summaryrefslogtreecommitdiff
path: root/scraper/datasets/citation_lookup.csv
blob: d48c1025eea0fef1a171aa1a5e7fd8ddf77cb094 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
key,name,title,paper_id
10k_US_adult_faces,10K US Adult Faces,The intrinsic memorability of face images,8b2dd5c61b23ead5ae5508bb8ce808b5ea266730
3d_rma,3D-RMA,Automatic 3D Face Authentication,2160788824c4c29ffe213b2cbeb3f52972d73f37
3dddb_unconstrained,3D Dynamic,A 3D Dynamic Database for Unconstrained Face Recognition,370b5757a5379b15e30d619e4d3fb9e8e13f3256
3dpes,3DPeS,3DPes: 3D People Dataset for Surveillance and Forensics,2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e
4dfab,4DFAB,4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications,9696ad8b164f5e10fcfe23aacf74bd6168aebb15
50_people_one_question,50 People One Question,Merging Pose Estimates Across Space and Time,5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725
a_pascal_yahoo,aPascal,Describing Objects by their Attributes,2e384f057211426ac5922f1b33d2aa8df5d51f57
adience,Adience,Age and Gender Estimation of Unfiltered Faces,1be498d4bbc30c3bfd0029114c784bc2114d67c0
afad,AFAD,Ordinal Regression with a Multiple Output CNN for Age Estimation,6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c
afew_va,AFEW-VA,AFEW-VA database for valence and arousal estimation in-the-wild,b1f4423c227fa37b9680787be38857069247a307
afew_va,AFEW-VA,"Collecting Large, Richly Annotated Facial-Expression Databases from Movies",b1f4423c227fa37b9680787be38857069247a307
affectnet,AffectNet,"AffectNet: A New Database for Facial Expression, Valence, and Arousal Computation in the Wild",f152b6ee251cca940dd853c54e6a7b78fbc6b235
aflw,AFLW,"Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization",a74251efa970b92925b89eeef50a5e37d9281ad0
afw,AFW,"Face detection, pose estimation and landmark localization in the wild",0e986f51fe45b00633de9fd0c94d082d2be51406
agedb,AgeDB,"AgeDB: the first manually collected, in-the-wild age database",6dcf418c778f528b5792104760f1fbfe90c6dd6a
alert_airport,ALERT Airport,"A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets",6403117f9c005ae81f1e8e6d1302f4a045e3d99d
am_fed,AM-FED,Affectiva MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected “In the Wild”,47aeb3b82f54b5ae8142b4bdda7b614433e69b9a
apis,APiS1.0,Pedestrian Attribute Classification in Surveillance: Database and Evaluation,488e475eeb3bb39a145f23ede197cd3620f1d98a
ar_facedb,AR Face,The AR Face Database,370b5757a5379b15e30d619e4d3fb9e8e13f3256
awe_ears,AWE Ears,Ear Recognition: More Than a Survey,84fe5b4ac805af63206012d29523a1e033bc827e
b3d_ac,B3D(AC),A 3-D Audio-Visual Corpus of Affective Communication,d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae
bbc_pose,BBC Pose,Automatic and Efficient Human Pose Estimation for Sign Language Videos,213a579af9e4f57f071b884aa872651372b661fd
berkeley_pose,BPAD,Describing People: A Poselet-Based Approach to Attribute Classification,7808937b46acad36e43c30ae4e9f3fd57462853d
bfm,BFM,A 3D Face Model for Pose and Illumination Invariant Face Recognition,639937b3a1b8bded3f7e9a40e85bd3770016cf3c
bio_id,BioID Face,Robust Face Detection Using the Hausdorff Distance,4053e3423fb70ad9140ca89351df49675197196a
bjut_3d,BJUT-3D,The BJUT-3D Large-Scale Chinese Face Database,1ed1a49534ad8dd00f81939449f6389cfbc25321
bosphorus,The Bosphorus,Bosphorus Database for 3D Face Analysis,2acf7e58f0a526b957be2099c10aab693f795973
bp4d_plus,BP4D+,Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis,53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4
bp4d_spontanous,BP4D-Spontanous,A high resolution spontaneous 3D dynamic facial expression database,b91f54e1581fbbf60392364323d00a0cd43e493c
brainwash,Brainwash,Brainwash dataset,214c966d1f9c2a4b66f4535d9a0d4078e63a5867
bu_3dfe,BU-3DFE,A 3D Facial Expression Database For Facial Behavior Research,cc589c499dcf323fe4a143bbef0074c3e31f9b60
buhmap_db,BUHMAP-DB ,Facial Feature Tracking and Expression Recognition for Sign Language,014b8df0180f33b9fea98f34ae611c6447d761d2
cafe,CAFE,The Child Affective Facial Expression (CAFE) Set: Validity and reliability from untrained adults,20388099cc415c772926e47bcbbe554e133343d1
caltech_10k_web_faces,Caltech 10K Web Faces,Pruning Training Sets for Learning of Object Categories,636b8ffc09b1b23ff714ac8350bb35635e49fa3c
