Attentive Fashion Grammar Network for
Fashion Landmark Detection and Clothing Category Classification
Wenguan Wang∗1,2, Yuanlu Xu∗2, Jianbing Shen†1, and Song-Chun Zhu2
Beijing Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, China
Department of Computer Science and Statistics, University of California, Los Angeles, USA"
413160257096b9efcd26d8de0d1fa53133b57a3d,Customer satisfaction measuring based on the most significant facial emotion,"Customer satisfaction measuring based on the most
significant facial emotion
Mariem Slim, Rostom Kachouri, Ahmed Atitallah
To cite this version:
Mariem Slim, Rostom Kachouri, Ahmed Atitallah. Customer satisfaction measuring based on the
most significant facial emotion. 15th IEEE International Multi-Conference on Systems, Signals
Devices (SSD 2018), Mar 2018, Hammamet, Tunisia. <hal-01790317>
HAL Id: hal-01790317
https://hal-upec-upem.archives-ouvertes.fr/hal-01790317
Submitted on 11 May 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
41de109bca9343691f1d5720df864cdbeeecd9d0,Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality,"Article
Facial Emotion Recognition: A Survey and
Real-World User Experiences in Mixed Reality
Dhwani Mehta, Mohammad Faridul Haque Siddiqui and Ahmad Y. Javaid * ID
EECS Department, The University of Toledo, Toledo, OH 43606, USA; (D.M.);
(M.F.H.S.)
* Correspondence: Tel.: +1-419-530-8260
Received: 10 December 2017; Accepted: 26 January 2018; Published: 1 Febuary 2018"
41ed93fd97aa76b4abfda7a09168ad1799f34664,Video Event Detection: From Subvolume Localization to Spatiotemporal Path Search,"This document is downloaded from DR-NTU, Nanyang Technological
University Library, Singapore.
Title
Video event detection : from subvolume localization to
spatio-temporal path search
Author(s)
Tran, Du; Yuan, Junsong; Forsyth, David
Citation
Tran, D., Yuan, J., & Forsyth, D. (2014). Video Event
Detection: From Subvolume Localization to
Spatiotemporal Path Search. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(2), 404-
http://hdl.handle.net/10220/19322
Rights
© 2014 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other
uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any"
41d9a240b711ff76c5448d4bf4df840cc5dad5fc,Image Similarity Using Sparse Representation and Compression Distance,"JOURNAL DRAFT, VOL. X, NO. X, APR 2013
Image Similarity Using Sparse Representation
nd Compression Distance
Tanaya Guha, Student Member, IEEE, and Rabab K Ward, Fellow, IEEE"
419a6fca4c8d73a1e43003edc3f6b610174c41d2,A component based approach improves classification of discrete facial expressions over a holistic approach,"A Component Based Approach Improves Classification of Discrete
Facial Expressions Over a Holistic Approach
Kenny Hong, and Stephan K. Chalup, Senior Member, IEEE and Robert A.R. King"
41a174c27f0b431d62d0f50051bce7f5b3b4ce64,A System for Object Class Detection,"A system for object class detection
Daniela Hall
INRIA Rh^one-Alpes, 655, ave de l’Europe,
8320 St. Ismier, France"
4131aa28d640d17e1d63ca82e55cc0b280db0737,Coulomb Gans: Provably Optimal Nash Equi-,"Under review as a conference paper at ICLR 2018
COULOMB GANS: PROVABLY OPTIMAL NASH EQUI-
LIBRIA VIA POTENTIAL FIELDS
Anonymous authors
Paper under double-blind review"
4180978dbcd09162d166f7449136cb0b320adf1f,Real-time head pose classification in uncontrolled environments with Spatio-Temporal Active Appearance Models,"Real-time head pose classification in uncontrolled environments
with Spatio-Temporal Active Appearance Models
Miguel Reyes∗ and Sergio Escalera+ and Petia Radeva +
Matematica Aplicada i Analisi ,Universitat de Barcelona, Barcelona, Spain
+ Matematica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain
+ Matematica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain"
41ea92251c668a99d2b9a31935fc71e6b6d82b6d,Canonical Correlation Analysis of Datasets With a Common Source Graph,"Canonical Correlation Analysis of Datasets
with a Common Source Graph
Jia Chen, Gang Wang, Student Member, IEEE,
Yanning Shen, Student Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE"
4106c49eb96b506ea1125c27e2b2f32ad79f8c48,"Markovian Tracking-by-Detection from a Single, Uncalibrated Camera","Markovian Tracking-by-Detection from a Single, Uncalibrated Camera
Michael D. Breitenstein1 Fabian Reichlin1 Bastian Leibe1,2 Esther Koller-Meier1 Luc Van Gool1,3
ETH Zurich
RWTH Aachen
KU Leuven"
413a1a00f0eab2fcc3dcc0d821fb2f34e85f5d7a,Pedestrian detection by scene dependent classifiers with generative learning,"June 23-26, 2013, Gold Coast, Australia
978-1-4673-2754-1/13/$31.00 ©2013 IEEE"
413c960e57ec3fe713e7b3e070cb6072726874bd,A Search Space Strategy for Pedestrian Detection and Localization in World Coordinates,
41fafb5392ad5e33e5169d870812ab5edca301a1,Tree-Structured Stick Breaking Processes for Hierarchical Data,"TREE-STRUCTURED STICK BREAKING PROCESSES
FOR HIERARCHICAL DATA
By Ryan P. Adams, Zoubin Ghahramani and Michael I. Jordan
Many data are naturally modeled by an unobserved hierarchical
structure. In this paper we propose a flexible nonparametric prior over
processes to allow for trees of unbounded width and depth, where data
an live at any node and are infinitely exchangeable. One can view
our model as providing infinite mixtures where the components have a
dependency structure corresponding to an evolutionary diffusion down
tree. By using a stick-breaking approach, we can apply Markov chain
Monte Carlo methods based on slice sampling to perform Bayesian
inference and simulate from the posterior distribution on trees. We
pply our method to hierarchical clustering of images and topic
modeling of text data.
. Introduction. Structural aspects of models are often critical to ob-
taining flexible, expressive model families. In many cases, however, the
structure is unobserved and must be inferred, either as an end in itself or
to assist in other estimation and prediction tasks. This paper addresses an
important instance of the structure learning problem: the case when the
data arise from a latent hierarchy. We take a direct nonparametric Bayesian"
4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06,Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching,"Nighttime Face Recognition at Long Distance:
Cross-distance and Cross-spectral Matching
Hyunju Maenga, Shengcai Liaob, Dongoh Kanga, Seong-Whan Leea,
Anil K. Jaina;b
Dept. of Brain and Cognitive Eng. Korea Univ., Seoul, Korea
Dept. of Comp. Sci. & Eng. Michigan State Univ., E. Lansing, MI, USA 48824"
41690be86b39c55a26ea056261513ddd726d6601,Heterogeneous microarchitectures trump voltage scaling for low-power cores,"Heterogeneous Microarchitectures Trump Voltage Scaling
for Low-Power Cores
Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Ronald Dreslinski Jr.,
Thomas F. Wenisch, and Scott Mahlke
Advanced Computer Architecture Laboratory
Ann Arbor, MI, USA
{lukefahr, shrupad, reetudas, rdreslin, twenisch,"
4189aa74550c1761dd5927442d0a98ff3d3d1134,Residual Conv-Deconv Grid Network for Semantic Segmentation,"FOURURE ET AL.: RESIDUAL CONV-DECONV GRIDNET
Residual Conv-Deconv Grid Network for
Semantic Segmentation
Univ Lyon, UJM Saint-Etienne,
CNRS UMR 5516,
Hubert Curien Lab, F-42023
Saint-Etienne, France
INSA-Lyon,
LIRIS UMR CNRS 5205,
F-69621,
France
Damien Fourure1
Rémi Emonet1
Elisa Fromont1
Damien Muselet1
Alain Tremeau1
Christian Wolf2"
413a184b584dc2b669fbe731ace1e48b22945443,Human Pose Co-Estimation and Applications,"Human Pose Co-Estimation and Applications
Marcin Eichner and Vittorio Ferrari"
410017a1810308564dc54cb986b12f079428f966,A functional pipeline framework for landmark identification on 3D surface extracted from volumetric data,"RESEARCH ARTICLE
A functional pipeline framework for landmark
identification on 3D surface extracted from
volumetric data
Pan Zheng1,2*, Bahari Belaton2*, Iman Yi Liao3, Zainul Ahmad Rajion4,5
Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus,
Kuching, Malaysia, 2 School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia, 3 School of
Computer Science, The University of Nottingham Malaysia Campus, Semenyih, Malaysia, 4 School of Dental
Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia, 5 College of Dentistry, King Saud bin
Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
* (PZ); (BB)"
4183d1b79d54f5638063e6c59a2a873ee2cd1bed,Multi-cue pedestrian classification with partial occlusion handling,"Multi-Cue Pedestrian Classification With Partial Occlusion Handling
Markus Enzweiler1
Angela Eigenstetter2
Bernt Schiele2,3
Dariu M. Gavrila4,5
Image & Pattern Analysis Group, Univ. of Heidelberg, Germany
Computer Science Department, TU Darmstadt, Germany
MPI Informatics, Saarbr¨ucken, Germany
Environment Perception, Group Research, Daimler AG, Ulm, Germany
5 Intelligent Autonomous Systems Group, Univ. of Amsterdam, The Netherlands"
41c1b8f319e27be0c77c3b33cf877c29b1676501,"3D Face Recognition based on Radon Transform, PCA, LDA using KNN and SVM","I.J. Computer Network and Information Security, 2014, 7, 36-43
Published Online June 2014 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijcnis.2014.07.05
D Face Recognition based on Radon Transform,
PCA, LDA using KNN and SVM
P. S. Hiremath and Manjunatha Hiremath
Department of Computer Science, Gulbarga University, Gulbarga – 585106
e-mail: and
Karnataka, India"
83b7578e2d9fa60d33d9336be334f6f2cc4f218f,The S-HOCK dataset: Analyzing crowds at the stadium,"The S-HOCK Dataset: Analyzing Crowds at the Stadium
Davide Conigliaro1,3, Paolo Rota2, Francesco Setti3, Chiara Bassetti3, Nicola Conci4, Nicu Sebe4, Marco Cristani1,
University of Verona. 2Vienna Institute of Technology. 3ISTC–CNR (Trento). 4University of Trento.
The topic of crowd modeling in computer vision usually assumes a sin-
gle generic typology of crowd, which is very simplistic. In this paper we
dopt a taxonomy that is widely accepted in sociology, focusing on a partic-
ular category, the spectator crowd, which is formed by people “interested in
watching something specific that they came to see” [1]. This can be found
t the stadiums, amphitheaters, cinema, etc.
In particular, we propose a
novel dataset, the Spectators Hockey (S-HOCK), which deals with 4 hockey
matches during an international tournament.
The dataset is unique in the crowd literature, and in general in the
surveillance realm. The dataset analyzes the crowd at different levels of
detail. At the highest level, it models the network of social connections
mong the public (who knows whom in the neighborhood), what is the sup-
ported team and what has been the best action in the match; all of this has
een obtained by interviews at the stadium. At a medium level, spectators
re localized, and information regarding the pose of their heads and body is
given. Finally, at a lowest level, a fine grained specification of all the actions"
83b20fdd3eafd21a6971dacc73d85c484a093bfc,Interleaved Structured Sparse Convolutional Neural Networks,"Interleaved Structured Sparse Convolutional Neural Networks
Guotian Xie1,2,∗ Jingdong Wang3† Ting Zhang3
Jianhuang Lai1,2 Richang Hong4 Guo-Jun Qi5
Sun Yat-Sen University 2Guangdong Key Laboratory of Information Security Technology
Microsoft Research 4Hefei University of Technology 5University of Central Florida"
83ca4cca9b28ae58f461b5a192e08dffdc1c76f3,Detecting emotional stress from facial expressions for driving safety,"DETECTING EMOTIONAL STRESS FROM FACIAL EXPRESSIONS FOR DRIVING SAFETY
Hua Gao, Anil Y¨uce, Jean-Philippe Thiran
Signal Processing Laboratory (LTS5),
´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland"
83c19722450e8f7dcb89dabb38265f19efafba27,A framework with updateable joint images re-ranking for Person Re-identification,"A framework with updateable joint images re-ranking for Person
Re-identification
Yuan Mingyue1,2  Yin Dong1,2*  Ding Jingwen1,3*  Luo Yuhao1,2  Zhou Zhipeng1,2
Zhu Chengfeng1,2  Zhang Rui1,2
School of Information Science Technology, USTC, Hefei, Anhui 230027, China
Key Laboratory of Electromagnetic Space Information of CAS, Hefei, Anhui 230027, China"
8380b8f4e36c993eef23af42ccb382ae60aceabf,"URBAN-i: From urban scenes to mapping slums, transport modes, and pedestrians in cities using deep learning and computer vision","URBAN-i: From urban scenes to mapping slums, transport modes, and pedestrians
in cities using deep learning and computer vision
Mohamed R. Ibrahim1, James Haworth2 and Tao Cheng3
Department of Civil, Environmental and Geomatic Engineering, University College London (UCL)"
831fbef657cc5e1bbf298ce6aad6b62f00a5b5d9,Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning,
830b48f210f3905117b335e305166df4ec092b8b,Pixel-Level Encoding and Depth Layering for Instance-Level Semantic Labeling,"Pixel-level Encoding and Depth Layering for
Instance-level Semantic Labeling
Jonas Uhrig1,2, Marius Cordts1,3, Uwe Franke1, Thomas Brox2
Daimler AG R&D, 2University of Freiburg, 3TU Darmstadt"
8322ed1a3db7c63af40280a782e39fb01bfe96dd,Class label autoencoder for zero-shot learning,"Class label autoencoder for zero-shot learning
Guangfeng Lina,∗, Caixia Fana, Wanjun Chena, Yajun Chena, Fan Zhaoa
Information Science Department, Xian University of Technology,
5 South Jinhua Road, Xi’an, Shaanxi Province 710048, PR China"
833a2c168849697aae3589bbeef0cbca22808fe8,"Quantity, Contrast, and Convention in Cross-Situated Language Comprehension","Proceedings of the 19th Conference on Computational Language Learning, pages 226–236,
Beijing, China, July 30-31, 2015. c(cid:13)2015 Association for Computational Linguistics"
8306e384e7ca48445843bc025b08236cd181d7c6,Histogram of Oriented Gradients with Cell Average Brightness for Human Detection,"Metrol. Meas. Syst., Vol. XXIII (2016), No. 1, pp. 27–36.
METROLOGY AND MEASUREMENT SYSTEMS
Index 330930, ISSN 0860-8229
www.metrology.pg.gda.pl
HISTOGRAM OF ORIENTED GRADIENTS WITH CELL AVERAGE
BRIGHTNESS FOR HUMAN DETECTION
Marek Wójcikowski
Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
((cid:1) +48 58 347 1974)"
83c00537e0c3e226d999a5abf02464e138867e96,Pedestrians and their phones - detecting phone-based activities of pedestrians for autonomous vehicles,"Windsor Oceanico Hotel, Rio de Janeiro, Brazil, November 1-4, 2016
978-1-5090-1889-5/16/$31.00 ©2016 IEEE"
832e1d128059dd5ed5fa5a0b0f021a025903f9d5,Pairwise Conditional Random Forests for Facial Expression Recognition,"Pairwise Conditional Random Forests for Facial Expression Recognition
Arnaud Dapogny1
Kevin Bailly1
S´everine Dubuisson1
Sorbonne Universit´es, UPMC Univ Paris 06, CNRS, ISIR UMR 7222, 4 place Jussieu 75005 Paris"
83e093a07efcf795db5e3aa3576531d61557dd0d,Facial Landmark Localization Using Robust Relationship Priors and Approximative Gibbs Sampling,"Facial Landmark Localization using Robust
Relationship Priors and Approximative Gibbs
Sampling
Karsten Vogt, Oliver M¨uller and J¨orn Ostermann
Institut f¨ur Informationsverarbeitung (tnt)
Leibniz Universit¨at Hannover, Germany
{vogt, omueller,"
8326d3e57796dad294ab1c14a0688221550098b6,ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks,"Adaptive Blur and Control for improved training stability of
Generative Adversarial Networks
ABC-GAN:
Igor Susmelj 3 Eirikur Agustsson 3 Radu Timofte 3"
8377ac1b2dffb11cf48f456be2531c95d14aa6e5,Improving the Annotation of DeepFashion Images for Fine-grained Attribute Recognition,"Improving the Annotation of DeepFashion
Images for Fine-grained Attribute Recognition
Roshanak Zakizadeh, Michele Sasdelli, Yu Qian and Eduard Vazquez
Cortexica Vision Systems, London, UK"
838a4bcfeb36dc7bdb4a38f776fc0a70ce8ae9f0,Face Presentation Attack Detection using Biologically-inspired Features,
83ef7de2669bb2827208fd3a64ac910e276fbdb4,Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery,"Fully Convolutional Networks for Dense Semantic Labelling of
High-Resolution Aerial Imagery
Jamie Sherrah
Defence Science & Technology Group
Edinburgh, South Australia
email:
https://au.linkedin.com/jsherrah
June 9, 2016"
8397956c7ad3bd24c6c6c0b38866e165367327c0,Social Relation Trait Discovery from Visual LifeLog Data with Facial Multi-Attribute Framework,
83b4899d2899dd6a8d956eda3c4b89f27f1cd308,A Robust Approach for Eye Localization Under Variable Illuminations,"-4244-1437-7/07/$20.00 ©2007 IEEE
I - 377
ICIP 2007"
8387c58a5a3fd847f9b03760842dd49fec7cbb0e,Two-year-olds with autism orient to nonsocial contingencies rather than biological motion,"Vol 459 | 14 May 2009 | doi:10.1038/nature07868
LETTERS
Two-year-olds with autism orient to non-social
ontingencies rather than biological motion
Ami Klin1, David J. Lin1{, Phillip Gorrindo1{, Gordon Ramsay1,2 & Warren Jones1,3
Typically developing human infants preferentially attend to bio-
logical motion within the first days of life1. This ability is highly
onserved across species2,3 and is believed to be critical for filial
ttachment and for detection of predators4. The neural under-
pinnings of biological motion perception are overlapping with
rain regions involved in perception of basic social signals such
s facial expression and gaze direction5, and preferential attention
to biological motion is seen as a precursor to the capacity for
ttributing intentions to others6. However, in a serendipitous
observation7, we recently found that an infant with autism failed
to recognize point-light displays of biological motion, but was
instead highly sensitive to the presence of a non-social, physical
ontingency that occurred within the stimuli by chance. This
observation raised the possibility that perception of biological
motion may be altered in children with autism from a very early"
833fbf0e4be3ba82e7a1efdbc16813ee849d9942,Restricted Deformable Convolution based Road Scene Semantic Segmentation Using Surround View Cameras,"SUBMITTED TO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
Restricted Deformable Convolution based
Road Scene Semantic Segmentation
Using Surround View Cameras
Liuyuan Deng, Ming Yang, Hao Li, Tianyi Li, Bing Hu, Chunxiang Wang"
83d1617092b34804c3825fdf4292120c382fe043,Appearance-Based Multimodal Human Tracking and Identification for Healthcare in the Digital Home,"Sensors 2014, 14, 14253-14277; doi:10.3390/s140814253
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
Appearance-Based Multimodal Human Tracking and
Identification for Healthcare in the Digital Home
Mau-Tsuen Yang * and Shen-Yen Huang
Department of Computer Science & Information Engineering, National Dong-Hwa University, No. 1,
Sec. 2, Da-Hsueh Rd., Shoufeng, Hualien 974, Taiwan; E-Mail:
*  Author to whom correspondence should be addressed; E-Mail:
Tel.: +886-3-863-4028; Fax: +886-3-863-4010.
Received: 2 April 2014; in revised form: 3 July 2014 / Accepted: 8 July 2014 /
Published: 5 August 2014"
8323af714efe9a3cadb31b309fcc2c36c8acba8f,Automatic Real-Time Facial Expression Recognition for Signed Language Translation,"Automatic Real-Time
Facial Expression Recognition
for Signed Language Translation
Jacob Richard Whitehill
A thesis submitted in partial fulfillment of the requirements for the de-
gree of Magister Scientiae in the Department of Computer Science,
University of the Western Cape.
May 2006"
83fd5c23204147844a0528c21e645b757edd7af9,USDOT number localization and recognition from vehicle side-view NIR images,"USDOT Number Localization and Recognition From Vehicle Side-View NIR
Images
Orhan Bulan, Safwan Wshah, Ramesh Palghat, Vladimir Kozitsky and Aaron Burry
Palo Alto Research Center (PARC)
800 Phillips Rd. Webster NY 14580"
83ce2c969ea323784b9098b9b170e015d559a1df,Detecting domestic objects with ensembles of view-tuned support vector machine cascades trained on Web images,"Detecting Domestic Objects with Ensembles of
View-tuned Support Vector Machine Cascades Trained
on Web Images
Marco Kortkamp"
8395cf3535a6628c3bdc9b8d0171568d551f5ff0,Entropy Non-increasing Games for the Improvement of Dataflow Programming,"Entropy Non-increasing Games for the
Improvement of Dataflow Programming
Norbert B´atfai, Ren´at´o Besenczi, Gerg˝o Bogacsovics,
Fanny Monori∗
February 16, 2017"
834f5ab0cb374b13a6e19198d550e7a32901a4b2,Face Translation between Images and Videos using Identity-aware CycleGAN,"Face Translation between Images and Videos using Identity-aware CycleGAN
Zhiwu Huang†, Bernhard Kratzwald†, Danda Pani Paudel†, Jiqing Wu†, Luc Van Gool†‡
Computer Vision Lab, ETH Zurich, Switzerland
VISICS, KU Leuven, Belgium
{zhiwu.huang, paudel, jwu,"
83df0ec6071dfda29da831860fdb2a1f19a6b3bc,3D Face Recognition Using Joint Differential Invariants,"D Face Recognition Using Joint Differential
Invariants
Marinella Cadoni1, Manuele Bicego1,2, and Enrico Grosso1
Computer Vision Laboratory, DEIR, University of Sassari, Italy
Computer Science Dept., University of Verona, Italy"
832aae00e16c647716f1be38de233c9c15af9a28,Feature fusion for facial landmark detection,"Author's Accepted Manuscript
Feature fusion for facial landmark detection
Panagiotis Perakis, Theoharis Theoharis, Ioan-
nis A. Kakadiaris
Reference:
S0031-3203(14)00105-8
http://dx.doi.org/10.1016/j.patcog.2014.03.007
PR5053
www.elsevier.com/locate/pr
To appear in:
Received date: 10 March 2013
Revised date: 18 September 2013
Accepted date: 8 March 2014
Cite this article as: Panagiotis Perakis, Theoharis Theoharis,
http://dx.doi.org/10.1016/j.patcog.2014.03.007
Ioannis A.
This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form."
8320dbdd3e4712cca813451cd94a909527652d63,Ear Biometrics,"EAR BIOMETRICS
Mark Burge
nd Wilhelm Burger
Johannes Kepler University(cid:1) Institute of Systems Science(cid:1) A(cid:2) Linz(cid:1) Austria(cid:1)
urge(cid:1)cast(cid:2)uni(cid:3)linz(cid:2)ac(cid:2)at"
83d0b7100ddce32e37af72585f9aa4181e6447e3,Online Social Behavior Modeling for Multi-target Tracking,"Online Social Behavior Modeling for Multi-Target Tracking
Shu Zhang1 Abir Das1 Chong Ding2 Amit K. Roy-Chowdhury1
University of California, Riverside, CA 92521 USA"
833cd4265bd8162d3cfb483ce8f31eaef28e7a2e,Towards Effective Gans,"Under review as a conference paper at ICLR 2018
TOWARDS EFFECTIVE GANS
FOR DATA DISTRIBUTIONS WITH DIVERSE MODES
Anonymous authors
Paper under double-blind review"
83968f81f23a34e18e850fe2cf68bab51e22e35c,Attention-Driven Parts-Based Object Detection,"Attention-Driven Parts-Based Object Detection
Ilkka Autio & J.T. Lindgren
Department of Computer Science
University of Helsinki
Finland"
83e71455ee2070617ea35c02f03b7451187985d1,Faces Recognition with Image Feature Weights and Least Mean Square Learning Approach,"Faces Recognition with Image Feature Weights and Least Mean Square
Learning Approach
Dept. of Electrical Engineering, National Taiwan Uni. of Sci. & Technology, Taipei, Taiwan
Wei-Li Fang, Ying-Kuei Yang and Jung-Kuei Pan
Email:"
833bdee366f1e6250dea59bdebdcad271c7cfddd,Bayesian non-parametrics for multi-modal segmentation,"Bayesian Non-Parametrics for
Multi-Modal Segmentation
Thesis for obtaining the title of
Doctor of Engineering Science
(Dr.-Ing.)
of the Faculty of Natural Science and Technology I
of Saarland University
Wei-Chen Chiu, M.Sc.
Saarbrücken
September 2016"
837e99301e00c2244023a8a48ff98d7b521c93ac,Local Feature Evaluation for a Constrained Local Model Framework,"Local Feature Evaluation for a Constrained
Local Model Framework
Maiya Hori(B), Shogo Kawai, Hiroki Yoshimura, and Yoshio Iwai
Graduate School of Engineering, Tottori University,
01 Minami 4-chome, Koyama-cho, Tottori 680-8550, Japan"
83e7254431486d24715d4170680c6cbc8bdb2328,Image retrieval using visual attention,"IMAGE RETRIEVAL USING VISUAL ATTENTION
Liam M. Mayron
A Dissertation Submitted to the Faculty of
The College of Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy
Florida Atlantic University
Boca Raton, Florida
May 2008"
83c332971c4534907afc4865179c2de30f2792c4,Sparse and Dense Hybrid Representation via Dictionary Decomposition for Face Recognition,"Sparse And Dense Hybrid Representation
via Dictionary Decomposition
for Face Recognition
Xudong Jiang, Senior Member, IEEE, and Jian Lai, Student Member, IEEE"
8326b11dd0b81dcc169ce21fc12e0c9d632db6bd,Tracking and Recognition: A Unified Approach on Tracking and Recognition,"ISSN: 2321-8169
International Journal on Recent and Innovation Trends in Computing and Communication
Volume: 2 Issue: 11
3532 – 3539
_______________________________________________________________________________________________
Tracking and Recognition: A Unified Approach on Tracking and Recognition
Ms. Anuja V. Vaidya
Dr. Mrs. S.B. Patil
Dept. of Electronics & Communication
Dept of Electronics & Communication
Dr. J.J. Magdum College of  Engg. Jaysingpur,
Dr. J.J. Magdum College of Engg. Jaysingpur,
Maharashtra, India
Maharashtra, India"
834b15762f97b4da11a2d851840123dbeee51d33,Landmark-free smile intensity estimation,"Landmark-free smile intensity estimation
J´ulio C´esar Batista, Olga R. P. Bellon and Luciano Silva
IMAGO Research Group - Universidade Federal do Paran´a
Fig. 1. Overview of our method for smile intensity estimation"
83e7c51c4d6f04049f5a3dbf4ac9e129ed96caee,Spatio-temporal Pain Recognition in CNN-Based Super-Resolved Facial Images,"Aalborg Universitet
Spatio-Temporal Pain Recognition in CNN-based Super-Resolved Facial Images
Bellantonio, Marco; Haque, Mohammad Ahsanul; Rodriguez, Pau; Nasrollahi, Kamal; Telve,
Taisi; Guerrero, Sergio Escalera; Gonzàlez, Jordi; Moeslund, Thomas B.; Rasti, Pejman;
Anbarjafari, Gholamreza
Published in:
Video Analytics
DOI (link to publication from Publisher):
0.1007/978-3-319-56687-0_13
Publication date:
Document Version
Accepted author manuscript, peer reviewed version
Link to publication from Aalborg University
Citation for published version (APA):
Bellantonio, M., Haque, M. A., Rodriguez, P., Nasrollahi, K., Telve, T., Guerrero, S. E., ... Anbarjafari, G. (2017).
Spatio-Temporal Pain Recognition in CNN-based Super-Resolved Facial Images. In Video Analytics: Face and
Facial Expression Recognition and Audience Measurement Springer.  Lecture Notes in Computer Science, Vol..
0165 https://doi.org/10.1007/978-3-319-56687-0_13
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners"
83b700f0777a408eb36eef4b1660beb3f6dc1982,Violent behaviour detection using local trajectory response,"See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/317628106
Violent	behaviour	detection	using	local
trajectory	response
Conference	Paper	·	January	2016
DOI:	10.1049/ic.2016.0082
CITATIONS
authors,	including:
Paul	L.	Rosin
Cardiff	University
READS
David	Marshall
Cardiff	University
31	PUBLICATIONS			7,739	CITATIONS
98	PUBLICATIONS			2,855	CITATIONS
SEE	PROFILE
SEE	PROFILE
Simon	Christopher	Moore
University	of	Wales
08	PUBLICATIONS			1,069	CITATIONS
SEE	PROFILE"
83a4b9c9ae3f75bf7e4a3222c46d99be7b7998ab,A random forest approach to segmenting and classifying gestures,"A Random Forest Approach to Segmenting and Classifying Gestures
Ajjen Joshi1, Camille Monnier2, Margrit Betke1 and Stan Sclaroff1
Department of Computer Science, Boston Univeristy, Boston, MA 02215 USA
Charles River Analytics, Cambridge, MA 02138 USA"
833f6ab858f26b848f0d747de502127406f06417,Learning weighted similarity measurements for unconstrained face recognition,"978-1-4244-5654-3/09/$26.00 ©2009 IEEE
ICIP 2009"
832a9584e85af1675d49ee35fd13283b21ce3a3f,Generating Photo-Realistic Training Data to Improve Face Recognition Accuracy,"Generating Photo-Realistic Training Data to Improve
Face Recognition Accuracy
Daniel S´aez Trigueros, Li Meng
School of Engineering and Technology
University of Hertfordshire
Hatfield AL10 9AB, UK
Margaret Hartnett
GBG plc
London E14 9QD, UK"
8399c71abc9a820bacd9c4e21c85c461c0b830b3,"Adaboost with ""Keypoint Presence Features"" for Real-Time Vehicle Visual Detection","Author manuscript, published in ""16th World Congress on Intelligent Transport Systems (ITSwc'2009), Sweden (2009)"""
83963d1454e66d9cc82e28ff4efc562f5fe6b7d3,"Automated detection of feeding strikes by larval fish using continuous high-speed digital video: a novel method to extract quantitative data from fast, sparse kinematic events.","© 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 1608-1617 doi:10.1242/jeb.133751
METHODS & TECHNIQUES
Automated detection of feeding strikes by larval fish using
ontinuous high-speed digital video: a novel method to extract
quantitative data from fast, sparse kinematic events
Eyal Shamur1,‡, Miri Zilka2,*,‡, Tal Hassner1, Victor China3,4, Alex Liberzon5 and Roi Holzman3,4,§
the observer and subject"
8309e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ff,Generic versus Salient Region-Based Partitioning for Local Appearance Face Recognition,"Generic versus Salient Region-based Partitioning
for Local Appearance Face Recognition
Hazım Kemal Ekenel and Rainer Stiefelhagen
Computer Science Depatment, Universit¨at Karlsruhe (TH)
Am Fasanengarten 5, Karlsruhe 76131, Germany
http://isl.ira.uka.de/cvhci"
1b02b9413b730b96b91d16dcd61b2420aef97414,Détection de marqueurs affectifs et attentionnels de personnes âgées en interaction avec un robot. (Audio-visual detection of emotional (laugh and smile) and attentional markers for elderly people in social interaction with a robot),"Détection de marqueurs affectifs et attentionnels de
personnes âgées en interaction avec un robot
Fan Yang
To cite this version:
Fan Yang. Détection de marqueurs affectifs et attentionnels de personnes âgées en interaction
vec un robot.
Intelligence artificielle [cs.AI]. Université Paris-Saclay, 2015. Français. <NNT :
015SACLS081>. <tel-01280505>
HAL Id: tel-01280505
https://tel.archives-ouvertes.fr/tel-01280505
Submitted on 29 Feb 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,"
1bed38bc216f80a50617afa5c6d9cc4b2db72519,Face recognition using early biologically inspired features,"Face Recognition Using Early Biologically Inspired Features
Min Li, Shenghua Bao, Weihong Qian, and Zhong Su
IBM China Research Lab, PRC
fminliml,baoshhua,qianwh,
Nalini K. Ratha
IBM Watson Research Center, USA"
1b55a0ad1d4738a7d46ed787542991d4a05ae27e,Accurate Object Detection and Semantic Segmentation using Gaussian Mixture Model and CNN,"IJARCCE
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940
International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015
Accurate Object Detection and Semantic
Segmentation using Gaussian Mixture Model and
Sakshi Jain1, Satish Dehriya2, Yogendra Kumar Jain3
Research Scholar, Computer Science & Engg, Samrat Ashok Technological Institute, Vidisha (M.P.), India1
Assist. Professor, Computer Science & Engg, Samrat Ashok Technological Institute, Vidisha (M.P.), India 2
Head of the Department, Computer Science & Engg, Samrat Ashok Technological Institute, Vidisha (M.P.), India3"
1b2183c2b9608b7f815551c9ba602f22205126b1,Facial Reenactment Project Plan,"Facial Reenactment
Project Plan
Student:
Li Wing Yee
Supervisor:
Dr. Dirk Scheiders"
1b1d9b528c69e082dc5685089090bd2d849d887d,MixedPeds: Pedestrian Detection in Unannotated Videos using Synthetically-Generated Human-agents for Training,"MixedPeds: Pedestrian Detection in Unannotated Videos using Synthetically
Generated Human-agents for Training
Ernest Cheung, Anson Wong, Aniket Bera, Dinesh Manocha
Department of Computer Science
Project Webpage: http://gamma.cs.unc.edu/MixedPeds
The University of North Carolina at Chapel Hill
Email: {ernestc, ahtsans, ab,"
1bb14ddc0326a8e5b44eafd915738c2b1342f392,Title On color texture normalization for active appearance models,"Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published
version when available.
Title
On color texture normalization for active appearance models
Author(s)
Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile
Publication
009-05-12
Publication
Information
Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color
Texture Normalization for Active Appearance Models. Image
Processing, IEEE Transactions on, 18(6), 1372-1378.
Publisher
Link to
publisher's
version
http://dx.doi.org/10.1109/TIP.2009.2017163
Item record
http://hdl.handle.net/10379/1350"
1b7a7d291235e4b6e5f97722124070feb26f3cc1,Learning Two-Branch Neural Networks for Image-Text Matching Tasks,"Learning Two-Branch Neural Networks for
Image-Text Matching Tasks
Liwei Wang, Yin Li, Jing Huang, Svetlana Lazebnik"
1ba55051d3957895d77257cc9a5885068fb2e43a,High-Resolution Face Verification Using Pore-Scale Facial Features,"High-Resolution Face Verification Using
Pore-Scale Facial Features
Dong Li, Huiling Zhou, and Kin-Man Lam"
1b8508c6e341dcc803e52ed02968ae944c744f68,Face detection evaluation: a new approach based on the golden ratio $${\Phi}$$,"SIViP manuscript No.
(will be inserted by the editor)
Face Detection Evaluation: A New Approach Based on
the Golden Ratio (cid:8)
M. Hassaballah (cid:1) Kenji Murakami (cid:1) Shun Ido
Received: 1 Jan. 2011 /Revised: 9 March 2011/ Accepted: date"
1b55c4e804d1298cbbb9c507497177014a923d22,Incremental Class Representation Learning for Face Recognition,"Incremental Class Representation
Learning for Face Recognition
Degree’s Thesis
Audiovisual Systems Engineering
Author:
Advisors: Elisa Sayrol, Josep Ramon Morros
Eric Presas Valga
Universitat Politècnica de Catalunya (UPC)
016 - 2017"
1b6394178dbc31d0867f0b44686d224a19d61cf4,EPML: Expanded Parts Based Metric Learning for Occlusion Robust Face Verification,"EPML: Expanded Parts based Metric Learning for
Occlusion Robust Face Verification
Gaurav Sharma, Fr´ed´eric Jurie, Patrick P´erez
To cite this version:
Gaurav Sharma, Fr´ed´eric Jurie, Patrick P´erez. EPML: Expanded Parts based Metric Learning
for Occlusion Robust Face Verification. Asian Conference on Computer Vision, Nov 2014, -,
Singapore. pp.1-15, 2014. <hal-01070657>
HAL Id: hal-01070657
https://hal.archives-ouvertes.fr/hal-01070657
Submitted on 2 Oct 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
1bdef21f093c41df2682a07f05f3548717c7a3d1,Towards Automated Classification of Emotional Facial Expressions,"Towards Automated Classification of Emotional Facial Expressions
Lewis J. Baker Vanessa LoBue
Elizabeth Bonawitz & Patrick Shafto
Department of Mathematics and Computer Science, 2Department of Psychology
Rutgers University – Newark, 101 Warren St., Newark, NJ, 07102 USA"
1b2e50412ec151486912f0bfd01703c8ec46b5a7,A Geometric Approach to Face Detector Combining,"A Geometric Approach to Face Detector
Combining⋆
Nikolay Degtyarev and Oleg Seredin
Tula State University
http://lda.tsu.tula.ru"
1b150248d856f95da8316da868532a4286b9d58e,Analyzing 3D Objects in Cluttered Images,"Analyzing 3D Objects in Cluttered Images
Mohsen Hejrati
UC Irvine
Deva Ramanan
UC Irvine"
1be498d4bbc30c3bfd0029114c784bc2114d67c0,Age and Gender Estimation of Unfiltered Faces,"Age and Gender Estimation of Unfiltered Faces
Eran Eidinger, Roee Enbar, Tal Hassner*"
1b3505018e39a794eab032e7e313784b21be42e9,Saliency based Person Re-Identification in Video using Colour Features,"GRD Journals- Global Research and Development Journal for Engineering | Volume 1 | Issue 10 | September 2016
ISSN: 2455-5703
Saliency based Person Re-Identification in Video
using Colour Features
Srujy Krishna A U
PG Student
Shimy Joseph
Assistant Professor
Department of Computer Science and Engineering
Department of Computer Science and Engineering
Federal Institute Of Science and Technology
Federal Institute Of Science and Technology"
1bbec7190ac3ba34ca91d28f145e356a11418b67,Explorer Action Recognition with Dynamic Image Networks,"Action Recognition with Dynamic Image Networks
Citation for published version:
Bilen, H, Fernando, B, Gravves, E & Vedaldi, A 2017, 'Action Recognition with Dynamic Image Networks'
IEEE Transactions on Pattern Analysis and Machine Intelligence. DOI: 10.1109/TPAMI.2017.2769085
Digital Object Identifier (DOI):
0.1109/TPAMI.2017.2769085
Link:
Link to publication record in Edinburgh Research Explorer
Document Version:
Peer reviewed version
Published In:
IEEE Transactions on Pattern Analysis and Machine Intelligence
General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
nd / or other copyright owners and it is a condition of accessing these publications that users recognise and
bide by the legal requirements associated with these rights.
Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
ontent complies with UK legislation. If you believe that the public display of this file breaches copyright please
ontact providing details, and we will remove access to the work immediately and"
1b3587363d37dd197b6adbcfa79d49b5486f27d8,Multimodal Grounding for Language Processing,"Multimodal Grounding for Language Processing
Lisa Beinborn◦∗3
Teresa Botschen∗(cid:52)
Iryna Gurevych (cid:52)
Language Technology Lab, University of Duisburg-Essen
(cid:52) Ubiquitous Knowledge Processing Lab (UKP) and Research Training Group AIPHES
Department of Computer Science, Technische Universit¨at Darmstadt
www.ukp.tu-darmstadt.de"
1ba61a4fedc217f7bd052d1b2904567c9985dc44,Person Re-identification for Improved Multi-person Multi-camera Tracking by Continuous Entity Association,"Person Re-identification for Improved
Multi-person Multi-camera Tracking by
Continuous Entity Association
Neeti Narayan, Nishant Sankaran, Devansh Arpit, Karthik
Dantu, Srirangaraj Setlur, Venu Govindaraju
University at Buffalo"
1b3d5d95e1fcded017f193f5cf9772bf8a1ed108,Using Keystroke Analytics to Improve Pass – Fail Classifiers,"(2017).	 Using
nalytics
http://dx.doi.org/10.18608/jla.2017.42.14
keystrokes
improve
pass-fail
lassifiers.
Journal
Learning	 Analytics,
(2),
89–211.
Using Keystroke Analytics to Improve Pass–Fail Classifiers
Kevin	Casey
Maynooth	University,	Ireland"
1b74479f6e597a33703a63161527d55cc5d3096f,Self-Supervised Model Adaptation for Multimodal Semantic Segmentation,"Self-Supervised Model Adaptation for Multimodal
Semantic Segmentation
Abhinav Valada · Rohit Mohan · Wolfram Burgard"
1b92973843c3a791bb5ca5a68405c3ecb3473ded,Building Deep Networks on Grassmann Manifolds,"Building Deep Networks on Grassmann Manifolds
Zhiwu Huang†, Jiqing Wu†, Luc Van Gool†‡
Computer Vision Lab, ETH Zurich, Switzerland
VISICS, KU Leuven, Belgium
{zhiwu.huang, jiqing.wu,"
1b300a7858ab7870d36622a51b0549b1936572d4,Dynamic Facial Expression Recognition With Atlas Construction and Sparse Representation,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2537215, IEEE
Transactions on Image Processing
Dynamic Facial Expression Recognition with Atlas
Construction and Sparse Representation
Yimo Guo, Guoying Zhao, Senior Member, IEEE, and Matti Pietik¨ainen, Fellow, IEEE"
1bea531e8271202462c7907f60a8458fa5aec00d,"Ein generisches System zur automatischen Detektion, Verfolgung und Wiedererkennung von Personen in Videodaten","Ein generisches System zur automatischen
Detektion, Verfolgung und Wiedererkennung von
Personen in Videodaten
Zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs
von der Fakult¨at f¨ur
Bauingenieur-, Geo- und Umweltwissenschaften
des Karlsruher Instituts f¨ur Technologie (KIT)
(Institut f¨ur Photogrammetrie und Fernerkundung)
genehmigte
Dissertation
Dipl.-Inform. Kai J¨ungling
us Adenau
Tag der m¨undlichen Pr¨ufung: 24.01.2011
Referent: Prof. Dr.-Ing. Stefan Hinz
Korreferent: Prof. Dr. rer. nat. Maurus Tacke
Korreferent: Prof. Dr.-Ing. Christoph Stiller
Karlsruhe 2011"
1b6d2f8f9cbbf5e20e445a60cb7840a30975f297,Learning from Noisy Web Data with Category-level Supervision,"Learning from Noisy Web Data with Category-level
Supervision
Li Niu, Qingtao Tang, Ashok Veeraraghavan, and Ashu Sabharwal"
1b90507f02967ff143fce993a5abbfba173b1ed0,Gradient-DCT (G-DCT) descriptors,"Image Processing Theory, Tools and Applications
Gradient-DCT (G-DCT) Descriptors
Radovan Fusek, Eduard Sojka
Technical University of Ostrava, FEECS, Department of Computer Science,
7. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
e-mail:"
1b7b95ee13d91e9c768de6417a8919f2a3384599,A Probabilistic U-Net for Segmentation of Ambiguous Images,"A Probabilistic U-Net for Segmentation of Ambiguous
Images
Simon A. A. Kohl1∗,2,, Bernardino Romera-Paredes1, Clemens Meyer1, Jeffrey De Fauw1,
Joseph R. Ledsam1, Klaus H. Maier-Hein2, S. M. Ali Eslami1, Danilo Jimenez Rezende1, and
Olaf Ronneberger1
Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
DeepMind, London, UK"
1bd80812c58de8cb0127aea915a45ebbff42dc3b,Twins 3D face recognition challenge,"Twins 3D Face Recognition Challenge
Vipin Vijayan 1, Kevin W. Bowyer 1, Patrick J. Flynn 1, Di Huang 2, Liming Chen 2,
Mark Hansen 3, Omar Ocegueda 4, Shishir K. Shah 4, Ioannis A. Kakadiaris 4"
1ba20398e3b0154730590217a0988fbbab19e927,Doubly weighted nonnegative matrix factorization for imbalanced face recognition,"978-1-4244-2354-5/09/$25.00 ©2009 IEEE
ICASSP 2009"
1b6afc2cdf931a02df46d5052b4409c770ef8660,An Approach to Analyse Facial Expression from Videos using Pyramid Histogram of Orientation Gradients,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
International Conference on Industrial Automation and Computing (ICIAC- 12-13th April 2014)
RESEARCH ARTICLE
OPEN ACCESS
An Approach to Analyse Facial Expression from Videos using
Pyramid Histogram of Orientation Gradients
Ashish D. Lonare1, Shweta V. Jain2
Department of Computer Science and Engineering,  Shri Ramdeobaba College of Engineering and
Management Nagpur, India
Department of Computer Science and Engineering,  Shri Ramdeobaba College of Engineering and
Management Nagpur, India"
1b1173a3fb33f9dfaf8d8cc36eb0bf35e364913d,Registration Invariant Representations for Expression Detection,"DICTA
DICTA 2010 Submission #147. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
Registration Invariant Representations for Expression Detection
Anonymous DICTA submission
Paper ID 147"
1b0a071450c419138432c033f722027ec88846ea,Looking at faces in a vehicle: A deep CNN based approach and evaluation,"Windsor Oceanico Hotel, Rio de Janeiro, Brazil, November 1-4, 2016
978-1-5090-1889-5/16/$31.00 ©2016 IEEE"
1b224ad99c42e696b6d98c05a87f1738e28c6c5e,A Markov Random Field Groupwise Registration Framework for Face Recognition,"A Markov Random Field Groupwise Registration
Framework for Face Recognition
Shu Liao, Dinggang Shen, and Albert C.S. Chung"
1b3b01513f99d13973e631c87ffa43904cd8a821,HMM recognition of expressions in unrestrained video intervals,"HMM RECOGNITION OF EXPRESSIONS IN UNRESTRAINED VIDEO INTERVALS
José Luis Landabaso, Montse Pardàs, Antonio Bonafonte
Universitat Politècnica de Catalunya, Barcelona, Spain"
1b71e4b59358ed7ecf6117e19fc944307e58a7af,3 D Spectral Nonrigid Registration of Facial Expression Scans,"IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
D Spectral Nonrigid Registration of
Facial Expression Scans
Gabriel L. Cuendet, Student member, IEEE, Christophe Ecabert, Marina Zimmermann, Student
member, IEEE, Hazım K. Ekenel, and Jean-Philippe Thiran, Senior Member, IEEE"
1b2568de7363a9f46094b9cac82f4fe2ec1a4f56,Detection of Fragmented Rectangular Enclosures in Very High Resolution Remote Sensing Images,"Detection of Fragmented Rectangular Enclosures in
Very High Resolution Remote Sensing Images
Igor Zingman, Dietmar Saupe, Otávio A. B. Penatti, and Karsten Lambers"
1b2297ba37fece76568c8b53369e6fd34d63175a,High-Resolution 3D Layout from a Single View,"High-Resolution 3D Layout from a Single View
M. Zeeshan Zia1, Michael Stark2, and Konrad Schindler1
Photogrammetry and Remote Sensing, ETH Z¨urich, Switzerland
Stanford University and Max Planck Institute for Informatics"
1be18a701d5af2d8088db3e6aaa5b9b1d54b6fd3,Enhancement of Fast Face Detection Algorithm Based on a Cascade of Decision Trees,"ENHANCEMENT OF FAST FACE DETECTION ALGORITHM BASED ON A CASCADE OF
DECISION TREES
V. V. Khryashchev a, *, A. A. Lebedev a, A. L. Priorov a
YSU, Yaroslavl, Russia - (vhr,
Commission II, WG II/5
KEY WORDS: Face Detection, Cascade Algorithm, Decision Trees."
1bb73d8f1224a846473d0a2ddc4289ae3e21b61c,A joint particle filter to track the position and head orientation of people using audio visual cues,"© EURASIP, 2010   ISSN 2076-1465
8th European Signal Processing Conference (EUSIPCO-2010)
INTRODUCTION"
1b70bbf7cdfc692873ce98dd3c0e191580a1b041,Enhancing Performance of Face Recognition System Using Independent Component Analysis,"International Research Journal of Engineering and Technology (IRJET)        e-ISSN: 2395 -0056
Volume: 03 Issue: 10 | Oct -2016                      www.irjet.net                                                                 p-ISSN: 2395-0072
Enhancing Performance of Face Recognition
System Using Independent Component Analysis
Dipti Rane1, Prof. Uday Bhave2, and Asst Prof. Manimala Mahato3
Student, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India 1
Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India 2
Co-Guide, Assistant Prof., Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India 3
---------------------------------------------------------------------***---------------------------------------------------------------------
ards, tokens and keys. Biometric based methods examine"
1b2dd300a43d0553f1deb578d9aea45d99472136,TABIA et al.: FAST APPROXIMATION OF DISTANCE BETWEEN ELASTIC CURVES USING KERNELS,
1b4424e06ac29b72535727b92f261f39d065e858,3D Pictorial Structures Revisited: Multiple Human Pose Estimation,"D Pictorial Structures Revisited:
Multiple Human Pose Estimation
Vasileios Belagiannis, Sikandar Amin, Mykhaylo Andriluka,
Bernt Schiele, Nassir Navab, and Slobodan Ilic"
1bf0b5186af083117af136dfcb08ed28828664d0,"Deep Filter Banks for Texture Recognition, Description, and Segmentation","Int J Comput Vis
DOI 10.1007/s11263-015-0872-3
Deep Filter Banks for Texture Recognition, Description,
nd Segmentation
Mircea Cimpoi1 · Subhransu Maji2 · Iasonas Kokkinos3 · Andrea Vedaldi1
Received: 4 June 2015 / Accepted: 20 November 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com"
1b71d3f30238cb6621021a95543cce3aab96a21b,Fine-grained Video Classification and Captioning,"Fine-grained Video Classification and Captioning
Farzaneh Mahdisoltani1,2, Guillaume Berger2, Waseem Gharbieh2
David Fleet1, Roland Memisevic2
{farzaneh,
University of Toronto1, Twenty Billion Neurons2"
1b807b6abaeef68edfbdc4200e198bf4e9613198,Image Processing Pipeline for Facial Expression Recognition under Variable Lighting,"Image Processing Pipeline for Facial Expression Recognition under Variable
Lighting
Ralph Ma, Amr Mohamed"
1b4f6f73c70353869026e5eec1dd903f9e26d43f,Robust Subjective Visual Property Prediction from Crowdsourced Pairwise Labels,"Robust Subjective Visual Property Prediction
from Crowdsourced Pairwise Labels
Yanwei Fu, Timothy M. Hospedales, Tao Xiang, Jiechao Xiong,
Shaogang Gong, Yizhou Wang, and Yuan Yao"
1bc23c771688109bed9fd295ce82d7e702726327,Sparse Modeling of High - Dimensional Data for Learning and Vision,(cid:13) 2011 Jianchao Yang
1b0548e52a1ffc7ebffe5200e2111525c9f7fd4a,Novel Views of Objects from a Single Image,"Novel Views of Objects from a Single Image
Konstantinos Rematas, Chuong Nguyen, Tobias Ritschel, Mario Fritz, and Tinne Tuytelaars"
1b4bc7447f500af2601c5233879afc057a5876d8,Facial Action Unit Classification with Hidden Knowledge under Incomplete Annotation,"Facial Action Unit Classification with Hidden Knowledge
under Incomplete Annotation
Jun Wang
University of Science and
Technology of China
Hefei, Anhui
Shangfei Wang
University of Science and
Technology of China
Hefei, Anhui
Rensselaer Polytechnic
Qiang Ji
Institute
Troy, NY
P.R.China, 230027
P.R.China, 230027
USA, 12180"
1b7a0fffb5ee96adece2f6079f5e9ab79c3bc50e,Spigan: Privileged Adversarial Learning,"Under review as a conference paper at ICLR 2019
SPIGAN: PRIVILEGED ADVERSARIAL LEARNING
FROM SIMULATION
Anonymous authors
Paper under double-blind review"
7711a7404f1f1ac3a0107203936e6332f50ac30c,Action Classification and Highlighting in Videos,"Action Classification and Highlighting in Videos
Atousa Torabi
Disney Research Pittsburgh
Leonid Sigal
Disney Research Pittsburgh"
77ad2727065cb3dc5c91975604af01c82ec5c9f6,Convolutional Neural Networks for Disaster Images Retrieval,"Convolutional Neural Networks for Disaster Images Retrieval
Sheharyar Ahmad1,Kashif Ahmad2, Nasir Ahmad1, Nicola Conci2
DCSE, UET Peshawar, Pakistan
DISI-University of Trento, Trento"
776c5e37eecd26049ae31f56b3249c390e25e4e9,Angry and Beautiful: The Interactive Effect of Facial Expression and Attractiveness on Time Perception,"Psihologijske teme, 25, 2016 (2), 299-315
Izvorni znanstveni rad – UDK –159.925.072
59.937.072:115
Angry and Beautiful: The Interactive Effect of Facial
Expression and Attractiveness on Time Perception
Jasmina Tomas
Department of Psychology, Faculty of Humanities and Social Sciences,
University of Zagreb, Croatia
Ana Marija Španić
Child Protection Center of Zagreb, Zagreb, Croatia"
770b3855cdd15b49c89e4053b6cedafe53cecd6f,Improved Face Recognition Using Pseudo 2 - DHidden,"ImprovedFaceRecognitionUsingPseudo-D
HiddenMarkovModels
StefanEickeler,StefanM(cid:127)uller,GerhardRigoll
Gerhard-Mercator-UniversityDuisburg
DepartmentofComputerScience
FacultyofElectricalEngineering
Duisburg-Germany
-ti.uni-duisburg.de"
778c9f88839eb26129427e1b8633caa4bd4d275e,Pose pooling kernels for sub-category recognition,"Pose Pooling Kernels for Sub-category Recognition
Ning Zhang
ICSI & UC Berkeley
Ryan Farrell
ICSI & UC Berkeley
Trever Darrell
ICSI & UC Berkeley"
7789a5d87884f8bafec8a82085292e87d4e2866f,A Unified Tensor-based Active Appearance Face Model,"A Unified Tensor-based Active Appearance Face
Model
Zhen-Hua Feng, Member, IEEE, Josef Kittler, Life Member, IEEE, William Christmas, and Xiao-Jun Wu,
Member, IEEE"
779f67f2fe406828bbe7a19e8736cb5fd309e321,Fine-Grained Recognition in the Wild: A Multi-task Domain Adaptation Approach,"Fine-grained Recognition in the Wild:
A Multi-Task Domain Adaptation Approach
Timnit Gebru
Judy Hoffman
Li Fei-Fei
CS Department Stanford University
{tgebru, jhoffman,"
771a9e7dc747fa2282815a4863502183f4e887c8,Efficient Bootsrapping and Query Adaptive Ranking for Image Search,"The International Journal Of Science & Technoledge      (ISSN  2321 – 919X)
www.theijst.com
THE INTERNATIONAL JOURNAL OF
SCIENCE & TECHNOLEDGE
Efficient Bootsrapping and Query Adaptive Ranking for Image Search
A. A. R. Senthilkumar
Head of the Department, Department of Master of Computer Application
PGP College of Engineering and Technology, Namakkal
P. Mayuri
Department of Computer Science and Engineering
PGP College of Engineering and Technology, Namakkal"
774c8945ccf0f5315482abb8cf84ac5d37c60aa0,A Comparative Study of Feature Extraction Methods in Images Classification,"I.J. Image, Graphics and Signal Processing, 2015, 3, 16-23
Published Online February 2015 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijigsp.2015.03.03
A Comparative Study of Feature Extraction
Methods in Images Classification
University of Sciences and Technology Mohamed Boudiaf USTO-MB, Faculty of Mathematics and Computer Science,
Seyyid Ahmed Medjahed
Oran, 31000, Algeria
Email:"
778952cc94d5baa5132ffbe2cf342f80032f5f73,Comparative Analysis of Techniques for the Recognition of Stabbed Wound and Accidental Wound Patterns,"International Journal of Computer Applications (0975 – 8887)
Volume 182 – No. 13, September 2018
Comparative Analysis of Techniques for the Recognition
of Stabbed Wound and Accidental Wound Patterns
Dayanand G. Savakar
Department of Computer Science
Rani Channamma University, Belagavi
INDIA
schemas  of"
7711330fb88e2522a5779a09c1622b75557f9254,Real-time detection and tracking of pedestrians in CCTV images using a deep convolutional neural network,"Real-time detection and tracking of pedestrians in
CCTV images using a deep convolutional neural network
Debaditya Acharya
Kourosh Khoshelham
Stephan Winter
Infrastructure Engineering, The University of Melbourne"
77882930692d41db107430a5a524ff5e4bb2ee5c,Hyperbolic Attention Networks,"Hyperbolic Attention Networks
Caglar Gulcehre Misha Denil Mateusz Malinowski Ali Razavi
Razvan Pascanu Karl Moritz Hermann
Peter Battaglia Victor Bapst
David Raposo Adam Santoro Nando de Freitas
Deepmind"
77e69753fc7cf007a136b12f102e1e11a93f87f5,Head and Body Orientation Estimation Using Convolutional Random Projection Forests.,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2784424, IEEE
Transactions on Pattern Analysis and Machine Intelligence
Head and Body Orientation Estimation Using
Convolutional Random Projection Forests
Donghoon Lee, Ming-Hsuan Yang, and Songhwai Oh∗"
7730fd15ff14dd84d71f965bfeab8e4d790d91d8,SpaRTA - Tracking across occlusions via global partitioning of 3D clouds of points,"SpaRTA
Tracking across occlusions via global
partitioning of 3D clouds of points
Andrea Cavagna, Stefania Melillo, Leonardo Parisi, Federico Ricci-Tersenghi"
778bff335ae1b77fd7ec67404f71a1446624331b,Hough Forest-Based Facial Expression Recognition from Video Sequences,"Hough Forest-based Facial Expression Recognition from
Video Sequences
Gabriele Fanelli, Angela Yao, Pierre-Luc Noel, Juergen Gall, and Luc Van Gool
BIWI, ETH Zurich http://www.vision.ee.ethz.ch
VISICS, K.U. Leuven http://www.esat.kuleuven.be/psi/visics"
776b77306bdb852c89a22ba142fb57c8e8bb7bb5,Efficient On-Board Stereo Vision Pose Estimation,"Ef‌f‌icient On-Board Stereo Vision
Pose Estimation(cid:2)
Angel D. Sappa1, Fadi Dornaika2, David Ger´onimo1, and Antonio L´opez1
Computer Vision Center, Edifici O Campus UAB
08193 Bellaterra, Barcelona, Spain
{asappa, dgeronimo,
Institut G´eographique National
94165 Saint Mand´e, France"
7726a6ab26a1654d34ec04c0b7b3dd80c5f84e0d,Content-aware compression using saliency-driven image retargeting,"CONTENT-AWARE COMPRESSION USING SALIENCY-DRIVEN IMAGE RETARGETING
Fabio Z¨und*†, Yael Pritch*, Alexander Sorkine-Hornung*, Stefan Mangold*, Thomas Gross†
*Disney Research Zurich
ETH Zurich"
7754b708d6258fb8279aa5667ce805e9f925dfd0,Facial Action Unit Recognition by Exploiting Their Dynamic and Semantic Relationships,"Facial Action Unit Recognition by Exploiting
Their Dynamic and Semantic Relationships
Yan Tong, Student Member, IEEE, Wenhui Liao, Member, IEEE, and Qiang Ji, Senior Member, IEEE"
77db171a523fc3d08c91cea94c9562f3edce56e1,Gauss-Laguerre wavelet textural feature fusion with geometrical information for facial expression identification,"Poursaberi et al. EURASIP Journal on Image and Video Processing 2012, 2012:17
http://jivp.eurasipjournals.com/content/2012/1/17
R ES EAR CH
Open Access
Gauss–Laguerre wavelet textural feature fusion
with geometrical information for facial expression
identification
Ahmad Poursaberi1*, Hossein Ahmadi Noubari2, Marina Gavrilova1 and Svetlana N Yanushkevich1"
77037a22c9b8169930d74d2ce6f50f1a999c1221,Robust Face Recognition With Kernelized Locality-Sensitive Group Sparsity Representation,"Robust Face Recognition With Kernelized
Locality-Sensitive Group Sparsity  Representation
Shoubiao Tan, Xi Sun, Wentao Chan, Lei Qu, and Ling    Shao"
7714a5aa27ab5ad4d06a81fbb3e973d3b1002ac1,SSD-Sface : Single shot multibox detector for small faces,"SSD-Sface: Single shot multibox detector for small faces
C. Thuis"
77cb6ea4feff6f44e9977cc7572185d24e48ce40,On the Complementarity of Face Parts for Gender Recognition,"On the Complementarity of Face Parts for
Gender Recognition
Yasmina Andreu and Ram´on A. Mollineda
Dept. Llenguatges i Sistemes Inform`atics
Universitat Jaume I. Castell´o de la Plana, Spain"
775c15a5dfca426d53c634668e58dd5d3314ea89,Image Quality-aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild,
779ad364cae60ca57af593c83851360c0f52c7bf,Steerable Pyramids Feature Based Classification Using Fisher Linear Discriminant for Face Recognition,"Steerable Pyramids Feature Based Classification Using Fisher
Linear Discriminant for Face Recognition
EL AROUSSI MOHAMED1
EL HASSOUNI MOHAMMED12
GHOUZALI SANAA1
RZIZA MOHAMMED1
ABOUTAJDINE DRISS1
GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco
DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco
PO.Box 1014, Rabat, Morocco"
77b11260154e13e33c84599feba4cdc4f781bf71,Building User Profiles from Shared Photos,Building User Profiles from Shared Photos
7793c7431f3ddce74fe2d444df614d8d8fd9af4a,A Review of Neural Network based Semantic Segmentation for Scene Understanding in Context of the self driving Car,"A Review of Neural Network based Semantic Segmentation for
Scene Understanding in Context of the self driving Car
J. Niemeijer1, P. Pekezou Fouopi2, S. Knake-Langhorst2, and E. Barth3
Medizinische Informatik, Universität zu Lübeck,
German Aerospace Center, Braunschweig,
Institute of Neuro- and Bioinformatics, Universität zu Lübeck,"
77dc158a979731d2ed01145b1d3ead34a6c33487,Preference for geometric patterns early in life as a risk factor for autism.,"ORIGINAL ARTICLE
ONLINE FIRST
Preference for Geometric Patterns Early in Life
s a Risk Factor for Autism
Karen Pierce, PhD; David Conant; Roxana Hazin, BS; Richard Stoner, PhD; Jamie Desmond, MPH
Context: Early identification efforts are essential for the
early treatment of the symptoms of autism but can only oc-
ur if robust risk factors are found. Children with autism
often engage in repetitive behaviors and anecdotally pre-
fertovisuallyexaminegeometricrepetition,suchasthemov-
ing blade of a fan or the spinning of a car wheel. The ex-
tent to which a preference for looking at geometric repeti-
tion is an early risk factor for autism has yet to be examined.
Objectives: To determine if toddlers with an autism spec-
trum disorder (ASD) aged 14 to 42 months prefer to vi-
sually examine dynamic geometric images more than so-
ial images and to determine if visual fixation patterns
an correctly classify a toddler as having an ASD.
Design: Toddlers were presented with a 1-minute movie
depicting moving geometric patterns on 1 side of a video"
77851ca35105ebe007d99e5d78ceb3473491071c,Spatiotemporal Stacked Sequential Learning for Pedestrian Detection,"Spatiotemporal Stacked Sequential Learning for Pedestrian Detection
Alejandro Gonz´alez1
Sebastian Ramos1
David V´azquez1
Antonio M. L´opez1
Jaume Amores1
Computer Vision Center, Barcelona
Universitat Aut`onoma de Barcelona
United Technologies Research Center"
77351eaeb65e374a4d1e54acc28fea426670e364,Compression Based Face Recognition Using Transform Domain Features Fused at Matching Level,"Signal & Image Processing : An International Journal (SIPIJ) Vol.8, No.4, August 2017
COMPRESSION BASED FACE RECOGNITION
USING TRANSFORM DOMAIN FEATURES
FUSED AT MATCHING LEVEL
Srinivas Halvia, Nayina Ramapurb , K B Rajac and Shanti Prasadd
Dayananda Sagar College of Engineering, Bangalore, India.
Sai-Tektronix Pvt. Ltd., Bangalore, India.
University Visvesvaraya College of Engineering, Bangalore, India.
dK.S. Institute of Technology, Bangalore, India."
77052654a37b88719c014c5afd3db89cb2288aeb,Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features,"Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 786013, 17 pages
http://dx.doi.org/10.1155/2015/786013
Research Article
Lung Cancer Prediction Using Neural Network Ensemble with
Histogram of Oriented Gradient Genomic Features
Emmanuel Adetiba and Oludayo O. Olugbara
ICT and Society Research Group, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
Correspondence should be addressed to Oludayo O. Olugbara;
Received 12 December 2014; Accepted 29 January 2015
Academic Editor: Alexander Schonhuth
Copyright © 2015 E. Adetiba and O. O. Olugbara. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.
This paper reports an experimental comparison of artificial neural network (ANN) and support vector machine (SVM) ensembles
nd their “nonensemble” variants for lung cancer prediction. These machine learning classifiers were trained to predict lung cancer
using samples of patient nucleotides with mutations in the epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene,
nd tumor suppressor p53 genomes collected as biomarkers from the IGDB.NSCLC corpus. The Voss DNA encoding was used to
map the nucleotide sequences of mutated and normal genomes to obtain the equivalent numerical genomic sequences for training"
77c81c13a110a341c140995bedb98101b9e84f7f,WILDTRACK : A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection,"WILDTRACK: A Multi-camera HD Dataset for
Dense Unscripted Pedestrian Detection
Tatjana Chavdarova1, Pierre Baqu´e2, St´ephane Bouquet2,
Andrii Maksai2, Cijo Jose1, Timur Bagautdinov2, Louis Lettry3,
Pascal Fua2, Luc Van Gool3, and Franc¸ois Fleuret1
Machine Learning group, Idiap Research Institute & ´Ecole Polytechnique F´ed´erale de Lausanne
CVLab, ´Ecole Polytechnique F´ed´erale de Lausanne
Computer Vision Lab, ETH Zurich"
771b7d76df1ed476dea859034a276f14ad1e49f1,Multi-scale elastic graph matching for face detection,"Sato and Kuriya EURASIP Journal on Advances in Signal Processing 2013, 2013:175
http://asp.eurasipjournals.com/content/2013/1/175
REVIEW
Open Access
Multi-scale elastic graph matching for face
detection
Yasuomi D Sato1,2,3* and Yasutaka Kuriya1"
77d31d2ec25df44781d999d6ff980183093fb3de,The Multiverse Loss for Robust Transfer Learning,"The Multiverse Loss for Robust Transfer Learning
Supplementary
. Omitted proofs
for which the joint loss:
m(cid:88)
L(F r, br, D, y)
J(F 1, b1...F m, bm, D, y) =
is bounded by:
mL∗(D, y) ≤ J(F 1, b1...F m, bm, D, y)
m−1(cid:88)
≤ mL∗(D, y) +
Alλd−j+1
where [A1 . . . Am−1] are bounded parameters.
We provide proofs that were omitted from the paper for
lack of space. We follow the same theorem numbering as in
the paper.
Lemma 1. The minimizers F ∗, b∗ of L are not unique, and
it holds that for any vector v ∈ Rc and scalar s, the solu-
tions F ∗ + v1(cid:62)
Proof. denoting V = v1(cid:62)"
77d4843a177031b2b5721824280033e2e601334c,Comparative Evaluation of 3D versus 2D Modality for Automatic Detection of Facial Action Units,"Author’s Accepted Manuscript
Comparative Evaluation of 3D versus 2D Modality
for Automatic Detection of Facial Action Units
Arman Savran, Bülent Sankur, M. Taha Bilge
Reference:
S0031-3203(11)00310-4
doi:10.1016/j.patcog.2011.07.022
PR 4228
To appear in:
Pattern Recognition
Received date:
Revised date:
Accepted date:
3 November 2010
5 July 2011
9 July 2011
www.elsevier.com/locate/pr
Cite this article as: Arman Savran, Bülent Sankur and M. Taha Bilge, Comparative Eval-
uation of 3D versus 2D Modality for Automatic Detection of Facial Action Units, Pattern
Recognition, doi:10.1016/j.patcog.2011.07.022"
77fb0266b354d33f3725629c2ddce3d2342b318a,Is Attribute-Based Zero-Shot Learning an Ill-Posed Strategy?,"Is Attribute-Based Zero-Shot Learning
n Ill-Posed Strategy?
Ibrahim Alabdulmohsin1, Moustapha Cisse2, and Xiangliang Zhang1(B)
Computer, Electrical and Mathematical Sciences and Engineering Division,
King Abdullah University of Science and Technology (KAUST),
Thuwal 23955-6900, Saudi Arabia
Facebook Artificial Intelligence Research (FAIR), Menlo Park, USA
http://mine.kaust.edu.sa"
77c7f5c5852c189b59c34ebbbbec03e5e4060428,Talking to Robots: Learning to Ground Human Language in Perception and Execution,"(cid:13)Copyright 2014
Cynthia Matuszek"
482769e4c4cf832128b52f1bdff873af1eee8ba8,Robust Face Detection using Fusion of Haar and Daubechies Orthogonal Wavelet Template,"International Journal of Computer Applications (0975 – 8887)
Volume 46– No.6, May 2012
Robust Face Detection using Fusion of Haar and
Daubechies Orthogonal Wavelet Template
Chirag I Patel
Sanjay Garg
Research scholar, Institute of Technology,
Professor, Institute of Technology,
Nirma University, Ahmedabad, Gujarat, India
Nirma University, Ahmedabad, Gujarat, India"
48186494fc7c0cc664edec16ce582b3fcb5249c0,P-CNN: Pose-Based CNN Features for Action Recognition,"P-CNN: Pose-based CNN Features for Action Recognition
Guilhem Ch´eron∗ †
Ivan Laptev∗
INRIA
Cordelia Schmid†"
48499deeaa1e31ac22c901d115b8b9867f89f952,Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition,"Interim Report of Final Year Project
HKU-Face: A Large Scale Dataset for
Deep Face Recognition
Haicheng Wang
035140108
Haoyu Li
035141841
COMP4801 Final Year Project
Project Code: 17007"
486a82f50835ea888fbc5c6babf3cf8e8b9807bc,Face Search at Scale: 80 Million Gallery,"MSU TECHNICAL REPORT MSU-CSE-15-11, JULY 24, 2015
Face Search at Scale: 80 Million Gallery
Dayong Wang, Member, IEEE, Charles Otto, Student Member, IEEE, Anil K. Jain, Fellow, IEEE"
48fb35946641351f7480a5b88567aae59e526d82,Generating faces for affect analysis,"Noname manuscript No.
(will be inserted by the editor)
Generating faces for affect analysis
Dimitrios Kollias (cid:63) · Shiyang Cheng † · Evangelos Ververas ∗ · Irene
Kotsia1 · Stefanos Zafeiriou2
Received: Sept 30th 2018 / Accepted: date"
48b38d157272f03f6b44c0df61130534d11d8569,Natural Language Guided Visual Relationship Detection,"oard)(person-behind-kid)(skate board-on-street)(person-sit on-street)...ImageVisual relationshipsFigure1:Visualrelationshipsrepresenttheinteractionsbe-tweenobservedobjects.Eachrelationshiphasthreeele-ments:subject,predicateandobject.HereisanexampleimagefromVisualGenome[17].Ourproposedmethodisabletoeffectivelydetectnumerouskindsofdifferentrela-tionshipsfromsuchimage.objectsinimages.Therelationshipscanberepresentedinatripletformofhsubject-predicate-objecti,e.g.,hkid-on-skateboardi,asshowninFig.1.Anaturalapproachforthistaskistotreatitasaclassificationproblem:eachkindofrelationships/phraseisarelationcategory[32],asshowninFig.2.Totrainsuchreliableandrobustmodel,suffi-cienttrainingsamplesforeachpossiblehsubject-predicate-objecticombinationareessential.ConsidertheVisualRe-lationshipDataset(VRD)[24],withN=100objectcate-goriesandK=70predicates,thenthereareN2K=700kcombinationsintotal.However,itcontainsonly38kre-lationships,whichmeansthateachcombinationhaslessthan1sampleonaverage.Thepreviousclassification-basedworkscanonlydetectthemostcommonrelationships,e.g.,[32]studiedonly13frequentrelationships.Anotherpopularstrategyistodetecttherelationshippredicatesandtheobjectcategoriesindependently.Al-thoughthenumberofcategoriesdecreasesdramatically,thesemanticrelationshipbetweentheobjectsandthepredi-catesareignored.Consequently,thephrasewhichhasthesamepredicatebutdifferentagentsisconsideredasthesametypeofrelationship.Forinstance,the”clock-on-1"
485e0d178bafa959ac956aa8de6556a2439c6663,Learning from Examples to Generalize over Pose and Illumination,"Learning from Examples to Generalize over Pose
nd Illumination
Marco K. M¨uller and Rolf P. W¨urtz
Institute f¨ur Neural Computation, Ruhr-University, 44780 Bochum, Germany"
483ca50670c5f7d33f7c722dd71105327a30ea60,Improving object classification using semantic attributes,"SU, ALLAN, JURIE: SEMANTIC ATTRIBUTES
Improving object classification
using semantic attributes
Yu Su
http://users.info.unicaen.fr/~ysu/
Moray Allan
http://users.info.unicaen.fr/~mallan/
Frédéric Jurie
http://users.info.unicaen.fr/~jurie/
GREYC
Université de Caen
4032 Caen Cedex
France"
4839f861709e6ae6d4d032228473ce1764acbdcc,Finding Egocentric Image Topics through Convolutional Neural Network Based Representations,"Finding Egocentric Image Topics through Convolutional Neural Network Based Representations
Kai Zhen, David Crandall
School of Informatics and Computing, Indiana University.
Life-logging cameras create huge collections of photos, even for a single
person on a single day [1, 6], which makes it difficult for users to browse
or organize their photos effectively. Unlike text corpora in which words
reate intermediate representations that carry semantic meaning for higher-
level concepts such as topics, images have no such obvious intermediate
representation to connect raw pixels and semantics. Egocentric photos are
particularly challenging because they were taken opportunistically, so they
re often blurry and poorly-composed compared to consumer-style images.
This paper applies topic modeling on deep features to extract visual
“concept clusters” from egocentric datasets. We discretize features to form
better analogy to the word-document model, which we find yields faster
onvergence during inference. We also find that removing frequent, less in-
formative features helps to prevent outliers and improve the semantic mean-
ing of extracted topics, analogous to removing stop words in the text mining
domain. In a generative process similar to that proposed in LDA [2], we
model an image as being generated by first choosing topics, and then sam-
pling features (visual words) from selected topics,"
4850af6b54391fc33c8028a0b7fafe05855a96ff,Discovering useful parts for pose estimation in sparsely annotated datasets,"Discovering Useful Parts for Pose Estimation in Sparsely Annotated Datasets
Mikhail Breslav1, Tyson L. Hedrick2, Stan Sclaroff1, and Margrit Betke1
Department of Computer Science and 2Department of Biology
Boston University and 2University of North Carolina"
485eb41be3ce1600e9934167808b0319a6c3ec2f,A Novel Structural-Description Approach for Image Retrieval,"A Novel Structural-Description Approach For
Image Retrieval
Christoph Rasche, Constantin Vertan
Laboratorul de Analiza si Prelucrarea Imaginilor
Universitatea Politehnica din Bucuresti
Bucuresti 061071, RO"
48c0059feb14ca3deedfa7e3b53fbc34bd6d8efb,Facial Expression Retrieval Using 3-Dimensional Mesh Sequences,"Facial Expression Retrieval Using
-Dimensional Mesh Sequences
Danelakis E. Antonios*
National and Kapodistrian University of Athens
Department of Informatics and Telecommunications"
48b4f49ec708677fc9f70edc74fd0f92ef986406,CS168: The Modern Algorithmic Toolbox Lecture #6: Stochastic Gradient Descent and Regularization,"CS168: The Modern Algorithmic Toolbox
Lecture #6: Stochastic Gradient Descent and
Regularization
Tim Roughgarden & Gregory Valiant∗
April 13, 2016
Context
Last lecture we covered the basics of gradient descent, with an emphasis on the intuition
ehind and geometry underlying the method, plus a concrete instantiation of it for the
problem of linear regression (fitting the best hyperplane to a set of data points). This basic
method is already interesting and useful in its own right (see Homework #3).
This lecture we’ll cover two extensions that, while simple, will bring your knowledge a step
loser to the state-of-the-art in modern machine learning. The two extensions have different
haracters. The first concerns how to actually solve (computationally) a given unconstrained
minimization problem, and gives a modification of basic gradient descent — “stochastic
gradient descent” — that scales to much larger data sets. The second extension concerns
problem formulation rather than implementation, namely the choice of the unconstrained
optimization problem to solve (i.e., the objective function f ). Here, we introduce the idea
of “regularization,” with the goal of avoiding overfitting the function learned to the data set
t hand, even for very high-dimensional data.
