summaryrefslogtreecommitdiff
path: root/reports/stats/unknown_papers.csv
blob: 04d23f8d201c01e1d132de527890bb1fcef16aee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
610a4451423ad7f82916c736cd8adb86a5a64c59,A Survey on Search Based Face Annotation Using Weakly Labelled Facial Images,"Volume 4, Issue 11, November 2014                                  ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
A Survey on Search Based Face Annotation Using Weakly
Labelled Facial Images
Shital A. Shinde*, Prof. Archana Chaugule
Department of Computer Engg, DYPIET Pimpri,
Savitri Bai Phule Pune University, Maharashtra India"
6180bc0816b1776ca4b32ced8ea45c3c9ce56b47,Fast Randomized Algorithms for Convex Optimization and Statistical Estimation,"Fast Randomized Algorithms for Convex Optimization and
Statistical Estimation
Mert Pilanci
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2016-147
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-147.html
August 14, 2016"
61f04606528ecf4a42b49e8ac2add2e9f92c0def,Deep Deformation Network for Object Landmark Localization,"Deep Deformation Network for Object Landmark
Localization
Xiang Yu, Feng Zhou and Manmohan Chandraker
NEC Laboratories America, Department of Media Analytics"
614a7c42aae8946c7ad4c36b53290860f6256441,Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks,"Joint Face Detection and Alignment using
Multi-task Cascaded Convolutional Networks
Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, Senior Member, IEEE, and Yu Qiao, Senior Member, IEEE"
0d88ab0250748410a1bc990b67ab2efb370ade5d,Error handling in multimodal biometric systems using reliability measures,"Author(s) :
ERROR HANDLING IN MULTIMODAL BIOMETRIC SYSTEMS USING
RELIABILITY MEASURES  (ThuPmOR6)
(EPFL, Switzerland)
(EPFL, Switzerland)
(EPFL, Switzerland)
(EPFL, Switzerland)
Krzysztof Kryszczuk
Jonas Richiardi
Plamen Prodanov
Andrzej Drygajlo"
0d538084f664b4b7c0e11899d08da31aead87c32,Deformable Part Descriptors for Fine-Grained Recognition and Attribute Prediction,"Deformable Part Descriptors for
Fine-grained Recognition and Attribute Prediction
Ning Zhang1
Ryan Farrell1,2
Forrest Iandola1
ICSI / UC Berkeley 2Brigham Young University
Trevor Darrell1"
0dccc881cb9b474186a01fd60eb3a3e061fa6546,Effective face frontalization in unconstrained images,"Effective Face Frontalization in Unconstrained Images
Tal Hassner1, Shai Harel1 †, Eran Paz1 † and Roee Enbar2
The open University of Israel. 2Adience.
Figure 1: Frontalized faces. Top: Input photos; bottom: our frontalizations,
obtained without estimating 3D facial shapes.
“Frontalization” is the process of synthesizing frontal facing views of faces
ppearing in single unconstrained photos. Recent reports have suggested
that this process may substantially boost the performance of face recogni-
tion systems. This, by transforming the challenging problem of recognizing
faces viewed from unconstrained viewpoints to the easier problem of rec-
ognizing faces in constrained, forward facing poses. Previous frontalization
methods did this by attempting to approximate 3D facial shapes for each
query image. We observe that 3D face shape estimation from unconstrained
photos may be a harder problem than frontalization and can potentially in-
troduce facial misalignments. Instead, we explore the simpler approach of
using a single, unmodified, 3D surface as an approximation to the shape of
ll input faces. We show that this leads to a straightforward, efficient and
easy to implement method for frontalization. More importantly, it produces
esthetic new frontal views and is surprisingly effective when used for face
recognition and gender estimation."
0d6b28691e1aa2a17ffaa98b9b38ac3140fb3306,Review of Perceptual Resemblance of Local Plastic Surgery Facial Images using Near Sets,"Review of Perceptual Resemblance of Local
Plastic Surgery Facial Images using Near Sets
Prachi V. Wagde1, Roshni Khedgaonkar2
,2 Department of Computer Technology,
YCCE Nagpur, India"
0d3882b22da23497e5de8b7750b71f3a4b0aac6b,Context is routinely encoded during emotion perception.,"Research Article
Context Is Routinely Encoded
During Emotion Perception
1(4) 595 –599
© The Author(s) 2010
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0956797610363547
http://pss.sagepub.com
Lisa Feldman Barrett1,2,3 and Elizabeth A. Kensinger1,3
Boston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos
Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School"
0d760e7d762fa449737ad51431f3ff938d6803fe,LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems,"LCDet: Low-Complexity Fully-Convolutional Neural Networks for
Object Detection in Embedded Systems
Subarna Tripathi
UC San Diego ∗
Gokce Dane
Qualcomm Inc.
Byeongkeun Kang
UC San Diego
Vasudev Bhaskaran
Qualcomm Inc.
Truong Nguyen
UC San Diego"
0dd72887465046b0f8fc655793c6eaaac9c03a3d,Real-Time Head Orientation from a Monocular Camera Using Deep Neural Network,"Real-time Head Orientation from a Monocular
Camera using Deep Neural Network
Byungtae Ahn, Jaesik Park, and In So Kweon
KAIST, Republic of Korea"
0d33b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a,Detection and Tracking of Faces in Videos: A Review of Related Work,"Detection and Tracking of Faces in Videos: A Review
© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939
of Related Work
Seema Saini, 2 Parminder Sandal
Student, 2Assistant Professor
, 2Dept. of Electronics & Comm., S S I E T, Punjab, India
________________________________________________________________________________________________________"
0da4c3d898ca2fff9e549d18f513f4898e960aca,The Headscarf Effect Revisited: Further Evidence for a Culture-Based Internal Face Processing Advantage.,"Wang, Y., Thomas, J., Weissgerber, S. C., Kazemini, S., Ul-Haq, I., &
Quadflieg, S. (2015). The Headscarf Effect Revisited: Further Evidence for a
36. 10.1068/p7940
Peer reviewed version
Link to published version (if available):
0.1068/p7940
Link to publication record in Explore Bristol Research
PDF-document
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html
Take down policy
Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
nd include the following information in your message:
• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint"
956317de62bd3024d4ea5a62effe8d6623a64e53,Lighting Analysis and Texture Modification of 3D Human Face Scans,"Lighting Analysis and Texture Modification of 3D Human
Face Scans
Author
Zhang, Paul, Zhao, Sanqiang, Gao, Yongsheng
Published
Conference Title
Digital Image Computing Techniques and Applications
https://doi.org/10.1109/DICTA.2007.4426825
Copyright Statement
© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/
republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.
Downloaded from
http://hdl.handle.net/10072/17889
Link to published version
http://www.ieee.org/
Griffith Research Online
https://research-repository.griffith.edu.au"
959bcb16afdf303c34a8bfc11e9fcc9d40d76b1c,Temporal Coherency based Criteria for Predicting Video Frames using Deep Multi-stage Generative Adversarial Networks,"Temporal Coherency based Criteria for Predicting
Video Frames using Deep Multi-stage Generative
Adversarial Networks
Prateep Bhattacharjee1, Sukhendu Das2
Visualization and Perception Laboratory
Department of Computer Science and Engineering
Indian Institute of Technology Madras, Chennai, India"
951f21a5671a4cd14b1ef1728dfe305bda72366f,Use of l2/3-norm Sparse Representation for Facial Expression Recognition,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358
Use of ℓ2/3-norm Sparse Representation for Facial
Expression Recognition
Sandeep Rangari1, Sandeep Gonnade2
MATS University, MATS School of Engineering and Technology, Arang, Raipur, India
MATS University, MATS School of Engineering and Technology, Arang, Raipur, India
three
to  discriminate
represents  emotion,"
9547a7bce2b85ef159b2d7c1b73dea82827a449f,Facial expression recognition using Gabor motion energy filters,"Facial Expression Recognition Using Gabor Motion Energy Filters
Tingfan Wu
Dept. Computer Science Engineering
UC San Diego
Marian S. Bartlett
Javier R. Movellan
Institute for Neural Computation
UC San Diego"
9513503867b29b10223f17c86e47034371b6eb4f,Comparison of Optimisation Algorithms for Deformable Template Matching,"Comparison of optimisation algorithms for
deformable template matching
Vasileios Zografos
Link¨oping University, Computer Vision Laboratory
ISY, SE-581 83 Link¨oping, SWEDEN"
956c634343e49319a5e3cba4f2bd2360bdcbc075,A novel incremental principal component analysis and its application for face recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006
A Novel Incremental Principal Component Analysis
nd Its Application for Face Recognition
Haitao Zhao, Pong Chi Yuen, Member, IEEE, and James T. Kwok, Member, IEEE"
95ea564bd983129ddb5535a6741e72bb1162c779,Multi-Task Learning by Deep Collaboration and Application in Facial Landmark Detection,"Multi-Task Learning by Deep Collaboration and
Application in Facial Landmark Detection
Ludovic Trottier
Philippe Giguère
Brahim Chaib-draa
Laval University, Québec, Canada"
958c599a6f01678513849637bec5dc5dba592394,Generalized Zero-Shot Learning for Action Recognition with Web-Scale Video Data,"Noname manuscript No.