caltech_pedestrians,Caltech Pedestrians,Pedestrian Detection: A Benchmark,f72f6a45ee240cc99296a287ff725aaa7e7ebb35
caltech_pedestrians,Caltech Pedestrians,Pedestrian Detection: An Evaluation of the State of the Art,f72f6a45ee240cc99296a287ff725aaa7e7ebb35
camel,CAMEL,CAMEL Dataset for Visual and Thermal Infrared Multiple Object Detection and Tracking,5801690199c1917fa58c35c3dead177c0b8f9f2d
cas_peal,CAS-PEAL,The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations,2485c98aa44131d1a2f7d1355b1e372f2bb148ad
casablanca,Casablanca,Context-aware {CNNs} for person head detection,0ceda9dae8b9f322df65ca2ef02caca9758aec6f
casia_webface,CASIA Webface,Learning Face Representation from Scratch,853bd61bc48a431b9b1c7cab10c603830c488e39
celeba,CelebA,Deep Learning Face Attributes in the Wild,6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4
celeba_plus,CelebFaces+,"Deep Learning Face Representation from Predicting 10,000 Classes",69a68f9cf874c69e2232f47808016c2736b90c35
cfd,CFD,The Chicago face database: A free stimulus set of faces and norming data,4df3143922bcdf7db78eb91e6b5359d6ada004d2
chalearn,ChaLearn,ChaLearn Looking at People: A Review of Events and Resources,8d5998cd984e7cce307da7d46f155f9db99c6590
chokepoint,ChokePoint,Patch-based Probabilistic Image Quality Assessment for Face Selection and Improved Video-based Face Recognition,0486214fb58ee9a04edfe7d6a74c6d0f661a7668
cityscapes,Cityscapes,The Cityscapes Dataset for Semantic Urban Scene Understanding,32cde90437ab5a70cf003ea36f66f2de0e24b3ab
cityscapes,Cityscapes,The Cityscapes Dataset,32cde90437ab5a70cf003ea36f66f2de0e24b3ab
clothing_co_parsing,CCP,Clothing Co-Parsing by Joint Image Segmentation and Labeling,2bf8541199728262f78d4dced6fb91479b39b738
cmdp,CMDP,Distance Estimation of an Unknown Person from a Portrait,56ae6d94fc6097ec4ca861f0daa87941d1c10b70
cmu_pie,CMU PIE,"The CMU Pose, Illumination, and Expression Database",4d423acc78273b75134e2afd1777ba6d3a398973
coco,COCO,Microsoft COCO: Common Objects in Context,696ca58d93f6404fea0fc75c62d1d7b378f47628
coco_action,COCO-a,Describing Common Human Visual Actions in Images,4946ba10a4d5a7d0a38372f23e6622bd347ae273
coco_qa,COCO QA,Exploring Models and Data for Image Question Answering,35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62
cofw,COFW,Robust face landmark estimation under occlusion,2724ba85ec4a66de18da33925e537f3902f21249
cohn_kanade,CK,Comprehensive Database for Facial Expression Analysis,23fc83c8cfff14a16df7ca497661264fc54ed746
cohn_kanade_plus,CK+,The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression,4d9a02d080636e9666c4d1cc438b9893391ec6c7
columbia_gaze,Columbia Gaze,Gaze Locking: Passive Eye Contact Detection for Human–Object Interaction,c34532fe6bfbd1e6df477c9ffdbb043b77e7804d
complex_activities,Ongoing Complex Activities,Recognition of Ongoing Complex Activities by Sequence Prediction over a Hierarchical Label Space,65355cbb581a219bd7461d48b3afd115263ea760
cuhk01,CUHK01,Human Reidentification with Transferred Metric Learning,44484d2866f222bbb9b6b0870890f9eea1ffb2d0
cuhk02,CUHK02,Locally Aligned Feature Transforms across Views,38b55d95189c5e69cf4ab45098a48fba407609b4
cuhk03,CUHK03,DeepReID: Deep Filter Pairing Neural Network for Person Re-identification,6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3
cvc_01_barcelona,CVC-01,Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection,57fe081950f21ca03b5b375ae3e84b399c015861
czech_news_agency,UFI,Unconstrained Facial Images: Database for Face Recognition under Real-world Conditions,4b4106614c1d553365bad75d7866bff0de6056ed
d3dfacs,D3DFACS,A FACS Valid 3D Dynamic Action Unit database with Applications to 3D Dynamic Morphable Facial Modelling,070de852bc6eb275d7ca3a9cdde8f6be8795d1a3
dartmouth_children,Dartmouth Children,The Dartmouth Database of Children's Faces: Acquisition and validation of a new face stimulus set,4e6ee936eb50dd032f7138702fa39b7c18ee8907
data_61,Data61 Pedestrian,A Multi-Modal Graphical Model for Scene Analysis,563c940054e4b456661762c1ab858e6f730c3159
deep_fashion,DeepFashion,DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations,4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7
deep_fashion,DeepFashion,Fashion Landmark Detection in the Wild,4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7
disfa,DISFA,DISFA: A Spontaneous Facial Action Intensity Database,a5acda0e8c0937bfed013e6382da127103e41395