Recap"
4871300f1e5a58ce920e6b5be14e89c5da4aa4c4,Manifold Learning for Video-to-Video Face Recognition,"Manifold Learning for Video-to-Video Face
Recognition"
48d299fe3303c80f840816fc76971a42b4a8b624,Predicting Important Objects for Egocentric Video Summarization,"http://dx.doi.org/10.1007/s11263-014-0794-5
Predicting Important Objects for Egocentric Video Summarization
Yong Jae Lee · Kristen Grauman
Received: date / Accepted: date"
488676e61fcf7b79d83c25fb103c8d8a854d8987,Leveraging Convolutional Pose Machines for Fast and Accurate Head Pose Estimation,"Leveraging Convolutional Pose Machines
for Fast and Accurate Head Pose Estimation
Yuanzhouhan Cao1, Olivier Can´evet 1 and Jean-Marc Odobez1,2"
48a5b6ee60475b18411a910c6084b3a32147b8cd,Pedestrian Attribute Recognition with Part-based CNN and Combined Feature Representations,"Pedestrian attribute recognition with part-based CNN
nd combined feature representations
Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla
Baskurt
To cite this version:
Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla Baskurt. Pedestrian attribute
recognition with part-based CNN and combined feature representations. VISAPP2018, Jan 2018,
Funchal, Portugal. <hal-01625470>
HAL Id: hal-01625470
https://hal.archives-ouvertes.fr/hal-01625470
Submitted on 21 Jun 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,"
486e5c2996726ec0f7c37077a2752dc4bd8c1413,Linearized Smooth Additive Classifiers,"Linearized Smooth Additive Classifiers
Subhransu Maji
Toyota Technological Institute at Chicago,
Chicago, IL 60637, USA"
480810001ed845ec04a20b00461a8a82fcffbb52,Autistic Traits and Brain Activation during Face-to-Face Conversations in Typically Developed Adults,"Autistic Traits and Brain Activation during Face-to-Face
Conversations in Typically Developed Adults
Masashi Suda, Yuichi Takei, Yoshiyuki Aoyama, Kosuke Narita, Noriko Sakurai, Masato Fukuda*,
Masahiko Mikuni
Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan"
488493dc29c844b36660395266d8d347c7cfa9ce,Towards Flexible Classification: Cost-Aware Online Query of Cascades and Operating Points,"Towards Flexible Classification: Cost-Aware
Online Query of Cascades and Operating Points
Brandyn White, Andrew Miller, Tom Yeh, and Larry S. Davis
University of Maryland: College Park"
48a42303559ea518ba06f54a8cfce4226bb0e77e,Urban tribes: Analyzing group photos from a social perspective,"Urban Tribes: Analyzing Group Photos from a Social Perspective
Ana C. Murillo†,
Iljung S. Kwak‡, Lubomir Bourdev§∗, David Kriegman‡, Serge Belongie‡
DIIS - Instituto de Ingenier´ıa de Arag´on. Universidad de Zaragoza, Spain
§Facebook. 1601 Willow Road, Menlo Park, CA 94025, USA
Computer Science and Engineering Department. University of California, San Diego, USA"
483f85e1ebef9d10a951b3c01751892aca92a2c2,Adaptive Classification for Person Re-identification Driven by Change Detection,"Adaptive Classification for Person Re-Identification Driven by Change
Detection
C. Pagano1, E. Granger1, R. Sabourin1, G. L. Marcialis2 and F. Roli2
Lab. d’imagerie, de vision et d’intelligence artificielle,
´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montreal, Canada
Pattern Recognition and Applications Group, Dept. of Electrical and Electronic Engineering,
{eric.granger,
University of Cagliari, Cagliari, Italy
Keywords:
Multi-Classifier Systems, Incremental Learning, Adaptive Biometrics, Change Detection, Face Recognition,
Video Surveillance."
484c2617471fd742c4806f9281e5add45c6831a7,LSTM Self-Supervision for Detailed Behavior Analysis,"LSTM Self-Supervision for Detailed Behavior Analysis
Biagio Brattoli1∗, Uta B¨uchler1∗, Anna-Sophia Wahl2, Martin E. Schwab2, Bj¨orn Ommer1
HCI / IWR, Heidelberg University, Germany
Department of HST, ETH Zurich, Switzerland"
486f08c875e88b3f1f157e7de1ae2cf5176f5431,Structure-from-motion for Calibration of a Vehicle Camera System with Non-overlapping Fields-of-view in an Urban Environment,"STRUCTURE-FROM-MOTION FOR CALIBRATION OF A VEHICLE CAMERA SYSTEM
WITH NON-OVERLAPPING FIELDS-OF-VIEW IN AN URBAN ENVIRONMENT
Photogrammetry & Remote Sensing, Technische Universitaet Muenchen, Germany - (alexander.hanel,
A. Hanela, U. Stillaa
Commission I, WG 9
KEY WORDS: vehicle cameras, camera calibration, structure from motion, bundle adjustment"
488e475eeb3bb39a145f23ede197cd3620f1d98a,Pedestrian Attribute Classification in Surveillance: Database and Evaluation,"Pedestrian Attribute Classification in Surveillance: Database and Evaluation
Jianqing Zhu, Shengcai Liao, Zhen Lei, Dong Yi, Stan Z. Li∗
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences (CASIA)
95 Zhongguancun East Road, 100190, Beijing, China
{jqzhu, scliao, zlei, dyi,"
48bf7357723abf7770400d68f914d6a7ca5a1a5f,Real-Time Head Pose Tracking with Online Face Template Reconstruction,"Real-Time Head Pose Tracking with Online
Face Template Reconstruction
Songnan Li, Member, IEEE,
King Ngi Ngan, Fellow, IEEE,
Raveendran Paramesran, Senior Member, IEEE,
nd Lu Sheng"
48f45accce6a4a22e4ead41fe292a915f3531f5b,Active Learning for Visual Question Answering: An Empirical Study,"Active Learning for Visual Question Answering:
An Empirical Study
Xiao Lin
Virginia Tech
Devi Parikh
Georgia Tech"
487df616e981557c8e1201829a1d0ec1ecb7d275,Acoustic Echo Cancellation Using a Vector-Space-Based Adaptive Filtering Algorithm,"Acoustic Echo Cancellation Using a Vector-Space-Based
Adaptive Filtering Algorithm
Yu Tsao, Member IEEE, Shih-Hau Fang*, Senior Member IEEE, and Yao Shiao"
486a0044b9c86c6f648f153f3d3f2e534342b754,Trajectories and Maneuvers of Surrounding Vehicles With Panoramic Camera Arrays,"Trajectories and Maneuvers of Surrounding Vehicles
with Panoramic Camera Arrays
Jacob V. Dueholm, Miklas S. Kristoffersen, Ravi K. Satzoda, Thomas B. Moeslund, and Mohan M. Trivedi"
48319e611f0daaa758ed5dcf5a6496b4c6ef45f2,Non Binary Local Gradient Contours for Face Recognition,"Non Binary Local Gradient Contours for Face Recognition
Abdullah Gubbia, Mohammad Fazle Azeemb, M Sharmila Kumaric
Department of Electronics and Communication, P.A. College of Engnineering, Mangalore,
Nadupadavu, Mangalore, India, Contact:
Senior IEEE Member, Department of Electrical and Electronics Engineering, Aligarh Muslim
University, India, Contact:
Department of Computer Science and Engineering, P A College of Engineering, Nadupadavu,
Mangalore, India. Contact:
As the features from the traditional Local Binary patterns (LBP) and Local Directional Patterns (LDP) are
found to be ineffective for face recognition, we have proposed a new approach derived on the basis of Information
sets whereby the loss of information that occurs during the binarization is eliminated. The information sets
s a product. Since face is having smooth texture in a limited area, the extracted features must be highly
discernible. To limit the number of features, we consider only the non overlapping windows. By the application
of the information set theory we can reduce the number of feature of an image. The derived features are shown
to work fairly well over eigenface, fisherface and LBP methods.
Keywords: Local Binary Pattern, Local Directional Pattern, Information Sets, Gradient Contour, Support
Vector Machine, KNN, Face Recognition.
. INTRODUCTION
In face recognition, the major issue to be ad-
dressed is the extraction of features which are"
4875bed500321dec353959a556541715da5c9d18,A Domain Agnostic Normalization Layer for Unsupervised Adversarial Domain Adaptation,"A Domain Agnostic Normalization Layer
for Unsupervised Adversarial Domain Adaptation
R. Romijnders
Eindhoven, University of Technology
P. Meletis
G. Dubbelman"
48cfc5789c246c6ad88ff841701204fc9d6577ed,Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis,"J Inf Process Syst, Vol.12, No.3, pp.392~409, September 2016
ISSN 1976-913X (Print)
ISSN 2092-805X (Electronic)
Age Invariant Face Recognition Based on DCT
Feature Extraction and Kernel Fisher Analysis
Leila Boussaad*, Mohamed Benmohammed**, and Redha Benzid***"
484c4eec34e985d8ca0c20bf83efc56881180709,Efficient semantic image segmentation with superpixel pooling,"Ef‌f‌icient semantic image segmentation with superpixel pooling
Mathijs Schuurmans Maxim Berman Matthew B. Blaschko
Dept. ESAT, Center for Processing Speech and Images
KU Leuven, Belgium
{maxim.berman,
June 8, 2018"
70f189798c8b9f2b31c8b5566a5cf3107050b349,The challenge of face recognition from digital point-and-shoot cameras,"The Challenge of Face Recognition from Digital Point-and-Shoot Cameras
J. Ross Beveridge∗
Geof H. Givens§
W. Todd Scruggs¶
P. Jonathon Phillips†
Yui Man Lui∗
Kevin W. Bowyer(cid:107)
David Bolme‡
Mohammad Nayeem Teli∗
Patrick J. Flynn(cid:107)
Bruce A. Draper∗,
Hao Zhang∗
Su Cheng†"
70671018d4597b6d2d0c99b38b1f1a3f1271eaec,Learning Representations Specialized in Spatial Knowledge: Leveraging Language and Vision,"Transactions of the Association for Computational Linguistics, vol. 6, pp. 133–144, 2018. Action Editor: Stefan Riezler.
Submission batch: 6/2017; Revision batch: 9/2017; Published 2/2018.
(cid:13)2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license."
70f0636b14b9e3916a780d70a5c712e8fea739da,"ANDRE MOUTON On Artefact Reduction , Segmentation and Classification of 3 D Computed Tomography Imagery in Baggage Security Screening","CRANFIELD UNIVERSITY
SCHOOL OF ENGINEERING
PhD THESIS
Academic Year 2013-2014
ANDRE MOUTON
On Artefact Reduction, Segmentation and Classification of
D Computed Tomography Imagery in Baggage Security
Screening
Supervised by: Dr Toby Breckon and Dr Carol Armitage
March 2014
This thesis is submitted in partial fulfilment of the requirements for
the Degree of Doctor of Philosophy
©Cranfield University, 2014. All rights reserved. No part of this
publication may be reproduced without the written permission of
the copyright holder."
70ec156f7e6de0275c7e4e95e35f1bc1e92e29b3,Deep learning ensembles for melanoma recognition in dermoscopy images,"Deep learning ensembles for melanoma recognition in dermoscopy images1
N. C. F. Codella, Q. B. Nguyen, S. Pankanti, D. Gutman, B. Helba, A. Halpern, J. R. Smith"
70109c670471db2e0ede3842cbb58ba6be804561,Zero-Shot Visual Recognition via Bidirectional Latent Embedding,"Noname manuscript No.
(will be inserted by the editor)
Zero-Shot Visual Recognition via Bidirectional Latent Embedding
Qian Wang · Ke Chen
Received: date / Accepted: date"
706600aa77ffb165097e4aeccb2b214dabdb8092,Combining Graph-based Dependency Features with Convolutional Neural Network for Answer Triggering,"Combining Graph-based Dependency Features with
Convolutional Neural Network for Answer Triggering
Deepak Gupta∗, Sarah Kohail†, Pushpak Bhattacharyya∗
Indian Institute of Technology Patna, India
Universit¨at Hamburg, Germany
{deepak.pcs16,"
708a55d65568faf8158417ddfb79e728b2b28f86,3D Body Model Construction and Matching for Real Time People Re-Identification,"Eurographics Italian Chapter Conference (2010)
E. Puppo, A. Brogni, and L. De Floriani (Editors)
D Body Model Construction and Matching for Real Time
People Re-Identification
D. Baltieri, R. Vezzani and R. Cucchiara
Dipartimento di Ingegneria dell’Informazione
University of Modena and Reggio Emilia
Via Vignolese, 905 - 41100 Modena - Italy"
706236308e1c8d8b8ba7749869c6b9c25fa9f957,Crowdsourced data collection of facial responses,"Crowdsourced Data Collection of Facial Responses
Daniel McDuff
MIT Media Lab
Cambridge
02139, USA
Rosalind Picard
MIT Media Lab
Cambridge
02139, USA
Rana el Kaliouby
MIT Media Lab
Cambridge
02139, USA"
70f3d3d9a7402a0f62a5646a16583c6c58e3b07a,"An Architecture for Deep, Hierarchical Generative Models","An Architecture for Deep, Hierarchical Generative
Models
Philip Bachman
Maluuba Research"
706b9767a444de4fe153b2f3bff29df7674c3161,Fast Metric Learning For Deep Neural Networks,"Fast Metric Learning For Deep Neural Networks
Henry Gouk1, Bernhard Pfahringer1, and Michael Cree2
Department of Computer Science, University of Waikato, Hamilton, New Zealand
School of Engineering, University of Waikato, Hamilton, New Zealand"
70c58700eb89368e66a8f0d3fc54f32f69d423e1,In Unsupervised Spatio-temporal Feature Learning,"INCORPORATING SCALABILITY IN UNSUPERVISED SPATIO-TEMPORAL FEATURE
LEARNING
Sujoy Paul, Sourya Roy and Amit K. Roy-Chowdhury
Dept. of Electrical and Computer Engineering, University of California, Riverside, CA 92521"
708355d319a88485fdbbea3524104982b8cf37c2,2D/3D Sensor Exploitation and Fusion for Enhanced Object Detection,"D/3D Sensor Exploitation and Fusion for Enhanced Object Detection
Jiejun Xu
HRL Laboratories LLC
Kyungnam Kim
HRL Laboratories LLC
Zhiqi Zhang
HRL Laboratories LLC
Hai-wen Chen
HRL Laboratories LLC
Yuri Owechko
HRL Laboratories LLC"
70990e1b13cec2b3e4831a00c6ac901dae76b27a,"Mareckova , Klara ( 2013 ) Sex differences and the role of sex hormones in face development and face processing","Mareckova, Klara (2013) Sex differences and the role of
sex hormones in face development and face processing.
PhD thesis, University of Nottingham.
Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/13333/1/KlaraMareckova_PhDThesis_finalversion1.pdf
Copyright and reuse:
The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.
· Copyright and all moral rights to the version of the paper presented here belong to
the individual author(s) and/or other copyright owners.
To the extent reasonable and practicable the material made available in Nottingham
ePrints has been checked for eligibility before being made available.
· Copies of full items can be used for personal research or study, educational, or not-
for-profit purposes without prior permission or charge provided that the authors, title
nd full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.
· Quotations or similar reproductions must be sufficiently acknowledged.
Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf
A note on versions:"
70eb48e06d9d5edf84246b772673b6d44af4b3c6,Robust Ldp Based Face Descriptor,"International Journal of Advances in Engineering & Technology, Mar. 2013.
©IJAET                                                                                                          ISSN: 2231-1963
ROBUST LDP BASED FACE DESCRIPTOR
Mahadeo D. Narlawar and Jaideep G. Rana
Department of Electronics Engineering, Jawaharlal Nehru College of Engineering,
Aurangabad-431004, Maharashtra, India"
70e79d7b64f5540d309465620b0dab19d9520df1,Facial Expression Recognition System Using Extreme Learning Machine,"International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017
ISSN 2229-5518
Facial Expression Recognition System
Using Extreme Learning Machine
Firoz Mahmud, Dr. Md. Al Mamun"
70bfe8dfd9c9b05c8854a5d4aca9c3ee3a3b7eff,3D Object Reconstruction using Multiple Views,"!, >A?J 4A?IJHK?JE KIEC KJEFA 8EAMI
,CD E
,AF=HJAJ B +FKJAH 5?EA?A 5J=JEIJE?I
7ELAHIEJO B ,K>E 6HEEJO +ACA
) JDAIEI J JDA 7ELAHIEJO B ,K>E 6HEEJO +ACA E BKAJ B
JDA HAGKEHAAJI BH JDA B
,?JH B 2DEIFDO
5AFJA>AH"
7003d903d5e88351d649b90d378f3fc5f211282b,Facial Expression Recognition using Gabor Wavelet,"International Journal of Computer Applications (0975 – 8887)
Volume 68– No.23, April 2013
Facial Expression Recognition using Gabor Wavelet
Mahesh Kumbhar
ENTC SVERI’S COE (Poly),
Pandharpur,
Solapur, India
Manasi Patil
ENTC SVERI’S COE,
Pandharpur,
Solapur, India
Ashish Jadhav
ENTC SVERI’S COE (Poly),
Pandharpur,
Solapur, India"
70e3c02575e4041519434e0dacb291bbb8791380,Generative 2D and 3D Human Pose Estimation with Vote Distributions,"Generative 2D and 3D
Human Pose Estimation
with Vote Distributions
J¨urgen Brauer, Wolfgang H¨ubner, Michael Arens
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation
{juergen.brauer, wolfgang.huebner,
Gutleuthausstr. 1, 76275 Ettlingen, Germany"
70920447b8300fd65745c0a884523e4d52d000ef,Automated Crowd Detection in Stadium Arenas,"AUTOMATED CROWD DETECTION IN STADIUM ARENAS
Loris Nanni, 1 Sheryl Brahnam, 2 Stefano Ghidoni, 1 Emanuele Menegatti1
DIE, University of Padua, Via Gradenigo, 6 - 35131- Padova – Italy e-mail: {loris.nanni, ghidoni,
CIS, Missouri State University, 901 S. National, Springfield, MO 65804, USA e-mail:"
70af8e4ff3c029aea788bc28b45c56932b50c056,Robust Facial Landmark Detection Using a Mixture of Synthetic and Real Images with Dynamic Weighting: A Survey,"Om Prakash Gupta et al. 2016, Volume 4 Issue 1
ISSN (Online): 2348-4098
ISSN (Print): 2395-4752"
70ce1a17f257320fc718d61964b21e7aeabd8cd5,Person re-identification with fusion of hand-crafted and deep pose-based body region features,"Person re-identification with fusion of hand-crafted and deep pose-based body
region features
Jubin Johnson1
Shunsuke Yasugi2
Yoichi Sugino2
Sugiri Pranata1
Panasonic R&D Center
Singapore
Shengmei Shen1
Panasonic Corporation
Core Element Technology Development Center
Japan
http://www.prdcsg.panasonic.com.sg/"
70b0538af40672e3be4b72f97cec486693d5204f,Mixture Component Identification and Learning for Visual Recognition,"Mixture Component Identification and Learning
for Visual Recognition
Omid Aghazadeh, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson
Computer Vision and Active Perception laboratory (CVAP), KTH, Sweden"
70e90b9df5b8617ef6636c5492db727f9d48d0ec,People Search with Textual Queries About Clothing Appearance Attributes,"People search with textual queries about
lothing appearance attributes
Riccardo Satta, Federico Pala, Giorgio Fumera, and Fabio Roli"
7056a051e0589ab6aa299c7d2a31588800b8c93e,Facial expression recognition and histograms of oriented gradients: a comprehensive study,"Carcagnì et al. SpringerPlus  (2015) 4:645
DOI 10.1186/s40064-015-1427-3
RESEARCH
Facial expression recognition
nd histograms of oriented gradients: a
omprehensive study
Pierluigi Carcagnì*†, Marco Del Coco†, Marco Leo† and Cosimo Distante†
Open Access
*Correspondence:
Pierluigi Carcagnì, Marco Del
Coco, Marco Leo and Cosimo
Distante contributed equally
to this work
National Research Council
of Italy, Institute of Applied
Sciences and Intelligent
Systems, Via della Libertà, 3,
73010 Arnesano , LE, Italy"
70bf1769d2d5737fc82de72c24adbb7882d2effd,Face Detection in Intelligent Ambiences with Colored Illumination,"Face detection in intelligent ambiences with colored illumination
Christina Katsimerou, Judith A. Redi, Ingrid Heynderickx
Department of Intelligent Systems
TU Delft
Delft, The Netherlands"
70560383cbf7c0dc5e9be1f2fd9efba905377095,Accelerating Online CP Decompositions for Higher Order Tensors,"Accelerating Online CP Decompositions for
Higher Order Tensors
Shuo Zhou1, Nguyen Xuan Vinh1, James Bailey1, Yunzhe Jia1, Ian Davidson2
Dept. of Computing and Information Systems, The University of Melbourne, Australia
Dept. of Computer Science, University of California, Davis, USA"
70480ee0e636a77f6289be98ae39300a584808f6,Iterative Robust Registration Approach based on Feature Descriptors Correspondence - Application to 3D Faces Description,"Iterative Robust Registration Approach based on Feature Descriptors
Correspondence
Application to 3D Faces Description
Cristal lab.Grift research group, National School of Computer Science, La Mannouba, Tunisia
Wieme Gadacha and Faouzi Ghorbel
Keywords:
D Rigid Registration, Hausdorff Distance in Shape Space, 3D Parametrisation, Matching, Face Description,
Shannon Theorem."
70bb5c2570673eae86a3f9ced55c7ef00e0be8b5,Combinaison de Descripteurs Hétérogènes pour la Reconnaissance de Micro-Mouvements Faciaux,"Combinaison de Descripteurs Hétérogènes pour la Reconnaissance de
Micro-Mouvements Faciaux.
Vincent Rapp1, Thibaud Senechal1, Hanan Salam2, Lionel Prevost3, Renaud Seguier2, Kevin Bailly1
ISIR - CNRS UMR 7222
Université Pierre et Marie Curie, Paris
{rapp, senechal,
Supelec - ETR (UMR 6164)
Avenue de la Boulaie, 35511,
Cesson-Sevigne
{salam,
LAMIA - EA 4540
Université des Antilles et de la Guyanne
Résumé
Dans cet article, nous présentons notre réponse au premier
hallenge international sur la reconnaissance et l’analyse
d’émotions faciales (Facial Emotion Recognition and Ana-
lysis Challenge). Nous proposons une combinaison de dif-
férents types de descripteurs dans le but de détecter de ma-
nière automatique, les micro-mouvements faciaux d’un vi-
sage. Ce système utilise une Machine à Vecteurs Supports"
70b42bbd76e6312d39ea06b8a0c24beb4a93e022,Solving Multiple People Tracking in a Minimum Cost Arborescence,"Solving Multiple People Tracking In A Minimum Cost Arborescence
Institut f¨ur Informationsverarbeitung
Institute of Geodesy and Photogrammetry
Laura Leal-Taix´e
ETH Z¨urich
Roberto Henschel
Universit¨at Hannover
Bodo Rosenhahn
Institut f¨ur Informationsverarbeitung
Universit¨at Hannover
. Introduction
For many applications of computer vision, it is neces-
sary to localize and track humans that appear in a video
sequence. Multiple people tracking has thus evolved as an
ongoing research topic in the computer vision domain.
A commonly used approach to solve the data associa-
tion problem within the tracking task is to apply a hierarchi-
al tracklet framework [5]. Although there has been great
progress in such a model, mainly due to its good bootstrap-
ping capabilities, so far little attention has been drawn to"
1e058b3af90d475bf53b3f977bab6f4d9269e6e8,Manifold Relevance Determination,"Manifold Relevance Determination
Andreas C. Damianou
Dept. of Computer Science & Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
Carl Henrik Ek
KTH – Royal Institute of Technology, CVAP Lab, Stockholm, Sweden
Michalis K. Titsias
Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
Neil D. Lawrence
Dept. of Computer Science & Sheffield Institute for Translational Neuroscience, University of Sheffield, UK"
1e1e35284591b6a69569c48b3677b6f4409c5edc,Optimal Feature Extraction and Classification of Tensors via Matrix Product State Decomposition,"Matrix Product State for Feature Extraction of
Higher-Order Tensors
Johann A. Bengua1, Ho N. Phien1, Hoang D. Tuan1 and Minh N. Do2
een applied in neuroscience, pattern analysis, image classifi-
ation and signal processing [7], [8], [9]. The central concept
of using the TD is to decompose a large multidimensional
tensor into a set of common factor matrices and a single core
tensor which is considered as reduced features of the original
tensor in spite of its lower dimension [7]. In practice, the
TD is often performed in conjunction with some constraints,
e.g. nonnegativity, orthogonality, etc., imposed on the common
factors in order to obtain a better feature core tensor [7].
However, constraints like orthogonality often leads to an NP-
hard computational problem [10]. Practical application of the
TD is normally limited to small-order tensors. This is due
to the fact
the TD core tensor preserves the higher-
order structure of the original tensor, with its dimensionality
remaining fairly large in order to capture relevant interactions
etween components of the tensor [2]."
1e2087908e6ce34032c821c7fb6629f2d0733086,Affective Embodied Conversational Agents for Natural Interaction,"Affective Embodied Conversational Agents for
Natural Interaction
Eva Cerezo, Sandra Baldassarri, Isabelle Hupont and Francisco J. Seron
Advanced Computer Graphics Group (GIGA)
Computer Science Department, Engineering Research Institute of Aragon(I3A),
University of Zaragoza,
Spain
. Introduction
Human  computer  intelligent  interaction  is  an  emerging  field  aimed  at  providing  natural
ways for humans to use computers as aids. It is argued that for a computer to be able to
interact  with  humans  it  needs  to  have  the  communication  skills  of  humans.  One  of  these
skills is the affective aspect of communication, which is recognized to be a crucial part of
human intelligence and has been argued to be more fundamental in human behaviour and
success in social life than intellect (Vesterinen, 2001; Pantic, 2005).
Embodied conversational agents, ECAs (Casell et al., 2000), are graphical interfaces capable
of using verbal and non-verbal modes of communication to interact with users in computer-
ased environments. These agents are sometimes just as an animated talking face, may be
displaying simple facial expressions and, when using speech synthesis, with some kind of
lip  synchronization,  and  sometimes  they  have  sophisticated  3D  graphical  representation,
with complex body movements and facial expressions."
1e799047e294267087ec1e2c385fac67074ee5c8,Automatic Classification of Single Facial Images,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 12, DECEMBER 1999
Short Papers___________________________________________________________________________________________________
Automatic Classification of
Single Facial Images
Michael J. Lyons, Julien Budynek, and
Shigeru Akamatsu"
1eb4ea011a3122dc7ef3447e10c1dad5b69b0642,Contextual Visual Recognition from Images and Videos,"Contextual Visual Recognition from Images and Videos
Georgia Gkioxari
Jitendra Malik
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2016-132
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-132.html
July 19, 2016"
1e7ae86a78a9b4860aa720fb0fd0bdc199b092c3,A Brief Review of Facial Emotion Recognition Based on Visual Information,"Article
A Brief Review of Facial Emotion Recognition Based
on Visual Information
Byoung Chul Ko ID
Department of Computer Engineering, Keimyung University, Daegu 42601, Korea;
Tel.: +82-10-3559-4564
Received: 6 December 2017; Accepted: 25 January 2018; Published: 30 January 2018"
1e8eee51fd3bf7a9570d6ee6aa9a09454254689d,Face Search at Scale,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2582166, IEEE
Transactions on Pattern Analysis and Machine Intelligence
Face Search at Scale
Dayong Wang, Member, IEEE, Charles Otto, Student Member, IEEE, Anil K. Jain, Fellow, IEEE"
1e02dfeb93e8fd8753d2e69baf705baf8996cb81,"Online Object Tracking, Learning and Parsing with And-Or Graphs","ARXIV VERSION
Online Object Tracking, Learning and Parsing
with And-Or Graphs
Tianfu Wu, Yang Lu and Song-Chun Zhu"
1ea2a53a6cb9c08312276a2f0646935d5fab5ed3,Real-time Crowd Tracking using Parameter Optimized Mixture of Motion Models,"Noname manuscript No.
(will be inserted by the editor)
Real-time Crowd Tracking using Parameter Optimized
Mixture of Motion Models
Aniket Bera · David Wolinski · Julien Pettr´e · Dinesh Manocha
Received: date / Accepted: date"
1eec03527703114d15e98ef9e55bee5d6eeba736,Automatic identification of persons in TV series,"UNIVERSITÄT KARLSRUHE (TH)
FAKULTÄT FÜR INFORMATIK
INTERACTIVE SYSTEMS LABS
Prof. Dr. A. Waibel
DIPLOMA THESIS
Automatic identification
of persons in TV series
SUBMITTED BY
Mika Fischer
MAY 2008
ADVISORS
M.Sc. Hazım Kemal Ekenel
Dr.-Ing. Rainer Stiefelhagen"
1e4c717a8a5eed5c3385b77641ebe3d8c4ceb3ac,An efficient algorithm for maximal margin clustering,"J Glob Optim
DOI 10.1007/s10898-011-9691-4
An efficient algorithm for maximal margin clustering
Jiming Peng · Lopamudra Mukherjee · Vikas Singh ·
Dale Schuurmans · Linli Xu
Received: 29 April 2009 / Accepted: 5 February 2011
© Springer Science+Business Media, LLC. 2011"
1e2d965df330a72b3426279f9327f77330c2ee64,Simultaneous Detection and Segmentation of Pedestrians using Top-down and Bottom-up Processing,"Simultaneous Detection and Segmentation of Pedestrians
using Top-down and Bottom-up Processing ∗
Vinay Sharma
James W. Davis
Dept. of Computer Science and Engineering
Ohio State University
Columbus OH 43210 USA"
1ebf201b34d9687fa17e336a608ab43e466ca13f,Detecting Parts for Action Localization,"Nicolas Chesneau
Grégory Rogez
Karteek Alahari
Cordelia Schmid
CHESNEAU ET AL.: DETECTING PARTS FOR ACTION LOCALIZATION
Detecting Parts for Action Localization
Inria∗"
1ef1f33c48bc159881c5c8536cbbd533d31b0e9a,Identity-based Adversarial Training of Deep CNNs for Facial Action Unit Recognition,"Z. ZHANG ET AL.: ADVERSARIAL TRAINING FOR ACTION UNIT RECOGNITION
Identity-based Adversarial Training of Deep
CNNs for Facial Action Unit Recognition
Zheng Zhang
Shuangfei Zhai
Lijun Yin
Department of Computer Science
State University of New York at
Binghamton
NY, USA."
1ebcf5dbb37fcd369530b0ee4df5d4a60f756f3e,High-level Feature Learning by Ensemble Projection for Image Classification with Limited Annotations,"High-level Feature Learning by Ensemble Projection for Image
Classification with Limited Annotations $
Dengxin Dai∗, Luc Van Gool
Computer Vision Lab, ETH Z¨urich, CH-8092, Switzerland"
1e1334f76177ddf3ddc35f7359a1e04b65438dc4,What is the Most EfficientWay to Select Nearest Neighbor Candidates for Fast Approximate Nearest Neighbor Search?,"What Is the Most Efficient Way to Select Nearest Neighbor Candidates for Fast
Approximate Nearest Neighbor Search?
Masakazu Iwamura, Tomokazu Sato and Koichi Kise
Graduate School of Engineering, Osaka Prefecture University
{masa,"
1e1a3ee9626c740be78f9c5f75f9c4d7edc45666,Estimating the Natural Illumination Conditions from a Single Outdoor Image,E-mail:
1e8a265ec741584e851b83b5efc00351048bbe3f,Real Time Human Detection and Localization Using Consumer Grade Camera and Commercial UAV,"Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2018                   doi:10.20944/preprints201811.0156.v1
Article
Real Time Human Detection and Localization Using
Consumer Grade Camera and Commercial UAV
Nemi Bhattarai 1,*, Tai Nakamura 1 and Chitrini Mozumder 1,*
Remote Sensing and Geographic Information Systems, School of Engineering and Technology, Asian
Institute of Technology, Thailand; (T.N.)
*  Correspondence: (N.B); (C.M); Tel.: +66-099-421-7492"
1e5c6c9fa9ba089931cfb2bc81e4368a4db5dd2d,Multi- View Fusion for Action Recognition in Child-Robot Interaction,"978-1-4799-7061-2/18/$31.00 ©2018 IEEE
ICIP 2018
#2Kinect #1Kinect #3Multi-view action recognition systemSenseActDecisionSpeakRec.ActionActFig.1:Multi-viewactionrecognitionsystemforchild-robotinteraction.presentspontaneousbehaviorandaninformalwayofcommunica-tion.Inaddition,thesameactionscanbeperformedinavarietyofwaysandawidespectrum,furthercomplicatingtherecognitionofactions.Althoughhumanactionrecognitionisapopularproblemwithmanyproposedmethods[8–13],therequirementsofmulti-viewac-tionrecognitiondiffersignificantlyasithastotakeintoaccountbothactionrecognitionthatresultsfromsingleviewsandalsothefusionamongtheresultinginformationfromthedifferentstreams[14,15].Incross-viewactionrecognitionworksitisattemptedtoshareknowledgefortheactionamongthedifferentsetupviews.Forexample,in[16]aspecificviewistreatedasthetargetdomainandtheotherviewsassourcedomainsinordertoformulateacross-viewlearningframework.Inotherapproaches,theknowledgeofactionsistransferredfromthedifferentviewsinasinglecanoni-calview[17].In[18]itisproposedtolearnview-invariantfeaturesrobusttoviewvariationsusingdeepmodels.Inthefieldofmulti-viewactionrecognition,anewglobalrepresentationthatiscalledmulti-viewsupervectorhasalsobeenproposedinordertoenhancerecognitionperformance[19].Finally,anotherinterestingapproachispresentedin[20]whereitisattemptedtotransferthelow-levelfeaturesintoahigh-levelsemanticspaceandamulti-tasklearningapproachforjointactionmodelingisexamined.Inthispaperwedevelopamulti-viewactionrecognitionsystemsuitableforCRI.Themaincontributionsofthispapercanbesum-marizedasfollows:1)Single-viewmethodsareexploredinordertocreaterobustactionrecognitionmodelsforparticularusers,i.e.children,underdifficulttaskswithfewtrainingdata.2)Methodsforthefusionofinformationfromdifferentstreamsinamulti-viewsys-temareproposedtoenhanceactionrecognitionduringCRI.3)Themulti-viewactionrecognitionsystemisintegratedinroboticplat-"
1ed6a05a226cb0d09afd76ff9b7560c404d8eb49,D4g: Pre-completion report on exemplar,"D4g: Pre-completion report on exemplar
Workpackage 4 Deliverable
Date: 31th August 2007"
1ecf4055831ca23c9f6026ef866dac95c8b8f9de,Eye Gaze Tracking With a Web Camera in a Desktop Environment,"Eye Gaze Tracking With a Web Camera
in a Desktop Environment
Yiu-ming Cheung, Senior Member, IEEE, and Qinmu Peng, Member, IEEE"
1eadafc27372b33a73eca062438a58d4280fd3a1,DeepSkeleton: Learning Multi-Task Scale-Associated Deep Side Outputs for Object Skeleton Extraction in Natural Images,"DeepSkeleton: Learning Multi-task Scale-associated
Deep Side Outputs for Object Skeleton Extraction
in Natural Images
Wei Shen, Kai Zhao, Yuan Jiang, Yan Wang, Xiang Bai and Alan Yuille"
1e21078efc0aa7a3881d0e87cb5dd5918523f525,Network Consistent Data Association,"Network Consistent Data Association
Anirban Chakraborty, Member, IEEE, Abir Das, Student Member, IEEE,
nd Amit K. Roy-Chowdhury, Senior Member, IEEE"
1e8394cc9fe7c2392aa36fb4878faf7e78bbf2de,Zero-Shot Object Recognition System Based on Topic Model,"TO APPEAR IN IEEE THMS
Zero-Shot Object Recognition System
ased on Topic Model
Wai Lam Hoo and Chee Seng Chan"
1e2b8778cfe44de4bbe4a099ee7cdff5c2ca5f38,Attention to Scale: Scale-Aware Semantic Image Segmentation,"Attention to Scale: Scale-aware Semantic Image Segmentation
Liang-Chieh Chen∗
{yangyi05, wangjiang03,
Yi Yang, Jiang Wang, Wei Xu
Alan L. Yuille"
1e93ec0f5c29069beedbe7d617f5167b82b70730,Filtering SVM frame-by-frame binary classification in a detection framework,"FILTERING SVM FRAME-BY-FRAME BINARY CLASSIFICATION IN A DETECTION
FRAMEWORK
Alejandro Betancourt1,2, Pietro Morerio1, Lucio Marcenaro1, Matthias Rauterberg2, Carlo Regazzoni1
Information and Signal Processing for Cognitive
University of Genoa, Italy
Telecommunications Group.
Department of Naval, Electric, Electronic
nd Telecommunications Engineering.
Designed Intelligence Group.
Department of Industrial Design.
Eindhoven University of Technology.
Eindhoven, Netherlands."
1ecb56e7c06a380b3ce582af3a629f6ef0104457,"A New Way of Discovery of Belief, Desire and Intention in the BDI Agent-Based Software Modeling","List of Contents Vol.8
Contents of
Journal of Advanced Computational
Intelligence and Intelligent Informatics
Volume 8
Vol.8 No.1, January 2004
Editorial:
o Special Issue on Selected Papers from Humanoid,
Papers:
o Dynamic Color Object Recognition Using Fuzzy
Nano-technology, Information Technology,
Communication and Control, Environment, and
Management (HNICEM’03).
Elmer P. Dadios
Papers:
o A New Way of Discovery of Belief, Desire and
Intention  in the BDI Agent-Based Software
Modeling .
Chang-Hyun Jo
o Integration of Distributed Robotic Systems"
1e64b2d2f0a8a608d0d9d913c4baee6973995952,Dominant and Complementary Multi-Emotional Facial Expression Recognition Using C-Support Vector Classification,"DOMINANT AND
COMPLEMENTARY MULTI-
EMOTIONAL FACIAL
EXPRESSION RECOGNITION
USING C-SUPPORT VECTOR
CLASSIFICATION
Christer Loob, Pejman Rasti, Iiris Lusi, Julio C. S. Jacques
Junior, Xavier Baro, Sergio Escalera, Tomasz Sapinski,
Dorota Kaminska and Gholamreza Anbarjafari"
1e82a8965f08e8d38b16f39412e6e3c456f6f22e,Social force model aided robust particle PHD filter for multiple human tracking,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
1e21b925b65303ef0299af65e018ec1e1b9b8d60,Unsupervised Cross-Domain Image Generation,"Under review as a conference paper at ICLR 2017
UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION
Yaniv Taigman, Adam Polyak & Lior Wolf
Facebook AI Research
Tel-Aviv, Israel"
1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9,9 Entropy Regularization,"Entropy Regularization
Yves Grandvalet
Yoshua Bengio
The problem of semi-supervised induction consists in learning a decision rule from
labeled and unlabeled data. This task can be undertaken by discriminative methods,
provided that learning criteria are adapted consequently. In this chapter, we moti-
vate the use of entropy regularization as a means to bene(cid:12)t from unlabeled data in
the framework of maximum a posteriori estimation. The learning criterion is derived
from clearly stated assumptions and can be applied to any smoothly parametrized
model of posterior probabilities. The regularization scheme favors low density sep-
ration, without any modeling of the density of input features. The contribution
of unlabeled data to the learning criterion induces local optima, but this problem
an be alleviated by deterministic annealing. For well-behaved models of posterior
probabilities, deterministic annealing EM provides a decomposition of the learning
problem in a series of concave subproblems. Other approaches to the semi-supervised
problem are shown to be close relatives or limiting cases of entropy regularization.
A series of experiments illustrates the good behavior of the algorithm in terms of
performance and robustness with respect to the violation of the postulated low den-
sity separation assumption. The minimum entropy solution bene(cid:12)ts from unlabeled
data and is able to challenge mixture models and manifold learning in a number of"
1e0ba1a61ed0c6d4a76697de1e185ed5def60fb4,Learning to Parse Video into Stable Spatiotemporal Volumes1,"Learning to Parse Video into Stable Spatiotemporal Volumes1
Thomas Dean
Google Inc.
We are interested in learning how to exploit continuity, motion and context to account for stable, recov-
erable, spatiotemporal phenomena embedded in video. While most humans can make sense of still images,
for the most part, we need continuity and motion to make sense of the world around us. Humans are also
ided by strong priors that allow us to make confident predictions despite ambiguity, noise and occlusion.
The idea of combining top-down prior knowledge and bottom-up cues derived from motion and other
low-level features has been around almost as long as research in computer vision, e.g., [10], and has recently
seen renewed interest, e.g., [3, 2, 6, 11]. Rather than the traditional tasks of object recognition or image
ategorization, here we focus on the task of explaining each new frame in a video in terms of a continuously
evolving representation of spatiotemporal volumes that account for the complete visual field. For the purpose"
1e1dc91c2ac3ad0ae44941e711aed193231c3335,Universal Adversarial Perturbations Against Semantic Image Segmentation,"Universal Adversarial Perturbations Against Semantic Image Segmentation
Bosch Center for Artificial Intelligence, Robert Bosch GmbH
Jan Hendrik Metzen
Mummadi Chaithanya Kumar
University of Freiburg
Thomas Brox
University of Freiburg
Bosch Center for Artificial Intelligence, Robert Bosch GmbH
Volker Fischer"
1e1a67a78badc619b2f9938e4a03922dcbee0fb6,Food/Non-food Image Classification and Food Categorization using Pre-Trained GoogLeNet Model,"Food/Non-food Image Classification and Food
Categorization using Pre-Trained GoogLeNet Model
Ashutosh Singla
Lin Yuan
Touradj Ebrahimi
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne
Station 11, 1015 Lausanne, Switzerland"
1e15c5cba95cbb475ddb67157fdd480f5253502e,Face Recognition under Varying Lighting Conditions: A Combination of Weber-face and Local Directional Pattern for Feature Extraction and Support Vector Machines for Classification,"Journal of Information Hiding and Multimedia Signal Processing
Ubiquitous International
©2017 ISSN 2073-4212
Volume 8, Number 5, September 2017
Face Recognition under Varying Lighting Conditions:
A Combination of Weber-face and Local Directional
Pattern for Feature Extraction and Support Vector
Machines for Classification
Chin-Shiuh Shieh1,5, Liyun Chang4,∗, and Tsair-Fwu Lee1,3,5,∗
Chi-Kien Tran1,2, Chin-Dar Tseng1, Pei-Ju Chao1,3
Medical Physics and Informatics Laboratory of Electronics Engineering,
National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan, ROC
Center for Information Technology, Hanoi University of Industry, Hanoi, Vietnam
Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital,
Department of Medical Imaging and Radiological Sciences, I-Shou University,
Kaohsiung 83305,Taiwan, ROC
Kaohsiung 82445,Taiwan, ROC
5 Graduate Institute of Clinical Medicine, Kaohsiung Medical University,
Corresponding authors:
Kaohsiung 807,Taiwan, ROC"
1e9c3d0d87e09ea359ce1e31114b677d627bf9e7,Correction: Rapid Stress System Drives Chemical Transfer of Fear from Sender to Receiver,"RESEARCH ARTICLE
Rapid Stress System Drives Chemical Transfer
of Fear from Sender to Receiver
Jasper H. B. de Groot1*, Monique A. M. Smeets1, Gün R. Semin1,2,3
Department of Social and Organizational Psychology, Faculty of Social and Behavioral Sciences, Utrecht
University, Utrecht, the Netherlands, 2 Department of Psychology, Koç University, Istanbul, Turkey,
Instituto Superior de Psicologia Aplicada (ISPA), Instituto Universitário, Lisbon, Portugal
11111"
1ee3b4ba04e54bfbacba94d54bf8d05fd202931d,Celebrity Face Recognition using Deep Learning,"Indonesian Journal of Electrical Engineering and Computer Science
Vol. 12, No. 2, November 2018, pp. 476~481
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i2.pp476-481
      476
Celebrity Face Recognition using Deep Learning
Nur Ateqah Binti Mat Kasim1, Nur Hidayah Binti Abd Rahman2, Zaidah Ibrahim3,
Nur Nabilah Abu Mangshor4
,2,3Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM),
Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM),
Shah Alam, Selangor, Malaysia
Campus Jasin, Melaka, Malaysia
Article Info
Article history:
Received May 29, 2018
Revised Jul 30, 2018
Accepted Aug 3, 2018
Keywords:
AlexNet
Convolutional neural network
Deep learning"
1eda03469d860ac725122bd27faaae6b2cb47d0d,Image Question Answering Using Convolutional Neural Network with Dynamic Parameter Prediction,"Image Question Answering using Convolutional Neural Network
with Dynamic Parameter Prediction
Hyeonwoo Noh
Paul Hongsuck Seo
Bohyung Han
{shgusdngogo, hsseo,
Department of Computer Science and Engineering, POSTECH, Korea"
1e41a3fdaac9f306c0ef0a978ae050d884d77d2a,Robust Object Recognition with Cortex-Like Mechanisms,"Robust Object Recognition with
Cortex-Like Mechanisms
Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and
Tomaso Poggio, Member, IEEE"
1e8711d2fc4b05eac0699c82f4698154c2b057d3,The unreasonable effectiveness of small neural ensembles in high-dimensional brain,"The unreasonable effectiveness of small neural ensembles
in high-dimensional brain
A.N. Gorbana,b,∗, V.A. Makarovb,c, I.Y. Tyukina,b,d
Instituto de Matem´atica Interdisciplinar, Faculty of Mathematics, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid,
Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
Lobachevsky University, Nizhni Novgorod, Russia
dSaint-Petersburg State Electrotechnical University, Saint-Petersburg, Russia
Spain"
1e83e2abcb258cd62b160e3f31a490a6bc042e83,Metric Learning in Codebook Generation of Bag-of-Words for Person Re-identification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Metric Learning in Codebook Generation of
Bag-of-Words for Person Re-identification
Lu Tian, Student Member, IEEE, and Shengjin Wang, Member, IEEE"
1e1e66783f51a206509b0a427e68b3f6e40a27c8,Semi-supervised Estimation of Perceived Age from Face Images,"SEMI-SUPERVISED ESTIMATION OF PERCEIVED AGE
FROM FACE IMAGES
VALWAY Technology Center, NEC Soft, Ltd., Tokyo, Japan
Kazuya Ueki
Masashi Sugiyama
Keywords:"
1ef46f7bb7463ead4369a796435106da63578733,Shamann: Shared Memory Augmented Neural Networks,"Under review as a conference paper at ICLR 2019
SHAMANN: SHARED MEMORY AUGMENTED
NEURAL NETWORKS
Anonymous authors
Paper under double-blind review"
1efaa128378f988965841eb3f49d1319a102dc36,Hierarchical binary CNNs for landmark localization with limited resources,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Hierarchical binary CNNs for landmark
localization with limited resources
Adrian Bulat and Georgios Tzimiropoulos"
8408f4b1193e8db25fec818a989d9fe3194d5ea6,3D Face Recognition using Radon Transform and Symbolic LDA,"International Journal of Computer Applications (0975 - 8887)
Volume 67 - No. 4, April 2013
D Face Recognition using Radon Transform and
Symbolic LDA
P. S. Hiremath
Department of Computer Science
Gulbarga University, Gulbarga-585106
Karnataka, India
Manjunatha Hiremath
Department of Computer Science
Gulbarga University, Gulbarga-585106
Karnataka, India"
84a69f6357b137028e3aa51376ce2dffad5e0179,Studies of Typically and Atypically Developing Children,"Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Social Sciences 152
Visual Attention to Faces, Eyes and
Objects
Studies of Typically and Atypically Developing
Children
JOHAN L. KLEBERG
ISSN 1652-9030
ISBN 978-91-513-0244-7
urn:nbn:se:uu:diva-342578
UNIVERSITATIS
UPSALIENSIS
UPPSALA"
84af83ff6412a756df58b6436f0d2e3c049e1f12,Abnormality Detection with Improved Histogram of Oriented Tracklets,"Abnormality Detection with Improved
Histogram of Oriented Tracklets
Hossein Mousavi1, Moin Nabi1 , Hamed Kiani Galoogahi1
Alessandro Perina1 and Vittorio Murino1,2
Pattern Analysis and Computer Vision Department (PAVIS)
Istituto Italiano di Tecnologia (IIT) Genova, Italy
Dipartimento di Informatica,University of Verona, Italy"
8451bf3dd6bcd946be14b1a75af8bbb65a42d4b2,Consensual and Privacy-Preserving Sharing of Multi-Subject and Interdependent Data,"Consensual and Privacy-Preserving Sharing of
Multi-Subject and Interdependent Data
Alexandra-Mihaela Olteanu
EPFL, UNIL–HEC Lausanne
K´evin Huguenin
UNIL–HEC Lausanne
Italo Dacosta
Jean-Pierre Hubaux"
842e42d30dc31de1833047c268f0a5cdff16f2ce,3D Face Compression and Recognition using Spherical Wavelet Parametrization,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.9, 2012
D Face Compression and Recognition using
Spherical Wavelet Parametrization
Rabab M. Ramadan
College of Computers and Information Technology
University of Tabuk
Tabuk, KSA
into  multi-resolution  sub"
845c03910c7cfd02de7df9622a9973e8b085c0d8,Interactive Generation of Realistic Facial Wrinkles from Sketchy Drawings,"EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer
(Guest Editors)
Volume 34 (2015), Number 2
Interactive Generation of Realistic Facial Wrinkles from
Sketchy Drawings
Hyeon-Joong Kim 1,3, A. Cengiz Öztireli2, Il-Kyu Shin1, Markus Gross2, Soo-Mi Choi†1
Sejong University, Korea 2 ETH Zurich, Switzerland 3 3D Systems, Korea
Figure 1: We use statistics extracted from example faces to augment interactively drawn concept sketches for synthesizing
realistic facial wrinkles."
84c35fc21db3bcd407a4ffb009912b6ac5a47e3c,Mgan: Training Generative Adversarial Nets,"Under review as a conference paper at ICLR 2018
MGAN: TRAINING GENERATIVE ADVERSARIAL NETS WITH
MULTIPLE GENERATORS
Anonymous authors
Paper under double-blind review"
84e4b7469f9c4b6c9e73733fa28788730fd30379,Projective complex matrix factorization for facial expression recognition,"Duong et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:10
DOI 10.1186/s13634-017-0521-9
EURASIP Journal on Advances
in Signal Processing
R ES EAR CH
Projective complex matrix factorization for
facial expression recognition
Viet-Hang Duong1, Yuan-Shan Lee1, Jian-Jiun Ding2, Bach-Tung Pham1, Manh-Quan Bui1, Pham The Bao2
nd Jia-Ching Wang1,3*
Open Access"
84968d6488e87c99b8560ab33110a5bf85aa5761,Object category learning and retrieval with weak supervision,"Object category learning and retrieval with
weak supervision
Steven Hickson, Anelia Angelova, Irfan Essa, Rahul Sukthankar
Google Brain / Google Research
(shickson, anelia, irfanessa,"
84be05dd82a7208a6e7b3d238df27b123cc917ce,Revisiting Visual Question Answering Baselines,"Revisiting Visual Question Answering Baselines
Allan Jabri, Armand Joulin, and Laurens van der Maaten
Facebook AI Research"
84c8b29103480cf6f2b93e2fd4225b0d9d535ed6,Playing hide and seek with a mobile companion robot,"Playing Hide and Seek with a Mobile
Companion Robot
Michael Volkhardt, Steffen Mueller, Christof Schroeter, Horst-Michael Gross
Neuroinformatics and Cognitive Robotics Lab
Ilmenau University of Technology
98684 Ilmenau, Germany
Email:"
846f3857976ba437e0592a848e47f6a3370880a3,3D Face Recognition Based on Depth and Intensity Gabor Features using Symbolic PCA and AdaBoost,"International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol.6, No.5 (2013), pp.1-12
http://dx.doi.org/10.14257/ijsip.2013.6.5.01
D Face Recognition Based on Depth and Intensity Gabor
Features using Symbolic PCA and AdaBoost
P. S. Hiremath and Manjunatha Hiremath
Department of Computer Science
Gulbarga University, Gulbarga – 585106
Karnataka, India,"
844568d9e49ec34536502bb8c66d5578c962abd6,From Virtual to Real World Visual Perception Using Domain Adaptation - The DPM as Example,"Invited book chapter to appear in Domain Adaptation in Computer Vision Applications, Springer Series: Advances
in Computer Vision and Pattern Recognition, Edited by Gabriela Csurka. Written during Summer 2016.
From Virtual to Real World Visual Perception using Domain
Adaptation – The DPM as Example
Computer Vision Center (CVC) and Dpt. Ci`encies de la Computaci´o (DCC),
Antonio M. L´opez
Universitat Aut`onoma de Barcelona (UAB)
Jiaolong Xu
Jos´e L. G´omez
David V´azquez
CVC and DCC, UAB
CVC and DCC, UAB
CVC and DCC, UAB
Germ´an Ros
CVC and DCC, UAB
December 30, 2016"
84fa126cb19d569d2f0147bf6f9e26b54c9ad4f1,Improved Boosting Performance by Explicit Handling of Ambiguous Positive Examples,"Improved Boosting Performance by Explicit
Handling of Ambiguous Positive Examples
Miroslav Kobetski and Josephine Sullivan"
84508e846af3ac509f7e1d74b37709107ba48bde,Use of the Septum as a Reference Point in a Neurophysiologic Approach to Facial Expression Recognition,"Use of the Septum as a Reference Point in a Neurophysiologic Approach to
Facial Expression Recognition
Igor Stankovic and Montri Karnjanadecha
Department of Computer Engineering, Faculty of Engineering,
Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
Telephone: (66)080-7045015, (66)074-287-357
E-mail:"
84c8eb2db35f7fd38c906ced741e2c5470ba7544,Deep Control - a simple automatic gain control for memory efficient and high performance training of deep convolutional neural networks,"Deep Control - a simple automatic gain control for memory
efficient and high performance training of deep
onvolutional neural networks
Brendan Ruff
Submitted to BMVC 2017, 2nd May 2017
Patent application GB1619779.0, 23rd Nov 2016"
841a5de1d71a0b51957d9be9d9bebed33fb5d9fa,PCANet: A Simple Deep Learning Baseline for Image Classification?,"PCANet: A Simple Deep Learning Baseline for
Image Classification?
Tsung-Han Chan, Member, IEEE, Kui Jia, Shenghua Gao, Jiwen Lu, Senior Member, IEEE,
Zinan Zeng, and Yi Ma, Fellow, IEEE"
84fd7c00243dc4f0df8ab1a8c497313ca4f8bd7b,Perceived Age Estimation from Face Images,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
8411fe1142935a86b819f065cd1f879f16e77401,Facial Recognition using Modified Local Binary Pattern and Random Forest,"International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 6, November 2013
Facial Recognition using Modified Local Binary
Pattern and Random Forest
Brian O’Connor and Kaushik Roy
Department of Computer Science,
North Carolina A&T State University,
Greensboro, NC 27411"
84187adc5e6412123405102bb3c2f0428713593c,Quad-Tree based Image Encoding Methods for Data-Adaptive Visual Feature Learning,"IPSJ SIG Technical Report
Quad-Tree based Image Encoding Methods for
Data-Adaptive Visual Feature Learning
Cuicui Zhang1,a) Xuefeng Liang1,b) Takashi Matsuyama1,c)"
84a20d0a47c0d826b77f73075530d618ba7573d2,Look at Boundary: A Boundary-Aware Face Alignment Algorithm,"(68	points)	COFW	(29	points)	AFLW	(19	points)	Figure1:Thefirstcolumnshowsthefaceimagesfromdifferentdatasetswithdifferentnumberoflandmarks.Thesecondcolumnillustratestheuniversallydefinedfacialboundariesestimatedbyourmethods.Withthehelpofboundaryinformation,ourapproachachieveshighaccuracylocalisationresultsacrossmultipledatasetsandannotationprotocols,asshowninthethirdcolumn.Differenttofacedetection[45]andrecognition[75],facealignmentidentifiesgeometrystructureofhumanfacewhichcanbeviewedasmodelinghighlystructuredout-put.Eachfaciallandmarkisstronglyassociatedwithawell-definedfacialboundary,e.g.,eyelidandnosebridge.However,comparedtoboundaries,faciallandmarksarenotsowell-defined.Faciallandmarksotherthancornerscanhardlyremainthesamesemanticallocationswithlargeposevariationandocclusion.Besides,differentannotationschemesofexistingdatasetsleadtoadifferentnumberoflandmarks[28,5,66,30](19/29/68/194points)andanno-tationschemeoffuturefacealignmentdatasetscanhardlybedetermined.Webelievethereasoningofauniquefacial"
84124eba5ccd5a25d2275c3dd6d2f15e30225ef7,People counting with image retrieval using compressed sensing,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 Crown
Homa Foroughi, Nilanjan Ray, Hong Zhang
Index  Terms—  compressed  sensing,  people  counting,
. INTRODUCTION"
84f6f20496fadb975922b47528fd94c71e872950,Dissimilarity-based people re-identification and search for intelligent video surveillance,"Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering
University of Cagliari
Dissimilarity-based people
re-identification and search for
intelligent video surveillance
Riccardo Satta
Advisor: Prof. Fabio Roli
Co-advisor: Prof. Giorgio Fumera
Curriculum: ING-INF/05 - Sistemi di Elaborazione delle Informazioni
XXV Cycle
April 2013"
4adca62f888226d3a16654ca499bf2a7d3d11b71,Models of Semantic Representation with Visual Attributes,"Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 572–582,
Sofia, Bulgaria, August 4-9 2013. c(cid:13)2013 Association for Computational Linguistics"
4a45b8f8decc178305af06d758ac7428a9070fad,Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data,"Augmented CycleGAN: Learning Many-to-Many Mappings
from Unpaired Data
Amjad Almahairi 1 † Sai Rajeswar 1 Alessandro Sordoni 2 Philip Bachman 2 Aaron Courville 1 3"
4a70c6e14bcd7a44838fdabdcdb33bc026c907b4,Allocentric Pose Estimation,"Allocentric Pose Estimation
Jos´e Oramas M.
Luc De Raedt
Tinne Tuytelaars
KU Leuven, ESAT-PSI, iMinds
KU Leuven, CS-DTAI
KU Leuven, ESAT-PSI, iMinds"
4a9831e5fec549edee454709048a51997ef60fb7,Did the Model Understand the Question?,"Did the Model Understand the Question?
Pramod K. Mudrakarta
University of Chicago
Ankur Taly
Google Brain
Mukund Sundararajan
Kedar Dhamdhere
Google
Google"
4af25075729aa4d0fa4ecf6c948f59ec15bf9565,ii DOCUMENT EVOLUTION Version Date,"Project N° IST-2002-507634 - BioSecure
D 9.1.2 - Revision: b3
4 June 2005
Contract Number :
Project Acronym :
Project Title :
Instrument :
Start Date of Project :
Duration :
Deliverable Number :
Title of Deliverable :
Contractual Due Date :
Actual Date of Completion :
IST-2002-507634
BioSecure
Biometrics for Secure Authentication
Network of Excellence
01 June, 2004
6 months
D 9.1.2"
4af133c49d39c8b7aa9d82c17f1fd2c70e36233f,Recognition of Facial Gestures using Gabor Filter,"Recognition of Facial Gestures using Gabor Filter
{tag}                                                                       {/tag}
International Journal of Computer Applications
© 2011 by IJCA Journal
Number 8 - Article 2
Year of Publication: 2011
Authors:
Subhashini Ramalingam
Dr Ilango Paramasivam
Mangayarkarasi Ramiah
10.5120/3153-3990"
4a2d54ea1da851151d43b38652b7ea30cdb6dfb2,Direct recognition of motion-blurred faces,"Direct Recognition of Motion Blurred Faces
Kaushik Mitra, Priyanka Vageeswaran and Rama Chellappa"
4ab84f203b0e752be83f7f213d7495b04b1c4c79,Concave Losses for Robust Dictionary Learning,"CONCAVE LOSSES FOR ROBUST DICTIONARY LEARNING
Rafael Will M. de Araujo, R. Hirata Jr ∗
Alain Rakotomamonjy †
University of S˜ao Paulo
Institute of Mathematics and Statistics
Rua do Mat˜ao, 1010 – 05508-090 – S˜ao Paulo-SP, Brazil
Universit´e de Rouen Normandie
LITIS EA 4108
76800 Saint- ´Etienne-du-Rouvray, France"
4a75d59c9c57da420441190071ba545eb4a75e1e,Deep Mixture of Diverse Experts for Large-Scale Visual Recognition,"Deep Mixture of Diverse Experts for Large-Scale
Visual Recognition
Tianyi Zhao, Jun Yu, Zhenzhong Kuang, Wei Zhang, Jianping Fan"
4a1b67d1f30abeeecb270666605025d9d78971ff,Energy-based adaptive skin segmentation for hand and head detection,"Noname manuscript No.
(will be inserted by the editor)
Energy-based adaptive skin segmentation for hand and
head detection
Michal Kawulok
Received: date / Accepted: date"
4a3758f283b7c484d3f164528d73bc8667eb1591,Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial Networks,"Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial
Networks
Yunfan Liu, Qi Li, and Zhenan Sun∗
Center for Research on Intelligent Perception and Computing, CASIA
National Laboratory of Pattern Recognition, CASIA
{qli,"
4a19f6545473363b16d4a10ed13fef29b38856d3,What is a Salient Object? A Dataset and a Baseline Model for Salient Object Detection,"What is a salient object? A dataset and
baseline model for salient object detection
Ali Borji, Member, IEEE"
4af997701ce14ba689f7f964a72bcae0a2432435,The role of gaze direction in face memory in autism spectrum disorder.,"RESEARCH ARTICLE
The Role of Gaze Direction in Face Memory in Autism
Spectrum Disorder
Safa R. Zaki and Shannon A. Johnson
We tested the hypothesis that the direction of gaze of target faces may play a role in reported face recognition deficits
in those with an autism spectrum disorder (ASD). In previous studies, typically developing children and adults better
remembered faces in which the eyes were gazing directly at them compared with faces in which the eyes were averted.
In the current study, high-functioning children and adolescents with an ASD and age- and IQ-matched typically
developing controls were shown a series of pictures of faces in a study phase. These pictures were of individuals whose
gaze was either directed straight ahead or whose gaze was averted to one side. We tested the memory for these study faces
in a recognition task in which the faces were shown with their eyes closed. The typically developing group better
remembered the direct-gaze faces, whereas the ASD participants did not show this effect. These results imply that there
may be an important link between gaze direction and face recognition abilities in ASD. Autism Res 2013, (cid:129)(cid:129): (cid:129)(cid:129)–(cid:129)(cid:129).
© 2013 International Society for Autism Research, Wiley Periodicals, Inc.
Keywords: autism spectrum disorder; face recognition; eye-contact; face-processing; gaze
Face processing is a pivotal component of human
ommunication and interaction. There is evidence that
people with an autism spectrum disorder (ASD), a disor-
der characterized by impairments in social interaction
nd communication as well as restricted range of interests"
4ac4b0a2d06ff5df1cc4941f8ae47843b4593bba,American Sign Language fingerspelling recognition from video: Methods for unrestricted recognition and signer-independence,"American Sign Language fingerspelling recognition
from video: Methods for unrestricted recognition
nd signer-independence
Taehwan Kim
A thesis submitted
in partial fulfillment of the requirements for
the degree of
Doctor of Philosophy in Computer Science
t the
Toyota Technological Institute at Chicago
Chicago, Illionois
August 2016
Thesis Committee:
Vassilis Athitsos
Karen Livescu (Thesis Advisor)
Greg Shakhnarovich
Yisong Yue"
4a4da3d1bbf10f15b448577e75112bac4861620a,"Face , Expression , and Iris Recognition","FACE, EXPRESSION, AND IRIS RECOGNITION
USING LEARNING-BASED APPROACHES
Guodong Guo
A dissertation submitted in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy
(Computer Sciences)
t the
UNIVERSITY OF WISCONSIN–MADISON"
4abd49538d04ea5c7e6d31701b57ea17bc349412,Recognizing Fine-Grained and Composite Activities Using Hand-Centric Features and Script Data,"Recognizing Fine-Grained and Composite Activities
using Hand-Centric Features and Script Data
Marcus Rohrbach · Anna Rohrbach · Michaela Regneri ·
Sikandar Amin · Mykhaylo Andriluka · Manfred Pinkal · Bernt Schiele"
4a0f98d7dbc31497106d4f652968c708f7da6692,Real-time eye gaze direction classification using convolutional neural network,"Real-time Eye Gaze Direction Classification Using
Convolutional Neural Network
Anjith George, Member, IEEE, and Aurobinda Routray, Member, IEEE"
4af36d3ce93f7ed82a7dc321fca926d540691b33,ADVISE: Symbolism and External Knowledge for Decoding Advertisements,[cs.CV]  29 Jul 2018
4a95dacb1d38a07e73007082b8ed7651a4b5277c,Region labelling using a Point-Based Coherence Criterion,"Region labelling using a Point-Based Coherence Criterion
Hichem Houissa(cid:2) and Nozha Boujemaa(cid:2)
(cid:2)INRIA Rocquencourt, BP 105,78153, Le Chesnay Cedex-France"
4a5592ae1f5e9fa83d9fa17451c8ab49608421e4,Multi-modal social signal analysis for predicting agreement in conversation settings,"Multi-modal Social Signal Analysis for Predicting
Agreement in Conversation Settings
Víctor Ponce-López
IN3, Open University of
Catalonia, Roc Boronat, 117,
08018 Barcelona, Spain.
Dept. MAiA, University of
Barcelona, Gran Via, 585,
08007 Barcelona, Spain.
Computer Vision Center, UAB,
08193 Barcelona, Spain.
Sergio Escalera
Dept. MAiA, University of
Barcelona, Gran Via, 585,
08007 Barcelona, Spain.
Computer Vision Center, UAB,
08193 Barcelona, Spain.
Xavier Baró
EIMT, Open University of
Catalonia, Rbla. Poblenou,"
4a56d5e483ddea93f14bfbe350a3063b2b9126cb,Iterative Action and Pose Recognition Using Global-and-Pose Features and Action-Specific Models,"Iterative Action and Pose Recognition
using Global-and-Pose Features and Action-specific Models
Norimichi Ukita
Nara Institute of Science and Technology"
4a53ac7f99a42da17a7f1ba04f5c6d6831e31151,Beyond Bilinear: Generalized Multi-modal Factorized High-order Pooling for Visual Question Answering,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Beyond Bilinear: Generalized Multi-modal
Factorized High-order Pooling
for Visual Question Answering
Zhou Yu, Jun Yu Member, IEEE, Chenchao Xiang, Jianping Fan, Dacheng Tao Fellow, IEEE"
4a1a5316e85528f4ff7a5f76699dfa8c70f6cc5c,Face Recognition using Local Features based on Two-layer Block Model,"MVA2005  IAPR  Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan
Face Recognition using Local Features based on Two-layer Block M odel
W onjun Hwang1          Ji-Yeun Kim        Seokcheol Kee
Computing Lab.,
Samsung Advanced Institute of Technology
ombined  by  Yang  and  etc  [7].  The  sparsification  of  LFA
helps the reduction of dimension of image in LDA scheme
nd  local  topological  property  is  more  useful  than  holistic
property of PCA in recognition, but there is still structural
problem  because  the  method  to  select  the  features  is
designed  for  minimization  of  reconstruction  error,  not  for
increasing discriminability in face model.
In  this  paper,  we  proposed  the  novel  recognition
lgorithm  to  merge LFA  and LDA  method. We do  not use
the existing sparsification method for selecting features but
dopt  the  two-layer  block  model  to  make  several  groups
with  topographic  local  features  in  similar  position.  Each
local  block,  flocked  local  features,  can  represent  its  own
local  property  and  at
time  holistic  face"
4a2062ba576ca9e9a73b6aa6e8aac07f4d9344b9,Fusing Deep Convolutional Networks for Large Scale Visual Concept Classification,"Fusing Deep Convolutional Networks for Large
Scale Visual Concept Classification
Hilal Ergun and Mustafa SertB
Department of Computer Engineering
Bas¸kent University
06810 Ankara, TURKEY"
4a8085987032e85ac8017d9977a4b76b0d8fa4ac,Object Recognition using Template Matching,"Object Recognition using Template Matching
Nikhil Gupta, Rahul Gupta, Amardeep Singh, Matt Wytock
December 12, 2008
Introduction
Building 3D models
Object Recognition is inherently a hard problem in
omputer vision. Current standard object recogni-
tion techniques require small training data sets of
images and apply sophisticated algorithms. These
methods tend to perform poorly because the small
data set does not reflect the true distribution (selec-
tion bias).
Recently, Torralba et al [1] have proposed to de-
velop a large data set of images (80 million images)
nd apply simple algorithms for object recognition.
Their method performs relatively well for some cer-
tain classes of objects. Nevertheless, their data sets
require very large storage and are noisy.
In this project, we develop precise 3D models of
objects and use these to apply simple learning al-"
4ac3cd8b6c50f7a26f27eefc64855134932b39be,Robust Facial Landmark Detection via a Fully-Convolutional Local-Global Context Network,"Robust Facial Landmark Detection
via a Fully-Convolutional Local-Global Context Network
Daniel Merget
Matthias Rock
Gerhard Rigoll
Technical University of Munich"
4a0f152a07a9becb986b516a1281a4482b38db81,Video Compression for Object Detection Algorithms,"CONFIDENTIAL. Limited circulation. For review only.
Preprint submitted to 24th International Conference on Pattern Recognition.
Received January 22, 2018."
4ad51a99e489939755f1d4f5d1f5bc509c49e96d,Preferences for facially communicated big five personality traits and their relation to self-reported big five personality,"Personality and Individual Differences 134 (2018) 195–200
Contents lists available at ScienceDirect
Personality and Individual Differences
journal homepage: www.elsevier.com/locate/paid
Preferences for facially communicated big five personality traits and their
relation to self-reported big five personality
Donald F. Sacco⁎, Mitch Brown
The University of Southern Mississippi, United States of America
A R T I C L E I N F O
A B S T R A C T
Keywords:
Personality
Face perception
Big five
Similarity
Complementarity
A growing body of research has begun to document that core personality traits are associated with specific facial
structures, and that individuals are sensitive to these facial cues, as indexed by preferences for faces commu-
nicating higher or lower levels of specific traits. We explored how self-reported Big Five personality traits in-
fluence preferences for facially-communicated Big Five personality in targets. Participants selected among pairs"
4a31ca27b987606ae353b300488068b5240633ee,WSABIE: Scaling Up to Large Vocabulary Image Annotation,"WSABIE: Scaling Up To Large Vocabulary Image Annotation
Jason Weston1 and Samy Bengio1 and Nicolas Usunier2
Google, USA
Universit´e Paris 6, LIP6, France"
4abaebe5137d40c9fcb72711cdefdf13d9fc3e62,Dimension Reduction for Regression with Bottleneck Neural Networks,"Dimension Reduction for Regression
with Bottleneck Neural Networks
Elina Parviainen
BECS, Aalto University School of Science and Technology, Finland"
4a64b020c72db15a729939a2c041ef4f5830f0f7,Challenges of Ground Truth Evaluation of Multi-target Tracking,"Challenges of Ground Truth Evaluation of Multi-Target Tracking
Anton Milan1
Konrad Schindler2
Stefan Roth1
Department of Computer Science, TU Darmstadt
Photogrammetry and Remote Sensing Group, ETH Z¨urich"
4abaf7d4b9577131cb2f93e913f8bd83f924da4c,Towards learning through robotic interaction alone: the joint guided search task,"Towards learning through robotic interaction alone:
the joint guided search task
Nick DePalma and Cynthia Breazeal
0 Ames Str. Cambridge MA
Personal Robots Group
MIT Media Lab"
4a3a9d02999fcf0895db31d644f40c98254ac4b1,Vision-based 3D bicycle tracking using deformable part model and Interacting Multiple Model filter,"Vision-based 3D Bicycle Tracking using Deformable Part Model
nd Interacting Multiple Model Filter
Hyunggi Cho, Paul E. Rybski and Wende Zhang"
4a4a3effdfffb51a0f82d3b0904c017086996ac6,Conceptual and methodological challenges for neuroimaging studies of autistic spectrum disorders,"Mazzone and Curatolo Behavioral and Brain Functions 2010, 6:17
http://www.behavioralandbrainfunctions.com/content/6/1/17
REVIEW
Conceptual and methodological challenges for
neuroimaging studies of autistic spectrum
disorders
Luigi Mazzone1*, Paolo Curatolo2
Open Access"
4a9afcc6ba45c0ff05ea93d306ff73ede32f7ed4,Multiple-shot People Re-identify based on Feature Selection with Sparsity,"International Journal of Hybrid Information Technology
Vol.8, No.1 (2015), pp.27-34
http://dx.doi.org/10.14257/ijhit.2015.8.1.03
Multiple-shot People Re-identify based on Feature Selection with
Sparsity
Dongping Zhang, Yanjie Li, Jiao Xu and Ye Shen
College of Information Engineering, China Jiliang University, Hangzhou 310018,
China"
4a88237199595feaa3f0e3289cbdd201a3ce28ff,Multi-Domain Pose Network for Multi-Person Pose Estimation and Tracking,"Multi-Domain Pose Network for Multi-Person
Pose Estimation and Tracking
Hengkai Guo1(cid:63), Tang Tang1, Guozhong Luo1, Riwei Chen1, Yongchen Lu1,
nd Linfu Wen1
ByteDance AI Lab"
4a227881f5763d2bda2e545eac346389b2b2017a,Model based image interpretation with application to facial expression recognition,"d d d
d d d d
ddd ddd ddd ddd
Institut für Informatik
der Technischen Universität München
Model-based Image Interpretation with
Application to Facial Expression
Recognition
Dissertation
Matthias Wimmer"
4a869781d074f6be7a5001c59e41b25145bdd830,DeltaPhish: Detecting Phishing Webpages in Compromised Websites,"DeltaPhish: Detecting Phishing Webpages
in Compromised Websites∗
Igino Corona1,2, Battista Biggio1,2, Matteo Contini2, Luca Piras1,2, Roberto Corda2, Mauro
Mereu2, Guido Mureddu2, Davide Ariu1,2, and Fabio Roli1,2
Pluribus One, via Bellini 9, 09123 Cagliari, Italy
DIEE, University of Cagliari, Piazza d’Armi 09123, Cagliari, Italy"
4a303369828d9334022a0f5e8ad2b1a715d1c0c9,Deep Metric Learning by Online Soft Mining and Class-Aware Attention,"Deep Metric Learning by Online Soft Mining and Class-Aware Attention
Xinshao Wang1,2, Yang Hua1,2, Elyor Kodirov2, Guosheng Hu1,2, Neil M. Robertson1,2
School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, UK
{xwang39, y.hua, {elyor,
Anyvision Research Team, UK"
4ae3cdba121dec886a84eff146e438a55513002c,Interactive Hausdorff distance computation for general polygonal models,"Interactive Hausdorff Distance Computation for General Polygonal Models
Min Tang∗
Minkyoung Lee†
Ewha Womans University, Seoul, Korea
Young J. Kim‡
http://graphics.ewha.ac.kr/HDIST
Figure 1: Interactive Hausdorff Distance Computation. Our algorithm can compute Hausdorff distance between complicated models at
interactive rates (the first three figures). Here, the green line denotes the Hausdorff distance. This algorithm can also be used to find
penetration depth (PD) for physically-based animation (the last two figures). It takes only a few milli-seconds to run on average."