(will be inserted by the editor)
Generalized Zero-Shot Learning for Action
Recognition with Web-Scale Video Data
Kun Liu · Wu Liu · Huadong Ma ·
Wenbing Huang · Xiongxiong Dong
Received: date / Accepted: date"
59fc69b3bc4759eef1347161e1248e886702f8f7,Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition,"Final Report of Final Year Project
HKU-Face: A Large Scale Dataset for
Deep Face Recognition
Haoyu Li
035141841
COMP4801 Final Year Project
Project Code: 17007"
59bfeac0635d3f1f4891106ae0262b81841b06e4,Face Verification Using the LARK Face Representation,"Face Verification Using the LARK Face
Representation
Hae Jong Seo, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE,"
59efb1ac77c59abc8613830787d767100387c680,DIF : Dataset of Intoxicated Faces for Drunk Person Identification,"DIF : Dataset of Intoxicated Faces for Drunk Person
Identification
Devendra Pratap Yadav
Indian Institute of Technology Ropar
Abhinav Dhall
Indian Institute of Technology Ropar"
59eefa01c067a33a0b9bad31c882e2710748ea24,Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition,"IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
Fast Landmark Localization
with 3D Component Reconstruction and CNN for
Cross-Pose Recognition
Gee-Sern (Jison) Hsu, Hung-Cheng Shie, Cheng-Hua Hsieh"
59d225486161b43b7bf6919b4a4b4113eb50f039,Complex Event Recognition from Images with Few Training Examples,"Complex Event Recognition from Images with Few Training Examples
Unaiza Ahsan∗
Chen Sun∗∗
James Hays∗
Irfan Essa∗
*Georgia Institute of Technology
**University of Southern California1"
5945464d47549e8dcaec37ad41471aa70001907f,Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos,"Noname manuscript No.
(will be inserted by the editor)
Every Moment Counts: Dense Detailed Labeling of Actions in Complex
Videos
Serena Yeung · Olga Russakovsky · Ning Jin · Mykhaylo Andriluka · Greg Mori ·
Li Fei-Fei
Received: date / Accepted: date"
59c9d416f7b3d33141cc94567925a447d0662d80,Matrix factorization over max-times algebra for data mining,"Universität des Saarlandes
Max-Planck-Institut für Informatik
Matrix factorization over max-times
lgebra for data mining
Masterarbeit im Fach Informatik
Master’s Thesis in Computer Science
von / by
Sanjar Karaev
ngefertigt unter der Leitung von / supervised by
Dr. Pauli Miettinen
egutachtet von / reviewers
Dr. Pauli Miettinen
Prof. Gerhard Weikum
November 2013
UNIVERSITASSARAVIENSIS"
59a35b63cf845ebf0ba31c290423e24eb822d245,The FaceSketchID System: Matching Facial Composites to Mugshots,"The FaceSketchID System: Matching Facial
Composites to Mugshots
Scott J. Klum, Student Member, IEEE, Hu Han, Member, IEEE, Brendan F. Klare, Member, IEEE,
nd Anil K. Jain, Fellow, IEEE
tedious, and may not"
59f325e63f21b95d2b4e2700c461f0136aecc171,Kernel sparse representation with local patterns for face recognition,"978-1-4577-1302-6/11/$26.00 ©2011 IEEE
FOR FACE RECOGNITION
. INTRODUCTION"
59031a35b0727925f8c47c3b2194224323489d68,Sparse Variation Dictionary Learning for Face Recognition with a Single Training Sample per Person,"Sparse Variation Dictionary Learning for Face Recognition with A Single
Training Sample Per Person
Meng Yang, Luc Van Gool
ETH Zurich
Switzerland"
926c67a611824bc5ba67db11db9c05626e79de96,Enhancing Bilinear Subspace Learning by Element Rearrangement,"Enhancing Bilinear Subspace Learning
y Element Rearrangement
Dong Xu, Shuicheng Yan, Stephen Lin,
Thomas S. Huang, and
Shih-Fu Chang"
923ede53b0842619831e94c7150e0fc4104e62f7,Masked correlation filters for partially occluded face recognition,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
92b61b09d2eed4937058d0f9494d9efeddc39002,BoxCars: Improving Vehicle Fine-Grained Recognition using 3D Bounding Boxes in Traffic Surveillance,"Under review in IJCV manuscript No.
(will be inserted by the editor)
BoxCars: Improving Vehicle Fine-Grained Recognition using
D Bounding Boxes in Traf‌f‌ic Surveillance
Jakub Sochor · Jakub ˇSpaˇnhel · Adam Herout
Received: date / Accepted: date"
920a92900fbff22fdaaef4b128ca3ca8e8d54c3e,Learning Pattern Transformation Manifolds with Parametric Atom Selection,"LEARNING PATTERN TRANSFORMATION MANIFOLDS WITH PARAMETRIC ATOM
SELECTION
Elif Vural and Pascal Frossard
Ecole Polytechnique F´ed´erale de Lausanne (EPFL)
Signal Processing Laboratory (LTS4)
Switzerland-1015 Lausanne"
9207671d9e2b668c065e06d9f58f597601039e5e,Face Detection Using a 3D Model on Face Keypoints,"Face Detection Using a 3D Model on
Face Keypoints
Adrian Barbu, Gary Gramajo"
9282239846d79a29392aa71fc24880651826af72,Classification of extreme facial events in sign language videos,"Antonakos et al. EURASIP Journal on Image and Video Processing 2014, 2014:14
http://jivp.eurasipjournals.com/content/2014/1/14
RESEARCH
Open Access
Classification of extreme facial events in sign
language videos
Epameinondas Antonakos1,2*, Vassilis Pitsikalis1 and Petros Maragos1"
92115b620c7f653c847f43b6c4ff0470c8e55dab,Training Deformable Object Models for Human Detection Based on Alignment and Clustering,"Training Deformable Object Models for Human
Detection Based on Alignment and Clustering
Benjamin Drayer and Thomas Brox
Department of Computer Science,
Centre of Biological Signalling Studies (BIOSS),
University of Freiburg, Germany"
92c2dd6b3ac9227fce0a960093ca30678bceb364,On Color Texture Normalization for Active Appearance Models,"Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published
version when available.
Title
On color texture normalization for active appearance models
Author(s)
Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile
Publication
009-05-12
Publication
Information
Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color
Texture Normalization for Active Appearance Models. Image
Processing, IEEE Transactions on, 18(6), 1372-1378.
Publisher
Link to
publisher's
version
http://dx.doi.org/10.1109/TIP.2009.2017163
Item record
http://hdl.handle.net/10379/1350"
927ba64123bd4a8a31163956b3d1765eb61e4426,Customer satisfaction measuring based on the most significant facial emotion,"Customer satisfaction measuring based on the most
significant facial emotion
Mariem Slim, Rostom Kachouri, Ahmed Atitallah
To cite this version:
Mariem Slim, Rostom Kachouri, Ahmed Atitallah. Customer satisfaction measuring based on the
most significant facial emotion. 15th IEEE International Multi-Conference on Systems, Signals
Devices (SSD 2018), Mar 2018, Hammamet, Tunisia. <hal-01790317>
HAL Id: hal-01790317
https://hal-upec-upem.archives-ouvertes.fr/hal-01790317
Submitted on 11 May 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
927ad0dceacce2bb482b96f42f2fe2ad1873f37a,Interest-Point based Face Recognition System,"Interest-Point based Face Recognition System
Interest-Point based Face Recognition System
Cesar Fernandez and Maria Asuncion Vicente
Miguel Hernandez University
Spain
. Introduction
Among  all  applications  of  face  recognition  systems,  surveillance  is  one  of  the  most
hallenging ones. In such an application, the goal is to detect known criminals in crowded
environments, like airports or train stations. Some attempts have been made, like those of
Tokio (Engadget, 2006) or Mainz (Deutsche Welle, 2006), with limited success.
The first task to be carried out in an automatic surveillance system involves the detection of
ll the faces in the images taken by the video cameras. Current face detection algorithms are
highly reliable and thus, they will not be the focus of our work. Some of the best performing
examples are the Viola-Jones algorithm (Viola & Jones, 2004) or the Schneiderman-Kanade
lgorithm (Schneiderman & Kanade, 2000).
The second task to be carried out involves the comparison of all detected faces among the
database of known criminals. The ideal behaviour of an automatic system performing this
task  would  be  to  get  a  100%  correct  identification  rate,  but  this  behaviour  is  far  from  the
apabilities  of  current  face  recognition  algorithms.  Assuming  that  there  will  be  false
identifications,  supervised  surveillance  systems  seem  to  be  the  most  realistic  option:  the"
929bd1d11d4f9cbc638779fbaf958f0efb82e603,"Improving the Performance of Facial Expression Recognition Using Dynamic, Subtle and Regional Features","This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:
Zhang, Ligang & Tjondronegoro, Dian W. (2010) Improving the perfor-
mance of facial expression recognition using dynamic, subtle and regional
features.
In Kok, WaiWong, B. Sumudu, U. Mendis, & Abdesselam ,
Bouzerdoum (Eds.) Neural Information Processing. Models and Applica-
tions, Lecture Notes in Computer Science, Sydney, N.S.W, pp. 582-589.