distance_nighttime,Long Distance Heterogeneous Face,Nighttime Face Recognition at Long Distance: Cross-distance and Cross-spectral Matching,4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06
duke_mtmc,Duke MTMC,"Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking",27a2fad58dd8727e280f97036e0d2bc55ef5424c
emotio_net,EmotioNet Database,"EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild",c900e0ad4c95948baaf0acd8449fde26f9b4952a
eth_andreas_ess,ETHZ Pedestrian,Depth and Appearance for Mobile Scene Analysis,13f06b08f371ba8b5d31c3e288b4deb61335b462
europersons,EuroCity Persons,The EuroCity Persons Dataset: A Novel Benchmark for Object Detection,f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4
expw,ExpW,Learning Social Relation Traits from Face Images,22f656d0f8426c84a33a267977f511f127bfd7f3
expw,ExpW,From Facial Expression Recognition to Interpersonal Relation Prediction,22f656d0f8426c84a33a267977f511f127bfd7f3
face_research_lab,Face Research Lab London,Face Research Lab London Set. figshare,c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8
face_scrub,FaceScrub,A data-driven approach to cleaning large face datasets,0d3bb75852098b25d90f31d2f48fd0cb4944702b
face_tracer,FaceTracer,FaceTracer: A Search Engine for Large Collections of Images with Faces,670637d0303a863c1548d5b19f705860a23e285c
face_tracer,FaceTracer,Face Swapping: Automatically Replacing Faces in Photographs,670637d0303a863c1548d5b19f705860a23e285c
facebook_100,Facebook100,Scaling Up Biologically-Inspired Computer Vision: A Case Study in Unconstrained Face Recognition on Facebook,9c23859ec7313f2e756a3e85575735e0c52249f4
faceplace,Face Place,Recognizing disguised faces,25474c21613607f6bb7687a281d5f9d4ffa1f9f3
families_in_the_wild,FIW,Visual Kinship Recognition of Families in the Wild,dd65f71dac86e36eecbd3ed225d016c3336b4a13
fddb,FDDB,FDDB: A Benchmark for Face Detection in Unconstrained Settings,75da1df4ed319926c544eefe17ec8d720feef8c0
fei,FEI,Captura e Alinhamento de Imagens: Um Banco de Faces Brasileiro,b6b1b0632eb9d4ab1427278f5e5c46f97753c73d
feret,FERET,The FERET Verification Testing Protocol for Face Recognition Algorithms,0c4a139bb87c6743c7905b29a3cfec27a5130652
feret,FERET,The FERET database and evaluation procedure for face-recognition algorithms,dc8b25e35a3acb812beb499844734081722319b4
feret,FERET,FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results,31de9b3dd6106ce6eec9a35991b2b9083395fd0b
feret,FERET,The FERET Evaluation Methodology for Face-Recognition Algorithms,0f0fcf041559703998abf310e56f8a2f90ee6f21
ferplus,FER+,Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label Distribution,298cbc3dfbbb3a20af4eed97906650a4ea1c29e0
fia,CMU FiA,The CMU Face In Action (FIA) Database,47662d1a368daf70ba70ef2d59eb6209f98b675d
fiw_300,300-W,300 faces In-the-wild challenge: Database and results,013909077ad843eb6df7a3e8e290cfd5575999d2
fiw_300,300-W,300 Faces in-the-Wild Challenge: The first facial landmark localization Challenge,013909077ad843eb6df7a3e8e290cfd5575999d2
fiw_300,300-W,A semi-automatic methodology for facial landmark annotation,013909077ad843eb6df7a3e8e290cfd5575999d2
frav3d,FRAV3D,"MULTIMODAL 2D, 2.5D & 3D FACE VERIFICATION",2f5d44dc3e1b5955942133ff872ebd31716ec604
frgc,FRGC,Overview of the Face Recognition Grand Challenge,18ae7c9a4bbc832b8b14bc4122070d7939f5e00e
gallagher,Gallagher,Clothing Cosegmentation for Recognizing People,6dbe8e5121c534339d6e41f8683e85f87e6abf81
gavab_db,Gavab,GavabDB: a 3D face database,42505464808dfb446f521fc6ff2cfeffd4d68ff1
geofaces,GeoFaces,GeoFaceExplorer: Exploring the Geo-Dependence of Facial Attributes,17b46e2dad927836c689d6787ddb3387c6159ece
georgia_tech_face_database,Georgia Tech Face,Maximum likelihood training of the embedded HMM for face detection and recognition,3dc3f0b64ef80f573e3a5f96e456e52ee980b877
graz,Graz Pedestrian,Generic Object Recognition with Boosting,12ad3b5bbbf407f8e54ea692c07633d1a867c566
graz,Graz Pedestrian,Weak Hypotheses and Boosting for Generic Object Detection and Recognition,12ad3b5bbbf407f8e54ea692c07633d1a867c566
graz,Graz Pedestrian,Object Recognition Using Segmentation for Feature Detection,12ad3b5bbbf407f8e54ea692c07633d1a867c566
h3d,H3D,Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations,2830fb5282de23d7784b4b4bc37065d27839a412
hda_plus,HDA+,The HDA+ data set for research on fully automated re-identification systems,bd88bb2e4f351352d88ee7375af834360e223498