4aeb87c11fb3a8ad603311c4650040fd3c088832,Self-paced Mixture of Regressions,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
SamplesSelected SamplesOutliersMoRSPMoR (ours)6361242024Figure1:Inter-componentimbalanceandintra-componentoutliersinMixtureofRegression(MoR)approaches.StandardMoRcannotlearnaccurateregressors(denotedbythedashedlines).Byintroduc-inganovelself-pacedscheme,ourSPMoRapproach(denotedbythesolidlines)selectsbalancedandconfidenttrainingsamplesfromeachcomponent,whilepreventlearningfromtheoutliersthroughoutthetrainingprocedure.theywillbeinevitablybiasedbydatadistribution:lowre-gressionerrorindenselysampledspacewhilehigherrorineverywhereelse.Foraddressingtheissuesofthedatadiscontinuityandheterogeneity,thedivide-and-conquerapproacheswerepro-posedlately.Thecoreideaistolearntocombinemultiplelocalregressors.Forinstance,thehierarchical-based[Hanetal.,2015]andtree-basedregression[HaraandChellappa,2014]makehardpartitionsrecursively,andthesubsetsofsam-plesmaynotbehomogeneousforlearninglocalregressors.WhileMixtureofRegressions(MoR)[Jacobsetal.,1991;JordanandXu,1995]distributesregressionerroramonglocalregressorsbymaximizinglikelihoodinthejointinput-outputspace.Theseapproachesreduceoverallerrorbyfittingre-gressionlocallyandreliefsthebiasbydiscontinuousdatadistribution.Unfortunately,theaforementionedapproachesstillcannotachievesatisfactoryperformancewhenapplyinginsomereal-worldapplications.Themainreasonisthattheseapproachestendtobesensitivetotheintra-componentoutliers(i.e.,thenoisytrainingdataresidingincertaincomponents)andtheinter-componentimbalance(i.e.,thedifferentamountsoftrain-"
4a3d96b2a53114da4be3880f652a6eef3f3cc035,A Dictionary Learning-Based 3D Morphable Shape Model,"A Dictionary Learning-Based
D Morphable Shape Model
Claudio Ferrari
, Giuseppe Lisanti, Stefano Berretti
, Senior Member, IEEE, and Alberto Del Bimbo"
4aa18f3a1c85f7a09d3b0d6b28c0339199892d60,The Application of Neural Networks for Facial Landmarking on Mobile Devices,
4a6fcf714f663618657effc341ae5961784504c7,Scaling Up Class-Specific Kernel Discriminant Analysis for Large-Scale Face Verification,"Scaling up Class-Specific Kernel Discriminant
Analysis for large-scale Face Verification
Alexandros Iosifidis, Senior Member, IEEE, and Moncef Gabbouj, Fellow, IEEE"
4a855d86574c9bd0a8cfc522bc1c77164819c0bc,PixelCNN Models with Auxiliary Variables for Natural Image Modeling,"PixelCNN Models with Auxiliary Variables for Natural Image Modeling
Alexander Kolesnikov 1 Christoph H. Lampert 1"
2409557812a3d26258949ba73a05031591f42bdc,Exact Discovery of Time Series Motifs,"Abdullah Mueen
Exact Discovery of Time Series Motifs
Eamonn Keogh
Qiang Zhu
Sydney Cash1,2       Brandon Westover1,3
Massachusetts General Hospital, 2Harvard Medical School, 3Brigham and Women's Hospital
University of California – Riverside
{mueen, eamonn,"
24ec4cd704d07865ce31fe539d00cd2597b5dfc9,Face Localization in the Neural Abstraction Pyramid,Face Localization
24e98b70dc6982af2dd3a5bb4e501cc1b61f7d2b,LCR-Net++: Multi-person 2D and 3D Pose Detection in Natural Images,"SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018
LCR-Net++: Multi-person 2D and 3D Pose
Detection in Natural Images
Gr´egory Rogez, Philippe Weinzaepfel, and Cordelia Schmid, Fellow, IEEE"
24c7554823bb8c1c0729c4ece5f3e50965aea74e,Robust Computation of Linear Models by Convex Relaxation,"ROBUST COMPUTATION OF LINEAR MODELS,
OR HOW TO FIND A NEEDLE IN A HAYSTACK
GILAD LERMAN∗, MICHAEL MCCOY†, JOEL A. TROPP†, AND TENG ZHANG◦"
245130ac792531ca9981f9c5907190eac19ebb50,Detecting Objects using Unsupervised Parts-based Attributes∗,"Detecting Objects using Unsupervised Parts-based Attributes∗
Santosh K. Divvala1, Larry Zitnick2, Ashish Kapoor2 , Simon Baker2
Carnegie Mellon University.
Microsoft Research.
{larryz, ashishk,"
24115d209e0733e319e39badc5411bbfd82c5133,Long-Term Recurrent Convolutional Networks for Visual Recognition and Description,"Long-term Recurrent Convolutional Networks for
Visual Recognition and Description
Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan, Sergio Guadarrama,
Kate Saenko, Trevor Darrell"
24c442ac3f6802296d71b1a1914b5d44e48b4f29,Pose and Expression-Coherent Face Recovery in the Wild,"Pose and expression-coherent face recovery in the wild
Xavier P. Burgos-Artizzu
Joaquin Zepeda
Technicolor, Cesson-S´evign´e, France
Franc¸ois Le Clerc
Patrick P´erez"
245922e5251c103c2021577cc0f99791d748ac64,Fusion of Intraoperative 3D B-mode and Contrast-Enhanced Ultrasound Data for Automatic Identification of Residual Brain Tumors,"Article
Fusion of Intraoperative 3D B-mode and
Contrast-Enhanced Ultrasound Data for Automatic
Identification of Residual Brain Tumors
Elisee Ilunga-Mbuyamba 1,3, Dirk Lindner 2, Juan Gabriel Avina-Cervantes 1,∗, Felix Arlt 2,
Horacio Rostro-Gonzalez 1, Ivan Cruz-Aceves 4 and Claire Chalopin 3
Telematics (CA), Engineering Division (DICIS), University of Guanajuato, Campus Irapuato-Salamanca,
Carr. Salamanca-Valle km 3.5 + 1.8, Comunidad de Palo Blanco, Salamanca, Gto. 36885, Mexico;
(E.I.-M.); (H.R.-G.)
Department of Neurosurgery, University Hospital Leipzig, Leipzig 04103, Germany;
(D.L.); (F.A.)
Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig 04103, Germany;
Centro de Investigacion en Matematicas (CIMAT), A.C., Jalisco S/N, Col. Valenciana,
Guanajuato, Gto. 36000, Mexico;
* Correspondence: Tel.: +52-46-4647-9940 (ext. 2400)
Academic Editor: Hideyuki Hasegawa
Received: 15 February 2017; Accepted: 17 April 2017; Published: 19 April 2017"
244a6d4f5f745f8c2a58a6a70d7ba2b91300c118,RADON Transform and PCA based 3 D Face Recognition using KNN and SVM,"International Journal of Computer Applications (0975 – 8887)
Recent Advances in Information Technology, 2014
RADON Transform and PCA based 3D Face Recognition
using KNN and SVM
P. S. Hiremath
Department of Computer Science
Gulbarga University
Gulbarga, KA, India
Manjunatha Hiremath
Department of Computer Science
Gulbarga University
Gulbarga, KA, India
integral
researches
society.Many"
247b14570940601f5c7a2da1db532ecf1c302288,Dual Attention Networks for Multimodal Reasoning and Matching,"Dual Attention Networks for Multimodal Reasoning and Matching
Hyeonseob Nam
Naver Search Solutions
Jung-Woo Ha
Naver Labs
Jeonghee Kim
Naver Labs"
245f8ec4373e0a6c1cae36cd6fed5a2babed1386,Lucas Kanade Optical Flow Computation from Superpixel based Intensity Region for Facial Expression Feature Extraction,"J. Appl. Environ. Biol. Sci., 7(3S)1-10, 2017
© 2017, TextRoad Publication
ISSN: 2090-4274
Journal of Applied Environmental
nd Biological Sciences
www.textroad.com
Lucas Kanade Optical Flow Computation from Superpixel based Intensity
Region for Facial Expression Feature Extraction
Halina Hassan1,2, Abduljalil Radman1, Shahrel Azmin Suandi1, Sazali Yaacob2
Intelligent Biometric Group, School of Electrical and Electronics Engineering, Universiti Sains Malaysia,
Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute, 09000
Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Kulim Hi-Tech Park, Kedah, Malaysia
Received: February 21, 2017
Accepted: May 14, 2017"
2484a34597a40d846c084e827fda299fd0927008,Image Matching Algorithm based on SURF Feature-point and DAISY Descriptor,"Image Matching Algorithm based on
Feature-point and DAISY Descriptor
School of Business, Sichuan Agricultural University, Sichuan Dujianyan 611830, China
Li Li
is  the  research"
24b6d839662e5d56f17fc26eab4d2901f6835ddf,Real Time Lip Motion Analysis for a Person Authentication System using Near Infrared Illumination,"REAL TIME LIP MOTION ANALYSIS FOR A
PERSON AUTHENTICATION SYSTEM USING NEAR
INFRARED ILLUMINATION
Faisal Shafait, Ralph Kricke, Islam Shdaifat, Rolf-Rainer Grigat
TUHH Vision Systems (4-08/1)
Harburger Schloßstr. 20, 21079 Hamburg, Germany
Tel: +49 40 42878-3125, Fax: +49 40 42878-2911
http://www.ti1.tu-harburg.de
in: 2006 IEEE International Conference on Image Processing. See also BIBTEX entry below.
BIBTEX:
uthor = {Faisal Shafait and Ralph Kricke and Islam Shdaifat and Rolf-Rainer Grigat},
title = {REAL TIME LIP MOTION ANALYSIS FOR A PERSON AUTHENTICATION SYSTEM
USING NEAR INFRARED ILLUMINATION},
ooktitle = {2006 IEEE International Conference on Image Processing},
year = {2006},
pages = {1957-1960},
month = {oct},
url = {http://www.ti1.tu-harburg.de/Publikationen}
scheduled for October 8-11, 2006 in Atlanta, Georgia, USA. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for cre-"
246218fd60d47975990908c48274341b47255292,Marker-less motion capture in general scenes with sparse multi-camera setups,"Marker-less Motion Capture in General
Scenes with Sparse Multi-camera Setups
Ahmed Elhayek
Saarbr¨ucken, Germany
Dissertation
zur Erlangung des Grades des
Doktors der Ingenieurswissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakult¨aten
der Universit¨at des Saarlandes
March 2015"
2491203e3b268235ea0269f41dbebd113d2a1b0a,"Optimal multiplexed sensing: bounds, conditions and a graph theory link.","Optimal multiplexed sensing: bounds,
onditions and a graph theory link
Netanel Ratner,1 Yoav Y. Schechner,1,∗
nd Felix Goldberg2
Dept. Electrical Engineering, Technion - Israel Inst. Technology
Haifa 32000, Israel
Dept. Mathematics, Technion - Israel Inst. Technology
Haifa 32000, Israel
Corresponding author:"
24e099e77ae7bae3df2bebdc0ee4e00acca71250,Robust Face Alignment Under Occlusion via Regional Predictive Power Estimation,"Robust face alignment under occlusion via regional predictive power
estimation.
Heng Yang; Xuming He; Xuhui Jia; Patras, I
© 2015 IEEE
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/22467
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
24e79933d8d71dd9e72e289d9d89a061ccbb01c3,Analysis of Principal Component Analysis (PCA) Face Recognition: Effects of Similarity Measure,"Analysis of Principal Component Analysis (PCA)
Face Recognition: Effects of Similarity Measure
Arjun V Mane#1, Ramesh R Manza#2, Karbhari V Kale#3
#Department of Computer Science & Information Technology,
Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (MS) India"
2431eeb2df8877d78901fa37a091a23dc207c2b2,Rotation-Invariant HOG Descriptors Using Fourier Analysis in Polar and Spherical Coordinates,"Int J Comput Vis
DOI 10.1007/s11263-013-0634-z
Rotation-Invariant HOG Descriptors Using Fourier Analysis
in Polar and Spherical Coordinates
Kun Liu · Henrik Skibbe · Thorsten Schmidt ·
Thomas Blein · Klaus Palme · Thomas Brox ·
Olaf Ronneberger
Received: 30 September 2012 / Accepted: 21 May 2013
© Springer Science+Business Media New York 2013"
2450c618cca4cbd9b8cdbdb05bb57d67e63069b1,A connexionist approach for robust and precise facial feature detection in complex scenes,"A Connexionist Approach for Robust and Precise Facial Feature Detection in
Complex Scenes
Stefan Duffner and Christophe Garcia
France Telecom Research & Development
, rue du Clos Courtel
5512 Cesson-S´evign´e, France
fstefan.duffner,"
246fa412f26d5bf5b151a7c3f5287141bd08ae0b,Deep Metric Learning for the Target Cost in Unit-Selection Speech Synthesizer,"Interspeech 2018
-6 September 2018, Hyderabad
0.21437/Interspeech.2018-1305"
24041477d6e412e4afc441992f4b170831f725c7,International Journal of Advance Research in Computer Science and Management Studies,"Volume 3, Issue 10, October 2015
International Journal of Advance Research in
Computer Science and Management Studies
Research Article / Survey Paper / Case Study
Available online at: www.ijarcsms.com
ISSN: 2321-7782 (Online)
Automatic Face Naming by Using Fused Affinity Matrix
Kadam Vaibhav Bharat1
B.E. Computer Science
Deshpande Supriya Ajay2
B.E. Computer Science
Alarm College of Engineering, Pune, India
Alarm College of Engineering, Pune, India
Malpure Sagar3
B.E. Computer Science
Choudhary Jitendra4
B.E. Computer Science
Alarm College of Engineering, Pune, India
Alarm College of Engineering, Pune, India"
244b57cc4a00076efd5f913cc2833138087e1258,Warped Convolutions: Efficient Invariance to Spatial Transformations,"Warped Convolutions: Efficient Invariance to Spatial Transformations
Jo˜ao F. Henriques 1 Andrea Vedaldi 1"
242ae7b1b1c3e1aafcbe9cef3cb23918c6f94f2c,Performance Evaluation of Biometric Template Update,"Performance Evaluation
of Biometric Template Update
Romain Giot and Christophe Rosenberger
Université de Caen, UMR 6072 GREYC
ENSICAEN, UMR 6072 GREYC
CNRS, UMR 6072 GREYC
Email:
Email:
Bernadette Dorizzi
Institut Télécom; Télécom SudParis
UMR 5157 SAMOVAR
Email:"
2475d216fd52994ac69ef922f4daf73e47f9535d,Joint Albedo Estimation and Pose Tracking from Video,"Joint Albedo Estimation and Pose Tracking
from Video
Sima Taheri, Student Member, IEEE, Aswin Sankaranarayanan, Member, IEEE,
nd Rama Chellappa, Fellow, IEEE"
24869258fef8f47623b5ef43bd978a525f0af60e,Données multimodales pour l ’ analyse d ’ image,"UNIVERSITÉDEGRENOBLENoattribuéparlabibliothèqueTHÈSEpourobtenirlegradedeDOCTEURDEL’UNIVERSITÉDEGRENOBLESpécialité:MathématiquesetInformatiquepréparéeauLaboratoireJeanKuntzmanndanslecadredel’ÉcoleDoctoraleMathématiques,SciencesetTechnologiesdel’Information,InformatiqueprésentéeetsoutenuepubliquementparMatthieuGuillauminle27septembre2010ExploitingMultimodalDataforImageUnderstandingDonnéesmultimodalespourl’analysed’imageDirecteursdethèse:CordeliaSchmidetJakobVerbeekJURYM.ÉricGaussierUniversitéJosephFourierPrésidentM.AntonioTorralbaMassachusettsInstituteofTechnologyRapporteurMmeTinneTuytelaarsKatholiekeUniversiteitLeuvenRapporteurM.MarkEveringhamUniversityofLeedsExaminateurMmeCordeliaSchmidINRIAGrenobleExaminatriceM.JakobVerbeekINRIAGrenobleExaminateur"
246ec873db261257833231d657ec8995d686cc3e,Facing the implications: Dangerous world beliefs differentially predict men and Women's aversion to facially communicated..,"See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/315831650
Facing	the	implications:	Dangerous	world
eliefs	differentially	predict	men	and	Women's
version	to	facially	communicated...
Article		in		Personality	and	Individual	Differences	·	October	2017
READS
DOI:	10.1016/j.paid.2017.04.018
CITATIONS
authors,	including:
Mitch	Brown
University	of	Southern	Mississippi
9	PUBLICATIONS			14	CITATIONS
SEE	PROFILE
Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:
Facially	Communicated	Extraversion	and	Social	Motives	View	project
Grip	Strength	and	Perceptions	View	project
All	content	following	this	page	was	uploaded	by	Mitch	Brown	on	09	April	2017.
The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document
nd	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately."
247df1d4fca00bc68e64af338b84baaecc34690b,Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces,"Review
Procedure
009/6/12
Paper
 “Evaluation of Gender Classification Methods
with Automatically Detected and Aligned
Faces”
 Erno Makinen & Roope Raisamo
 2008
Decision
resizing
lignment
face detection
resizing
lassification
resizing
lignment
lignment
resizing
face detection"
24da9c1eb30ed5ef0052f760d5d847bf5cd1d2ba,A Machine-Learning Approach to Keypoint Detection and Landmarking on 3D Meshes,"Int J Comput Vis
DOI 10.1007/s11263-012-0605-9
A Machine-Learning Approach to Keypoint Detection
nd Landmarking on 3D Meshes
Clement Creusot · Nick Pears · Jim Austin
Received: 14 October 2011 / Accepted: 17 December 2012
© Springer Science+Business Media New York 2013"
2475ad865b2102cef83a87adfe0d2e71d4791e53,A Supervised Clustering Algorithm for the Initialization of RBF Neural Network Classifiers,"A Supervised Clustering Algorithm for the Initialization
of RBF Neural Network Classifiers
Hakan Cevikalp, Diane Larlus, Frédéric Jurie
To cite this version:
Hakan Cevikalp, Diane Larlus, Frédéric Jurie. A Supervised Clustering Algorithm for the Ini-
SIU ’07 - 15th Signal Processing and Com-
tialization of RBF Neural Network Classifiers.
munications Applications, Jun 2007, Eskisehir, Turkey.
IEEE Computer society, pp.1-4, 2007,
<10.1109/SIU.2007.4298803>. <hal-00203762>
HAL Id: hal-00203762
https://hal.archives-ouvertes.fr/hal-00203762
Submitted on 14 Jan 2008
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est"
2472d6e4459dd65cd77b5fce99220d3b30854408,Towards 3D object recognition via classification of arbitrary object tracks,"Towards 3D Object Recognition
via Classification of Arbitrary Object Tracks
Alex Teichman, Jesse Levinson, Sebastian Thrun
Stanford Artificial Intelligence Laboratory
{teichman, jessel,"
243778aefb3c23d6774309c70217cb83f7204915,"The Mutex Watershed: Efficient, Parameter-Free Image Partitioning","The Mutex Watershed:
Ef‌f‌icient, Parameter-Free Image Partitioning
Steffen Wolf1⋆, Constantin Pape1,2⋆, Alberto Bailoni1, Nasim Rahaman1, Anna
Kreshuk1,2, Ullrich K¨othe1, and Fred A. Hamprecht1
HCI/IWR, University of Heidelberg, Germany
EMBL Heidelberg, Germany"
2465fc22e03faf030e5a319479a95ef1dfc46e14,Influence of different feature selection approaches on the performance of emotion recognition methods based on SVM,"______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION
Influence of Different Feature Selection Approaches
on the Performance of Emotion Recognition
Methods Based on SVM
Daniil Belkov, Konstantin Purtov, Vladimir Kublanov
Ural Federal University (UrFU)
Yekaterinburg, Russia
d.d.belkov,"
2452dfb2c5a4578ac9497cc4dc3c6d5d03997210,On designing an unconstrained tri-band pupil detection system for human identification,"DOI 10.1007/s00138-015-0700-3
ORIGINAL PAPER
On designing an unconstrained tri-band pupil detection system
for human identification
Cameron Whitelam1 · Thirimachos Bourlai1
Received: 30 September 2014 / Revised: 11 February 2015 / Accepted: 15 June 2015
© Springer-Verlag Berlin Heidelberg 2015
facial"
24ff832171cb774087a614152c21f54589bf7523,Beat-Event Detection in Action Movie Franchises,"Beat-Event Detection in Action Movie Franchises
Danila Potapov
Matthijs Douze
Jerome Revaud
Zaid Harchaoui
Cordelia Schmid"
247232ab9eabb4f2480dd70557a1ee89afed4f20,Dominant men are faster in decision-making situations and exhibit a distinct neural signal for promptness,"Cerebral Cortex, October 2018;28: 3740–3751
doi: 10.1093/cercor/bhy195
Advance Access Publication Date: 15 August 2018
Original Article
O R I G I N A L A R T I C L E
Dominant men are faster in decision-making situations
nd exhibit a distinct neural signal for promptness
Janir da Cruz1,2, João Rodrigues3, John C. Thoresen3, Vitaly Chicherov1,
Patrícia Figueiredo2, Michael H. Herzog1 and Carmen Sandi
Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of
Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland, 2Institute for Systems and Robotics – Lisboa,
Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
nd 3Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of
Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
Address correspondence to Carmen Sandi, Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of
Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland. Email:
orcid.org/0000-0001-7713-8321
Janir da Cruz, João Rodrigues, and John C. Thoresen contributed equally to this work
Michael H. Herzog and Carmen Sandi contributed equally to this work"
244377600b1474e1da3b86a08683e629990d1417,Embedded Vision System for Atmospheric Turbulence Mitigation,"Embedded Vision System for Atmospheric Turbulence Mitigation
Ajinkya Deshmukh1, Gaurav Bhosale, Swarup Medasani2, Karthik Reddy,
Hemanthakumar P, Chandrasekhar A, Kirankumar P, Vijayasagar K
Uurmi Systems Pvt. Ltd., Hyderabad, India"
247a6b0e97b9447850780fe8dbc4f94252251133,Facial action unit detection: 3D versus 2D modality,"Facial Action Unit Detection: 3D versus 2D Modality
Arman Savran
Electrical and Electronics Engineering
Bo˘gazic¸i University, Istanbul, Turkey
B¨ulent Sankur
Electrical and Electronics Engineering
Bo˘gazic¸i University, Istanbul, Turkey
M. Taha Bilge
Department of Psychology
Bo˘gazic¸i University, Istanbul, Turkey"
2485c98aa44131d1a2f7d1355b1e372f2bb148ad,The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 1, JANUARY 2008
The CAS-PEAL Large-Scale Chinese Face
Database and Baseline Evaluations
Wen Gao, Senior Member, IEEE, Bo Cao, Shiguang Shan, Member, IEEE,
Xilin Chen, Member, IEEE, Delong Zhou, Xiaohua Zhang, and Debin Zhao"
24d3e695af619e88613aba7dc0e7492c12fa4d0e,Sparsest Matrix based Random Projection for Classification,"Sparse Matrix-based Random Projection for
Classification
Weizhi Lu, Weiyu Li, Kidiyo Kpalma and Joseph Ronsin"
24585f90bdf30583733841f70430d36948f16ae2,An efficient method for human face recognition using nonsubsampled contourlet transform and support vector machine,"Optica Applicata, Vol. XXXIX, No. 3, 2009
An efficient method for human face recognition
using nonsubsampled contourlet transform
nd support vector machine
XUEBIN XU, DEYUN ZHANG, XINMAN ZHANG*
School of Electronics and Information Engineering, Xi’an Jiaotong University,
8 Xianning West Road, Xi’an 710049, P.R. China
*Corresponding author:
To  improve  the  recognition  rate  in  different  conditions,  a  multiscale  face  recognition  method
ased on nonsubsampled contourlet transform and support vector machine is proposed in this
paper.  Firstly, all face images are decomposed  by using  nonsubsampled  contourlet transform.
The contourlet coefficients of low frequency and high frequency in different scales and various
ngles will be obtained. Most significant information of faces is contained in coefficients, which
is  important  for  face  recognition.  Then,  the  combinations  of  coefficients  are  applied  as  study
samples to the support vector machine classifiers. Finally, the decomposed coefficients of testing
face image are used to test classifiers, then face recognition results are obtained. The experiments
re performed on the YaleB database and the Cambridge University ORL database. The results
indicate that the method proposed has performs better than the wavelet-based method. Compared
with the wavelet-based method, the proposed method can make the best recognition rates increase
y 2.85% for YaleB  database and  1.87% for ORL  database, respectively. Our method is  also"
230527d37421c28b7387c54e203deda64564e1b7,Person Re-identification: System Design and Evaluation Overview,"Person Re-identification: System Design and
Evaluation Overview
Xiaogang Wang and Rui Zhao"
236942bb64f1711b4763424b2f795fb518c9d8d4,Optimizing LBP Structure For Visual Recognition Using Binary Quadratic Programming,"Optimizing LBP Structure For Visual Recognition
Using Binary Quadratic Programming
Jianfeng Ren, Student Member, IEEE, Xudong Jiang, Senior Member, IEEE, Junsong Yuan, Senior Member, IEEE,
nd Gang Wang, Member, IEEE"
2315371408e02cdff6f54359f159f192009d1600,Effective Pedestrian Detection Using Center-symmetric Local Binary/Trinary Patterns,"SEPTEMBER 2010
Effective Pedestrian Detection Using
Center-symmetric Local Binary/Trinary Patterns
Yongbin Zheng, Chunhua Shen, Richard Hartley, Fellow, IEEE, and Xinsheng Huang"
237316762470d72a02795a7f57de9279e9cda16a,Dimensionality-reduced subspace clustering,"Dimensionality-reduced subspace clustering
Reinhard Heckel, Michael Tschannen, and Helmut B¨olcskei
December 15, 2015"
239c06cd437832faa55a8e7292c50e45229a3d7c,Generating analytic insights on human behavior using image processing,"Generating Analytic Insights on Human behavior
using Image Processing
Namit Juneja, Rajesh Kumar M, Senior Member, IEEE
School of Electronics Engineering
VIT University
Vellore, India"
2396ff03c41c498ff20e3a0e5419afa45e4a9d41,MIT Autonomous Vehicle Technology Study: Large-Scale Deep Learning Based Analysis of Driver Behavior and Interaction with Automation,"MIT Autonomous Vehicle Technology Study:
Large-Scale Deep Learning Based Analysis of
Driver Behavior and Interaction with Automation
Lex Fridman∗, Daniel E. Brown, Michael Glazer, William Angell, Spencer Dodd, Benedikt Jenik,
Andrew Sipperley, Anthony Pettinato, Bobbie Seppelt, Linda Angell, Bruce Mehler, Bryan Reimer∗
Jack Terwilliger, Julia Kindelsberger, Li Ding, Sean Seaman, Hillary Abraham, Alea Mehler,"
23e1746c449e675a4ffa3833b0ac5c5a7b743f7f,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
2349eab05cd0c6f94ba5314c037d198aa12c2f0f,Eigen-profiles of spatio-temporal fragments for adaptive region-based tracking,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
237734e3fd3abab005b0b97d61416ee16105f902,Consensus Maximization for Semantic Region Correspondences,"Consensus Maximization for Semantic Region Correspondences
Pablo Speciale1, Danda P. Paudel2, Martin R. Oswald1,
Hayko Riemenschneider2, Luc V. Gool2,4, and Marc Pollefeys1,3
Department of Computer Science, ETH Z¨urich.
Microsoft, Redmond, USA
{pablo, moswald,
Computer Vision Laboratory, D-ITET, ETH Z¨urich
VISICS, ESAT/PSI, KU Leuven, Belgium
{paudel, hayko,
Day / Night
Registration
Outdoor / Indoor
Registration
Scan / CAD
Registration
Figure 1: Example registration results. Our approach solves challenging registration problems by maximizing the number of corre-
sponding semantic regions – such as windows, doors or balconies – for datasets from different modalities, with large amounts of noise and
outliers, little data overlap, or significantly different data statistics."
239df42479c69cf95e7194cc0ec3d8cf7d4a98e8,Face Detection and Extraction from Low Resolution Surveillance Video Using Motion Segmentation,"Face Detection and Extraction from Low
Resolution Surveillance Video Using
Motion Segmentation
Vikram Mutneja1
I.K. Gujral Punjab Technical University, Kapurthala, Punjab (India)
Ph.D. Research Scholar,
I.K. Gujral Punjab Technical University Main Campus, Kapurthala, Punjab (India)
Dr. Satvir Singh2,
Associate Professor,"
23fa51635c646aa621bb18ff76f31d5e48ac969b,MFSC: A new shape descriptor with robustness to deformations,"MFSC: A NEW SHAPE DESCRIPTOR WITH ROBUSTNESS TO DEFORMATIONS
Lunshao Chaia, Zhen Qinb, Honggang Zhanga, Jun Guoa, Bir Bhanub
Beijing University of Posts and Telecomuunictions, Beijing, 100876, China
University of California at Riverside, Riverside, CA 92521, USA"
23172f9a397f13ae1ecb5793efd81b6aba9b4537,Defining Visually Descriptive Language,"Proceedings of the 2015 Workshop on Vision and Language (VL’15), pages 10–17,
Lisbon, Portugal, 18 September 2015. c(cid:13)2015 Association for Computational Linguistics."
23fd82c04852b74d655015ff0876e6c5defc6e61,Deep-based Ingredient Recognition for Cooking Recipe Retrieval,"Deep-based Ingredient Recognition for
Cooking Recipe Retrieval
Jingjing Chen
City University of HongKong
Kowloon, HongKong
Chong-Wah Ngo
City University of HongKong
Kowloon, HongKong"
236a4f38f79a4dcc2183e99b568f472cf45d27f4,Randomized Clustering Forests for Image Classification,"Randomized Clustering Forests
for Image Classification
Frank Moosmann, Student Member, IEEE, Eric Nowak, Student Member, IEEE, and
Frederic Jurie, Member, IEEE Computer Society"
230c4a30f439700355b268e5f57d15851bcbf41f,EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis,"EM Algorithms for Weighted-Data Clustering
with Application to Audio-Visual Scene Analysis
Israel D. Gebru, Xavier Alameda-Pineda, Florence Forbes and Radu Horaud"
237fa91c8e8098a0d44f32ce259ff0487aec02cf,Bidirectional PCA with assembled matrix distance metric for image recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006
Bidirectional PCA With Assembled Matrix
Distance Metric for Image Recognition
Wangmeng Zuo, David Zhang, Senior Member, IEEE, and Kuanquan Wang, Member, IEEE"
237ec7e6d20025c32069e41f8007bb97931a7fc6,Learning real-time object detectors : probabilistic generative approaches,
2331df8ca9f29320dd3a33ce68a539953fa87ff5,Extended Isomap for Pattern Classification,"Extended Isomap for Pattern Classification
Ming-Hsuan Yang
Honda Fundamental Research Labs
Mountain View, CA 94041"
2333cf918f50ac2ae201a837166d310adf3a00b0,Optimally Training a Cascade Classifier,"Optimally Training a Cascade Classifier
Chunhua Shen, Peng Wang, and Anton van den Hengel"
23ba9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3,Determining Mood from Facial Expressions,"CS 229 Project, Fall 2014
Matthew Wang
Spencer Yee
Determining Mood from Facial Expressions
Introduction
Facial expressions play an extremely important role in human communication. As
society continues to make greater use of human-machine interactions, it is important for
machines to be able to interpret facial expressions in order to improve their
uthenticity. If machines can be trained to determine mood to a better extent than
humans can, especially for more subtle moods, then this could be useful in fields such as
ounseling. This could also be useful for gauging reactions of large audiences in various
ontexts, such as political talks.
The results of this project could also be applied to recognizing other features of facial
expressions, such as determining when people are purposefully suppressing emotions or
lying. The ability to recognize different facial expressions could also improve technology
that recognizes to whom specific faces belong. This could in turn be used to search a
large number of pictures for a specific photo, which is becoming increasingly difficult, as
storing photos digitally has been extremely common in the past decade. The possibilities
re endless.
II  Data and Features"
2311cdd241c118395a510776ec226aff7725ebc8,Hunting Nessie - Real-time abnormality detection from webcams,"Hunting Nessie – Real-Time Abnormality Detection from Webcams
Michael D. Breitenstein1 Helmut Grabner1 Luc Van Gool1,2
Computer Vision Laboratory
ETH Zurich
ESAT-PSI / IBBT
KU Leuven"
2340a8fa6d90741c53e659cd1e7ca86ff900aa55,Body Parts Dependent Joint Regressors for Human Pose Estimation in Still Images,"Body Parts Dependent Joint Regressors for
Human Pose Estimation in Still Images
Matthias Dantone, Juergen Gall, Member, IEEE Christian Leistner, and Luc Van Gool, Member, IEEE"
238fc68b2e0ef9f5ec043d081451902573992a03,Enhanced Local Gradient Order Features and Discriminant Analysis for Face Recognition,"Enhanced Local Gradient Order Features and
Discriminant Analysis for Face Recognition
Chuan-Xian Ren, Zhen Lei, Member, IEEE, Dao-Qing Dai, Member, IEEE, and Stan Z. Li, Fellow, IEEE
role in robust face recognition [5]. Many algorithms have
een proposed to deal with the effectiveness of feature design
nd extraction [6], [7]; however, the performance of many
existing methods is still highly sensitive to variations of
imaging conditions, such as outdoor illumination, exaggerated
expression, and continuous occlusion. These complex varia-
tions are significantly affecting the recognition accuracy in
recent years [8]–[10].
Appearance-based subspace learning is one of the sim-
plest approach for feature extraction, and many methods
re usually based on linear correlation of pixel intensities.
For example, Eigenface [11] uses eigen system of pixel
intensities to estimate the lower rank linear subspace of
set of training face images by minimizing the (cid:2)2 dis-
tance metric. The solution enjoys optimality properties when
noise is independent
identically distributed Gaussian only."
2322ec2f3571e0ddc593c4e2237a6a794c61251d,Four not six: Revealing culturally common facial expressions of emotion.,"Jack, R. E. , Sun, W., Delis, I., Garrod, O. G. B. and Schyns, P. G. (2016)
Four not six: revealing culturally common facial expressions of
emotion.Journal of Experimental Psychology: General, 145(6), pp. 708-
730.  (doi:10.1037/xge0000162)
This is the author’s final accepted version.
There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
http://eprints.gla.ac.uk/116592/
Deposited on: 20 April 2016
Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk"
23ea8a34570342855611a78a4ff00ddd902e6123,Gradient-based global features and its application to image retargeting,"Gradient-based Global Features and Its Application
to Image Retargeting
Izumi Ito
Tokyo Institute of Technology Tokyo, 152-8552 Japan
+81-3-5734-2997"
2312bc2d48a0f68bd5ab1b024d5726786455da3a,Learning Deep Context-Aware Features over Body and Latent Parts for Person Re-identification,"Learning Deep Context-aware Features over Body and Latent Parts
for Person Re-identification
Supplementary Materials
Dangwei Li1,2, Xiaotang Chen1,2, Zhang Zhang1,2, Kaiqi Huang1,2,3
CRIPAC & NLPR, CASIA 2University of Chinese Academy of Sciences
CAS Center for Excellence in Brain Science and Intelligence Technology
{dangwei.li, xtchen, zzhang,
. Market1501 dataset
To further understand the results on Market1501 [8], we show mean Average Precision (mAP) and Rank-1 identification
rate between camera pairs in Figure 1 and Figure 2. Compared to the BOW methods, the proposed method improves mean
mAP and Rank-1 identification rate between camera pairs by 35.09% and 40.01% respectively. In addition, we show some
searching results with different query images in Figure 3. The dataset is challenging and the returned images have very similar
ppearances and some pedestrians have large backgrounds and occlusions. For the query image in first row of Figure 3, even
though the query person has large occlusions and some groundtruth images have large backgrounds, our proposed method
an still return the right results. This shows the effectiveness of our proposed method.
. CUHK03 dataset
CUHK03 [3] is one of the largest person re-identification datasets. It provides two types of pedestrian bounding boxes,
including detected and manually annotated. In this paragraph, we show the overall Cumulated Matching Characteristics
(CMC) on both detected and labeled datasets in Figure 4. For the GateSCNN [5] in Figure 4(a), we use the singe-query
results to approximate the single-shot results. The DGD [6] is trained using multiple datasets. In this paper, we use the"
23a2b75c92123b3e7bbaf1d98e434845167fe259,Multimodal Biometrics for Identity Documents,"Forensic Science International 167 (2007) 154–159
www.elsevier.com/locate/forsciint
Multimodal biometrics for identity documents (
Damien Dessimoz a,*, Jonas Richiardi b, Christophe Champod a, Andrzej Drygajlo b
Institut de Police Scientifique, E´ cole des Sciences Criminelles, Universite´ de Lausanne, Switzerland
Speech Processing and Biometrics Group, Signal Processing Institute, E´ cole Polytechnique Fe´de´rale de Lausanne, Switzerland
Received 9 June 2006; accepted 14 June 2006
Available online 4 August 2006"
23c9fe37fa0474967be4cc6c7a310dcc87b86b72,Spatial Feature Interdependence Matrix (SFIM): A Robust Descriptor for Face Recognition,"Spatial Feature Interdependence Matrix (SFIM):
A Robust Descriptor for Face Recognition
Anbang Yao1 and Shan Yu2
National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Science, Beijing, 100090, China
National Institute for Research in Computer Science and Control, France"
23b93f3b237481bd1d36941ca3312bb16f4beb58,Reconnaissance d'événements et d'actions à partir de la profondeur thermique 3D. (Event and action recognition from thermal and 3D depth Sensing),"Reconnaissance d’événements et d’actions à partir de la
profondeur thermique 3D
Adnan Al Alwani
To cite this version:
Adnan Al Alwani. Reconnaissance d’événements et d’actions à partir de la profondeur thermique
D. Vision par ordinateur et reconnaissance de formes [cs.CV]. Université de Caen Normandie, 2016.
Français. <tel-01418369>
HAL Id: tel-01418369
https://hal.archives-ouvertes.fr/tel-01418369
Submitted on 16 Dec 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
235f4fad10a5d9e043759354a7cb94122a8f10fc,"Multi-perspective vehicle detection and tracking: Challenges, dataset, and metrics","Windsor Oceanico Hotel, Rio de Janeiro, Brazil, November 1-4, 2016
978-1-5090-1889-5/16/$31.00 ©2016 IEEE"
23120f9b39e59bbac4438bf4a8a7889431ae8adb,Improved RGB-D-T based face recognition,"Aalborg Universitet
Improved RGB-D-T based Face Recognition
Oliu Simon, Marc;   Corneanu, Ciprian; Nasrollahi, Kamal; Guerrero, Sergio Escalera;
Nikisins, Olegs; Sun, Yunlian; Li, Haiqing; Sun, Zhenan; Moeslund, Thomas B.; Greitans,
Modris
Published in:
DOI (link to publication from Publisher):
0.1049/iet-bmt.2015.0057
Publication date:
Document Version
Accepted manuscript, peer reviewed version
Link to publication from Aalborg University
Citation for published version (APA):
Oliu Simon, M.,   Corneanu, C., Nasrollahi, K., Guerrero, S. E., Nikisins, O., Sun, Y., ... Greitans, M. (2016).
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?"
23d55061f7baf2ffa1c847d356d8f76d78ebc8c1,Generic and attribute-specific deep representations for maritime vessels,"Solmaz et al. IPSJ Transactions on Computer Vision and
Applications  (2017) 9:22
DOI 10.1186/s41074-017-0033-4
IPSJ Transactions on Computer
Vision and Applications
RESEARCH PAPER
Open Access
Generic and attribute-specific deep
representations for maritime vessels
Berkan Solmaz*†
, Erhan Gundogdu†, Veysel Yucesoy and Aykut Koc"
23095c6fc92f41a86f93276d446cfc72c7ce7b23,Stereo-based Pedestrian Detection using Multiple Patterns,"HATTORI et al.: STEREO-BASED PEDESTRIAN DETECTION USING MULTI-PATTERNS
Stereo-based Pedestrian Detection using
Multiple Patterns
Research & Development Center,
TOSHIBA Corporation, JAPAN
Hiroshi Hattori
Akihito Seki
Manabu Nishiyama
Tomoki Watanabe"
23a8d02389805854cf41c9e5fa56c66ee4160ce3,Influence of low resolution of images on reliability of face detection and recognition,"Multimed Tools Appl
DOI 10.1007/s11042-013-1568-8
Influence of low resolution of images on reliability
of face detection and recognition
Tomasz Marciniak· Agata Chmielewska·
Radoslaw Weychan· Marianna Parzych·
Adam Dabrowski
© The Author(s) 2013. This article is published with open access at SpringerLink.com"
23e881c9b791fd17e248b1fb4fc980710dd005d7,An Unbiased Temporal Representation for Video-Based Person Re-Identification,"AN UNBIASED TEMPORAL REPRESENTATION FOR VIDEO-BASED PERSON
RE-IDENTIFICATION
Xiu Zhang and Bir Bhanu
Center for Research in Intelligent Systems
University of California, Riverside, Riverside, CA 92521, USA"
23b37c2f803a2d4b701e2f39c5f623b2f3e14d8e,Modified Approaches on Face Recognition By using Multisensory Image,"Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IJCSMC, Vol. 2, Issue. 4, April 2013, pg.646 – 649
RESEARCH ARTICLE
Modified Approaches on Face Recognition
By using Multisensory Image
S. Dhanarajan1, G. Michael2
Computer Science Department, Bharath University, India
Computer Science Department, Bharath University, India"
4f892475be26333ddf1b72c21f0c9c4ca129bd80,Mobile Cloud Computing for Biometric Applications,"Singidunum University
Belgrade, Serbia
Mobile Cloud Computing for Biometric Applications
Milos Stojmenovic
Department of Informatics and Computation"
4f00f5fe9d762009f524fb97555088769b96328c,Eye Gaze Tracking System Using . Net,"IJSART - Volume 3 Issue 5 –MAY 2017                                                                                                ISSN [ONLINE]: 2395-1052
Eye Gaze Tracking System Using .Net
Madhu M Nayak1, Usha Rani J2, Anandhi G3
Department of CSE
, 2, 3Assistant Professor,GSSIETW, Mysuru"
4f051022de100241e5a4ba8a7514db9167eabf6e,Face Parsing via a Fully-Convolutional Continuous CRF Neural Network,"Face Parsing via a Fully-Convolutional Continuous
CRF Neural Network
Lei Zhou, Zhi Liu, Senior Member, IEEE, Xiangjian He, Senior Member, IEEE"
4faded442b506ad0f200a608a69c039e92eaff11,İstanbul Technical University Institute of Science and Technology Face Recognition under Varying Illumination,"İSTANBUL TECHNICAL UNIVERSITY  INSTITUTE OF SCIENCE AND TECHNOLOGY
FACE RECOGNITION UNDER VARYING
ILLUMINATION
Master Thesis by
Erald VUÇINI, B.Sc.
Department :  Computer Engineering
Programme:  Computer Engineering
Supervisor: Prof. Dr. Muhittin GÖKMEN
JUNE 2006"
4f4c067e684252cf5549f60036829a89b2f35fc8,Sentic Avatar: Multimodal Affective Conversational Agent with Common Sense,"Sentic Avatar: Multimodal Affective
Conversational Agent with Common Sense
Erik Cambria1, Isabelle Hupont2,
Amir Hussain1, Eva Cerezo3, and Sandra Baldassarri3
University of Stirling, Stirling, UK
Aragon Institute of Technology, Zaragoza, Spain
University of Zaragoza, Zaragoza, Spain
http://cs.stir.ac.uk/~eca/sentics"
4f41f7a2f1f5eb5f26d47aeb168dbeb0f9ed453f,A Graph Transduction Game for Multi-target Tracking,"A Graph Transduction Game for Multi-target
Tracking
Tewodros Mulugeta Dagnew∗, Dalia Coppi†, Marcello Pelillo∗, Rita Cucchiara†
DAIS - Ca´ Foscari University
Venezia, Italy
Email:
DIEF - University of Modena and Reggio Emilia
Email:
Modena, Italy"
4fc936102e2b5247473ea2dd94c514e320375abb,Guess Where? Actor-Supervision for Spatiotemporal Action Localization,"Guess Where? Actor-Supervision for Spatiotemporal Action Localization
Victor Escorcia1∗
Cuong D. Dao1
Mihir Jain3
KAUST1, University of Amsterdam2, Qualcomm Technologies, Inc.3
Bernard Ghanem1
Cees Snoek2∗"
4f0aedbd0b5cb5939449da41579c93b98048fcdc,Robust classification using structured sparse representation,"Robust Classification using Structured Sparse Representation
Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218, USA
Ehsan Elhamifar Ren´e Vidal"
4f8bd3519a6e8a05db9e35b027c0c65c91d2ff62,Brain Oxytocin is a Main Regulator of Prosocial Behaviour - Link to Psychopathology,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
4ff7f5928f96ddc877b4b8675cc41cc08f4bd561,Recent Advance in Content-based Image Retrieval: A Literature Survey,"Recent Advance in Content-based Image
Retrieval: A Literature Survey
Wengang Zhou, Houqiang Li, and Qi Tian Fellow, IEEE"
4f6adc53798d9da26369bea5a0d91ed5e1314df2,Online Nonnegative Matrix Factorization with General Divergences,"IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. , NO. , 2016
Online Nonnegative Matrix Factorization with
General Divergences
Renbo Zhao, Member, IEEE, Vincent Y. F. Tan, Senior Member, IEEE, Huan Xu"
4f46dba09e075b2e7dfae1ba2a71e8e21b46e88d,Genetic CNN,"Genetic CNN
Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA
Lingxi Xie, Alan Yuille"
4fc609df4e17b5854e3b7f4371e5f4192608eda5,3D Face Recognition Benchmarks on the Bosphorus Database with Focus on Facial Expressions,"D Face Recognition Benchmarks on the
Bosphorus Database with Focus on Facial
Expressions
Nes¸e Aly¨uz1, Berk G¨okberk2, Hamdi Dibeklio˘glu1, Arman Savran3, Albert Ali
Salah4, Lale Akarun1, B¨ulent Sankur3"
4f591e243a8f38ee3152300bbf42899ac5aae0a5,Understanding Higher-Order Shape via 3D Shape Attributes,"SUBMITTED TO TPAMI
Understanding Higher-Order Shape
via 3D Shape Attributes
David F. Fouhey, Abhinav Gupta, Andrew Zisserman"
4fec382efed4e08a36fafa3710b97f0b20de1ebe,Binarized Representation Entropy (bre) Regularization,"Published as a conference paper at ICLR 2018
IMPROVING GAN TRAINING VIA
BINARIZED REPRESENTATION ENTROPY (BRE)
REGULARIZATION
Yanshuai Cao, Gavin Weiguang Ding, Kry Yik-Chau Lui, Ruitong Huang
Borealis AI
Canada"
4fdeb5d59b218ecba0f72dc3c42f38a086417c0f,InformatIon theoretIc combInatIon of classIfIers wIth applIcatIon to face DetectIon,"InformatIon theoretIc combInatIon
of classIfIers wIth applIcatIon to face DetectIon
THÈSE NO 3951 (2007)
PRÉSENTÉE LE 23 NOvEMBRE 2007
À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE TRAITEMENT DES SIGNAUX 5
PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION
ÉCOLE POLyTECHNIQUE FÉDÉRALE DE LAUSANNE
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES
Julien MEyNET
DEA signal, image, parole, télécoms, Institut national polytechnique de Grenoble, France
et de nationalité française
cceptée sur proposition du jury:
Prof. H. Bourlard, président du jury
Prof. J.-Ph. Thiran, directeur de thèse
Prof. A. Billard, rapporteur
Prof. H. Bunke, rapporteur
Prof. J. Kittler, rapporteur
Suisse"
4f15b1e750007465024181dd002dfc6d1baa48c9,Face Recognition and Computer Graphics for Modelling,"Face  Recognition  and Computer Graphics for
Modelling  Expressive  Faces in 3D
Tufool  Al-Nuaimi
Submitted to  the Department  of Electrical  Engineering  and Computer Science
in Partial Fulfillment of the Requirements  for the Degree  of
Master of Engineering  in Electrical  Engineering  and Computer Science
t the Massachusetts  Institute  of Technology
May  26,  2006
Copyright 2006  Tufool  AI-Nuaimi.  All  rights reserved.
The author  hereby grants to  M.I.T. permission to reproduce  and
distribute  publicly paper  and electronic  copies  of this thesis
nd to grant  others the right to  do so.
Author
Certified by_
Accepted by_  _
Tufool  Al-Nuaimi
Department  of  Electrical  Engineering and Computer Science
-Ma  26,  2006
Judith Barry
Supervisor"
4fa6a688f350831503d158f8f618c58d1e06bc5d,"Bootstrap, Review, Decode: Using Out-of-Domain Textual Data to Improve Image Captioning","Bootstrap, Review, Decode: Using Out-of-Domain Textual Data
to Improve Image Captioning
Wenhu Chen
RWTH Aachen
Aurelien Lucchi
ETH Zurich
Thomas Hofmann
ETH Zurich"
4fb569af589d89f11d84d4b828459231345cc301,Exploring Linear Relationship in Feature Map Subspace for ConvNets Compression,"Exploring Linear Relationship in Feature Map
Subspace for ConvNets Compression
Dong Wang1, Lei Zhou1, Xueni Zhang1, Xiao Bai1, and Jun Zhou2
Beihang University 2Grif‌f‌ith University"
4f7e4b1b74955b54c434bdf76c47fb1e96db74e0,Naive Bayes Image Classification: Beyond Nearest Neighbors,"Naive Bayes Image Classification:
Beyond Nearest Neighbors
Radu Timofte1, Tinne Tuytelaars1, and Luc Van Gool1,2
ESAT-VISICS /IBBT, Catholic University of Leuven, Belgium
D-ITET, ETH Zurich, Switzerland"
4f10b81f822091ce2142e33f0578940da1e25ad3,"Indoor Mobile Robotics at Grima, PUC","Noname manuscript No.
(will be inserted by the editor)
Indoor Mobile Robotics at Grima, PUC
L. Caro · J. Correa · P. Espinace · D.
Maturana · R. Mitnik · S. Montabone · S.
Pszcz´o(cid:32)lkowski · D. Langdon · A. Araneda ·
D. Mery · M. Torres · A. Soto
Received: date / Accepted: date"
4f863543407143a62e1bb053d435a947886ba619,Distributed deep learning on edge-devices: Feasibility via adaptive compression,"Distributed deep learning on edge-devices:
feasibility via adaptive compression
Corentin Hardy
Technicolor, Inria
Rennes, France
Erwan Le Merrer
Technicolor
Rennes, France
Bruno Sericola
Inria
Rennes, France"
4f5e5fea12c44a5be7107748320e6d66192b7acb,Automatic approach-avoidance tendencies as a candidate intermediate phenotype for depression: Associations with childhood trauma and the 5-HTTLPR transporter polymorphism,"RESEARCH ARTICLE
Automatic approach-avoidance tendencies as
candidate intermediate phenotype for
depression: Associations with childhood
trauma and the 5-HTTLPR transporter
polymorphism
Pascal Fleurkens1*, Agnes van Minnen1,2, Eni S. Becker1, Iris van Oostrom3,
Anne Speckens3, Mike Rinck1, Janna N. Vrijsen3,4
Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands,
Psychotrauma Expertise Centrum (PSYTREC), Bilthoven, The Netherlands, 3 Department of Psychiatry,
Radboud University Medical Centre, Nijmegen, The Netherlands, 4 Pro Persona: Institution for Integrated
Mental Health Care, Nijmegen, The Netherlands"
4fe0c6c83d998a0660bc5280c8ab6e61df9df887,Face Image Normalization and Expression/pose Validation for the Analysis of Machine Readable Travel Documents,"FACE IMAGE NORMALIZATION AND
EXPRESSION/POSE VALIDATION FOR THE
ANALYSIS OF MACHINE READABLE TRAVEL
DOCUMENTS
Markus Storer1, Martin Urschler1, Horst Bischof1,
Josef A. Birchbauer2"
4f618cbf19917ce5b8703adbc14e15b0bf0d35cc,Multi-View Dynamic Facial Action Unit Detection,"Multi-View Dynamic Facial Action Unit Detection
Andr´es Romero
Juan Le´on
Pablo Arbel´aez
Universidad de los Andes"
4fb11a58d5a3ffc0bb6d4ade334a366b4a431b02,The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings,
4f606761ce65399ef4ff24cd503ec09cf53562e9,"A System View of the Recognition and Interpretation of Observed Human Shape, Pose and Action","Copyright © 2015 David W. Arathorn
A System View of the Recognition and Interpretation of
Observed Human Shape, Pose and Action
David W. Arathorn
Dept of Electrical and Computer Engineering
(formerly of Center for Computational Biology)
Montana State University-Bozeman
General Intelligence Corporation
Bozeman, MT"
4fdbe95edb967bfc0b44f0fa291cd86b178fca2e,"Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation","Competitive Collaboration: Joint Unsupervised
Learning of Depth, Camera Motion, Optical
Flow and Motion Segmentation
Anurag Ranjan1
Varun Jampani2
Kihwan Kim 2
Deqing Sun 2
Jonas Wulff 1
Michael J. Black1
Max Planck Institute for Intelligent Systems
NVIDIA Research
{aranjan, jwulff,
{vjampani, kihwank,"
4f4f920eb43399d8d05b42808e45b56bdd36a929,A Novel Method for 3 D Image Segmentation with Fusion of Two Images using Color K-means Algorithm,"International Journal of Computer Applications (0975 – 8887)
Volume 123 – No.4, August 2015
A Novel Method for 3D Image Segmentation with Fusion
of Two Images using Color K-means Algorithm
Neelam Kushwah
Dept. of CSE
ITM Universe
Gwalior
Priusha Narwariya
Dept. of CSE
ITM Universe
Gwalior"
4f77a37753c03886ca9c9349723ec3bbfe4ee967,"Localizing Facial Keypoints with Global Descriptor Search, Neighbour Alignment and Locally Linear Models","Localizing Facial Keypoints with Global Descriptor Search,
Neighbour Alignment and Locally Linear Models
Md. Kamrul Hasan1, Christopher Pal1 and Sharon Moalem2
´Ecole Polytechnique de Montr´eal, Universit´e de Montr´eal
University of Toronto and Recognyz Systems Technologies
lso focused on emotion recognition in the wild [9]."
4f77c682f133d5010762556ebf512533524da071,Deep Learning of Appearance Models for Online Object Tracking,"Deep Learning of Appearance Models for Online
Object Tracking
Mengyao Zhai, Mehrsan Javan Roshtkhari, Greg Mori"
4fec8a97d6d87713c5c00f369fc1373fba4377e3,Training Sources 3 D Normalized Pose Space 2 D Normalized Pose Space KD-Tree Input Image 2 D Pose Estimation 3 D Pose Reconstruction Retrieved 3 D Nearest Neighbours Motion Capture Dataset Annotated 2,"SUBMITTED TO COMPUTER VISION AND IMAGE UNDERSTANDING.
A Dual-Source Approach for 3D Human Pose
Estimation from a Single Image
Umar Iqbal*, Andreas Doering*, Hashim Yasin, Björn Krüger, Andreas Weber, and Juergen Gall"
8d40150c7ec59daba7d1a34eba291ff2eac6388c,Overcoming Dataset Bias: An Unsupervised Domain Adaptation Approach,"Overcoming Dataset Bias:
An Unsupervised Domain Adaptation Approach
Boqing Gong
Dept. of Computer Science
U. of Southern California
Los Angeles, CA 90089
Fei Sha
Dept. of Computer Science
U. of Southern California
Los Angeles, CA 90089
Kristen Grauman
Dept. of Computer Science
U. of Texas at Austin
Austin, TX 78701"
8de06a584955f04f399c10f09f2eed77722f6b1c,Facial Landmarks Localization Estimation by Cascaded Boosted Regression,"Author manuscript, published in ""International Conference on Computer Vision Theory and Applications (VISAPP 2013) (2013)"""
8d4f0517eae232913bf27f516101a75da3249d15,Event-based Dynamic Face Detection and Tracking Based on Activity,"ARXIV SUBMISSION, MARCH 2018
Event-based Dynamic Face Detection and
Tracking Based on Activity
Gregor Lenz, Sio-Hoi Ieng and Ryad Benosman"
8d19cfe643582fae03ce024efaf117d1efef5e58,A Robust Likelihood Function for 3D Human Pose Tracking,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2364113
A Robust Likelihood Function for 3D Human Pose
Tracking
Weichen Zhang, Student Member, IEEE, Lifeng Shang, Member, IEEE, Antoni B. Chan, Member, IEEE,"
8d97e0102b5d89c62e5c6697eeaaefc82b36c809,Bottom-up attention orienting in young children with autism.,"J Autism Dev Disord (2014) 44:664–673
DOI 10.1007/s10803-013-1925-5
O R I G I N A L P A P E R
Bottom-Up Attention Orienting in Young Children with Autism
Dima Amso • Sara Haas • Elena Tenenbaum •
Julie Markant • Stephen J. Sheinkopf
Published online: 1 September 2013
Ó Springer Science+Business Media New York 2013"
8d8afef13a8f6195d3b874231e5e767cf62f3c50,Deep Ranking for Person Re-Identification via Joint Representation Learning,"Deep Ranking for Person Re-identification via
Joint Representation Learning
Shi-Zhe Chen, Chun-Chao Guo, Student Member, IEEE, and Jian-Huang Lai, Senior Member, IEEE"
8de2dbe2b03be8a99628ffa000ac78f8b66a1028,Action Recognition in Videos,"´Ecole Nationale Sup´erieure dInformatique et de Math´ematiques Appliqu´ees de Grenoble
INP Grenoble – ENSIMAG
UFR Informatique et Math´ematiques Appliqu´ees de Grenoble
Rapport de stage de Master 2 et de projet de fin d’´etudes
Effectu´e au sein de l’´equipe LEAR, I.N.R.I.A., Grenoble
Action Recognition in Videos
Gaidon Adrien
e ann´ee ENSIMAG – Option I.I.I.
M2R Informatique – sp´ecialit´e I.A.
04 f´evrier 2008 – 04 juillet 2008
LEAR,
I.N.R.I.A., Grenoble
655 avenue de l’Europe
8 334 Montbonnot
France
Responsable de stage
Mme. Cordelia Schmid
Tuteur ´ecole
M. Augustin Lux
M. Roger Mohr"
8db9f32b0de29cfb7fd8e3d225be47b801cc9848,Vision-based deep execution monitoring,"Vision-based deep execution monitoring
Francesco Puja, Simone Grazioso, Antonio Tammaro, Valsmis Ntouskos, Marta Sanzari, Fiora Pirri"
8d3fbdb9783716c1832a0b7ab1da6390c2869c14,Discriminant Subspace Analysis for Uncertain Situation in Facial Recognition,"Discriminant Subspace Analysis for Uncertain
Situation in Facial Recognition
Pohsiang Tsai, Tich Phuoc Tran, Tom Hintz and Tony Jan
School of Computing and Communications – University of Technology, Sydney
Australia
. Introduction
Facial    analysis  and  recognition  have  received  substential  attention  from  researchers  in
iometrics,  pattern  recognition,  and  computer  vision  communities.  They  have  a  large
number  of  applications,  such  as  security,  communication,  and  entertainment.  Although  a
great deal of efforts has been devoted to automated face recognition systems, it still remains
challenging uncertainty problem. This is because human facial appearance has potentially
of very large intra-subject variations of head pose, illumination, facial expression, occlusion
due to other objects or accessories, facial hair and aging. These misleading variations may
ause classifiers to degrade generalization performance.
It is important for face recognition systems to employ an effective feature extraction scheme
to  enhance  separability  between  pattern  classes  which  should  maintain  and  enhance
features of the input data that make distinct pattern classes separable (Jan, 2004). In general,
there  exist  a  number  of  different  feature  extraction  methods.  The  most  common  feature
extraction  methods  are  subspace  analysis  methods  such  as  principle  component  analysis
(PCA)  (Kirby  &  Sirovich,  1990)  (Jolliffe,  1986)  (Turk  &  Pentland,  1991b),  kernel  principle"
8d09c8c6b636ef70633a3f1bb8ff6b4d4136b5cf,3D Twins Expression Challenge,"D Twins Expression Challenge
Vipin Vijayan, Kevin Bowyer, Patrick Flynn
Department of Computer Science and Engineering,
University of Notre Dame.
84 Fitzpatrick Hall,
Notre Dame, IN 46556, USA.
{vvijayan, kwb,
. Introduction
We describe the 3D Twins Expression Challenge (“3D
TEC”) problem in the area of 3D face recognition. The
supporting dataset contains 3D scans of pairs of identical
twins taken with two different facial expressions, neutral
nd smiling. The dataset is smaller than the FRGC v2 [1]
dataset by approximately a factor of ten, but is still more
hallenging than the FRGC v2 dataset due to it containing
twins with different expressions. This challenge problem
will help to push the frontiers of 3D face recognition.
Three dimensional face recognition is an active research
topic in biometrics [2, 3]. While 2D pictures can be cap-
tured quickly, non-intrusively, and easily by widely avail-"
8d42a24d570ad8f1e869a665da855628fcb1378f,An Empirical Study of Context in Object Detection,"CVPR 2009 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
An Empirical Study of Context in Object Detection
Anonymous CVPR submission
Paper ID 987"
8d8461ed57b81e05cc46be8e83260cd68a2ebb4d,Age identification of Facial Images using Neural Network,"Age identification of Facial Images using Neural
Network
Sneha Thakur, Ligendra Verma
CSE Department,CSVTU
RIT, Raipur, Chhattisgarh , INDIA"
8de7c496c1dac3be5fa55de72867325153b119bd,Robust Face Recognition using Key-point Descriptors,"Robust Face Recognition using Key-point Descriptors
Soeren Klemm, Yasmina Andreu, Pedro Henriquez and Bogdan J. Matuszewski
Robotics and Computer Vision Research Laboratory, School of Computing Engineering and Physical Sciences,
University of Central Lancashire, Preston, U.K.
Keywords:
Face Recognition, SIFT, SURF, ORB, Feature Matching, Face Occlusions."
8d384e8c45a429f5c5f6628e8ba0d73c60a51a89,Temporal Dynamic Graph LSTM for Action-Driven Video Object Detection,"Temporal Dynamic Graph LSTM for Action-driven Video Object Detection
Yuan Yuan1 Xiaodan Liang2 Xiaolong Wang2 Dit-Yan Yeung1 Abhinav Gupta2
The Hong Kong University of Science and Technology 2 Carneige Mellon University"
8d9067da4ba5c57643ee7a84cd5c5d5674384937,Sorting out Lipschitz function approximation,"SORTING OUT LIPSCHITZ FUNCTION APPROXIMATION
Cem Anil ∗
James Lucas∗
Roger Grosse
University of Toronto; Vector Institute
{cemanil, jlucas,"
8d559aeefb291d5b017c263a49f38e8a28439344,Visually-Driven Semantic Augmentation for Zero-Shot Learning,"VDSA: VISUALLY-DRIVEN SEMANTIC AUGMENTATION FOR ZSL
Visually-Driven Semantic Augmentation for
Zero-Shot Learning
Abhinaba Roy1,2
Jacopo Cavazza1
Vittorio Murino1,3
Pattern Analysis and Computer Vision
Istituto Italiano di Tecnologia
Genova, Italy
Department of Naval, Electrical,
Electronic and Telecommunications
Engineering
University of Genova, Italy
Department of Computer Science
University of Verona, Italy"
8d6d0fdf4811bc9572326d12a7edbbba59d2a4cc,SchiNet: Automatic Estimation of Symptoms of Schizophrenia from Facial Behaviour Analysis,"SchiNet: Automatic Estimation of Symptoms of
Schizophrenia from Facial Behaviour Analysis
Mina Bishay, Petar Palasek, Stefan Priebe, and Ioannis Patras"
8d4f2339fcadc2d1ef2126a11dce08ce7cb75bdd,Subspace Clustering via Optimal Direction Search,"Subspace Clustering via Optimal Direction Search
Mostafa Rahmani, Student Member, IEEE and George K. Atia, Member, IEEE"
8d3114a3236ec9adabcf0c40613a23f00c272a1c,From 3D Point Clouds to Pose-Normalised Depth Maps,"Int J Comput Vis (2010) 89: 152–176
DOI 10.1007/s11263-009-0297-y
From 3D Point Clouds to Pose-Normalised Depth Maps
Nick Pears · Tom Heseltine · Marcelo Romero
Received: 30 September 2008 / Accepted: 14 September 2009 / Published online: 25 September 2009
© Springer Science+Business Media, LLC 2009"
8d1adf0ac74e901a94f05eca2f684528129a630a,Facial Expression Recognition Using Facial Movement Features,"Facial Expression Recognition Using Facial
Movement Features"
8db43d306a70e23e2a0e6eb2fda60f14b73f65d0,Multi-Commodity Network Flow for Tracking Multiple People,"Multi-Commodity Network Flow
for Tracking Multiple People
Horesh Ben Shitrit, J´erˆome Berclaz, Franc¸ois Fleuret, and Pascal Fua, Fellow, IEEE"
8dfdfcc3f34263779871d023fad973f4a1966ec0,Internet of vehicles in big data era,"Internet of Vehicles in Big Data Era
Wenchao Xu, Haibo Zhou, Member, IEEE, Nan Cheng, Member, IEEE, Feng Lyu, Weisen Shi, Jiayin Chen,
Xuemin (Sherman) Shen, Fellow, IEEE"
8def62fd86b5ea0a41fd9f892bd95b01bf072e88,A hybrid approach to content based image retrieval using visual features and textual queries,"Proceedings of the 2013 International Conference on Information, Operations Management and Statistics (ICIOMS2013),
Kuala Lumpur, Malaysia, September 1-3, 2013
A Hybrid Approach to Content-based Image Retrieval
Smarajit Bosea, Amita Pala*, Jhimli Mallickb , Sunil Kumarc
Applied Statistics Division, Indian Statistical Institute, Kolkata, India
TechBLA Solutions, Kolkata, India
ETH, Zurich, Switzerland"
8d646ac6e5473398d668c1e35e3daa964d9eb0f6,Memory-Efficient Global Refinement of Decision-Tree Ensembles and its Application to Face Alignment,"MEMORY-EFFICIENT GLOBAL REFINEMENT OF DECISION-TREE ENSEMBLES AND
ITS APPLICATION TO FACE ALIGNMENT
Nenad Markuˇs†
Ivan Gogi´c†
Igor S. Pandˇzi´c†
J¨orgen Ahlberg‡
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
Computer Vision Laboratory, Dept. of Electrical Engineering, Link¨oping University, SE-581 83 Link¨oping, Sweden"
8dffbb6d75877d7d9b4dcde7665888b5675deee1,Emotion Recognition with Deep-Belief Networks,"Emotion Recognition with Deep-Belief
Networks
Tom McLaughlin, Mai Le, Naran Bayanbat
Introduction
For  our  CS229  project,  we  studied  the  problem  of
reliable  computerized  emotion  recognition  in  images  of
human
faces.  First,  we  performed  a  preliminary
exploration using SVM classifiers, and then developed an
pproach based on Deep Belief Nets. Deep Belief Nets, or
DBNs,  are  probabilistic  generative  models  composed  of
multiple  layers  of  stochastic  latent  variables,  where  each
“building block” layer is a Restricted Boltzmann Machine
(RBM).  DBNs  have  a  greedy  layer-wise  unsupervised
learning algorithm as well as a discriminative fine-tuning
procedure  for  optimizing  performance  on  classification
tasks. [1].
We  trained  our  classifier  on  three  databases:  the
Cohn-Kanade Extended Database (CK+) [2], the Japanese
Female  Facial Expression  Database (JAFFE) [3], and the"
8d5998cd984e7cce307da7d46f155f9db99c6590,ChaLearn looking at people: A review of events and resources,"ChaLearn Looking at People:
A Review of Events and Resources
Sergio Escalera1,2, Xavier Bar´o2,3, Hugo Jair Escalante4,5, Isabelle Guyon4,6,
Dept. Mathematics and Computer Science, UB, Spain,
Computer Vision Center, UAB, Barcelona, Spain,
EIMT, Open University of Catalonia, Barcelona, Spain,
ChaLearn, California, USA, 5 INAOE, Puebla, Mexico,
6 Universit´e Paris-Saclay, Paris, France,
http://chalearnlap.cvc.uab.es"
8dce38840e6cf5ab3e0d1b26e401f8143d2a6bff,Towards large scale multimedia indexing: A case study on person discovery in broadcast news,"Towards large scale multimedia indexing:
A case study on person discovery in broadcast news
Nam Le1, Hervé Bredin2, Gabriel Sargent3, Miquel India5, Paula Lopez-Otero6,
Claude Barras2, Camille Guinaudeau2, Guillaume Gravier3, Gabriel Barbosa da Fonseca4,
Izabela Lyon Freire4, Zenilton Patrocínio Jr4, Silvio Jamil F. Guimarães4, Gerard Martí5,
Josep Ramon Morros5, Javier Hernando5, Laura Docio-Fernandez6, Carmen Garcia-Mateo6,
Sylvain Meignier7, Jean-Marc Odobez1
Idiap Research Institute & EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay,
CNRS, Irisa & Inria Rennes, 4 PUC de Minas Gerais, Belo Horizonte,
5 Universitat Politècnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine"
8d7a55d184659ac97d02061a660ae4e30604185b,Penalizing Top Performers: Conservative Loss for Semantic Segmentation Adaptation,"Penalizing Top Performers: Conservative Loss
for Semantic Segmentation Adaptation
Xinge Zhu1, Hui Zhou2, Ceyuan Yang1, Jianping Shi2, Dahua Lin1
CUHK-SenseTime Joint Lab, CUHK
SenseTime Research"
8df3bef321cd1b259cf6fb1ef264a2e885610044,Interactively Learning Visually Grounded Word Meanings from a Human Tutor,"Proceedings of the 5th Workshop on Vision and Language, pages 48–53,
Berlin, Germany, August 12 2016. c(cid:13)2016 Association for Computational Linguistics"
8d156f3b4f1ad5d041ae9f50a0b879e25c80749e,A New Approach for Face Recognition and Age Classification using LDP,"International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June 2013
ISSN 2229-5518
A New Approach for Face Recognition and Age
Classification using LDP
M Rama Bai
Professor, Dept of CSE, M.G.I.T, JNTUH, Hyderabad, Andhra Pradesh, INDIA"
153f5ad54dd101f7f9c2ae17e96c69fe84aa9de4,Overview of algorithms for face detection and tracking,"Overview of algorithms for face detection and
tracking
Nenad Markuˇs"
15b44a1c3602385b6cf3eeb049cb2d6c12bb7d74,Automatic semantic annotation of images based on Web data,"010 Sixth International
Conference
on Information
Assurance
nd Security
Automatic
semantic annotation
of images based on Web data
Guiguang Ding
School of Software
University
of Tsinghua
Beijing,
China
edu.cn
School of Software
University
Beijing,
China
of Tsinghua"
155ce5d596c7b525110ca24db11e47d521b487ce,STC: A Simple to Complex Framework for Weakly-Supervised Semantic Segmentation,"STC: A Simple to Complex Framework for
Weakly-supervised Semantic Segmentation
Yunchao Wei, Xiaodan Liang, Yunpeng Chen, Xiaohui Shen, Ming-Ming Cheng, Jiashi Feng, Yao Zhao,
Senior Member, IEEE and Shuicheng Yan Senior Member, IEEE"
15c8443f8d9f1f6537fa8ff470ac407bf2185b0e,Learning Binary Code Representations for Effective and Efficient Image Retrieval,
1550c3835822843a02b2144cef8abc534441f5d4,Human Pose Classification within the Context of Near-IR Imagery Tracking,"Human Pose Classification within the Context of Near-IR
Imagery Tracking
Jiwan Han, Anna Gaszczak, Ryszard Maciol, Stuart E. Barnes, Toby P. Breckon
School of Engineering, Cranfield University, Bedfordshire, UK"
15696370ff33b6e5a81bf5131d80065d6e59804f,Semantically guided location recognition for outdoors scenes,"Semantically Guided Location Recognition for Outdoors Scenes
Arsalan Mousavian and Jana Koˇseck´a and Jyh-Ming Lien"
15cf11ddfc046b2ed2766c375e8ad067baaf8347,Active Pedestrian Safety by Automatic Braking and Evasive Steering,"Active Pedestrian Safety
y Automatic Braking and Evasive Steering
C. Keller, T. Dang, H. Fritz, A. Joos, C. Rabe and D. M. Gavrila"
15cd05baa849ab058b99a966c54d2f0bf82e7885,Structured Sparse Subspace Clustering: A unified optimization framework,"Structured Sparse Subspace Clustering: A Unified Optimization Framework
Chun-Guang Li1, René Vidal2
SICE, Beijing University of Posts and Telecommunications. 2Center for Imaging Science, Johns Hopkins University.
In many real-world applications, we need to deal with high-dimensional
datasets, such as images, videos, text, and more. In practice, such high-
dimensional datasets can be well approximated by multiple low-dimensional
subspaces corresponding to multiple classes or categories. For example, the
feature point trajectories associated with a rigidly moving object in a video
lie in an affine subspace (of dimension up to 4), and face images of a subject
under varying illumination lie in a linear subspace (of dimension up to 9).
Therefore, the task, known in the literature as subspace clustering [6], is
to segment the data into the corresponding subspaces and finds multiple
pplications in computer vision.
State of the art approaches [1, 2, 3, 4, 5, 7] for solving this problem fol-
low a two-stage approach: a) Construct an affinity matrix between points by
exploiting the ‘self-expressiveness’ property of the data, which allows any
data point to be represented as a linear (or affine) combination of the other
data points; b) Apply spectral clustering on the affinity matrix to recover
the data segmentation. Dividing the problem in two steps is, on the one
hand, appealing because the first step can be solved using convex optimiza-"
15136c2f94fd29fc1cb6bedc8c1831b7002930a6,Deep Learning Architectures for Face Recognition in Video Surveillance,"Deep Learning Architectures for Face
Recognition in Video Surveillance
Saman Bashbaghi, Eric Granger, Robert Sabourin and Mostafa Parchami"
15623fe8875a36cac5283ff2f08cd50998599725,Semantic Instance Segmentation for Autonomous Driving,"Semantic Instance Segmentation for Autonomous Driving
Bert De Brabandere
Davy Neven
ESAT-PSI, KU Leuven
Luc Van Gool"
159b52158512481df7684c341401efbdbc5d8f02,Object Detection with Active Sample Harvesting,"Object Detection
with Active Sample Harvesting
Thèse no 7312
présentée le 5 Octobre 2016
à la Faculté des Sciences et Techniques de l'Ingénieur
Laboratoire LIDIAP (Idiap Research Institute)
École Polytechnique Fédérale de Lausanne
pour l'obtention du grade de Docteur ès Sciences
Olivier Canévet
devant le jury composé de :
Prof. Pascal Frossard, président du jury
Prof. Gilles Blanchard, rapporteur
Prof. Raphael Sznitman, rapporteur
Dr Mathieu Salzmann, rapporteur
Dr François Fleuret, directeur de thèse
Lausanne, EPFL, 2016"
15e024d8f5625ec03c8ac592fbc093687cfb5f02,The Visual Object Tracking VOT2013 Challenge Results,"The Visual Object Tracking VOT2013 challenge results
Matej Kristan a
Luka ˇCehovin a
Roman Pflugfelder b
Georg Nebehay b
Aleˇs Leonardis c
Gustavo Fernandez b
Jiri Matas d
Tom´aˇs Voj´ıˇr d
Fatih Porikli e
Adam Gatt f
Ahmad Khajenezhad g
Alfredo Petrosino i
Chee Seng Chan m
Dorothy Monekosso n
Jin Gao q
Ahmed Salahledin h
Anthony Milton j
CherKeng Heng l
Jingjing Xiao c"
15605634feb1a5770182a8f2c3515daf102ed463,Real-time human pose recognition in parts from single depth images,"Real-Time Human Pose Recognition in Parts from Single Depth Images
Mark Finocchio
Jamie Shotton
Andrew Fitzgibbon
Toby Sharp
Andrew Blake
Richard Moore
Mat Cook
Alex Kipman
Microsoft Research Cambridge & Xbox Incubation"
15f57134b42638cbd57d0d8c4437e8b6b6a8bac4,Learning Visual Reasoning Without Strong Priors,"Learning Visual Reasoning Without Strong Priors
Ethan Perez12, Harm de Vries1, Florian Strub3,
Vincent Dumoulin1, Aaron Courville14
MILA, Universit´e of Montr´eal, Canada; 2Rice University, U.S.A.
Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 CRIStAL France
CIFAR Fellow, Canada"
153e5cddb79ac31154737b3e025b4fb639b3c9e7,Active Dictionary Learning in Sparse Representation Based Classification,"PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
Active Dictionary Learning in Sparse
Representation Based Classification
Jin Xu, Haibo He, Senior Member, IEEE, and Hong Man, Senior Member, IEEE"
15e6c983e74dcf70d8a557b75bdc172e36692191,VSO: Visual Semantic Odometry,"VSO: Visual Semantic Odometry
Konstantinos-Nektarios Lianos 1,⋆,
Johannes L. Sch¨onberger 2,
Marc Pollefeys 2,3, Torsten Sattler 2
Geomagical Labs, Inc., USA 3 Microsoft, Switzerland
Department of Computer Science, ETH Z¨urich, Switzerland"
15df73918e084a146cd215b839a3eec1cc813a78,Projection Peak Analysis for Rapid Eye Localization,"PROJECTION PEAK ANALYSIS FOR RAPID EYE LOCALIZATION
Research Center of Intelligent Robotics, Shanghai Jiaotong University, Shanghai, 200240, China
Jingwen Dai, Dan Liu and Jianbo Su
Keywords:
Eye localization, Threshold, Segmentation, Projection peak."
1542b8a1805d73a755d4b2eb402c5c861e6acd02,PMCTrack: Delivering Performance Monitoring Counter Support to the OS Scheduler,"PMCTrack: Delivering performance
monitoring counter support to the OS
scheduler
J. C. Saez1, A. Pousa2, R. Rodr´ıguez-Rodr´ıguez1, F. Castro1,
M. Prieto-Matias1
ArTeCS Group, Facultad de Inform´atica, Complutense University of Madrid
III-LIDI, Facultad de Inform´atica, National University of La Plata
Email:
Hardware performance monitoring counters (PMCs) have proven effective in
haracterizing application performance. Because PMCs can only be accessed
directly at the OS privilege level, kernel-level tools must be developed to enable
the end user and userspace programs to access PMCs. A large body of work
has demonstrated that the OS can perform effective runtime optimizations in
multicore systems by leveraging performance-counter data. Special attention has
een paid to optimizations in the OS scheduler. While existing performance
monitoring tools greatly simplify the collection of PMC application data from
userspace, they do not provide an architecture-agnostic kernel-level mechanism
that is capable of exposing high-level PMC metrics to OS components, such as
the scheduler. As a result, the implementation of PMC-based OS scheduling
schemes is typically tied to specific processor models."
1548cea1fa9be7a23d4d1e38086336913d501e44,Semantic 3D Reconstruction of Heads Supplementary Material,"Semantic 3D Reconstruction of Heads
Supplementary Material
Fabio Maninchedda1, Christian H¨ane2,(cid:63), Bastien Jacquet3,(cid:63),
Ama¨el Delaunoy(cid:63), Marc Pollefeys1,4
ETH Zurich
UC Berkeley
Kitware SAS
Microsoft
Fig. 1: From left to right: Input image; Input labels and depth; Depth map fusion
(TV-Flux fusion from [9]); Statistical model of [7] fitted into our raw input data;
Our semantic reconstruction; Our result skin class only; Our model textured.