This file was downloaded from: http://eprints.qut.edu.au/43788/
(cid:13) Copyright 2010 Springer-Verlag
Conference proceedings published, by Springer Verlag, will be available
via Lecture Notes in Computer Science http://www.springer.de/comp/lncs/
Notice: Changes introduced as a result of publishing processes such as
opy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:
http://dx.doi.org/10.1007/978-3-642-17534-3_72"
0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0baf,F Acial E Xpression R Ecognition Based on Wapa and Oepa F Ast Ica,"International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 3, May 2014
FACIAL EXPRESSION RECOGNITION BASED ON
WAPA AND OEPA FASTICA
Humayra Binte Ali1 and David M W Powers2
Computer Science, Engineering and Mathematics School, Flinders University, Australia
Computer Science, Engineering and Mathematics School, Flinders University, Australia"
0c8a0a81481ceb304bd7796e12f5d5fa869ee448,A Spatial Regularization of LDA for Face Recognition,"International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 2, June 2010, pp. 95-100
A Spatial Regularization of LDA for Face Recognition
Lae-Jeong Park
Department of Electronics Engineering, Gangnung-Wonju National University
23 Chibyun-Dong, Kangnung, 210-702, Korea
Tel : +82-33-640-2389, Fax : +82-33-646-0740, E-mail :"
0c36c988acc9ec239953ff1b3931799af388ef70,Face Detection Using Improved Faster RCNN,"Face Detection Using Improved Faster RCNN
Changzheng Zhang, Xiang Xu, Dandan Tu*
Huawei Cloud BU, China
{zhangzhangzheng, xuxiang12,
Figure1.Face detection results of FDNet1.0"
0c5ddfa02982dcad47704888b271997c4de0674b,Model-driven and Data-driven Approaches for some Object Recognition Problems,
0c069a870367b54dd06d0da63b1e3a900a257298,Weakly Supervised Learning of Foreground-Background Segmentation Using Masked RBMs,"Author manuscript, published in ""ICANN 2011 - International Conference on Artificial Neural Networks (2011)"""
0c75c7c54eec85e962b1720755381cdca3f57dfb,Face Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Model,"Face Landmark Fitting via Optimized Part
Mixtures and Cascaded Deformable Model
Xiang Yu, Member, IEEE, Junzhou Huang, Member, IEEE,
Shaoting Zhang, Senior Member, IEEE, and Dimitris N. Metaxas, Fellow, IEEE"
0ca36ecaf4015ca4095e07f0302d28a5d9424254,Improving Bag-of-Visual-Words Towards Effective Facial Expressive Image Classification,"Improving Bag-of-Visual-Words Towards Effective Facial Expressive
Image Classification
Dawood Al Chanti1 and Alice Caplier1
Univ. Grenoble Alpes, CNRS, Grenoble INP∗ , GIPSA-lab, 38000 Grenoble, France
Keywords:
BoVW, k-means++, Relative Conjunction Matrix, SIFT, Spatial Pyramids, TF.IDF."
0cfca73806f443188632266513bac6aaf6923fa8,Predictive Uncertainty in Large Scale Classification using Dropout - Stochastic Gradient Hamiltonian Monte Carlo,"Predictive Uncertainty in Large Scale Classification
using Dropout - Stochastic Gradient Hamiltonian
Monte Carlo.
Vergara, Diego∗1, Hern´andez, Sergio∗2, Valdenegro-Toro, Mat´ıas∗∗3 and Jorquera, Felipe∗4.
Laboratorio de Procesamiento de Informaci´on Geoespacial, Universidad Cat´olica del Maule, Chile.
German Research Centre for Artificial Intelligence, Bremen, Germany.
Email:"
0c3f7272a68c8e0aa6b92d132d1bf8541c062141,Kruskal-Wallis-Based Computationally Efficient Feature Selection for Face Recognition,"Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 672630, 6 pages
http://dx.doi.org/10.1155/2014/672630
Research Article
Kruskal-Wallis-Based Computationally Efficient Feature
Selection for Face Recognition
Sajid Ali Khan,1,2 Ayyaz Hussain,3 Abdul Basit,1 and Sheeraz Akram1
Department of Software Engineering, Foundation University, Rawalpindi 46000, Pakistan
Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad,
Islamabad 44000, Pakistan
Department of Computer Science and Software Engineering, International Islamic University, Islamabad 44000, Pakistan
Correspondence should be addressed to Sajid Ali Khan;
Received 5 December 2013; Accepted 10 February 2014; Published 21 May 2014
Academic Editors: S. Balochian, V. Bhatnagar, and Y. Zhang
Copyright © 2014 Sajid Ali Khan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Face recognition in today’s technological world, and face recognition applications attain much more importance. Most of the
existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images.
The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute"
0c5afb209b647456e99ce42a6d9d177764f9a0dd,Recognizing Action Units for Facial Expression Analysis,"Recognizing Action Units for
Facial Expression Analysis
Ying-li Tian, Member, IEEE, Takeo Kanade, Fellow, IEEE, and Jeffrey F. Cohn, Member, IEEE"
0c377fcbc3bbd35386b6ed4768beda7b5111eec6,A Unified Probabilistic Framework for Spontaneous Facial Action Modeling and Understanding,"A Unified Probabilistic Framework
for Spontaneous Facial Action Modeling
nd Understanding
Yan Tong, Member, IEEE, Jixu Chen, Student Member, IEEE, and Qiang Ji, Senior Member, IEEE"
0cb2dd5f178e3a297a0c33068961018659d0f443,IARPA Janus Benchmark-B Face Dataset,"© 2017 Noblis, Inc.  IARPA Janus Benchmark-B Face Dataset Cameron Whitelam, Emma Taborsky*, Austin Blanton, Brianna Maze*, Jocelyn Adams*, Tim Miller*, Nathan Kalka*, Anil K. Jain**, James A. Duncan*, Kristen Allen, Jordan Cheney*, Patrick Grother***  Noblis* Michigan State University** NIST*** 21 July 2017"
0cd8895b4a8f16618686f622522726991ca2a324,Discrete Choice Models for Static Facial Expression Recognition,"Discrete Choice Models for Static Facial Expression
Recognition
Gianluca Antonini1, Matteo Sorci1, Michel Bierlaire2, and Jean-Philippe Thiran1
Ecole Polytechnique Federale de Lausanne, Signal Processing Institute
Ecole Polytechnique Federale de Lausanne, Operation Research Group
Ecublens, 1015 Lausanne, Switzerland
Ecublens, 1015 Lausanne, Switzerland"
0cf7da0df64557a4774100f6fde898bc4a3c4840,Shape matching and object recognition using low distortion correspondences,"Shape Matching and Object Recognition using Low Distortion Correspondences
Alexander C. Berg Tamara L. Berg
Jitendra Malik
Department of Electrical Engineering and Computer Science
U.C. Berkeley"
0cbe059c181278a373292a6af1667c54911e7925,'Owl' and 'Lizard': patterns of head pose and eye pose in driver gaze classification,"Owl and Lizard: Patterns of Head Pose and Eye
Pose in Driver Gaze Classification
Lex Fridman1, Joonbum Lee1, Bryan Reimer1, and Trent Victor2
Massachusetts Institute of Technology (MIT)
Chalmers University of Technology, SAFER"
0c4659b35ec2518914da924e692deb37e96d6206,Registering a MultiSensor Ensemble of Images,"Registering a MultiSensor Ensemble of Images
Jeff Orchard, Member, IEEE, and Richard Mann"
0ced7b814ec3bb9aebe0fcf0cac3d78f36361eae,Central Local Directional Pattern Value Flooding Co-occurrence Matrix based Features for Face Recognition,"Dr. P Chandra Sekhar Reddy, International Journal of Computer Science and Mobile Computing, Vol.6 Issue.1, January- 2017, pg. 221-227
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IMPACT FACTOR: 6.017
IJCSMC, Vol. 6, Issue. 1, January 2017, pg.221 – 227
Central Local Directional Pattern Value
Flooding Co-occurrence Matrix based
Features for Face Recognition
Dr. P Chandra Sekhar Reddy
Professor, CSE Department, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad"
0c53ef79bb8e5ba4e6a8ebad6d453ecf3672926d,Weakly Supervised PatchNets: Describing and Aggregating Local Patches for Scene Recognition,"SUBMITTED TO JOURNAL
Weakly Supervised PatchNets: Describing and
Aggregating Local Patches for Scene Recognition
Zhe Wang, Limin Wang, Yali Wang, Bowen Zhang, and Yu Qiao, Senior Member, IEEE"
6601a0906e503a6221d2e0f2ca8c3f544a4adab7,Detection of Ancient Settlement Mounds : Archaeological Survey Based on the SRTM Terrain Model,"SRTM-2  2/9/06  3:27 PM  Page 321
Detection of Ancient Settlement Mounds:
Archaeological Survey Based on the
SRTM Terrain Model
B.H. Menze, J.A. Ur, and A.G. Sherratt"
660b73b0f39d4e644bf13a1745d6ee74424d4a16,Constructing Kernel Machines in the Empirical Kernel Feature Space,",250+OPEN ACCESS BOOKS106,000+INTERNATIONALAUTHORS AND EDITORS113+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Reviews, Refinements and New Ideas in Face RecognitionDownloaded from: http://www.intechopen.com/books/reviews-refinements-and-new-ideas-in-face-recognitionPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at"
66d512342355fb77a4450decc89977efe7e55fa2,Learning Non-linear Transform with Discrim- Inative and Minimum Information Loss Priors,"Under review as a conference paper at ICLR 2018
LEARNING NON-LINEAR TRANSFORM WITH DISCRIM-
INATIVE AND MINIMUM INFORMATION LOSS PRIORS
Anonymous authors
Paper under double-blind review"
6643a7feebd0479916d94fb9186e403a4e5f7cbf,Chapter 8 3 D Face Recognition,"Chapter 8
D Face Recognition
Ajmal Mian and Nick Pears"
661ca4bbb49bb496f56311e9d4263dfac8eb96e9,Datasheets for Datasets,"Datasheets for Datasets
Timnit Gebru 1 Jamie Morgenstern 2 Briana Vecchione 3 Jennifer Wortman Vaughan 1 Hanna Wallach 1
Hal Daumé III 1 4 Kate Crawford 1 5"
66d087f3dd2e19ffe340c26ef17efe0062a59290,Dog Breed Identification,"Dog Breed Identification
Whitney LaRow
Brian Mittl
Vijay Singh"
6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c,Ordinal Regression with Multiple Output CNN for Age Estimation,"Ordinal Regression with Multiple Output CNN for Age Estimation
Zhenxing Niu1
Gang Hua3
Xidian University 2Xi’an Jiaotong University 3Microsoft Research Asia
Xinbo Gao1
Mo Zhou1
Le Wang2"
66a2c229ac82e38f1b7c77a786d8cf0d7e369598,A Probabilistic Adaptive Search System for Exploring the Face Space,"Proceedings of the 2016 Industrial and Systems Engineering Research Conference