hda_plus,HDA+,A Multi-camera video data set for research on High-Definition surveillance,bd88bb2e4f351352d88ee7375af834360e223498
helen,Helen,Interactive Facial Feature Localization,95f12d27c3b4914e0668a268360948bce92f7db3
hi4d_adsip,Hi4D-ADSIP,Hi4D-ADSIP 3-D dynamic facial articulation database,24830e3979d4ed01b9fd0feebf4a8fd22e0c35fd
hipsterwars,Hipsterwars,Hipster Wars: Discovering Elements of Fashion Styles,04c2cda00e5536f4b1508cbd80041e9552880e67
hollywood_headset,HollywoodHeads,Context-aware CNNs for person head detection,0ceda9dae8b9f322df65ca2ef02caca9758aec6f
hrt_transgender,HRT Transgender,Is the Eye Region More Reliable Than the Face? A Preliminary Study of Face-based Recognition on a Transgender Dataset,28312c3a47c1be3a67365700744d3d6665b86f22
hrt_transgender,HRT Transgender,Investigating the Periocular-Based Face Recognition Across Gender Transformation,28312c3a47c1be3a67365700744d3d6665b86f22
hrt_transgender,HRT Transgender,Face recognition across gender transformation using SVM Classifier,28312c3a47c1be3a67365700744d3d6665b86f22
ifad,IFAD,Indian Face Age Database: A Database for Face Recognition with Age Variation,55c40cbcf49a0225e72d911d762c27bb1c2d14aa
ifdb,IFDB,"Iranian Face Database with age, pose and expression",066d71fcd997033dce4ca58df924397dfe0b5fd1
ifdb,IFDB,Iranian Face Database and Evaluation with a New Detection Algorithm,066d71fcd997033dce4ca58df924397dfe0b5fd1
iit_dehli_ear,IIT Dehli Ear,Automated human identification using ear imaging,faf40ce28857aedf183e193486f5b4b0a8c478a2
ijb_a,IJB-A,Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A,140c95e53c619eac594d70f6369f518adfea12ef
ijb_b,IJB-B,IARPA Janus Benchmark-B Face Dataset,0cb2dd5f178e3a297a0c33068961018659d0f443
ijb_c,IJB-C,IARPA Janus Benchmark C,57178b36c21fd7f4529ac6748614bb3374714e91
ilids_mcts,,"Imagery Library for Intelligent Detection Systems: 
The i-LIDS User Guide",0297448f3ed948e136bb06ceff10eccb34e5bb77
ilids_vid_reid,iLIDS-VID,Person Re-Identication by Video Ranking,99eb4cea0d9bc9fe777a5c5172f8638a37a7f262
images_of_groups,Images of Groups,Understanding Groups of Images of People,21d9d0deed16f0ad62a4865e9acf0686f4f15492
imdb_wiki,IMDB,Deep expectation of real and apparent age from a single image without facial landmarks,10195a163ab6348eef37213a46f60a3d87f289c5
imdb_wiki,IMDB,DEX: Deep EXpectation of apparent age from a single image,8355d095d3534ef511a9af68a3b2893339e3f96b
imfdb,IMFDB,Indian Movie Face Database: A Benchmark for Face Recognition Under Wide Variations,ca3e88d87e1344d076c964ea89d91a75c417f5ee
imm_face,IMM Face Dataset,The IMM Face Database - An Annotated Dataset of 240 Face Images,a74251efa970b92925b89eeef50a5e37d9281ad0
immediacy,Immediacy,Multi-task Recurrent Neural Network for Immediacy Prediction,1e3df3ca8feab0b36fd293fe689f93bb2aaac591
imsitu,imSitu,Situation Recognition: Visual Semantic Role Labeling for Image Understanding,51eba481dac6b229a7490f650dff7b17ce05df73
inria_person,INRIA Pedestrian,Histograms of Oriented Gradients for Human Detection,10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5
jaffe,JAFFE,Coding Facial Expressions with Gabor Wavelets,45c31cde87258414f33412b3b12fc5bec7cb3ba9
jiku_mobile,Jiku Mobile Video Dataset,The Jiku Mobile Video Dataset,ad62c6e17bc39b4dec20d32f6ac667ae42d2c118
jpl_pose,JPL-Interaction dataset,First-Person Activity Recognition: What Are They Doing to Me?,1aad2da473888cb7ebc1bfaa15bfa0f1502ce005
kdef,KDEF,The Karolinska Directed Emotional Faces – KDEF,93884e46c49f7ae1c7c34046fbc28882f2bd6341
kin_face,UB KinFace,Genealogical Face Recognition based on UB KinFace Database,08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7
kin_face,UB KinFace,Kinship Verification through Transfer Learning,08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7
kin_face,UB KinFace,Understanding Kin Relationships in a Photo,08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7
kinectface,KinectFaceDB,KinectFaceDB: A Kinect Database for Face Recognition,0b440695c822a8e35184fb2f60dcdaa8a6de84ae
kitti,KITTI,Vision meets Robotics: The KITTI Dataset,35ba4ebfd017a56b51e967105af9ae273c9b0178
lag,LAG,Large Age-Gap Face Verification by Feature Injection in Deep Networks,0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e
large_scale_person_search,Large Scale Person Search,End-to-End Deep Learning for Person Search,2161f6b7ee3c0acc81603b01dc0df689683577b9