(cid:63) Work done while authors were at the Department of Computer Science, ETH Z¨urich"
15d1326f054f4fadea463f217ce54bad6908705a,Sensor fusion in smart camera networks for Ambient Intelligence - Report on PhD Thesis and Defense,"Sensor fusion in smart camera networks for ambient
intelligence
Maatta, T.T.
0.6100/IR755363
Published: 01/01/2013
Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)
Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences
etween the submitted version and the official published version of record. People interested in the research are advised to contact the
uthor for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
Citation for published version (APA):
Maatta, T. T. (2013). Sensor fusion in smart camera networks for ambient intelligence Eindhoven: Technische
Universiteit Eindhoven DOI: 10.6100/IR755363
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights."
159b87e6e68b18f4daa3505bfc415be9b21a7db6,Tracking The Invisible Man - Hidden-object Detection for Complex Visual Scene Understanding,
15ec1faddbd61a9d50925c7b9b0c76642abe94e7,Efficient Techniques for Recovering 2d Human Body Poses from Images Dissertation Efficient Techniques for Recovering 2d Human Body Poses from Images Second Reader,"EFFICIENT TECHNIQUES FOR RECOVERING 2D
HUMAN BODY POSES FROM IMAGES
TAI-PENG TIAN
Dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
BOSTON
UNIVERSITY"
150326137da214210b46e0b7f22e30f7e6529006,Pedestrian Detection at Warp Speed: Exceeding 500 Detections per Second,"Pedestrian Detection at Warp Speed: Exceeding 500 Detections per Second
Floris De Smedt∗, Kristof Van Beeck∗, Tinne Tuytelaars and Toon Goedem´e
EAVISE, ESAT-PSI-VISICS, KU Leuven, Belgium"
15ebec3796a2e23d31c8c8ddf6d21555be6eadc6,Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks,"Recent Advances in Object Detection in the Age
of Deep Convolutional Neural Networks
Shivang Agarwal(∗
,1), Jean Ogier du Terrail(∗
,1,2), Fr´ed´eric Jurie(1)
(∗) equal contribution
(1)Normandie Univ, UNICAEN, ENSICAEN, CNRS
(2)Safran Electronics and Defense
September 11, 2018"
156b194d0cee545337524bd993ae640ed227b79e,Radon Transform and Symbolic Linear Discriminant Analysis Based 3 D Face Recognition Using Knn and Svm,"ISSN   2320 - 2602
Volume 2, No.12, December 2013
P. S. Hiremath et al., International Journal of  Advances in Computer Science and Technology, 2(12), December 2013, 267-274
International Journal of  Advances in Computer Science and Technology
Available Online at http://warse.org/pdfs/2013/ijacst022122013.pdf
RADON TRANSFORM AND SYMBOLIC LINEAR DISCRIMINANT
ANALYSIS BASED 3D FACE RECOGNITION USING KNN AND SVM
P. S. Hiremath, Manjunatha Hiremath1
Department of Computer Science,
Gulbarga University, Gulbarga, Karnataka, India"
1565bf91f8fdfe5f5168a5050b1418debc662151,One-pass Person Re-identification by Sketch Online Discriminant Analysis,"One-pass Person Re-identification by
Sketch Online Discriminant Analysis
Wei-Hong Li, Zhuowei Zhong, and Wei-Shi Zheng∗"
1546b65e5e95543cf2dc0ead92b758fb31a5f4d6,An inexpensive monocular vision system for tracking humans in industrial environments,"An Inexpensive Monocular Vision System for
Tracking Humans in Industrial Environments
Centre for Applied Autonomous Sensor Systems (AASS), ¨Orebro University, Sweden
Rafael Mosberger and Henrik Andreasson"
157eb982da8fe1da4c9e07b4d89f2e806ae4ceb6,Connecting the dots in multi-class classification: From nearest subspace to collaborative representation,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Connecting the Dots in Multi-Class Classification: From
Nearest Subspace to Collaborative Representation
Chi, Y.; Porikli, F.
TR2012-043
June 2012"
15f51d51c05c22e1dca3a40fb1af46941d91f598,Modeling Visual Compatibility through Hierarchical Mid-level Elements,"Modeling Visual Compatibility through
Hierarchical Mid-level Elements
Jose Oramas M., Tinne Tuytelaars
KU Leuven, ESAT-PSI, iMinds"
15e0b9ba3389a7394c6a1d267b6e06f8758ab82b,The OU-ISIR Gait Database comprising the Large Population Dataset with Age and performance evaluation of age estimation,"Xu et al. IPSJ Transactions on Computer Vision and
Applications  (2017) 9:24
DOI 10.1186/s41074-017-0035-2
IPSJ Transactions on Computer
Vision and Applications
TECHNICAL NOTE
Open Access
The OU-ISIR Gait Database comprising the
Large Population Dataset with Age and
performance evaluation of age estimation
Chi Xu1,2, Yasushi Makihara2*, Gakuto Ogi2, Xiang Li1,2, Yasushi Yagi2 and Jianfeng Lu1"
155033f2f096934042d659d10912ef29aa1cdbd1,Visual classification of coarse vehicle orientation using Histogram of Oriented Gradients features,"Visual Classification of Coarse Vehicle Orientation
using Histogram of Oriented Gradients Features
Paul E. Rybski and Daniel Huber and Daniel D. Morris and Regis Hoffman"
158a8037ce1c577620550da385d2275a31b9ccaa,Combining motion detection and hierarchical particle filter tracking in a multi-player sports environment,"Combining motion detection and hierarchical particle filter tracking
in a multi-player sports environment
Robbie Vos, Willie Brink
Department of Mathematical Sciences
University of Stellenbosch, South Africa"
157d2c6dd8c9999b251099ef4211cff8030ae486,Invariance properties of Gabor filter-based features-overview and applications,"Invariance Properties of Gabor Filter Based
Features – Overview and Applications
Joni-Kristian Kamarainen∗, Ville Kyrki, Member, IEEE, Heikki K¨alvi¨ainen, Member, IEEE"
15aa6c457678e25f6bc0e818e5fc39e42dd8e533,Conditional Image Generation for Learning the Structure of Visual Objects,
15c7fe9c9154113f9824f68ca1870564600b66d6,"EICHNER, FERRARI: BETTER APPEARANCE MODELS FOR PICTORIAL STRUCTURES 1 Better appearance models for pictorial structures","EICHNER, FERRARI: BETTER APPEARANCE MODELS FOR PICTORIAL STRUCTURES
Better appearance models
for pictorial structures
Marcin Eichner
Vittorio Ferrari
Computer Vision Laboratory
Zürich, Switzerland"
15cf1f17aeba62cd834116b770f173b0aa614bf4,Facial Expression Recognition using Neural Network with Regularized Backpropagation Algorithm,"International Journal of Computer Applications (0975 – 8887)
Volume 77 – No.5, September 2013
Facial Expression Recognition using Neural Network with
Regularized Back-propagation Algorithm
Ashish Kumar Dogra
Research Scholar
Department of ECE,
Lovely Professional University,
Phagwara, India
Nikesh Bajaj
Assistant Professor
Department of ECE,
Lovely Professional University,
Phagwara, India
Harish Kumar Dogra
Research Scholar
Department of ECE,
Gyan Ganga Institute of
Technology & Sciences,
Jabalpur, India"
15f3d47b48a7bcbe877f596cb2cfa76e798c6452,Automatic face analysis tools for interactive digital games,"Automatic face analysis tools for interactive digital games
Anonymised for blind review
Anonymous
Anonymous
Anonymous"
15728d6fd5c9fc20b40364b733228caf63558c31,Expanding the Breadth and Detail of Object Recognition By,(cid:13) 2013 Ian N. Endres
15667845de2531b59736d866531728a771500d34,3-D Face Recognition Using Local Appearance-Based Models,"[4] L. Lee and W. E. L. Grimson, “Gait analysis for recognition and classi-
fication,” in Proc. IEEE Int. Conf. Automatic Face and Gesture Recog-
nition, Washington, DC, May 2002, pp. 734–742.
[5] L. Wang, H. Ning, W. Hu, and T. Tan, “Gait recognition based on pro-
rustes shape analysis,” in Proc. Int. Conf. Image Processing, 2002, pp.
33–436.
[6] L. Wang, H. Ning, T. Tan, and W. Hu, “Fusion of static and dynamic
ody biometrics for gait recognition,” IEEE Trans. Circuits Syst. Video
Technol., vol. 14, no. 2, pp. 149–158, Feb. 2004.
[7] D. Cunado, M. S. Nixon, and J. N. Carter, “Automatic extraction and
description of human gait models for recognition purposes,” in Comput.
Vis. Image Understand., Apr. 2003, vol. 90, pp. 1–41.
[8] P. J. Phillips, S. Sarkar, I. R. Vega, P. Grother, and K. W. Bowyer,
“The gait identification challenge problem: Data sets and baseline al-
gorithm,” in Proc. Int. Conf. Pattern Recognition, Quebec City, QC,
Canada, Aug. 2002, vol. 1, pp. 385–388.
[9] S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. W.
Bowyer, “The human ID gait challenge problem: Data sets, perfor-
mance, and analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 2, pp. 162–177, Feb. 2005."
15e6e1551ce9a4094c57db70985e420e57c6997a,Asymmetric cross-view dictionary learning for person re-identification,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
155448563c354b01d12610b5864b511644cfeb27,Mapping Images to Sentiment Adjective Noun Pairs with Factorized Neural Nets,"Mapping Images to Sentiment Adjective Noun Pairs with Factorized Neural Nets
Takuya Narihira
Sony / ICSI
Damian Borth
DFKI / ICSI
Stella X. Yu
UC Berkeley / ICSI
Karl Ni
In-Q-Tel
Trevor Darrell
UC Berkeley / ICSI"
15292f380f5996f539f4d5e93dba3082d53338fb,Feature Space Optimization for Semantic Video Segmentation,"Feature Space Optimization for Semantic Video Segmentation
Abhijit Kundu∗
Georgia Tech
Vibhav Vineet∗
Vladlen Koltun
Intel Labs
Intel Labs
Figure 1. Semantic video segmentation on the Cityscapes dataset [6]. Input frame on the left, semantic segmentation computed by our
pproach on the right."
157ee7498320119f6f5da2d9c592448986edea7e,Learning Multiple Non-linear Sub-spaces Using K-RBMs,"Learning Multiple Non-Linear Sub-Spaces using K-RBMs
Siddhartha Chandra1, Shailesh Kumar2 & C. V. Jawahar3
CVIT, IIIT Hyderabad, 2Google, Hyderabad"
153c8715f491272b06dc93add038fae62846f498,On Clustering Images of Objects,"(cid:13) Copyright by Jongwoo Lim, 2005"
12dfc8d4062b83a0b824b1676533482f14e4978c,Cutting Edge: Soft Correspondences in Multimodal Scene Parsing,"Cutting Edge: Soft Correspondences in Multimodal Scene Parsing
Sarah Taghavi Namin1,2 Mohammad Najafi1,2 Mathieu Salzmann2,3
Australian National University (ANU)
Lars Petersson1,2
CVLab, EPFL, Switzerland
NICTA∗
{sarah.namin, mohammad.najafi,"
12919f98aecdd74c1e0db56cba13d107553e421b,Temporal Model Adaptation for Person Re-Identification: Supplementary Material,"Temporal Model Adaptation for
Person Re-Identification:
Supplementary Material
Niki Martinel1,3, Abir Das2,
Christian Micheloni1, and Amit K. Roy-Chowdhury3
University of Udine, 33100 Udine, Italy
University of Massatchussets Lowell, 01852 Lowell, MA, USA
University of California Riverside, 92507 Riverside, CA, USA"
123bc74a006a75fefcdd9995cbdc1c6c64c8bed6,Socially Constrained Structural Learning for Groups Detection in Crowd,"Socially Constrained Structural Learning for
Groups Detection in Crowd
Francesco Solera, Simone Calderara, Member, IEEE, and Rita Cucchiara, Fellow, IEEE"
124476c2815bbfb523c77943c74356f94f79b580,Recognition of Faces in Unconstrained Environments: A Comparative Study,"Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 184617, 19 pages
doi:10.1155/2009/184617
Research Article
Recognition of Faces in Unconstrained Environments:
A Comparative Study
Javier Ruiz-del-Solar, Rodrigo Verschae, and Mauricio Correa
Department of Electrical Engineering, Universidad de Chile, Avenida Tupper 2007, 837-0451 Santiago, Chile
Correspondence should be addressed to Javier Ruiz-del-Solar,
Received 10 October 2008; Revised 31 January 2009; Accepted 13 March 2009
Recommended by Kevin Bowyer
The aim of this work is to carry out a comparative study of face recognition methods that are suitable to work in unconstrained
environments. The analyzed methods are selected by considering their performance in former comparative studies, in addition to
e real-time, to require just one image per person, and to be fully online. In the study two local-matching methods, histograms
of LBP features and Gabor Jet descriptors, one holistic method, generalized PCA, and two image-matching methods, SIFT-
ased and ERCF-based, are analyzed. The methods are compared using the FERET, LFW, UCHFaceHRI, and FRGC databases,
which allows evaluating them in real-world conditions that include variations in scale, pose, lighting, focus, resolution, facial
expression, accessories, makeup, occlusions, background and photographic quality. Main conclusions of this study are: there is
large dependence of the methods on the amount of face and background information that is included in the face’s images,"
12c7ecbfd714c160d2a6bb9cf03fa8b88e8da62b,Impaired Recognition of Basic Emotions from Facial Expressions in Young People with Autism Spectrum Disorder: Assessing the Importance of Expression Intensity.,"Griffiths, S. L., Jarrold, C., Penton-Voak, I., Woods, A., Skinner, A., &
Munafo, M. (2017). Impaired Recognition of Basic Emotions from Facial
Expressions in Young People with Autism Spectrum Disorder: Assessing the
Importance of Expression Intensity. Journal of Autism and Developmental
Disorders. DOI: 10.1007/s10803-017-3091-7
Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
0.1007/s10803-017-3091-7
Link to publication record in Explore Bristol Research
PDF-document
This is the final published version of the article (version of record). It first appeared online via Springer at
http://link.springer.com/article/10.1007%2Fs10803-017-3091-7. Please refer to any applicable terms of use of
the publisher.
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html"
12d62f1360587fdecee728e6c509acc378f38dc9,Feature Affinity based Pseudo Labeling for Semi-supervised Person Re-identification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Feature Affinity based Pseudo Labeling for
Semi-supervised Person Re-identification
Guodong Ding, Shanshan Zhang, Salman Khan, Zhenmin Tang, Jian Zhang, Senior Member, IEEE and Fatih
Porikli, Fellow, IEEE"
122ee00cc25c0137cab2c510494cee98bd504e9f,The Application of Active Appearance Models to Comprehensive Face Analysis Technical Report,"The Application of
Active Appearance Models to
Comprehensive Face Analysis
Technical Report
Simon Kriegel
TU M¨unchen
April 5, 2007"
12ebb51d50f704b5d0a8d821e90dd336175ec8aa,TUHOI: Trento Universal Human Object Interaction Dataset,"Proceedings of the 25th International Conference on Computational Linguistics, pages 17–24,
Dublin, Ireland, August 23-29 2014."
127759fc41d62b516298fff2706dfcc754ff1ee8,Fabrik: An Online Collaborative Neural Network Editor,"FABRIK: AN ONLINE COLLABORATIVE NEURAL NETWORK EDITOR
Utsav Garg 1 Viraj Prabhu 2 Deshraj Yadav 2 Ram Ramrakhya 3 Harsh Agrawal 2 Dhruv Batra 2 4
fabrik.cloudcv.org"
12417ed7ae81fb4e6c07f501ace9ea463349481b,Pairwise Augmented GANs with Adversarial Reconstruction Loss,"PAIRWISE AUGMENTED GANS WITH
ADVERSARIAL RECONSTRUCTION LOSS
Aibek Alanov1,2,3∗, Max Kochurov1,2∗, Daniil Yashkov5, Dmitry Vetrov1,3,4
Samsung AI Center in Moscow
Skolkovo Institute of Science and Technology
National Research University Higher School of Economics
Joint Samsung-HSE lab
5Federal Research Center ""Informatics and Management"" of the Russian Academy of Sciences"
129a6daa54a7334930b6413875b6154acef3922a,Data-Driven Synthesis of Cartoon Faces Using Different Styles,"Data-Driven Synthesis of Cartoon
Faces Using Different Styles
Yong Zhang, Weiming Dong, Member, IEEE, Chongyang Ma, Xing Mei, Member, IEEE, Ke Li,
Feiyue Huang, Bao-Gang Hu, Senior Member, IEEE, and Oliver Deussen"
124fddbb5cbe4e5e6ea69be1467437aad01eb5d9,A Unified Algorithmic Framework for Multi-Dimensional Scaling,"A Unified Algorithmic Framework for Multi-Dimensional Scaling
Arvind Agarwal
Jeff M. Phillips†
Suresh Venkatasubramanian‡"
12d0c11d546d91e776a170898ebf3a38c010695c,Semi-Supervised Hashing for Large-Scale Search,"Semi-Supervised Hashing for Large Scale
Search
Jun Wang, Member, IEEE, Sanjiv Kumar, Member, IEEE, and Shih-Fu Chang, Fellow, IEEE"
12727bb8a4a1462553a13a253a97c2569cbcba0a,Study on Different Representation Methods for Subspace Segmentation,"International Journal of Grid Distribution Computing
Vol.8, No.1 (2015), pp.259-268
http://dx.doi.org/10.14257/ijgdc.2015.8.1.24
Study on Different Representation Methods for Subspace
Segmentation
Jiangshu Wei, Mantao Wang and Qianqian Wu
College of Information and Engineering, Sichuan Agricultural University, Ya’an,
625014, China"
12149fc431d2b3ec4d1f194e92e74c765e51ee67,Concentration in unbounded metric spaces and algorithmic stability,"Concentration in unbounded metric spaces and algorithmic stability
Aryeh Kontorovich
Department of Computer Science, Ben-Gurion University, Beer Sheva 84105, ISRAEL"
120b22e7a47923e42a123b9b68a93ccac5aaea6d,Paper on Ear Biometric Authentication,"Research Article                                                                                                                           Volume 6 Issue No.10
ISSN XXXX XXXX © 2016 IJESC
Review Paper on Ear Biometric Authentication
Shubham Mohurle 1, See ma Khutwad 2, Pratiksha Kunjir3, Anjali Bhosle4
Assistant Professor4
KJCOEM R, Pune, India
Abstrac t:
In this paper we have studied about ear bio metric  authentication. Powe rful bio metrics likes fingerprint, face  and iris are used while
omparing  the  new  biometric  technology  that  is  human  ear  recognition.  We  are studied  different  methods  like  2D  ear  reco gnition,
Pattern extract ion method, robust algorithm, Pixe l based feature extraction.  Genetic algorith m  is the solution to all proble ms faced  by
these methods. Recognition Rate for t ime series  modeling is 99% obtained.AR  model is used for time series  modeling.  All  methods
re discussed later.
Ke ywor ds:  Ear, Recognition Rate, 2D image, AR model
During crime  investigation, in the absence of (valid) fingerprints
nd  footprints  ear  ma rks  are   used  for  identification.  Just  like
fingerprints,  use  of  ear  shapes  recommends  its  use  for  human
identification.  An  ear  recognition  system  is  simila r  to  face
recognition  system  and  which  has  five  components:  image
cquisition, preprocessing, feature extraction,  model training and
template  matching. Du ring image  gaining, an image of the ear is"
12cb3bf6abf63d190f849880b1703ccc183692fe,Guess Who?: A game to crowdsource the labeling of affective facial expressions is comparable to expert ratings,"Guess Who?: A game to crowdsource the labeling of affective facial
expressions is comparable to expert ratings.
Barry Borsboom
Graduation research project, june 2012
Supervised by: Dr. Joost Broekens
Leiden University Media Technology Department,"
1222705b626a33974e85985ddabfcea135e9ddce,k-fold Subsampling based Sequential Backward Feature Elimination,
127c229a3306bfc8170b84b12316f4a8024cc7ab,"A derived transformation of emotional functions using self-reports, implicit association tests, and frontal alpha asymmetries.","Learn Behav
DOI 10.3758/s13420-015-0198-6
A derived transformation of emotional functions
using self-reports, implicit association tests, and frontal
lpha asymmetries
Micah Amd 1 & Bryan Roche 1
# Psychonomic Society, Inc. 2015"
12cd96a419b1bd14cc40942b94d9c4dffe5094d2,Leveraging Captions in the Wild to Improve Object Detection,"Proceedings of the 5th Workshop on Vision and Language, pages 29–38,
Berlin, Germany, August 12 2016. c(cid:13)2016 Association for Computational Linguistics"
12c548d99fdc59bd702910af2c3daa17ed43e5d7,Performance analysis of different matrix decomposition methods on face recognition,"016 International Conference on Computer Communication and Informatics (ICCCI -2016), Jan. 07 – 09, 2016, Coimbatore, INDIA
Performance analysis of different Matrix
decomposition methods on Face Recognition
Dept. of Electronics and Communication Engineering
Dept. of Electronics and Communication Engineering
Suresh Babu K and K B Raja
UVCE, Bengaluru, India
the  recognition  accuracy
image  and  known  stored  images  in  terms  of  dimension
reduced  images  is  made  to  declare  identity  of  a  person.  It  is
proved
improved  by
onverting the images  with variation in expression to neutral
images [5] and using image fusion with light field camera for
image  capturing  [6].  Maintaining  robustness  in  recognition
ccuracy is elusive for key factors such as pose [7], back view
illumination  variation  [9]  and  others.  Developing
illumination invariant image  representation  with textures is a
difficult  task  and  pre-processing  methods  for  mitigating  the
illumination  effect  are  discussed  in  future  sections  of  this"
1275852f2e78ed9afd189e8b845fdb5393413614,A Transfer Learning based Feature-Weak-Relevant Method for Image Clustering,"A Transfer Learning based Feature-Weak-Relevant Method for
Image Clustering
Bo Dong, Xinnian Wang
Dalian Maritime University
Dalian, China"
126b98473cc25e604abd58eb6bcf720354ac7e7a,An experimental illustration of 3D facial shape analysis under facial expressions,"Author manuscript, published in ""Annals of Telecommunications 64, 5-6 (2009) 369-379"""
12055b8f82d5411f9ad196b60698d76fbd07ac1e,Multiview Facial Landmark Localization in RGB-D Images via Hierarchical Regression With Binary Patterns,"Multiview Facial Landmark Localization in RGB-D
Images via Hierarchical Regression
With Binary Patterns
Zhanpeng Zhang, Student Member, IEEE, Wei Zhang, Member, IEEE, Jianzhuang Liu, Senior Member, IEEE,
nd Xiaoou Tang, Fellow, IEEE"
12d813f14166578dea8aa6aacc945102dddfd05d,Fog Computing in 5G Networks: An Application Perspective,"“fog˙5g˙full”
016/5/4
page 1
Chapter 1
Fog Computing in 5G Networks: An Application
Perspective
Harshit Gupta1, Sandip Chakraborty1, Soumya K. Ghosh1,
nd Rajkumar Buyya2
Department of Computer Science and Engineering, IIT
CLOUDS Laboratory, University of Melbourne, Australia
Kharagpur, India"
12e80b3a89bc021a6352840fb4552df842a6fe7d,Fast sparse representation with prototypes,"Fast Sparse Representation with Prototypes
Jia-Bin Huang and Ming-Hsuan Yang
University of California at Merced"
1272d526614e40ce859e73de7e39a54baffd28cc,A unified approach to learning task-specific bit vector representations for fast nearest neighbor search,"A Unified Approach to Learning Task-Specific Bit Vector
Representations for Fast Nearest Neighbor Search
Vinod Nair
Yahoo! Labs Bangalore
Dhruv Mahajan
Yahoo! Labs Bangalore
S. Sundararajan
Yahoo! Labs Bangalore"
120785f9b4952734818245cc305148676563a99b,Diagnostic automatique de l'état dépressif(Classification of depressive moods),"Diagnostic automatique de l’état dépressif
S. Cholet
H. Paugam-Moisy
Laboratoire de Mathématiques Informatique et Applications (LAMIA - EA 4540)
Université des Antilles, Campus de Fouillole - Guadeloupe
Résumé
Les troubles psychosociaux sont un problème de santé pu-
lique majeur, pouvant avoir des conséquences graves sur
le court ou le long terme, tant sur le plan professionnel que
personnel ou familial. Le diagnostic de ces troubles doit
être établi par un professionnel. Toutefois, l’IA (l’Intelli-
gence Artificielle) peut apporter une contribution en four-
nissant au praticien une aide au diagnostic, et au patient
un suivi permanent rapide et peu coûteux. Nous proposons
une approche vers une méthode de diagnostic automatique
de l’état dépressif à partir d’observations du visage en
temps réel, au moyen d’une simple webcam. A partir de
vidéos du challenge AVEC’2014, nous avons entraîné un
lassifieur neuronal à extraire des prototypes de visages
selon différentes valeurs du score de dépression de Beck"
12c5cd899d5ed85741197baed191f3b8b7fac495,Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder.,"Altered Intrinsic Functional Connectivity of
Anterior and Posterior Insula Regions in
High-Functioning Participants With
Autism Spectrum Disorder
Sjoerd J.H. Ebisch,1,2* Vittorio Gallese,3,4 Roel M. Willems,5
Dante Mantini,1,2,6 Wouter B. Groen,7 Gian Luca Romani,1,2
Jan K. Buitelaar,7 and Harold Bekkering8
Department of Clinical Sciences and Bioimaging, G. d’Annunzio University Chieti-Pescara,
Institute for Advanced Biomedical Technologies (ITAB), G. d’Annunzio Foundation, Chieti, Italy
Department of Neuroscience, Section of Physiology, Parma University, Parma, Italy
Chieti, Italy
Italian Institute of Technology (IIT), Section of Parma, Italy
5Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging,
6Laboratory for Neuro-Psychophysiology, K.U. Leuven Medical School, Leuven, Belgium
7Department of Psychiatry, Radboud University Medical Centre and Karakter University Centre for
Radboud University, Nijmegen, The Netherlands
Child and Adolescent Psychiatry, Nijmegen, The Netherlands
8Donders Institute for Brain, Cognition and Behavior, Centre for Cognition,
Radboud University, Nijmegen, The Netherlands"
122c674f264c53d762af841669209e131b49b3f2,Non-Rigid Structure from Motion for Building 3D Face Model,"Faculty of Informatics
Institute for Anthropomatics
Chair Prof. Dr.-Ing. R. Stiefelhagen
Facial Image Processing and Analysis Group
Non-Rigid Structure from Motion
for Building 3D Face Model
DIPLOMA THESIS OF
Chengchao Qu
ADVISORS
Dipl.-Inform. Hua Gao
Dr.-Ing. Hazım Kemal Ekenel
MARCH 2011
KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association
www.kit.edu"
127316fbe268c78c519ceb23d41100e86639418a,CNN Features Off-the-Shelf: An Astounding Baseline for Recognition,"CNN Features off-the-shelf: an Astounding Baseline for Recognition
Ali Sharif Razavian Hossein Azizpour
Josephine Sullivan Stefan Carlsson
CVAP, KTH (Royal Institute of Technology)
Stockholm, Sweden"
123a9768700433c405bd7266f4c57ca8222e7fe1,Expanded Parts Model for Human Attribute and Action Recognition in Still Images,"Expanded Parts Model for Human Attribute and Action
Recognition in Still Images
Gaurav Sharma1,2, Fr´ed´eric Jurie1, Cordelia Schmid2
GREYC, CNRS UMR 6072, University of Caen Basse-Normandie
LEAR, INRIA Grenoble Rhˆone-Alpes
inria}.fr"
12ebeb2176a5043ad57bc5f3218e48a96254e3e9,Traffic Road Sign Detection and Recognition for Automotive Vehicles,"International Journal of Computer Applications (0975 – 8887)
Volume 120 – No.24, June 2015
Traffic Road Sign Detection and Recognition for
Automotive Vehicles
Md. Safaet Hossain
Zakir Hyder
Department of Electrical Engineering and
Department of Electrical Engineering and
Computer Science North South University, Dhaka
Computer Science North South University, Dhaka
Bangladesh
Bangladesh"
12150d8b51a2158e574e006d4fbdd3f3d01edc93,Deep End2End Voxel2Voxel Prediction,"Deep End2End Voxel2Voxel Prediction
Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo
Torresani, Manohar Paluri
Presented by: Ahmed Osman
Ahmed Osman"
12ba7c6f559a69fbfaacf61bfb2f8431505b09a0,DocFace+: ID Document to Selfie Matching,"DocFace+: ID Document to Selfie* Matching
Yichun Shi, Student Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
12d8730da5aab242795bdff17b30b6e0bac82998,Persistent Evidence of Local Image Properties in Generic ConvNets,"Persistent Evidence of Local Image Properties in Generic ConvNets
Ali Sharif Razavian, Hossein Azizpour,
Atsuto Maki, Josephine Sullivan, Carl Henrik Ek, and Stefan Carlsson
CVAP, KTH (Royal Institute of Technology), Stockholm, SE-10044"
12831caca9674e0ab3fe2fc02a447ddb5a372994,Deep Aesthetic Quality Assessment With Semantic Information,"Deep Aesthetic Quality Assessment with Semantic
Information
Yueying Kao, Ran He, Kaiqi Huang"
8c13f2900264b5cf65591e65f11e3f4a35408b48,A Generic Face Representation Approach for Local Appearance Based Face Verification,"A GENERIC FACE REPRESENTATION APPROACH FOR
LOCAL APPEARANCE BASED FACE VERIFICATION
Hazim Kemal Ekenel, Rainer Stiefelhagen
Interactive Systems Labs, Universität Karlsruhe (TH)
76131 Karlsruhe, Germany
{ekenel,
web: http://isl.ira.uka.de/face_recognition/"
8ca29760334b7bdeaa7ad7ae4ff54c3b24420dd2,Analysis of Dynamic Characteristics of Spontaneous Facial Expressions,"Analysis of Dynamic Characteristics of Spontaneous Facial Expressions
Masashi Komori  Yoshitaro Onishi
Division of Information and Computer Sciences, Osaka Electro-Communication University,
8-8 Hatsucho, Neyagawa, Osaka, 572-8530, JAPAN"
8c5fa29c9bcab3d518fdf355e9da62fb0b58905e,Exploiting Semantics in Adversarial Training for Image-Level Domain Adaptation,"Exploiting Semantics in Adversarial Training for
Image-Level Domain Adaptation
st Pierluigi Zama Ramirez
University of Bologna
nd Alessio Tonioni
University of Bologna
rd Luigi Di Stefano
University of Bologna"
8c955f3827a27e92b6858497284a9559d2d0623a,Facial Expression Recognition under Noisy Environment Using Gabor Filters,"Buletinul Ştiinţific al Universităţii ""Politehnica"" din Timişoara
Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS
Tom 53(67), Fascicola 1-2, 2008
Facial Expression Recognition under Noisy Environment
Using Gabor Filters
Ioan Buciu1, I. Nafornita2, I. Pitas3"
8cd61bb3469aa253d4411ef2295b50683a031d17,Random Occlusion-recovery for Person Re-identification,"Random Occlusion-recovery for Person Re-identification
Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji
Di Wu1, Kun Zhang1 and De-Shuang Huang1
University, Caoan Road 4800, Shanghai 201804, China"
8c30b154811453b6a1017bb27e3becefde44f689,Bibliometric profile of the global scientific research on autism spectrum disorders,"Sweileh et al. SpringerPlus  (2016) 5:1480
DOI 10.1186/s40064-016-3165-6
RESEARCH
Bibliometric profile of the global
scientific research on autism
spectrum disorders
Waleed M. Sweileh1*, Samah W. Al‑Jabi2, Ansam F. Sawalha1 and Sa’ed H. Zyoud2
Open Access"
8c7f4c11b0c9e8edf62a0f5e6cf0dd9d2da431fa,Dataset Augmentation for Pose and Lighting Invariant Face Recognition,"Dataset Augmentation for Pose and Lighting
Invariant Face Recognition
Daniel Crispell∗, Octavian Biris∗, Nate Crosswhite†, Jeffrey Byrne†, Joseph L. Mundy∗
Vision Systems, Inc.
Systems and Technology Research"
8cf679ef0ea28557acb86546e4b1b1a617d1c698,Long Term Multi-Target Tracking based on Detection and Data Association,"International Journal of Electronics and Electrical Engineering Vol. 1, No. 3, September, 2013
Long Term Multi-Target Tracking based on
Detection and Data Association
Ai Min Li
Shandong Polytechnic University, Jinan, China
Email:
Pil Seong Park
University of Suwon, Suwon, Korea
Email:"
8c0f38c7c07c631d0b5414a84dda2992bdc4514f,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
8cc23e554d98522b377d227dc78e9382a0ed35e5,"Bootstrap, Review, Decode: Using Out-of-Domain Textual Data to Improve Image Captioning","Bootstrap, Review, Decode: Using Out-of-Domain Textual Data
to Improve Image Captioning
Wenhu Chen
RWTH Aachen
Aurelien Lucchi
ETH Zurich
Thomas Hofmann
ETH Zurich"
8c5852530abaefcdce805d1e339677351c6ec7fe,Lernen situationsunabhängiger Personenerkennung,"{ HAUPTBEITRAG / SITUATIONSUNABHÄNGIGE PERSONENERKENNUNG
Lernen situationsunabhängiger
Personenerkennung
Marco K. Müller · Michael Tremer
Christian Bodenstein · Rolf P. Würtz
Einleitung
In den vergangenen 25 Jahren hat sich automati-
sche Gesichtserkennung von einem akademischen
Projekt zu einer reifen Technik entwickelt. Bei der
Frage, ob es sich auf zwei Fotos um die gleiche Per-
son handelt, sind kommerzielle Systeme inzwischen
sogar Menschen überlegen [6]. Dies ist nicht mit der
Erkennung von bekannten Personen zu verwech-
seln, die der Mensch in sehr vielen verschiedenen
Situationen auch nach vielen Jahren wiedererkennen
kann.
Es ist eine zentrale Aufgabe des Computersehens,
ekannte Objekte in Bildern wiederzuerkennen. Dies
ist schwierig, weil dasselbe Objekt in verschiede-
nen Situationen sehr verschiedene Bilder erzeugt."
8c244417db2082f4d5897548e72ef304ae886e52,Tree Based Space Partition of Trajectory Pattern Mining For Frequent Item Sets,"Australian Journal of Basic and Applied Sciences, 10(2) Special 2016, Pages: 250-261
Australian Journal of Basic and Applied Sciences
AUSTRALIAN JOURNAL OF BASIC AND
AUSTRALIAN JOURNAL OF BASIC AND
APPLIED SCIENCES
ISSN:1991-8178        EISSN: 2309-8414
Journal home page: www.ajbasweb.com
Tree  Based  Space  Partition  of  Trajectory  Pattern  Mining  For  Frequent
Tree  Based  Space  Partition  of  Trajectory  Pattern  Mining  For  Frequent
Tree  Based  Space  Partition  of  Trajectory  Pattern  Mining  For  Frequent
Item Sets
nd Engineering  , Alagappa University, Tamil Nadu, India.
P.Geetha and 2 E. Ramaraj
Ph.D scholar, Alagappa University.
Department of Computer Science and Engineering
Address For Correspondence:
P.Geetha, Ph.D scholar, Alagappa University.
Ph.D scholar, Alagappa University.
A R T I C L E   I N F O
Article history:"
8ce9b7b52d05701d5ef4a573095db66ce60a7e1c,Structured Sparse Subspace Clustering: A Joint Affinity Learning and Subspace Clustering Framework,"Structured Sparse Subspace Clustering: A Joint
Affinity Learning and Subspace Clustering
Framework
Chun-Guang Li, Chong You, and Ren´e Vidal"
8cb6daba2cb1e208e809633133adfee0183b8dd2,Know Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models,"Know Before You Do: Anticipating Maneuvers
via Learning Temporal Driving Models
Ashesh Jain, Hema S Koppula, Bharad Raghavan, Shane Soh, Ashutosh Saxena
Cornell University and Stanford University"
8cb4349f7d4b04a2e98b727524d3699bad50de1c,SOCIAL GAME EPITOME VERSUS AUTOMATIC VISUAL ANALYSIS Paper ID ***,"SOCIAL GAME EPITOME VERSUS AUTOMATIC VISUAL ANALYSIS
Paper ID ***"
8c6427cc1f4e1bbe5d6da34a4511842361f4fbb6,Hypothesis Only Baselines in Natural Language Inference,"Hypothesis Only Baselines in Natural Language Inference
Adam Poliak1 Jason Naradowsky1 Aparajita Haldar1,2
Rachel Rudinger1 Benjamin Van Durme1
Johns Hopkins University 2BITS Pilani, Goa Campus, India"
8c3c699f568ee825eefc4dc44b71c8b0bc592cca,Binary Multi-View Clustering.,"Binary Multi-View Clustering
Zheng Zhang†, Li Liu†, Fumin Shen, Heng Tao Shen, Ling Shao*"
8c6c0783d90e4591a407a239bf6684960b72f34e,SESSION KNOWLEDGE ENGINEERING AND MANAGEMENT + KNOWLEDGE ACQUISITION Chair(s),"SESSION
KNOWLEDGE ENGINEERING AND
MANAGEMENT + KNOWLEDGE ACQUISITION
Chair(s)
Int'l Conf. Information and Knowledge Engineering | IKE'13 |1"
8cc07ae9510854ec6e79190cc150f9f1fe98a238,Using Deep Learning to Challenge Safety Standard for Highly Autonomous Machines in Agriculture,"Article
Using Deep Learning to Challenge Safety Standard
for Highly Autonomous Machines in Agriculture
Kim Arild Steen *,†, Peter Christiansen †, Henrik Karstoft and Rasmus Nyholm Jørgensen
Department of Engineering, Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark;
(P.C.); (H.K.); (R.N.J.)
* Correspondence: Tel.: +45-3116-8628
These authors contributed equally to this work.
Academic Editors: Francisco Rovira-Más and Gonzalo Pajares Martinsanz
Received: 18 December 2015; Accepted: 2 February 2016; Published: 15 February 2016"
8599560c50a55e75928dba6bbcbb98ef180a0798,Vocabulary Length Experiments for Binary Image Classification Using Bov Approach,"Signal & Image Processing : An International Journal (SIPIJ) Vol.4, No.6, December 2013
VOCABULARY LENGTH EXPERIMENTS FOR BINARY
IMAGE CLASSIFICATION USING BOV APPROACH
S.P.Vimal1, Eshaan Puri2 and P.K.Thiruvikiraman3
,2Department of Computer Science and Information Systems
Birla Institute of Technology and Science, Pilani, Rajasthan, India
Department of Physics,  Birla Institute of Technology and Science,
Hyderabad Campus, Andra Pradesh, India"
8509abbde2f4b42dc26a45cafddcccb2d370712f,A way to improve precision of face recognition in SIPP without retrain of the deep neural network model,"Improving precision and recall of face recognition in SIPP with combination of
modified mean search and LSH
Xihua.Li"
8529c0b98ab4f6eb21715a54395420988dd69633,Adapting Semantic Segmentation Models for Changes in Illumination and Camera Perspective,"Adapting Semantic Segmentation Models for Changes
in Illumination and Camera Perspective
Wei Zhou, Alex Zyner, Stewart Worrall, and Eduardo Nebot"
858ddff549ae0a3094c747fb1f26aa72821374ec,"Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-Related Applications","Survey on RGB, 3D, Thermal, and Multimodal
Approaches for Facial Expression Recognition:
History, Trends, and Affect-related Applications
Ciprian A. Corneanu, Marc Oliu, Jeffrey F. Cohn, and Sergio Escalera"
851f3dcfde59313dc2c8b87314f5a191d82194f4,Multiview Graphical Models for Tracking Occluded Objects,"Volume 3, Issue 10, October 2013                                    ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
Multiview Graphical Models for Tracking Occluded Objects
Bharath
Student,
Dept.of CSE,
Jntuk, Kakinada, India
Smt. D.Neelima
Asst.Professor,
Dept.of CSE,
Jntuk, Kakinada, India"
85fd2bda5eb3afe68a5a78c30297064aec1361f6,"Are You Smiling, or Have I Seen You Before? Familiarity Makes Faces Look Happier.","702003 PSSXXX10.1177/0956797617702003Carr et al.Are You Smiling, or Have I Seen You Before?
research-article2017
Research Article
Are You Smiling, or Have I Seen You
Before? Familiarity Makes Faces Look
Happier
017, Vol. 28(8) 1087 –1102
© The Author(s) 2017
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0956797617702003
https://doi.org/10.1177/0956797617702003
www.psychologicalscience.org/PS
Evan W. Carr1, Timothy F. Brady2, and Piotr Winkielman2,3,4
Columbia Business School, Columbia University; 2Psychology Department, University of California, San Diego;
Behavioural Science Group, Warwick Business School, University of Warwick; and 4Faculty of Psychology,
SWPS University of Social Sciences and Humanities"
856b8576999517c0cb7d95aef0159432604a8447,Weighted Heterogeneous Learning for Deep Convolutional Neural Network Based Facial Image Analysis,The 19th Meeting on Image Recognition and Understanding
85955fe6cdf4f9f35fc9eab6cc4fccbb819e68a1,3D Face Reconstruction by Learning from Synthetic Data,"D Face Reconstruction by Learning from Synthetic Data
Elad Richardson*
Matan Sela*
Ron Kimmel
Department of Computer Science, Technion - Israel Institute of Technology"
8558ea46c8f7e56c57073b27408c6638e81293f0,Morphable crowds,
858901405086056361f8f1839c2f3d65fc86a748,On Tensor Tucker Decomposition: the Case for an Adjustable Core Size,"ON TENSOR TUCKER DECOMPOSITION: THE CASE FOR AN
ADJUSTABLE CORE SIZE
BILIAN CHEN ∗, ZHENING LI † , AND SHUZHONG ZHANG ‡"
851e78906e1307773b664953bf2830f32b28511f,Lie Algebra-Based Kinematic Prior for 3D Human Pose Tracking,"Lie Algebra-Based Kinematic Prior for 3D Human Pose Tracking
Edgar Simo-Serra, Carme Torras, and Francesc Moreno-Noguer
Institut de Rob`otica i Inform`atica Industrial (CSIC-UPC). Barcelona, Spain"
8562ca7f86e7cc144aa2d34a9cce41431b9e13e9,Master Thesis Report: Face Recognition for Cognitive Robots,"Face Recognition for Cognitive
Robots
F. Gaisser
BioMechanical Enginering"
85401b669a989da15bb3d2b37d4598c21d9d061b,"The effect of intranasal oxytocin versus placebo treatment on the autonomic responses to human sounds in autism: a single-blind, randomized, placebo-controlled, crossover design study","Lin et al. Molecular Autism 2014, 5:20
http://www.molecularautism.com/content/5/1/20
Open Access
R ES EAR CH
The effect of intranasal oxytocin versus placebo
treatment on the autonomic responses to human
sounds in autism: a single-blind, randomized,
placebo-controlled, crossover design study
I-Fan Lin1*, Makio Kashino1,2, Haruhisa Ohta3, Takashi Yamada3, Masayuki Tani3, Hiromi Watanabe3, Chieko Kanai3,
Taisei Ohno3, Yuko Takayama3, Akira Iwanami3 and Nobumasa Kato3,4"
8575adafc04a7915bd71c3733e379577da0c4406,Sistema tutor afectivo para la enseñanza de lógica algorítmica y programación,"Sistema tutor afectivo para la enseñanza de lógica
lgorítmica y programación
Ramón Zatarain-Cabada1, María Lucia Barrón-Estrada1,
José Mario Ríos-Félix1, Giner Alor-Hernandez2
Instituto Tecnológico de Culiacán, Culiacán Sinaloa,
México
Instituto Tecnológico de Orizaba,
División de Estudios de Posgrado e Investigación, Orizaba, Veracruz,
México
{rzatarain, lbarron,
Resumen.  La  creciente  demanda  de    herramientas  de  software  que  motiven  y
poyen  a  los  estudiantes  en  el  aprendizaje  de  diseño  e  implementación  de
lgoritmos  y  programas,  ha  motivado  la  creación  de  este  tipo  de  sistemas  de
software.    En  este  artículo  presentamos  un  nuevo  e  innovador  sistema  tutor
fectivo de lógica algorítmica y programación, basado en la técnica de bloques.
Nuestro  enfoque  combina  la  interfaz  de  Google  Blockly  con  técnicas  de
gamificación y ejercicios que son monitoreados para obtener el estado afectivo
del estudiante. Dependiendo de la emoción manifestada (aburrido, enganchado,
frustrado y neutral), el sistema evalúa una serie de variables, para determinar si
el estudiante requiere asistencia. En base a las pruebas preliminares con varios"
850c5d1f97eee47a1fdaefc0894b52e51a3145fc,Improved Semantic Stixels via Multimodal Sensor Fusion,"Improved Semantic Stixels via
Multimodal Sensor Fusion
Florian Piewak(cid:63)1,2, Peter Pinggera1, Markus Enzweiler1,
David Pfeiffer(cid:63)(cid:63)1, and Marius Z¨ollner2,3
Daimler AG, R&D, Stuttgart, Germany
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Forschungszentrum Informatik (FZI), Karlsruhe, Germany"
85188c77f3b2de3a45f7d4f709b6ea79e36bd0d9,"Combined model for detecting, localizing, interpreting and recognizing faces","Author manuscript, published in ""Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille :
France (2008)"""
8582d5307793643e5b6a5e4354ee1ba32eff3809,Techniques for Face Detection & Recognition System-,"IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 15, Issue 5 (Nov. - Dec. 2013), PP 01-12
www.iosrjournals.org
Techniques for Face Detection & Recognition System-
Comprehensive Review
Vandana S.Bhat1, Dr. J. D. Pujari2
Department of Information Science & Engineering, SDMCET, Dharwad, INDIA
Department of Information Science & Engineering, SDMCET, Dharwad, INDIA"
853d6cfe9c08c971979d1dd138bb21c25ff750bf,Comparison of MultiView Face Recognition using DCT and Hybrid DWT of Score Fusion under Uncontrolled Illumination Variation,"International Journal of Computer Applications (0975 – 8887)
Volume 96– No.4, June 20143
Comparison of Multi-View Face Recognition using DCT
nd Hybrid DWT of Score Fusion under Uncontrolled
Illumination Variation
Manisha J Kasar
M.Tech Student (CE)
Computer Department, MPSTME
NMIMS, Shirpur, Dist :Dhule, Maharashtra,
India
Nitin S.Choubey
P.hd (Computer)
Computer Department, MPSTME
NMIMS, Shirpur, Dist :Dhule, Maharashtra,
India
is  one  of
for  matching.  First,"
853feff8674f4a856e6568c9ddce5eace014de8c,NISTIR 8045 Performance Evaluation Methods for Human Detection and Tracking Systems for Robotic Applications,"NISTIR 8045
Performance Evaluation Methods for
Human Detection and Tracking
Systems for Robotic Applications
Michael Shneier
Tsai Hong
Geraldine Cheok
Kamel Saidi
Will Shackleford
This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.IR.8045"
85489639f395608174f686d634d6e27ef44c9d77,Social ‘wanting’ dysfunction in autism: neurobiological underpinnings and treatment implications,"Kohls et al. Journal of Neurodevelopmental Disorders 2012, 4:10
http://www.jneurodevdisorders.com/content/4/1/10
RE VI E W
Open Access
Social ‘wanting’ dysfunction in autism:
neurobiological underpinnings and
treatment implications
Gregor Kohls*, Coralie Chevallier, Vanessa Troiani and Robert T Schultz"
858b51a8a8aa082732e9c7fbbd1ea9df9c76b013,Can Computer Vision Problems Benefit from Structured Hierarchical Classification?,"Can Computer Vision Problems Benefit from
Structured Hierarchical Classification?
Thomas Hoyoux1, Antonio J. Rodr´ıguez-S´anchez2, Justus H. Piater2, and
Sandor Szedmak2
INTELSIG, Montefiore Institute, University of Li`ege, Belgium
Intelligent and Interactive Systems, Institute of Computer Science, University of
Innsbruck, Austria"
854890f35fc7955d94777395f6a66da433426d98,Human Gaze Following for Human-Robot Interaction,"Human Gaze Following for Human-Robot Interaction
Akanksha Saran1, Srinjoy Majumdar2, Elaine Schaertl Short2, Andrea Thomaz2 and Scott Niekum1"
854f9fb21853d1e50302dddcc1fd5c2e933ed8f4,Information Constraints on Auto-Encoding Variational Bayes,"Information Constraints on Auto-Encoding Variational Bayes
Romain Lopez1, Jeffrey Regier1, Michael I. Jordan1,2, and Nir Yosef1,3,4
{romain_lopez, regier,
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
Department of Statistics, University of California, Berkeley
Ragon Institute of MGH, MIT and Harvard
Chan-Zuckerberg Biohub"
8566231abd7e5bc71ee0bc0da84b8d76ce07a501,On The Stability of Video Detection and Tracking,"On The Stability of Video Detection and Tracking
Hong Zhang
Chinese University of Hong Kong
Naiyan Wang
TuSimple LLC"
8518b501425f2975ea6dcbf1e693d41e73d0b0af,Relative Hidden Markov Models for Evaluating Motion Skill,"Relative Hidden Markov Models for Evaluating Motion Skills
Qiang Zhang and Baoxin Li
Computer Science and Engineering
Arizona State Univerisity, Tempe, AZ 85281"
85c1926ea23ff4f472774fec8c6a993bb499e4f4,Eigenbands fusion for frontal face recognition,"EIGENBANDS FUSION FOR FRONTAL FACE RECOGNITION
George D. C. Cavalcanti1s2 and Edson C. B. Cawalho Filho’
’ UFPE-Universidade  Federal de Pemambuco, 50732-970, Recife, PE, Brad
FIR-Faculdade  Integrada do Recife 50720-635 Recife, PE, Brad"
853bd61bc48a431b9b1c7cab10c603830c488e39,Learning Face Representation from Scratch,"Learning Face Representation from Scratch
Dong Yi, Zhen Lei, Shengcai Liao and Stan Z. Li
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences (CASIA)
dong.yi, zlei, scliao,"
857fface5ccd0fd4f30d6b1b3d2cd25a2b471501,Head pose estimation via probabilistic high-dimensional regression,"Head Pose Estimation Via Probabilistic
High-Dimensional Regression
Vincent Drouard 1 Sil`eye Ba 1 Georgios Evangelidis 1
Antoine Deleforge 2 Radu Horaud 1
Team Perception - Inria Grenoble Rhˆone-Alpes, France
Friedrich-Alexander-Universit¨at, Erlangen, Germany
September 28, 2015, Qu´ebec, Canada
Work supported by EU-FP7 ERC Advanced Grant VHIA (#340113) and STREP project EARS (#609645)"
854dbb4a0048007a49df84e3f56124d387588d99,Spatial-Temporal Recurrent Neural Network for Emotion Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014
Spatial-Temporal Recurrent Neural Network for
Emotion Recognition
Tong Zhang, Wenming Zheng*, Member, IEEE, Zhen Cui*, Yuan Zong and Yang Li"
8569fc88a3d1ac8b873872becb2ee8bc01dc73bc,Deep-Person: Learning Discriminative Deep Features for Person Re-Identification,"Deep-Person: Learning Discriminative Deep Features
for Person Re-Identification
Xiang Bai, Mingkun Yang, Tengteng Huang,
Zhiyong Dou, Rui Yu, Yongchao Xu∗
School of Electronic Information and Communications, Huazhong University of Science and
Technology (HUST), Wuhan, 430074, China"
85387549277d6131dc8596ffacc7a21aeee0c6d1,Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial Networks,"Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial
Networks
Yunfan Liu, Qi Li, and Zhenan Sun∗
Center for Research on Intelligent Perception and Computing, CASIA
National Laboratory of Pattern Recognition, CASIA
{qli,"
85cad2b23e2ed7098841285bae74aafbff921659,Pa-gan: Improving Gan Training by Progressive Augmentation,"Under review as a conference paper at ICLR 2019
PA-GAN: IMPROVING GAN TRAINING BY
PROGRESSIVE AUGMENTATION
Anonymous authors
Paper under double-blind review"
1d7df7000a3e8fafa21679db4efe2ffedcfe0335,And the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"SEMANTIC IMAGE UNDERSTANDING: FROM THE WEB, IN
LARGE SCALE, WITH REAL-WORLD CHALLENGING DATA
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Jia Li
November 2011"
1d4c2dd3996cb3d87da6c35d72572637d3175ea5,Toward Storytelling From Visual Lifelogging: An Overview,"JOURNAL OF TRANSACTIONS ON HUMAN-MACHINE SYSTEMS JULY 2015
Towards Storytelling from
Visual Lifelogging: An Overview
Marc Bola˜nos∗, Mariella Dimiccoli∗, and Petia Radeva"
1d5901662dc4fa5be2375f35be07b4116fd450ea,The Effects of Prediction on the Perception for Own-Race and Other-Race Faces,"RESEARCH ARTICLE
The Effects of Prediction on the Perception
for Own-Race and Other-Race Faces
Guangming Ran1,2, Qi Zhang3, Xu Chen1,2*, Yangu Pan1,2
. Faculty of Psychology, Southwest University (SWU), Chongqing, 400715, China, 2. Research Center of
Mental Health Education, Southwest University (SWU), Chongqing, 400715, China, 3. School of Education
Science, Guizhou Normal University (GNU), Guizhou, 550001, China"
1d524c57214384ad6a003c54b1918130744b69d2,Identifying Human-Object Interactions in Motionless Images by Modeling the Mutual Context of Objects and Human Poses,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358
Identifying Human-Object Interactions in
Motionless Images by Modeling the Mutual Context
of Objects and Human Poses
A. N. Bhagat1, N. B. Pokale2
Department of Computer Engineering, TSSM,s Bhivrabai Sawant College Of Engineering and Research, Narhe, Pune, Maharashtra, India.
Associate Professor, Department of Computer Engineering, TSSM,s Bhivrabai Sawant College Of Engineering and Research, Narhe, Pune,
Maharashtra, India."
1dc45403839d6aefe65c6e7f2179d5ea697dfeac,DCT-based features for categorisation of social media in compressed domain,"DCT-based Features for Categorisation of Social
Media in Compressed Domain
Sebastian Schmiedeke, Pascal Kelm, Thomas Sikora
Communication Systems Group
Technische Universit¨at Berlin
Germany"
1d0a6759de0d55d15439b0367f0aa49c1e248c5c,"Networking in Autism: Leveraging Genetic, Biomarker and Model System Findings in the Search for New Treatments","...............................................................................................................................................................
REVIEW
Networking in Autism: Leveraging Genetic, Biomarker
nd Model System Findings in the Search for New
Treatments
Jeremy Veenstra-VanderWeele1,2,3,4 and Randy D Blakely*,1,3,4
Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA; 2Department of Pediatrics,
Vanderbilt University School of Medicine, Nashville, TN, USA; 3Department of Pharmacology, Vanderbilt University School of
Medicine, Nashville, TN, USA; 4Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville,
TN, USA
Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder affecting approximately 1% of children. ASD is
defined by core symptoms in two domains: negative symptoms of impairment in social and communication function, and
positive symptoms of restricted and repetitive behaviors. Available treatments are inadequate for treating both core
symptoms and associated conditions. Twin studies indicate that ASD susceptibility has a large heritable component. Genetic
studies have identified promising leads, with converging insights emerging from single-gene disorders that bear ASD
features, with particular interest in mammalian target of rapamycin (mTOR)-linked synaptic plasticity mechanisms. Mouse
models of these disorders are revealing not only opportunities to model behavioral perturbations across species, but also
evidence of postnatal rescue of brain and behavioral phenotypes. An intense search for ASD biomarkers has consistently
pointed to elevated platelet serotonin (5-HT) levels and a surge in brain growth in the first 2 years of life. Following a review of
the diversity of ASD phenotypes and its genetic origins and biomarkers, we discuss opportunities for translation of these"
1d5d68bee741d81771e9224fe53806e85ed469aa,RATM: Recurrent Attentive Tracking Model,"RATM: Recurrent Attentive Tracking Model
Samira Ebrahimi Kahou, Vincent Michalski, and Roland Memisevic"
1d03698a46ff12fdfaf4811528b3e7961dfd2fe6,Fast Exact Max-Kernel Search,"Fast Exact Max-kernel Search
Ryan R. Curtin
Parikshit Ram
Alexander G. Gray"
1d7ecdcb63b20efb68bcc6fd99b1c24aa6508de9,The Hidden Sides of Names&#x2014;Face Modeling with First Name Attributes,"The Hidden Sides of Names—Face Modeling
with First Name Attributes
Huizhong Chen, Student Member, IEEE, Andrew C. Gallagher, Senior Member, IEEE, and
Bernd Girod, Fellow, IEEE"
1d9497450f60b874eb6ecbf82e3d0808a6fe236c,Nonconvex proximal splitting with computational errors∗,"Nonconvex proximal splitting with computational errors∗
Suvrit Sra
Max Planck Institute, T¨ubingen, Germany
Introduction
We study in this chapter large-scale nonconvex optimization problems with composite objective functions
that are composed of a differentiable possibly nonconvex cost and a nonsmooth but convex regularizer.
More precisely, we consider optimization problems of the form
minimize Φ(x) := f (x) + r(x),
where X ⊂ Rn is a compact convex set, f : Rn → R is a differentiable cost function and r : Rn → R is a
losed convex function. Further, we assume that the gradient ∇ f is Lipschitz continuous on X (denoted
f ∈ C1
L(X )), i.e.,
x ∈ X ,
∃L > 0 s.t. (cid:107)∇ f (x) − ∇ f (y)(cid:107) ≤ L(cid:107)x − y(cid:107)
for all
x, y ∈ X .
Throughout this chapter, (cid:107)·(cid:107) denotes the standard Euclidean norm.
Problem (1) generalizes the more thoroughly studied class of composite convex optimization prob-
lems [30], a class that has witnessed huge interest in machine learning, signal processing, statistics,
nd other related areas. We refer the interested reader to [2, 3, 21, 37] for several convex examples"
1df554e992baf60f2d0b7c1b563250ba19b8f8ff,3D Face Recognition Based on 3D Ridge Lines in Range Data,"-4244-1437-7/07/$20.00 ©2007 IEEE
I - 137
ICIP 2007"
1d251acc459931d927f5befdfb5b9cdf643cd8bc,Bayesian Compression for Natural Language Processing,"Bayesian Compression for Natural Language Processing
Nadezhda Chirkova1∗, Ekaterina Lobacheva1∗, Dmitry Vetrov1,2
Samsung-HSE Laboratory, National Research University Higher School of Economics
Samsung AI Center
Moscow, Russia"
1dca6a54d201dd56b41a5475aaf498a207083b0e,Ego-surfing first person videos,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Ego-Surfing First-Person Videos
Ryo Yonetani, Member, IEEE, Kris M. Kitani, Member, IEEE, and Yoichi Sato, Member, IEEE"
1dd3a58ab363cb396bf36223fadc8d2341bfdb83,Picture: A probabilistic programming language for scene perception,"Picture: a probabilistic programming language for scene perception
Tejas D Kulkarni1, Pushmeet Kohli2, Joshua B Tenenbaum1, Vikash Mansinghka1
Brain and Cognitive Science, Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology. 2Microsoft Research Cambridge.
Probabilistic scene understanding systems aim to produce high-probability
descriptions of scenes conditioned on observed images or videos, typically ei-
ther via discriminatively trained models or generative models in an “analysis
y synthesis” framework. Discriminative approaches lend themselves to fast,
ottom-up inference methods and relatively knowledge-free, data-intensive
training regimes, and have been remarkably successful on many recognition
problems. Generative approaches hold out the promise of analyzing complex
scenes more richly and flexibly, but have been less widely embraced for two
main reasons: Inference typically depends on slower forms of approximate
inference, and both model-building and inference can involve considerable
problem-specific engineering to obtain robust and reliable results. These
factors make it difficult to develop simple variations on state-of-the-art mod-
els, to thoroughly explore the many possible combinations of modeling,
representation, and inference strategies, or to richly integrate complemen-
tary discriminative and generative modeling approaches to the same problem.
More generally, to handle increasingly realistic scenes, generative approaches
will have to scale not just with respect to data size but also with respect to"
1dc94886ca1d4893208d38b18cb7ad1541a74b82,Weakly Supervised Training of Speaker Identification Models,"Weakly Supervised Training of Speaker Identification Models
Martin Karu, Tanel Alum¨ae
Department of Software Science
Tallinn University of Technology, Estonia"
1d9bd24e65345258259ee24332141e371c6e4868,Learning Image Descriptors with Boosting,"Learning Image Descriptors with Boosting
Tomasz Trzcinski, Mario Christoudias, and Vincent Lepetit"
1d1e78bb93590a86ecfd2516f4e5789cc05d76f5,Local Features and Generative Models,"FACE AUTHENTICATION BASED ON
LOCAL FEATURES AND
GENERATIVE MODELS
Fabien Cardinaux (a)
IDIAP–RR 05-85
JANUARY 2006
ESEARCHREPRORTIDIAPRue du Simplon 4IDIAP Research Institute1920 Martigny − Switzerlandwww.idiap.chTel: +41 27 721 77 11Email: Box 592Fax: +41 27 721 77 12"
1d692f37c2594ddb30518da27bfc0f5044690d09,Learning Depth From Single Images With Deep Neural Network Embedding Focal Length,"Learning Depth from Single Images with Deep
Neural Network Embedding Focal Length
Lei He, Guanghui Wang (Senior Member, IEEE) and Zhanyi Hu"
1d6905e88f64ac826344d89c51ad8daea3b95e0e,Monocular Object Orientation Estimation using Riemannian Regression and Classification Networks,"Noname manuscript No.
(will be inserted by the editor)
Monocular Object Orientation Estimation using
Riemannian Regression and Classification Networks
Siddharth Mahendran · Ming Yang Lu · Haider Ali · Ren´e Vidal
the date of receipt and acceptance should be inserted later"
1d59ffad091a5bffa5fe935b79f5bfc08d2e802d,Intensity Video Guided 4D Fusion for Improved Highly Dynamic 3D Reconstruction,"Intensity Video Guided 4D Fusion for
Improved Highly Dynamic 3D Reconstruction
Jie Zhang, Christos Maniatis, Luis Horna and Robert B. Fisher"
1d53aebe67d0e088e2da587fd6b08c8e8ed7f45c,A Selection Module for Large-Scale Face Recognition Systems,"A Selection module for large-scale face
recognition systems
Giuliano Grossi, Raffaella Lanzarotti, and Jianyi Lin
Dipartimento di Informatica, Universit`a degli Studi di Milano
Via Comelico 39/41, Milano, Italy"
1d4e1b4f37caf40dc70d211c6b2745195dfa6c3f,Facial Expression Recognition Using Interpolation Features,"Facial Expression Recognition Using Interpolation
Features
Jesús García-Ramírez, Ivan Olmos-Pineda, J. Arturo Olvera-López, and
Manuel Martín-Ortíz
Benemérita Universidad Autónoma de Puebla, Faculty of Computer Science, Puebla, México"
1df314a1e4dce42fd9fab094b79a0f2a10ad0b03,People Detection in Fish-eye Top-views,
1dca96fdcab180133644442df4ad78eeec1aa00b,Learning from Synthetic Humans,"Learning from Synthetic Humans
G¨ul Varol∗†
Javier Romero‡
Xavier Martin†
Naureen Mahmood‡
Michael Black‡
Ivan Laptev∗
Cordelia Schmid†"
1d0dd20b9220d5c2e697888e23a8d9163c7c814b,Boosted Metric Learning for Efficient Identity-Based Face Retrieval,"NEGREL ET AL.: BOOSTED METRIC LEARNING FOR FACE RETRIEVAL
Boosted Metric Learning for Efficient
Identity-Based Face Retrieval
Romain Negrel
Alexis Lechervy
Frederic Jurie
GREYC, CNRS UMR 6072, ENSICAEN
Université de Caen Basse-Normandie
France"
1d4f56a9bb093c52569917537a93c7671db28e6f,Real-time Tracking of Player Identities in Team Sports,"Real-time Tracking of Player
Identities in Team Sports
Dissertation
Nicolai Baron von Hoyningen-Huene"
1dc4b5e93233fc632b070c8ff282ef0fe9141f64,2-D Structure-Based Gait Recognition in Video Using Incremental GMM-HMM,"-D Structure-Based Gait Recognition in Video
Using incremental GMM-HMM
Rui Pu1, Yunhong Wang1
Laboratory of Intelligence Recognition and Image Processing, Beijing Key
Laboratory of Digital Media, School of Computer Science and Engineering, Beihang
University, Beijing 100191, China"
1d776bfe627f1a051099997114ba04678c45f0f5,Deployment of Customized Deep Learning based Video Analytics On Surveillance Cameras,"Deployment of Customized Deep Learning based
Video Analytics On Surveillance Cameras
Pratik Dubal(cid:63), Rohan Mahadev(cid:63), Suraj Kothawade(cid:63),
Kunal Dargan, and Rishabh Iyer
AitoeLabs (www.aitoelabs.com)"
1d9306ea0f0239c88aecbcf0a48a11c964a0fcd4,3D facial expression recognition using maximum relevance minimum redundancy geometrical features,"Rabiu et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:213
http://asp.eurasipjournals.com/content/2012/1/213
RESEARCH
Open Access
D facial expression recognition using
maximum relevance minimum redundancy
geometrical features
Habibu Rabiu*, M. Iqbal Saripan, Syamsiah Mashohor and Mohd Hamiruce Marhaban"
1da57510321fb8b25dc4d21844fb9afa4e40571e,Activity representation with motion hierarchies,"Int J Comput Vis
DOI 10.1007/s11263-013-0677-1
Activity representation with motion hierarchies
Adrien Gaidon · Zaid Harchaoui · Cordelia Schmid
Received: 17 May 2013 / Accepted: 20 November 2013
© Springer Science+Business Media New York 2013"
1dd3faf5488751c9de10977528ab96be24616138,Detecting Anomalous Faces with 'No Peeking' Autoencoders,"Detecting Anomalous Faces with ‘No Peeking’ Autoencoders
Anand Bhattad 1 Jason Rock 1 David Forsyth 1"
1d4e0427dffec6ac75b96a564986046ea2b00980,Eye Controlled Robotic Motion Using Video Tracking In Real Time,"ISSN(Online): 2319-8753
ISSN (Print):  2347-6710
International Journal of Innovative Research in Science,
Engineering and Technology
(An ISO 3297: 2007 Certified Organization)
Website: www.ijirset.com
Vol. 6, Issue 7, July 2017
Eye Controlled Robotic Motion Using Video
Tracking In Real Time
Kriti Bhattacharjee 1, Dr. Manoj Soni 2
P.G. Student, Department of Mechanical and Automation Engineering, IGDTUW, New Delhi, India1
Associate Professor, Department of Mechanical and Automation Engineering, IGDTUW, New Delhi, India2"
1d1f83023686d43fd4e8805c8e517dffb02d118c,Compiler Enhanced Scheduling for OpenMP for Heterogeneous Multiprocessors,"Compiler Enhanced Scheduling for OpenMP for
Heterogeneous Multiprocessors
Jyothi Krishna V S
IIT Madras"
1d81293bc17a135cfd35912146c538cd81830381,Single camera multi-person tracking based on crowd simulation,"1st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan
978-4-9906441-1-6 ©2012 IAPR"
1dff919e51c262c22630955972968f38ba385d8a,Toward an Affect-Sensitive Multimodal Human–Computer Interaction,"Toward an Affect-Sensitive Multimodal
Human–Computer Interaction
MAJA PANTIC, MEMBER, IEEE, AND LEON J. M. ROTHKRANTZ
Invited Paper
The ability to recognize affective states of a person we are com-
municating with is the core of emotional intelligence. Emotional
intelligenceisa facet of human intelligence thathas been argued to be
indispensable and perhaps the most important for successful inter-
personal social interaction. This paper argues that next-generation
human–computer interaction (HCI) designs need to include the
essence of emotional intelligence—the ability to recognize a user’s
ffective states—in order to become more human-like, more effec-
tive, and more efficient. Affective arousal modulates all nonverbal
ommunicative cues (facial expressions, body movements, and vocal
nd physiological reactions). In a face-to-face interaction, humans
detect and interpret those interactive signals of their communicator
with little or no effort. Yet design and development of an automated
system that accomplishes these tasks is rather difficult. This paper
surveys the past work in solving these problems by a computer
nd provides a set of recommendations for developing the first"
1de8f38c35f14a27831130060810cf9471a62b45,A Branch-and-Bound Framework for Unsupervised Common Event Discovery,"Int J Comput Vis
DOI 10.1007/s11263-017-0989-7
A Branch-and-Bound Framework for Unsupervised Common
Event Discovery
Wen-Sheng Chu1
Jeffrey F. Cohn1,2 · Daniel S. Messinger3
· Fernando De la Torre1 ·
Received: 3 June 2016 / Accepted: 12 January 2017
© Springer Science+Business Media New York 2017"
1d2af64416882b2ae8fe4de51b85fdd7d561cfee,Headgear Accessories Classification Using an Overhead Depth Sensor,"Article
Headgear Accessories Classification Using an
Overhead Depth Sensor
Carlos A. Luna, Javier Macias-Guarasa ID , Cristina Losada-Gutierrez * ID , Marta Marron-Romera,
Manuel Mazo, Sara Luengo-Sanchez and Roberto Macho-Pedroso
Department of Electronics, University of Alcala, Ctra. Madrid-Barcelona, km.33,600, 28805 Alcalá de Henares,
Spain; (C.A.L.); (J.M.-G.); (M.M.-R.);
(M.M.); (S.L.-S.); (R.M.-P.)
* Correspondence: Tel.: +34-918-856-906; Fax: +34-918-856-591
Received: 22 June 2017; Accepted: 8 August 2017; Published: 10 August 2017"
1dc07322715e093c560b30fdf1e168e58e9a9409,DRBF and IRBF Based Face Recognition and Extraction of Facial Expressions from the Blur Image,"Australian Journal of Basic and Applied Sciences, 8(3) March 2014, Pages: 61-68
AENSI Journals
Australian Journal of Basic and Applied Sciences
ISSN:1991-8178
Journal home page: www.ajbasweb.com
DRBF and IRBF Based Face Recognition and Extraction of Facial Expressions from the
Blur Image
M. Jayashree, 2Dr. D. Deepa, 3M. Rubhashree
PG Scholar, Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam, TamilNadu, India.
2Associate  Professor,  Department  of  Information  Technology,  Bannari  Amman  Institute  of  Technology,  Sathyamangalam,  TamilNadu,
India.
Assistant  Professor,  Department  of  Computer  Science  and  Engineering,  Bannari  Amman  Institute  of  Technology,  Sathyamangalam,
TamilNadu, India.
A R T I C L E   I N F O
Article history:
Received  12  January  2014
Received in revised form 22
March 2014
Accepted 27 March  2014
Available online 2 April 2014"
1da83903c8d476c64c14d6851c85060411830129,Iterated Support Vector Machines for Distance Metric Learning,"Iterated Support Vector Machines for Distance
Metric Learning
Wangmeng Zuo, Member, IEEE, Faqiang Wang, David Zhang, Fellow, IEEE, Liang Lin, Member, IEEE,
Yuchi Huang, Member, IEEE, Deyu Meng, and Lei Zhang, Senior Member, IEEE"
1d93a1af770040cb8a64e96215884ee363a8f53a,Improved face recognition at a distance using light field camera & super resolution schemes,"Improved Face Recognition At A Distance Using Light
Field Camera & Super Resolution Schemes
R. Raghavendra* Kiran B. Raja*† Bian Yang* Christoph Busch*†
{raghavendra.ramachandra, kiran.raja, bian.yang,
*Norwegian Biometrics Laboratory
Hochschule Darmstadt - CASED
Gjøvik University College
802 Gjøvik, Norway
Haardtring 100,
64295 Darmstadt, Germany"
1d5fe82303712a70c1d231ead2ee03f042d8ad70,ImageNet pre-trained models with batch normalization,"ImageNet pre-trained models with batch normalization
Marcel Simon, Erik Rodner, Joachim Denzler
Computer Vision Group
Friedrich-Schiller-Universit¨at Jena, Germany
{marcel.simon, erik.rodner,"
1d455f918062f66e86ed53cf258284abd6abd8fc,SMSnet: Semantic motion segmentation using deep convolutional neural networks,"SMSnet: Semantic Motion Segmentation
using Deep Convolutional Neural Networks
Johan Vertens∗
Abhinav Valada∗
Wolfram Burgard"
1d99282d00f7cf3e4d912428313848add8de8220,Comparing Attribute Classifiers for Interactive Language Grounding,"Proceedings of the 2015 Workshop on Vision and Language (VL’15), pages 60–69,
Lisbon, Portugal, 18 September 2015. c(cid:13)2015 Association for Computational Linguistics."
1d58d83ee4f57351b6f3624ac7e727c944c0eb8d,Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions,"Enhanced Local Texture
Feature Sets for Face
Recognition under Difficult
Lighting Conditions
Xiaoyang Tan and Bill Triggs
INRIA & Laboratoire Jean
Kuntzmann,
655 avenue de l'Europe, Montbonnot 38330, France"
1d679b371c9dfd833cee0925de483562d2bc7d88,Face Recognition using 3D Summation Invariant Features,"­4244­0367­7/06/$20.00 ©2006 IEEE
ICME 2006"
1d729693a888a460ee855040f62bdde39ae273af,Photorealistic Face De-Identification by Aggregating Donors' Face Components,"Photorealistic Face de-Identification by Aggregating
Donors’ Face Components
Saleh Mosaddegh, Lo¨ıc Simon, Fr´ed´eric Jurie
To cite this version:
Saleh Mosaddegh, Lo¨ıc Simon, Fr´ed´eric Jurie. Photorealistic Face de-Identification by Aggre-
gating Donors’ Face Components. Asian Conference on Computer Vision, Nov 2014, Singapore.
pp.1-16, 2014. <hal-01070658>
HAL Id: hal-01070658
https://hal.archives-ouvertes.fr/hal-01070658
Submitted on 2 Oct 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
1d4c25f9f8f08f5a756d6f472778ab54a7e6129d,An Innovative Mean Approach for Plastic Surgery Face Recognition,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2014): 6.14 | Impact Factor (2014): 4.438
An Innovative Mean Approach for Plastic Surgery
Face Recognition
Mahendra P. Randive1, Umesh W. Hore2
Student of M.E., Department of Electronics & Telecommunication Engineering,
P. R. Patil College of Engineering, Amravati Maharashtra – India
Assistant Professor, Department of Electronics & Telecommunication Engineering,
P. R. Patil College of Engineering, Amravati Maharashtra – India"
714794c74941e45798d9c405a4fec1138cff2df3,Iris Segmentation: State of the Art and Innovative Methods,"Iris segmentation: state of the art and innovative
methods
Ruggero Donida Labati, Angelo Genovese, Vincenzo Piuri, and Fabio Scotti"
71ab53b0b3635411d5985f71cc56bb1784023834,RoboCupRescue 2012 - Robot League Team,"RoboCupRescue 2012 - Robot League Team
Hector Darmstadt (Germany)
Thorsten Graber2, Stefan Kohlbrecher1, Johannes Meyer2, Karen Petersen1,
Oskar von Stryk1, Uwe Klingauf2(cid:63)
Department of Computer Science (1) and Department of Mechanical Engineering (2),
Technische Universit¨at Darmstadt,
Karolinenplatz 5, D-64289 Darmstadt, Germany
E-Mail:
Web: www.gkmm.tu-darmstadt.de/rescue"
71b376dbfa43a62d19ae614c87dd0b5f1312c966,The temporal connection between smiles and blinks,"The Temporal Connection Between Smiles and Blinks
Laura C. Trutoiu, Jessica K. Hodgins, and Jeffrey F. Cohn"
713345804a00c6c0083e4155b904956bb95949da,Scalable Normalized Cut with Improved Spectral Rotation,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
71fd29c2ae9cc9e4f959268674b6b563c06d9480,End-to-end 3D shape inverse rendering of different classes of objects from a single input image,"End-to-end 3D shape inverse rendering of different classes
of objects from a single input image
Shima Kamyab1 and S. Zohreh Azimifar1
Computer Science and Engineering and Information Technology, Shiraz
university, Shiraz, Iran
November 17, 2017"
712609494dd049b44ebfd82698b9305ef07f027b,Biometric bits extraction through phase quantization based on feature level fusion,"Telecommun Syst (2011) 47:255–273
DOI 10.1007/s11235-010-9317-z
Biometric bits extraction through phase quantization based
on feature level fusion
Hyunggu Lee · Andrew Beng Jin Teoh · Jaihie Kim
Published online: 4 June 2010
© Springer Science+Business Media, LLC 2010"
71dcf25a3ea3801f09d6cc446dbf78e22481d609,Face recognition with the continuous n-tuple classifier,"FaceRecognitionwiththecontinuous
n-tupleclassi(cid:12)er
S.M.Lucas
DepartmentofElectronicSystemsEngineering
UniversityofEssex
ColchesterCOSQ,UK"
7174e77f8e26aef3105996512b787b336320d46f,People Counting in High Density Crowds from Still Images,"People Counting in High Density Crowds from Still
Images
Ankan Bansal, and K S Venkatesh"
71f1e72670e676b6902cce0d6fc0b4f63b46ca28,Survey paper: Face Detection and Face Recognition,"Survey paper:
Face Detection and Face Recognition
By Hyun Hoi James Kim
. Introduction
Face recognition is one of biometric methods identifying individuals by the features of face. Research in this
rea has been conducted for more than 30 years; as a result, the current status of face recognition technology
is  well  advanced.  Many  commercial  applications  of  face  recognition  are  also  available  such  as  criminal
identification, security system, image and film processing.