H. Yang, Z. Kong, and MD Sarder, eds.
A Probabilistic Adaptive Search System
for Exploring the Face Space
Andres G. Abad and Luis I. Reyes Castro
Escuela Superior Politecnica del Litoral (ESPOL)
Guayaquil-Ecuador"
66a9935e958a779a3a2267c85ecb69fbbb75b8dc,Fast and Robust Fixed-Rank Matrix Recovery,"FAST AND ROBUST FIXED-RANK MATRIX RECOVERY
Fast and Robust Fixed-Rank Matrix
Recovery
German Ros*, Julio Guerrero, Angel Sappa, Daniel Ponsa and
Antonio Lopez"
66533107f9abdc7d1cb8f8795025fc7e78eb1122,Visual Servoing for a User's Mouth with Effective Intention Reading in a Wheelchair-based Robotic Arm,"Vi	a Sevig f a Ue 	h wih E(cid:11)ecive ei Readig
i a Wheechai	baed Rbic A
W	y	g Sgy Dae	i iy g	S	g iz ad Ze	ga Biey
y EECS AST 373	1 	g	Dg Y	g	G	 Taej 305	701 REA
z VR Cee ETR 161 ajg	Dg Y	g	G	 Taej 305	350 REA
Abac
Thee exi he c	eaive aciviy bewee a h
a beig ad ehabiiai b beca	e he h
a eae ehabiiai b i he ae evi
e ad ha he bee(cid:12) f ehabiiai b
	ch a ai	ay  bie f	ci. ei
eadig i e f he eeia f	ci f h	a
fiedy ehabiiai b i de  ie he
f ad afey f a wh eed he. Fi f
 he vea 	c	e f a ew wheechai	baed
bic a ye ARES  ad i h	a	b
ieaci echgie ae eeed. Ag he
echgie we cceae  vi	a evig ha
w hi bic a  eae a		y via
vi	a feedback. E(cid:11)ecive iei eadig 	ch a"
66810438bfb52367e3f6f62c24f5bc127cf92e56,Face Recognition of Illumination Tolerance in 2D Subspace Based on the Optimum Correlation Filter,"Face Recognition of Illumination Tolerance in 2D
Subspace Based on the Optimum Correlation
Filter
Xu Yi
Department of Information Engineering, Hunan Industry Polytechnic, Changsha, China
images  will  be  tested  to  project"
66af2afd4c598c2841dbfd1053bf0c386579234e,Context-assisted face clustering framework with human-in-the-loop,"Noname manuscript No.
(will be inserted by the editor)
Context Assisted Face Clustering Framework with
Human-in-the-Loop
Liyan Zhang · Dmitri V. Kalashnikov ·
Sharad Mehrotra
Received: date / Accepted: date"
66e6f08873325d37e0ec20a4769ce881e04e964e,The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding,"Int J Comput Vis (2014) 108:59–81
DOI 10.1007/s11263-013-0695-z
The SUN Attribute Database: Beyond Categories for Deeper Scene
Understanding
Genevieve Patterson · Chen Xu · Hang Su ·
James Hays
Received: 27 February 2013 / Accepted: 28 December 2013 / Published online: 18 January 2014
© Springer Science+Business Media New York 2014"
661da40b838806a7effcb42d63a9624fcd684976,An Illumination Invariant Accurate Face Recognition with Down Scaling of DCT Coefficients,"An Illumination Invariant Accurate
Face Recognition with Down Scaling
of DCT Coefficients
Virendra P. Vishwakarma, Sujata Pandey and M. N. Gupta
Department of Computer Science and Engineering, Amity School of Engineering and Technology, New Delhi, India
In this paper, a novel approach for illumination normal-
ization under varying lighting conditions is presented.
Our approach utilizes the fact that discrete cosine trans-
form (DCT) low-frequency coefficients correspond to
illumination variations in a digital image. Under varying
illuminations, the images captured may have low con-
trast; initially we apply histogram equalization on these
for contrast stretching. Then the low-frequency DCT
oefficients are scaled down to compensate the illumi-
nation variations. The value of scaling down factor and
the number of low-frequency DCT coefficients, which
re to be rescaled, are obtained experimentally. The
lassification is done using k−nearest neighbor classi-
fication and nearest mean classification on the images
obtained by inverse DCT on the processed coefficients."
66886f5af67b22d14177119520bd9c9f39cdd2e6,Learning Additive Kernel For Feature Transformation and Its Application to CNN Features,"T. KOBAYASHI: LEARNING ADDITIVE KERNEL
Learning Additive Kernel For Feature
Transformation and Its Application to CNN
Features
Takumi Kobayashi
National Institute of Advanced Industrial
Science and Technology
Tsukuba, Japan"
3edb0fa2d6b0f1984e8e2c523c558cb026b2a983,Automatic Age Estimation Based on Facial Aging Patterns,"Automatic Age Estimation Based on
Facial Aging Patterns
Xin Geng, Zhi-Hua Zhou, Senior Member, IEEE,
Kate Smith-Miles, Senior Member, IEEE"
3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07,Facial Expression Recognition with Local Binary Patterns and Linear Programming,"FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS
AND LINEAR PROGRAMMING
Xiaoyi Feng1, 2, Matti Pietikäinen1, Abdenour Hadid1
Machine Vision Group, Infotech Oulu and Dept. of Electrical and Information Engineering
P. O. Box 4500 Fin-90014 University of Oulu, Finland
2 College of Electronics and Information, Northwestern Polytechnic University
710072 Xi’an, China
In  this  work,  we  propose  a  novel  approach  to  recognize  facial  expressions  from  static
images. First, the Local Binary Patterns (LBP) are used to efficiently represent the facial
images and then the Linear Programming (LP) technique is adopted to classify the seven
facial  expressions  anger,  disgust,  fear,  happiness,  sadness,  surprise  and  neutral.
Experimental results demonstrate an average recognition accuracy of 93.8% on the JAFFE
database, which outperforms the rates of all other reported methods on the same database.
Introduction
Facial  expression  recognition  from  static
images  is  a  more  challenging  problem
than  from  image  sequences  because  less
information  for  expression  actions
vailable.  However,  information  in  a
single  image  is  sometimes  enough  for"
3e4acf3f2d112fc6516abcdddbe9e17d839f5d9b,Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs,"Deep Value Networks Learn to
Evaluate and Iteratively Refine Structured Outputs
Michael Gygli 1 * Mohammad Norouzi 2 Anelia Angelova 2"
3e3f305dac4fbb813e60ac778d6929012b4b745a,Feature sampling and partitioning for visual vocabulary generation on large action classification datasets,"Feature sampling and partitioning for visual vocabulary
generation on large action classification datasets.
Michael Sapienza1, Fabio Cuzzolin1, and Philip H.S. Torr2
Department of Computing and Communications Technology, Oxford Brookes University.
Department of Engineering Science, University of Oxford."
3ea8a6dc79d79319f7ad90d663558c664cf298d4,Automatic Facial Expression Recognition from Video Sequences,"(cid:13) Copyright by Ira Cohen, 2000"
3e4f84ce00027723bdfdb21156c9003168bc1c80,A co-training approach to automatic face recognition,"© EURASIP, 2011  -  ISSN 2076-1465
9th European Signal Processing Conference (EUSIPCO 2011)
INTRODUCTION"
3e04feb0b6392f94554f6d18e24fadba1a28b65f,Subspace Image Representation for Facial Expression Analysis and Face Recognition and its Relation to the Human Visual System,"Subspace Image Representation for Facial
Expression Analysis and Face Recognition
nd its Relation to the Human Visual System
Ioan Buciu1,2 and Ioannis Pitas1
Department of Informatics, Aristotle University of Thessaloniki GR-541 24,
Thessaloniki, Box 451, Greece.