leeds_sports_pose,Leeds Sports Pose,Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation,4b1d23d17476fcf78f4cbadf69fb130b1aa627c0
leeds_sports_pose_extended,Leeds Sports Pose Extended,Learning Effective Human Pose Estimation from Inaccurate Annotation,4e4746094bf60ee83e40d8597a6191e463b57f76
lfw,LFW,Labeled Faces in the Wild: A Survey,7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22
lfw,LFW,Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments,370b5757a5379b15e30d619e4d3fb9e8e13f3256
lfw,LFW,Labeled Faces in the Wild: Updates and New Reporting Procedures,2d3482dcff69c7417c7b933f22de606a0e8e42d4
lfw_a,LFW-a,"Effective Unconstrained Face Recognition by
 Combining Multiple Descriptors and Learned
 Background Statistics",133f01aec1534604d184d56de866a4bd531dac87
lfw_p,LFWP,Localizing Parts of Faces Using a Consensus of Exemplars,140438a77a771a8fb656b39a78ff488066eb6b50
m2vts,m2vts,The M2VTS Multimodal Face Database (Release 1.00),2485c98aa44131d1a2f7d1355b1e372f2bb148ad
m2vtsdb_extended,xm2vtsdb,XM2VTSDB: The Extended M2VTS Database,370b5757a5379b15e30d619e4d3fb9e8e13f3256
mafl,MAFL,Facial Landmark Detection by Deep Multi-task Learning,a0fd85b3400c7b3e11122f44dc5870ae2de9009a
mafl,MAFL,Learning Deep Representation for Face Alignment with Auxiliary Attributes,a0fd85b3400c7b3e11122f44dc5870ae2de9009a
malf,MALF,Fine-grained Evaluation on Face Detection in the Wild.,45e616093a92e5f1e61a7c6037d5f637aa8964af
mapillary,Mapillary,The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes,79828e6e9f137a583082b8b5a9dfce0c301989b8
market_1501,Market 1501,Scalable Person Re-identification: A Benchmark,4308bd8c28e37e2ed9a3fcfe74d5436cce34b410
market1203,Market 1203,Orientation Driven Bag of Appearances for Person Re-identification,a7fe834a0af614ce6b50dc093132b031dd9a856b
mars,MARS,MARS: A Video Benchmark for Large-Scale Person Re-identification,c0387e788a52f10bf35d4d50659cfa515d89fbec
mcgill,McGill Real World,Hierarchical Temporal Graphical Model for Head Pose Estimation and Subsequent Attribute Classification in Real-World Videos,c570d1247e337f91e555c3be0e8c8a5aba539d9f
mcgill,McGill Real World,Robust Semi-automatic Head Pose Labeling for Real-World Face Video Sequences,c570d1247e337f91e555c3be0e8c8a5aba539d9f
megaage,MegaAge,Quantifying Facial Age by Posterior of Age Comparisons,d80a3d1f3a438e02a6685e66ee908446766fefa9
megaface,MegaFace,The MegaFace Benchmark: 1 Million Faces for Recognition at Scale,96e0cfcd81cdeb8282e29ef9ec9962b125f379b0
megaface,MegaFace,Level Playing Field for Million Scale Face Recognition,28d4e027c7e90b51b7d8908fce68128d1964668a
mifs,MIFS,Spoofing Faces Using Makeup: An Investigative Study,23e824d1dfc33f3780dd18076284f07bd99f1c43
mit_cbcl,MIT CBCL,Component-based Face Recognition with 3D Morphable Models,079a0a3bf5200994e1f972b1b9197bf2f90e87d4
miw,MIW,Automatic Facial Makeup Detection with Application in Face Recognition,fcc6fe6007c322641796cb8792718641856a22a7
mmi_facial_expression,MMI Facial Expression Dataset,WEB-BASED DATABASE FOR FACIAL EXPRESSION ANALYSIS,2a75f34663a60ab1b04a0049ed1d14335129e908
moments_in_time,Moments in Time,Moments in Time Dataset: one million videos for event understanding,a5a44a32a91474f00a3cda671a802e87c899fbb4
morph,MORPH Commercial,MORPH: A Longitudinal Image Database of Normal Adult Age-Progression,9055b155cbabdce3b98e16e5ac9c0edf00f9552f
morph_nc,MORPH Non-Commercial,MORPH: A Longitudinal Image Database of Normal Adult Age-Progression,9055b155cbabdce3b98e16e5ac9c0edf00f9552f
mot,MOT,Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics,5981e6479c3fd4e31644db35d236bfb84ae46514
mot,MOT,"Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking",5981e6479c3fd4e31644db35d236bfb84ae46514
mot,MOT,Learning to associate: HybridBoosted multi-target tracker for crowded scene,5981e6479c3fd4e31644db35d236bfb84ae46514
mpi_large,Large MPI Facial Expression,The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions,ea050801199f98a1c7c1df6769f23f658299a3ae
mpi_small,Small MPI Facial Expression,The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions,ea050801199f98a1c7c1df6769f23f658299a3ae
mpii_gaze,MPIIGaze,Appearance-based Gaze Estimation in the Wild,0df0d1adea39a5bef318b74faa37de7f3e00b452
mpii_human_pose,MPII Human Pose,2D Human Pose Estimation: New Benchmark and State of the Art Analysis,3325860c0c82a93b2eac654f5324dd6a776f609e