From the sequence of images captured by camera, the goal is to find best match with given image. Using a
pre-stored  image  database,  the  face  recognition  system  should  be  able  to  identify  or  verify  one  or  more
persons in the scene. Before face recognition is performed, the system should determine whether or not there
is a face in a given image or given video, a sequence of images. This process is called face detection. Once a
face is detected, face region should be isolated from the scene for the face recognition. The face detection and
face extraction are often performed simultaneously. The overall process is depicted in Fig 1.
Identification
or Verification
Feature Extraction
Face Detection
Face Recognition
Input"
71f969fdc6990b21536c5662c52110d7fdb29028,Driver Gaze Tracking and Eyes Off the Road Detection System Using a Depth Camera,"X Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA)
X DCA/FEEC/University of Campinas (UNICAMP) Workshop (EADCA)
Campinas, 26 e 27 de outubro de 2017
Campinas, Brazil, October 26-27, 2017
Driver Gaze Tracking and Eyes Off the Road Detection System
Using a Depth Camera
Ribeiro, Rafael F. , Costa, P. D. P (Orientador)
Dept. of Computer Engineering and Industrial Automation (DCA)
School of Electrical and Computer Engineering (FEEC)
University of Campinas (Unicamp)
Postal Code 6101, 13083-970 – Campinas, SP, Brazil"
71c549df77b0fc2ebe0dc20d39d0a629a563bd7a,Texture Classification based on Local Features Using Dual Neighborhood Approach,"I.J. Image, Graphics and Signal Processing, 2017, 9, 59-67
Published Online September 2017 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijigsp.2017.09.07
Texture Classification based on Local Features
Using Dual Neighborhood Approach
Associate Professor, Dept. of C.S.E, Sri Vasavi Institute of Engineering & Technology, pedana, Andhrapradesh, India
M. Srinivasa Rao
Email:
V.Vijaya Kumar
Professor, Anurag Group of Institutions (Autonomous), Hyderabad,Telanagana, India
Email:
MHM KrishnaPrasad
Professor of the Department of Computer Science and Engineering, University College of  Engineering, Kakinada
(Autonomous), JNTUK, Andhra Pradesh, India
Email:
Received: 11 March 2017; Accepted: 05 July 2017; Published: 08 September 2017"
71406b7358812400d0626e8d62e7eb38cea99bbe,On Improving Face Detection Performance by Modelling Contextual Information,"ON IMPROVING FACE DETECTION
PERFORMANCE BY MODELLING
CONTEXTUAL INFORMATION
Cosmin Atanasoaei        Chris McCool
Sébastien Marcel
Idiap-RR-43-2010
DECEMBER 2010
Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12   www.idiap.ch"
71403805e67eeb6ec336e0cb83646fdb7c819757,Visual Strategies for Sparse Spike Coding,"Visual Strategies for Sparse Spike Coding
Laurent Perrinet
Manuel Samuelides
ONERA/DTIM,
, av. Belin,
1055 Toulouse, France"
714d487571ca0d676bad75c8fa622d6f50df953b,eBear: An expressive Bear-Like robot,"eBear: An Expressive Bear-Like Robot
Xiao Zhang, Ali Mollahosseini, Amir H. Kargar B., Evan Boucher,
Richard M. Voyles, Rodney Nielsen and Mohammd H. Mahoor"
710ce8cf25f31df8547b888519b414187e989257,Amygdala activation predicts gaze toward fearful eyes.,"The Journal of Neuroscience, July 15, 2009 • 29(28):9123–9126 • 9123
Brief Communications
Amygdala Activation Predicts Gaze toward Fearful Eyes
Matthias Gamer and Christian Bu¨chel
Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
The human amygdala can be robustly activated by presenting fearful faces, and it has been speculated that this activation has functional
relevance for redirecting the gaze toward the eye region. To clarify this relationship between amygdala activation and gaze-orienting behavior,
functional magnetic resonance imaging data and eye movements were simultaneously acquired in the current study during the evaluation of
facial expressions. Fearful, angry, happy, and neutral faces were briefly presented to healthy volunteers in an event-related manner. We con-
trolled for the initial fixation by unpredictably shifting the faces downward or upward on each trial, such that the eyes or the mouth were
presentedatfixation.Acrossemotionalexpressions,participantsshowedabiastoshifttheirgazetowardtheeyes,butthemagnitudeofthiseffect
followed the distribution of diagnostically relevant regions in the face. Amygdala activity was specifically enhanced for fearful faces with the
mouth aligned to fixation, and this differential activation predicted gazing behavior preferentially targeting the eye region. These results reveal
direct role of the amygdala in reflexive gaze initiation toward fearfully widened eyes. They mirror deficits observed in patients with amygdala
lesions and open a window for future studies on patients with autism spectrum disorder, in which deficits in emotion recognition, probably
related to atypical gaze patterns and abnormal amygdala activation, have been observed.
Introduction
The human amygdala is known to be robustly activated by the
presentation of fearful faces (Morris et al., 1996; Hariri et al.,
002; Gla¨scher et al., 2004; Reinders et al., 2005), which seems to"
7128f1239cbd1007ef19d8fd8cdab083d33a6984,"Aligned to the Object, not to the Image: A Unified Pose-aligned Representation for Fine-grained Recognition","Aligned to the Object, not to the Image:
A Unified Pose-aligned Representation for Fine-grained Recognition
Pei Guo, Ryan Farrell
Computer Science Department
Brigham Young University"
710011644006c18291ad512456b7580095d628a2,Learning Residual Images for Face Attribute Manipulation,"Learning Residual Images for Face Attribute Manipulation
Wei Shen
Rujie Liu
Fujitsu Research & Development Center, Beijing, China.
{shenwei,"
71529e3e51f2967e338124652e93a3d34eb6c5e1,Deep triplet-group network by exploiting symmetric and asymmetric information for person reidentification,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/6/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Deeptriplet-groupnetworkbyexploitingsymmetricandasymmetricinformationforpersonreidentificationBenzhiYuNingXuBenzhiYu,NingXu,“Deeptriplet-groupnetworkbyexploitingsymmetricandasymmetricinformationforpersonreidentification,”J.Electron.Imaging27(3),033033(2018),doi:10.1117/1.JEI.27.3.033033."
714947e4d7f79f753c5c44eac701185e37086276,An Exponential Representation in the API Algorithm for Hidden Markov Models Training,"An Exponential Representation in the API
Algorithm for Hidden Markov Models Training
S´ebastien Aupetit1, Nicolas Monmarch´e1, Mohamed Slimane1, and
Pierre Liardet2
Universit´e Fran¸cois-Rabelais de Tours, Laboratoire d’Informatique
Polytech’Tours, 64, Av Jean Portalis, 37200 Tours, France
Universit´e de Provence, CMI
Laboratoire ATP, UMR-CNRS 6632
9 rue F. Joliot-Curie, 13453 Marseille cedex 13, France"
71f98c3f7a5b02ab193110d5ae9f9d48a1c5ec38,Deep Human Parsing with Active Template Regression,"Deep Human Parsing with Active Template
Regression
Xiaodan Liang, Si Liu, Xiaohui Shen, Jianchao Yang, Luoqi Liu, Jian Dong, Liang Lin, Shuicheng
Yan, Senior Member, IEEE"
71286a2b3d564daf171cdef54ff8972159152729,Combinatorial Resampling Particle Filter: An Effective and Efficient Method for Articulated Object Tracking,"Noname manuscript No.
(will be inserted by the editor)
Combinatorial Resampling Particle Filter: an Effective and Efficient
Method for Articulated Object Tracking
Christophe Gonzales · S´everine Dubuisson
Received: date / Accepted: date"
71d3ed17c0642234a921bb45fcadd86520794941,Learning by Tracking: Siamese CNN for Robust Target Association,"Learning by tracking: Siamese CNN for robust target association
Laura Leal-Taix´e
TU M¨unchen
Munich, Germany
Cristian Canton-Ferrer
Microsoft
Redmond (WA), USA
Konrad Schindler
ETH Zurich
Zurich, Switzerland"
71766bf224d5c74a0be6996b38d8885c2eed5a2c,Fooling Vision and Language Models Despite Localization and Attention Mechanism,
71d8fae870ea78a89e231247afb3259267e09799,Probabilistic multi-class segmentation for the Amazon Picking Challenge,"Probabilistic Multi-Class Segmentation
for the Amazon Picking Challenge
Rico Jonschkowski
Clemens Eppner∗
Sebastian H¨ofer∗
Roberto Mart´ın-Mart´ın∗ Oliver Brock"
71dcbca34d71bda0bc41c33c04d2c1a740274feb,An Innovative Mean Approach for Plastic Surgery Face Recognition,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2014): 6.14 | Impact Factor (2014): 4.438
An Innovative Mean Approach for Plastic Surgery
Face Recognition
Mahendra P. Randive1, Umesh W. Hore2
Student of M.E., Department of Electronics & Telecommunication Engineering,
P. R. Patil College of Engineering, Amravati Maharashtra – India
Assistant Professor, Department of Electronics & Telecommunication Engineering,
P. R. Patil College of Engineering, Amravati Maharashtra – India"
7189d5584416ef2a39d6ab16929dfecdddc10081,A Review of Face Sketch Recognition Systems,"Journal of Theoretical and Applied Information Technology
20th November 2015. Vol.81. No.2
© 2005 - 2015 JATIT & LLS. All rights reserved.
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195
A REVIEW OF FACE SKETCH RECOGNITION SYSTEMS
SALAH EDDINE LAHLALI,  2ABDELALIM SADIQ, 3 SAMIR MBARKI
23Department of Computing, Faculty of sciences, IbnTofail University, Kenitra, Morocco
E-mail:"
711bb5f63139ee7a9b9aef21533f959671a7d80e,Objects extraction and recognition for camera-based interaction : heuristic and statistical approaches,"Helsinki University of Technology Laboratory of Computational Engineering Publications
Teknillisen korkeakoulun Laskennallisen tekniikan laboratorion julkaisuja
Espoo 2007
REPORT B68
OBJECTS EXTRACTION AND RECOGNITION FOR
CAMERA-BASED INTERACTION: HEURISTIC AND
STATISTICAL APPROACHES
Hao Wang
TEKNILLINEN KORKEAKOULU
TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D'HELSINKI
UNIVERSITE DE TECHNOLOGIE D'HELSINKI"
7173871866fc7e555e9123d1d7133d20577054e8,Simultaneous Adversarial Training - Learn from Others Mistakes,"Simultaneous Adversarial Training - Learn from
Others’ Mistakes
Zukang Liao
Lite-On Singapore Pte. Ltd, 2Imperial College London"
71edcfe5e3a4e1678698a0659a7e51555291d242,Who's that Actor? Automatic Labelling of Actors in TV Series Starting from IMDB Images,"Who’s that Actor? Automatic Labelling of
Actors in TV series starting from IMDB Images
Rahaf Aljundi(cid:63), Punarjay Chakravarty(cid:63) and Tinne Tuytelaars
KU Leuven, ESAT-PSI, iMinds, Belgium"
715216a92c338a3c35319026d38ed0da0c57d013,Integrated Pedestrian and Direction Classification Using a Random Decision Forest,"Integrated Pedestrian and Direction Classification
using a Random Decision Forest
Junli Tao and Reinhard Klette
University of Auckland, Auckland, New Zealand"
711801297f23df9ac8ca1c2d3c9d7dfa2ed12043,Enhancing Energy Efficiency of Multimedia Applications in Heterogeneous Mobile Multi-Core Processors,"Contention-Aware Fair Scheduling for
Asymmetric Single-ISA Multicore Systems
Adrian Garcia-Garcia , Juan Carlos Saez , and Manuel Prieto-Matias"
76ec5c774bb3fd04f9e68864a411286536a544c5,Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models,"LATENT CONSTRAINTS:
LEARNING TO GENERATE CONDITIONALLY FROM
UNCONDITIONAL GENERATIVE MODELS
Jesse Engel
Google Brain
San Francisco, CA, USA
Matthew D. Hoffman
Google Inc.
San Francisco, CA, USA
Adam Roberts
Google Brain
San Francisco, CA, USA"
7608953ef5c7a882bd2e7e7053a600e543748233,Robust 3D Face Recognition by Local Shape Difference Boosting,"Robust 3D Face Recognition
y Local Shape Difference Boosting
Yueming Wang, Jianzhuang Liu, Senior Member, IEEE, and Xiaoou Tang, Fellow, IEEE"
76ff6a68d7a8dcc12b6ba68e914294f6720a466d,The red one!: On learning to refer to things based on discriminative properties,"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 213–218,
Berlin, Germany, August 7-12, 2016. c(cid:13)2016 Association for Computational Linguistics"
76fd801981fd69ff1b18319c450cb80c4bc78959,Alignment of Eye Movements and Spoken Language for Semantic Image Understanding,"Proceedings of the 11th International Conference on Computational Semantics, pages 76–81,
London, UK, April 15-17 2015. c(cid:13)2015 Association for Computational Linguistics"
76dc11b2f141314343d1601635f721fdeef86fdb,Weighted Decoding ECOC for Facial Action Unit Classification,"Weighted Decoding ECOC for Facial
Action Unit Classification
Terry Windeatt"
76673de6d81bedd6b6be68953858c5f1aa467e61,Discovering a Lexicon of Parts and Attributes,"Discovering a Lexicon of Parts and Attributes
Subhransu Maji
Toyota Technological Institute at Chicago,
Chicago, IL 60637, USA"
76f73c884e4437a22afcba60193bbd7f35e64aaf,Title of dissertation : RESOURCE ALLOCATION IN COMPUTER VISION,
768cb0e32de3f1b5aebe04448aaec4c25586680c,Boosting Image Captioning with Attributes,"Under review as a conference paper at ICLR 2017
BOOSTING IMAGE CAPTIONING WITH ATTRIBUTES
Ting Yao, Yingwei Pan, Yehao Li, Zhaofan Qiu, Tao Mei
Microsoft Research Asia
{tiyao, v-yipan, v-yehl, v-zhqiu,"
76cd5e43df44e389483f23cb578a9015d1483d70,Face Verification from Depth using Privileged Information,"BORGHI ET AL.: FACE VERIFICATION FROM DEPTH
Face Verification from Depth using
Privileged Information
Department of Engineering
""Enzo Ferrari""
University of Modena and Reggio
Emilia
Modena, Italy
Guido Borghi
Stefano Pini
Filippo Grazioli
Roberto Vezzani
Rita Cucchiara"
76b2732a8684babdfd95c655b2e1a1b79c3aeb9b,Face detection from few training examples,"978-1-4244-1764-3/08/$25.00 ©2008 IEEE
ICIP 2008
Authorized licensed use limited to: UNSW Library. Downloaded on June 12, 2009 at 01:20 from IEEE Xplore.  Restrictions apply."
76c018c6dfc81f61c3912c5ed442d9a72f64e467,Graphical Processing Unit Assisted Image Processing for Accelerated Eye Tracking,"Graphical Processing Unit Assisted Image Processing for
Accelerated Eye Tracking
Dissertation submitted by
Jean-Pierre Louis du Plessis
Student Number: 2006033415
to the
Department of Computer Science and Informatics
Faculty of Natural and Agricultural Sciences
University of the Free State, South Africa
Submitted in fulfilment of the requirements of the degree
Magister Scientiae
February 2015
Study Leader: Prof P.J. Blignaut"
76b11c281ac47fe6d95e124673a408ee9eb568e3,Real-time Multi View Face Detection and Pose Estimation Aishwarya,"International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 03 || March 2017 || PP. 59-71
REAL-TIME MULTI VIEW FACE DETECTION AND POSE
ESTIMATION
AISHWARYA.S1 , RATHNAPRIYA.K1, SUKANYA SARGUNAR.V2
U. G STUDENTS, DEPT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI,
ASST PROF.DEPARTMENT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI"
76bfa74a6311db5d84bad2a7a941f30dd750d01c,Evidence That Emotion Mediates Social Attention in Rhesus Macaques,"Evidence That Emotion Mediates Social Attention in
Rhesus Macaques
Emily J. Bethell1*, Amanda Holmes2, Ann MacLarnon1, Stuart Semple1
Centre for Research in Evolutionary and Environmental Anthropology, University of Roehampton, London, United Kingdom, 2 Department of Psychology, University of
Roehampton, London, United Kingdom"
7689d23a22682c92bdf9a1df975fa2cdd24f1b87,MMD with Kernel Learning In practice we use finite samples from distributions to estimate,"MMD GAN: Towards Deeper Understanding of Moment Matching
Network
Chun-Liang Li
Committee: Barnab´as P´oczos and Pradeep Ravikumar
Tuesday 28th November, 2017"
76ebe6d24ee69e3f853740fb75085a2118d40d51,ILLUMINANCE FLOW ( met een samenvatting in het Nederlands ) PROEFSCHRIFT ter verkrijging van de graad van doctor,"ILLUMINANCE FLOW
(met een samenvatting in het Nederlands)
PROEFSCHRIFT
ter verkrijging van de graad van doctor aan de Universiteit Utrecht op
gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit
van het college voor promoties
in het openbaar te verdedigen op vrijdag 15 januari 2010
des middags te 4.15 uur
(Dan) Stefan Mikael Karlsson
geboren op 3 september 1978 te Stafsinge, Zweden"
76f3450e50c20fca00dd6319df38503c5d7ebad0,THÈSE DE DOCTORAT présentée par OLIVIER DUCHENNE pour obtenir le grade de DOCTEUR DE L ’ ÉCOLE NORMALE SUPÉRIEURE,"THÈSEDEDOCTORATprésentéeparOLIVIERDUCHENNEpourobtenirlegradedeDOCTEURDEL’ÉCOLENORMALESUPÉRIEUREDomaine:MATHÉMATIQUESAPPLIQUÉESSujetdelathèse:Alignementélastiqued’imagespourlareconnaissanced’objet—Non-rigidimagealignmentforobjectrecognitionThèseprésentéeetsoutenueàl’ENSUlmle29Novembre2012devantlejurycomposéde:JeanPonceProfesseur,DirecteurduDI,ENSUlmDirecteurdethèsePedroFelzenszwalbProfesseur,BrownUniversityRapporteurMartialHebertProfesseur,CarnegieMellonUniversityRapporteurFrancisBachDirecteurderecherche,ENSUlmÉxaminateurJitendraMalikProfesseur,UniversityofBerkeleyÉxaminateurCordeliaSchmidProfesseur,INPGrenobleÉxaminateurAndrewZissermanProfesseur,UniversityofOxfordÉxaminateurThèsepréparéeauseindel’équipeWILLOWdudépartementd’informatiquedel’ÉcoleNormaleSupérieure,Ulm.(INRIA/ENS/CNRSUMR8548)."
76d9f5623d3a478677d3f519c6e061813e58e833,Fast Algorithms for the Generalized Foley-Sammon Discriminant Analysis,"FAST ALGORITHMS FOR THE GENERALIZED FOLEY-SAMMON
DISCRIMINANT ANALYSIS
LEI-HONG ZHANG∗, LI-ZHI LIAO† , AND MICHAEL K. NG‡"
76e2d7621019bd45a5851740bd2742afdcf62837,Real-Time Detection and Measurement of Eye Features from Color Images,"Article
Real-Time Detection and Measurement of Eye
Features from Color Images
Diana Borza 1, Adrian Sergiu Darabant 2 and Radu Danescu 1,*
Computer Science Department, Technical University of Cluj Napoca, 28 Memorandumului Street,
Cluj Napoca 400114, Romania;
Computer Science Department, Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca 400591,
Romania;
* Correspondence: Tel.: +40-740-502-223
Academic Editors: Changzhi Li, Roberto Gómez-García and José-María Muñoz-Ferreras
Received: 28 April 2016; Accepted: 14 July 2016; Published: 16 July 2016"
765b2cb322646c52e20417c3b44b81f89860ff71,PoseShop: Human Image Database Construction and Personalized Content Synthesis,"PoseShop: Human Image Database
Construction and Personalized
Content Synthesis
Tao Chen, Ping Tan, Member, IEEE, Li-Qian Ma, Ming-Ming Cheng, Member, IEEE,
Ariel Shamir, and Shi-Min Hu, Member, IEEE"
763158cef9d1e4041f24fce4cf9d6a3b7a7f08ff,Hierarchical Modeling and Applications to Recognition Tasks,"Hierarchical Modeling and
Applications to Recognition Tasks
Thesis submitted for the degree of
”Doctor of Philosophy”
Alon Zweig
Submitted to the Senate of the Hebrew University
August / 2013"
7606a74de57f67257c77a8bb0295ff4593566040,Content-based Image Retrieval Using Constrained Independent Component Analysis : Facial Image Retrieval Based on Compound Queries,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,800
16,000
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
76cb2ecc96f02b1d8a7a0d1681fbb55367a4b765,Learning Object States from Videos,"Learning Object States from Videos
Liang-Kang Huang
Katerina Fragkiadaki"
7671234c3726fda01b2842f85327624f0dda8ead,The data deluge: Challenges and opportunities of unlimited data in statistical signal processing,"978-1-4244-2354-5/09/$25.00 ©2009 IEEE
ICASSP 2009"
760ba44792a383acd9ca8bef45765d11c55b48d4,Class-specific classifier: avoiding the curse of dimensionality,"INTRODUCTION AND BACKGROUND
The purpose of this article is to introduce the
reader to the basic principles of  classification with
lass-specific features. It is written both for readers
interested in only the basic concepts as well as those
interested in getting started in applying the method.
For in-depth coverage, the reader is referred to a more
detailed article [l].
Class-Specific Classifier:
Avoiding the Curse of
Dimensionality
PAUL M. BAGGENSTOSS, Member. lEEE
US. Naval Undersea Warfare Center
This article describes a new probabilistic method called the
“class-specific method” (CSM). CSM has the potential to avoid
the “curse of dimensionality” which plagues most clmiiiers
which attempt to determine the decision boundaries in a
highdimensional featue space. In contrast, in CSM, it is possible
to build classifiers without a ” n o n   feature space. Separate
Law-dimensional features seta may be de6ned for each class, while"
76d8b370d0a8fc63ead6ba657dd438d7155d659f,Modular Sensor Fusion for Semantic Segmentation,"(cid:13)2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
urrent or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.
Please cite this paper as:
title
uthor
ooktitle = ""2018 {IEEE/RSJ} International Conference on Intelligent Robots
= ""Modular Sensor Fusion for Semantic Segmentation"",
= ""Blum, Hermann and Gawel, Abel and Siegwart, Roland and Cadena, Cesar"",
nd Systems ({IROS})"",
= 2018;"
766728bac030b169fcbc2fbafe24c6e22a58ef3c,A survey of deep facial landmark detection,"A survey of deep facial landmark detection
Yongzhe Yan1,2
Xavier Naturel2
Christophe Garcia3
Thierry Chateau1
Christophe Blanc1
Stefan Duffner3
Université Clermont Auvergne, France
Wisimage, France
Université de Lyon, CNRS, INSA Lyon, LIRIS, UMR5205, Lyon, France
Résumé
La détection de landmarks joue un rôle crucial dans de
nombreuses applications d’analyse du visage comme la
reconnaissance de l’identité, des expressions, l’animation
d’avatar, la reconstruction 3D du visage, ainsi que pour
les applications de réalité augmentée comme la pose de
masque ou de maquillage virtuel. L’avènement de l’ap-
prentissage profond a permis des progrès très importants
dans ce domaine, y compris sur les corpus non contraints
(in-the-wild). Nous présentons ici un état de l’art cen-"
7697295ee6fc817296bed816ac5cae97644c2d5b,Detecting and Recognizing Human-Object Interactions,"Detecting and Recognizing Human-Object Interactions
Georgia Gkioxari Ross Girshick
Piotr Doll´ar Kaiming He
Facebook AI Research (FAIR)"
76a0016ce19363ef8f7ba5c3964c4a0c29b608ca,ModaNet: A Large-scale Street Fashion Dataset with Polygon Annotations,"ModaNet: A Large-scale Street Fashion Dataset with Polygon
Annotations
Shuai Zheng
eBay Inc.
San Jose, California
M. Hadi Kiapour
eBay Inc.
San Francisco, California
Fan Yang
eBay Inc.
San Jose, California
Robinson Piramuthu
eBay Inc.
San Francisco, California"
7636f94ddce79f3dea375c56fbdaaa0f4d9854aa,Robust Facial Expression Recognition Using a Smartphone Working against Illumination Variation,"Appl. Math. Inf. Sci. 6 No. 2S pp. 403S-408S (2012)
An International Journal
© 2012 NSP
Applied Mathematics & Information Sciences
Robust Facial Expression Recognition Using
Smartphone Working against Illumination Variation
2012 NSP
Natural Sciences Publishing Cor.
Kyoung-Sic Cho1, In-Ho Choi1 and Yong-Guk Kim1
Department of Computer Engineering, Sejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul, Korea
Corresponding author: Email:
Received June 22, 2010; Revised March 21, 2011; Accepted 11 June 2011
Published online: 1 January 2012"
7638cb16631fbcdf621aaf392fec5108e6fa9f47,On Nonrigid Shape Similarity and Correspondence,"Alon Shtern and Ron Kimmel
November 25, 2013
trinsically symmetric halves of a human face were found by mapping the shape (left) to itself.
Textures from two faces (middle) were transferred to each half (right)."
1ca9ab2c1b5e8521cba20f78dcf1895b3e1c36ac,"Explorer "" Here ' s looking at you , kid","""Here's looking at you, kid""
Citation for published version:
Marin-Jimenez, M, Zisserman, A & Ferrari, V 2011, ""Here's looking at you, kid"": Detecting people looking at
each other in videos. in Proceedings of the British Machine Vision Conference (BMVC): Dundee, September
011. BMVA Press, pp. 22.1-22.12. DOI: 10.5244/C.25.22
Digital Object Identifier (DOI):
0.5244/C.25.22
Link:
Link to publication record in Edinburgh Research Explorer
Document Version:
Peer reviewed version
Published In:
Proceedings of the British Machine Vision Conference (BMVC)
General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
nd / or other copyright owners and it is a condition of accessing these publications that users recognise and
bide by the legal requirements associated with these rights.
Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
ontent complies with UK legislation. If you believe that the public display of this file breaches copyright please"
1c80bc91c74d4984e6422e7b0856cf3cf28df1fb,Hierarchical Adaptive Structural SVM for Domain Adaptation,"Noname manuscript No.
(will be inserted by the editor)
Hierarchical Adaptive Structural SVM for Domain Adaptation
Jiaolong Xu · Sebastian Ramos · David V´azquez · Antonio M. L´opez
Received: date / Accepted: date"
1ce3a91214c94ed05f15343490981ec7cc810016,Exploring photobios,"Exploring Photobios
Ira Kemelmacher-Shlizerman1
Eli Shechtman2
Rahul Garg1,3
Steven M. Seitz1,3
University of Washington∗
Adobe Systems†
Google Inc."
1cd9dba357e05c9be0407dc5d477fd528cfeb79b,Model-driven Simulations for Deep Convolutional Neural Networks,"Model-driven Simulations for Deep Convolutional
Neural Networks
V S R Veeravasarapu1, Constantin Rothkopf2, Visvanathan Ramesh1
Center for Cognition and Computing, Goethe University, Frankfurt.
Cognitive Science Center, Technical University, Darmstadt."
1cb68fa98a0d9871a394cd0035488df167b9c2cf,RedNet: Residual Encoder-Decoder Network for indoor RGB-D Semantic Segmentation,"RedNet: Residual Encoder-Decoder Network for
indoor RGB-D Semantic Segmentation
Jindong Jiang, Lunan Zheng, Fei Luo, and Zhijun Zhang
The School of Automation Science and Engineering, South China University of
Technology, Guangzhou 510640, China"
1cf6bc0866226c1f8e282463adc8b75d92fba9bb,"Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering","Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for
Visual Question Answering
Huijuan Xu
UMass Lowell
Kate Saenko
UMass Lowell"
1c9333bcf523388d75f852e0689b0e7f5a04faa4,Person Part Segmentation based on Weak Supervision,"JIANG, CHI: PERSON PART SEGMENTATION BASED ON WEAK SUPERVISION  1
Person Part Segmentation based on Weak
Supervision
Yalong Jiang1                                                                   1Department of Electronic and Information
Engineering
Zheru Chi1                                                                             The Hong Kong Polytechnic University, HK"
1c26e415c7eae2f3b0f49e0519f0d985ec661c63,Intersection of Longest Paths in Graph Theory and Predicting Performance in Facial Recognition,"Georgia State University
ScholarWorks Georgia State University
Mathematics Dissertations
Department of Mathematics and Statistics
-6-2017
Intersection of Longest Paths in Graph Theory and
Predicting Performance in Facial Recognition
Amy Yates
Follow this and additional works at: http://scholarworks.gsu.edu/math_diss
Recommended Citation
Yates, Amy, ""Intersection of Longest Paths in Graph Theory and Predicting Performance in Facial Recognition."" Dissertation, Georgia
State University, 2017.
http://scholarworks.gsu.edu/math_diss/34
This Dissertation is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks Georgia State
University. It has been accepted for inclusion in Mathematics Dissertations by an authorized administrator of ScholarWorks Georgia State
University. For more information, please contact"
1cb95f013ec3e78acdda6ac6cfdb362ae6a5ceac,Nonnegative matrix factorization for segmentation analysis,"Nonnegative matrix factorization for
segmentation analysis
Roman Sandler
Technion - Computer Science Department - Ph.D. Thesis  PHD-2010-09 - 2010"
1cfe3533759bf95be1fce8ce1d1aa2aeb5bfb4cc,Recognition of Facial Gestures Based on Support Vector Machines,"Recognition of Facial Gestures based on Support
Vector Machines
Attila Fazekas and Istv(cid:19)an S(cid:19)anta
Faculty of Informatics, University of Debrecen, Hungary
H-4010 Debrecen P.O.Box 12."
1ce4587e27e2cf8ba5947d3be7a37b4d1317fbee,Deep fusion of visual signatures for client-server facial analysis,"Deep fusion of visual signatures
for client-server facial analysis
Binod Bhattarai
Normandie Univ, UNICAEN,
ENSICAEN, CNRS, GREYC
Gaurav Sharma
Computer Sc. & Engg.
IIT Kanpur, India
Frederic Jurie
Normandie Univ, UNICAEN,
ENSICAEN, CNRS, GREYC
Facial analysis is a key technology for enabling human-
machine interaction.
In this context, we present a client-
server framework, where a client transmits the signature of
face to be analyzed to the server, and, in return, the server
sends back various information describing the face e.g. is the
person male or female, is she/he bald, does he have a mus-
tache, etc. We assume that a client can compute one (or a
ombination) of visual features; from very simple and ef‌f‌i-"
1cd0bc067e66bc1f66a73b401a4a470e43e4bb9e,Houdini: Fooling Deep Structured Visual and Speech Recognition Models with Adversarial Examples,"Houdini: Fooling Deep Structured Visual and Speech
Recognition Models with Adversarial Examples
Moustapha Cisse
Facebook AI Research
Natalia Neverova*
Facebook AI Research"
1cee733ee31e245dac4655a870fd9226163a52b5,Bidirectional Beam Search: Forward-Backward Inference in Neural Sequence Models for Fill-in-the-Blank Image Captioning,"Bidirectional Beam Search: Forward-Backward Inference in
Neural Sequence Models for Fill-in-the-Blank Image Captioning
Qing Sun
Virginia Tech
Stefan Lee
Virginia Tech
Dhruv Batra
Georgia Tech"
1cd584f519d9cd730aeef1b1d87f7e2e82b4de59,A fully automatic face recognition system using a combined audio - visual approach ∗,"A fully automatic face recognition system using a combined
udio-visual approach ∗
Alberto Albiol†, Luis Torres†, and Edward J. Delp? †
Communications Department
Technical University of Valencia, Valencia, Spain
Department of Signal Theory & Communications
Technical University of Catalonia, Barcelona, Spain
?School of Electrical and Computer Engineering
Purdue University West Lafayette, IN 47907-1285
Corresponding Author:
Dr. Alberto Albiol
Communications Department
Technical University of Valencia, Valencia, Spain
6022 Valencia (Spain)
Telephone: +34 96 387 97 38
Fax: +34 96 387 73 09
Email:"
1c30bb689a40a895bd089e55e0cad746e343d1e2,Learning Spatiotemporal Features with 3D Convolutional Networks,"Learning Spatiotemporal Features with 3D Convolutional Networks
Du Tran1
, Lubomir Bourdev1, Rob Fergus1, Lorenzo Torresani2, Manohar Paluri1
Facebook AI Research, 2Dartmouth College"
1c521ac6e68436f6c6aad3c0eb7ffa557fe25b0d,Modeling Image Patches with a Generic Dictionary of Mini-epitomes,"Modeling Image Patches with a Generic Dictionary of Mini-Epitomes
George Papandreou
TTI Chicago
Liang-Chieh Chen
UC Los Angeles
Alan L. Yuille
UC Los Angeles"
1cc3c5f242d885738e9349a91d4beba82ae106a6,Scalable nonconvex inexact proximal splitting,"Scalable nonconvex inexact proximal splitting
Suvrit Sra
Max Planck Institute for Intelligent Systems
72076 T¨ubigen, Germany"
1cf01968594ae59d28b12c9a35fc43d944563071,Low-Level Features for Image Retrieval Based on Extraction of Directional Binary Patterns and Its Oriented Gradients Histogram,"Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015
LOW-LEVEL FEATURES FOR IMAGE RETRIEVAL BASED
ON EXTRACTION OF DIRECTIONAL BINARY PATTERNS
AND ITS ORIENTED GRADIENTS HISTOGRAM
Nagaraja S. and Prabhakar C.J.
Department of P.G. Studies and Research in Computer Science
Kuvempu University, India"
1c3073b57000f9b6dbf1c5681c52d17c55d60fd7,Direction de thèse:,"THÈSEprésentéepourl’obtentiondutitredeDOCTEURDEL’ÉCOLENATIONALEDESPONTSETCHAUSSÉESSpécialité:InformatiqueparCharlotteGHYSAnalyse,Reconstruction3D,&AnimationduVisageAnalysis,3DReconstruction,&AnimationofFacesSoutenancele19mai2010devantlejurycomposéde:Rapporteurs:MajaPANTICDimitrisSAMARASExaminateurs:MichelBARLAUDRenaudKERIVENDirectiondethèse:NikosPARAGIOSBénédicteBASCLE"
1cbc189a4484cd2b1371798bae2ff50c0442ce60,A Hybrid Loss for Multiclass and Structured Prediction,"IEEE TRANSACTIONS ON PATTERN ANALYSIS & MACHINE INTELLIGENCE, FINAL DRAFT, FEB. 2014
A Hybrid Loss for Multiclass
nd Structured Prediction
Qinfeng Shi, Mark Reid, Tiberio Caetano, Anton van den Hengel and Zhenhua Wang"
1cf29a0131211079fc73908ecf211ee78f090ad9,Regionlets for Generic Object Detection,"Regionlets for Generic Object Detection
Xiaoyu Wang Ming Yang
Shenghuo Zhu
Yuanqing Lin
NEC Laboratories America, Inc."
1c1a24169be56e01b0e36e260f49025260a5c7e7,A Deep Compositional Framework for Human-like Language Acquisition in Virtual Environment,"A Deep Compositional Framework for Human-like
Language Acquisition in Virtual Environment
Haonan Yu, Haichao Zhang, and Wei Xu
Baidu Research - Institue of Deep Learning
Sunnyvale, CA 94089"
1c93b48abdd3ef1021599095a1a5ab5e0e020dd5,A Compositional and Dynamic Model for Face Aging,"JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, JANUARY 2009
A Compositional and Dynamic Model for Face Aging
Jinli Suo , Song-Chun Zhu , Shiguang Shan and Xilin Chen"
1cc0183d8fbef098d29b6b5f621745ff099f6c6c,Joint Discovery of Object States and Manipulation Actions,"Joint Discovery of Object States and Manipulation Actions
Jean-Baptiste Alayrac∗ †
Josef Sivic∗ † ‡
Ivan Laptev∗ †
Simon Lacoste-Julien§"
1c90ad1e264c29a8d180de47373257a5f1b5aa57,Generalizing Image Captions for Image-Text Parallel Corpus,"Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 790–796,
Sofia, Bulgaria, August 4-9 2013. c(cid:13)2013 Association for Computational Linguistics
house being pulled by a boat.” “I saw her in the light of her reading lamp and sneaked back to her door with the camera.” “Sections of the bridge sitting in the Dyer Construction yard south of Cabelas Driver.” Circumstantial information that is not visually present Visually relevant, but with overly extraneous details Visually truthful, but for an uncommon situation Figure1:Examplesofcaptionsthatarenotreadilyapplicabletoothervisuallysimilarimages.textfromtheretrievedsamplestothequeryim-age(e.g.Farhadietal.(2010),Ordonezetal.(2011),Kuznetsovaetal.(2012)).Otherwork(e.g.FengandLapata(2010a),FengandLapata(2010b))usescomputervisiontobiassummariza-tionoftextassociatedwithimagestoproducede-scriptions.Alloftheseapproachesrelyonex-istingtextthatdescribesvisualcontent,butmanytimesexistingimagedescriptionscontainsignifi-cantamountsofextraneous,non-visual,orother-wisenon-desirablecontent.Thegoalofthispaperistodeveloptechniquestoautomaticallycleanupvisuallydescriptivetexttomakeitmoredirectlyusableforapplicationsexploitingtheconnectionbetweenimagesandlanguage.Asaconcreteexample,considerthefirstimageinFigure1.Thiscaptionwaswrittenbythephotoownerandthereforecontainsinformationrelatedtothecontextofwhenandwherethephotowastaken.Objectssuchas“lamp”,“door”,“camera”arenotvisuallypresentinthephoto.Thesecondimageshowsasimilarbutsomewhatdifferentis-sue.Itscaptiondescribesvisibleobjectssuchas“bridge”and“yard”,but“CabelasDriver”areoverlyspecificandnotvisuallydetectable.The"
1c51aeece7a3c30302ebd83bdcaa65df0bfc48fe,Unsupervised Video Indexing based on Audiovisual Characterization of Persons. (Indexation vidéo non-supervisée basée sur la caractérisation des personnes),"Unsupervised Video Indexing based on Audiovisual
Characterization of Persons
Elie El Khoury
To cite this version:
Elie El Khoury. Unsupervised Video Indexing based on Audiovisual Characterization of Per-
sons. Human-Computer Interaction [cs.HC]. Universit´e Paul Sabatier - Toulouse III, 2010.
English. <tel-00515424v3>
HAL Id: tel-00515424
https://tel.archives-ouvertes.fr/tel-00515424v3
Submitted on 7 Sep 2010
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
1cbf3b90065e8a410668ed914e9d03a94a4d94aa,Visual-Inertial Semantic Scene Representation,"Visual-Inertial Semantic Scene Representation
UCLA TR CSD160005
Stefano Soatto
May 20, 2016"
1c7e1248ce254b3a9a0b6fef9e37d37620fc8aa3,Dynamic Image-to-Class Warping for Occluded Face Recognition,"Dynamic Image-to-Class Warping for Occluded
Face Recognition
Xingjie Wei, Chang-Tsun Li, Senior Member, IEEE, Zhen Lei, Member, IEEE,
Dong Yi, and Stan Z. Li, Fellow, IEEE"
1cdf8790a675037579bbe2ee4f39f731f7672fae,Pivot Correlational Neural Network for Multimodal Video Categorization,"Pivot Correlational Neural Network for
Multimodal Video Categorization
Sunghun Kang1[0000−0003−2632−7522], Junyeong Kim1[0000−0002−7871−9627],
Hyunsoo Choi2, Sungjin Kim2, and Chang D. Yoo1
KAIST, Daejeon, South Korea
{sunghun.kang, junyeong.kim,
SAMSUNG ELECTRONICS CO.,LTD, Seoul, South Korea
{hsu.choi,"
1ca40e1d0ae377296ac6804c81c1e5bcbc5475c8,RVM-Based Human Action Classification in Crowd through Projection and Star Skeletonization,"Hindawi Publishing Corporation
EURASIP Journal on Image and Video Processing
Volume 2009, Article ID 164019, 12 pages
doi:10.1155/2009/164019
Research Article
RVM-Based Human Action Classification in Crowd through
Projection and Star Skeletonization
B. Yogameena, S. Veeralakshmi, E. Komagal, S. Raju, and V. Abhaikumar
Department of Electronics and Communication Engineering, Thiagarajar College of Engineering,
Madurai 625015, Tamil Nadu, India
Correspondence should be addressed to B. Yogameena,
Received 1 February 2009; Revised 17 May 2009; Accepted 26 August 2009
Recommended by Amit Roy-Chowdhury
Detection of abnormal human actions in the crowd has become a critical problem in video surveillance applications like terrorist
ttacks. This paper proposes a real-time video surveillance system which is capable of classifying normal and abnormal actions of
individuals in a crowd. The abnormal actions of human such as running, jumping, waving hand, bending, walking and fighting
with each other in a crowded environment are considered. In this paper, Relevance Vector Machine (RVM) is used to classify
the abnormal actions of an individual in the crowd based on the results obtained from projection and skeletonization methods.
Experimental results on benchmark datasets demonstrate that the proposed system is robust and ef‌f‌icient. A comparative study of
lassification accuracy between Relevance Vector Machine and Support Vector Machine (SVM) classification is also presented."
1cdff2cd2e3cf8dbeb8f0a42df0cdc77c953dc81,The Emergence of Visual Crowdsensing: Challenges and Opportunities,"The Emergence of Visual Crowdsensing:
Challenges and Opportunities
Bin Guo, Senior Member, IEEE, Qi Han,Member, IEEE , Huihui Chen, Longfei Shangguan, Member, IEEE,
Zimu Zhou, Member, IEEE, and Zhiwen Yu, Senior Member, IEEE"
1c1e4415f0acf5d536c9579117d326471f0b678b,Temporal Model Adaptation for Person Re-identification,"Temporal Model Adaptation for
Person Re-Identification
Niki Martinel1,3, Abir Das2,
Christian Micheloni1, and Amit K. Roy-Chowdhury3
University of Udine, 33100 Udine, Italy
University of Massatchussets Lowell, 01852 Lowell, MA, USA
University of California Riverside, 92507 Riverside, CA, USA"
1ca155a4b65ae19ccb73df48516e4775770a382c,Action Representations in Robotics: A Taxonomy and Systematic Classification,"Action representations in robotics: A
taxonomy and systematic classification
Journal Title
XX(X):1–32
(cid:13)The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/
Philipp Zech, Erwan Renaudo, Simon Haller, Xiang Zhang and Justus Piater"
1c0e8c3fb143eb5eb5af3026eae7257255fcf814,Weakly Supervised Deep Detection Networks,"GOALS
Goal: Learn object detectors using only image-level labels
Why weakly supervised learning?
• annotations are costly
• CNN training is data-hungry
Hypothesis: Pre-trained CNNs should contain meaningful
representations of data such as objects and object parts.
Thus we can exploit this implicit knowledge to learn localizing
objects.
Classification stream
𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒
0.52 0.47 0.04 0.93
horse
person 0.48 0.53 0.96 0.07
Normalize over classes
Detection stream
𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒
horse
0.04 0.01 0.07 0.88
person 0.02 0.03 0.91 0.04"
1c400dcd6c3e54498d9a7bd5aa4c456079a9d236,Sketch and Validate for Big Data Clustering,"Sketch and Validate for Big Data Clustering
Panagiotis A. Traganitis, Konstantinos Slavakis, Senior Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE"
1c6e22516ceb5c97c3caf07a9bd5df357988ceda,Copycat CNN: Stealing Knowledge by Persuading Confession with Random Non-Labeled Data,"NetworkCNNimageslabelsFakeDatasetimages24132labelsTarget NetworkCNNimageslabelsOriginalDatasetFakeDatasetFig.1:Ontheleft,thetargetnetworkistrainedwithanoriginal(confidential)datasetandisservedpubliclyasanAPI,receivingimagesasinputandprovidingclasslabelsasoutput.Ontheright,itispresentedtheprocesstogetstolenlabelsandtocreateafakedataset:randomnaturalimagesaresenttotheAPIandthelabelsareobtained.Afterthat,thecopycatnetworkistrainedusingthisfakedataset.cloud-basedservicestocustomersallowingthemtooffertheirownmodelsasanAPI.Becauseoftheresourcesandmoneyinvestedincreatingthesemodels,itisinthebestinterestofthesecompaniestoprotectthem,i.e.,toavoidthatsomeoneelsecopythem.Someworkshavealreadyinvestigatedthepossibilityofcopyingmodelsbyqueryingthemasablack-box.In[1],forexample,theauthorsshowedhowtoperformmodelextractionattackstocopyanequivalentornear-equivalentmachinelearningmodel(decisiontree,logisticregression,SVM,andmultilayerperceptron),i.e.,onethatachievescloseto100%agreementonaninputspaceofinterest.In[2],theauthorsevaluatedtheprocessofcopyingaNaiveBayesandSVMclassifierinthecontextoftextclassification.Bothworksfocusedongeneralclassifiersandnotondeepneuralnetworksthatrequirelargeamountsofdatatobetrainedleavingthequestionofwhetherdeepmodelscanbeeasilycopied.Althoughthesecondusesdeeplearningtostealtheclassifiers,itdoesnottrytouseDNNstostealfromdeepmodels.Additionally,theseworksfocusoncopyingbyqueryingwithproblemdomaindata.Inrecentyears,researchershavebeenexploringsomeintriguingpropertiesofdeepneuralnetworks[3],[4].More©2018IEEE.Personaluseofthismaterialispermitted.PermissionfromIEEEmustbeobtainedforallotheruses,inanycurrentorfuturemedia,includingreprinting/republishingthismaterialforadvertisingorpromotionalpurposes,creatingnewcollectiveworks,forresaleorredistributiontoserversorlists,orreuseofanycopyrightedcomponentofthisworkinotherworks."
82d5656c74362d6c5c5fd889fc48f7816bbb033a,Contemplating Visual Emotions: Understanding and Overcoming Dataset Bias,"Contemplating Visual Emotions: Understanding
nd Overcoming Dataset Bias
Rameswar Panda1, Jianming Zhang2, Haoxiang Li3, Joon-Young Lee2, Xin
Lu2, and Amit K. Roy-Chowdhury1
Department of ECE, UC Riverside.
Adobe Research.
Aibee."
825f56ff489cdd3bcc41e76426d0070754eab1a8,Making Convolutional Networks Recurrent for Visual Sequence Learning,"Making Convolutional Networks Recurrent for Visual Sequence Learning
Xiaodong Yang Pavlo Molchanov Jan Kautz
NVIDIA"
82224858677af47b8c836df701eeea8fffaec924,Paper On Person Identification System Using Multi - Model Biometric Based On Face,"International Journal of Science, Engineering and Technology Research (IJSETR)
Volume 6, Issue 4, April 2017, ISSN: 2278 -7798
Review Paper On Person Identification System
Using Multi-Model Biometric Based On Face
CHETAN  JAMDAR1, AMOL BOKE2
Chetan  Jamdar, M. Tech Student, Dept Of ECE, G.H. Raisoni Academy Of Engg. And Technology, Nagpur,
Maharashtra, India.
Guide details: Amol Boke,  Assistant Professor, Dept Of ECE, G.H. Raisoni Academy Of Engg. And Technology,
Nagpur, Maharashtra, India"
82d2af2ffa106160a183371946e466021876870d,A Novel Space-Time Representation on the Positive Semidefinite Con for Facial Expression Recognition,"A Novel Space-Time Representation on the Positive Semidefinite Cone
for Facial Expression Recognition
Anis Kacem1, Mohamed Daoudi1, Boulbaba Ben Amor1, and Juan Carlos Alvarez-Paiva2
IMT Lille Douai, Univ. Lille, CNRS, UMR 9189 – CRIStAL –
Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France
Univ. Lille, CNRS, UMR 8524, Laboratoire Paul Painlev´e, F-59000 Lille, France."
82a2a523c4488c34b486c920046f4ebbf8ea828e,Vision-Based System for Human Detection and Tracking in Indoor Environment,"Author manuscript, published in ""International Journal of Social Robotics 2, 1 (2010) 41-52""
DOI : 10.1007/s12369-009-0040-4"
82eff71af91df2ca18aebb7f1153a7aed16ae7cc,MSU-AVIS dataset : Fusing Face and Voice Modalities for Biometric Recognition in Indoor Surveillance Videos,"MSU-AVIS dataset:
Fusing Face and Voice Modalities for Biometric
Recognition in Indoor Surveillance Videos
Anurag Chowdhury*, Yousef Atoum+, Luan Tran*, Xiaoming Liu*, Arun Ross*
*Michigan State University, USA
+Yarmouk University, Jordan"
82d3dc1dd35e7d2d13bc43614b575dce61b0aba3,Head Pose Estimation from Passive Stereo Images,"Head Pose Estimation
from Passive Stereo Images
M. D. Breitenstein1, J. Jensen2, C. Høilund2, T. B. Moeslund2, L. Van Gool1
ETH Zurich, Switzerland1 Aalborg University, Denmark2"
820b1349751d7e932b74c3de94b96557fa2534cf,BAM! The Behance Artistic Media Dataset for Recognition Beyond Photography,"BAM! The Behance Artistic Media Dataset for Recognition Beyond Photography
Michael J. Wilber1,2
Chen Fang1
John Collomosse1
Adobe Research
Aaron Hertzmann1
Hailin Jin1
Serge Belongie2
Cornell Tech"
82ff25b6e7749e0210b2f8d5a0666f3499745154,Adaptive Multiple Kernels with SIR-Particle Filter Based Multi Human Tracking for Occluded Environment,"International Journal of Computational Intelligence and Informatics, Vol. 3: No. 4, January - March 2014
Adaptive Multiple Kernels with SIR-Particle Filter
Based Multi Human Tracking for Occluded
Environment
T Karpagavalli
Department of Electronics and Communication
KLN College of Information Technology
Sivagangai, Tamilnadu, India
S Appavu alias Balamurugan
Department of Information Technology
KLN College of Information Technology
Sivagangai, Tamilnadu, India"
82c303cf4852ad18116a2eea31e2291325bc19c3,Fusion Based FastICA Method: Facial Expression Recognition,"Journal of Image and Graphics, Volume 2, No.1, June, 2014
Fusion Based FastICA Method: Facial Expression
Recognition
Humayra B. Ali and David M W Powers
Computer Science, Engineering and Mathematics School, Flinders University, Australia
Email: {ali0041,"
82fae97673a353271b1d4c001afda1af6ef6dc23,Semantic contours from inverse detectors,"Semantic Contours from Inverse Detectors∗
Bharath Hariharan1, Pablo Arbel´aez1, Lubomir Bourdev1
, Subhransu Maji1 and Jitendra Malik1
EECS, U.C. Berkeley, Berkeley, CA 94720
Adobe Systems, Inc., 345 Park Ave, San Jose, CA 95110
{bharath2, arbelaez, lbourdev, smaji,"
82ec2ff0bef7db7e5ea48c42336200fb0e44dbf9,Reconstruction of 3D Human Facial Images Using Partial Differential Equations,"Reconstruction of 3D Human Facial Images
Using Partial Differential Equations
University of Bradford/EIMC Department, Richmond Road, BD7 1DP, Bradford, UK
Email: {E.Elyan,
Eyad Elyan, Hassan Ugail
(PDE).  Here"
8210fd10ef1de44265632589f8fc28bc439a57e6,Single Sample Face Recognition via Learning Deep Supervised Autoencoders,"Single Sample Face Recognition via Learning Deep
Supervised Auto-Encoders
Shenghua  Gao,  Yuting  Zhang,  Kui  Jia,  Jiwen  Lu,  Yingying  Zhang"
82ab819815c86e85128a2a055a0c0fcd1146b696,Sampled Image Tagging and Retrieval Methods on User Generated Content,[cs.CV]  23 Nov 2016
82f6dad08432a5f1b737ba91dd002ff1f89170f7,c○2013 The Association for Computational Linguistics Order copies of this and other ACL proceedings from:,"ACL201351stAnnualMeetingoftheAssociationforComputationalLinguisticsProceedingsoftheConferenceSystemDemonstrationsAugust4-9,2013Sofia,Bulgaria"
82a4a35b2bae3e5c51f4d24ea5908c52973bd5be,Real-time emotion recognition for gaming using deep convolutional network features,"Real-time emotion recognition for gaming using
deep convolutional network features
S´ebastien Ouellet"
8239e4a37825979f66ff0419ccd50a08aebfbadf,Tracing the Colors of Clothing in Paintings with Image Analysis,"Tracing the Colors of Clothing in Paintings with
Image Analysis
Cihan Sarı1, Albert Ali Salah2, and Alkım Almıla Akda˘g Salah3
Bo˘gazi¸ci University, Systems and Control Engineering,
Bo˘gazi¸ci University, Computer Engineering,
{cihan.sari,
Istanbul S¸ehir University, College of Communications
Introduction
The history of color is full of instances of how and why certain colors become to
e associated with certain concepts, ideas, politics, status and power. Sometimes
the connotations occur arbitrarily, like in the instance when pink was assigned
to baby girls, and blue started to be associated with baby boys at the turn of
9th Century [Paoletti, 1987]. Sometimes though, color associations have very
tangible reasons, such as in the case of Marian blue and why over the centuries
it was reserved only for painting Virgin Mary. The reason is to be found in the
scarcity of the rock lapis lazuli -even more valuable than gold-, from which the
lue pigments were extracted. Individual colors have convoluted and contested
histories, since they have been attached to many symbols at any given time.
John Gage, an art historian who has devoted 30 years of research on the topic
of color, explains the conundrum of what he terms as “politics of color” in a"
82a610a59c210ff77cfdde7fd10c98067bd142da,Human attention and intent analysis using robust visual cues in a Bayesian framework,"UC San Diego
UC San Diego Electronic Theses and Dissertations
Title
Human attention and intent analysis using robust visual cues in a Bayesian framework
Permalink
https://escholarship.org/uc/item/1cb8d7vw
Author
McCall, Joel Curtis
Publication Date
006-01-01
Peer reviewed|Thesis/dissertation
eScholarship.org
Powered by the California Digital Library
University of California"
825bfa844e4493f205f66782c6ca68aa69018d9c,In-Place Activated BatchNorm for Memory-Optimized Training of DNNs,"In-Place Activated BatchNorm for Memory-Optimized Training of DNNs
Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder
Mapillary Research"
82a922e775ec3a83d2d5637030860f587697ae42,Dense Multiperson Tracking with Robust Hierarchical Linear Assignment,"Dense Multiperson Tracking with Robust Hierarchical Linear
Assignment
McLaughlin, N., Martinez-del-Rincon, J., & Miller, P. (2015). Dense Multiperson Tracking with Robust
https://doi.org/10.1109/TCYB.2014.2348314
Published in:
Document Version:
Peer reviewed version
Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal
Publisher rights
Copyright 2014 IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this
material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any
opyrighted components of this work in other works.
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.
Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to"
82485c89a6b48077b03b65a774fd5768ea768d4d,Unsupervised Adaptive Re-identification in Open World Dynamic Camera Networks,"Unsupervised Adaptive Re-identification in Open World Dynamic Camera
Networks
Rameswar Panda1,∗ Amran Bhuiyan2,∗,† Vittorio Murino2 Amit K. Roy-Chowdhury1
Department of ECE
Pattern Analysis and Computer Vision (PAVIS)
UC Riverside
Istituto Italiano di Tecnologia, Italy"
829f390b3f8ad5856e7ba5ae8568f10cee0c7e6a,A Robust Rotation Invariant Multiview Face Detection in Erratic Illumination Condition,"International Journal of Computer Applications (0975 – 8887)
Volume 57– No.20, November 2012
A Robust Rotation Invariant Multiview Face Detection in
Erratic Illumination Condition
G.Nirmala Priya
Associate Professor, Department of ECE
Sona College of Technology
Salem"
82f4e8f053d20be64d9318529af9fadd2e3547ef,Technical Report: Multibiometric Cryptosystems,"Technical Report:
Multibiometric Cryptosystems
Abhishek Nagar, Student Member, IEEE, Karthik Nandakumar, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
82319857563e7b578bcb66ec4df1c85decd6a624,Cooperative Tracking of Cyclists Based on Smart Devices and Infrastructure,"Cooperative Tracking of Cyclists Based on
Smart Devices and Infrastructure
G¨unther Reitberger, Maarten Bieshaar, Stefan Zernetsch, Konrad Doll, Bernhard Sick, and Erich Fuchs"
828b73e8a4d539eeae82601b5f5a4392818c6430,Long-Term Tracking by Decision Making,"UNIVERSITY OF CALIFORNIA,
IRVINE
Long-Term Tracking by Decision Making
DISSERTATION
submitted in partial satisfaction of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
in Computer Science
James Supanˇciˇc, III
Dissertation Committee:
Deva Ramanan, Chair
Charless Fowlkes
Alexander Ihler"
821ba3eba1e36a29cc482f5378f4a0d0f6893159,Unsupervised Domain Adaptation for Learning Eye Gaze from a Million Synthetic Images: An Adversarial Approach,"Unsupervised Domain Adaptation for Learning Eye Gaze from a
Million Synthetic Images: An Adversarial Approach
Avisek Lahiri∗
Abhinav Agarwalla
Prabir Kumar Biswas
Dept. of E&ECE, IIT Kharagpur
Dept. of E&ECE, IIT Kharagpur
Dept. of Mathematics, IIT Kharagpur"
82d781b7b6b7c8c992e0cb13f7ec3989c8eafb3d,Robust Facial Expression Recognition Using a State-based Model of Spatially-localized Facial,"REFERENCES
Adler  A.,  Youmaran  R.  and  Loyka  S.,  “Towards  a  Measure  of
Biometric  Information”,  Canadian  Conference  on  Electrical  and
Computer Engineering, pp. 210-213, 2006.
Ahmed A.A.E. and Traore I., “Anomaly  Intrusion Detection Based on
Biometrics”, IEEE Workshop on Information Assurance, United States
Military Academy, West Point, New York, pp. 452-458, 2005.
Ahmed  A.A.E.  and  Traore  I.,  “Detecting  Computer  Intrusions  using
Behavioural  Biometrics”,  Third  Annual  Conference  on  Privacy,
Security  and  Trust,  St.  Andrews,  New  Brunswick,  Canada,  pp.  1-8,
005.
Al-Zubi  S.,  Bromme  A.  and  Tonnies  K.,  “Using  an  Active  Shape
Structural  Model  for  Biometric  Sketch  Recognition”,  Proceedings  of
DAGM, Magdeburg, Germany, Vol. 2781, pp. 187-195, 2003.
Angle S., Bhagtani R. and Chheda H., “Biometrics: a Further Echelon
of  Security”,  The  First  UAE  International  Conference  on  Biological
nd Medical Physics, pp. 1-4, 2005.
Avraam  Kasapis.,  “MLPs  and  Pose,  Expression  Classification”,
Proceedings of UNiS Report, pp. 1-87, 2003.
Banikazemi  M.,  Poff  D.  and  Abali  B.,  “Storage-based  Intrusion"
82088af865626e2340db12b2e42f3a258053d593,Learning Generative ConvNets via Multi-grid Modeling and Sampling,"Learning Generative ConvNets via Multi-grid Modeling and Sampling
Ruiqi Gao1∗, Yang Lu2∗, Junpei Zhou3, Song-Chun Zhu1, Ying Nian Wu1
University of California, Los Angeles, USA, 2 Amazon, 3 Zhejiang University, China
{sczhu,"
82417d8ec8ac6406f2d55774a35af2a1b3f4b66e,Some Faces are More Equal than Others: Hierarchical Organization for Accurate and Efficient Large-Scale Identity-Based Face Retrieval,"Some faces are more equal than others:
Hierarchical organization for accurate and
ef‌f‌icient large-scale identity-based face retrieval
Binod Bhattarai1, Gaurav Sharma2, Fr´ed´eric Jurie1, Patrick P´erez2
GREYC, CNRS UMR 6072, Universit´e de Caen Basse-Normandie, France1
Technicolor, Rennes, France2"
82a4562d9ef19aec3aeaf9bd9f0ac4e09bdf5c86,Putting Out a HIT: Crowdsourcing Malware Installs,"Putting Out a HIT: Crowdsourcing Malware Installs
Chris Kanich
UC San Diego
Stephen Checkoway
UC San Diego
Keaton Mowery
UC San Diego"
82f6cc54ddb4df9fae811467bdf25f25985c7e2f,CNN features are also great at unsupervised classification,"CNN features are also great at unsupervised
lassification
Joris Guérin∗
Arts et Métiers ParisTech
59000, Lille, France
Eric Nyiri∗
Arts et Métiers ParisTech
59000, Lille, France
Olivier Gibaru∗
Arts et Métiers ParisTech
59000, Lille, France
Stéphane Thiery∗
Arts et Métiers ParisTech
59000, Lille, France"
82752700f496d4575163b2c59a547d24eb916baf,Similarity Search on Spatio-Textual Point Sets,"Series ISSN: 2367-2005
0.5441/002/edbt.2016.31
o1, {shop,jeans}u2, o2, {football,match,stadium}u3, o3, {shop,market}u2, o5, {hurry, tube, time}u1, o4, {tube,ride}u3, o6, {thames,bridge}u3, o7, {bus,ride}spatial thresholdu2, o8, {football,derby}Figure1:STPSJoinqueryscenario.Multipleobjectsarespatiallyortextuallysimilar,butonlyusersu1andu3haveobjectswhicharemutuallysimilar.dayfrom100millionactiveusers.Useractivitiesintheseplatformsgeneratecontentthathastextualcomponent,e.g.,statusupdates,shortmessages,ortags,and,followingthewidespreadadoptionofGPSinmobiledevices,ageospatialcomponent,e.g.,geotaggedtweets,photos,andusercheck-ins.Thus,theactionsofusersaredocumentedbytheirmessagesinsocialnetworksandassuchgenerate“traces”,whichconsistofspatio-textualobjects.Ef‌f‌icientindexingandqueryingofspatio-textualdatahasreceivedalotofattentionoverthepastyears,duetothehighimportanceofsuchcontentinlocation-basedservices,suchasnearbysearchandrecommendations.Inparticu-lar,multipletypesofspatio-textualquerieshavebeenex-tensivelystudied,includingbooleanrangequeries,top-kqueries,k-nearestneighborqueries,andmorerecently,spatio-textualsimilarityjoins[11,7].Nevertheless,inexistingworks,spatio-textualentitiesaretypicallytreatedasisolatedobservations.Atypicalexamplequeryistofindnearbyrestaurantsorhotelsmatchingcertaincriteria.Theworkin[7]dealswithfindingpairsofentitiesthatarebothspatiallycloseandtextuallysimilar.Exampleusecasesarede-duplicatingPoints-of-Interestacrossdatasets,orfindingmatchingphotostakenatroughlythesameloca-tionandhavingsimilartags.Nowconsiderlookingforsimilarusersinsocialnetworks.Here,auserischaracterizedbythemessagestheygenerateand,ifavailable,respectivelocationinformation.Assuch,eachmessagecanbeconsideredaspatio-textualobject,e.g.,ageotaggedphotoortweet.Witheachuserbeingcharacter-"
8263834bbe6e986a703370810f9b963e2d25a7f7,Towards Head Motion Compensation Using Multi-Scale Convolutional Neural Networks,"Towards Head Motion Compensation Using Multi-Scale
Convolutional Neural Networks
O. Rajput1∗, N. Gessert1∗, M. Gromniak1, L. Matth¨aus2, A. Schlaefer1
Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany
eemagine Medical Imaging Solutions GmbH, Berlin, Germany
Both authors contributed equally.
Contact:"
8239a0b4cdb480c9fb913c7476f12825418b0909,People detection in RGB-D data,"People Detection in RGB-D Data
Luciano Spinello
Kai O. Arras"
8291491723d24fd242a3a93248f6475cb084999c,MobileFace: 3D Face Reconstruction with Efficient CNN Regression,"MobileFace: 3D Face Reconstruction
with Ef‌f‌icient CNN Regression
Nikolai Chinaev1, Alexander Chigorin1, and Ivan Laptev1,2
VisionLabs, Amsterdam, The Netherlands
{n.chinaev,
Inria, WILLOW, Departement d’Informatique de l’Ecole Normale Superieure, PSL
Research University, ENS/INRIA/CNRS UMR 8548, Paris, France"
823f4300ddf64a95324db89035946638ecb02aa0,MX-LSTM: mixing tracklets and vislets to jointly forecast trajectories and head poses,"MX-LSTM: mixing tracklets and vislets to jointly forecast
trajectories and head poses
Irtiza Hasan1,2, Francesco Setti1, Theodore Tsesmelis1,2,3, Alessio Del Bue3,
Fabio Galasso2, and Marco Cristani1
University of Verona (UNIVR)
OSRAM GmbH
Istituto Italiano di Tecnologia (IIT)"
826c66bd182b54fea3617192a242de1e4f16d020,Action-vectors: Unsupervised movement modeling for action recognition,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
49b2545b8b9ed81cc547ec974e0b61d01b7bc759,Examplers based image fusion features for face recognition,"Examplers based  image  fusion  features for  face
recognition
Alex  Pappachen  James*1  and  Sima  Dimitrijev2
*1   Asst.  Professor  and   Group Lead, Machine Intelligence Group,  Indian  Institute  of
Information  Technology and   Management-Kerala,  India.  www.mirgroup.co.cc,
Professor  and   Deputy Director,Queensland  Micro-  and   Nanotechnology Center,  Griffith
University,   Australia,  www.gu.edu.au/qmnc"
499842b3df387b81dbb2436c764d22b1a3f42cae,Collaborative feature learning from social media,"Collaborative Feature Learning from Social Media
Chen Fang1, Hailin Jin2, Jianchao Yang3, Zhe Lin2
Department of Computer Science, Dartmouth College. 2Adobe Research. 3Snapchat.
Image feature representation plays an essential role in image recognition
nd related tasks. The current state-of-the-art feature learning paradigm
is supervised learning from labeled data [3], which surpasses other well-
known hand-crafted feature based methods [4, 5]. However, this paradigm
requires large datasets with category labels to train properly, which limits its
pplicability to new problem domains where labels are hard to obtain.
In this paper, we ask an interesting research question: Are category-level
labels the only way for data driven feature learning?
There is a surge of social media websites in the last ten years. Most
social media websites such as Pinterest have been collecting content data
that the users share as well as behavior data of the users. User behavior
data are the activities of individual users, such as likes, comments, or view
histories and they carry rich information about corresponding content data.
For instance, two photos of a similar style on Pinterest tend to be pinned by
the same user. If we aggregate the user behavior data across many users, we
may recover interesting properties of the content. For instance, the photos
liked by a group of users of similar interests tend to have very similar styles."
4941f92222d660f9b60791ba95796e51a7157077,Conditional CycleGAN for Attribute Guided Face Image Generation,"Conditional CycleGAN for Attribute Guided
Face Image Generation
Yongyi Lu
HKUST
Yu-Wing Tai
Tencent
Chi-Keung Tang
HKUST"
49004f22a420e0897f7b811239c1e098b0c655bf,Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering,"Out of the Box: Reasoning with Graph Convolution
Nets for Factual Visual Question Answering
Medhini Narasimhan, Svetlana Lazebnik, Alexander G. Schwing
University of Illinois Urbana-Champaign
{medhini2, slazebni,"
4919663c62174a9bc0cc7f60da8f96974b397ad2,Human age estimation using enhanced bio-inspired features (EBIF),"HUMAN AGE ESTIMATION USING ENHANCED BIO-INSPIRED FEATURES (EBIF)
Mohamed Y.El Dib and Motaz El-Saban
Faculty of Computers and Information, Cairo University, Cairo, Egypt"
492f3def325296164cd32b80d19a591b72b480cd,Metric Learning,"Computer Vision Group
Metric Learning
Technical University of Munich
Department of Informatics
Computer Vision Group
June 9, 2017
M.Sc. John Chiotellis: Metric Learning
/ 46"
4967b0acc50995aa4b28e576c404dc85fefb0601,An Automatic Face Detection and Gender Classification from Color Images using Support Vector Machine,"Vol. 4, No. 1 Jan 2013                                                                                                 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences
©2009-2013 CIS Journal. All rights reserved.
An Automatic Face Detection and Gender Classification from
http://www.cisjournal.org
Color Images using Support Vector Machine
Md. Hafizur Rahman, 2 Suman Chowdhury, 3 Md. Abul Bashar
, 2, 3 Department of Electrical & Electronic Engineering, International
University of Business Agriculture and Technology, Dhaka-1230, Bangladesh"
4913477a16c8354f032546b1444728c592823586,Web Image Retrieval Search Engine based on Semantically Shared Annotation,"Web Image Retrieval Search Engine based on Semantically
Shared Annotation
Alaa Riad1, Hamdy Elminir2 and Sameh Abd-Elghany3
Vice dean of Students Affair, Faculty of Computers and Information Sciences, Mansoura University
Mansoura, Egypt
Mansoura, Egypt
Mansoura, Egypt
Head of Electronic and Communication Dept, Misr Higher Institute of Engineering and Technology
Faculty of Computers and Information Sciences, Mansoura University"
4914f51bc2f5a35c0d15924e39a51975c53f9753,A 3D Feature Descriptor Recovered from a Single 2D Palmprint Image,"A 3D Feature Descriptor Recovered from a
Single 2D Palmprint Image
Qian Zheng1,2, Ajay Kumar1, and Gang Pan2"
4972aadcce369a8c0029e6dc2f288dfd0241e144,Multi-target Unsupervised Domain Adaptation without Exactly Shared Categories,"Multi-target Unsupervised Domain Adaptation
without Exactly Shared Categories
Huanhuan Yu, Menglei Hu and Songcan Chen"
49d4cb2e1788552a04c7f8fec33fbfabb3882995,Visually-Enabled Active Deep Learning for (Geo) Text and Image Classification: A Review,"Article
Visually-Enabled Active Deep Learning for
(Geo) Text and Image Classification: A Review
Liping Yang 1,*, Alan M. MacEachren 1,* ID , Prasenjit Mitra 2 and Teresa Onorati 3
Department of Geography and Institute for CyberScience, The Pennsylvania State University,
University Park, PA 16802, USA
College of Information Sciences and Technology, The Pennsylvania State University, University Park,
PA 16802, USA;
Computer Science Department, Universidad Carlos III de Madrid, 28911-Leganés, Madrid, Spain;
* Correspondence: (L.Y.); (A.M.M.)
Received: 29 December 2017; Accepted: 17 February 2018; Published: 20 February 2018"
494c1630c93e74aca3169ae33734f2f733c95e05,The Iris Challenge Evaluation 2005,"The Iris Challenge Evaluation 2005
P. Jonathon Phillips, Kevin W. Bowyer, Patrick J. Flynn, Xiaomei Liu, W. Todd Scruggs"
49f22f29e57f5867b47348555136844ffa6c6603,Beyond Lesion-Based Diabetic Retinopathy: A Direct Approach for Referral,"JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012
Beyond Lesion-based Diabetic Retinopathy:
Direct Approach for Referral
Ramon Pires, Member, IEEE, Sandra Avila, Member, IEEE, Herbert F. Jelinek, Member, IEEE,
Jacques Wainer, Eduardo Valle, and Anderson Rocha, Senior Member, IEEE"
49e85869fa2cbb31e2fd761951d0cdfa741d95f3,Adaptive Manifold Learning,"Adaptive Manifold Learning
Zhenyue Zhang, Jing Wang, and Hongyuan Zha"
490a217a4e9a30563f3a4442a7d04f0ea34442c8,An SOM-based Automatic Facial Expression Recognition System,"International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.2, No.4, August 2013
An SOM-based Automatic Facial Expression
Recognition System
Mu-Chun Su1, Chun-Kai Yang1, Shih-Chieh Lin1,De-Yuan Huang1, Yi-Zeng
Hsieh1, andPa-Chun Wang2
Department of Computer Science &InformationEngineering,National Central
University,Taiwan, R.O.C.
Cathay General Hospital, Taiwan, R.O.C.
E-mail:"
4987ac5638e1fdb116cc76626465f166998d7536,Polysemous Codes,"Polysemous codes
Matthijs Douze, Herv´e J´egou and Florent Perronnin
Facebook AI Research"
494e736c05ddf500830e9c51b5fb42be9b9bff1a,Learning Depth from Monocular Videos using Direct Methods,
49a7949fabcdf01bbae1c2eb38946ee99f491857,A concatenating framework of shortcut convolutional neural networks,"A CONCATENATING FRAMEWORK OF SHORTCUT
CONVOLUTIONAL NEURAL NETWORKS
Yujian Li Ting Zhang, Zhaoying Liu, Haihe Hu"
49b3f6d8712c01f315686b6b8541eda8c5ee428a,Virtual friend or threat? The effects of facial expression and gaze interaction on psychophysiological responses and emotional experience.,"Copyright r 2009 Society for Psychophysiological Research
DOI: 10.1111/j.1469-8986.2009.00831.x
Virtual friend or threat? The effects of facial expression
nd gaze interaction on psychophysiological responses
nd emotional experience
FRANZISKA SCHRAMMEL,a SEBASTIAN PANNASCH,a SVEN-THOMAS GRAUPNER,a
ANDREAS MOJZISCH,b and BORIS M. VELICHKOVSKYa
Institute for Psychology III, Technische Universitaet Dresden, Germany
Institute for Psychology, Georg-August-University Goettingen, Germany"
49957368eceaa751c0b9c49251512ca6a8800cff,Accurate Object Localization with Shape Masks,"Accurate Object Localization with Shape Masks
Marcin Marsza(cid:7)ek
Cordelia Schmid
INRIA, LEAR - LJK
665 av de l’Europe, 38330 Montbonnot, France"
499343a2fd9421dca608d206e25e53be84489f44,Face Recognition with Name Using Local Weber‟s Law Descriptor,"Anil Kumar.C, et.al, International Journal of Technology and Engineering Science [IJTES]TM
Volume 1[9], pp: 1371-1375, December 2013
Face Recognition with Name Using Local Weber‟s
Law Descriptor
C.Anil kumar,2A.Rajani,3I.Suneetha
M.Tech Student,2Assistant Professor,3Associate Professor
Department of ECE, Annamacharya Institute of Technology and Sciences, Tirupati, India-517520
on  FERET"
490fa9ee39614e1ef1d74162e698e4a1f0e5f916,In Good Shape: Robust People Detection based on Appearance and Shape,"PISHCHULIN et al.: PEOPLE DETECTION USING APPEARANCE AND SHAPE
In Good Shape: Robust People Detection
ased on Appearance and Shape
Computer Vision and
Multimodal Computing
MPI Informatics
Saarbrücken, Germany
Leonid Pishchulin
Arjun Jain
Christian Wojek
Thorsten Thormählen
Bernt Schiele"
498fd231d7983433dac37f3c97fb1eafcf065268,Linear Disentangled Representation Learning for Facial Actions,"LINEAR DISENTANGLED REPRESENTATION LEARNING FOR FACIAL ACTIONS
Xiang Xiang1 and Trac D. Tran2
Dept. of Computer Science
Dept. of Electrical & Computer Engineering
Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
Fig. 1. The separability of the neutral face yn and expression
omponent ye. We find yn is better for identity recognition
than y and ye is better for expression recognition than y."
49e1aa3ecda55465641b2c2acc6583b32f3f1fc6,Support Vector Machine for age classification,"International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5, May 2012)
Support Vector Machine for age classification
Sangeeta Agrawal1, Rohit Raja2, Sonu Agrawal3
Assistant Professor, CSE, RSR RCET, Kohka Bhilai
,3 Sr. Assistant Professor, CSE, SSCET, Junwani Bhilai"
491cf4d86ed895000a35ba96f46261984c0bdf7c,Facial Expression Recognition for Domestic Service Robots,"Facial Expression Recognition for Domestic
Service Robots
Geovanny Giorgana and Paul G. Ploeger
Bonn-Rhein-Sieg University of Applied Sciences,
Grantham-Allee 20 53757 Sankt Augustin, Germany"
490a0b6ff5b982e884622bb9c81250f05c069f32,Template Aging in 3 D and 2 D Face Recognition,"Template Aging in 3D and 2D Face Recognition
Ishan Manjani∗
Hakki Sumerkan†
Patrick J. Flynn†
Kevin W. Bowyer†"
4991dcef497ddd7ea115663985a9e0635494a95d,Detecting Group Activities With Multi-Camera Context,"Detecting Group Activities With
Multi-Camera Context
Zheng-Jun Zha, Member, IEEE, Hanwang Zhang, Meng Wang, Member, IEEE, Huanbo Luan, and Tat-Seng Chua"
49d7fd8975413fb2912e111093749733712210dd,Vpliv kakovosti vhodnih slik na zanesljivost samodejnega razpoznavanja obrazov,"Elektrotehniški vestnik 74(3): 145-150, 2007
Electrotechnical Review: Ljubljana, Slovenija
Vpliv kakovosti vhodnih slik na zanesljivost samodejnega
razpoznavanja obrazov
Vitomir Štruc, Nikola Paveši(cid:29)
Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržaška 25, 1001 Ljubljana, Slovenija
E-pošta:
Povzetek.  Zanesljivost  samodejnega  razpoznavanja  obrazov  je  odvisna  od  številnih  dejavnikov,  med  katerimi  so
najpomembnejši  natan(cid:24)nost  dolo(cid:24)itve  slikovnega  obmo(cid:24)ja  obraza  in  njegova  odpornost  na  slabšo  kakovost  slik,
izbira ustreznega postopka izpeljave obraznih zna(cid:24)ilk ter  uporaba primernega algoritma za izra(cid:24)un podobnosti in
sprejetje  odlo(cid:24)itve  o  identiteti  osebe.  V  (cid:24)lanku  predstavljamo  rezultate  vrednotenja  napak,  ki  jih  v  biometri(cid:24)ni
sistem  vnašajo  razli(cid:24)ne  degradacije  vhodnih  slik.  Njihov  vpliv  smo  prou(cid:24)ili  za  tri  na  podro(cid:24)ju  razpoznavanja
obrazov  pogosteje  uporabljene  postopke  izpeljave  zna(cid:24)ilk  (analizo  glavnih  komponent  –  PCA,  analizo  linearne
diskriminante  –  LDA  ter  analizo  neodvisnih  komponent  –  ICA),  pri  (cid:24)emer  smo  za  dolo(cid:24)itev  zanesljivosti
razpoznavanja (verifikacije) uporabili bazo XM2VTS; za ovrednotenje napak, ki jih v biometri(cid:24)ni sistem vnašajo
spremembe v kakovosti slik, pa njene degradirane razli(cid:24)ice.