Electronics Department, Faculty of Electrical Engineering and Information
Technology, University of Oradea 410087, Universitatii 1, Romania.
Summary. Two main theories exist with respect to face encoding and representa-
tion in the human visual system (HVS). The first one refers to the dense (holistic)
representation of the face, where faces have “holon”-like appearance. The second one
laims that a more appropriate face representation is given by a sparse code, where
only a small fraction of the neural cells corresponding to face encoding is activated.
Theoretical and experimental evidence suggest that the HVS performs face analysis
(encoding, storing, face recognition, facial expression recognition) in a structured
nd hierarchical way, where both representations have their own contribution and
goal. According to neuropsychological experiments, it seems that encoding for face
recognition, relies on holistic image representation, while a sparse image represen-
tation is used for facial expression analysis and classification. From the computer
vision perspective, the techniques developed for automatic face and facial expres-"
3e685704b140180d48142d1727080d2fb9e52163,Single Image Action Recognition by Predicting Space-Time Saliency,"Single Image Action Recognition by Predicting
Space-Time Saliency
Marjaneh Safaei and Hassan Foroosh"
3e687d5ace90c407186602de1a7727167461194a,Photo Tagging by Collection-Aware People Recognition,"Photo Tagging by Collection-Aware People Recognition
Cristina Nader Vasconcelos
Vinicius Jardim
Asla S´a
Paulo Cezar Carvalho"
50f0c495a214b8d57892d43110728e54e413d47d,Pairwise support vector machines and their application to large scale problems,"Submitted 8/11; Revised 3/12; Published 8/12
Pairwise Support Vector Machines and their Application to Large
Scale Problems
Carl Brunner
Andreas Fischer
Institute for Numerical Mathematics
Technische Universit¨at Dresden
01062 Dresden, Germany
Klaus Luig
Thorsten Thies
Cognitec Systems GmbH
Grossenhainer Str. 101
01127 Dresden, Germany
Editor: Corinna Cortes"
501096cca4d0b3d1ef407844642e39cd2ff86b37,Illumination Invariant Face Image Representation Using Quaternions,"Illumination Invariant Face Image
Representation using Quaternions
Dayron Rizo-Rodr´ıguez, Heydi M´endez-V´azquez, and Edel Garc´ıa-Reyes
Advanced Technologies Application Center. 7a # 21812 b/ 218 and 222,
Rpto. Siboney, Playa, P.C. 12200, La Habana, Cuba."
501eda2d04b1db717b7834800d74dacb7df58f91,Discriminative Sparse Representation for Expression Recognition,"Pedro Miguel Neves Marques    Discriminative Sparse Representation for Expression Recognition     Master Thesis in Electrical and Computer Engineering September, 2014"
5083c6be0f8c85815ead5368882b584e4dfab4d1,Automated Face Analysis for Affective Computing Jeffrey,"Please do not quote.  In press, Handbook of affective computing. New York, NY: Oxford
Automated Face Analysis for Affective Computing
Jeffrey F. Cohn & Fernando De la Torre"
5058a7ec68c32984c33f357ebaee96c59e269425,A Comparative Evaluation of Regression Learning Algorithms for Facial Age Estimation,"A Comparative Evaluation of Regression Learning
Algorithms for Facial Age Estimation
Carles Fern´andez1, Ivan Huerta2, and Andrea Prati2
Herta Security
Pau Claris 165 4-B, 08037 Barcelona, Spain
DPDCE, University IUAV
Santa Croce 1957, 30135 Venice, Italy"
50ff21e595e0ebe51ae808a2da3b7940549f4035,Age Group and Gender Estimation in the Wild With Deep RoR Architecture,"IEEE TRANSACTIONS ON LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2017
Age Group and Gender Estimation in the Wild with
Deep RoR Architecture
Ke Zhang, Member, IEEE, Ce Gao, Liru Guo, Miao Sun, Student Member, IEEE, Xingfang Yuan, Student
Member, IEEE, Tony X. Han, Member, IEEE, Zhenbing Zhao, Member, IEEE and Baogang Li"
5042b358705e8d8e8b0655d07f751be6a1565482,Review on Emotion Detection in Image,"International Journal of
Emerging Research in Management &Technology
ISSN: 2278-9359 (Volume-4, Issue-8)
Research  Article
August
Review  on Emotion Detection  in Image
Aswinder Kaur*                                                                                                        Kapil Dewan
CSE & PCET, PTU                                                                                             HOD, CSE & PCET, PTU
Punjab, India                                                                                                            Punj ab, India"
50e47857b11bfd3d420f6eafb155199f4b41f6d7,3D Human Face Reconstruction Using a Hybrid of Photometric Stereo and Independent Component Analysis,"International Journal of Computer, Consumer and Control (IJ3C), Vol. 2, No.1 (2013)
D Human Face Reconstruction Using a Hybrid of Photometric
Stereo and Independent Component Analysis
*Cheng-Jian Lin, 2Shyi-Shiun Kuo, 1Hsueh-Yi Lin, 2Shye-Chorng Kuo and 1Cheng-Yi Yu"
50eb75dfece76ed9119ec543e04386dfc95dfd13,Learning Visual Entities and Their Visual Attributes from Text Corpora,"Learning Visual Entities and their Visual Attributes from Text Corpora
Erik Boiy
Dept. of Computer Science
K.U.Leuven, Belgium
Koen Deschacht
Dept. of Computer Science
K.U.Leuven, Belgium
Marie-Francine Moens
Dept. of Computer Science
K.U.Leuven, Belgium"
50a0930cb8cc353e15a5cb4d2f41b365675b5ebf,Robust Facial Landmark Detection and Face Tracking in Thermal Infrared Images using Active Appearance Models,
50eb2ee977f0f53ab4b39edc4be6b760a2b05f96,Emotion recognition based on texture analysis of facial expression,"Australian Journal of Basic and Applied Sciences, 11(5) April 2017, Pages: 1-11
AUSTRALIAN JOURNAL OF BASIC AND
APPLIED SCIENCES
ISSN:1991-8178        EISSN: 2309-8414
Journal home page: www.ajbasweb.com
Emotion  Recognition  Based  on  Texture  Analysis  of  Facial  Expressions
Using Wavelets Transform
Suhaila N. Mohammed and 2Loay E. George
Assistant Lecturer, Computer Science Department, College of Science, Baghdad University, Baghdad, Iraq,
Assistant Professor, Computer Science Department, College of Science, Baghdad University, Baghdad, Iraq,
Address For Correspondence:
Suhaila N. Mohammed, Baghdad University, Computer Science Department, College of Science, Baghdad, Iraq.
A R T I C L E   I N F O
Article history:
Received 18 January 2017
Accepted 28 March 2017
Available online 15 April 2017
Keywords:
Facial  Emotion,  Face  Detection,
Template  Based  Methods,  Texture"
50d15cb17144344bb1879c0a5de7207471b9ff74,"Divide, Share, and Conquer: Multi-task Attribute Learning with Selective Sharing","Divide, Share, and Conquer: Multi-task
Attribute Learning with Selective Sharing
Chao-Yeh Chen*, Dinesh Jayaraman*, Fei Sha, and Kristen Grauman"
50d961508ec192197f78b898ff5d44dc004ef26d,A Low Indexed Content Based Neural Network Approach for Natural Objects Recognition,"International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009
A LOW INDEXED CONTENT BASED
NEURAL NETWORK APPROACH FOR
NATURAL OBJECTS RECOGNITION
G.Shyama Chandra Prasad1 and Dr. A.Govardhan 2  Dr. T.V.Rao 3
Research Scholar, JNTUH, Hyderabad, AP. India
Principal, JNTUH College of Engineering, jagitial, Karimnagar, AP, India
Principal, Chaithanya Institute of Engineering and Technology, Kakinada, AP, India"
50ccc98d9ce06160cdf92aaf470b8f4edbd8b899,Towards robust cascaded regression for face alignment in the wild,"Towards Robust Cascaded Regression for Face Alignment in the Wild
Chengchao Qu1,2 Hua Gao3
Eduardo Monari2
J¨urgen Beyerer2,1
Jean-Philippe Thiran3
Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT)
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB)
Signal Processing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne (EPFL)"
5028c0decfc8dd623c50b102424b93a8e9f2e390,Revisiting Classifier Two-sample Tests,"Published as a conference paper at ICLR 2017
REVISITING CLASSIFIER TWO-SAMPLE TESTS
David Lopez-Paz1, Maxime Oquab1,2
Facebook AI Research, 2WILLOW project team, Inria / ENS / CNRS"
505e55d0be8e48b30067fb132f05a91650666c41,A Model of Illumination Variation for Robust Face Recognition,"A Model of Illumination Variation for Robust Face Recognition
Florent Perronnin and Jean-Luc Dugelay
Institut Eur´ecom
Multimedia Communications Department
BP 193, 06904 Sophia Antipolis Cedex, France
fflorent.perronnin,"
507c9672e3673ed419075848b4b85899623ea4b0,Multi-View Facial Expression Classification,"Faculty of Informatics
Institute for Anthropomatics
Chair Prof. Dr.-Ing. R. Stiefelhagen
Facial Image Processing and Analysis Group
Multi-View Facial Expression
Classification
DIPLOMA THESIS OF
Nikolas Hesse
ADVISORS
Dr.-Ing. Hazım Kemal Ekenel
Dipl.-Inform. Hua Gao
Dipl.-Inform. Tobias Gehrig
MARCH 2011
KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association
www.kit.edu"
680d662c30739521f5c4b76845cb341dce010735,Part and Attribute Discovery from Relative Annotations,"Int J Comput Vis (2014) 108:82–96
DOI 10.1007/s11263-014-0716-6
Part and Attribute Discovery from Relative Annotations
Subhransu Maji · Gregory Shakhnarovich
Received: 25 February 2013 / Accepted: 14 March 2014 / Published online: 26 April 2014
© Springer Science+Business Media New York 2014"
68a2ee5c5b76b6feeb3170aaff09b1566ec2cdf5,Age Classification Based on Simple Lbp Transitions,"AGE CLASSIFICATION BASED ON
SIMPLE LBP TRANSITIONS
Research Scholar & Assoc Professor, Aditya institute of Technology and Management, Tekkalli-532 201, A.P.,
Gorti Satyanarayana Murty
India,
Dr. V.Vijaya Kumar
A. Obulesu
Dean-Computer Sciences (CSE & IT), Anurag Group of Institutions, Hyderabad – 500088, A.P., India.,
3Asst. Professor, Dept. Of CSE, Anurag Group of Institutions, Hyderabad – 500088, A.P., India."