mr2,MR2,The MR2: A multi-racial mega-resolution database of facial stimuli,578d4ad74818086bb64f182f72e2c8bd31e3d426
mrp_drone,MRP Drone,Investigating Open-World Person Re-identification Using a Drone,ad01687649d95cd5b56d7399a9603c4b8e2217d7
msceleb,MsCeleb,MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition,291265db88023e92bb8c8e6390438e5da148e8f5
msmt_17,MSMT17,Person Transfer GAN to Bridge Domain Gap for Person Re-Identification,ec792ad2433b6579f2566c932ee414111e194537
mtfl,MTFL,Facial Landmark Detection by Deep Multi-task Learning,a0fd85b3400c7b3e11122f44dc5870ae2de9009a
mtfl,MTFL,Learning Deep Representation for Face Alignment with Auxiliary Attributes,a0fd85b3400c7b3e11122f44dc5870ae2de9009a
muct,MUCT,The MUCT Landmarked Face Database,a74251efa970b92925b89eeef50a5e37d9281ad0
mug_faces,MUG Faces,The MUG Facial Expression Database,f1af714b92372c8e606485a3982eab2f16772ad8
multi_pie,MULTIPIE,Multi-PIE,109df0e8e5969ddf01e073143e83599228a1163f
names_and_faces_news,News Dataset,Names and Faces,2fda164863a06a92d3a910b96eef927269aeb730
nd_2006,ND-2006,Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition,fd8168f1c50de85bac58a8d328df0a50248b16ae
nova_emotions,Novaemötions Dataset,Crowdsourcing facial expressions for affective-interaction,7f4040b482d16354d5938c1d1b926b544652bf5b
nova_emotions,Novaemötions Dataset,Competitive affective gamming: Winning with a smile,7f4040b482d16354d5938c1d1b926b544652bf5b
nudedetection,Nude Detection,A Bag-of-Features Approach based on Hue-SIFT Descriptor for Nude Detection,7ace44190729927e5cb0dd5d363fcae966fe13f7
orl,ORL,Parameterisation of a Stochastic Model for Human Face Identification,55206f0b5f57ce17358999145506cd01e570358c
penn_fudan,Penn Fudan,Object Detection Combining Recognition and Segmentation,3394168ff0719b03ff65bcea35336a76b21fe5e4
peta,PETA,Pedestrian Attribute Recognition At Far Distance,2a4bbee0b4cf52d5aadbbc662164f7efba89566c
pets,PETS 2017,PETS 2017: Dataset and Challenge,22909dd19a0ec3b6065334cb5be5392cb24d839d
pilot_parliament,PPB,Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classication,fb82681ac5d3487bd8e52dbb3d1fa220eeac855e
pipa,PIPA,Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues,0a85bdff552615643dd74646ac881862a7c7072d
pku,PKU,Swiss-System Based Cascade Ranking for Gait-based Person Re-identification,f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f
pku_reid,PKU-Reid,Orientation driven bag of appearances for person re-identification,a7fe834a0af614ce6b50dc093132b031dd9a856b
pornodb,Pornography DB,Pooling in Image Representation: the Visual Codeword Point of View,b92a1ed9622b8268ae3ac9090e25789fc41cc9b8
precarious,Precarious,Expecting the Unexpected: Training Detectors for Unusual Pedestrians With Adversarial Imposters,9e5378e7b336c89735d3bb15cf67eff96f86d39a
prid,PRID,Person Re-Identification by Descriptive and Discriminative Classification,16c7c31a7553d99f1837fc6e88e77b5ccbb346b8
prw,PRW,Person Re-identification in the Wild,0b84f07af44f964817675ad961def8a51406dd2e
psu,PSU,Vision-based Analysis of Small Groups in Pedestrian Crowds,066000d44d6691d27202896691f08b27117918b9
pubfig,PubFig,Attribute and Simile Classifiers for Face Verification,759a3b3821d9f0e08e0b0a62c8b693230afc3f8d
pubfig_83,pubfig83,Scaling Up Biologically-Inspired Computer Vision: A Case Study in Unconstrained Face Recognition on Facebook,9c23859ec7313f2e756a3e85575735e0c52249f4
put_face,Put Face,The PUT face database,370b5757a5379b15e30d619e4d3fb9e8e13f3256
qmul_grid,GRID,Multi-Camera Activity Correlation Analysis,2edb87494278ad11641b6cf7a3f8996de12b8e14
qmul_grid,GRID,Time-delayed correlation analysis for multi-camera activity understanding,2edb87494278ad11641b6cf7a3f8996de12b8e14
qmul_surv_face,QMUL-SurvFace,Surveillance Face Recognition Challenge,c866a2afc871910e3282fd9498dce4ab20f6a332
rafd,RaFD,Presentation and validation of the Radboud Faces Database,3765df816dc5a061bc261e190acc8bdd9d47bec0
raid,RAiD,Consistent Re-identification in a Camera Network,09d78009687bec46e70efcf39d4612822e61cb8c
rap_pedestrian,RAP,A Richly Annotated Dataset for Pedestrian Attribute Recognition,221c18238b829c12b911706947ab38fd017acef7
reseed,ReSEED,ReSEED: Social Event dEtection Dataset,54983972aafc8e149259d913524581357b0f91c3
saivt,SAIVT SoftBio,A Database for Person Re-Identification in Multi-Camera Surveillance Networks,22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b