Klju ne  besede:  razpoznavanje  obrazov,  analiza  glavnih  komponent,  analiza  linearne  diskriminante,  analiza
neodvisnih komponent, zanesljivost razpoznavanja, kakovost vhodnih slik
Impact of image degradations on the face recognition accuracy"
49df381ea2a1e7f4059346311f1f9f45dd997164,Client-Specific Anomaly Detection for Face Presentation Attack Detection,"On the Use of Client-Specific Information for Face
Presentation Attack Detection Based on Anomaly
Detection
Shervin Rahimzadeh Arashloo and Josef Kittler,"
496074fcbeefd88664b7bd945012ca22615d812e,Driver Distraction Using Visual-Based Sensors and Algorithms,"Review
Driver Distraction Using Visual-Based Sensors
nd Algorithms
Alberto Fernández 1,*, Rubén Usamentiaga 2, Juan Luis Carús 1 and Rubén Casado 2
Grupo TSK, Technological Scientific Park of Gijón, 33203 Gijón, Asturias, Spain;
Department of Computer Science and Engineering, University of Oviedo, Campus de Viesques, 33204 Gijón,
Asturias, Spain; (R.U.); (R.C.)
* Corrospondence: Tel.: +34-984-29-12-12; Fax: +34-984-39-06-12
Academic Editor: Gonzalo Pajares Martinsanz
Received: 14 July 2016; Accepted: 24 October 2016; Published: 28 October 2016"
40205181ed1406a6f101c5e38c5b4b9b583d06bc,Using Context to Recognize People in Consumer Images,"Using Context to Recognize People in Consumer Images
Andrew C. Gallagher and Tsuhan Chen"
40dab43abef32deaf875c2652133ea1e2c089223,Facial Communicative Signals: valence recognition in task-oriented human-robot Interaction,"Noname manuscript No.
(will be inserted by the editor)
Facial Communicative Signals
Valence Recognition in Task-Oriented Human-Robot Interaction
Christian Lang · Sven Wachsmuth · Marc Hanheide · Heiko Wersing
Received: date / Accepted: date"
403b3d0594989629c95e5bc5230d4ccb1691f255,Automatic detection of pain from spontaneous facial expressions,"Meawad, F., Yang, S.-Y. and Loy, F. L. (2017) Automatic Detection of
Pain from Spontaneous Facial Expressions. In: 19th ACM International
Conference on Multimodal Interaction (ICMI 2017), Glasgow, Scotland,
3-17 Nov 2017, pp. 397-401. ISBN 9781450355438
(doi:10.1145/3136755.3136794)
This is the author’s final accepted version.
There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
http://eprints.gla.ac.uk/151491/
Deposited on: 22 December 2017
Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk"
40ce2567ccc2552287f8a1c25e9f6086efa6bf8f,Identification and evaluation of children with autism spectrum disorders.,"CLINICAL REPORT
Identification and Evaluation of
Children With Autism Spectrum
Disorders
Chris Plauche´ Johnson, MD, MEd, Scott M. Myers, MD, and the Council on Children With Disabilities
Guidance for the Clinician in Rendering
Pediatric Care"
40b0fced8bc45f548ca7f79922e62478d2043220,Do Convnets Learn Correspondence?,"Do Convnets Learn Correspondence?
Trevor Darrell
Jonathan Long
{jonlong, nzhang,
University of California – Berkeley
Ning Zhang"
405b43f4a52f70336ac1db36d5fa654600e9e643,What can we learn about CNNs from a large scale controlled object dataset?,"What can we learn about CNNs from a large scale controlled object dataset?
Ali Borji
Saeed Izadi
Laurent Itti"
40b86ce698be51e36884edcc8937998979cd02ec,Finding Faces in News Photos Using Both Face and Name Information,"Yüz ve İsim İlişkisi kullanarak Haberlerdeki Kişilerin Bulunması
Finding Faces in News Photos Using Both Face and Name Information
Derya Ozkan, Pınar Duygulu
Bilgisayar Mühendisliği Bölümü, Bilkent Üniversitesi, 06800, Ankara
Özetçe
Bu  çalışmada,  haber  fotoğraflarından  oluşan  geniş  veri
kümelerinde  kişilerin  sorgulanmasını  sağlayan  bir  yöntem
sunulmuştur.  Yöntem  isim  ve  yüzlerin  ilişkilendirilmesine
dayanmaktadır.  Haber  başlığında  kişinin  ismi  geçiyor  ise
fotoğrafta da o kişinin yüzünün bulunacağı  varsayımıyla, ilk
olarak  sorgulanan  isim  ile  ilişkilendirilmiş,  fotoğraflardaki
tüm yüzler seçilir. Bu yüzler arasında sorgu kişisine ait farklı
koşul,  poz  ve  zamanlarda  çekilmiş  pek  çok  resmin  yanında,
haberde ismi geçen başka kişilere ait yüzler ya da kullanılan
yüz  bulma  yönteminin  hatasından  kaynaklanan  yüz  olmayan
resimler de bulunabilir. Yine de, çoğu  zaman, sorgu kişisine
it resimler daha çok olup, bu resimler birbirine diğerlerine
olduğundan  daha  çok  benzeyeceklerdir.  Bu  nedenle,  yüzler
rasındaki  benzerlikler  çizgesel  olarak  betimlendiğinde  ,
irbirine en çok benzeyen yüzler bu çizgede en yoğun bileşen"
40a0e080a01094cdb2174e9154540c217d3f9440,Improved Security Aspects on Microsofts Two -layer Captcha,"Vol-2 Issue-5 2017
IJARIIE-ISSN(O)-2395-4396
IMPROVED SECURITY ASPECTS ON
MICROSOFTS
TWO -LAYER CAPTCHA
Rachana.B.S, Dhruthi.S, Swarna.R, Chandan.A
Rachana.B.S, Asst.Prof, ISE, APSCE, B’lore, Karnataka, INDIA
Dhruthi S, Student, ISE,, APSCE, Karnataka, India
Swarna R, Student, ISE, APSCE, Karnataka, India
Chandana A, Student, ISE, APSCE, Karnataka, India"
404c7839afe2fec48a06f83d2a532c05ad8ba0d3,Vehicle Classification using Transferable Deep Neural Network Features,"Vehicle Classification using Transferable Deep
Neural Network Features
Yiren Zhou, Ngai-Man Cheung"
40041b80cef6dc23946ffa9628b6ac3b8dcc971a,Parallel Separable 3D Convolution for Video and Volumetric Data Understanding,"GONDA, WEI, PARAG, PFISTER: PARALLEL SEPARABLE 3D CONVOLUTION
Parallel Separable 3D Convolution for Video
nd Volumetric Data Understanding
Harvard John A. Paulson School of
Engineering and Applied Sciences
Camabridge MA, USA
Felix Gonda
Donglai Wei
Toufiq Parag
Hanspeter Pfister"
40f7ea135907d2f4abeae0475d9a88477239d504,Multimodal Explanations: Justifying Decisions and Pointing to the Evidence,"Multimodal Explanations: Justifying Decisions and Pointing to the Evidence
Dong Huk Park1, Lisa Anne Hendricks1, Zeynep Akata2,3, Anna Rohrbach1,3,
Bernt Schiele3, Trevor Darrell1, and Marcus Rohrbach4
EECS, UC Berkeley, 2University of Amsterdam, 3MPI for Informatics, 4Facebook AI Research"
402f6db00251a15d1d92507887b17e1c50feebca,3D Facial Action Units Recognition for Emotional Expression,"D Facial Action Units Recognition for Emotional
Expression
Norhaida Hussain1, Hamimah Ujir, Irwandi Hipiny and Jacey-Lynn Minoi2
Department of Information Technology and Communication, Politeknik Kuching, Sarawak, Malaysia
Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
The  muscular  activities  caused  the  activation  of  certain  AUs  for  every  facial  expression  at  the  certain  duration  of  time
throughout the facial expression. This paper presents the methods to recognise facial Action Unit (AU) using facial distance
of the facial features which activates the muscles. The seven facial action units involved are AU1, AU4, AU6, AU12, AU15,
AU17 and AU25 that characterises happy and sad expression. The recognition is performed on each AU according to rules
defined based on the distance of each facial points. The facial distances chosen are extracted from twelve facial features.
Then the facial distances are trained using Support Vector Machine (SVM) and Neural Network (NN). Classification result
using SVM is presented with several different SVM kernels while result using NN is presented for each training, validation
nd testing phase.
Keywords: Facial action units recognition, 3D AU recognition, facial expression"
40932ccdd7cda22e90c1e16b4a4dc4930b122a9c,Learning to Look around Objects for Top-View Representations of Outdoor Scenes,"Learning to Look around Objects for Top-View
Representations of Outdoor Scenes
Samuel Schulter1,† Menghua Zhai2,†
Nathan Jacobs2
Manmohan Chandraker1,3
NEC-Labs1, Computer Science University of Kentucky2, UC San Diego3"
4053e3423fb70ad9140ca89351df49675197196a,Robust Face Detection Using the Hausdorff Distance,"(cid:13) In Proc. Third International Conference on Audio- and Video-based
Biometric Person Authentication, Springer, Lecture Notes in Computer
Science, LNCS-2091, pp. 90–95, Halmstad, Sweden, 6–8 June 2001.
Robust Face Detection
Using the Hausdorff Distance
Oliver Jesorsky, Klaus J. Kirchberg, and Robert W. Frischholz
BioID AG, Berlin, Germany
WWW home page: http://www.bioid.com"
409220cf5137d6dc6c85f440d618e44d244f402e,Randomized Algorithms for Large-scale Strongly Over-determined Linear Regression Problems a Dissertation Submitted to the Institute for Computational and Mathematical Engineering and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree Of,"RANDOMIZED ALGORITHMS FOR LARGE-SCALE STRONGLY
OVER-DETERMINED LINEAR REGRESSION PROBLEMS
A DISSERTATION
SUBMITTED TO THE INSTITUTE FOR
COMPUTATIONAL AND MATHEMATICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Xiangrui Meng
June 2014"
406caefc7f51e8a16833402e4757704d5d84a1f8,Dual-Tree Complex Wavelets Transform Based Facial Expression Recognition using Principal Component Analysis ( PCA ) and Local Binary Pattern ( LBP ),"ISSN XXXX XXXX © 2017 IJESC
Research Article                                                                                                                              Volume 7 Issue No.4
Dual-Tree Complex Wavelets Transform Based Facial Expression
Recognition using Principal Component Analysis (PCA) and Local
Binary Pattern(LBP)
Fahad Abdu Jibrin1, Abubakar Sadiq Muhammad2
Department of Electrical Engineering1, Department of Computer Engineering2
School of Technology, Kano State Polytechnic, Nigeria"
40d4fab85e2e1557e61d03b92429d64c6efba101,Detection-based multi-human tracking using a CRF model,"Detection-Based Multi-Human Tracking Using a CRF Model
Alexandre Heili1,2
Jean-Marc Odobez1,2
Idiap Research Institute – CH-1920 Martigny, Switzerland
Cheng Chen1
´Ecole Polytechnique F´ed´erale de Lausanne – CH-1015, Lausanne, Switzerland"
40000b058cf80b7983a2c0f96562368a40a04580,Predicting human mobility through the assimilation of social media traces into mobility models,"Predicting human mobility through the assimilation of social media
traces into mobility models
Mariano G. Beir´o1
Andr´e Panisson1
Michele Tizzoni1
Ciro Cattuto1
ISI Foundation, Turin, Italy"
40fb4e8932fb6a8fef0dddfdda57a3e142c3e823,A mixed generative-discriminative framework for pedestrian classification,"A Mixed Generative-Discriminative Framework for Pedestrian Classification
Markus Enzweiler1
Dariu M. Gavrila2,3
Image & Pattern Analysis Group, Dept. of Math. and Comp. Sc., Univ. of Heidelberg, Germany
Environment Perception, Group Research, Daimler AG, Ulm, Germany
Intelligent Systems Lab, Faculty of Science, Univ. of Amsterdam, The Netherlands"
40f5ae73e598114edab3ddaefc38fbdbf5c114b9,Optical Flow Based Face Recognition under Expression Variations,"International Journal of Information Science and Intelligent System,      3(2): 1-12,          2014
Optical Flow Based Face Recognition under
Expression Variations
Vimala K1,∗, Dr.V.Kalaivani2, V.Anusuya Devi3
1Assistant Professor, Department of CSE(PG),National Engineering College , Kovilpatti, India
2  Associate Professor(SG) and Head, Department of CSE(PG),National Engineering College India ,
Assistant Professor, Department of CSE(PG),National Engineering College, Kovilpatti, India"
409ff083816d8357fe839e3ea0e62d648a5532aa,SEMDIAL 2016 JerSem Proceedings of the 20th Workshop on the Semantics and Pragmatics of Dialogue,"SEMDIAL 2016
JerSem
Proceedings of the 20th Workshop on
the Semantics and Pragmatics of Dialogue
Julie Hunter, Mandy Simons, and Matthew Stone (eds.)
New Brunswick, NJ, 16–18 July 2016"
40dd2b9aace337467c6e1e269d0cb813442313d7,Localizing spatially and temporally objects and actions in videos. (Localiser spatio-temporallement des objets et des actions dans des vidéos),"This thesis has been submitted in fulfilment of the requirements for a postgraduate degree
(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
terms and conditions of use:
This work is protected by copyright and other intellectual property rights, which are
retained by the thesis author, unless otherwise stated.
A copy can be downloaded for personal non-commercial research or study, without
prior permission or charge.
This thesis cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author.
The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author.
When referring to this work, full bibliographic details including the author, title,
warding institution and date of the thesis must be given."
40536b0cc73fda29a335c6ecf9ce891dcb6d04cd,Face Detection Algorithms: A Comparative Study,"Face Detection Algorithms: A Comparative Study
Kapil Kumar Gupta1, M. Rizwan Beg 2 , Jitendra Kumar Niranjan3
1 Department of Computer Science & Engg., Integral University,
Lucknow, Uttar Pradesh, 226001, India
Department of Computer Science & Engg., Integral University,
Lucknow, Uttar Pradesh, 226001, India
Department of Computer Science & Engg, IMS Engineering College
Ghaziabad, Uttar Pradesh 201009, India"
405a70c184e00eefcf797a0e842578ea0b51f6cd,Learning a Family of Detectors via Multiplicative Kernels,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Learning a Family of Detectors
via Multiplicative Kernels
Quan Yuan, Member, IEEE, Ashwin Thangali, Student Member, IEEE,
Vitaly Ablavsky, Student Member, IEEE, and Stan Sclaroff, Senior Member, IEEE"
40c3b350008ada8f3f53a758e69992b6db8a8f95,Discriminative Decorrelation for Clustering and Classification,"Discriminative Decorrelation for Clustering and
Classification￿
Bharath Hariharan1, Jitendra Malik1, and Deva Ramanan2
Univerisity of California at Berkeley, Berkeley, CA, USA
University of California at Irvine, Irvine, CA, USA"
40b87d3b1e3dbbc82fb7d786004fe202e131c045,Multi-modal Egocentric Activity Recognition using Audio-Visual Features,"Submitted to IEEE Transactions on Human-Machine Systems
Multi-modal Egocentric Activity Recognition
using Audio-Visual Features
Mehmet Ali Arabacı, Fatih Özkan, Elif Surer, Peter Jančovič, Alptekin Temizel"
40229a034d2fcddc3df32f906ec4ef6a3b3e017e,A semi-automated system for accurate gaze coding in natural dyadic interactions,"A Semi-Automated System for Accurate Gaze Coding
in Natural Dyadic Interactions
Kenneth A. Funes-Mora, Laurent Nguyen, Daniel Gatica-Perez, Jean-Marc Odobez
Idiap Research Institute and École Polytechnique Fédérale de Lausanne (EPFL), Switzerland"
40a34d4eea5e32dfbcef420ffe2ce7c1ee0f23cd,Bridging Heterogeneous Domains With Parallel Transport For Vision and Multimedia Applications,"Bridging Heterogeneous Domains With Parallel Transport For Vision and
Multimedia Applications
Raghuraman Gopalan
Dept. of Video and Multimedia Technologies Research
AT&T Labs-Research
San Francisco, CA 94108"
40389b941a6901c190fb74e95dc170166fd7639d,Automatic Facial Expression Recognition,"Automatic Facial Expression Recognition
Jacob Whitehill, Marian Stewart Bartlett, and Javier R. Movellan
Emotient
http://emotient.com
February 12, 2014
Imago animi vultus est, indices oculi. (Cicero)
Introduction
The face is innervated by two different brain systems that compete for control of its muscles:
cortical brain system related to voluntary and controllable behavior, and a sub-cortical
system responsible for involuntary expressions. The interplay between these two systems
generates a wealth of information that humans constantly use to read the emotions, inten-
tions, and interests [25] of others.
Given the critical role that facial expressions play in our daily life, technologies that can
interpret and respond to facial expressions automatically are likely to find a wide range of
pplications. For example, in pharmacology, the effect of new anti-depression drugs could
e assessed more accurately based on daily records of the patients’ facial expressions than
sking the patients to fill out a questionnaire, as it is currently done [7]. Facial expression
recognition may enable a new generation of teaching systems to adapt to the expression
of their students in the way good teachers do [61]. Expression recognition could be used
to assess the fatigue of drivers and air-pilots [58, 59]. Daily-life robots with automatic"
401f056e1017151018e83d2b13b5eaec573b4dbc,Rapid and accurate face depth estimation in passive stereo systems,"Noname manuscript No.
(will be inserted by the editor)
Rapid and accurate face depth estimation in passive
stereo systems
Amel AISSAOUI · Jean MARTINET ·
Chaabane DJERABA
Received: date / Accepted: date"
40010e1918e1f342b14c8ec74e570101f07471b2,Flower Categorization using Deep Convolutional Neural Networks,"Flower Categorization using Deep Convolutional Neural Networks
Ayesha Gurnani
Viraj Mavani
Vandit Gajjar
Yash Khandhediya
L. D. College of Engineering
L. D. College of Engineering
L. D. College of Engineering
L. D. College of Engineering"
40a63746a710baf4a694fd5a4dd8b5a3d9fc2846,Invertible Conditional GANs for image editing,"Invertible Conditional GANs for image editing
Guim Perarnau, Joost van de Weijer, Bogdan Raducanu
Computer Vision Center
Barcelona, Spain
Jose M. Álvarez
Data61 CSIRO
Canberra, Australia"
40377a1bc15a9ec28ea54cc53d5cf0699365634f,Некооперативная Биометрическая Идентификация По 3d- Моделям Лица С Использованием Видеокамер Высокого Разрешения,"НЕКООПЕРАТИВНАЯ БИОМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ ПО 3D-
МОДЕЛЯМ ЛИЦА С ИСПОЛЬЗОВАНИЕМ ВИДЕОКАМЕР ВЫСОКОГО
РАЗРЕШЕНИЯ
А.И. Манолов,  А.Ю. Соколов,  О.В. Степаненко, А.C. Тумачек, А.В.Тяхт, А. К. Цискаридзе,
Д.Н. Заварикин, А.А. Кадейшвили,
Компания Vocord
Аннотация
Получены результаты по распознаванию лиц, основанные
на   3D  реконструкции   без   использования   какой-либо
структурированной подсветки. 3D реконструкция основана
на   использовании   камер   высокого   разрешения.
Вероятность распознавания составляет 92-98%.
Ключевые   слова:   3D  реконструкция,   3D  распознавание
. ВВЕДЕНИЕ
Системам распознавания лиц, основанным на двумерных
изображениях,  присущи  определенные  недостатки. Такие
системы   чувствительны   к   изменениям   яркости.   Свет,
собранный   с   лица,   является   функцией   геометрии   лица,
отражательной   способности   лица,   свойствами   источника
света и свойствами камеры. С учетом этого, сложно создать"
40b10e330a5511a6a45f42c8b86da222504c717f,Implementing the Viola-Jones Face Detection Algorithm,"Implementing the Viola-Jones
Face Detection Algorithm
Ole Helvig Jensen
Kongens Lyngby 2008
IMM-M.Sc.-2008-93"
400aa5cb2fec558f7827c3638993bae34752ff31,Assessing post-detection filters for a generic pedestrian detector in a tracking-by-detection scheme,"(cid:13)2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.
Assessing Post-Detection Filters for a Generic Pedestrian Detector in a
Tracking-By-Detection Scheme
Volker Eiselein, Erik Bochinski and Thomas Sikora
Communication Systems Group, Technische Universit¨at Berlin"
40ca925befa1f7e039f0cd40d57dbef6007b4416,Sampling Matters in Deep Embedding Learning,"Sampling Matters in Deep Embedding Learning
Chao-Yuan Wu∗
UT Austin
R. Manmatha
A9/Amazon
Alexander J. Smola
Amazon
Philipp Kr¨ahenb¨uhl
UT Austin"
4026dc62475d2ff2876557fc2b0445be898cd380,An Affective User Interface Based on Facial Expression Recognition and Eye-Gaze Tracking,"An Affective User Interface Based on Facial Expression
Recognition and Eye-Gaze Tracking
Soo-Mi Choi and Yong-Guk Kim
School of Computer Engineering, Sejong University, Seoul, Korea"
40f2b3af6b55efae7992996bd0c474a9c1574008,xytocin Increases Retention of Social Cognition n Autism,"ARTICLE  IN  PRESS
Oxytocin Increases Retention of Social Cognition
in Autism
Eric Hollander, Jennifer Bartz, William Chaplin, Ann Phillips, Jennifer Sumner, Latha Soorya,
Evdokia Anagnostou, and Stacey Wasserman
Background: Oxytocin dysfunction might contribute to the development of social deficits in autism, a core symptom domain and
potential target for intervention. This study explored the effect of intravenous oxytocin administration on the retention of social
information in autism.
Methods: Oxytocin and placebo challenges were administered to 15 adult subjects diagnosed with autism or Asperger’s disorder, and
omprehension of affective speech (happy, indifferent, angry, and sad) in neutral content sentences was tested.
Results: All subjects showed improvements in affective speech comprehension from pre- to post-infusion; however, whereas those who
received placebo first tended to revert to baseline after a delay, those who received oxytocin first retained the ability to accurately assign
emotional significance to speech intonation on the speech comprehension task.
Conclusions: These results are consistent with studies linking oxytocin to social recognition in rodents as well as studies linking
oxytocin to prosocial behavior in humans and suggest that oxytocin might facilitate social information processing in those with autism.
These findings also provide preliminary support for the use of oxytocin in the treatment of autism.
Key Words: Autism, oxytocin, neuropeptide, social cognition,
ffective speech
A utism is a developmental disorder characterized by ab-
normalities in speech and communication, impaired so-"
40f127fa4459a69a9a21884ee93d286e99b54c5f,Optimizing Apparent Display Resolution Enhancement for Arbitrary Videos,"Optimizing Apparent Display Resolution
Enhancement for Arbitrary Videos
Michael Stengel*, Member, IEEE, Martin Eisemann, Stephan Wenger,
Benjamin Hell, Marcus Magnor, Member, IEEE"
401e6b9ada571603b67377b336786801f5b54eee,Active Image Clustering: Seeking Constraints from Humans to Complement Algorithms,"Active Image Clustering: Seeking Constraints from
Humans to Complement Algorithms
November 22, 2011"
40248cd4a742cb33c14e835fe6b847ad3f8d5b96,Learning View-Specific Deep Networks for Person Re-Identification,"Learning View-Specific Deep Networks for Person
Re-Identification
Zhanxiang Feng, Jianhuang Lai, and Xiaohua Xie"
403e7fed4fa1785af8309b1c4c736d98fa75be5b,Social status gates social attention in monkeys,"Magazine
Social status
gates social
ttention in
monkeys
Stephen V. Shepherd1,
Robert O. Deaner1 and
Michael L. Platt1,2,3
Humans rapidly shift attention in
the direction other individuals are
looking, following gaze in a
manner suggestive of an
obligatory social reflex [1–4].
Monkeys’ attention also follows
gaze, and the similar magnitude
nd time-course of gaze-
following in rhesus macaques and
humans [5] is indicative of shared
neural mechanisms. Here we
show that low-status male rhesus"
40f6c9355dbf01a240b4c26b0fd00b5cfbd5f67d,An eye-tracking method to reveal the link between gazing patterns and pragmatic abilities in high functioning autism spectrum disorders,"ORIGINAL RESEARCH ARTICLE
published: 14 January 2015
doi: 10.3389/fnhum.2014.01067
An eye-tracking method to reveal the link between gazing
patterns and pragmatic abilities in high functioning autism
spectrum disorders
Ouriel Grynszpan 1* and Jacqueline Nadel 2
Institut des Systèmes Intelligents et de Robotique (ISIR), Université Pierre et Marie Curie, Centre National de la Recherche Scientifique, Paris, France
Centre Emotion, Hôpital de La Salpêtrière, Paris, France
Edited by:
John J. Foxe, Albert Einstein
College of Medicine, USA
Reviewed by:
Hans-Peter Frey, Albert Einstein
College of Medicine, USA
Julia Irwin, Haskins Laboratories,
Karri Gillespie-Smith, University of
West of Scotland, UK
*Correspondence:
Ouriel Grynszpan, Institut des"
40bd5d4b01c89e84fe2b0f6b1cc22657bf4e8d80,Toward Unconstrained Fingerprint Recognition: A Fully Touchless 3-D System Based on Two Views on the Move,"Toward Unconstrained Fingerprint Recognition:
Fully Touchless 3-D System
Based on Two Views on the Move
Ruggero Donida Labati, Member, IEEE, Angelo Genovese, Member, IEEE,
Vincenzo Piuri, Fellow, IEEE, and Fabio Scotti, Senior Member, IEEE"
2eef20a11324686099ee6f9b1a7613444b0d2112,Dual-Path Convolutional Image-Text Embedding with Instance Loss,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Dual-Path Convolutional Image-Text Embeddings
with Instance Loss
Zhedong Zheng, Liang Zheng, Michael Garrett, Yi Yang, Yi-Dong Shen"
2e53a5dbadfd30b834feea80c365ffff3925eb76,The role of alexithymia in reduced eye-fixation in Autism Spectrum Conditions.,"23Journal of Autism andDevelopmental Disorders ISSN 0162-3257Volume 41Number 11 J Autism Dev Disord (2011)41:1556-1564DOI 10.1007/s10803-011-1183-3The Role of Alexithymia in Reduced Eye-Fixation in Autism Spectrum ConditionsGeoffrey Bird, Clare Press & DanielC. Richardson"
2e8e6b835e5a8f55f3b0bdd7a1ff765a0b7e1b87,Pointly-Supervised Action Localization,"International Journal of Computer Vision manuscript No.
(will be inserted by the editor)
Pointly-Supervised Action Localization
Pascal Mettes · Cees G. M. Snoek
Received: date / Accepted: date"
2e10560579f2bdeae0143141f26bd9f0a195b4b7,Mixed Precision Training,"Published as a conference paper at ICLR 2018
MIXED PRECISION TRAINING
Sharan Narang∗, Gregory Diamos, Erich Elsen†
Baidu Research
{sharan,
Paulius Micikevicius∗, Jonah Alben, David Garcia, Boris Ginsburg, Michael Houston,
Oleksii Kuchaiev, Ganesh Venkatesh, Hao Wu
NVIDIA
{pauliusm, alben, dagarcia, bginsburg, mhouston,
okuchaiev, gavenkatesh,"
2eb37a3f362cffdcf5882a94a20a1212dfed25d9,Local Feature Based Face Recognition,"Local Feature Based Face Recognition
Sanjay A. Pardeshi and Sanjay N. Talbar
R.I.T., Rajaramnagar and S.G.G.S. COE &T, Nanded
India
. Introduction
A  reliable  automatic  face  recognition  (AFR)  system  is  a  need  of  time  because  in  today's
networked  world,  maintaining  the  security  of  private  information  or  physical  property  is
ecoming increasingly important and difficult as well. Most of the time criminals have been
taking  the  advantage  of  fundamental  flaws  in  the  conventional  access  control  systems  i.e.
the systems operating on credit card, ATM etc. do not grant access by ""who we are"", but by
""what  we  have”.  The  biometric  based  access  control systems  have  a  potential  to  overcome
most  of  the  deficiencies  of  conventional  access  control  systems  and  has  been  gaining  the
importance  in  recent  years.  These  systems  can  be  designed  with  biometric  traits  such  as
fingerprint,  face,  iris,  signature,  hand  geometry  etc.  But  comparison  of  different  biometric
traits shows that face is very attractive biometric because of its non-intrusiveness and social
cceptability.  It  provides  automated  methods  of  verifying  or  recognizing  the  identity  of  a
living person based on its facial characteristics.
In last decade, major advances occurred in face recognition, with many systems capable of
chieving  recognition  rates  greater  than  90%.  However  real-world  scenarios  remain  a
hallenge, because face acquisition process can undergo to a wide range of variations. Hence"
2e0481def73dbd3e6dfb447c1c3c8afdfaf9b7ec,UPC System for the 2015 MediaEval Multimodal Person Discovery in Broadcast TV task,"UPC System for the 2015 MediaEval Multimodal Person
Discovery in Broadcast TV task
M. India, D. Varas, V. Vilaplana, J.R. Morros, J. Hernando
Universitat Politecnica de Catalunya, Spain"
2e5cfa97f3ecc10ae8f54c1862433285281e6a7c,Generative Adversarial Networks for Improving Face Classification,"Generative Adversarial Networks for Improving Face Classification  JONAS NATTEN SUPERVISOR Morten Goodwin, PhD University of Agder, 2017 Faculty of Engineering and Science Department of ICT"
2e091b311ac48c18aaedbb5117e94213f1dbb529,Collaborative Facial Landmark Localization for Transferring Annotations Across Datasets,"Collaborative Facial Landmark Localization
for Transferring Annotations Across Datasets
Brandon M. Smith and Li Zhang
University of Wisconsin – Madison
http://www.cs.wisc.edu/~lizhang/projects/collab-face-landmarks/"
2e1415a814ae9abace5550e4893e13bd988c7ba1,Dictionary Based Face Recognition in Video Using Fuzzy Clustering and Fusion,"International Journal of Engineering Trends and Technology (IJETT) – Volume 21 Number 3 – March 2015
Dictionary Based Face Recognition in Video Using
Fuzzy Clustering and Fusion
Neeraja K.C.#1, RameshMarivendan E.#2,
#1IInd year M.E. Student, #2Assistant Professor
#1#2ECE Department, Dhanalakshmi Srinivasan College of Engineering,
Coimbatore,Tamilnadu,India.
Anna University."
2eefaa9c278346b9e0eb51085cff490b0a43688f,TEMPO: Feature-Endowed Teichmüller Extremal Mappings of Point Clouds,"Vol. 9, No. 4, pp. 1922–1962
(cid:13) 2016 Society for Industrial and Applied Mathematics
TEMPO: Feature-Endowed Teichm¨uller Extremal Mappings of Point Clouds∗
Ting Wei Meng† , Gary Pui-Tung Choi‡ , and Lok Ming Lui†"
2ea8029283e6bbb03c023070d042cb19647f06af,Neurobiological mechanisms associated with facial affect recognition deficits after traumatic brain injury,"Neurobiological mechanisms associated with facial affect recognition deficits after
traumatic brain injury
Dawn Neumann, PhD
Indiana University School of Medicine
Department of Physical Medicine and Rehabilitation
Rehabilitation Hospital of Indiana
141 Shore Drive
Indianapolis, IN 46254
Email:
Phone: 317-329-2188
Brenna C. McDonald, PsyD, MBA
Indiana University School of Medicine
Department of Radiology and Imaging Sciences
Indiana University Center for Neuroimaging
55 W. 16th St., GH Suite 4100
Indianapolis, IN 46202
Email:
John West, MS
Indiana University School of Medicine
Department of Radiology and Imaging Sciences"
2e68190ebda2db8fb690e378fa213319ca915cf8,Generating Videos with Scene Dynamics,"Generating Videos with Scene Dynamics
Carl Vondrick
Hamed Pirsiavash
Antonio Torralba"
2e0d56794379c436b2d1be63e71a215dd67eb2ca,Improving precision and recall of face recognition in SIPP with combination of modified mean search and LSH,"Improving precision and recall of face recognition in SIPP with combination of
modified mean search and LSH
Xihua.Li"
2ed9a69ee6509c0b3fe5a51d1116dccc877653ba,Reconstruction and Analysis of Shapes from 3D Scans,"Reconstruction and Analysis
of Shapes from 3D Scans"
2e7874ec37df91db1934d61d9e1181de5e4efb36,COCO-Stuff: Thing and Stuff Classes in Context,"COCO-Stuff: Thing and Stuff Classes in Context
Holger Caesar1
Jasper Uijlings2 Vittorio Ferrari1 2
University of Edinburgh1 Google AI Perception2"
2e585adbe1f434396ca6a669dd91914d4d4bf42a,Early Prediction for Physical Human Robot Collaboration in the Operating Room,"TO APPEAR IN AUTONOMOUS ROBOTS, SPECIAL ISSUE IN LEARNING FOR HUMAN-ROBOT COLLABORATION
Early Prediction for Physical Human Robot
Collaboration in the Operating Room
Tian Zhou, Student Member, IEEE, and Juan Wachs, Member, IEEE"
2edf55ebc88e89c4caff0c49c6b8e79f46407d19,Pruning Deep Neural Networks using Partial Least Squares,"Pruning Deep Neural Networks using Partial Least Squares
Artur Jordao, Ricardo Kloss∗, Fernando Yamada and William Robson Schwartz
Smart Sense Laboratory, Computer Science Department
Universidade Federal de Minas Gerais, Brazil
Email: {arturjordao, rbk, fernandoakio,"
2e1ff08fb5790e3b5ba7864408628467795a9df4,Human Pose Estimation with Fields of Parts,"Human Pose Estimation
with Fields of Parts
Martin Kiefel and Peter Vincent Gehler
Max Planck Institute for Intelligent Systems, T¨ubingen Germany"
2e1822bf06d80f5ad07a79a4bfff98c1c18fb573,Knowing who to listen to: Prioritizing experts from a diverse ensemble for attribute personalization,"KNOWING WHO TO LISTEN TO: PRIORITIZING EXPERTS FROM A DIVERSE
ENSEMBLE FOR ATTRIBUTE PERSONALIZATION
Shrenik Lad1, Bernardino Romera Paredes2, Julien Valentin2, Philip Torr2, Devi Parikh1
. Virginia Tech 2. University of Oxford"
2e475f1d496456831599ce86d8bbbdada8ee57ed,Groupsourcing: Team Competition Designs for Crowdsourcing,"Groupsourcing: Team Competition Designs for
Crowdsourcing
Markus Rokicki, Sergej Zerr, Stefan Siersdorfer
L3S Research Center, Hannover, Germany"
2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e,3DPeS: 3D people dataset for surveillance and forensics,"DPeS: 3D People Dataset for Surveillance and Forensics
Davide Baltieri, Roberto Vezzani, Rita Cucchiara
{davide.baltieri, roberto.vezzani, rita.cucchiara}
University of Modena and Reggio Emilia, Italy  (Dipartimento di Ingegneria dell’Informazione)
A new Dataset for People
Tracking and Reidentification
600 videos, 200 people, 8 cameras
Calibration and 3D scene reconstruction
taken
The  dataset  contains  hundreds  of  video  sequences  of
from  a  multi-camera  distributed
00  people
surveillance system over several days, with different light
onditions;  each  person  is  detected  multiple  times  and
from different points of view.
The dataset
The  starting  point  of  our  dataset  is  a  real
surveillance  setup,  composed  by  8  different
surveillance cameras, monitoring a section of the
ampus  of  the  University  of  Modena  and  Reggio"
2ef51b57c4a3743ac33e47e0dc6a40b0afcdd522,Leveraging Billions of Faces to Overcome Performance Barriers in Unconstrained Face Recognition,"Leveraging Billions of Faces to Overcome
Performance Barriers in Unconstrained Face
Recognition
Yaniv Taigman and Lior Wolf
face.com
{yaniv,"
2efc4eee3953f6b52e23989bbcc2598a91e18ba0,External Cameras and a Mobile Robot for Enhanced Multi-person Tracking,"RFAntennas2D SICKLaserFirewire Cameraon PTU        LaptopCamera 1Flea RGB Camera 2Flea RGBHubFirewireFigure1:Perceptualplatform;staticcameras(withroughpositionsandfieldsofview)andthemobilerobotRackham.Thispaperisstructuredasfollows:architectureofthecooperativesystemispresentedinsection2.Sec-tion3describesthedifferentdetectionmodalitiesthatdrivethemulti-persontracker(presentedinsection4).Evaluationsandresultsarepresentedinsection5fol-lowedbyconcludingremarksinsection6.2ARCHITECTUREOurcooperativeframeworkismadeupofamobilerobotandtwofixedviewwall-mountedRGBflea2cameras(figure1).Thecamerashaveamaximumres-olutionof640x480pixelsandareconnectedtoadual-coreIntelCentrinoLaptopviaafire-wirecable.Therobot,calledRackham,isaniRobotB21rmobileplat-form.Ithasvarioussensors,ofwhichitsSICKLaserRangeFinder(LRF)isutilizedinthiswork.Commu-nicationbetweenthemobilerobotandthecomputer"
2e956e178fd50ab140f30f9255a83d853c8be210,Robust Facial Expression Recognition via Compressive Sensing,"Sensors 2012, 12, 3747-3761; doi:10.3390/s120303747
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
Robust Facial Expression Recognition via Compressive Sensing
Shiqing Zhang 1, Xiaoming Zhao 2,* and Bicheng Lei 1
School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, China;
E-Mails: (S.Z.); (B.L.)
Department of Computer Science, Taizhou University, Taizhou 318000, China
*  Author to whom correspondence should be addressed; E-Mail:
Tel./Fax: +86-576-8513-7178.
Received: 28 December 2011; in revised form: 19 February 2012 / Accepted: 16 March 2012 /
Published: 21 March 2012"
2e082232eb37c98052e62eec76e674a491082544,Virtual Scenarios: Achievements and Current Work,"Virtual Scenarios: Achievements and Current Work
Javier Mar´ın, David V´azquez and Antonio M. L´opez
ADAS, Computer Vision Center, Universitat Autonoma de Barcelona, Spain
e-mail:{ jmarin, dvazquez, antonio"
2eae02d59a3f455f3714ce674d85d3f073c9d7a2,All in the first glance: first fixation predicts individual differences in valence bias.,"Cognition and Emotion
ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20
All in the first glance: first fixation predicts
individual differences in valence bias
Maital Neta, Tien T. Tong, Monica L. Rosen, Alex Enersen, M. Justin Kim &
Michael D. Dodd
To cite this article: Maital Neta, Tien T. Tong, Monica L. Rosen, Alex Enersen, M. Justin Kim &
Michael D. Dodd (2016): All in the first glance: first fixation predicts individual differences in
valence bias, Cognition and Emotion, DOI: 10.1080/02699931.2016.1152231
To link to this article:  http://dx.doi.org/10.1080/02699931.2016.1152231
View supplementary material
Published online: 10 Mar 2016.
Submit your article to this journal
View related articles
View Crossmark data
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=pcem20
Download by: [University of Nebraska, Lincoln]
Date: 10 March 2016, At: 09:04"
2ed4973984b254be5cba3129371506275fe8a8eb,Victoria Ovsyannikova THE EFFECTS OF MOOD ON EMOTION RECOGNITION AND ITS RELATIONSHIP WITH THE GLOBAL VS LOCAL INFORMATION PROCESSING,"Victoria Ovsyannikova
THE EFFECTS OF MOOD ON
EMOTION RECOGNITION AND
ITS RELATIONSHIP WITH THE
GLOBAL VS LOCAL
INFORMATION PROCESSING
STYLES
BASIC RESEARCH PROGRAM
WORKING PAPERS
SERIES: PSYCHOLOGY
WP BRP 60/PSY/2016
This Working Paper is an output of a research project implemented at the National Research
University Higher School of Economics (HSE). Any opinions or claims contained in this
Working Paper do not necessarily reflect the views of HSE"
2e9c780ee8145f29bd1a000585dd99b14d1f5894,Simultaneous Adversarial Training - Learn from Others Mistakes,"Simultaneous Adversarial Training - Learn from
Others’ Mistakes
Zukang Liao
Lite-On Singapore Pte. Ltd, 2Imperial College London"
2ebc35d196cd975e1ccbc8e98694f20d7f52faf3,Towards Wide-angle Micro Vision Sensors,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Towards Wide-angle Micro Vision Sensors
Sanjeev J. Koppal*
Ioannis Gkioulekas* Travis Young+ Hyunsung Park*
Kenneth B. Crozier* Geoffrey L. Barrows+ Todd Zickler*"
2ea46531f7d837c1e4b9e6a8d8fc084c6e526545,Just Look at the Image: Viewpoint-Specific Surface Normal Prediction for Improved Multi-View Reconstruction,"Just look at the image: viewpoint-specific surface normal prediction
for improved multi-view reconstruction
Silvano Galliani
Konrad Schindler
Photogrammetry and Remote Sensing, ETH Zurich"
2e927d0a2dc4b69fc03124ad876329b22a61f1b0,Temporal Reasoning in Videos using Convolutional Gated Recurrent Units,"Temporal Reasoning in Videos using Convolutional Gated Recurrent Units
Debidatta Dwibedi∗
Pierre Sermanet
Jonathan Tompson
Google Brain
{debidatta, sermanet,"
2ec393b4fa5739c54ac9f61e583f5e41cfb2687c,Face Recognition using Spherical Wavelets,"Face Recognition using Spherical Wavelets
Christian Lessig∗"
2e55fd3f5138e55250aed84a7dc17adfc34970d3,The implications of social neuroscience for social disability.,"J Autism Dev Disord (2012) 42:1256–1262
DOI 10.1007/s10803-012-1514-z
O R I G I N A L P A P E R
The Implications of Social Neuroscience for Social Disability
James C. McPartland • Kevin A. Pelphrey
Published online: 29 March 2012
Ó Springer Science+Business Media, LLC 2012"
2ea78e128bec30fb1a623c55ad5d55bb99190bd2,Residual vs. Inception vs. Classical Networks for Low-Resolution Face Recognition,"Residual vs. Inception vs. Classical Networks for
Low-Resolution Face Recognition
Christian Herrmann1,2, Dieter Willersinn2, and J¨urgen Beyerer1,2
Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
Fraunhofer IOSB, Karlsruhe, Germany
{christian.herrmann,dieter.willersinn,"
2e0f5e72ad893b049f971bc99b67ebf254e194f7,Apparel Classification with Style,"Apparel Classification with Style
Lukas Bossard1, Matthias Dantone1, Christian Leistner1,2,
Christian Wengert1,3, Till Quack3, Luc Van Gool1,4
ETH Z¨urich, Switzerland 2Microsoft, Austria 3Kooaba AG, Switzerland
KU Leuven, Belgium"
2e491c8e3d1d3314ea5e50943c0bdf2aa57b99b7,Weighted joint sparse representation-based classification method for robust alignment-free face recognition,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12/17/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Weightedjointsparserepresentation-basedclassificationmethodforrobustalignment-freefacerecognitionBoSunFengXuGuoyanZhouJunHeFengxiangGe"
2ec7d6a04c8c72cc194d7eab7456f73dfa501c8c,A R Eview on T Exture B Ased E Motion R Ecognition from F Acial E Xpression,"International Journal of Scientific Research and Management Studies (IJSRMS)
ISSN: 2349-3771
Volume 3 Issue 4, pg: 164-169
A REVIEW ON TEXTURE BASED EMOTION RECOGNITION
FROM FACIAL EXPRESSION
Rishabh Bhardwaj, 2Amit Kumar Chanchal, 3 Shubham Kashyap,
3 Pankaj Pandey, 3Prashant Kumar
U.G. Scholars, 2Assistant Professor,
Dept. of E & C Engg., MIT Moradabad, Ram Ganga Vihar, Phase II, Moradabad, India."
2eb9f1dbea71bdc57821dedbb587ff04f3a25f07,Face for Ambient Interface,"Face for Ambient Interface
Maja Pantic
Imperial College, Computing Department, 180 Queens Gate,
London SW7 2AZ, U.K."
2e6c3557cb90f472e6798fcaa8ecc9dff3557f11,Towards Perspective-Free Object Counting with Deep Learning,"Towards perspective-free object counting with
deep learning
Daniel O˜noro-Rubio and Roberto J. L´opez-Sastre
GRAM, University of Alcal´a, Alcal´a de Henares, Spain"
2e56209ed179be641e6df5efd11be8b3d54a62e9,Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors,"Article
Combining Deep and Handcrafted Image Features for
Presentation Attack Detection in Face Recognition
Systems Using Visible-Light Camera Sensors
Dat Tien Nguyen, Tuyen Danh Pham, Na Rae Baek and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; (D.T.N.); (T.D.P.);
(N.R.B.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 30 January 2018; Accepted: 24 February 2018; Published: 26 February 2018"
2efc6f98720b804345c030e22aef6c9f4a53023e,Soft-biometrics evaluation for people re-identification in uncontrolled multi-camera environments,"Moctezuma et al. EURASIP Journal on Image and Video Processing  (2015) 2015:28
DOI 10.1186/s13640-015-0078-1
RESEARCH
Open Access
Soft-biometrics evaluation for people
re-identification in uncontrolled multi-camera
environments
Daniela Moctezuma1*, Cristina Conde2, Isaac Martín De Diego2 and Enrique Cabello2"
2e708431df3e7a9585a338e1571f078ddbe93a71,Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification.,"Aalborg Universitet
Deep Pain
Rodriguez, Pau; Cucurull, Guillem; Gonzàlez, Jordi; M. Gonfaus, Josep ; Nasrollahi, Kamal;
Moeslund, Thomas B.; Xavier Roca, F.
Published in:
I E E E Transactions on Cybernetics
DOI (link to publication from Publisher):
0.1109/TCYB.2017.2662199
Publication date:
Document Version
Accepted author manuscript, peer reviewed version
Link to publication from Aalborg University
Citation for published version (APA):
Rodriguez, P., Cucurull, G., Gonzàlez, J., M. Gonfaus, J., Nasrollahi, K., Moeslund, T. B., & Xavier Roca, F.
(2017). Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification. I E E E
Transactions on Cybernetics, 1-11. DOI: 10.1109/TCYB.2017.2662199
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research."
2e832d5657bf9e5678fd45b118fc74db07dac9da,"Recognition of Facial Expressions of Emotion: The Effects of Anxiety, Depression, and Fear of Negative Evaluation","Running head: RECOGNITION OF FACIAL EXPRESSIONS OF EMOTION
Recognition of Facial Expressions of Emotion: The Effects of Anxiety, Depression, and Fear of Negative
Evaluation
Rachel Merchak
Wittenberg University
Rachel Merchak, Psychology Department, Wittenberg University.
Author Note
This research was conducted in collaboration with Dr. Stephanie Little, Psychology Department,
Wittenberg University, and Dr. Michael Anes, Psychology Department, Wittenberg University.
Correspondence concerning this article should be addressed to Rachel Merchak, 10063 Fox
Chase Drive, Loveland, OH 45140.
E‐mail:"
2bb968e8f9df0fa72dd72e5d705ea7b75af8dcd7,Fast Support Vector Classifier for automated content-based search in video surveillance,"Fast Support Vector Classifier for Automated
Content-based Search in Video Surveillance
Cătălin A. Mitrea1, Ionuț Mironică1, Bogdan Ionescu1,2, Radu Dogaru1
LAPI & Natural Computing Labs, University “Politehnica” of Bucharest, 061971, Romania
LISTIC, University Savoie Mont Blanc, 74940 Annecy-le-Vieux, France
Email:
for  multiple-instance  human  retrieval"
2ba5e4c421b1413139e4bc5d935d6d48cc753757,Vantage Feature Frames for Fine-Grained Categorization,"Vantage Feature Frames For Fine-Grained Categorization
Asma Rejeb Sfar
INRIA Saclay
Palaiseau, France
Nozha Boujemaa
INRIA Saclay
Palaiseau, France
Donald Geman
Johns Hopkins University
Baltimore, MD, USA
sma.rejeb"
2baea24cc71793ba40cf738b7ad1914f0e549863,Attribute Augmented Convolutional Neural Network for Face Hallucination,"Attribute Augmented Convolutional Neural Network for Face Hallucination
Cheng-Han Lee1 Kaipeng Zhang1 Hu-Cheng Lee1 Chia-Wen Cheng2 Winston Hsu1
National Taiwan University 2The University of Texas at Austin
{r05922077, r05944047, r05922174,"
2ba64deeb3e170e4776e2d2704771019cf9c8639,Differences between Old and Young Adults’ Ability to Recognize Human Faces Underlie Processing of Horizontal Information,"AGING NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE
published: 23 April 2012
doi: 10.3389/fnagi.2012.00003
Differences between old and young adults’ ability to
recognize human faces underlie processing of
horizontal information
Sven Obermeyer *,Thorsten Kolling, Andreas Schaich and Monika Knopf
Department of Psychology, Institute for Psychology, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
Edited by:
Hari S. Sharma, Uppsala University,
Sweden
Reviewed by:
Luis Francisco Gonzalez-Cuyar,
University of Washington School of
Medicine, USA
Gregory F. Oxenkrug, Tufts University,
*Correspondence:
Sven Obermeyer , Department of
Psychology, Goethe-University"
2b50f8e4568ecd84e2f9d6357254272d8db4bbd4,Hierarchical Gaussian Descriptor for Person Re-identification,"Hierarchical Gaussian Descriptor for Person Re-Identification
Tetsu Matsukawa1, Takahiro Okabe2, Einoshin Suzuki1, Yoichi Sato3
Kyushu University 2 Kyushu Institute of Technology 3 The University of Tokyo
{matsukawa,"
2bf41bf420c8d86dd1bffbacd28c70fa8b12b6dd,Counting the uncountable: deep semantic density estimation from Space,"Counting the uncountable: Deep semantic
density estimation from space
Andres C. Rodriguez and Jan D. Wegner
ETH Zurich, Stefano-franscini-platz 5 8093 Zurich, Switzerland
Accepted at GCPR 2018"
2b4d092d70efc13790d0c737c916b89952d4d8c7,Robust Facial Expression Recognition using Local Haar Mean Binary Pattern,"JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 32, XXXX-XXXX (2016)
Robust Facial Expression Recognition using Local Haar
Mean Binary Pattern
MAHESH GOYANI1, NARENDRA PATEL2
,2 Department of Computer Engineering
Charotar University of Science and Technology, Changa, India
Gujarat Technological University, V.V.Nagar, India
E-mail:
In this paper, we propose a hybrid statistical feature extractor, Local Haar Mean Bina-
ry Pattern (LHMBP). It extracts level-1 haar approximation coefficients and computes Local
Mean  Binary  Pattern  (LMBP)  of  it.  LMBP  code  of  pixel  is  obtained  by  weighting  the
thresholded neighbor value of 3  3 patch on its mean. LHMBP produces highly discrimina-
tive code compared to other state of the art methods. To localize appearance features, ap-
proximation subband is divided into M  N regions. LHMBP feature descriptor is derived
y  concatenating  LMBP  distribution  of  each  region.  We  also  propose  a  novel  template
matching strategy called Histogram Normalized Absolute Difference (HNAD) for histogram
ased  feature  comparison.  Experiments  prove  the  superiority  of  HNAD  over  well-known
template  matching  techniques  such  as  L2  norm  and  Chi-Square.  We  also  investigated
LHMBP for expression recognition in low resolution. The performance of the proposed ap-
proach is tested on well-known CK, JAFFE, and SFEW facial expression datasets in diverse"
2b1358efbceda12de2f36398cdbdb3c7bccc70d4,Unified Detection and Tracking of Instruments during Retinal Microsurgery,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007
Unified detection and tracking of instruments
during retinal microsurgery
Raphael Sznitman, Rogerio Richa, Russell H. Taylor Fellow, IEEE, Bruno Jedynak
nd Gregory D. Hager, Fellow, IEEE"
2befea9b289f22547f8911aa56672d6373c1ac64,GAIDON et al.: RECOGNIZING ACTIVITIES WITH CLUSTER-TREES OF TRACKLETS 1 Recognizing activities with cluster-trees of tracklets,"GAIDON et al.: RECOGNIZING ACTIVITIES WITH CLUSTER-TREES OF TRACKLETS
Recognizing activities with cluster-trees of
tracklets
Adrien Gaidon
http://lear.inrialpes.fr/people/gaidon
Zaid Harchaoui
http://lear.inrialpes.fr/people/harchaoui
Cordelia Schmid
http://lear.inrialpes.fr/people/schmid
LEAR - INRIA Grenoble, LJK
655, avenue de l’Europe
8330 Montbonnot, France"
2b4d40ef1610500c207f166e9a5b55dbfe234045,A New Biased Discriminant Analysis Using Composite Vectors for Eye Detection,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 4, AUGUST 2012
A New Biased Discriminant Analysis Using
Composite Vectors for Eye Detection
Chunghoon Kim, Member, IEEE, Sang-Il Choi, Member, IEEE,
Matthew Turk, Senior Member, IEEE, and Chong-Ho Choi, Member, IEEE"
2b0ff4b82bac85c4f980c40b3dc4fde05d3cc23f,An Effective Approach for Facial Expression Recognition with Local Binary Pattern and Support Vector Machine,"An Effective Approach for Facial Expression Recognition with Local Binary
Pattern and Support Vector Machine
Cao Thi Nhan, 2Ton That Hoa An, 3Hyung Il Choi
*1School of Media, Soongsil University,
School of Media, Soongsil University,
School of Media, Soongsil University,"
2bac4161a928eb33e6be700ed8ea4d823494b22c,MergeNet: A Deep Net Architecture for Small Obstacle Discovery,"MergeNet: A Deep Net Architecture for Small Obstacle Discovery
Krishnam Gupta1, Syed Ashar Javed2, Vineet Gandhi2 and K. Madhava Krishna2
evidences is more likely to perform the task better. Recent
efforts [3] on multi modal fusion also suggests likewise."
2baf54199b4b0047f3610ba691fb0a718dbce97e,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"International Journal of Computer Applications (0975 – 8887)
Volume 134 – No.7, January 2016
Development of an Efficient Face Recognition System
ased on Linear and Nonlinear Algorithms
Filani Araoluwa S.
Department of Computer Science,
The Federal University of Technology,
P.M.B.704, Akure, Ondo State, Nigeria."
2b4b0795358d0264f846e8b3c19ec3180da301cc,Active MAP Inference in CRFs for Efficient Semantic Segmentation,"Active MAP Inference in CRFs for Efficient Semantic Segmentation
Roderick de Nijs2
Gemma Roig1 ∗
Sebastian Ramos3
Xavier Boix1 ∗
Kolja K¨uhnlenz2
Luc Van Gool1,4
ETH Z¨urich, Switzerland 2TU Munchen, Germany 3CVC Barcelona, Spain 4KU Leuven, Belgium
Both first authors contributed equally."
2ba7c88a7e96d412c116d6bea4ba27be2ed4dd48,CocoNet: A deep neural network for mapping pixel coordinates to color values,"CocoNet: A Deep Neural Network for Mapping
Pixel Coordinates to Color Values
Paul Andrei Bricman1 and Radu Tudor Ionescu2
George Co¸sbuc National College, 29-31 Olari, Bucharest, Romania,
University of Bucharest, 14 Academiei, Bucharest, Romania"
2b285e5eaeb7a2aa7e37c5ae6762b838d3742b4e,Video event recognition using concept attributes,"Video Event Recognition Using Concept Attributes
Jingen Liu, Qian Yu, Omar Javed, Saad Ali, Amir Tamrakar, Ajay Divakaran, Hui Cheng, Harpreet Sawhney
SRI International Sarnoff
Princeton, NJ, USA 08540"
2bd49bdfc61788c8ac5621fe7f08a06dd2152fb9,Pose Invariant Face Recognition Using Neuro - Biologically Inspired Features Pramod,"International Journal of Future Computer and Communication, Vol. 1, No. 3, October 2012
Pose Invariant Face Recognition Using
Neuro-Biologically Inspired Features
Pramod Kumar Pisharady and Martin Saerbeck"
2b1327a51412646fcf96aa16329f6f74b42aba89,Improving performance of recurrent neural network with relu nonlinearity,"Under review as a conference paper at ICLR 2016
IMPROVING PERFORMANCE OF RECURRENT NEURAL
NETWORK WITH RELU NONLINEARITY
Sachin S. Talathi & Aniket Vartak
Qualcomm Research
San Diego, CA 92121, USA"
2bdc0c79b26fed51bc2af1af16117879ee3f571e,Augmented Multitouch Interaction upon a 2-DOF Rotating Disk,"Augmented Multitouch Interaction
upon a 2-DOF Rotating Disk
Xenophon Zabulis, Panagiotis Koutlemanis, and Dimitris Grammenos
Institute of Computer Science, Foundation for Research and Technology - Hellas,
Herakleion, Crete, Greece"
2b8a61184b6423e3d5285803eb1908ff955db1a8,Processing and analysis of 2 . 5 D face models for non-rigid mapping based face recognition using differential geometry tools,"Processing and analysis of 2.5D face models for
non-rigid mapping based face recognition using
differential geometry tools
Przemyslaw Szeptycki
To cite this version:
Przemyslaw Szeptycki. Processing and analysis of 2.5D face models for non-rigid mapping
ased face recognition using differential geometry tools. Other. Ecole Centrale de Lyon, 2011.
English. <NNT : 2011ECDL0020>. <tel-00675988>
HAL Id: tel-00675988
https://tel.archives-ouvertes.fr/tel-00675988
Submitted on 2 Mar 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,"
2b632f090c09435d089ff76220fd31fd314838ae,Early Adaptation of Deep Priors in Age Prediction from Face Images,"Early Adaptation of Deep Priors in Age Prediction from Face Images
Mahdi Hajibabaei
Computer Vision Lab
D-ITET, ETH Zurich
Anna Volokitin
Computer Vision Lab
D-ITET, ETH Zurich
Radu Timofte
CVL, D-ITET, ETH Zurich
Merantix GmbH"
2beb9777bf452d02f9bec5275c100f4a736def10,Near Duplicate Image Discovery on One Billion Images,"Near Duplicate Image Discovery on One Billion Images
Saehoon Kim ∗
Department of Computer Science,
POSTECH, Korea
Xin-Jing Wang
Web Search and Mining Group
Microsoft Research Asia, Beijing
Lei Zhang
Web Search and Mining Group
Microsoft Research Asia, Beijing
Seungjin Choi
Department of Computer Science,
POSTECH, Korea"
2b507f659b341ed0f23106446de8e4322f4a3f7e,Deep Identity-aware Transfer of Facial Attributes,"Deep Identity-aware Transfer of Facial Attributes
Mu Li1, Wangmeng Zuo2, David Zhang1
The Hong Kong Polytechnic University 2Harbin Institute of Technology"
2bbb772332a90b2aba893f7467daa76b373be240,Extracting 3D Layout From a Single Image Using Global Image Structures,"Extracting 3D Layout From a Single Image
Using Global Image Structures
Zhongyu Lou, Theo Gevers, Member, IEEE, and Ninghang Hu"
2b8dfbd7cae8f412c6c943ab48c795514d53c4a7,Polynomial based texture representation for facial expression recognition,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
e-mail:
e-mail:
RECOGNITION
. INTRODUCTION
(d1,d2)∈[0;d]2
d1+d2≤d"
2b3fe9a0356eaf50f1340dda3f3d14f6904905ec,Taking advantage of sensor modality specific properties in Automated Driving Extended Abstract,"Taking advantage of sensor modality specific properties in
Automated Driving"
2b9082b6b5266f6f7d7a95892f30cc84138697e5,Video Person Re-identification by Temporal Residual Learning,"SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, FEB 2018
Video Person Re-identification by Temporal
Residual Learning
Ju Dai∗, Pingping Zhang∗, Huchuan Lu, Senior Member, IEEE, and Hongyu Wang, Member, IEEE"
2bae810500388dd595f4ebe992c36e1443b048d2,Analysis of Facial Expression Recognition by Event-related Potentials,"International Journal of Bioelectromagnetism
Vol. 18, No. 1, pp. 13 - 18, 2016
www.ijbem.org
Analysis of Facial Expression Recognition
y Event-related Potentials
Taichi Hayasaka and Ayumi Miyachi
Department of Information and Computer Engineering,
National Institute of Technology, Toyota College, Japan
Correspondence: Taichi Hayasaka, Department of Information and Computer Engineering, National Institute of Technology,
Toyota College, 2-1 Eisei, Toyota-shi, Aichi, 471-8525 Japan,
E-mail: phone +81 565 36 5861, fax +81 565 36 5926"
2bbbbe1873ad2800954058c749a00f30fe61ab17,Face Verification across Ages Using Self Organizing Map,"ISSN(Online): 2320-9801
ISSN (Print):  2320-9798
International Journal of Innovative Research in Computer and Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol.2, Special Issue 1, March 2014
Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)
Organized by
Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014
Face Verification across Ages Using Self
Organizing Map
B.Mahalakshmi1, K.Duraiswamy2, P.Gnanasuganya3, P.Aruldhevi4, R.Sundarapandiyan5
Associate Professor, Department of CSE, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India1
Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India2
B.E, Department of CSE, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India3, 4, 5"
2b8667df1a0332386d8d799fbac0327496ce02c9,Stranger danger: Parenthood increases the envisioned bodily formidability of menacing men,"Evolution and Human Behavior 35 (2014) 109–117
Contents lists available at ScienceDirect
Evolution and Human Behavior
j o u r n a l h o m e p a g e : w w w . e h b o n l i n e . o r g
Original Article
Stranger danger: Parenthood increases the envisioned bodily formidability
of menacing men☆
Daniel M.T. Fessler a,b,⁎, Colin Holbrook a,b, Jeremy S. Pollack b, Jennifer Hahn-Holbrook b,c
Department of Anthropology, University of California, Los Angeles, Los Angeles, CA 90095, USA
Center for Behavior, Evolution, and Culture, University of California, Los Angeles, Los Angeles, CA 90095, USA
Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
r t i c l e
i n f o
b s t r a c t
Article history:
Initial receipt 6 April 2013
Final revision received 1 November 2013
Keywords:
Parenthood
Relative formidability"
47fc921add1421ff8adb730df7aa9e7f865bfdeb,Toward Practical Smile Detection,"Towards Practical Smile Detection
Jacob Whitehill, Gwen Littlewort, Ian Fasel, Marian Bartlett, and Javier Movellan"
4701112bfe9946a97a60c2bbb2d47dc784942c3f,Understanding classifier errors by examining influential neighbors,"Understanding Classifier Errors by Examining Influential Neighbors
Mayank Kabra, Alice Robie, Kristin Branson
Janelia Research Campus of the Howard Hughes Medical Institute
Ashburn, VA, 20147, USA"
47be79c0ecb598e1af44e57f386f79adf491f82b,Scenes categorization based on appears objects probability,"016 IEEE 6th International Conference on System Engineering and Technology (ICSET)
Oktober 3-4, 2016 Bandung – Indonesia
Scenes Categorization based on Appears Objects
Probability
Marzuki1, Egi Muhamad Hidayat2, Rinaldi Munir3, Ary Setijadi P4 ,Carmadi Machbub5
School of Electrical Engineering and Informatics, Institut Teknologi Bandung
Bandung, Indonesia
lskk.ee.itb.ac.id"
47ce78c9f49248a7d1bd395befb43e45d89555ee,Vision-and-Language Navigation: Interpreting visually-grounded navigation instructions in real environments,"Vision-and-Language Navigation: Interpreting visually-grounded
navigation instructions in real environments
Peter Anderson1
Niko S¨underhauf3
Qi Wu2
Damien Teney2
Jake Bruce3
Mark Johnson4
Ian Reid2
Stephen Gould1
Anton van den Hengel2
Australian National University 2University of Adelaide 3Queensland University of Technology 4Macquarie University"
47096e7103a2fbb6f6ede05e996209497d41db6a,Implementation of Artificial Intelligence Methods for Virtual Reality Solutions: a Review of the Literature,"Implementation of Artificial Intelligence Methods for
Virtual Reality Solutions: a Review of the Literature
Rytis Augustauskas
Department of Automation
Aurimas Kudarauskas
Department of Automation
Kaunas University of Technology,
Kaunas University of Technology,
Kaunas, Lithuania
Kaunas, Lithuania
Cenker Canbulut
Department of Multimedia Engineering
Kaunas University of Technology,
Kaunas, Lithuania"
477236563c6a6c6db922045453b74d3f9535bfa1,Attribute Based Image Search Re-Ranking Snehal,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611
Attribute Based Image Search Re-Ranking
Snehal S Patil1, Ajay Dani2
Master of Computer Engg, Savitribai Phule Pune University, G. H. Raisoni Collage of Engg and Technology, Wagholi, Pune
2Professor, Computer and Science Dept, Savitribai Phule Pune University, G. H .Raisoni Collage of Engg and Technology, Wagholi, Pune
integrating
images  by"
47fdd1579f732dd6389f9342027560e385853180,Deep Sparse Subspace Clustering,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Deep Sparse Subspace Clustering
Xi Peng, Jiashi Feng, Shijie Xiao, Jiwen Lu Senior Member, IEEE, Zhang Yi Fellow, IEEE,
Shuicheng Yan Fellow, IEEE,"
47f2088afb616bde5468818e23d79e1ae5a562cd,Multi-view gender classification based on local Gabor binary mapping pattern and support vector machines,"Multi-view Gender Classification based on Local Gabor Binary
Mapping Pattern and Support Vector Machines
Bin Xia, He Sun and Bao-Liang Lu∗ Senior Member, IEEE"
470dbd3238b857f349ebf0efab0d2d6e9779073a,Unsupervised Simultaneous Orthogonal basis Clustering Feature Selection,"Unsupervised Simultaneous Orthogonal Basis Clustering Feature Selection
Dongyoon Han and Junmo Kim
School of Electrical Engineering, KAIST, South Korea
In this paper, we propose a novel unsupervised feature selection method: Si-
multaneous Orthogonal basis Clustering Feature Selection (SOCFS). To per-
form feature selection on unlabeled data effectively, a regularized regression-
ased formulation with a new type of target matrix is designed. The target
matrix captures latent cluster centers of the projected data points by per-
forming the orthogonal basis clustering, and then guides the projection ma-
trix to select discriminative features. Unlike the recent unsupervised feature
selection methods, SOCFS does not explicitly use the pre-computed local
structure information for data points represented as additional terms of their
objective functions, but directly computes latent cluster information by the
target matrix conducting orthogonal basis clustering in a single unified term
of the proposed objective function.
Since the target matrix is put in a single unified term for regression of
the proposed objective function, feature selection and clustering are simul-
taneously performed. In this way, the projection matrix for feature selection
is more properly computed by the estimated latent cluster centers of the
projected data points. To the best of our knowledge, this is the first valid"
47541d04ec24662c0be438531527323d983e958e,British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2008xxxxxx,Affective Information Processing
479f44f9b4c401327a721550334b8d491f6b3f16,OR-PCA with MRF for Robust Foreground Detection in Highly Dynamic Backgrounds,"OR-PCA with MRF for Robust Foreground
Detection in Highly Dynamic Backgrounds
Sajid Javed1, Seon Ho Oh1, Andrews Sobral2,
Thierry Bouwmans2 and Soon Ki Jung1
School of Computer Science and Engineering, Kyungpook National University,
80 Daehak-ro, Buk-gu,Daegu, 702-701, Republic of Korea
{sajid,
Laboratoire MIA (Mathematiques, Image et Applications)- Universit´e de La
Rochelle, 17000, France, {andrews.sobral,"
474b461cd12c6d1a2fbd67184362631681defa9e,Multi-resolution fusion of DTCWT and DCT for shift invariant face recognition,"014 IEEE International
Conference on Systems, Man
nd Cybernetics
(SMC 2014)
San Diego, California, USA
5-8 October 2014
Pages 1-789
IEEE Catalog Number:
ISBN:
CFP14SMC-POD
978-1-4799-3841-4"
47ca2df3d657d7938d7253bed673505a6a819661,"Fields of Study Major Field: Computer Vision Minor Field: Pattern Recognition, Image Procession, Statistical Learning Ix Abstract Facial Expression Analysis on Manifolds","UNIVERSITY OF CALIFORNIA
Santa Barbara
Facial Expression Analysis on Manifolds
A Dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy
in Computer Science
Ya Chang
Committee in charge:
Professor Matthew Turk, Chair
Professor Yuan-Fang Wang
Professor B.S. Manjunath
Professor Andy Beall
September 2006"
47d4838087a7ac2b995f3c5eba02ecdd2c28ba14,Automatic Recognition of Deceptive Facial Expressions of Emotion,"JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017
Automatic Recognition of Facial Displays of
Unfelt Emotions
Kaustubh Kulkarni*, Ciprian Adrian Corneanu*, Ikechukwu Ofodile*, Student Member, IEEE, Sergio
Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik,
nd Gholamreza Anbarjafari, Senior Member, IEEE"
47f8ba44fde1f8a3a621b20cabb7e84515fb8313,Superpixel-based Road Segmentation for Real-time Systems using CNN,
4753a125469da7649e9f58fb0db781622dff41f8,Multi-view Stereo with Single-View Semantic Mesh Refinement,"Multi-View Stereo with Single-View Semantic Mesh Refinement
Andrea Romanoni Marco Ciccone
Francesco Visin Matteo Matteucci
{andrea.romanoni, marco.ciccone, francesco.visin,
Politecnico di Milano, Italy"
47a2727bd60e43f3253247b6d6f63faf2b67c54b,Semi-supervised Vocabulary-Informed Learning,"Semi-supervised Vocabulary-informed Learning
Yanwei Fu and Leonid Sigal
Disney Research"
475de283dad61a8a9ed231dce0d8d62a54f4d062,Person Following by Autonomous Robots: A Categorical Overview,"Islam et al.
Person Following by Autonomous
Robots: A Categorical Overview
Md Jahidul Islam, Jungseok Hong and Junaed Sattar
Preprint Version I
XX(X):1–25
(cid:13)The Author(s) 2018
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/"
478261574ddc6cf297611000735aa9808f8f0030,ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes,
47022785c35735a242dbacd4f1f1bb73628493ea,Person Retrieval Based on Viewpoint Saliency Prior,"Journal of Computational Information Systems 9: 20 (2013) 8235–8242
Available at http://www.Jofcis.com
Person Retrieval Based on Viewpoint Saliency Prior
Qingming LENG, Ruimin HU∗, Cuina JIAO, Chao LIANG, Zheng WANG
National Engineering Research Center for Multimedia Software, School of Computer, Wuhan
University, Wuhan 430079, China"
47d3b923730746bfaabaab29a35634c5f72c3f04,Real-Time Facial Expression Recognition App Development on Smart Phones,"Humaid Alshamsi.et.al. Int. Journal of Engineering Research and Application              www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 7, ( Part -3) July 2017, pp.30-38
RESEARCH ARTICLE
OPEN ACCESS
Real-Time Facial Expression Recognition App Development on
Smart Phones
Humaid Alshamsi, Veton Kupuska
Electrical And Computer Engineering Department, Florida Institute Of Technology, Melbourne Fl,"
47e3029a3d4cf0a9b0e96252c3dc1f646e750b14,Facial expression recognition in still pictures and videos using active appearance models: a comparison approach,"International Conference on Computer Systems and Technologies - CompSysTech’07
Facial Expression Recognition in still pictures and videos using Active
Appearance Models. A comparison approach.
Drago(cid:1) Datcu
Léon Rothkrantz"
470b89e2c5248eb58e09129aa9b4d8bc77497e7e,Neurobiology of Disease Cortical Folding Abnormalities in Autism Revealed by Surface-Based Morphometry,"The Journal of Neuroscience, October 24, 2007 • 27(43):11725–11735 • 11725
Neurobiology of Disease
Cortical Folding Abnormalities in Autism Revealed by
Surface-Based Morphometry
Christine Wu Nordahl,1 Donna Dierker,2 Iman Mostafavi,1 Cynthia M. Schumann,1,3 Susan M. Rivera,4
David G. Amaral,1 and David C. Van Essen2
The Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute and the Department of Psychiatry and Behavioral Sciences, University of
California, Davis, Sacramento, California 95817, 2Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, Missouri 63110,
Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, and 4The M.I.N.D. Institute and the Department of
Psychology, University of California, Davis, Davis, California 95616
We tested for cortical shape abnormalities using surface-based morphometry across a range of autism spectrum disorders (7.5–18 years
of age). We generated sulcal depth maps from structural magnetic resonance imaging data and compared typically developing controls
to three autism spectrum disorder subgroups: low-functioning autism, high-functioning autism, and Asperger’s syndrome. The low-
functioning autism group had a prominent shape abnormality centered on the pars opercularis of the inferior frontal gyrus that was
ssociated with a sulcal depth difference in the anterior insula and frontal operculum. The high-functioning autism group had bilateral
shape abnormalities similar to the low-functioning group, but smaller in size and centered more posteriorly, in and near the parietal
operculum and ventral postcentral gyrus. Individuals with Asperger’s syndrome had bilateral abnormalities in the intraparietal sulcus
that correlated with age, intelligence quotient, and Autism Diagnostic Interview-Revised social and repetitive behavior scores. Because of
evidence suggesting age-related differences in the developmental time course of neural alterations in autism, separate analyses on
hildren (7.5–12.5 years of age) and adolescents (12.75–18 years of age) were also carried out. All of the cortical shape abnormalities"
475e16577be1bfc0dd1f74f67bb651abd6d63524,DAiSEE: Towards User Engagement Recognition in the Wild,"DAiSEE: Towards User Engagement Recognition in the Wild
Abhay Gupta
Microsoft
Vineeth N Balasubramanian
Indian Institution of Technology Hyderabad"
471befc1b5167fcfbf5280aa7f908eff0489c72b,Class-Specific Kernel-Discriminant Analysis for Face Verification,"Class-Specific Kernel-Discriminant
Analysis for Face Verification
Georgios Goudelis, Stefanos Zafeiriou, Anastasios Tefas, Member, IEEE, and Ioannis Pitas, Fellow, IEEE
lass problems ("
47bd6c1d7da596d3cf79f06ec0de816d10f11beb,Coupled Discriminant Analysis for Heterogeneous Face Recognition,"Coupled Discriminant Analysis for Heterogeneous
Face Recognition
Zhen Leiy, Member, IEEE, Shengcai Liaoz, Anil K. Jainz, Fellow, IEEE, and Stan Z. Liy, Fellow, IEEE"
47e8db3d9adb79a87c8c02b88f432f911eb45dc5,MAGMA: Multilevel Accelerated Gradient Mirror Descent Algorithm for Large-Scale Convex Composite Minimization,"MAGMA: Multi-level accelerated gradient mirror descent algorithm for
large-scale convex composite minimization
Vahan Hovhannisyan
Panos Parpas
Stefanos Zafeiriou
July 15, 2016"
47c0c7f1a27d467e00a6fa7ea2ca0af2e3328b9e,Predicting Scene Parsing and Motion Dynamics in the Future,"Predicting Scene Parsing and Motion Dynamics
in the Future
Xiaojie Jin1, Huaxin Xiao2, Xiaohui Shen3, Jimei Yang3, Zhe Lin3
Yunpeng Chen2, Zequn Jie4, Jiashi Feng2, Shuicheng Yan5,2
NUS Graduate School for Integrative Science and Engineering (NGS), NUS
Department of ECE, NUS
Adobe Research
Tencent AI Lab
5Qihoo 360 AI Institute"
47f5f740e225281c02c8a2ae809be201458a854f,Simultaneous Unsupervised Learning of Disparate Clusterings,"Simultaneous Unsupervised Learning of Disparate Clusterings
Prateek Jain*, Raghu Meka and Inderjit S. Dhillon
Department of Computer Sciences, University of Texas, Austin, TX 78712-1188, USA
Received 14 April 2008; accepted 05 May 2008
DOI:10.1002/sam.10007
Published online 3 November 2008 in Wiley InterScience (www.interscience.wiley.com)."