68d2afd8c5c1c3a9bbda3dd209184e368e4376b9,Representation Learning by Rotating Your Faces,"Representation Learning by Rotating Your Faces
Luan Tran, Xi Yin, and Xiaoming Liu, Member, IEEE"
6859b891a079a30ef16f01ba8b85dc45bd22c352,"2D Face Recognition Based on PCA & Comparison of Manhattan Distance, Euclidean Distance & Chebychev Distance","International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 10, October 2014)
D Face Recognition Based on PCA & Comparison of
Manhattan Distance, Euclidean Distance & Chebychev
Distance
Rajib Saha1, Sayan Barman2
RCC Institute of Information Technology, Kolkata, India"
68d08ed9470d973a54ef7806318d8894d87ba610,Drive Video Analysis for the Detection of Traffic Near-Miss Incidents,"Drive Video Analysis for the Detection of Traffic Near-Miss Incidents
Hirokatsu Kataoka1, Teppei Suzuki1
, Shoko Oikawa3, Yasuhiro Matsui4 and Yutaka Satoh1"
68caf5d8ef325d7ea669f3fb76eac58e0170fff0,Long-term face tracking in the wild using deep learning,
68003e92a41d12647806d477dd7d20e4dcde1354,Fuzzy Based Image Dimensionality Reduction Using Shape Primitives for Efficient Face Recognition,"ISSN: 0976-9102 (ONLINE)
DOI: 10.21917/ijivp.2013.0101
ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, NOVEMBER 2013, VOLUME: 04, ISSUE: 02
FUZZY BASED IMAGE DIMENSIONALITY REDUCTION USING SHAPE
PRIMITIVES FOR EFFICIENT FACE RECOGNITION
P. Chandra Sekhar Reddy1, B. Eswara Reddy2 and V. Vijaya Kumar3
Deprtment of Computer Science and Engineering, Nalla Narasimha Reddy Education Society’s Group of Institutions, India
E-Mail:
Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India
Deprtment of Computer Science and Engineering, Anurag Group of Institutions, India
E-mail:
E-mail:"
68d4056765c27fbcac233794857b7f5b8a6a82bf,Example-Based Face Shape Recovery Using the Zenith Angle of the Surface Normal,"Example-Based Face Shape Recovery Using the
Zenith Angle of the Surface Normal
Mario Castel´an1, Ana J. Almaz´an-Delf´ın2, Marco I. Ram´ırez-Sosa-Mor´an3,
nd Luz A. Torres-M´endez1
CINVESTAV Campus Saltillo, Ramos Arizpe 25900, Coahuila, M´exico
Universidad Veracruzana, Facultad de F´ısica e Inteligencia Artificial, Xalapa 91000,
ITESM, Campus Saltillo, Saltillo 25270, Coahuila, M´exico
Veracruz, M´exico"
684f5166d8147b59d9e0938d627beff8c9d208dd,Discriminative Block-Diagonal Representation Learning for Image Recognition,"IEEE TRANS. NNLS, JUNE 2017
Discriminative Block-Diagonal Representation
Learning for Image Recognition
Zheng Zhang, Yong Xu, Senior Member, IEEE, Ling Shao, Senior Member, IEEE, Jian Yang, Member, IEEE"
68e9c837431f2ba59741b55004df60235e50994d,Detecting Faces Using Region-based Fully Convolutional Networks,"Detecting Faces Using Region-based Fully
Convolutional Networks
Yitong Wang Xing Ji Zheng Zhou Hao Wang Zhifeng Li∗
Tencent AI Lab, China"
685f8df14776457c1c324b0619c39b3872df617b,Face Recognition with Preprocessing and Neural Networks,"Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2016
Face Recognition with
Preprocessing and Neural
Networks
David Habrman"
68484ae8a042904a95a8d284a7f85a4e28e37513,Spoofing Deep Face Recognition with Custom Silicone Masks,"Spoofing Deep Face Recognition with Custom Silicone Masks
Sushil Bhattacharjee Amir Mohammadi
S´ebastien Marcel
Idiap Research Institute. Centre du Parc, Rue Marconi 19, Martigny (VS), Switzerland
{sushil.bhattacharjee; amir.mohammadi;"
687e17db5043661f8921fb86f215e9ca2264d4d2,A robust elastic and partial matching metric for face recognition,"A Robust Elastic and Partial Matching Metric for Face Recognition
Gang Hua
Amir Akbarzadeh
Microsoft Corporate
One Microsoft Way, Redmond, WA 98052
{ganghua,"
688754568623f62032820546ae3b9ca458ed0870,Resting high frequency heart rate variability is not associated with the recognition of emotional facial expressions in healthy human adults,"ioRxiv preprint first posted online Sep. 27, 2016;
http://dx.doi.org/10.1101/077784
The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a
CC-BY-NC-ND 4.0 International license
Resting high frequency heart rate variability is not associated with the
recognition of emotional facial expressions in healthy human adults.
Brice Beffara1,2,3, Nicolas Vermeulen3,4, Martial Mermillod1,2
Univ. Grenoble Alpes, LPNC, F-38040, Grenoble, France
CNRS, LPNC UMR 5105, F-38040, Grenoble, France
IPSY, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Fund for Scientific Research (FRS-FNRS), Brussels, Belgium
Correspondence concerning this article should be addressed to Brice Beffara, Of‌f‌ice E250, Institut
de Recherches en Sciences Psychologiques, IPSY - Place du Cardinal Mercier, 10 bte L3.05.01 B-1348
Louvain-la-Neuve, Belgium. E-mail:
Author note
This study explores whether the myelinated vagal connection between the heart and the brain
is involved in emotion recognition. The Polyvagal theory postulates that the activity of the
myelinated vagus nerve underlies socio-emotional skills. It has been proposed that the perception
of emotions could be one of this skills dependent on heart-brain interactions. However, this"
68f9cb5ee129e2b9477faf01181cd7e3099d1824,ALDA Algorithms for Online Feature Extraction,"ALDA Algorithms for Online Feature Extraction
Youness Aliyari Ghassabeh, Hamid Abrishami Moghaddam"
68d40176e878ebffbc01ffb0556e8cb2756dd9e9,Locality Repulsion Projection and Minutia Extraction Based Similarity Measure for Face Recognition,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
International Conference on Humming Bird ( 01st March 2014)
RESEARCH ARTICLE
OPEN ACCESS
Locality Repulsion Projection and Minutia Extraction Based
Similarity Measure for Face Recognition
Agnel AnushyaP.1,RamyaP.2
AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of
Ramya P. is currently working as an Asst. Professor in the dept. of Information Technology at Vins Christian
Engineering.
ollege of Engineering."
6889d649c6bbd9c0042fadec6c813f8e894ac6cc,Analysis of Robust Soft Learning Vector Quantization and an application to Facial Expression Recognition,"Analysis of Robust Soft Learning Vector
Quantization and an application to Facial
Expression Recognition"
68c17aa1ecbff0787709be74d1d98d9efd78f410,Gender Classification from Face Images Using Mutual Information and Feature Fusion,"International Journal of Optomechatronics, 6: 92–119, 2012
Copyright # Taylor & Francis Group, LLC
ISSN: 1559-9612 print=1559-9620 online
DOI: 10.1080/15599612.2012.663463
GENDER CLASSIFICATION FROM FACE IMAGES
USING MUTUAL INFORMATION AND FEATURE
FUSION
Claudio Perez, Juan Tapia, Pablo Este´vez, and Claudio Held
Department of Electrical Engineering and Advanced Mining Technology
Center, Universidad de Chile, Santiago, Chile
In this article we report a new method for gender classification from frontal face images
using feature selection based on mutual information and fusion of features extracted from
intensity, shape, texture, and from three different spatial scales. We compare the results of
three different mutual information measures: minimum redundancy and maximal relevance
(mRMR), normalized mutual information feature selection (NMIFS), and conditional
mutual information feature selection (CMIFS). We also show that by fusing features
extracted from six different methods we significantly improve the gender classification
results relative to those previously published, yielding 99.13% of the gender classification
rate on the FERET database.