sarc3d,Sarc3D,SARC3D: a new 3D body model for People Tracking and Re-identification,e27ef52c641c2b5100a1b34fd0b819e84a31b4df
scface,SCface,SCface – surveillance cameras face database,f3b84a03985de3890b400b68e2a92c0a00afd9d0
scut_fbp,SCUT-FBP,SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception,bd26dabab576adb6af30484183c9c9c8379bf2e0
scut_head,SCUT HEAD,Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture,dfdcd8c7c91813ba1624c9a21d2d01ef06a49afd
sdu_vid,SDU-VID,A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification,98bb029afe2a1239c3fdab517323066f0957b81b
sdu_vid,SDU-VID,Local descriptors encoded by Fisher vectors for person re-identification,98bb029afe2a1239c3fdab517323066f0957b81b
sdu_vid,SDU-VID,Person reidentification by video ranking,98bb029afe2a1239c3fdab517323066f0957b81b
sheffield,Sheffield Face,Face Recognition: From Theory to Applications,3607afdb204de9a5a9300ae98aa4635d9effcda2
social_relation,Social Relation,From Facial Expression Recognition to Interpersonal Relation Prediction,2a171f8d14b6b8735001a11c217af9587d095848
social_relation,Social Relation,Learning Social Relation Traits from Face Images,2a171f8d14b6b8735001a11c217af9587d095848
soton,SOTON HiD,On a Large Sequence-Based Human Gait Database,4f93cd09785c6e77bf4bc5a788e079df524c8d21
sports_videos_in_the_wild,SVW,Sports Videos in the Wild (SVW): A Video Dataset for Sports Analysis,1a40092b493c6b8840257ab7f96051d1a4dbfeb2
stair_actions,STAIR Action,STAIR Actions: A Video Dataset of Everyday Home Actions,d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9
stanford_drone,Stanford Drone,Learning Social Etiquette: Human Trajectory Prediction In Crowded Scenes,c9bda86e23cab9e4f15ea0c4cbb6cc02b9dfb709
stickmen_buffy,Buffy Stickmen,Learning to Parse Images of Articulated Objects,4b1d23d17476fcf78f4cbadf69fb130b1aa627c0
stickmen_buffy,Buffy Stickmen,Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation,4b1d23d17476fcf78f4cbadf69fb130b1aa627c0
stickmen_family,We Are Family Stickmen,We Are Family: Joint Pose Estimation of Multiple Persons,0dc11a37cadda92886c56a6fb5191ded62099c28
stickmen_pascal,Stickmen PASCAL,Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation,6dd0597f8513dc100cd0bc1b493768cde45098a9
stickmen_pascal,Stickmen PASCAL,Learning to Parse Images of Articulated Objects,6dd0597f8513dc100cd0bc1b493768cde45098a9
sun_attributes,SUN,The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding,833fa04463d90aab4a9fe2870d480f0b40df446e
sun_attributes,SUN,"SUN Attribute Database: 
Discovering, Annotating, and Recognizing Scene Attributes",833fa04463d90aab4a9fe2870d480f0b40df446e
svs,SVS,Pedestrian Attribute Classification in Surveillance: Database and Evaluation,488e475eeb3bb39a145f23ede197cd3620f1d98a
texas_3dfrd,Texas 3DFRD,Texas 3D Face Recognition Database,2ce2560cf59db59ce313bbeb004e8ce55c5ce928
texas_3dfrd,Texas 3DFRD,Anthropometric 3D Face Recognition,2ce2560cf59db59ce313bbeb004e8ce55c5ce928
tiny_faces,TinyFace,Low-Resolution Face Recognition,8990cdce3f917dad622e43e033db686b354d057c
tiny_images,Tiny Images,80 million tiny images: a large dataset for non-parametric object and scene recognition,31b58ced31f22eab10bd3ee2d9174e7c14c27c01
towncenter,TownCenter,Stable Multi-Target Tracking in Real-Time Surveillance Video,9361b784e73e9238d5cefbea5ac40d35d1e3103f
tud_brussels,TUD-Brussels,Multi-Cue Onboard Pedestrian Detection,6ad5a38df8dd4cdddd74f31996ce096d41219f72
tud_campus,TUD-Campus,People-Tracking-by-Detection and People-Detection-by-Tracking,3316521a5527c7700af8ae6aef32a79a8b83672c
tud_crossing,TUD-Crossing,People-Tracking-by-Detection and People-Detection-by-Tracking,3316521a5527c7700af8ae6aef32a79a8b83672c
tud_motionpairs,TUD-Motionparis,Multi-Cue Onboard Pedestrian Detection,6ad5a38df8dd4cdddd74f31996ce096d41219f72
tud_multiview,TUD-Multiview,Monocular 3D Pose Estimation and Tracking by Detection,436f798d1a4e54e5947c1e7d7375c31b2bdb4064
tud_pedestrian,TUD-Pedestrian,People-Tracking-by-Detection and People-Detection-by-Tracking,3316521a5527c7700af8ae6aef32a79a8b83672c
tud_stadtmitte,TUD-Stadtmitte,Monocular 3D Pose Estimation and Tracking by Detection,436f798d1a4e54e5947c1e7d7375c31b2bdb4064
tvhi,TVHI,High Five: Recognising human interactions in TV shows,3cd40bfa1ff193a96bde0207e5140a399476466c