47bf7a8779c68009ea56a7c20e455ccdf0e3a8fa,Automatic Face Recognition System using Pattern Recognition Techniques: A Survey,"International Journal of Computer Applications (0975 – 8887)
Volume 83 – No 5, December 2013
Automatic Face Recognition System using Pattern
Recognition Techniques: A Survey
Ningthoujam Sunita Devi                                                                              Prof.K.Hemachandran
Department of Computer Science                                                                Department of Computer Science
Assam University, Silchar-788011                                                               Assam University, Silchar-788011"
47b508abdaa5661fe14c13e8eb21935b8940126b,An Efficient Method for Feature Extraction of Face Recognition Using PCA,"Volume 4, Issue 12, December 2014                                  ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
An Efficient Method for Feature Extraction of Face
Recognition Using PCA
Tara Prasad Singh
(M.Tech. Student)
Computer Science & Engineering
Iftm University,Moradabad-244001 U.P."
47b34a8ad5100582aa7cbfd85df3ca7659adc392,Is this a wampimuk? Cross-modal mapping between distributional semantics and the visual world,"Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 1403–1414,
Baltimore, Maryland, USA, June 23-25 2014. c(cid:13)2014 Association for Computational Linguistics"
47440f514318b438ebf04d9932f5dafdb488a536,Emotion Recognition from Facial Images Using Binary Face Relevance Maps,"STUDIA INFORMATICA
Volume 36
Number 4 (122)
Tomasz HERUD, Michal KAWULOK
Silesian University of Technology, Institute of Informatics
Future Processing, Gliwice, Poland
Bogdan SMOLKA
Silesian University of Technology, Institute of Automatic Control
EMOTION  RECOGNITION  FROM  FACIAL  IMAGES  USING
BINARY FACE RELEVANCE MAPS1
Summary.  This  paper is focused on automatic emotion recognition from static
grayscale images. Here, we propose a new approach to this problem, which combines
few  other  methods.  The  facial  region  is  divided  into  small  subregions,  which  are
selected  for  processing  based  on  a  face  relevance  map.  From  these  regions,  local
directional  pattern  histograms  are  extracted  and  concatenated  into  a  single  feature
histogram, which is classified into one of seven defined emotional states using support
vector  machines.  In  our  case,  we  distinguish:  anger,  disgust,  fear,  happiness,
neutrality,  sadness  and  surprise.  In  our  experimental  study  we  demonstrate  that  the
expression  recognition  accuracy  for  Japanese  Female  Facial  Expression  database  is
one of the best compared with the results reported in the literature."
782188821963304fb78791e01665590f0cd869e8,Automatic Spatially-Aware Fashion Concept Discovery,"sleevelengthincreasing dress length+ mini =(b) Structured product browsing(c) Attribute-feedback product retrieval(a) Concept discoveryminimidimaxisleevelessshort-sleevelong-sleeveblueblackredyellowFigure1.(a)Weproposeaconceptdiscoveryapproachtoauto-maticallyclusterspatially-awareattributesintomeaningfulcon-cepts.Thediscoveredspatially-awareconceptsarefurtherutilizedfor(b)structuredproductbrowsing(visualizingimagesaccordingtoselectedconcepts)and(c)attribute-feedbackproductretrieval(refiningsearchresultsbyprovidingadesiredattribute).variousfeedback,includingtherelevanceofdisplayedim-ages[20,4],ortuningparameterslikecolorandtexture,andthenresultsareupdatedcorrespondingly.However,rel-evancefeedbackislimitedduetoitsslowconvergencetomeetthecustomerrequirements.Inadditiontocolorandtexture,customersoftenwishtoexploithigher-levelfea-tures,suchasneckline,sleevelength,dresslength,etc.Semanticattributes[13],whichhavebeenappliedef-fectivelytoobjectcategorization[15,27]andfine-grainedrecognition[12]couldpotentiallyaddresssuchchallenges.Theyaremid-levelrepresentationsthatdescribesemanticproperties.Recently,researchershaveannotatedclotheswithsemanticattributes[9,2,8,16,11](e.g.,material,pat-tern)asintermediaterepresentationsorsupervisorysignalstobridgethesemanticgap.However,annotatingsemanticattributesiscostly.Further,attributesconditionedonob-jectpartshaveachievedgoodperformanceinfine-grainedrecognition[3,33],confirmingthatspatialinformationiscriticalforattributes.Thisalsoholdsforclothingimages.Forexample,thenecklineattributeusuallycorrespondstothetoppartinimageswhilethesleeveattributeordinarily1"
786e57ed6877dc8491b1bb9253f8b82c02732977,Efficient approach to de-identifying faces in videos,"Page 1 of 8
An Efficient Approach to De-Identifying Faces in Videos
Li Meng *, Zongji Sun, Odette Tejada Collado
School of Engineering and Technology, University of Hertfordshire, College Lane, Hatfield, UK"
788eceb4d1b7556d1c9033224da2348b4402d6ca,An Empirical Evaluation of Visual Question Answering for Novel Objects,"An Empirical Evaluation of Visual Question Answering for Novel Objects
Santhosh K. Ramakrishnan1,2 Ambar Pal1 Gaurav Sharma1 Anurag Mittal2
IIT Kanpur∗
IIT Madras†"
7854876ab5d87248ace94615731ed3e3e56af769,MixedPeds: Pedestrian Detection in Unannotated Videos Using Synthetically Generated Human-Agents for Training,
789c76749a15614d97ac8f4ec18b3ce7d80a2d28,Explorer Multiplicative LSTM for sequence modelling,"Multiplicative LSTM for sequence modelling
Citation for published version:
Krause, B, Murray, I, Renals, S & LU, L 2017, Multiplicative LSTM for sequence modelling. in  International
Conference on Learning Representations - ICLR 2017 - Workshop Track. pp. 2872-2880.
Link:
Link to publication record in Edinburgh Research Explorer
Document Version:
Publisher's PDF, also known as Version of record
Published In:
International Conference on Learning Representations - ICLR 2017 - Workshop Track
General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
nd / or other copyright owners and it is a condition of accessing these publications that users recognise and
bide by the legal requirements associated with these rights.
Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
ontent complies with UK legislation. If you believe that the public display of this file breaches copyright please
ontact providing details, and we will remove access to the work immediately and
investigate your claim.
Download date: 02. Sep. 2017"
78749b58299ecebf100e2512872029f89878449b,One-class Selective Transfer Machine for Personalized Anomalous Facial Expression Detection,
78c91d969c55a4a61184f81001c376810cdbd541,A Spike and Slab Restricted Boltzmann Machine,"A Spike and Slab Restricted Boltzmann Machine
Aaron Courville
James Bergstra
Yoshua Bengio
DIRO, Universit´e de Montr´eal, Montr´eal, Qu´ebec, Canada"
787303db8e707feee2fa2b93dfc46e3d3cc244cd,Defocus Blur Parameter Estimation Technique,"International Journal of Electronics and Communication Engineering and Technology (IJECET)
Volume 7, Issue 4, July-August 2016, pp. 85–90, Article ID: IJECET_07_04_010
Available online at
http://www.iaeme.com/IJECET/issues.asp?JType=IJECET&VType=7&IType=4
Journal Impact Factor (2016): 8.2691 (Calculated by GISI) www.jifactor.com
ISSN Print: 0976-6464 and ISSN Online: 0976-6472
© IAEME Publication
DEFOCUS BLUR PARAMETER ESTIMATION
TECHNIQUE
Ruchi Gajjar, Aditi Pathak and Tanish Zaveri
Electronics and Communication Engineering Department
Institute of Technology, Nirma University, Ahmedabad, Gujarat, India"
784cc0363d44bf09f3f636abd1a532ddac95ca13,Group-level emotion recognition using transfer learning from face identification,"Group-level Emotion Recognition using Transfer Learning from
Face Identification
Alexandr Rassadin
Alexey Gruzdev
Andrey Savchenko
National Research University Higher
National Research University Higher
National Research University Higher
School of Economics
Laboratory of Algorithms and
Technologies for Network Analysis,
School of Economics
Nizhny Novgorod
Russia
School of Economics
Laboratory of Algorithms and
Technologies for Network Analysis,
Nizhny Novgorod
Russia
Nizhny Novgorod"
783f3fccde99931bb900dce91357a6268afecc52,Adapted Active Appearance Models,"Hindawi Publishing Corporation
EURASIP Journal on Image and Video Processing
Volume 2009, Article ID 945717, 14 pages
doi:10.1155/2009/945717
Research Article
Adapted Active Appearance Models
Renaud S´eguier,1 Sylvain Le Gallou,2 Gaspard Breton,2 and Christophe Garcia2
SUP ´ELEC/IETR, Avenue de la Boulaie, 35511 Cesson-S´evign´e, France
Orange Labs—TECH/IRIS, 4 rue du clos courtel, 35 512 Cesson S´evign´e, France
Correspondence should be addressed to Renaud S´eguier,
Received 5 January 2009; Revised 2 September 2009; Accepted 20 October 2009
Recommended by Kenneth M. Lam
Active Appearance Models (AAMs) are able to align ef‌f‌iciently known faces under duress, when face pose and illumination are
ontrolled. We propose Adapted Active Appearance Models to align unknown faces in unknown poses and illuminations. Our
proposal is based on the one hand on a specific transformation of the active model texture in an oriented map, which changes the
AAM normalization process; on the other hand on the research made in a set of different precomputed models related to the most
dapted AAM for an unknown face. Tests on public and private databases show the interest of our approach. It becomes possible
to align unknown faces in real-time situations, in which light and pose are not controlled.
Copyright © 2009 Renaud S´eguier et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly"
789389dce27ad72adad251c81734bdb6c274c30f,3D Facial Feature Localization for Registration,"D Facial Feature Localization for Registration
Albert Ali Salah and Lale Akarun
Bo˘gazi¸ci University
Computer Engineering Department, Turkey
Perceptual Intelligence Laboratory
{salah,"
78a2a964b61308f683fae6f3a62e3a8aece51bae,Functional Neuroimaging of the Interaction between Social and Executive Neural Circuitry in Individuals with High- Functioning Autism,"FUNCTIONAL NEUROIMAGING OF THE INTERACTION BETWEEN SOCIAL
AND EXECUTIVE NEURAL CIRCUITRY IN INDIVIDUALS WITH HIGH-
FUNCTIONING AUTISM
Kimberly Lynn Hills Carpenter
A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Curriculum in Neurobiology
Chapel Hill
Approved By:
Dr. Aysenil Belger
Dr. Jim Bodfish
Dr. Gabriel Dichter
Dr. Kevin LaBar
Dr. Joseph Piven
Dr. Aldo Rustioni"
781d3550f54f3b4bfbd99ca9957aba6d6dec990e,Regularized Kernel Discriminant Analysis With a Robust Kernel for Face Recognition and Verification,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Brief Papers
Regularized Kernel Discriminant Analysis With a Robust
Kernel for Face Recognition and Verification
Stefanos Zafeiriou, Georgios Tzimiropoulos, Maria Petrou,
nd Tania Stathaki"
78045e2b93745b16a174137074e430ccd5ff53ff,Hedging Deep Features for Visual Tracking.,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
Hedging Deep Features for Visual Tracking
Yuankai Qi, Shengping Zhang, Lei Qin, Qingming Huang, Hongxun Yao, Jongwoo Lim, and Ming-Hsuan Yang"
78342d17c6c6fff00cf1b20602f3213a3f61ba56,Collaborative Discriminant Locality Preserving Projections With its Application to Face Recognition,"Collaborative Discriminant Locality Preserving Projections With its Application
to Face Recognition
Sheng Huanga,c, Dan Yanga,b,∗, Dong Yangc, Ahmed Elgammalc
College of Computer Science at Chongqing University, Chonqing, 400044, China
School of Software Engineering at Chongqing University Chonqing, 400044, China
Department of Computer Science at Rutgers University, Piscataway, NJ, 08854, USA"
78f438ed17f08bfe71dfb205ac447ce0561250c6,Bridging the Semantic Gap : Image and video Understanding by Exploiting Attributes,
78f7304ba4c853c568dc4e38fef35aa2c003e3f3,Modeling correlations in spontaneous activity of visual cortex with centered Gaussian-binary deep Boltzmann machines,"visual cortex with centered Gaussian-binary deep
Boltzmann machines
Nan Wang
Institut f¨ur Neuroinformatik
Ruhr-Universit¨at Bochum
Bochum, 44780, Germany
Dirk Jancke
Institut f¨ur Neuroinformatik
Ruhr-Universit¨at Bochum
Bochum, 44780, Germany
Laurenz Wiskott
Institut f¨ur Neuroinformatik
Ruhr-Universit¨at Bochum
Bochum, 44780, Germany"
78c9a63be8e07dc6acb90f4fe3f06821719eaa34,Hierarchical online domain adaptation of deformable part-based models,"Hierarchical online domain adaptation of deformable part-based models
Jiaolong Xu1, David V´azquez2, Krystian Mikolajczyk3 and Antonio M. L´opez1"
7882c67f555b761e10ecc70216db25382890d9d7,Automated Characterization of Stenosis in Invasive Coronary Angiography Images with Convolutional Neural Networks,"Automated Characterization of Stenosis in Invasive Coronary Angiography Images with Convolutional
Neural Networks"
781c2553c4ed2a3147bbf78ad57ef9d0aeb6c7ed,Tubelets: Unsupervised Action Proposals from Spatiotemporal Super-Voxels,"Int J Comput Vis
DOI 10.1007/s11263-017-1023-9
Tubelets: Unsupervised Action Proposals from Spatiotemporal
Super-Voxels
Mihir Jain1
Cees G. M. Snoek1
· Jan van Gemert2 · Hervé Jégou3 · Patrick Bouthemy3 ·
Received: 25 June 2016 / Accepted: 18 May 2017
© The Author(s) 2017. This article is an open access publication"
7803206f024ba6887d93e8aec91dd0097ffc5165,Automatic detection of facial actions from 3D data,"Automatic Detection of Facial Actions from 3D Data
Arman Savran
Electrical and Electronics Engineering Department
Bo˘gazic¸i University, Istanbul, Turkey
B¨ulent Sankur"
78598c69201cccfc060d47fc0415f2f9365035fc,A Taught-Obesrve-Ask (TOA) Method for Object Detection with Critical Supervision,"A Taught-Obesrve-Ask (TOA) Method for Object
Detection with Critical Supervision
Chi-Hao Wu, Qin Huang, Siyang Li, and C.-C. Jay Kuo, Fellow, IEEE"
78a144d5dce1a61c92420e77c11116f541a7617f,Box Aggregation for Proposal Decimation: Last Mile of Object Detection,"Box Aggregation for Proposal Decimation: Last Mile of Object Detection
The Chinese University of Hong Kong ♯Stanford University ‡Shanghai Jiao Tong University
Shu Liu† Cewu Lu♯,‡
Jiaya Jia†"
78df7d3fdd5c32f037fb5cc2a7c104ac1743d74e,Temporal Pyramid Pooling-Based Convolutional Neural Network for Action Recognition,"TEMPORAL PYRAMID POOLING CNN FOR ACTION RECOGNITION
Temporal Pyramid Pooling Based Convolutional
Neural Network for Action Recognition
Peng Wang, Yuanzhouhan Cao, Chunhua Shen, Lingqiao Liu, and Heng Tao Shen"
78fdf2b98cf6380623b0e20b0005a452e736181e,Dense Wide-Baseline Stereo with Varying Illumination and its Application to Face Recognition,
7858410077f9ba94ca60d0f6b4d29509e46a4ef9,Predicting Visual Exemplars of Unseen Classes for Zero-Shot Learning,"Predicting Visual Exemplars of Unseen Classes for Zero-Shot Learning
Soravit Changpinyo
U. of Southern California
Los Angeles, CA
Wei-Lun Chao
Los Angeles, CA
U. of Southern California
U. of Southern California
Fei Sha
Los Angeles, CA"
787c1bb6d1f2341c5909a0d6d7314bced96f4681,"Face Detection and Verification in Unconstrained Videos: Challenges, Detection, and Benchmark Evaluation","Face Detection and Verification in Unconstrained
Videos: Challenges, Detection, and Benchmark
Evaluation
Mahek Shah
IIIT-D-MTech-CS-GEN-13-106
July 16, 2015
Indraprastha Institute of Information Technology, Delhi
Thesis Advisors
Dr. Mayank Vatsa
Dr. Richa Singh
Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science
(cid:13) Shah, 2015
Keywords: face recognition, face detection, face verification"
7808937b46acad36e43c30ae4e9f3fd57462853d,Describing people: A poselet-based approach to attribute classification,"Describing People: A Poselet-Based Approach to Attribute Classification ∗
Lubomir Bourdev1,2, Subhransu Maji1 and Jitendra Malik1
EECS, U.C. Berkeley, Berkeley, CA 94720
Adobe Systems, Inc., 345 Park Ave, San Jose, CA 95110"
7809a42a833b49725f3a4bb8f70f63f4d2cee11c,Detection of Person in A Group of People Using 3-D Based Model,"Detection of Person in A Group of People Using 3-D Based Model
Dr. P. Srirama Chandra Murty1, Ch. Anuradha2, Dr. Syed Muneer3
Assistant Professor, Dept. of  Computer Science and Engineering, ANUCET, Acharya Nagarjuna
University, Guntur, India
Asst. Professor, Dept. of Computer Science and Engineering, PNC & Vijay Institute of Engineering
Computer Professional, Dept. of Computer Science and Engineering, ANUCET, Acharya Nagarjuna
nd Technology, Guntur, Andhra Pradesh, India.
University, Guntur, Andhra Pradesh, India"
788a3faa14ca191d7f187b812047190a70798428,Interpretable Set Functions,"Interpretable Set Functions
Andrew Cotter, Maya Gupta, Heinrich Jiang,
James Muller, Taman Narayan, Serena Wang, Tao Zhu
600 Amphitheatre Parkway, Mountain View, CA 94043
Google Research"
780772a69b1556d5f725630dff8e79ec3ccb46bb,FieldSAFE: Dataset for Obstacle Detection in Agriculture,"FieldSAFE: Dataset for Obstacle Detection in Agriculture
Mikkel Kragh∗1, Peter Christiansen∗1, Morten S. Laursen1, Morten Larsen2, Kim
A. Steen3, Ole Green3, Henrik Karstoft1 and Rasmus N. Jørgensen1
Department of Engineering, Aarhus University, Denmark
Conpleks Innovation ApS, Struer, Denmark
AgroIntelli, Aarhus, Denmark"
8b2c090d9007e147b8c660f9282f357336358061,Emotion Classification based on Expressions and Body Language using Convolutional Neural Networks,"Lake Forest College
Lake Forest College Publications
Senior Theses
-23-2018
Student Publications
Emotion Classification based on Expressions and
Body Language using Convolutional Neural
Networks
Aasimah S. Tanveer
Lake Forest College,
Follow this and additional works at: https://publications.lakeforest.edu/seniortheses
Part of the Neuroscience and Neurobiology Commons
Recommended Citation
Tanveer, Aasimah S., ""Emotion Classification based on Expressions and Body Language using Convolutional Neural Networks""
(2018). Senior Theses.
This Thesis is brought to you for free and open access by the Student Publications at Lake Forest College Publications. It has been accepted for
inclusion in Senior Theses by an authorized administrator of Lake Forest College Publications. For more information, please contact"
8b607928c7af70259a9f8af9e08e28e6037411c8,Bayesian teaching of image categories,"Bayesian teaching of image categories
Wai Keen Vong∗
Ravi B. Sojitra*
Newark, NJ, 07102
Anderson Reyes
Scott Cheng-Hsin Yang
Patrick Shafto
Department of Mathematics and Computer Science, 110 Warren Street,"
8b9c53e7d65ba7a7be3d588d00481f2ff49b5ef4,Orienting in response to gaze and the social use of gaze among children with autism spectrum disorder.,23Journal of Autism andDevelopmental Disorders ISSN 0162-3257Volume 43Number 7 J Autism Dev Disord (2013)43:1584-1596DOI 10.1007/s10803-012-1704-8Orienting in Response to Gaze and theSocial Use of Gaze among Children withAutism Spectrum DisorderAdrienne Rombough & Grace Iarocci
8bddd0afd064e2d45ab6cf9510f2631f7438c17b,Outlier Detection using Generative Models with Theoretical Performance Guarantees,"Outlier Detection using Generative Models with
Theoretical Performance Guarantees∗
Jirong Yi†
Anh Duc Le‡
Tianming Wang§
Xiaodong Wu¶
Weiyu Xu(cid:107)
October 29, 2018"
8b547b87fd95c8ff6a74f89a2b072b60ec0a3351,Initial perceptions of a casual game to crowdsource facial expressions in the wild,"Initial Perceptions of a Casual Game to Crowdsource
Facial Expressions in the Wild
Chek Tien Tan
Hemanta Sapkota
Daniel Rosser
Yusuf Pisan
Games Studio, Faculty of Engineering and IT, University of Technology, Sydney"
8b26744e11e5f226f187bf903b88933c5b0fcdc0,Cost-Effective Class-Imbalance Aware CNN for Vehicle Localization and Categorization in High Resolution Aerial Images,"Article
Cost-Effective Class-Imbalance Aware CNN for
Vehicle Localization and Categorization in High
Resolution Aerial Images
Feimo Li 1,2,*, Shuxiao Li 1,2,*, Chengfei Zhu 1,2, Xiaosong Lan 1,2 and Hongxing Chang 1,2
Institute of Automation Chinese Academy of Sciences, Beijing 100190, China;
(C.Z.); (X.L.); (H.C.)
University of Chinese Academy of Science, Beijing 100049, China
* Correspondence: (F.L.); (S.L.);
Tel.: +86-188-0012-4228 (F.L.); +86-138-1077-1030 (S.L.)
Academic Editors: Qi Wang, Nicolas H. Younan, Carlos López-Martínez, Gonzalo Pajares Martinsanz,
Xiaofeng Li and Prasad S. Thenkabail
Received: 26 February 2017; Accepted: 15 May 2017; Published: 18 May 2017"
8bf57dc0dd45ed969ad9690033d44af24fd18e05,Subject-Independent Emotion Recognition from Facial Expressions using a Gabor Feature RBF Neural Classifier Trained with Virtual Samples Generated by Concurrent Self-Organizing Maps,"Subject-Independent Emotion Recognition from Facial Expressions
using a Gabor Feature RBF Neural Classifier Trained with Virtual
Samples Generated by Concurrent Self-Organizing Maps
VICTOR-EMIL NEAGOE, ADRIAN-DUMITRU CIOTEC
Depart. Electronics, Telecommunications & Information Technology
Polytechnic University of Bucharest
Splaiul Independentei No. 313, Sector 6, Bucharest,
ROMANIA"
8bdbb685174d6023e63c55fdf9ad9b2ac78e79bd,Learning Human Poses from Actions-Supplementary Material,"ADITYA, JAWAHAR, PAWAN: LEARNING HUMAN POSES FROM ACTIONS
Learning Human Poses from Actions -
Supplementary Material
Aditya Arun1
C.V. Jawahar1
M. Pawan Kumar2
IIIT Hyderabad
University of Oxford &
The Alan Turing Institute
In this supplementary material, we provide additional details on optimization of our
learning objective, implementation details, and visualization of the learning process. We
lso provide additional results of training a different architecture for human pose estimation
on two data sets.
Optimization
In this section, we provide details of optimization presented in section 3.5 of the paper.
.1 Learning Objective
We represent the prediction distribution using a DISCO Net, which we denote by Prw, w
eing the parameter of the network. Similarly, we represent the conditional distribution using
set of DISCO Nets, which we denote by Prθθθ . The set of parameters for the conditional
networks is denoted by θθθ. We compute samples from the prediction network as {hw"
8b9f529700a93a2ff6e227c76a1333883a1f6213,PREMOC: Plataforma de reconocimiento multimodal de emociones,"PREMOC: Plataforma de reconocimiento multimodal
de emociones
Ramón Zatarain-Cabada, María Lucia Barrón-Estrada, Gilberto Muñoz-Sandoval
Instituto Tecnológico de Culiacán, Culiacán, Sinaloa,
México
{rzaratain, lbarron,
Resumen.  En  años  recientes  la  computación  afectiva  ha  venido  a  mejorar  la
interacción  humano-computadora,  pues  ayuda  a  la  computadora  a  conocer  el
estado  afectivo  del  usuario  para  mejorar  la  toma  de  decisiones.  Este  artículo
presenta  los  avances  en  el  proyecto  PREMOC,  una  plataforma  que  brinda  un
servicio web para el reconocimiento de emociones en texto, imágenes de rostros,
sonidos de voz y señales EEG de manera mono-modal y multimodal. PREMOC
yuda  a  los  desarrolladores  a  integrar  el  reconocimiento  de  afecto  a  sus
plicaciones  o  sistemas  de  software.  Cada  uno  de  los  reconocedores  se
implementó aplicando diferentes técnicas tanto para extraer características como
para  clasificar  emociones;  además  para  el  reconocimiento  multimodal  se
integraron  las  emociones  mediante  un  sistema  difuso.  Esta  plataforma  ya  está
siendo  utilizada  por  diferentes  proyectos  en  el  laboratorio  de  la  Maestría  en
Ciencias de la Computación del Instituto Tecnológico de Culiacán.
Palabras  claves:  Computación  afectiva,  inteligencia  artificial,  reconocimiento"
8b8b3375bc51ae357528a1f015c4d094418c9f71,"An Efficient Feature Extraction Method, Global Between Maximum and Local Within Minimum, and Its Applications","Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 176058, 15 pages
doi:10.1155/2011/176058
Research Article
An Efficient Feature Extraction Method,
Global Between Maximum and Local Within
Minimum, and Its Applications
Lei Wang,1, 2 Jiangshe Zhang,1, 2 and Fei Zang1, 2
School of Science, Xi’an Jiaotong University, Xi’an 710049, China
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University,
Xi’an 710049, China
Correspondence should be addressed to Lei Wang,
Received 28 March 2011; Revised 16 April 2011; Accepted 18 April 2011
Academic Editor: Jyh Horng Chou
Copyright q 2011 Lei Wang et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
ny medium, provided the original work is properly cited.
Feature extraction plays an important role in preprocessing procedure in dealing with small
sample size problems. Considering the fact that LDA, LPP, and many other existing methods are"
8b744786137cf6be766778344d9f13abf4ec0683,And Summarization by Sub-modular Inference,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
8b879863237d315997857a5585afb2bbbf78c622,Social Network Analysis as a Tool for Improving Enterprise Architecture,"Proceedings of the 5th International KES Symposium on Agents and Multi-agent
Systems, KES-AMSTA 2011. Manchester, UK, June 29 - July 1, 2011
Lecture Notes in Artificial Intelligence LNAI, Volume 6682, 2011,  pp. 651-660
DOI: 10.1007/978-3-642-22000-5_67
Social Network Analysis as a Tool
for Improving Enterprise Architecture
Przemysław Kazienko, Radosław Michalski, Sebastian Palus
Institute of Informatics, Wrocław University of Technology
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
{kazienko, radoslaw.michalski,"
8bb4d90d5b97e8d08d2aaa99e9c075a506b3108a,Generating Diverse Clusterings,"Generating Diverse Clusterings
Anonymous Author(s)"
8b64dbeac77fe8d6bf440311337451f9f61b9ea0,Image-based approaches to hair modeling,"Image-Based Approaches to Hair Modeling
Dissertation
Erlangung des Doktorgrades (Dr. rer. nat)
Mathematisch-Naturwissenschaftlichen Fakult¨at
Rheinischen Friedrich-Wilhelms-Universit¨at Bonn
vorgelegt von
Tom´as Lay Herrera
Havanna
Bonn, November 2012"
8bbafa3efb7b96adb95128ea2a30a363bfe06812,Towards usable authentication on mobile phones: An evaluation of speaker and face recognition on off-the-shelf handsets,"Towards usable authentication on mobile phones: An
evaluation of speaker and face recognition on off-the-shelf
handsets
Rene Mayrhofer
University of Applied Sciences Upper Austria
Softwarepark 11, A-4232 Hagenberg, Austria
University of Applied Sciences Upper Austria
Softwarepark 11, A-4232 Hagenberg, Austria
Thomas Kaiser
hagenberg.at"
8bf647fed40bdc9e35560021636dfb892a46720e,Learning to hash-tag videos with Tag2Vec,"Learning to Hash-tag Videos with Tag2Vec
Aditya Singh
Saurabh Saini
Rajvi Shah
CVIT, KCIS, IIIT Hyderabad, India
P J Narayanan
http://cvit.iiit.ac.in/research/projects/tag2vec
Figure 1. Learning a direct mapping from videos to hash-tags : sample frames from short video clips with user-given hash-tags
(left); a sample frame from a query video and hash-tags suggested by our system for this query (right)."
8b2f99b0106143fd0193fcbf2b07eba80dc7f8dd,Enhancing Recommender Systems for TV by Face Recognition,
8b29ee0a47efc11071ab8baec8369fd54970bfbb,Features Extraction for Low-Power Face Verification,"Thèse présentée à la faculté des sciences pour
l’obtention du grade de docteur ès sciences
Features Extraction for
Low-Power Face Verification
Patrick Stadelmann
Acceptée sur proposition du jury :
Prof. Fausto Pellandini, directeur de thèse
PD Dr. Michael Ansorge, co-directeur de thèse
Prof. Pierre-André Farine, rapporteur
Dr. Nicolas Blanc, rapporteur
Soutenue le 23 mai 2008
Institut de Microtechnique
Université de Neuchâtel"
8b20737b454fa8c2848979b5c76be9915a65a75f,Automated Object Recognition Using Multiple X-ray Views,"Automated Object Recognition
Using Multiple X-ray Views
Domingo Mery1 – Vladimir Riffo1, 2
Department of Computer Science, Pontificia
Universidad Católica de Chile.
Department of Computer Engineering and
Computer Science, Universidad de Atacama.
Av. Vicuña Mackenna 4860(143) – Santiago de
Chile.
Av. Copayapu 485 – Copiapó, Chile.
http://dmery.ing.puc.cl
http://www.ing.puc.cl/~vriffo1"
8bb21b1f8d6952d77cae95b4e0b8964c9e0201b0,Multimodal Interaction on a Social Robotic Platform,"Methoden
t 11/2013
(cid:2)(cid:2)(cid:2)
Multimodale Interaktion
uf einer sozialen Roboterplattform
Multimodal Interaction on a Social Robotic Platform
Jürgen Blume
Korrespondenzautor:
, Tobias Rehrl, Gerhard Rigoll, Technische Universität München
Zusammenfassung Dieser Beitrag beschreibt die multimo-
dalen Interaktionsmöglichkeiten mit der Forschungsroboter-
plattform ELIAS. Zunächst wird ein Überblick über die Ro-
oterplattform sowie die entwickelten Verarbeitungskompo-
nenten gegeben, die Einteilung dieser Komponenten erfolgt
nach dem Konzept von wahrnehmenden und agierenden Mo-
dalitäten. Anschließend wird das Zusammenspiel der Kom-
ponenten in einem multimodalen Spieleszenario näher be-
trachtet. (cid:2)(cid:2)(cid:2) Summary
This paper presents the mul-
timodal"
8b1db0894a23c4d6535b5adf28692f795559be90,How Reliable are Your Visual Attributes?,"Biometric and Surveillance Technology for Human and Activity Identification X, edited by Ioannis Kakadiaris,
Walter J. Scheirer, Laurence G. Hassebrook, Proc. of SPIE Vol. 8712, 87120Q · © 2013 SPIE
CCC code: 0277-786X/13/$18 · doi: 10.1117/12.2018974
Proc. of SPIE Vol. 8712  87120Q-1
From: http://proceedings.spiedigitallibrary.org/ on 06/07/2013 Terms of Use: http://spiedl.org/terms"
8bff7353fa4f75629ea418ca8db60477a751db93,Invariance of Weight Distributions in Rectified MLPs,"Invariance of Weight Distributions in Rectified MLPs
Russell Tsuchida 1 Farbod Roosta-Khorasani 2 3 Marcus Gallagher 1"
8b9db19d0d3e2a7d740be811810a043a04d6226a,An Attention-based Regression Model for Grounding Textual Phrases in Images,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
8bda09b2fb85c317c6361aee1935bcbcf87c1c70,Score Normalization in Multimodal Systems using Generalized Extreme Value Distribution,"Score Normalization in Multimodal
Systems using Generalized Extreme Value
Distribution
Renu Sharma1, 2                  1Centre for Development of Advanced Computing,
Mumbai, India
Sukhendu Das2                   2Indian Institute of Technology, Madras, India
Padmaja Joshi1"
8b632db02220806cd62e35fdebb3ede58243dee0,Recognizing Partially Occluded Faces from a Single Sample Per Class Using String-Based Matching,"Recognizing Partially Occluded Faces from a
Single Sample Per Class Using String-Based
Matching
Weiping Chen1 and Yongsheng Gao1,2
School of Engineering, Grif‌f‌ith University, Australia
National ICT Australia, Queensland Research Lab"
8b9e94fb3bb64389e9765ffde365862231b5972c,Fast Eye Tracking and Feature Measurement using a Multi-stage Particle Filter,
8bba26895022749e2273729f96051571eabc7b99,Natural language acquisition in recurrent neural architectures,"Natural Language Acquisition in
Recurrent Neural Architectures
Dissertation
submitted to the Universität Hamburg,
Faculty of Mathematics,
Informatics
nd Natural Sciences, Department
fulfilment
of the requirements for the degree of
Doctor rerum naturalium (Dr. rer. nat.)
Informatics,
in partial
Dipl.-Inform. Stefan Heinrich
Hamburg, 2016"
135fcdab631ab30ae837a743040f1c8751268e41,DeepStyle: Multimodal Search Engine for Fashion and Interior Design,"SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA
DeepStyle: Multimodal Search Engine
for Fashion and Interior Design
Ivona Tautkute1, 3, Tomasz Trzci´nski2, 3, Aleksander Skorupa3, Lukasz Brocki1 and Krzysztof Marasek1"
139bb2a4034a0498934185e8c6d515d8f9330e2a,One-Shot Segmentation in Clutter,"One-Shot Segmentation in Clutter
Claudio Michaelis 1 2 Matthias Bethge 1 2 3 4 Alexander S. Ecker 1 2 4"
13f9922632ff5311046229b849615fcd2f5d0c06,On Multi-scale differential features for face recognition,"On Multi-scale differential features for face recognition
Center for Intelligent Information Retrieval
S. Ravela
Allen R. Hanson
Vision Laboratory
Dept. of Computer Science, University of Massachusetts at Amherst, MA, 01002"
135fe2a0a0e6b726e5d81299edad4b3ce39d6614,Multichannel-Kernel Canonical Correlation Analysis for Cross-View Person Reidentification,"This is a pre-print version, the final version of the manuscript with more experiments can be found at:
https://doi.org/10.1145/3038916
Multi Channel-Kernel Canonical Correlation
Analysis for Cross-View Person Re-Identification
Giuseppe Lisanti, Svebor Karaman, Iacopo Masi"
13a82da2bfa24583caf78ab1d14b5cfa4798b3b3,Robust face hallucination using quantization-adaptive dictionaries,"Robust Face Hallucination using
Quantization-Adaptive Dictionaries
Reuben Farrugia
Christine Guillemot
IEEE Int. Conf. on Image Processing, Arizona, USA
6th September 2016"
137457bbf46009b25d7f6d853083b6da02bfd6b9,Following Eye Gaze Activates a Patch in the Posterior Temporal Cortex That Is not Part of the Human “Face Patch” System,"New Research
Cognition and Behavior
Following Eye Gaze Activates a Patch in the
Posterior Temporal Cortex That Is not Part of the
Human “Face Patch” System
Kira Marquardt,1,ⴱ Hamidreza Ramezanpour,1,2,3,ⴱ Peter W. Dicke,1 and Peter Thier1,4
DOI:http://dx.doi.org/10.1523/ENEURO.0317-16.2017
Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany,
Graduate School of Neural and Behavioural Sciences, University of Tübingen, 72074 Tübingen, Germany,
International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, 72074
Tübingen, Germany, 4Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076
Tübingen, Germany"
13ab059e6b592ca7bcb14337316ec1ac14aa5c5a,Constrained planar cuts - Object partitioning for point clouds,"Constrained Planar Cuts - Object Partitioning for Point Clouds
Markus Schoeler, Jeremie Papon and Florentin W¨org¨otter
Bernstein Center for Computational Neuroscience (BCCN)
III Physikalisches Institut - Biophysik, Georg-August University of G¨ottingen"
13b2e01030ae41983003e3ae53b5bb3ed3e764f0,Detection-Tracking for Efficient Person Analysis: The DetTA Pipeline,"Detection-Tracking for Efficient Person Analysis: The DetTA Pipeline
Stefan Breuers1, Lucas Beyer1, Umer Rafi1, Bastian Leibe1"
130bf256f4cc3dded4fb701f74f6a34992be639b,A Robust Multiwavelet-Based Watermarking Scheme for Copyright Protection of Digital Images Using Human Visual System,"The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013                                                               527
A Robust Multiwavelet-Based Watermarking
Scheme for Copyright Protection of Digital
Images using Human Visual System
Padmanabhareddy Vundela1 and Varadarajan Sourirajan2
Department of Information Technology, Vardhaman College of Engineering, India
Department of Electrical and Electronic Engineering, S.V. University College of Engineering, India"
13f8c13cfbf2a504f02745bd44da4ac40fd8f8df,Feature Sets and Dimensionality Reduction for Visual Object Detection,"Author manuscript, published in ""British Machine Vision Conference, Aberystwyth :
Royaume-Uni (2010)""
DOI : 10.5244/C.24.112"
134db6ca13f808a848321d3998e4fe4cdc52fbc2,Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 2, APRIL 2006
Dynamics of Facial Expression: Recognition of
Facial Actions and Their Temporal Segments
From Face Profile Image Sequences
Maja Pantic, Member, IEEE, and Ioannis Patras, Member, IEEE"
133dd0f23e52c4e7bf254e8849ac6f8b17fcd22d,Active Clustering with Model-Based Uncertainty Reduction,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
Active Clustering with Model-Based
Uncertainty Reduction
Caiming Xiong, David M. Johnson, and Jason J. Corso Senior Member, IEEE"
13f03aab62fc29748114a0219426613cf3ba76ae,MORPH-II: Feature Vector Documentation,"MORPH-II: Feature Vector Documentation
Troy P. Kling
NSF-REU Site at UNC Wilmington, Summer 2017
MORPH-II Subsets
Four different subsets of the MORPH-II database were selected for a wide range of purposes, including age
estimate, gender and race classification, and facial recognition.
• The “Full” data set contains all 55,134 mugshots [1].
• The “Partial” data set contains 1,000 mugshots randomly selected from the full data set.
• The “Partial (Even)” data set contains 1,000 mugshots selected from the full data set according to very
strict rules and is intended mainly for age estimation tasks. The subjects range in age from 21 to 45,
with exactly 40 subjects in each age category (thus the term “even” in the name of the data set). Of
these 40 subjects in each age group, exactly 30 are male and 10 are female, giving rise to a 3:1 gender
ratio. Additionally, half of the males in each age group are black, and the same goes for the females,
so there is a precise 1:1 ratio of black to white individuals. No subject is represented more than once
in this data set, so it should not be used for face recognition tasks.
• The “Recognition” data set contains 1,660 mugshots selected from the full data set according to certain
rules and is intended to be used for facial recognition tasks. There are 166 subjects present in the data
set – 83 males and 83 females – each of whom has exactly 10 images, usually taken over the span of
multiple years. No restrictions on age or race were placed on this data set.
Image Preprocessing"
134fe1c4f45cea3339c094fee817e7a024d73d88,Inferring door locations from a teammate's trajectory in stealth human-robot team operations,"Inferring door locations from a teammate’s trajectory in stealth
human-robot team operations
Jean Oh, Luis Navarro-Serment, Arne Supp´e, Anthony Stentz and Martial Hebert1"
1369e9f174760ea592a94177dbcab9ed29be1649,Geometrical facial modeling for emotion recognition,"Geometrical Facial Modeling for Emotion Recognition
Giampaolo L. Libralon and Roseli A. F. Romero"
133900a0e7450979c9491951a5f1c2a403a180f0,Social Grouping for Multi-Target Tracking and Head Pose Estimation in Video,"JOURNAL OF LATEX CLASS FILES
Social Grouping for Multi-target Tracking and
Head Pose Estimation in Video
Zhen Qin and Christian R. Shelton"
131059ea24073d08de0bd153f9caddc123911e51,Facial emotional recognition in schizophrenia: preliminary results of the Virtual Reality Program for Facial Emotional Recognition Reconhecimento emocional de faces na esquizofrenia: resultados preliminares do Programa de Realidade Virtual para o Reconhecimento Emocional de Faces,"Facial emotional recognition in schizophrenia: preliminary results of the Virtual
Reality Program for Facial Emotional Recognition
Reconhecimento emocional de faces na esquizofrenia: resultados preliminares do Programa de Realidade Virtual
para o Reconhecimento Emocional de Faces
Teresa souTo1,2, alexandre BapTisTa1, diana Tavares1,3, CrisTina Queirós1,2, anTónio MarQues1,3
Psychosocial Rehabilitation Laboratory of Faculty of Psychology and Educational Sciences, Porto University/School of Allied Health Sciences, Porto Polytechnic Institute (FPCEUP/ESTSPIPP), Porto,
Portugal.
FPCEUP, Porto, Portugal.
ESTSPIPP, Porto, Portugal.
Institution where the study was elaborated: Faculty of Psychology and Educational Sciences, Porto University, Portugal.
Received: 11/6/2012 – Accepted: 2/14/2013"
13b8d657f0f9a0178339570bdc153bfd10a81300,Harvesting large-scale weakly-tagged image databases from the web,"Harvesting Large-Scale Weakly-Tagged Image Databases from the Web
Jianping Fan1, Yi Shen1, Ning Zhou1, Yuli Gao2
Department of Computer Science, UNC-Charlotte, NC28223, USA
Multimedia Interaction and Understanding, HP Labs, Palo Alto, CA94304, USA"
13db9466d2ddf3c30b0fd66db8bfe6289e880802,Transfer Subspace Learning Model for Face Recognition at a Distance,"I.J. Image, Graphics and Signal Processing, 2017, 1, 27-32
Published Online January 2017 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijigsp.2017.01.04
Transfer Subspace Learning Model for Face
Recognition at a Distance
Alwin Anuse
MIT, Pune ,India
Email:
Nilima Deshmukh
AISSM’S IOT,India
Email:
Vibha Vyas
College of Engineering Pune,India
Email:
learning  algorithms  work"
13ec6666b8b722ad9eb68a21a302e3f2f1ab4df7,Biometric Human Identification of Hand Geometry Features Using Discrete Wavelet Transform,"Biometric Human Identification of Hand
Geometry Features Using Discrete
Wavelet Transform
Osslan Osiris Vergara Villegas, Humberto de Jesús Ochoa Domínguez,
Vianey Guadalupe Cruz Sánchez, Leticia Ortega Maynez
nd Hiram Madero Orozco
Universidad Autónoma de Ciudad Juárez
Instituto de Ingeniería y Tecnología
Mexico
. Introduction
Since the security factor became a basic need for civilization, a lot of systems have been
developed. Those systems, try to ensure the safety in all the things that driving a certain
degree of exclusivity. Historically, keys, cards and passwords were used as security systems;
however, these methods are vulnerable to loss and theft. As a result biometric identification
methods emerge in order to tackle the disadvantages of the non biometric classical methods.
Biometrics,
is an emerging technology that addresses the automated identification of
individuals, based on their physiological and behavioral traits. The main advantage of
iometric methods is the ability to recognize, which is made by means of a physical feature or
unique pattern (Jain et al. (2008)). With these methods and individual can hardly be victim"
13ae3c8afef5a0d6f4c9e684da9fc1fa96caaeb6,Online Anomaly Detection in Crowd Scenes via Structure Analysis,"Online Anomaly Detection in Crowd Scenes
via Structure Analysis
Yuan Yuan, Senior Member, IEEE, Jianwu Fang, and Qi Wang"
13caf4d2e0a4b6fcfcd4b9e8e2341b8ebd38258d,Joint Learning of Siamese CNNs and Temporally Constrained Metrics for Tracklet Association,"Joint Learning of Siamese CNNs and Temporally
Constrained Metrics for Tracklet Association
Bing Wang, Student Member, IEEE, Li Wang, Member, IEEE, Bing Shuai, Student Member, IEEE,
Zhen Zuo, Student Member, IEEE, Ting Liu, Student Member, IEEE, Kap Luk Chan, Member, IEEE, and
Gang Wang, Member, IEEE"
13aac86217231a7d118ecdff444ee07234fcff50,Classification via Incoherent Subspaces,"Classification via Incoherent Subspaces
Karin Schnass, Pierre Vandergheynst, Senior Member, IEEE"
13141284f1a7e1fe255f5c2b22c09e32f0a4d465,Object Tracking by Oversampling Local Features,"Object Tracking by
Oversampling Local Features
Federico Pernici and Alberto Del Bimbo"
1394ca71fc52db972366602a6643dc3e65ee8726,EmoReact: a multimodal approach and dataset for recognizing emotional responses in children,"See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/308407783
EmoReact:	A	Multimodal	Approach	and	Dataset
for	Recognizing	Emotional	Responses	in	Children
Conference	Paper	·	November	2016
DOI:	10.1145/2993148.2993168
CITATIONS
READS
authors,	including:
Behnaz	Nojavanasghari
University	of	Central	Florida
PUBLICATIONS			20	CITATIONS
Tadas	Baltrusaitis
Carnegie	Mellon	University
0	PUBLICATIONS			247	CITATIONS
SEE	PROFILE
SEE	PROFILE
Charles	E.	Hughes
University	of	Central	Florida
85	PUBLICATIONS			1,248	CITATIONS
SEE	PROFILE"
135fc59c8adb8d97a0a8dacf615f1b18a2102372,Language-Based Image Editing with Recurrent Attentive Models,"Language-Based Image Editing with Recurrent Attentive Models
Jianbo Chen∗, Yelong Shen†, Jianfeng Gao†, Jingjing Liu†, Xiaodong Liu†
University of California, Berkeley∗ and Microsoft Research†
yeshen, jfgao, jingjl,"
1373195c26eab581138579f7389cdf8b7a94a4bb,Synscapes: A Photorealistic Synthetic Dataset for Street Scene Parsing,"Synscapes: A Photorealistic Synthetic Dataset for Street Scene Parsing
Magnus Wrenninge1,∗ Jonas Unger1,2,†
7D Labs
Link¨oping University, Sweden
Figure 1: Example image from Synscapes."
13631379de6487fd0571e5919f4efb65d16c1633,Accelerated Inference in Markov Random Fields via Smooth Riemannian Optimization,"Accelerated Inference in Markov Random Fields
via Smooth Riemannian Optimization
Siyi Hu and Luca Carlone"
133da0d8c7719a219537f4a11c915bf74c320da7,A Novel Method for 3D Image Segmentation with Fusion of Two Images using Color K-means Algorithm,"International Journal of Computer Applications (0975 – 8887)
Volume 123 – No.4, August 2015
A Novel Method for 3D Image Segmentation with Fusion
of Two Images using Color K-means Algorithm
Neelam Kushwah
Dept. of CSE
ITM Universe
Gwalior
Priusha Narwariya
Dept. of CSE
ITM Universe
Gwalior"
134dd3bb637b51c61fa9d2332f11e39efc0b359a,High-level activity learning and recognition in structured environments,"High-level activity learning and recognition in
structured environments
John Patrick Greenall
Submitted in accordance with the requirements
for the degree of Doctor of Philosophy.
The University of Leeds
School of Computing
June 2012"
133f01aec1534604d184d56de866a4bd531dac87,Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics,"Effective Unconstrained Face Recognition by
Combining Multiple Descriptors and Learned
Background Statistics
Lior Wolf, Member, IEEE, Tal Hassner, and Yaniv Taigman"
13841d54c55bd74964d877b4b517fa94650d9b65,Generalised ambient reflection models for Lambertian and Phong surfaces,"Generalised Ambient Reflection Models for Lambertian and
Phong Surfaces
Author
Zhang, Paul, Gao, Yongsheng
Published
Conference Title
Proceedings of the 2009 IEEE International Conference on Image Processing (ICIP 2009)
https://doi.org/10.1109/ICIP.2009.5413812
Copyright Statement
© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/
republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.
Downloaded from
http://hdl.handle.net/10072/30001
Griffith Research Online
https://research-repository.griffith.edu.au"
13451899558d7217206b275ca0bb1f48fa4afdd9,Hidden Markov Models Training by a Particle Swarm Optimization Algorithm,"Journal of Mathematical Modelling and Algorithms (2007) 6: 175–193
DOI: 10.1007/s10852-005-9037-7
# Springer 2006
Hidden Markov Models Training by a Particle
Swarm Optimization Algorithm
, NICOLAS MONMARCHE´
SE´ BASTIEN AUPETIT
nd MOHAMED SLIMANE
Laboratoire d’Informatique, Polytech’Tours, Universite´ Franc¸ois-Rabelais de Tours,
64 avenue Jean Portalis, 37200 Tours, France.
e-mail: {sebastien.aupetit, nicolas.monmarche,
(Received 16 July 2005; in final form 22 December 2005; published online 28 February 2006)
In this work we consider the problem of Hidden Markov Models (HMM) training. This"
132781c1b2495ff0e792b46b94fdf33867394e4a,Autistic Traits and Symptoms of Social Anxiety are Differentially Related to Attention to Others’ Eyes in Social Anxiety Disorder,"J Autism Dev Disord (2017) 47:3814–3821
DOI 10.1007/s10803-016-2978-z
S.I. : ANXIETY IN AUTISM SPECTRUM DISORDERS
Autistic Traits and Symptoms of Social Anxiety are Differentially
Related to Attention to Others’ Eyes in Social Anxiety Disorder
Johan Lundin Kleberg1 · Jens Högström2,3 · Martina Nord2,3 · Sven Bölte4,5 ·
Eva Serlachius2,3 · Terje Falck‑Ytter1,4,5
Published online: 20 December 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com"
132f88626f6760d769c95984212ed0915790b625,Exploring Entity Resolution for Multimedia Person Identification,"UC Irvine
UC Irvine Electronic Theses and Dissertations
Title
Exploring Entity Resolution for Multimedia Person Identification
Permalink
https://escholarship.org/uc/item/9t59f756
Author
Zhang, Liyan
Publication Date
014-01-01
Peer reviewed|Thesis/dissertation
eScholarship.org
Powered by the California Digital Library
University of California"
13f6ab2f245b4a871720b95045c41a4204626814,Cortex commands the performance of skilled movement,"RESEARCH ARTICLE
Cortex commands the performance of
skilled movement
Jian-Zhong Guo, Austin R Graves, Wendy W Guo, Jihong Zheng, Allen Lee,
Juan Rodrı´guez-Gonza´ lez, Nuo Li, John J Macklin, James W Phillips,
Brett D Mensh, Kristin Branson, Adam W Hantman*
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United
States"
138778d75fc4e2fd490897ac064b9ac84b6b9f04,Generation and visualization of emotional states in virtual characters,"COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2008; 19: 259–270
Published online 25 July 2008 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/cav.234
...........................................................................................
Generation and visualization of
emotional states in virtual characters
By Diana Arellano*, Javier Varona and Francisco J. Perales
..........................................................................
This paper presents an affective model that determines the emotional state of a character
ccording to the personality traits and the experienced emotions. We consider an emotional
state as the layer between personality and emotion. The proposed affective model offers a
mapping between emotions and emotional states. To evidence emotional states of a virtual
haracter, we can attribute them facial expressions based on their associated emotions.
Facial expressions for intermediate emotions are generated automatically from expressions
for universal emotions. The experiments show coherent emotional states produced by a
simulated story. They also present how the corresponding emotions were represented
through dynamic and static facial expressions. Finally, the obtained results demonstrate the
satisfactory recognition by a group of people unfamiliar with the work described. Copyright
© 2008 John Wiley & Sons, Ltd."
13afc4f8d08f766479577db2083f9632544c7ea6,Multiple kernel learning for emotion recognition in the wild,"Multiple Kernel Learning for
Emotion Recognition in the Wild
Karan Sikka, Karmen Dykstra, Suchitra Sathyanarayana,
Gwen Littlewort and Marian S. Bartlett
Machine Perception Laboratory
EmotiW Challenge, ICMI, 2013"
13c4a4359e9d7f5b2abe1b9542c0950946b0565a,Learning sparse tag patterns for social image classification,"This document is downloaded from DR-NTU, Nanyang Technological
University Library, Singapore.
Title
Learning sparse tag patterns for social image
lassification
Author(s)
Lin, Jie; Duan, Ling-Yu; Yuan, Junsong; Li, Qingyong;
Luo, Siwei
Citation
http://hdl.handle.net/10220/12960
Rights"
13f07d51c073964d11f9af6463fe3ffe5475c393,"Part-Based Pedestrian Detection and Feature-Based Tracking for Driver Assistance: Real-Time, Robust Algorithms, and Evaluation","This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Part-Based Pedestrian Detection and Feature-Based
Tracking for Driver Assistance: Real-Time,
Robust Algorithms, and Evaluation
Antonio Prioletti, Student Member, IEEE, Andreas Møgelmose, Student Member, IEEE, Paolo Grisleri,
Mohan Manubhai Trivedi, Fellow, IEEE, Alberto Broggi, Senior Member, IEEE, and
Thomas B. Moeslund, Member, IEEE"
13188a88bbf83a18dd4964e3f89d0bc0a4d3a0bd,Image Normalization Robust using Histogram Equalization and Logarithm Transform Frequency DCT Coefficients for Illumination in Facial Images,"Dr. V. S. Manjula
HOD, Department of Computer Science, St. Joseph College of Information Technology, Songea, Tanzania"
13e348264fe1077caa44e1b59c71e67a8e4b5ad9,Effect of Eyes Detection and Position Estimation Methods on the Accuracy of Comparative Testing of Face Detection Algorithms,"EFFECT OF EYES DETECTION AND POSITION ESTIMATION METHODS
ON THE ACCURACY OF COMPARATIVE TESTING OF FACE
DETECTION ALGORITHMS1
N. Degtyarev, O. Seredin
Tula State University, 92 Lenin Ave., Tula 300600, Russian Federation;
Phone: +7(4872)353637; E-mail:
Many  published  comparisons  of  face  detection  algorithms  used  different  evaluation
procedures for each algorithm or even contain only a summary of the originally reported
performance among several face detection algorithms on the pair of small datasets. Deg-
tyarev et al. have proposed the FD algorithm evaluation procedure containing model of
face  representation  conversion  unifying  the  FD  algorithms  comparison  procedures,
which  makes  such  evaluation  more  reliable.  However,  there  is  no  evidence  that  such
""conversion"" does not diminish the localization accuracy. The aim of this work is to ex-
mined the effects of two different face representation conversion techniques - eyes es-
timation  model proposed by Degtyarev et  al.  and highly scored eyes detection method
proposed by Bolme et al. and based on ASE filters - via routine testing.
Introduction
Face  detection  (FD)  algorithms  are  getting
widely used in the modern world: security sys-
tems, interactive user interfaces, advertisement"
13d9da779138af990d761ef84556e3e5c1e0eb94,Learning to Locate Informative Features for Visual Identification,"Int J Comput Vis (2008) 77: 3–24
DOI 10.1007/s11263-007-0093-5
Learning to Locate Informative Features for Visual Identification
Andras Ferencz · Erik G. Learned-Miller ·
Jitendra Malik
Received: 18 August 2005 / Accepted: 11 September 2007 / Published online: 9 November 2007
© Springer Science+Business Media, LLC 2007"
7f511a6a2b38a26f077a5aec4baf5dffc981d881,Low-Latency Human Action Recognition with Weighted Multi-Region Convolutional Neural Network,"LOW-LATENCY HUMAN ACTION RECOGNITION WITH WEIGHTED MULTI-REGION
CONVOLUTIONAL NEURAL NETWORK
Yunfeng Wang(cid:63), Wengang Zhou(cid:63), Qilin Zhang†, Xiaotian Zhu(cid:63), Houqiang Li(cid:63)
(cid:63)University of Science and Technology of China, Hefei, Anhui, China
HERE Technologies, Chicago, Illinois, USA"
7ff83f10e49e81ce6f66270e8f3f42dd2c6eb3ed,PIRM Challenge on Perceptual Image Enhancement on Smartphones: Report,"PIRM Challenge on Perceptual Image Enhancement
on Smartphones: Report
Andrey Ignatov, Radu Timofte, Thang Van Vu, Tung Minh Luu, Trung X Pham, Cao Van Nguyen,
Yongwoo Kim, Jae-Seok Choi, Munchurl Kim, Jie Huang, Jiewen Ran, Chen Xing, Xingguang Zhou,
Pengfei Zhu, Mingrui Geng, Yawei Li, Eirikur Agustsson, Shuhang Gu, Luc Van Gool, Etienne de Stoutz,
Nikolay Kobyshev, Kehui Nie, Yan Zhao, Gen Li, Tong Tong, Qinquan Gao, Liu Hanwen, Pablo Navarrete
Michelini, Zhu Dan, Hu Fengshuo, Zheng Hui, Xiumei Wang, Lirui Deng, Rang Meng, Jinghui Qin, Yukai
Shi, Wushao Wen, Liang Lin, Ruicheng Feng, Shixiang Wu, Chao Dong, Yu Qiao, Subeesh Vasu, Nimisha
Thekke Madam, Praveen Kandula, A. N. Rajagopalan, Jie Liu, Cheolkon Jung ∗"
7fa62c091a14830ae256dc00b512f7d4b4cf5b94,Stabilizing GAN Training with Multiple Random Projections,"Under review as a conference paper at ICLR 2018
Stabilizing GAN Training with
Multiple Random Projections
Anonymous authors
Paper under double-blind review"
7ff42ee09c9b1a508080837a3dc2ea780a1a839b,Data Fusion for Real-time Multimodal Emotion Recognition through Webcams and Microphones in E-Learning,"Data Fusion for Real-time Multimodal Emotion Recognition through Webcams
nd Microphones in E-Learning
Kiavash Bahreini*, Rob Nadolski*, Wim Westera*
*Welten Institute, Research Centre for Learning, Teaching and Technology, Faculty of
Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg
77, 6419 AT Heerlen, The Netherlands
{kiavash.bahreini, rob.nadolski,"
7fbff9fa2ba7a7ff57a433e8bb19cfd99d52132d,A probabilistic framework for car detection in images using context and scale,"RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012
978-1-4673-1405-3/12/$31.00 ©2012 IEEE"
7fdcb6638a9e01986cd8fb4133b4448700087faf,Expression-Invariant Multispectral Face Recognition: You Can Smile Now!,"Expression-Invariant Multispectral Face Recognition:
You Can Smile Now!
Ioannis A. Kakadiarisa, George Passalisa, George Todericia, Yunliang Lua,
Nikos Karampatziakisa, Najam Murtuzaa, Theoharis Theoharisa
Computational Biomedicine Lab, Dept. of Computer Science, Univ. of Houston, TX, USA"
7f533bd8f32525e2934a66a5b57d9143d7a89ee1,Audio-Visual Identity Grounding for Enabling Cross Media Search,"Audio-Visual Identity Grounding for Enabling Cross Media Search
Kevin Brady, MIT Lincoln Laboratory
Paper ID 22"
7f44f8a5fd48b2d70cc2f344b4d1e7095f4f1fe5,Sparse Output Coding for Scalable Visual Recognition,"Int J Comput Vis (2016) 119:60–75
DOI 10.1007/s11263-015-0839-4
Sparse Output Coding for Scalable Visual Recognition
Bin Zhao1 · Eric P. Xing1
Received: 15 May 2013 / Accepted: 16 June 2015 / Published online: 26 June 2015
© Springer Science+Business Media New York 2015"
7f4bc8883c3b9872408cc391bcd294017848d0cf,The Multimodal Focused Attribute Model : A Nonparametric Bayesian Approach to Simultaneous Object Classification and Attribute Discovery,"Computer
Sciences
Department
The Multimodal Focused Attribute Model:  A Nonparametric
Bayesian Approach to Simultaneous Object Classification and
Attribute Discovery
Jake Rosin
Charles R. Dyer
Xiaojin Zhu
Technical Report #1697
January 2012"
7f6061c83dc36633911e4d726a497cdc1f31e58a,YouTube-8M: A Large-Scale Video Classification Benchmark,"YouTube-8M: A Large-Scale Video Classification
Benchmark
Sami Abu-El-Haija
George Toderici
Nisarg Kothari
Joonseok Lee
Paul Natsev
Balakrishnan Varadarajan
Sudheendra Vijayanarasimhan
Google Research"
7f65bbc93cf414d4889773b697b1833e85f0a15f,Neural Perspective to Jigsaw Puzzle Solving,"Neural Perspective to Jigsaw Puzzle Solving
Viveka Kulharia⇤, Arnab Ghosh⇤, Nikhil Patil?, Piyush Rai
Department of Computer Science, IIT Kanpur
Kanpur, India"
7ff0ad5c34f02b9c394ed0d8a3db9c270dc70e44,Learning a temporally invariant representation for visual tracking,"LEARNING A TEMPORALLY INVARIANT REPRESENTATION FOR VISUAL TRACKING
Chao Ma(cid:63)†, Xiaokang Yang(cid:63), Chongyang Zhang(cid:63), and Ming-Hsuan Yang†
(cid:63)Shanghai Jiao Tong University, China
University of California at Merced, USA"
7f0fadae16cc74b6176ba940aa2f8b5a0a67e09e,An Expert Local Mesh Correlation Histograms for Biomedical Image Indexing and Retrieval,"CHAPTER 1
An Expert Local Mesh Correlation Histograms for
Biomedical Image Indexing and Retrieval
Santosh Kumar Vipparthi, Subrahmanyam Murala, S.K. Nagar and Anil
Balaji Gonde
Santosh Kumar Vipparthi
Department of Computer Science and Engineering
Malaviya National Institute of Technology
Jaipur, India
e-mail:
Subrahmanyam Murala
Department of Electrical Engineering
Indian Institute of Technology Ropar
India
e-mail:
S.K. Nagar
Department of Electrical Engineering
Indian Institute of Technology Banaras Hindu University
India
e-mail:"
7f7c3a99923549601c81cd5e9659ca01e8a42f47,Zero-Shot Learning of Language Models for Describing Human Actions Based on Semantic Compositionality of Actions,"PACLIC 28
Zero-Shot Learning of Language Models for Describing Human Actions
Based on Semantic Compositionality of Actions
Hideki ASOH
National Institute of
Graduate School of Humanities and Sciences,
Ichiro KOBAYASHI
Ochanomizu University
Bunkyo-ku, Tokyo 112-8610 Japan
Advanced Industrial Science and Technology
Tsukuba, Ibaraki 305-8568 Japan"
7f36dd9ead29649ed389306790faf3b390dc0aa2,Movement Differences between Deliberate and Spontaneous Facial Expressions: Zygomaticus Major Action in Smiling.,"MOVEMENT DIFFERENCES BETWEEN DELIBERATE
AND SPONTANEOUS FACIAL EXPRESSIONS:
ZYGOMATICUS MAJOR ACTION IN SMILING
Karen L. Schmidt, Zara Ambadar, Jeffrey F. Cohn, and L. Ian Reed"
7f217ff1f3c21c84ed116d32e3b8d1509a306fbd,Direct Optimization through arg max for Discrete Variational Auto-Encoder,"Direct Optimization through arg max for Discrete
Variational Auto-Encoder
Guy Lorberbom (Technion), Andreea Gane (MIT),
Tommi Jaakkola (MIT), Tamir Hazan (Technion)."
7f6cd03e3b7b63fca7170e317b3bb072ec9889e0,A Face Recognition Signature Combining Patch-based Features with Soft Facial Attributes,"A Face Recognition Signature Combining Patch-based
Features with Soft Facial Attributes
L. Zhang, P. Dou, I.A. Kakadiaris
Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204"
7fa41631cdef8f7fba7e1289dd4c5f3723b172ab,A robust and isotropic curved surface representation for 3D faces description,"A robust and isotropic curved surface representation for 3D faces
description
Majdi Jribi and Faouzi Ghorbel"
7f6a527a3dc2e526aa59a57cadb20ff727124973,A comparison of adaptive matchers for screening of faces in video surveillance,"012 IEEE Symposium on
Computational Intelligence for
Security and Defence Applications
(CISDA 2012)
Ottawa, Ontario, Canada
1 – 13 July 2012
IEEE Catalog Number:
ISBN:
CFP12SDA-PRT
978-1-4673-1416-9"
7f9cacb5fc126f87dbf53dd547a9fb9f58ded557,RoadNet-v2: A 10 ms Road Segmentation Using Spatial Sequence Layer,"RoadNet-v2: A 10 ms Road Segmentation Using
Spatial Sequence Layer
Yecheng Lyu and Xinming Huang
Department of Electrical and Computer Engineering
Worcester Polytechnic Institute
Worcester, MA 01609, USA"
7f3c6bf191a8633d10fad32e23fa06a3c925ffee,The benefits of simply observing: mindful attention modulates the link between motivation and behavior.,"015, Vol. 108, No. 1, 148 –170
0022-3514/15/$12.00
© 2014 American Psychological Association
http://dx.doi.org/10.1037/a0038032
The Benefits of Simply Observing: Mindful Attention Modulates the Link
Between Motivation and Behavior
Esther K. Papies
Utrecht University
Mike Keesman
Utrecht University
Tila M. Pronk
Tilburg University
Lawrence W. Barsalou
Emory University
Mindful attention, a central component of mindfulness meditation, can be conceived as becoming aware
of one’s thoughts and experiences and being able to observe them as transient mental events. Here, we
present a series of studies demonstrating the effects of applying this metacognitive perspective to one’s
spontaneous reward responses when encountering attractive stimuli. Taking a grounded cognition
perspective, we argue that reward simulations in response to attractive stimuli contribute to appetitive
ehavior and that motivational states and traits enhance these simulations. Directing mindful attention at"
7f97a36a5a634c30de5a8e8b2d1c812ca9f971ae,Incremental Classifier Learning with Generative Adversarial Networks,"Incremental Classifier Learning with Generative Adversarial Networks
Yue Wu1 Yinpeng Chen2 Lijuan Wang2 Yuancheng Ye3
Zicheng Liu2 Yandong Guo2 Zhengyou Zhang2 Yun Fu1
Northeastern University 2Microsoft Research 3City University of New York"
7ff636c82898a35d3239573f8e3a29da89c73ed4,Automatic Detection of the Uterus and Fallopian Tube Junctions in Laparoscopic Images,"Automatic Detection of the Uterus and
Fallopian Tube Junctions in Laparoscopic Images
Kristina Prokopetc, Toby Collins, and Adrien Bartoli
Image Science for Interventional Techniques (ISIT),
UMR 6284 CNRS, Universit´e d(cid:48)Auvergne, France"
7fc5ab3743e6e9a2f4fe70152440e13a673e239b,Improved Face Recognition Rate Using HOG Features and SVM Classifier,"IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)
e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 4, Ver. I (Jul.-Aug .2016), PP 34-44
www.iosrjournals.org
Improved Face Recognition Rate Using HOG Features and SVM
Classifier
Harihara Santosh Dadi, Gopala Krishna Mohan Pillutla"
7f04b65f2c6f96c7ce000f537fb691a93f61db52,Geometrical and Visual Feature Quantization for 3D Face Recognition,
7f268f29d2c8f58cea4946536f5e2325777fa8fa,Facial Emotion Recognition in Curvelet Domain,"Facial Emotion Recognition in Curvelet Domain
Gyanendra K Verma and Bhupesh Kumar Singh
Indian Institute of Informaiton Technology, Allahabad, India
Allahabad, India - 211012"
7ff1c4e0ad0dae92d4f25b93783fadde8f07276d,An efficient example-based approach for image super-resolution,"IEEE Int. Conference Neural Networks & Signal Processing
Zhenjiang, China, June 8~10, 2008
AN EFFICIENT EXAMPLE-BASED APPROACH FOR IMAGE
SUPER-RESOLUTION
Xiaoguang Li1,2, Kin Man Lam2, Guoping Qiu3, Lansun Shen1 and Suyu Wang1
. Signal & Information Processing Lab. Beijing University of Technology, Beijing, China, 100124
. Centre for Signal Processing, Department of Electronic and Information Engineering, The Hong Kong
Polytechnic University, Hong Kong
. Department of Computer Science, Nottingham University, UK"
7f3a73babe733520112c0199ff8d26ddfc7038a0,Robust Face Identification with Small Sample Sizes using Bag of Words and Histogram of Oriented Gradients,
7fd97bc23c85213b8b2e4d28264f04ce6dc84e74,Optimal Transformation Estimation with Semantic Cues,"Optimal Transformation Estimation with Semantic Cues
Danda Pani Paudel
Computer Vision Laboratory
D-ITET, ETH Zurich
Adlane Habed
ICube Laboratory
CNRS, University of Strasbourg
Luc Van Gool
Computer Vision Laboratory
D-ITET, ETH Zurich"
7af38f6dcfbe1cd89f2307776bcaa09c54c30a8b,Learning in Computer Vision and Beyond: Development,"eaig i C	e Vii ad Beyd:
Devee
h . Weg
Deae f C	e Sciece
ichiga Sae Uiveiy
Ea aig  48824
Abac
Thi chae id	ce wha i caed he deveea aach  c	e vii i
aic	a ad ai(cid:12)cia ieigece i geea.  dic	e he c	e baic aadig f de
veig a ye ad i f	daea iiai. The deveea aach i ivaed
y h	a cgiive devee f ifacy  ad	hd. A deveea eaig ag
ih i deeied befe he \bih"" f he ye. Afe he \bih"" i eabe he ye
 ea ew ak wih	 a eed f egaig. The aj ga f he deveea
ach i  eaize a	ai f geea		e eaig ha eabe achie  ef
deveea eaig ve a g eid. S	ch eaig i cd	ced i a de iia  he
way aia ad h	a ea. The achie 	 ea diecy f ci		 ey i
	 ea whie ieacig wih he evie ic	dig h	a eache.  hi eaig
de deveig ieige ga f vai	 ak i eaized h	gh ea	ie ieac"
7a1828e181e3c8bd014c7e5fc1bcc417f122c18c,Face Perception and Test Reliabilities in Congenital Prosopagnosia in Seven Tests,"i-Perception
January-February 2016: 1–37
! The Author(s) 2016
DOI: 10.1177/2041669515625797
ipe.sagepub.com
Article
Face Perception and Test
Reliabilities in Congenital
Prosopagnosia in Seven Tests
Janina Esins
Department of Human Perception, Cognition and Action, Max Planck
Institute for Biological Cybernetics, Tu¨bingen, Germany
Johannes Schultz
Department of Psychology, Durham University, Durham, UK
Claudia Stemper
Institute of Human Genetics, Westfa¨lische Wilhelms-Universita¨t
Mu¨nster, Mu¨nster, Germany
Ingo Kennerknecht
Institute of Human Genetics, Westfa¨lische Wilhelms-Universita¨t
Mu¨nster, Mu¨nster, Germany"
7ab41d2fb37079d20db5e25fd6e71755673f82f0,Building Emotional Machines: Recognizing Image Emotions Through Deep Neural Networks,"Building Emotional Machines: Recognizing Image
Emotions through Deep Neural Networks
Hye-Rin Kim, Yeong-Seok Kim, Seon Joo Kim, In-Kwon Lee"
7af6d86139aa86cb5897904563a9f67c016a176d,Performance of Correlation Filters in Facial Recognition,"Performance of Correlation Filters in Facial
Recognition
Everardo Santiago-Ramirez, J.A. Gonzalez-Fraga, and J.I. Ascencio-Lopez
Facultad de Ciencias, Universidad Autónoma de Baja California, Km. 103, Carretera Tijuana-
Ensenada, Ensenada, Baja California C. P. 22860"
7a81967598c2c0b3b3771c1af943efb1defd4482,Do We Need More Training Data?,"Do We Need More Training Data?