Keywords: Feature fusion, feature selection, gender classification, mutual information, real-time gender"
68f61154a0080c4aae9322110c8827978f01ac2e,"Recognizing blurred , non-frontal , illumination and expression variant partially occluded faces","Research Article
Journal of the Optical Society of America A
Recognizing blurred, non-frontal, illumination and
expression variant partially occluded faces
ABHIJITH PUNNAPPURATH1* AND AMBASAMUDRAM NARAYANAN RAJAGOPALAN1
Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
*Corresponding author:
Compiled June 26, 2016
The focus of this paper is on the problem of recognizing faces across space-varying motion blur, changes
in pose, illumination, and expression, as well as partial occlusion, when only a single image per subject
is available in the gallery. We show how the blur incurred due to relative motion between the camera and
the subject during exposure can be estimated from the alpha matte of pixels that straddle the boundary
etween the face and the background. We also devise a strategy to automatically generate the trimap re-
quired for matte estimation. Having computed the motion via the matte of the probe, we account for pose
variations by synthesizing from the intensity image of the frontal gallery, a face image that matches the
pose of the probe. To handle illumination and expression variations, and partial occlusion, we model the
probe as a linear combination of nine blurred illumination basis images in the synthesized non-frontal
pose, plus a sparse occlusion. We also advocate a recognition metric that capitalizes on the sparsity of the
occluded pixels. The performance of our method is extensively validated on synthetic as well as real face
data. © 2016 Optical Society of America"
6888f3402039a36028d0a7e2c3df6db94f5cb9bb,Classifier-to-generator Attack: Estimation,"Under review as a conference paper at ICLR 2018
CLASSIFIER-TO-GENERATOR ATTACK: ESTIMATION
OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER
Anonymous authors
Paper under double-blind review"
57fd229097e4822292d19329a17ceb013b2cb648,Fast Structural Binary Coding,"Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)
Fast Structural Binary Coding
⇤Department of Electrical and Computer Engineering,University of California, San Diego
Dongjin Song⇤, Wei Liu], and David A. Meyer†
La Jolla, USA, 92093-0409. Email:
] Didi Research, Didi Kuaidi, Beijing, China. Email:
Department of Mathematics,University of California, San Diego
La Jolla, USA, 92093-0112. Email:"
57c59011614c43f51a509e10717e47505c776389,Unsupervised Human Action Detection by Action Matching,"Unsupervised Human Action Detection by Action Matching
Basura Fernando∗ Sareh Shirazi† Stephen Gould∗
The Australian National University †Queensland University of Technology"
57f8e1f461ab25614f5fe51a83601710142f8e88,Region Selection for Robust Face Verification using UMACE Filters,"Region Selection for Robust Face Verification using UMACE Filters
Salina Abdul Samad*, Dzati Athiar Ramli, Aini Hussain
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
In  this  paper,  we  investigate  the  verification  performances  of  four  subdivided  face  images  with  varying  expressions.  The
objective of this study is to evaluate which part of the face image is more tolerant to facial expression and still retains its personal
haracteristics due to the variations of the image. The Unconstrained Minimum Average Correlation Energy (UMACE) filter is
implemented to perform the verification process because of its advantages such as shift–invariance, ability to trade-off between
discrimination and distortion tolerance, e.g. variations in pose, illumination and facial expression. The database obtained from the
facial expression database of Advanced Multimedia Processing (AMP) Lab at CMU is used in this study. Four equal
sizes of face regions i.e. bottom, top, left and right halves are used for the purpose of this study. The results show that the bottom
half of the face region gives the best performance in terms of the PSR values with zero false accepted rate (FAR) and zero false
rejection rate (FRR) compared to the other three regions.
. Introduction
Face  recognition  is  a  well  established  field  of  research,
nd a large number of algorithms have been proposed in the
literature. Various classifiers have been explored to improve
the accuracy of face classification. The basic approach is to
use distance-base methods which measure Euclidean distance
etween any two vectors and then compare it with the preset"
57a1466c5985fe7594a91d46588d969007210581,A taxonomy of face-models for system evaluation,"A Taxonomy of Face-models for System Evaluation
Vijay N. Iyer, Shane. R. Kirkbride, Brian C. Parks, Walter J. Scheirer and Terrance. E. Boult
Motivation and Data Types
Synthetic Data Types
Unverified – Have no underlying physical or
statistical basis
Physics -Based – Based on structure and
materials combined with the properties
formally modeled in physics.
Statistical  – Use statistics from real
data/experiments to estimate/learn model
parameters. Generally have measurements
of accuracy
Guided Synthetic – Individual models based
on individual people. No attempt to capture
properties of large groups, a unique model
per person. For faces, guided models are
omposed of 3D structure models and skin
textures,  capturing many artifacts  not
easily  parameterized. Can be combined with"
57246142814d7010d3592e3a39a1ed819dd01f3b,Verification of Very Low-Resolution Faces Using An Identity-Preserving Deep Face Super-resolution Network,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Verification of Very Low-Resolution Faces Using An
Identity-Preserving Deep Face Super-resolution Network
Ataer-Cansizoglu, E.; Jones, M.J.; Zhang, Z.; Sullivan, A.
TR2018-116 August 24, 2018"
574705812f7c0e776ad5006ae5e61d9b071eebdb,A Novel Approach for Face Recognition Using PCA and Artificial Neural Network,"Karthik G et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.5, May- 2014, pg. 780-787
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IJCSMC, Vol. 3, Issue. 5, May 2014, pg.780 – 787
RESEARCH ARTICLE
A Novel Approach for Face Recognition
Using PCA and Artificial Neural Network
Karthik G1, Sateesh Kumar H C2
¹Deptartment of Telecommunication Engg., Dayananda Sagar College of Engg., India
²Department of Telecommunication Engg., Dayananda Sagar College of Engg., India
email : 2 email :"
571b83f7fc01163383e6ca6a9791aea79cafa7dd,SeqFace: Make full use of sequence information for face recognition,"SeqFace: Make full use of sequence information for face recognition
Wei Hu1 ∗
Yangyu Huang2
Guodong Yuan2
Fan Zhang1
Ruirui Li1
Wei Li1
College of Information Science and Technology,
Beijing University of Chemical Technology, China
YUNSHITU Corp., China"
57a14a65e8ae15176c9afae874854e8b0f23dca7,Seeing Mixed Emotions: The Specificity of Emotion Perception From Static and Dynamic Facial Expressions Across Cultures,"UvA-DARE (Digital Academic Repository)
Seeing mixed emotions: The specificity of emotion perception from static and dynamic
facial expressions across cultures
Fang, X.; Sauter, D.A.; van Kleef, G.A.
Published in:
Journal of Cross-Cultural Psychology
0.1177/0022022117736270
Link to publication
Citation for published version (APA):
Fang, X., Sauter, D. A., & van Kleef, G. A. (2018). Seeing mixed emotions: The specificity of emotion perception
from static and dynamic facial expressions across cultures. Journal of Cross-Cultural Psychology, 49(1), 130-
48. DOI: 10.1177/0022022117736270
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible."
57d37ad025b5796457eee7392d2038910988655a,Aeaeêêìáîî Áåèääååaeììáçae Çç Àááêêêàáááä Aeçîîäìì Ììììçê,"GEERATVEEETATF
ERARCCAVETYDETECTR
DagaEha
UdeheS	eviif
f.DahaWeiha
ATheiS	biediaiaF	(cid:28)efhe
Re	ieefheDegeef
aefSciece
TheSchfC	eScieceadEgieeig
ebewUiveiyfe	aeae91904
Decebe2009"
3b1aaac41fc7847dd8a6a66d29d8881f75c91ad5,Sparse Representation-Based Open Set Recognition,"Sparse Representation-based Open Set Recognition
He Zhang, Student Member, IEEE and Vishal M. Patel, Senior Member, IEEE"
3bc776eb1f4e2776f98189e17f0d5a78bb755ef4,View Synthesis from Image and Video for Object Recognition Applications,
3b15a48ffe3c6b3f2518a7c395280a11a5f58ab0,On knowledge transfer in object class recognition,"On Knowledge Transfer in
Object Class Recognition
A dissertation approved by
TECHNISCHE UNIVERSITÄT DARMSTADT
Fachbereich Informatik
for the degree of
Doktor-Ingenieur (Dr.-Ing.)
presented by
MICHAEL STARK
Dipl.-Inform.
orn in Mainz, Germany
Prof. Dr.-Ing. Michael Goesele, examiner
Prof. Martial Hebert, Ph.D., co-examiner
Prof. Dr. Bernt Schiele, co-examiner
Date of Submission: 12th of August, 2010
Date of Defense: 23rd of September, 2010
Darmstadt, 2010"
3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f,Enhancing Convolutional Neural Networks for Face Recognition with Occlusion Maps and Batch Triplet Loss,"Enhancing Convolutional Neural Networks for Face Recognition with
Occlusion Maps and Batch Triplet Loss
Daniel S´aez Triguerosa,b, Li Menga,∗, Margaret Hartnettb
School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB, UK
IDscan Biometrics (a GBG company), London E14 9QD, UK"
3ba8f8b6bfb36465018430ffaef10d2caf3cfa7e,Local Directional Number Pattern for Face Analysis: Face and Expression Recognition,"Local Directional Number Pattern for Face
Analysis: Face and Expression Recognition
Adin Ramirez Rivera, Student Member, IEEE, Jorge Rojas Castillo, Student Member, IEEE,
nd Oksam Chae, Member, IEEE"
3b9d94752f8488106b2c007e11c193f35d941e92,"Appearance, Visual and Social Ensembles for Face Recognition in Personal Photo Collections","#2052
CVPR 2013 Submission #2052. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
#2052
Appearance, Visual and Social Ensembles for
Face Recognition in Personal Photo Collections
Anonymous CVPR submission
Paper ID 2052"
3b557c4fd6775afc80c2cf7c8b16edde125b270e,Face recognition: Perspectives from the real world,"Face Recognition: Perspectives from the
Real-World
Bappaditya Mandal
Institute for Infocomm Research, A*STAR,
Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632.