uccs,UCCS,Large scale unconstrained open set face database,07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1
ucf_101,UCF101,UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild,b5f2846a506fc417e7da43f6a7679146d99c5e96
ucf_crowd,UCF-CC-50,Multi-Source Multi-Scale Counting in Extremely Dense Crowd Images,32c801cb7fbeb742edfd94cccfca4934baec71da
ucf_selfie,UCF Selfie,How to Take a Good Selfie?,041d3eedf5e45ce5c5229f0181c5c576ed1fafd6
ufdd,UFDD,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,377f2b65e6a9300448bdccf678cde59449ecd337
umb,UMB,UMB-DB: A Database of Partially Occluded 3D Faces,16e8b0a1e8451d5f697b94c0c2b32a00abee1d52
umd_faces,UMD,UMDFaces: An Annotated Face Dataset for Training Deep Networks,31b05f65405534a696a847dd19c621b7b8588263
umd_faces,UMD,The Do's and Don'ts for CNN-based Face Verification,71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6
unbc_shoulder_pain,UNBC-McMaster Pain,PAINFUL DATA: The UNBC-McMaster Shoulder Pain Expression Archive Database,56ffa7d906b08d02d6d5a12c7377a57e24ef3391
urban_tribes,Urban Tribes,From Bikers to Surfers: Visual Recognition of Urban Tribes,774cbb45968607a027ae4729077734db000a1ec5
used,USED Social Event Dataset,USED: A Large-scale Social Event Detection Dataset,8627f019882b024aef92e4eb9355c499c733e5b7
v47,V47,Re-identification of Pedestrians with Variable Occlusion and Scale,922e0a51a3b8c67c4c6ac09a577ff674cbd28b34
vadana,VADANA,VADANA: A dense dataset for facial image analysis,4563b46d42079242f06567b3f2e2f7a80cb3befe
vgg_celebs_in_places,CIP,Faces in Places: Compound Query Retrieval,7ebb153704706e457ab57b432793d2b6e5d12592
vgg_faces,VGG Face,Deep Face Recognition,162ea969d1929ed180cc6de9f0bf116993ff6e06
vgg_faces2,VGG Face2,VGGFace2: A dataset for recognising faces across pose and age,eb027969f9310e0ae941e2adee2d42cdf07d938c
violent_flows,Violent Flows,Violent Flows: Real-Time Detection of Violent Crowd Behavior,5194cbd51f9769ab25260446b4fa17204752e799
viper,VIPeR,"Evaluating Appearance Models for Recognition, Reacquisition, and Tracking",6273b3491e94ea4dd1ce42b791d77bdc96ee73a8
visual_phrases,Phrasal Recognition,Recognition using Visual Phrases,e8de844fefd54541b71c9823416daa238be65546
vmu,VMU,Can Facial Cosmetics Affect the Matching Accuracy of Face Recognition Systems?,37d6f0eb074d207b53885bd2eb78ccc8a04be597
voc,VOC,The PASCAL Visual Object Classes (VOC) Challenge,abe9f3b91fd26fa1b50cd685c0d20debfb372f73
vqa,VQA,VQA: Visual Question Answering,01959ef569f74c286956024866c1d107099199f7
ward,WARD,Re-identify people in wide area camera network,6f3c76b7c0bd8e1d122c6ea808a271fd4749c951
who_goes_there,WGT,Who Goes There? Approaches to Mapping Facial Appearance Diversity,9b9bf5e623cb8af7407d2d2d857bc3f1b531c182
wider,WIDER,Recognize Complex Events from Static Images by Fusing Deep Channels,356b431d4f7a2a0a38cf971c84568207dcdbf189
wider_attribute,WIDER Attribute,Human Attribute Recognition by Deep Hierarchical Contexts,44d23df380af207f5ac5b41459c722c87283e1eb
wider_face,WIDER FACE,WIDER FACE: A Face Detection Benchmark,52d7eb0fbc3522434c13cc247549f74bb9609c5d
wildtrack,WildTrack,WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection,77c81c13a110a341c140995bedb98101b9e84f7f
wlfdb,,WLFDB: Weakly Labeled Face Databases,5ad4e9f947c1653c247d418f05dad758a3f9277b
yale_faces,YaleFaces,Acquiring Linear Subspaces for Face Recognition under Variable Lighting,18c72175ddbb7d5956d180b65a96005c100f6014
yale_faces,YaleFaces,From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose,18c72175ddbb7d5956d180b65a96005c100f6014
yawdd,YawDD,YawDD: A Yawning Detection Dataset,a94cae786d515d3450d48267e12ca954aab791c4
yfcc_100m,YFCC100M,YFCC100M: The New Data in Multimedia Research,a6e695ddd07aad719001c0fc1129328452385949
york_3d,UOY 3D Face Database,Three-Dimensional Face Recognition: An Eigensurface Approach,19d1b811df60f86cbd5e04a094b07f32fff7a32a
youtube_faces,YouTubeFaces,Face Recognition in Unconstrained Videos with Matched Background Similarity,560e0e58d0059259ddf86fcec1fa7975dee6a868
youtube_makeup,YMU,Can Facial Cosmetics Affect the Matching Accuracy of Face Recognition Systems?,fcc6fe6007c322641796cb8792718641856a22a7
youtube_makeup,YMU,Automatic Facial Makeup Detection with Application in Face Recognition,fcc6fe6007c322641796cb8792718641856a22a7
youtube_poses,YouTube Pose,Personalizing Human Video Pose Estimation,1c2802c2199b6d15ecefe7ba0c39bfe44363de38