Xiangxin Zhu · Carl Vondrick · Charless C. Fowlkes · Deva Ramanan"
7a7a53b05e22305b2963c05ac89830e099146767,Assessing fish abundance from underwater video using deep neural networks,"Assessing fish abundance from underwater video
using deep neural networks
Ranju Mandal∗, Rod M. Connolly†, Thomas A. Schlacher‡ and Bela Stantic∗
School of ICT, Griffith Sciences, Griffith University, QLD 4222, Australia
Australian Rivers Institute - Coast & Estuaries and
School of Environment and Science, Griffith University, QLD 4222, Australia
School of Science and Engineering, University of the Sunshine Coast, QLD 4558, Australia
{r.mandal, r.connolly,"
7ace44190729927e5cb0dd5d363fcae966fe13f7,A bag-of-features approach based on Hue-SIFT descriptor for nude detection,"7th European Signal Processing Conference (EUSIPCO 2009)
Glasgow, Scotland, August 24-28, 2009
A BAG-OF-FEATURES APPROACH BASED ON
HUE-SIFT DESCRIPTOR FOR NUDE DETECTION
Ana P. B. Lopes1,2, Sandra E. F. de Avila1, Anderson N. A. Peixoto1
Rodrigo S. Oliveira1 and Arnaldo de A. Ara´ujo1
Computer Science Department – Federal University of Minas Gerais
Av. Antˆonio Carlos, 6627, Pampulha, CEP 31270–901, Belo Horizonte, MG, Brazil
Exact and Technological Sciences Department – State University of Santa Cruz
Rodovia Ilh´eus-Itabuna, km 16 – Pavilh˜ao Jorge Amado, CEP 45600-000, Ilh´eus, BA, Brazil"
7ae0212d6bf8a067b468f2a78054c64ea6a577ce,Human Face Processing Techniques With Application To Large Scale Video Indexing,"Human Face Processing Techniques
With Application To
Large Scale Video Indexing
LE DINH DUY
DOCTOR OF
PHILOSOPHY
Department of Informatics,
School of Multidisciplinary Sciences,
The Graduate University for Advanced Studies (SOKENDAI)
006 (School Year)
September 2006"
7ab9035ec3871bbeadf1095afbe1ff9d9cb25480,DLBP and SVD Fusion for 3 D Face Recognition Using Range Image,"Computer Science and Information Technology 5(2): 61-65, 2017
DOI: 10.13189/csit.2017.050203
http://www.hrpub.org
DLBP and SVD Fusion for 3D Face Recognition Using
Range Image
El Mahdi Barrah, Rachid Ahdid, Said Safi, Abdessamad Malaoui∗
Interdisciplinary Laboratory of Research in Sciences and Technologies (LIRST), Sultan Moulay Slimane University, Bni Mellal, Morocco
Copyright c(cid:13)2017 by authors, all rights reserved. Authors agree that this article remains permanently
open access under the terms of the Creative Commons Attribution License 4.0 International License"
7a540e0e2049a8f0118be2eab9a2ec5f57e022c9,Deep Learning Methods for Classification with Limited Training Data,"Deep Learning Methods for Classification with
Limited Training Data
Seminar Report : Spring 2017
submitted by
Aviral Kumar
(140070031)
under the guidance of
Prof. Sunita Sarawagi
Department of Computer Science and Engineering
Indian Institute of Technology Bombay
April, 2017"
7a0fb972e524cb9115cae655e24f2ae0cfe448e0,Facial Expression Classification Using RBF AND Back-Propagation Neural Networks,"Facial Expression Classification Using RBF AND Back-Propagation Neural Networks
R.Q.Feitosa1,2,
M.M.B.Vellasco1,2,
D.T.Oliveira1,
D.V.Andrade1,
S.A.R.S.Maffra1
– Catholic University of Rio de Janeiro, Brazil
Department of Electric Engineering
– State University of Rio de Janeiro, Brazil
Department of Computer Engineering
e-mail: [raul, -rio.br, [diogo,"
7ad77b6e727795a12fdacd1f328f4f904471233f,Supervised Local Descriptor Learning for Human Action Recognition,"Supervised Local Descriptor Learning
for Human Action Recognition
Xiantong Zhen, Feng Zheng, Ling Shao, Senior Member, IEEE, Xianbin Cao, Senior Member, IEEE, and Dan Xu"
7a88d33b3e23a2cdf1e8a2b848c73a12a34ba88c,TUB-IRML at MediaEval 2014 Violent Scenes Detection Task: Violence Modeling through Feature Space Partitioning,"TUB-IRML at MediaEval 2014 Violent Scenes Detection
Task: Violence Modeling through Feature Space
Partitioning
Esra Acar, Sahin Albayrak
DAI Laboratory, Technische Universität Berlin
Ernst-Reuter-Platz 7, TEL 14, 10587 Berlin, Germany"
7a4f3d17672ecd89e4ad0d4f3a9257352a055d9b,A Novel Data-driven Image Annotation Method,"A Novel Data-driven Image Annotation Method
Guiguang Ding, Jianmin Wang, Na Xu"
7a97de9460d679efa5a5b4c6f0b0a5ef68b56b3b,Constrained Joint Cascade Regression Framework for Simultaneous Facial Action Unit Recognition and Facial Landmark Detection,"nd Face shape relationship2)AU relationship3)Face shape patternUpdate facial landmark locationsUpdate AU activation probabilitiesAU activation probabilitiesCurrent landmark locationsFigure1.Constrainedjointcascaderegressionframeworkforsi-multaneousfacialactionunitrecognitionandlandmarkdetection.wouldenablethemachineunderstandingofhumanfacialbehavior,intent,emotionetc.Facialactionunitrecognitionandfaciallandmarkdetec-tionarerelatedtasks,buttheyareseldomlyexploitedjointlyintheliteratures.Forexample,thefaceshapedefinedbythelandmarklocationsareconsideredaseffectivefeaturesforAUrecognition.But,thelandmarklocationinforma-tionisusuallyextractedbeforehandwithfaciallandmarkdetectionalgorithms.Ontheotherhand,theActionUnitinformationisrarelyutilizedintheliteraturetohelpfaciallandmarkdetection,eventhoughthefacialmusclemove-mentsandtheactivationofspecificfacialactionunitcancausetheappearanceandshapechangesofthefacewhichsignificantlyaffectfaciallandmarkdetection.Themutualinformationandintertwinedrelationshipamongfacialac-tionunitrecognitionandfaciallandmarkdetectionshouldbeutilizedtoboosttheperformancesofbothtasks.Cascaderegressionframeworkhasbeenshowntobeaneffectivemethodforfacealignmentrecently[19][13].Itstartsfromaninitialfaceshape(e.g.meanface)anditit-erativelyupdatesthefaciallandmarklocationsbasedonthelocalappearancefeaturesuntilconvergence.Severalregres-sionmodelshavebeenappliedtolearnthemappingfromthelocalappearancefeaturestothefaceshapeupdate.Toleveragethesuccessofthecascaderegressionframe-workandtoachievethegoalofjointfacialactionunit13400"
7a7db5a1325844b62d2ecf8489872c8f515f1c37,Nuclear Norm-Based 2-DPCA for Extracting Features From Images,"Nuclear Norm-Based 2-DPCA for Extracting
Features From Images
Fanlong Zhang, Jian Yang, Member, IEEE, Jianjun Qian, and Yong Xu, Member, IEEE"
7a776f080b270c8759b2b4fe601682276d1b2eb4,Multi-target Tracking with Sparse Group Features and Position Using Discrete-Continuous Optimization,"Multi-Target Tracking with Sparse Group
Features and Position using Discrete-Continuous
Optimization
Billy Peralta (1) and Alvaro Soto (2)
(1)Universidad Cat´olica de Temuco, (2)Pontificia Universidad Cat´olica de Chile"
7a3676dcf55e22c7249eac7615174309617c8246,Joint Feature Learning With Robust Local Ternary Pattern for Face Recognition,"International Journal of Application or Innovation in Engineering & Management (IJAIEM)
Web Site: www.ijaiem.org Email:
ISSN 2319 - 4847
Volume 5, Issue 6, June  2016
Joint Feature Learning With Robust Local
Ternary Pattern for Face Recognition
Yuvaraju.M1, Shalini.S2
Nadu, India
Assistant Professor, Department of Electrical and Electronics Engineering, Anna University Regional Campus, Coimbatore, Tamil
Pg Scholar, Department of Electrical and Electronics Engineering, Anna University Regional Campus, Coimbatore, Tamil Nadu,
India"
7ac25c5391251611696d16e677bd71040d80d583,Person Re-Identification by Saliency Learning,"MANUSCRIPT DRAFT
Person Re-identification by saliency Learning
Rui Zhao, Student Member, IEEE, Wanli Oyang, Member, IEEE, and
Xiaogang Wang, Member, IEEE"
7aa4c16a8e1481629f16167dea313fe9256abb42,Multi-task learning for face identification and attribute estimation,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
7ad204758df6c921010d9967a5b7449dd406ea56,Deep Face Quality Assessment,"Deep Face Quality Assessment
Vishal Agarwal
Department of Electronics and Electrical Engineering
Indian Institute of Technology Guwahati
India"
7ad7897740e701eae455457ea74ac10f8b307bed,Random Subspace Two-dimensional LDA for Face Recognition,"Random Subspace Two-dimensional LDA for Face Recognition*
Garrett Bingham1"
7acc05ae92823c12b28d6ad73cb2a7707ccb6c7b,Single view-based 3D face reconstruction robust to self-occlusion,"Lee et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:176
http://asp.eurasipjournals.com/content/2012/1/176
R ES EAR CH
Open Access
Single view-based 3D face reconstruction robust
to self-occlusion
Youn Joo Lee1, Sung Joo Lee2, Kang Ryoung Park3, Jaeik Jo1 and Jaihie Kim1*"
7a7b1352d97913ba7b5d9318d4c3d0d53d6fb697,Attend and Rectify: a Gated Attention Mechanism for Fine-Grained Recovery,"Attend and Rectify: a Gated Attention
Mechanism for Fine-Grained Recovery
Pau Rodr´ıguez†, Josep M. Gonfaus‡, Guillem Cucurull†,
F. Xavier Roca†, Jordi Gonz`alez†
Computer Vision Center and Universitat Aut`onoma de Barcelona (UAB),
Campus UAB, 08193 Bellaterra, Catalonia Spain
Visual Tagging Services, Parc de Recerca, Campus UAB"
7aa062c6c90dba866273f5edd413075b90077b51,Minimizing Separability : A Comparative Analysis of Illumination Compensation Techniques in Face Recognition,"I.J. Information Technology and Computer Science, 2017, 5, 40-51
Published Online May 2017 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijitcs.2017.05.06
Minimizing Separability: A Comparative Analysis
of Illumination Compensation Techniques in Face
Recognition
Chollette C. Olisah
Department of Computer Science and IT, Baze University, Abuja, Nigeria
E-mail:"
7a8ba1a6c90b56ae0a98fe43d015ab0f2a73912e,A Vision-Based Hybrid Method for Eye Detection and Tracking,"A Vision-Based Hybrid Method for Eye Detection and Tracking
International Journal of Security and Its Applications
Vol. 7, No. 4, July, 2013
Kun Mu
Department of Computer Science and Engineering, Henan Institute of Engineering,
Zhengzhou 451191, China"
146879bd04a1ab25dce3484bc587e5f2ff1b1d91,Securing Certificate Revocation through Speaker Verification: the CertiVeR Project,"Securing Certificate Revocation through Speaker Verification:
the CertiVeR Project
Javier R. Saeta1, Javier Hernando2, Oscar Manso3, Manel Medina3
Biometric Technologies, S.L. Barcelona, Spain
TALP Research Center. Universitat Politècnica de Catalunya, Spain
SeMarket, S.A. Barcelona, Spain"
1451e7b11e66c86104f9391b80d9fb422fb11c01,Image privacy protection with secure JPEG transmorphing,"IET Signal Processing
Research Article
Image privacy protection with secure JPEG
transmorphing
ISSN 1751-9675
Received on 30th December 2016
Revised 13th July 2017
Accepted on 11th August 2017
doi: 10.1049/iet-spr.2016.0756
www.ietdl.org
Lin Yuan1  , Touradj Ebrahimi1
Multimedia Signal Processing Group, Electrical Engineering Department, EPFL, Station 11, Lausanne, Switzerland
E-mail:"
1456f147381bf7c385225d854c2fb48c19eca285,LCAV-31: a dataset for light field object recognition,"Computational Imaging XII, edited by Charles A. Bouman, Ken D. Sauer, Proc. of SPIE-IS&T Electronic Imaging,
SPIE Vol. 9020, 902014 · © 2014 SPIE-IS&T · CCC code: 0277-786X/14/$18 · doi: 10.1117/12.2041097
Proc. of SPIE-IS&T/ Vol. 9020  902014-1"
143e3ec5a5a11547da2d77a17d0ca7b1940280b5,"People detection, tracking and re-identification through a video camera network. (Détection, suivi et ré-identification de personnes à travers un réseau de caméra vidéo)","People detection, tracking and re-identification through
video camera network
Malik Souded
To cite this version:
Malik Souded. People detection, tracking and re-identification through a video camera network.
Other [cs.OH]. Université Nice Sophia Antipolis, 2013. English. <NNT : 2013NICE4152>. <tel-
00913072v2>
HAL Id: tel-00913072
https://tel.archives-ouvertes.fr/tel-00913072v2
Submitted on 29 Jan 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
14aad0d391a9491eb122d5b6af6c325a0e090dc7,Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms,"Development of an Efficient Face Recognition System based on Linear and Nonlinear Algorithms
{tag}                                                 {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 134
Number 7
Year of Publication: 2016
Authors:
Filani Araoluwa S., Adetunmbi Adebayo O.
10.5120/ijca2016907932
{bibtex}2016907932.bib{/bibtex}"
14761b89152aa1fc280a33ea4d77b723df4e3864,Zero-Shot Learning via Visual Abstraction,
14fdec563788af3202ce71c021dd8b300ae33051,Social Influence Analysis based on Facial Emotions,"Social Influence Analysis based on Facial Emotions
Pankaj Mishra, Rafik Hadfi, and Takayuki Ito
Department of Computer Science and Engineering
Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan
{pankaj.mishra,"
14fed18d838bf6b89d98837837ff314e61ab7c60,Deep Learning with Differential Privacy,"A preliminary version of this paper appears in the proceedings of the 23rd ACM Conference on Computer and Communications Security
(CCS 2016). This is a full version.
Deep Learning with Differential Privacy
Martín Abadi∗
H. Brendan McMahan∗
October 25, 2016
Andy Chu∗
Ilya Mironov∗
Li Zhang∗
Ian Goodfellow†
Kunal Talwar∗"
1419956b08f9ab398cd2100ddec74271ef5fa72c,Joint detection and online multi-object tracking,"Joint detection and online multi-object tracking
Hilke Kieritz, Wolfgang H¨ubner, and Michael Arens
Fraunhofer IOSB, Germany"
149e5e5eeea5a9015ab5ae755f62c45ef70fa79b,Hierarchical Convolutional Features for Visual Tracking,"Hierarchical Convolutional Features for Visual Tracking
Chao Ma
Jia-Bin Huang
Xiaokang Yang
Ming-Hsuan Yang
UC Merced"
1414d4880e368414cbbbbd215e8b0471f185aa03,Face Detection in Low-Resolution Color Images,"Face Detection in Low-resolution Color Images
Jun Zheng, Geovany A. Ramirez, and Olac Fuentes,
Computer Science Department,
University of Texas at El Paso,
El Paso, Texas, 79968, U.S.A.
No Institute Given"
140dbcb0be3ce7961ed551f129698e9ad4c9aa8c,Interactive Learning and its Role in Pervasive Robotics,"Interactive Learning and its Role in Pervasive Robotics
Cynthia Matuszek
Dieter Fox
Nicholas FitzGerald
Evan Herbst"
1459d4d16088379c3748322ab0835f50300d9a38,Cross-Domain Visual Matching via Generalized Similarity Measure and Feature Learning,"Cross-Domain Visual Matching via Generalized
Similarity Measure and Feature Learning
Liang Lin, Guangrun Wang, Wangmeng Zuo, Xiangchu Feng, and Lei Zhang"
14f964d152337e963e4a4fd3619f6030aa75deb1,Person Re-identification by Discriminatively Selecting Parts and Features,"Person re-identification by discriminatively
selecting parts and features
Amran Bhuiyan, Alessandro Perina and Vittorio Murino
Pattern Analysis and Computer Vision (PAVIS)
Istituto Italiano di Tecnologia
Genova, Italy"
1450296fb936d666f2f11454cc8f0108e2306741,Learning to Discover Cross-Domain Relations with Generative Adversarial Networks,"Learning to Discover Cross-Domain Relations
with Generative Adversarial Networks
Taeksoo Kim 1 Moonsu Cha 1 Hyunsoo Kim 1 Jung Kwon Lee 1 Jiwon Kim 1"
14373c9fd08dee8f7195a88430121c69bbebbe1b,Head Pose Estimation Using Covariance of Oriented Gradients,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE
ICASSP 2010"
14a01628169a3a060b6af5d5dcdeeb584b648abf,Semi-Supervised Multiresolution Classification Using Adaptive Graph Filtering With Application to Indirect Bridge Structural Health Monitoring,"Semi-Supervised Multiresolution Classification
Using Adaptive Graph Filtering with Application to
Indirect Bridge Structural Health Monitoring
Siheng Chen, Student Member, IEEE, Fernando Cerda, Piervincenzo Rizzo, Jacobo Bielak, James H. Garrett and
Jelena Kovaˇcevi´c, Fellow, IEEE"
147b7998526ebbdf64b1662503b378d9f6456ccd,Generative Adversarial Networks for Image Steganography,"Under review as a conference paper at ICLR 2017
GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE
STEGANOGRAPHY
Denis Volkhonskiy2,3, Boris Borisenko3 and Evgeny Burnaev1,2,3
Skolkovo Institute of Science and Technology
The Institute for Information Transmission Problems RAS (Kharkevich Institute)
National Research University Higher School of Economics (HSE)"
143b54525bdda1f83965002616a4e7b5b9f523a3,A probabilistic patch based image representation using Conditional Random Field model for image classification,"A probabilistic patch based image representation using Conditional Random Field model
for image classification
Fariborz Taherkhani
Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, USA"
14a022a3eb8cc9681b1ab075650d462788de1fa0,GANs for Biological Image Synthesis,"GANs for Biological Image Synthesis
INRIA/ENS∗, France
Anton Osokin
HSE†, Russia
Anatole Chessel
´Ecole Polytechnique‡,
France"
14860877a790d99296a990281b22e6b6a430b64f,Deep Over-sampling Framework for Classifying Imbalanced Data,"Deep Over-sampling Framework for Classifying
Imbalanced Data
Shin Ando1 and Chun Yuan Huang2
School of Management,
Tokyo University of Science,
-11-2 Fujimi, Chiyoda-ku, Tokyo, Japan
School of Management,
Tokyo University of Science,
-11-2 Fujimi, Chiyoda-ku, Tokyo, Japan"
14f0283c703e450e5f17cbe94878896de865ce30,International Journal of Advance Research and Innovation,"Volume 3, Issue 2 (2015) 383-385
ISSN 2347 - 3258
International Journal of Advance Research and Innovation
Robust Visual Tracking for Multiple Targets with Data Association and
Track Management
N. Mahalakshmi, S. R. Saranya
Department of Computer Science Engineering, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamil
Nadu, India
Article Info
Article history:
Received 5 April 2015
Received in revised form
0 April 2015
Accepted 20 May 2015
Available online 15 June 2015
Keywords
Online Multi-Object Tracking,
Tracking-By Detection,
Data Association,
Track Management,"
1442319de86d171ce9595b20866ec865003e66fc,Vision-Based Fall Detection with Convolutional Neural Networks,"Vision-Based Fall Detection with Convolutional
Neural Networks
Adri´an Nu˜nez-Marcos1, Gorka Azkune1, Ignacio Arganda-Carreras234
DeustoTech - University of Deusto
Avenida de las Universidades, 24 - 48007, Bilbao, Spain
Dept. of Computer Science and Artificial Intelligence, Basque
Country University, San Sebastian, Spain
P. Manuel Lardizabal, 1 - 20018, San Sebastian, Spain
Ikerbasque, Basque Foundation for Science, Bilbao, Spain
Maria Diaz de Haro, 3 - 48013 Bilbao, Spain
Donostia International Physics Center (DIPC), San Sebastian, Spain
P. Manuel Lardizabal, 4 - 20018, San Sebastian, Spain"
147c33df99dd52502d65fe390ee45c585349b3b3,Pixel and Feature Level Based Domain Adaption for Object Detection in Autonomous Driving,"Pixel and Feature Level Based Domain Adaption
for Object Detection in Autonomous Driving
Yuhu Shan, Wen Feng Lu, Chee Meng Chew"
146e6504d473b92e56108b7276d96aebaa58ccfc,3 D Model and Part Fusion for Vehicle Retrieval,"International Journal of Research in Advent Technology, Vol.2, No.5, May 2014
E-ISSN: 2321-9637
D Model and Part Fusion for Vehicle Retrieval
M.Nagarasan1, T.N.Chitradevi2, S.Senthilnathan3
Department of computer science and engineering1,2, 3
Aditya institute of technology, Coimbatore.1, 3,Sri Ramakrishna Engineering College, Coimbatore2"
1462bc73834e070201acd6e3eaddd23ce3c1a114,Face Authentication /recognition System for Forensic Application Using Sketch Based on the Sift Features Approach,"International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 4, April 2014
FACE AUTHENTICATION /RECOGNITION
SYSTEM FOR FORENSIC APPLICATION
USING SKETCH BASED ON THE SIFT
FEATURES APPROACH
Poonam A. Katre
Department of Electronics Engineering KITS,
RTMNU Nagpur University, India"
143ac3b7338e240b106863d35177c4567ef9c1aa,Euclidean & Geodesic Distance between a Facial Feature Points in Two-Dimensional Face Recognition System,"Euclidean & Geodesic Distance between a Facial
Feature Points in Two-Dimensional Face
Recognition System
Rachid AHDID1, Khaddouj TAIFI1, Said SAFI1 and Bouzid MANAUT2"
1471c0b72e4a88b39e59362bf169bb35915966a9,Extended Coding and Pooling in the HMAX Model,"Extended coding and pooling in the HMAX model
Christian Th´eriault, Nicolas Thome, Member, IEEE, and Matthieu Cord, Member, IEEE
Universit´e Pierre et Marie Curie, UPMC-Sorbonne Universities, LIP6, 4 place Jussieu, 75005, Paris, France"
1436d72a51feefda3278068a164d263f6d845236,Interactive Learning a Person Detector: Fewer Clicks – Less Frustration1,"INTERACTIVE LEARNING A PERSON
DETECTOR:
FEWER CLICKS – LESS FRUSTRATION1
Peter M. Roth2, Helmut Grabner2, Christian Leistner2,
Martin Winter2, and Horst Bischof2"
140c95e53c619eac594d70f6369f518adfea12ef,Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A,"Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A
Brendan F. Klare, Emma Taborsky , Austin Blanton , Jordan Cheney , Kristen Allen , Patrick Grother , Alan Mah , Anil K. Jain
The development of accurate and scalable unconstrained face recogni-
tion algorithms is a long term goal of the biometrics and computer vision
ommunities. The term “unconstrained” implies a system can perform suc-
essful identifications regardless of face image capture presentation (illumi-
nation, sensor, compression) or subject conditions (facial pose, expression,
occlusion). While automatic, as well as human, face identification in certain
scenarios may forever be elusive, such as when a face is heavily occluded or
aptured at very low resolutions, there still remains a large gap between au-
tomated systems and human performance on familiar faces. In order to close
this gap, large annotated sets of imagery are needed that are representative
of the end goals of unconstrained face recognition. This will help continue
to push the frontiers of unconstrained face detection and recognition, which
re the primary goals of the IARPA Janus program.
The current state of the art in unconstrained face recognition is high
ccuracy (roughly 99% true accept rate at a false accept rate of 1.0%) on
faces that can be detected with a commodity face detectors, but unknown
ccuracy on other faces. Despite the fact that face detection and recognition
research generally has advanced somewhat independently, the frontal face"
1467c4ab821c3b340abe05a1b13a19318ebbce98,Multitask and transfer learning for multi-aspect data,"Multitask and Transfer Learning for
Multi-Aspect Data
Bernardino Romera Paredes
A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy of University College London."
142dcfc3c62b1f30a13f1f49c608be3e62033042,Adaptive region pooling for object detection,"Adaptive Region Pooling for Object Detection
Yi-Hsuan Tsai
UC Merced
Onur C. Hamsici
Qualcomm Research, San Diego
Ming-Hsuan Yang
UC Merced"
14e9eaa6ac23996e9a62060c8da90bdb7116ee37,Localization Recall Precision (LRP): A New Performance Metric for Object Detection,[cs.CV]  5 Jul 2018
14f457bcb5c3e294919512b132bb171bdcaf5ec2,Understanding Human Actions in Still Images a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"UNDERSTANDING HUMAN ACTIONS
IN STILL IMAGES
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Bangpeng Yao
August 2013"
14c988aa9086207b337dcc5611aad08422129b42,Human Relative Position Detection Based on Mutual Occlusion,"Human Relative Position Detection
Based on Mutual Occlusion
V´ıctor Borjas, Michal Drozdzal, Petia Radeva, and Jordi Vitri`a
Facultat de Matem`atiques & Centre de Visi`o per Computador,
Universitat de Barcelona,
Campus UAB"
14e428f2ff3dc5cf96e5742eedb156c1ea12ece1,Facial Expression Recognition Using Neural Network Trained with Zernike Moments,"Facial Expression Recognition Using Neural Network Trained with Zernike
Moments
Mohammed Saaidia
Dept. Génie-Electrique
Université M.C.M Souk-Ahras
Souk-Ahras, Algeria"
148721b162dd355812fae94c8aaf365e5e2c3a79,"Vista: A Visually, Socially, and Temporally-aware Model for Artistic Recommendation","Vista: A Visually, Socially, and Temporally-aware Model
for Artistic Recommendation
Ruining He
UC San Diego
Chen Fang
Adobe Research
Zhaowen Wang
Adobe Research
Julian McAuley
UC San Diego"
147fe6bfc76f30ccacc3620662511e452bc395f6,A Survey of Face Recognition Techniques,"Invited Paper
Journal of Information Processing Systems, Vol.5, No.2, June 2009  41
A Survey of Face Recognition Techniques
Rabia Jafri* and Hamid R. Arabnia*"
14a5feadd4209d21fa308e7a942967ea7c13b7b6,Content-based vehicle retrieval using 3D model and part information,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
14fee990a372bcc4cb6dc024ab7fc4ecf09dba2b,Modeling Spatio-Temporal Human Track Structure for Action Localization,"Modeling Spatio-Temporal Human Track Structure for Action
Localization
Guilhem Ch´eron · Anton Osokin · Ivan Laptev · Cordelia Schmid"
14ee4948be56caeb30aa3b94968ce663e7496ce4,SmileNet: Registration-Free Smiling Face Detection,"SmileNet: Registration-Free Smiling Face Detection In The Wild.
Jang, Y; Gunes, H; Patras, I
© Copyright 2018 IEEE
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/36405
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
8ea56e4697430d1dbc728bad5a6e8ebafcced835,Adaptive Stochastic Gradient Descent on the Grassmannian for Robust Low-Rank Subspace Recovery,"Adaptive Stochastic Gradient Descent on the
Grassmannian for Robust Low-Rank Subspace
Recovery
Jun He, Member, IEEE, Yue Zhang, Student Member, IEEE"
8ec76d7d4a9abd09f088fb3f7a3351a7fda1fde0,Generative Adversarial Networks to Synthetically Augment Data for Deep Learning based Image Segmentation *,"Proceedings of the OAGM Workshop 2018
DOI: 10.3217/978-3-85125-603-1-07"
8e9f973e9d01fdd275af6c1460e5307d2ff3d2bc,OF KITH AND KIN 1 Of kith and kin :,"OF	KITH	AND	KIN
Of kith and kin:
Perceptual enrichment, expectancy and reciprocal processing in face perception
Joshua Correll     Sean M. Hudson     Steffanie Guillermo     Holly A. Earls
University of Colorado Boulder
Author Note
Joshua Correll, Sean M. Hudson, Steffanie Guillermo, Holly A. Earls, Department of
Psychology & Neuroscience, University of Colorado Boulder.
We dedicate this paper to the memory of Sean Hudson, a wonderful scientist and a true
friend. We thank Jasmin Cloutier, Tim Correll, Tim Curran, Tiffany Ito, Sarah Lamer,
Debbie Ma, Max Weisbuch, and Bernd Wittenbrink for their thoughtful comments on
previous drafts.
Correspondence should be addressed to Joshua Correll, Department of Psychology &
Neuroscience, UCB 345, Boulder, Colorado, 80309-0345;"
8ea9093542075bd8cc4928a4c671a95f363c61ef,Sliced-Wasserstein Autoencoder : An Embarrassingly Simple Generative Model,"Sliced-Wasserstein Autoencoder: An
Embarrassingly Simple Generative Model"
8ee62f7d59aa949b4a943453824e03f4ce19e500,Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions,"Robust Head-Pose Estimation Based on
Partially-Latent Mixture of Linear Regression
Vincent Drouard∗, Radu Horaud∗, Antoine Deleforge†, Sil`eye Ba∗ and Georgios Evangelidis∗
INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France
INRIA Rennes Bretagne Atlantique, Rennes, France"
8e33183a0ed7141aa4fa9d87ef3be334727c76c0,Robustness of Face Recognition to Image Manipulations,"– COS429 Written Report, Fall 2017 –
Robustness of Face Recognition to Image Manipulations
Cathy Chen (cc27), Zachary Liu (zsliu), and Lindy Zeng (lindy)
. Motivation
We can often recognize pictures of people we know even if the image has low resolution or obscures
part of the face, if the camera angle resulted in a distorted image of the subject’s face, or if the
subject has aged or put on makeup since we last saw them. Although this is a simple recognition task
for a human, when we think about how we accomplish this task, it seems non-trivial for computer
lgorithms to recognize faces despite visual changes.
Computer facial recognition is relied upon for many application where accuracy is important.
Facial recognition systems have applications ranging from airport security and suspect identification
to personal device authentication and face tagging [7]. In these real-world applications, the system
must continue to recognize images of a person who looks slightly different due to the passage of
time, a change in environment, or a difference in clothing.
Therefore, we are interested in investigating face recognition algorithms and their robustness to
image changes resulting from realistically plausible manipulations. Furthermore, we are curious
bout whether the impact of image manipulations on computer algorithms’ face recognition ability
mirrors related insights from neuroscience about humans’ face recognition abilities.
. Goal
In this project, we implement both face recognition algorithms and image manipulations. We then"
8e3d0b401dec8818cd0245c540c6bc032f169a1d,McGan: Mean and Covariance Feature Matching GAN,"McGan: Mean and Covariance Feature Matching GAN
Youssef Mroueh * 1 2 Tom Sercu * 1 2 Vaibhava Goel 2"
8e7749f635b161558efa3e98a324e88c73e2b18f,[Neuroimaging findings in autism: a brief review].,"Türk Psikiyatri Dergisi 2009;
Turkish Journal of Psychiatry
Neuroimaging Findings in Auti sm: A Brief Review
Halime Tuna ULAY1, Aygün ERTUĞRUL2"
8edb2219370a86c4277549813d36a6c139503fb4,Facial feature units’ localization using horizontal information of most significant bit planes,"Journal of Engineering and Technology Research Vol. 3(14), pp. 381-387, 22 December, 2011
Available online at http:// www.academicjournals.org/JETR
DOI: 10.5897/JETR11.068
ISSN 2006-9790 ©2011 Academic Journals
Full Length Research Paper
Facial feature units’ localization using horizontal
information of most significant bit planes
Asif Khan1*, Khalilullah1, Ihtesham-Ul-Islam1 and Mohammad A. U. Khan2
FAST National University of Computer and Emerging Sciences, Peshawar, Pakistan.
Effat University, Jeddah, Saudi Arabia.
Accepted 8 November, 2011
We  present  here  an  approach  to  find  the  exact  position  of  some  feature  units  related  to  human  face
images.  We  use  the horizontal  information  in  most  significant  bit  planes  of images  to  accomplish  the
task.  Finding  location  of  facial  feature  units  is  of  importance  as  most  human  face  recognition
pproaches take it as initial point. The prominent feature units in a face are eyes, nostrils and lips which
re  usually  oriented  in  horizontal  direction  and  visually  significant  in  face  image.  The  majority  of  the
visually significant data in image can be extracted using higher order bits of that image. Our four step
method  consists  of  bit  planes  processing,  separating  horizontal  information  using  wavelet  transform
(WT), binary thresholding and appropriate combination of Dilation and Erosion. The proposed method
shows  high  accuracy  in  the  presence  of  all  real  world  situations  like  various  gestures,  illumination"
8eeab0aeb3170b1ef6497745d2a9bf78c001331d,Machine Vision Techniques for the Evaluation of Animal Behaviour,"Machine Vision Techniques for the
Evaluation of Animal Behaviour
Dr Derek Robert Magee
Submitted in accordance with the requirements
for the degree of Doctor of Philosophy
SI T Y O
The University of Leeds
School of Computing
October 2000
The candidate confirms that the work submitted is his own and that appropriate credit has been
given where reference has been made to the work of others."
8e94ed0d7606408a0833e69c3185d6dcbe22bbbe,For your eyes only,"© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE
must  be  obtained  for  all  other  uses,  in  any  current  or  future  media,  including
reprinting/republishing  this  material  for  advertising  or  promotional  purposes,
reating  new  collective  works,  for  resale  or  redistribution  to  servers  or  lists,  or
reuse of any copyrighted component of this work in other works.
Pre-print of article that will appear at WACV 2012."
8e6957334ab60111fd7e2ae59b008a745223aabe,An incremental learning face recognition system for single sample per person,"An Incremental Learning Face Recognition System
for Single Sample Per Person
Tao Zhu, Furao Shen and Jinxi Zhao
recognition system. In nowadays, most of the existed in-
remental
learning systems are designed to update the
eigenspace of face data as new images arrive [8]. To our
knowledge, few of them can automatically decide when to
learn new information from an input image. In other words,
they need an external observer to tell them how to prevent
learning distorted information from a misclassified or non-
ideal image. Moreover, few of these methods can be applied
in the scenario of single sample per person.
In this paper, we mainly focus on the issue of robust incre-
mental face recognition under the condition of one training
sample per person. Inspired by the Single Image subspace
(SIS) approach [9], we propose an incremental learning face
recognition system. The goals of the proposed system are:
(1) self-adaptively updating and adjusting training samples
during learning process; (2) keeping learning new knowledge"
8e64f7f38db57ddc197cc7a9c51b914920ee99cc,An Optimized Framework for Detection and Tracking of Video Objects in Challenging Backgrounds,"The International Journal of Multimedia & Its Applications (IJMA) Vol.6, No.4, August 2014
AN OPTIMIZED FRAMEWORK FOR DETECTION
AND TRACKING OF VIDEO OBJECTS IN
CHALLENGING BACKGROUNDS
Sukanyathara J1 and Alphonsa Kuriakose2
Department of Computer Science & Engineering,
Viswajyothi College of Engineering & Technology, MG University, Kerala, India"
8e461978359b056d1b4770508e7a567dbed49776,LOMo: Latent Ordinal Model for Facial Analysis in Videos,"LOMo: Latent Ordinal Model for Facial Analysis in Videos
Karan Sikka1,∗
Gaurav Sharma2,3,†
Marian Bartlett1,∗,‡
UCSD, USA
MPI for Informatics, Germany
IIT Kanpur, India"
8ea30ade85880b94b74b56a9bac013585cb4c34b,From turbo hidden Markov models to turbo state-space models [face recognition applications],"FROM TURBO HIDDEN MARKOV MODELS TO TURBO STATE-SPACE MODELS
Florent Perronnin and Jean-Luc Dugelay
Institut Eur´ecom
Multimedia Communications Department
BP 193, 06904 Sophia Antipolis Cedex, France
fflorent.perronnin,"
8e723e8a3a5a9ea258591d384232e0251f842a1c,Twin-GAN - Unpaired Cross-Domain Image Translation with Weight-Sharing GANs,"Twin-GAN – Unpaired Cross-Domain Image
Translation with Weight-Sharing GANs
Jerry Li
Google
600 Amphitheatre Parkway, Mountain View, CA 94040"
8e8e3f2e66494b9b6782fb9e3f52aeb8e1b0d125,"Detecting and classifying scars, marks, and tattoos found in the wild","in  any  current  or
future  media,
for  all  other  uses,
 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained
including
reprinting/republishing  this  material  for  advertising  or  promotional  purposes,  creating
new  collective  works,  for  resale  or  redistribution  to  servers  or  lists,  or  reuse  of  any
opyrighted component of this work in other works.
Pre-print of article that will appear at BTAS 2012.!!"
8e92168860d8c6591a0c088573629e4d167f5947,"Look at the Driver, Look at the Road: No Distraction! No Accident!","Look at the Driver, Look at the Road: No Distraction! No Accident!
Mahdi Rezaei and Reinhard Klette
The University of Auckland
Private Bag 92019, Auckland, New Zealand"
8e378ef01171b33c59c17ff5798f30293fe30686,A system for automatic face analysis based on statistical shape and texture models,"Lehrstuhl f¨ur Mensch-Maschine-Kommunikation
der Technischen Universit¨at M¨unchen
A System for Automatic Face Analysis
Based on
Statistical Shape and Texture Models
Ronald M¨uller
Vollst¨andiger Abdruck der von der Fakult¨at
f¨ur Elektrotechnik und Informationstechnik
der Technischen Universit¨at M¨unchen
zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs
genehmigten Dissertation
Vorsitzender: Prof. Dr. rer. nat. Bernhard Wolf
Pr¨ufer der Dissertation:
. Prof. Dr.-Ing. habil. Gerhard Rigoll
. Prof. Dr.-Ing. habil. Alexander W. Koch
Die Dissertation wurde am 28.02.2008 bei der Technischen Universit¨at M¨unchen
eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik
m 18.09.2008 angenommen."
8e579a8a43f6af1d66e927a48b89e8296eba63f7,Learning to hash faces using large feature vectors,"Learning to Hash Faces Using Large Feature Vectors
Cassio E. dos Santos Jr.∗, Ewa Kijak†, Guillaume Gravier†, William Robson Schwartz∗
Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
IRISA & Inria Rennes (CNRS, Univ. Rennes 1), Campus de Beaulieu, Rennes, France"
8eb2e7c9017b4a110978a1bb504accbc7b9ba211,Marching into battle: synchronized walking diminishes the conceptualized formidability of an antagonist in men.,"Downloaded from
http://rsbl.royalsocietypublishing.org/
on June 9, 2015
rsbl.royalsocietypublishing.org
Research
Cite this article: Fessler DMT, Holbrook C.
014 Marching into battle: synchronized
walking diminishes the conceptualized
formidability of an antagonist in men. Biol.
Lett. 10: 20140592.
http://dx.doi.org/10.1098/rsbl.2014.0592
Received: 25 July 2014
Accepted: 6 August 2014
Subject Areas:
ehaviour
Keywords:
synchrony, alliance, fighting capacity
Author for correspondence:
Daniel M. T. Fessler
e-mail:"
8ec7194952ee9e7cf383b1a1b0aeccaed5b7daaa,Constrained multi-target tracking for team sports activities,"Gade and Moeslund IPSJ Transactions on Computer Vision and
Applications  (2018) 10:2
DOI 10.1186/s41074-017-0038-z
IPSJ Transactions on Computer
Vision and Applications
SYSTEMS PAPER
Open Access
Constrained multi-target tracking for
team sports activities
Rikke Gade*
nd Thomas B. Moeslund"
8e7493bdabddc2ec99cfa2b9b862343f70c1701a,Pseudo-positive regularization for deep person re-identification,"Noname manuscript No.
(will be inserted by the editor)
Pseudo-positive regularization for deep person re-identification
Fuqing Zhu · Xiangwei Kong · Haiyan Fu · Qi Tian
Received: date / Accepted: date"
8e8c511ebc12a093d3f73a4717ec71c32e4dbd49,The use of visual information in the recognition of posed and spontaneous facial expressions.,"The use of visual information in the recognition of posed and
spontaneous facial expressions
Camille Saumure
Marie-Pier Plouffe-Demers
Amanda Est ´ephan
Daniel Fiset
Caroline Blais
Department of Psychoeducation and Psychology,
Universit ´e du Qu ´ebec en Outaouais,
Gatineau, Qu ´ebec, Canada
Department of Psychoeducation and Psychology,
Universit ´e du Qu ´ebec en Outaouais,
Gatineau, Qu ´ebec, Canada
Department of Psychoeducation and Psychology,
Universit ´e du Qu ´ebec en Outaouais,
Gatineau, Qu ´ebec, Canada
Department of Psychoeducation and Psychology,
Universit ´e du Qu ´ebec en Outaouais,
Gatineau, Qu ´ebec, Canada
Department of Psychoeducation and Psychology,"
8e6526b46a52a18028336a8d026e9d466aa12edf,Moving Poselets: A Discriminative and Interpretable Skeletal Motion Representation for Action Recognition,"Moving Poselets: A Discriminative and Interpretable Skeletal Motion
Representation for Action Recognition
Lingling Tao and Ren´e Vidal
Center for Imaging Science, Johns Hopkins University
ltao4,"
8ed051be31309a71b75e584bc812b71a0344a019,Class-Based Feature Matching Across Unrestricted Transformations,"Class-based feature matching across unrestricted
transformations
Evgeniy Bart and Shimon Ullman"
8e36100cb144685c26e46ad034c524b830b8b2f2,Modeling Facial Geometry using Compositional VAEs,"Modeling Facial Geometry using Compositional VAEs
Timur Bagautdinov∗1, Chenglei Wu2, Jason Saragih2, Pascal Fua1, Yaser Sheikh2
´Ecole Polytechnique F´ed´erale de Lausanne
Facebook Reality Labs, Pittsburgh"
8e112ad656ff90720ae609841bd0fcb2caa90d65,"""Show me the cup"": Reference with Continuous Representations",[cs.CL]  28 Jun 2016
8edcd935362c899e630349784e4ff8adb3a69cdc,Person re-identification using deformable patch metric learning,"Person Re-identification using Deformable Patch Metric Learning
Sławomir B ˛ak
Peter Carr
Disney Research
Pittsburgh, PA, USA, 15213"
8ee50fd3e19729a487f7196b682ccaa2d17aa0df,Improving head and body pose estimation through semi-supervised manifold alignment,"IMPROVING HEAD AND BODY POSE ESTIMATION
THROUGH SEMI-SUPERVISED MANIFOLD ALIGNMENT
Alexandre Heili(cid:63), Jagannadan Varadarajan†, Bernard Ghanem‡, Narendra Ahuja(cid:63)†, Jean-Marc Odobez(cid:63)
(cid:63) Idiap Research Institute, ´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland
Advanced Digital Sciences Center, Singapore, (cid:63)† University of Illinois at Urbana-Champaign
King Abdullah University of Science and Technology, Saudi Arabia"
8e0becfc5fe3ecdd2ac93fabe34634827b21ef2b,Learning from Longitudinal Face Demonstration - Where Tractable Deep Modeling Meets Inverse Reinforcement Learning,"International Journal of Computer Vision manuscript No.
(will be inserted by the editor)
Learning from Longitudinal Face Demonstration -
Where Tractable Deep Modeling Meets Inverse Reinforcement Learning
Chi Nhan Duong · Kha Gia Quach · Khoa Luu · T. Hoang Ngan Le · Marios
Savvides · Tien D. Bui
Received: date / Accepted: date"
8e0cc47c194ef7daf15aaef14d61e493879ae137,Deep Network Flow for Multi-object Tracking,"Deep Network Flow for Multi-Object Tracking
Samuel Schulter
Paul Vernaza Wongun Choi Manmohan Chandraker
NEC Laboratories America, Media Analytics Department
Cupertino, CA, USA"
22cf367d14e646914cc959bbcd402df0c20cd0dc,Towards Automated Melanoma Screening: Proper Computer Vision & Reliable Results,"Towards Automated Melanoma Screening:
Proper Computer Vision & Reliable Results
Michel Fornaciali, Micael Carvalho, Fl´avia Vasques Bittencourt, Sandra Avila, Eduardo Valle"
2258e01865367018ed6f4262c880df85b94959f8,Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics,"Hindawi Publishing Corporation
EURASIP Journal on Image and Video Processing
Volume 2008, Article ID 246309, 10 pages
doi:10.1155/2008/246309
Research Article
Evaluating Multiple Object Tracking Performance:
The CLEAR MOT Metrics
Keni Bernardin and Rainer Stiefelhagen
Interactive Systems Lab, Institut f¨ur Theoretische Informatik, Universit¨at Karlsruhe, 76131 Karlsruhe, Germany
Correspondence should be addressed to Keni Bernardin,
Received 2 November 2007; Accepted 23 April 2008
Recommended by Carlo Regazzoni
Simultaneous tracking of multiple persons in real-world environments is an active research field and several approaches have
een proposed, based on a variety of features and algorithms. Recently, there has been a growing interest in organizing systematic
evaluations to compare the various techniques. Unfortunately, the lack of common metrics for measuring the performance of
multiple object trackers still makes it hard to compare their results. In this work, we introduce two intuitive and general metrics to
llow for objective comparison of tracker characteristics, focusing on their precision in estimating object locations, their accuracy
in recognizing object configurations and their ability to consistently label objects over time. These metrics have been extensively
used in two large-scale international evaluations, the 2006 and 2007 CLEAR evaluations, to measure and compare the performance
of multiple object trackers for a wide variety of tracking tasks. Selected performance results are presented and the advantages and"
229e105fd4d34815e476702dd5ca4362943c475d,WildDash - Creating Hazard-Aware Benchmarks,"WildDash - Creating Hazard-Aware Benchmarks
Oliver Zendel, Katrin Honauer, Markus Murschitz, Daniel Steininger, and
Gustavo Fern´andez Dom´ınguez
AIT, Austrian Institute of Technology, Giefinggasse 4, 1210, Vienna, Austria
{oliver.zendel, katrin.honauer.fl, markus.murschitz, daniel.steininger,"
22043cbd2b70cb8195d8d0500460ddc00ddb1a62,Separability-Oriented Subclass Discriminant Analysis,"Separability-Oriented Subclass Discriminant
Analysis
Huan Wan, Hui Wang, Gongde Guo, Xin Wei"
22137ce9c01a8fdebf92ef35407a5a5d18730dde,Recognition of Faces from single and Multi-View Videos,
2270c94d3f9d9451b3d337aa5ba2d5681cb98497,Evaluation of GIST descriptors for web-scale image search,"Evaluation of GIST descriptors for web-scale image
search
Matthijs Douze, Hervé Jégou, Sandhawalia Harsimrat, Laurent Amsaleg,
Cordelia Schmid
To cite this version:
Matthijs Douze, Hervé Jégou, Sandhawalia Harsimrat, Laurent Amsaleg, Cordelia Schmid. Evaluation
of GIST descriptors for web-scale image search. CIVR 2009 - International Conference on Image and
Video Retrieval, Jul 2009, Santorini, Greece. ACM, pp.19:1-8, 2009, <10.1145/1646396.1646421>.
<inria-00394212>
HAL Id: inria-00394212
https://hal.inria.fr/inria-00394212
Submitted on 23 Mar 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents"
22fb836a593267d9ff09a4d12aa5b4a6fd52c81e,Brief report: Visual processing of faces in individuals with fragile X syndrome: an eye tracking study.,"J Autism Dev Disord (2009) 39:946–952
DOI 10.1007/s10803-009-0744-1
B R I E F R E P O R T
Brief Report: Visual Processing of Faces in Individuals
with Fragile X Syndrome: An Eye Tracking Study
Faraz Farzin Æ Susan M. Rivera Æ David Hessl
Published online: 28 April 2009
Ó The Author(s) 2009. This article is published with open access at Springerlink.com"
221debbd7878ed303eaa4666f8df04a48e4c5070,Making Computer Vision Computationally Efficient,"Making computer vision computationally efficient
Narayanan Sundaram
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2012-106
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-106.html
May 11, 2012"
22264e60f1dfbc7d0b52549d1de560993dd96e46,UnitBox: An Advanced Object Detection Network,"UnitBox: An Advanced Object Detection Network
Jiahui Yu1,2
Yuning Jiang2
Zhangyang Wang1
Zhimin Cao2
Thomas Huang1
University of Illinois at Urbana−Champaign
Megvii Inc
{jyu79, zwang119, {jyn,"
220f8088f2fc1ddd9df1a0b583d3d01cb929ee8d,ROML: A Robust Feature Correspondence Approach for Matching Objects in A Set of Images,"Noname manuscript No.
(will be inserted by the editor)
ROML: A Robust Feature Correspondence Approach for
Matching Objects in A Set of Images
Kui Jia · Tsung-Han Chan · Zinan Zeng · Shenghua Gao
Gang Wang · Tianzhu Zhang · Yi Ma"
22029de24dbf6867658145264f36b161c40a09d8,A Discriminative Representation of Convolutional Features for Indoor Scene Recognition,"A Discriminative Representation of Convolutional
Features for Indoor Scene Recognition
S. H. Khan, M. Hayat, M. Bennamoun, Member, IEEE, R. Togneri, and F. Sohel, Senior Member, IEEE"
22c01d758a4941c01239fa8facdb3407559132ed,Segmentation and Restoration of Images on Surfaces by Parametric Active Contours with Topology Changes,"Segmentation and Restoration of Images on Surfaces by Parametric
Active Contours with Topology Changes
Heike Benninghoff∗ and Harald Garcke†"
22f8148e43c50341bad686d7fccb425b0682e667,Facial ethnicity classification based on boosted local texture and shape descriptions,"Facial Ethnicity Classification based on Boosted Local Texture and
Shape Descriptions
Huaxiong Ding, Di Huang, IEEE Member, Yunhong Wang, IEEE Member, Liming Chen, IEEE Member,"
224547337e1ace6411a69c2e06ce538bc67923f7,Convolutional Neural Network for Camera Pose Estimation from Object Detections,"CONVOLUTIONAL NEURAL NETWORK FOR CAMERA POSE ESTIMATION FROM
OBJECT DETECTIONS
E. V. Shalnova, A. S. Konushina,b
MSU, Faculty of Computational Mathematics and Cybernetics, Russia, 119991, Moscow, GSP-1, 1-52, Leninskiye Gory, -
HSE, Faculty of Computer Science, Russia, 125319, Moscow, 3, Kochnovsky Proezd
KEY WORDS: Camera Pose, CNN, Head Detection, Computer Graphics
Commission II, WG II/5"
223ec77652c268b98c298327d42aacea8f3ce23f,Acted Facial Expressions In The Wild Database,"TR-CS-11-02
Acted Facial Expressions In The Wild
Database
Abhinav Dhall, Roland Goecke, Simon
Lucey, Tom Gedeon
September 2011
ANU Computer Science Technical Report Series"
228558a2a38a6937e3c7b1775144fea290d65d6c,Nonparametric Context Modeling of Local Appearance for Pose- and Expression-Robust Facial Landmark Localization,"Nonparametric Context Modeling of Local Appearance
for Pose- and Expression-Robust Facial Landmark Localization
Brandon M. Smith1
Jonathan Brandt2
University of Wisconsin–Madison
Zhe Lin2
Adobe Research
Li Zhang1
http://www.cs.wisc.edu/~lizhang/projects/face-landmark-localization/"
2230848e506553159e0edfc20472b8cd6084be17,Vision Based Hand Puppet,"ENTERFACE’10, JULY 12TH - AUGUST 6TH, AMSTERDAM, THE NETHERLANDS.
Vision Based Hand Puppet
Cem Keskin, ˙Ismail Arı, Tolga Eren, Furkan Kırac¸, Lukas Rybok, Hazım Ekenel, Rainer Stiefelhagen, Lale Akarun"
22ee43dbd2bdefbc8945d453c6cd453f49ab5eb7,Urban Traffic Surveillance in Smart Cities Using Radar Images,"Urban Traffic Surveillance in Smart Cities
Using Radar Images
J. S´anchez-Oro, David Fern´andez-L´opez, R. Cabido,
Antonio S. Montemayor, and Juan Jos´e Pantrigo
Dept. Ciencias de la Computaci´on
Universidad Rey Juan Carlos
Spain"
22fdd8d65463f520f054bf4f6d2d216b54fc5677,Efficient Small and Capital Handwritten Character Recognition with Noise Reduction,"International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 8, August 2013)
Efficient Small and Capital Handwritten Character
Recognition with Noise Reduction
Beerendra Kumar Pal, Prof. Shailendra Tiwari, Prof. Sandeep Kumar
Department of Computer Science Engg., IES College of Technology, Bhopal"
2251a88fbccb0228d6d846b60ac3eeabe468e0f1,Matrix-Based Kernel Subspace Methods,"Matrix-Based Kernel Subspace Methods
S. Kevin Zhou
Integrated Data Systems Department
Siemens Corporate Research
755 College Road East, Princeton, NJ 08540
Email:"
225fbfd99465033e993460a1bc838a87fbf42346,Gaussian-Bernoulli deep Boltzmann machine,"Gaussian-Bernoulli Deep Boltzmann Machine
KyungHyun Cho, Tapani Raiko and Alexander Ilin
Department of Information and Computer Science,
Aalto University School of Science
Email:"
222d86787abed673600f1054796367f439c2eec1,Etworks via a Ttention T Ransfer,"Published as a conference paper at ICLR 2017
PAYING MORE ATTENTION TO ATTENTION:
IMPROVING THE PERFORMANCE OF CONVOLUTIONAL
NEURAL NETWORKS VIA ATTENTION TRANSFER
Sergey Zagoruyko, Nikos Komodakis
Universit´e Paris-Est, ´Ecole des Ponts ParisTech
Paris, France"
22532c6e38ded690dc1420f05c18e23f6f24804d,Chapter 5 Genetic & Evolutionary Biometrics,"We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
,700
08,500
.7 M
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact"
2251a1efad0cef802fd64fc79cc1b7007b64f425,Estimating 3D Pose via Stochastic Search and Expectation Maximization,"-IJE=JEC !, 2IA LE= 5J?D=IJE? 5A=H?D
-NFA?J=JE =NEE=JE
*A ,=K>AO :E=CDK= :EA
,AF=HJAJ B +FKJAH 5?EA?A 5M=IA= 7ELAHIEJO
5)  &22
*,=K>AO::EA(IM=IA==?K
)>IJH=?J 1 JDEI F=FAH = =FFH=?D EI J AIJE=JA !, FIA
KIEC = F=HJ IJ?D=IJE? ) HAFHAIAJ=JE B JDA
DK= EI LAH EJI JD=J AFOI BK
A=HJ >AJMAA EJI 6DEI HAFHAIAJ=JE EI
=C=EIJ = FFK=H =JAH=JELA LAH F=HJI KIEC E>
J EI IDM JD=J KIEC BK E> HAIKJI E =
JD=J EI B=H HA HAFHAIAJ=JELA B JDA HECE= JH=EEC .KH
JDAHHA EJ EI JD=J -NFA?J=JE =NEE=JE EI IKEJ=>A
BH AIJE=JEC !, FIA >AJJAH ?LAHCA?A EI MDA KIEC BK
E> 6 JDA A?=?O B JDA EJ
EI J JDA B !, FIA AIJE=JE KIEC = IECA ?K=H
E=CA 3K=JEJ=JELA HAIKJI =HA KIEC JDA 0K=-L=
MDE?D ?H JD=J JDA KJFAHBHI JD=J B JDA ?
FAJEC F=HJ 1 JDEI MH KIJ = IECA EI A=HJ J"
227b18fab568472bf14f9665cedfb95ed33e5fce,Compositional Dictionaries for Domain Adaptive Face Recognition,"Compositional Dictionaries for Domain Adaptive
Face Recognition
Qiang Qiu, and Rama Chellappa, Fellow, IEEE."
227b1a09b942eaf130d1d84cdcabf98921780a22,Multi-feature shape regression for face alignment,"Yang et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:51
https://doi.org/10.1186/s13634-018-0572-6
EURASIP Journal on Advances
in Signal Processing
R ES EAR CH
Multi-feature shape regression for face
lignment
Wei-Jong Yang, Yi-Chen Chen, Pau-Choo Chung and Jar-Ferr Yang*
Open Access"
22029beb936c9871757813758c5ae3e5820260c9,Proximity Distribution Kernels for Geometric Context in Category Recognition,"Proximity Distribution Kernels for Geometric Context in Category Recognition
Haibin Ling∗
Stefano Soatto
Integrated Data Systems Department
Computer Science Department
Siemens Corporate Research, Princeton, NJ
University of California, Los Angeles, CA
haibin.ling siemens.com
soatto cs.ucla.edu"
2279cae83716e2a00181593a7b10966020dd11d1,Real-time head pose estimation and facial feature localization using a depth sensor and triangular surface patch features,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Real-time head pose estimation and facial feature localization
using a depth sensor and triangular surface patch features
Papazov, C.; Marks, T.K.; Jones, M.J.
TR2015-069
June 2015"
22086b3c772ba638e7d50b10bcf544abd93c9305,Face Localization based on Skin Color,"International Journal of Computer Applications (0975 – 8887)
Volume 109 – No. 12, January 2015
Face Localization based on Skin Color
M. Mahadevi
Research Scholar, M.S. University
S.D.N.B. Vaishnav College for Women
Chrompet,Chennai-44"
224ffad672f7e6c7995780eb9bd3c8a141cb25cd,Understanding pedestrian behaviors from stationary crowd groups,"Understanding Pedestrian Behaviors from Stationary Crowd Groups
Shuai Yi1, Hongsheng Li1,2, Xiaogang Wang1
Department of Electronic Engineering, The Chinese University of Hong Kong.
School of Electronic Engineering, University of Electronic Science and Technology of China.
Pedestrian behavior modeling and analysis is important for crowd scene un-
derstanding and has various applications in video surveillance. Stationary
rowd groups are a key factor influencing pedestrian walking patterns but
was largely ignored in literature. As shown in Figure 1 (d), the walking
path of a pedestrian (black curve) is affected by a stationary crowd group.
Without modeling the stationary crowd group, it is difficult to explain why
the pedestrian detours when approaching the destination (Figure 1 (f)). Sta-
tionary crowd groups can serve as multiple roles (Figure 1 (e)) for different
pedestrians, such as source, destination, or obstacle. Moreover, the spatial
distribution of stationary crowd groups might change over time (Figure 1
(a)-(d)), which leads to the dynamic variations of traffic patterns. In our
work, the factor of stationary crowd groups is introduced for the first time
to model pedestrian behaviors.
The Proposed Pedestrian Behavior Model
A general energy map M is proposed to model the traveling difficulty of
every location of the scene. It can be modeled with three channels calculated"
227094e85ae30794d03f3cee426f40877ac2b11b,Performance Improvements in Face Classification using Random Forest,"Vatsal Vishwakarma, Abhishek Kumar Srivastava / International Journal of Engineering Research and
Applications (IJERA)      ISSN: 2248-9622   www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp.2384-2388
Performance Improvements in Face Classification using Random Forest
Vatsal Vishwakarma*, Abhishek Kumar Srivastava **
*(Department of Electronics and Communication, Lovely Professional University, Jalandhar , India.)
** (Department of Electronics and Communication, Lovely Professional University, Jalandhar , India.)"
2236294e803316c5934fa387f27d128fa7819a03,Iterative Human Pose Estimation based on A New Part Appearance Model,"Appl. Math. Inf. Sci. 8, No. 1L, 311-317 (2014)
Applied Mathematics & Information Sciences
An International Journal
http://dx.doi.org/10.12785/amis/081L39
Iterative Human Pose Estimation based on A New Part
Appearance Model
Wang Hao, Meng Fanhui and Fang Baofu∗
School of Computer and Information, Hefei Universty of Technology, Hefei, China
Received: 15 May. 2013, Revised: 9 Sep. 2013, Accepted: 10 Sep. 2013
Published online: 1 Apr. 2014"
22dabd4f092e7f3bdaf352edd925ecc59821e168,Exploiting side information in locality preserving projection,"Deakin Research Online
This is the published version:
An, Senjian, Liu, Wanquan and Venkatesh, Svetha 2008, Exploiting side information in
locality preserving projection, in CVPR 2008 : Proceedings of the 26th IEEE Conference on
Computer Vision and Pattern Recognition, IEEE, Washington, D. C., pp. 1-8.
Available from Deakin Research Online:
http://hdl.handle.net/10536/DRO/DU:30044576
Reproduced with the kind permissions of the copyright owner.
Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.
Copyright : 2008, IEEE"
224868cc607dc38b7eca8536018580c577f9fedf,Exploring Temporal Patterns in Classifying Frustrated and Delighted Smiles,"IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, MANUSCRIPT ID
Exploring Temporal Patterns in Classifying
Frustrated and Delighted Smiles
Mohammed E. Hoque, Daniel J. McDuff, and Rosalind W. Picard, Member, IEEE"
224d4cf75e8baf32a795f38ee8ccfdf82e4c5a70,Identifying Exceptional Descriptions of People Using Topic Modeling and Subgroup Discovery,"Identifying Exceptional Descriptions of People
using Topic Modeling and Subgroup Discovery
Andrew T. Hendrickson, Jason Wang, and Martin Atzmueller
Tilburg University, 5037AB, the Netherlands
{a.hendrickson, y.w.wang,"
220d62414053519f7b9a6aecb4aa9f775014c98c,Incremental Feature Transformation for Temporal Space,"Incremental Feature Transformation for Temporal Space
International Journal of Computer Applications (0975 – 8887)
Volume 145 – No.8, July 2016
Preeti Mahadev
University of Mysore,
Mysuru, Karnataka,
India
P. Nagabhushan
University of Mysore,
Mysuru, Karnataka,
India"
229bce6384ae16a388881e766bfa5a672b61dc9b,Application of Video Scene Semantic Recognition Technology in Smart Video,"ISSN 1330-3651 (Print), ISSN 1848-6339 (Online)                                                                                                                       https://doi.org/10.17559/TV-20180620082101
Original scientific paper
Application of Video Scene Semantic Recognition Technology in Smart Video
Lele QIN, Lihua KANG"
22e189a813529a8f43ad76b318207d9a4b6de71a,What will Happen Next? Forecasting Player Moves in Sports Videos,"What will Happen Next?
Forecasting Player Moves in Sports Videos
Panna Felsen
UC Berkeley, STATS
Pulkit Agrawal
UC Berkeley
Jitendra Malik
UC Berkeley"
22e4e64c1172c90ba23f634d850931ee5f9a972f,Robust Bayesian fitting of 3D morphable model,"Robust Bayesian Fitting of 3D Morphable
Model
Claudia Arellano and Rozenn Dahyot
School of Computer Science and Statistics
Trinity College Dublin, Ireland
7th November 2013"
227a312324edd41892eb2c1dbc4bf8d94984a326,Deep Learning Based Vehicle Make-Model Classification,"Deep Learning Based Vehicle Make-Model
Classification
Burak Satar1 and Ahmet Emir Dirik2(cid:63)
Uludag University, Bursa, Turkey
Department of Electrical-Electronics Engineering
Uludag University, Bursa, Turkey
Department of Computer Engineering"
22c89775cb5309eae5ac1f9ce9d1c2d569439492,Face recognition based on extended separable lattice 2-D HMMS,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
25ae83767c926898047bbc50971b5b11de34e12a,Detection and Tracking of Occluded People,"Noname manuscript No.
(will be inserted by the editor)
Detection and Tracking of Occluded People
Siyu Tang · Mykhaylo Andriluka · Bernt Schiele
Received: date / Accepted: date"
25b9ef5c78dbf17c71e6fd94054dd55d66c39264,Multimedia Semantic Integrity Assessment Using Joint Embedding Of Images And Text,"Multimedia Semantic Integrity Assessment Using Joint
Embedding Of Images And Text
Ayush Jaiswal∗
USC Information Sciences Institute
Marina del Rey, CA, USA
Ekraam Sabir∗
USC Information Sciences Institute
Marina del Rey, CA, USA
Wael AbdAlmageed
USC Information Sciences Institute
Marina del Rey, CA, USA
Premkumar Natarajan
USC Information Sciences Institute
Marina del Rey, CA, USA"
25c19d8c85462b3b0926820ee5a92fc55b81c35a,Pose-Invariant Facial Expression Recognition Using Variable-Intensity Templates,"Noname manuscript No.
(will be inserted by the editor)
Pose-Invariant Facial Expression Recognition
Using Variable-Intensity Templates
Shiro Kumano · Kazuhiro Otsuka · Junji Yamato ·
Eisaku Maeda · Yoichi Sato
Received: date / Accepted: date"
2528022c14428ad5912c323f6a356009457c985b,Automatic 3D facial expression recognition using geometric and textured feature fusion,"Automatic 3D Facial Expression Recognition using Geometric and
Textured Feature Fusion
Department of Electronic and Computer Engineering, Brunel University London, UK
Asim Jan and Hongying Meng"
25474c21613607f6bb7687a281d5f9d4ffa1f9f3,Recognizing disguised faces,"This article was downloaded by: [Carnegie Mellon University]
On: 03 May 2012, At: 06:22
Publisher: Psychology Press
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,
Visual Cognition
Publication details, including instructions for authors
nd subscription information:
http://www.tandfonline.com/loi/pvis20
Recognizing disguised faces
Giulia Righi a , Jessie J. Peissig b & Michael J. Tarr c
Children's Hospital Boston, Harvard Medical School,
Boston, MA, USA
Department of Psychology, California State University
Fullerton, Fullerton, CA, USA
Department of Psychology, Carnegie Mellon
University, Pittsburgh, PA, USA
Available online: 13 Feb 2012
To cite this article: Giulia Righi, Jessie J. Peissig & Michael J. Tarr (2012): Recognizing
disguised faces, Visual Cognition, 20:2, 143-169"
25ed9bd6c5febac832f3d68b96123e6ba013df83,Object segmentation by alignment of poselet activations to image contours,"Object Segmentation by Alignment of Poselet Activations to Image Contours
Thomas Brox1, Lubomir Bourdev2,3, Subhransu Maji2, and Jitendra Malik2∗
University of California at Berkeley
University of Freiburg, Germany
Adobe Systems Inc., San Jose, CA"
258a8c6710a9b0c2dc3818333ec035730062b1a5,Benelearn 2005 Annual Machine Learning Conference of Belgium and the Netherlands CTIT P ROCEEDINGS OF THE FOURTEENTH,"Benelearn 2005
Annual Machine Learning Conference of
Belgium and the Netherlands
CTIT PROCEEDINGS OF THE FOURTEENTH
ANNUAL MACHINE LEARNING CONFERENCE
OF BELGIUM AND THE NETHERLANDS
Martijn van Otterlo, Mannes Poel and Anton Nijholt (eds.)"
25695abfe51209798f3b68fb42cfad7a96356f1f,An Investigation into Combining Both Facial Detection and Landmark Localisation into a Unified Procedure Using Gpu Computing,"AN INVESTIGATION INTO COMBINING
BOTH FACIAL DETECTION AND
LANDMARK LOCALISATION INTO A
UNIFIED PROCEDURE USING GPU
COMPUTING
J M McDonagh
MSc by Research"
25b83cffddff334d78c55db4d67c65b1d8999b2f,Optimization of Person Re-Identification through Visual Descriptors,
257e61e6b38ae23b7ddce9907c05b0e78be4d79d,The LORACs prior for VAEs: Letting the Trees Speak for the Data,"The LORACs prior for VAEs: Letting the Trees Speak for the Data
Sharad Vikram
U.C. San Diego1
Matthew D. Hoffman
Matthew J. Johnson
Google AI
Google Brain"
253325f09f07c2f7a05191f76e4977f473f4bac5,Filtering and Optimization Strategies for Markerless Human Motion Capture,"FILTERING AND OPTIMIZATION
STRATEGIES FOR MARKERLESS
HUMAN MOTION CAPTURE WITH
SKELETON-BASED SHAPE MODELS.
DISSERTATION
ZUR ERLANGUNG DES GRADES DES
DOKTORS DER INGENIEURWISSENSCHAFTEN (DR.-ING.)
DER NATURWISSENSCHAFTLICH-TECHNISCHEN FAKULT ¨ATEN
DER UNIVERSIT ¨AT DES SAARLANDES
VORGELEGT VON
JUERGEN GALL
SAARBR ¨UCKEN"
250ebcd1a8da31f0071d07954eea4426bb80644c,DenseBox: Unifying Landmark Localization with End to End Object Detection,"DenseBox: Unifying Landmark Localization with
End to End Object Detection
Lichao Huang1
Yi Yang2
Yafeng Deng2
Institute of Deep Learning
Baidu Research
Yinan Yu3"
25a5f7179b794ab2bb7283c8337480fccee51944,Two novel motion-based algorithms for surveillance video analysis on embedded platforms,"Julien A. Vijverberg, Marijn J.H. Loomans, Cornelis J. Koeleman and Peter H.N. de With, ”Two novel
motion-based algorithms for surveillance video analysis on embedded platforms,” Real-Time Image and Video
Processing, Nasser Kehtarnavaz and Matthias F. Carlsohn, Editors, Proc. SPIE 7724, 77240I(2010).
Copyright 2010 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be
made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any
material in this paper for a fee or for commercial purposes, or modification of the content of the paper are
prohibited.
http://dx.doi.org/10.1117/12.851371"
2504b7bddd1892bc905fc5df6b5afc0b109ef40e,Function Norms and Regularization in Deep Networks,"Function Norms and Regularization in Deep
Networks
Amal Rannen Triki∗
KU Leuven, ESAT-PSI, imec, Belgium
Maxim Berman
KU Leuven, ESAT-PSI, imec, Belgium
Matthew B. Blaschko
KU Leuven, ESAT-PSI, imec, Belgium"
25337690fed69033ef1ce6944e5b78c4f06ffb81,Strategic Engagement Regulation: an Integration of Self-enhancement and Engagement,"STRATEGIC ENGAGEMENT REGULATION:
AN INTEGRATION OF SELF-ENHANCEMENT AND ENGAGEMENT
Jordan B. Leitner
A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Psychology
Spring 2014
© 2014 Jordan B. Leitner
All Rights Reserved"
25bb4212af72d64ec20cac533f58f7af1472e057,Person Re-Identification by Camera Correlation Aware Feature Augmentation,"Person Re-Identification by Camera
Correlation Aware Feature Augmentation
Ying-Cong Chen, Xiatian Zhu, Wei-Shi Zheng, Jian-Huang Lai
Code is available at the project page:
http://isee.sysu.edu.cn/%7ezhwshi/project/CRAFT.html
For reference of this work, please cite:
Ying-Cong Chen, Xiatian Zhu,Wei-Shi Zheng, and Jian-Huang Lai. Per-
son Re-Identification by Camera Correlation Aware Feature Augmenta-
0.1109/TPAMI.2017.2666805)
title={Person Re-Identification by Camera Correlation Aware Feature Aug-
mentation},
uthor={Chen, Ying-Cong and Zhu, Xiatian and Zheng, Wei-Shi and Lai,
Jian-Huang},
(DOI: 10.1109/TPAMI.2017.2666805)}"
2547607a98eff30654994902f518e30caf2f8271,Synthesizing manipulation sequences for under-specified tasks using unrolled Markov Random Fields,"Synthesizing Manipulation Sequences for Under-Specified Tasks
using Unrolled Markov Random Fields
Jaeyong Sung, Bart Selman and Ashutosh Saxena"
250449a9827e125d6354f019fc7bc6205c5fd549,Adversarial Reconstruction Loss,"PAIRWISE AUGMENTED GANS WITH
ADVERSARIAL RECONSTRUCTION LOSS
Aibek Alanov1,2,3∗, Max Kochurov1,2∗, Daniil Yashkov5, Dmitry Vetrov1,3,4
Samsung AI Center in Moscow
Skolkovo Institute of Science and Technology
National Research University Higher School of Economics
Joint Samsung-HSE lab
5Federal Research Center ""Informatics and Management"" of the Russian Academy of Sciences"
253d2fd2891a97d4caa49d87094dac1ec18c7752,Bio-authentication for Layered Remote Health Monitor Framework,"JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 23/2014, ISSN 1642-6037
Remote Health Monitor, Security Issues,
Multi-Factor Biometric Authentication,
Keystroke Analysis, Face Recognition
Tapalina BHATTASALI1, Khalid SAEED2, Nabendu CHAKI1, Rituparna CHAKI3
BIO-AUTHENTICATION FOR LAYERED REMOTE
HEALTH MONITOR FRAMEWORK
Aged people, patients with chronic disease, patients at remote location need continuous monitoring under
healthcare professionals. Remote health monitor is likely to be an effective approach to provide healthcare service
in a simple and cost effective way. However, effective implementation of this type of framework needs consid-
eration of variety of security threats. In this paper, a layer based remote health monitor framework is proposed
to analyze health condition of patients from remote places. Beside this, a multi-modal biometric authentication
mechanism is proposed here to reduce misuse of health data and biometrics templates in heterogeneous cloud
environment. Main focus of the paper is to design semi-continuous authentication mechanism after establishing
mutual 1:1 trust relationship among the participants in cloud environment. Behavioral biometrics keystroke
nalysis is fused with physiological biometrics face recognition to enhance accuracy of authentication. Instead of
onsidering traditional performance evaluation parameters for biometrics, this paper considers a few performance
metrics for determining efficiency of semi-continuous verification of the proposed framework.
. INTRODUCTION
Remote health monitor provides healthcare service for patients from remote locations to support"
2562d6ec0044eee9d604fe3a351f80d4d10d4a3d,Conditional Image-Text Embedding Networks,"Conditional Image-Text Embedding Networks
Bryan A. Plummer†, Paige Kordas†, M. Hadi Kiapour‡, Shuai Zheng‡,
Robinson Piramuthu‡, and Svetlana Lazebnik†
University of Illinois at Urbana-Champaign†
Ebay Inc.‡"
25d3e122fec578a14226dc7c007fb1f05ddf97f7,The first facial expression recognition and analysis challenge,"The First Facial Expression Recognition and Analysis Challenge
Michel F. Valstar, Bihan Jiang, Marc Mehu, Maja Pantic, and Klaus Scherer"
2597b0dccdf3d89eaffd32e202570b1fbbedd1d6,Towards Predicting the Likeability of Fashion Images,"Towards predicting the likeability of fashion images
Jinghua Wang, Abrar Abdul Nabi, Gang Wang, Member, IEEE, Chengde Wan, Tian-Tsong Ng, Member, IEEE,"
2594bf77a1fef68d86be74a2cb79c55499cb2bec,Learning Invariant Color Features for Person Reidentification,"Learning Invariant Color Features for
Person Re-Identification
Rahul Rama Varior, Student Member, IEEE,
Gang Wang, Member, IEEE Jiwen Lu, Member, IEEE"
25aa935217a52d83bc1637687a78017984fcb731,The Continuous N-tuple Classiier and Its Application to Face Recognition,"Thecontinuousn-tupleclassi(cid:12)eranditsapplicationto
facerecognition
S.M.Lucas
DepartmentofElectronicSystemsEngineering
UniversityofEssex
ColchesterCOSQ,UK"
25e62096a44e3fe2f641b492379e7c4babce7ee6,Investigating Gaze of Children with ASD in Naturalistic Settings,"Investigating Gaze of Children with ASD in Naturalistic
Settings
Basilio Noris1*, Jacqueline Nadel2, Mandy Barker3, Nouchine Hadjikhani4, Aude Billard1
Learning Algorithms and Systems Laboratory, Ecole Polyte´chnique Fe´de´rale de Lausanne, Lausanne, Switzerland, 2 Emotion Centre, Hoˆ pital de La Salpe´trie`re, Paris,
France, 3 Lausanne University Department of Child and Adolescent Psychiatry, University Hospital of Canton de Vaud, Lausanne, Switzerland, 4 Brain and Mind Institute,
Ecole Polyte´chnique Fe´de´rale de Lausanne, Lausanne, Switzerland & Martinos Center for Biomedical Imaging Massachusetts General Hospital/Healthcare Management
Systems/HST, Boston, Massachusetts, United States of America"
25982e2bef817ebde7be5bb80b22a9864b979fb0,Facial Feature Tracking Under Varying Facial Expressions and Face Poses Based on Restricted Boltzmann Machines,"(a)26facialfeaturepointsthatwetrack(b)oneexamplesequenceFigure1.Facialfeaturepointtrackingunderexpressionvariationandocclusion.Inrecentyears,thesemodelshavebeenusedexplicitlytohandletheshapevariations[17][5].Thenonlinearityem-beddedinRBManditsvariantsmakesthemmoreeffectiveandefficienttorepresentthenonrigiddeformationsofob-jectscomparedtothelinearmethods.Theirlargenumberofhiddennodesanddeeparchitecturesalsocanimposesuffi-cientconstraintsaswellasenoughdegreesoffreedomsintotherepresentationsofthetargetobjects.Inthispaper,wepresentaworkthatcaneffectivelytrackfacialfeaturepointsusingfaceshapepriormodelsthatareconstructedbasedonRBM.Thefacialfeaturetrackercantrack26facialfeaturepoints(Fig.1(a))eveniffaceshavedifferentfacialexpressions,varyingposes,orocclu-sion(Fig.1(b)).Unlikethepreviousworksthattrackfacialfeaturepointsindependentlyorbuildashapemodeltocap-turethevariationsoffaceshapeorappearanceregardlessofthefacialexpressionsandfaceposes,theproposedmodelcouldcapturethedistinctionsaswellasthevariationsoffaceshapesduetofacialexpressionandposechangeinaunifiedframework.Specifically,wefirstconstructamodel1"
251da2569036cebc2ea109972f412c5b1a9db20f,Appearance modeling for person re-identification using Weighted Brightness Transfer Functions,"1st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan
978-4-9906441-1-6 ©2012 IAPR"
25403c52a7c3092866773b0e765ab55841d3cb67,Joint Prediction of Activity Labels and Starting Times in Untrimmed Videos,"Joint Prediction of Activity Labels and Starting Times in Untrimmed Videos
Tahmida Mahmud1, Mahmudul Hasan2, Amit K. Roy-Chowdhury1
University of California, Riverside, CA-92521, USA
Comcast Labs, Washington, DC-20005, USA"
25d48ab3b05bf299fe61ed6580674e893f08380b,"Pedestrian Detection: A Survey of Methodologies, Techniques and Current Advancements","International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 – 0882
Volume 4, Issue 1, January 2015
Pedestrian Detection: A Survey of Methodologies, Techniques and Current
Advancements
Tanmay Bhadra1, Joydeep Sonar2 , Arup Sarmah3 ,Chandan Jyoti Kumar4
Dept. of CSE & IT, School of Technology
Assam Don Bosco University"
25e05a1ea19d5baf5e642c2a43cca19c5cbb60f8,Label Distribution Learning,"Label Distribution Learning
Xin Geng*, Member, IEEE"
2559b15f8d4a57694a0a33bdc4ac95c479a3c79a,Contextual Object Localization With Multiple Kernel Nearest Neighbor,"Contextual Object Localization With Multiple
Kernel Nearest Neighbor
Brian McFee, Student Member, IEEE, Carolina Galleguillos, Student Member, IEEE, and
Gert Lanckriet, Member, IEEE"
259bd09bc382763f864986498e46ab0178714f58,Lifelong Machine Learning,"Lifelong Machine Learning
November, 2016
Zhiyuan Chen and Bing Liu
Draft : This is mainly an early draft of the book.
We also updated a few places after the publication, highlighted in yellow.
Zhiyuan Chen and Bing Liu. Lifelong Machine Learning.
Morgan & Claypool Publishers, Nov 2016.
LifelongMachineLearningZhiyuan ChenBing Liu"
257eb6d5ca49eb4ea90658a8668d1853d9c38af7,A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in,"UNIVERSITY OF CALIFORNIA
RIVERSIDE
Wide-Area Video Understanding: Tracking, Video Summarization and
Algorithm-Platform Co-Design
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Electrical Engineering
Shu Zhang
December 2015
Dissertation Committee:
Dr. Amit K. Roy-Chowdhury, Chairperson
Dr. Qi Zhu
Dr. Ertem Tuncel"
253cedd3022e25a79bcaffe74e3405db65c6d2ce,Deep Hashing for Scalable Image Search,"Deep Hashing for Scalable Image Search
Jiwen Lu, Senior Member, IEEE, Venice Erin Liong, and Jie Zhou, Senior Member, IEEE"
25f1a5121cb7fb67749a6f6dbc27fd48f177d5fb,Context-Aware Hypergraph Modeling for Re-identification and Summarization,"Context-Aware Hypergraph Modeling for
Re-identification and Summarization
Santhoshkumar Sunderrajan, Member, IEEE, and B. S. Manjunath, Fellow, IEEE"
25f1f195c0efd84c221b62d1256a8625cb4b450c,Experiments with Facial Expression Recognition using Spatiotemporal Local Binary Patterns,"-4244-1017-7/07/$25.00 ©2007 IEEE
ICME 2007"
25885e9292957feb89dcb4a30e77218ffe7b9868,Analyzing the Affect of a Group of People Using Multi-modal Framework,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2016
Analyzing the Affect of a Group of People Using
Multi-modal Framework
Xiaohua Huang, Abhinav Dhall, Xin Liu, Guoying Zhao, Jingang Shi, Roland Goecke and Matti Pietik¨ainen"
259706f1fd85e2e900e757d2656ca289363e74aa,Improving People Search Using Query Expansions: How Friends Help To Find People,"Improving People Search Using Query Expansions
How Friends Help To Find People
Thomas Mensink and Jakob Verbeek
LEAR - INRIA Rhˆone Alpes - Grenoble, France"
258a2dad71cb47c71f408fa0611a4864532f5eba,Discriminative Optimization of Local Features for Face Recognition,"Discriminative Optimization
of Local Features for Face Recognition
H O S S E I N   A Z I Z P O U R
Master of Science Thesis
Stockholm, Sweden 2011"
25127c2d9f14d36f03d200a65de8446f6a0e3bd6,Evaluating the Performance of Deep Supervised Auto Encoder in Single Sample Face Recognition Problem Using Kullback-leibler Divergence Sparsity Regularizer,"Journal of Theoretical and Applied Information Technology
20th May 2016. Vol.87. No.2
© 2005 - 2016 JATIT & LLS. All rights reserved.
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195
EVALUATING THE PERFORMANCE OF DEEP SUPERVISED
AUTO ENCODER IN SINGLE SAMPLE FACE RECOGNITION
PROBLEM USING KULLBACK-LEIBLER DIVERGENCE
SPARSITY REGULARIZER
OTNIEL Y. VIKTORISA, 2ITO WASITO, 2ARIDA F. SYAFIANDINI
Faculty of Computer  of Computer Science, Universitas Indonesia, Kampus UI Depok, Indonesia
E-mail:  ,"