summaryrefslogtreecommitdiff
path: root/s2-papers.py
blob: 4fe1f0252245a3f036ce3483f4f851249d718d5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import sys
import csv
import subprocess
import time
import random
import re
import json
import click
from s2 import SemanticScholarAPI
from util import *

'''
s2 search API format:
results
matchedAuthors
matchedPresentations
query
querySuggestions
results
stats
totalPages
totalResults
'''

s2 = SemanticScholarAPI()

@click.command()
@click.option('--index', '-n', default=0, help='Index of CSV (query,)')
@click.option('--depth', '-d', default=1, help='Depth to recurse (not implemented).')
def fetch_papers(index, depth):
  keys, lines = read_citation_list(index)
  for line in lines:
    label = line[0]
    title = re.sub(r'[^-0-9a-zA-Z ]+', '', line[1])
    entry_fn = './datasets/s2/entries/{}.json'.format(title)
    if not os.path.exists(entry_fn):
      print('not found: {}'.format(entry_fn))
      continue
    result = read_json(entry_fn)
    paper_id = result['id']
    paper = fetch_paper(paper_id)
    # get all of the paper's citations

def fetch_paper(paper_id):
  os.makedirs('./datasets/s2/papers/{}/{}'.format(paper_id[0:2], paper_id), exist_ok=True)
  paper_fn = './datasets/s2/papers/{}/{}/paper.json'.format(paper_id[0:2], paper_id)
  if os.path.exists(paper_fn):
    return read_json(paper_fn)
  print(paper_id)
  paper = s2.paper(paper_id)
  if paper is None:
    print("Got none paper??")
    time.sleep(random.randint(20, 30))
    paper = s2.paper(paper_id)
    if paper is None:
      print("Paper not found")
      return None  
  write_json(paper_fn, paper)
  time.sleep(random.randint(5, 10))
  return paper

if __name__ == '__main__':
  fetch_papers()