Phone: +65 6408 2071; Fax: +65 6776 1378;
E-mail:"
3b410ae97e4564bc19d6c37bc44ada2dcd608552,Scalability Analysis of Audio-Visual Person Identity Verification,"Scalability Analysis of Audio-Visual Person
Identity Verification
Jacek Czyz1, Samy Bengio2, Christine Marcel2, and Luc Vandendorpe1
Communications Laboratory,
Universit´e catholique de Louvain, B-1348 Belgium,
IDIAP, CH-1920 Martigny,
Switzerland"
6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cb,Low Resolution Face Recognition Using a Two-Branch Deep Convolutional Neural Network Architecture,"Low Resolution Face Recognition Using a
Two-Branch Deep Convolutional Neural Network
Architecture
Erfan Zangeneh, Mohammad Rahmati, and Yalda Mohsenzadeh"
6f288a12033fa895fb0e9ec3219f3115904f24de,Learning Expressionlets via Universal Manifold Model for Dynamic Facial Expression Recognition,"Learning Expressionlets via Universal Manifold
Model for Dynamic Facial Expression Recognition
Mengyi Liu, Student Member, IEEE, Shiguang Shan, Senior Member, IEEE, Ruiping Wang, Member, IEEE,
Xilin Chen, Senior Member, IEEE"
6f957df9a7d3fc4eeba53086d3d154fc61ae88df,Modélisation et suivi des déformations faciales : applications à la description des expressions du visage dans le contexte de la langue des signes,"Mod´elisation et suivi des d´eformations faciales :
pplications `a la description des expressions du visage
dans le contexte de la langue des signes
Hugo Mercier
To cite this version:
Hugo Mercier. Mod´elisation et suivi des d´eformations faciales : applications `a la description
des expressions du visage dans le contexte de la langue des signes. Interface homme-machine
[cs.HC]. Universit´e Paul Sabatier - Toulouse III, 2007. Fran¸cais. <tel-00185084>
HAL Id: tel-00185084
https://tel.archives-ouvertes.fr/tel-00185084
Submitted on 5 Nov 2007
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,"
6f7d06ced04ead3b9a5da86b37e7c27bfcedbbdd,Multi-Scale Fully Convolutional Network for Fast Face Detection,"Pages 51.1-51.12
DOI: https://dx.doi.org/10.5244/C.30.51"
6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81,"Structured Output SVM Prediction of Apparent Age, Gender and Smile from Deep Features","Structured Output SVM Prediction of Apparent Age,
Gender and Smile From Deep Features
Michal Uˇriˇc´aˇr
CMP, Dept. of Cybernetics
FEE, CTU in Prague
Radu Timofte
Computer Vision Lab
D-ITET, ETH Zurich
Rasmus Rothe
Computer Vision Lab
D-ITET, ETH Zurich
Luc Van Gool
PSI, ESAT, KU Leuven
CVL, D-ITET, ETH Zurich
Jiˇr´ı Matas
CMP, Dept. of Cybernetics
FEE, CTU in Prague"
6f08885b980049be95a991f6213ee49bbf05c48d,Author's Personal Copy Multi-kernel Appearance Model ☆,"This article appeared in a journal published by Elsevier. The attached
opy is furnished to the author for internal non-commercial research
nd education use, including for instruction at the authors institution
nd sharing with colleagues.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.
In most cases authors are permitted to post their version of the
rticle (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information
regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:
http://www.elsevier.com/authorsrights"
6f35b6e2fa54a3e7aaff8eaf37019244a2d39ed3,Learning probabilistic classifiers for human–computer interaction applications,"DOI 10.1007/s00530-005-0177-4
R E G U L A R PA P E R
Nicu Sebe · Ira Cohen · Fabio G. Cozman ·
Theo Gevers · Thomas S. Huang
Learning probabilistic classifiers for human–computer
interaction applications
Published online: 10 May 2005
(cid:1) Springer-Verlag 2005
intelligent
interaction,"
6f3054f182c34ace890a32fdf1656b583fbc7445,Age Estimation Robust to Optical and Motion Blurring by Deep Residual CNN,"Article
Age Estimation Robust to Optical and Motion
Blurring by Deep Residual CNN
Jeon Seong Kang, Chan Sik Kim, Young Won Lee, Se Woon Cho and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu,
Seoul 100-715, Korea; (J.S.K.); (C.S.K.);
(Y.W.L.); (S.W.C.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 9 March 2018; Accepted: 10 April 2018; Published: 13 April 2018"
6fa3857faba887ed048a9e355b3b8642c6aab1d8,Face Recognition in Challenging Environments: An Experimental and Reproducible Research Survey,"Face Recognition in Challenging Environments:
An Experimental and Reproducible Research
Survey
Manuel G¨unther and Laurent El Shafey and S´ebastien Marcel"
6f7ce89aa3e01045fcd7f1c1635af7a09811a1fe,A novel rank order LoG filter for interest point detection,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
6fe2efbcb860767f6bb271edbb48640adbd806c3,Soft Biometrics; Human Identification Using Comparative Descriptions,"SOFT BIOMETRICS: HUMAN IDENTIFICATION USING COMPARATIVE DESCRIPTIONS
Soft Biometrics; Human Identification using
Comparative Descriptions
Daniel A. Reid, Mark S. Nixon, Sarah V. Stevenage"
6fdc0bc13f2517061eaa1364dcf853f36e1ea5ae,DAISEE: Dataset for Affective States in E-Learning Environments,"DAISEE: Dataset for Affective States in
E-Learning Environments
Abhay Gupta1, Richik Jaiswal2, Sagar Adhikari2, Vineeth Balasubramanian2
Microsoft India R&D Pvt. Ltd.
Department of Computer Science, IIT Hyderabad
{cs12b1032, cs12b1034,"
6f5151c7446552fd6a611bf6263f14e729805ec7,Facial Action Unit Recognition using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classi ers,".=?E= )?JE 7EJ 4A?CEJE KIEC
?= *E=HO 2=JJAH .A=JKHAI MEJD
-++ +=IIEAHI
55EJD
+AJHA BH 8EIE 5FAA?D 5EC= 2H?AIIEC 7ELAHIEJO B 5KHHAO
5KHHAO /7  %:0 7
)>IJH=?J 9EJDE JDA ?JANJ B=?A ANFHAIIE ?=IIE?=JE KIEC JDA
B=?E= =?JE IOIJA .)+5 MA JDA FH>A B
EC B=?E= =?JE KEJI )7I 6DA EI J JH=E = IECA
AHHH?HHA?JEC KJFKJ -++ KJE?=II ?=IIEAH J AIJE=JA JDA
FH>=>EEJEAI JD=J A=?D A B IALAH= ?O ??KHHEC )7 CHKFI EI
FHAIAJ E JDA FH>A E=CA 2=JJ I?=EC EI J ?=E>H=JA JDA -++
KJFKJI J FH>=>EEJEAI =FFHFHE=JA IKI B JDAIA FH>=>EEJEAI =HA
J=A J >J=E = IAF=H=JA FH>=>EEJO BH A=?D )7 .A=JKHA
ANJH=?JE EI >O CAAH=JEC = =HCA K>AH B ?= >E=HO F=J
JAH *2 BA=JKHAI JDA IAA?JEC BH JDAIA KIEC B=IJ ?HHA=JE
JAHEC .+*. 6DA >E=I L=HE=?A FHFAHJEAI B JDA ?=IIEAH
=HA MA IDM JD=J >JD JDAIA IKH?AI B AHHH ?= >A HA
>O AD=?EC -++ JDHKCD JDA =FFE?=JE B >JIJH=FFEC
?=IIIAF=H=>EEJO MAECDJEC"
03c56c176ec6377dddb6a96c7b2e95408db65a7a,A Novel Geometric Framework on Gram Matrix Trajectories for Human Behavior Understanding,"A Novel Geometric Framework on Gram Matrix
Trajectories for Human Behavior Understanding
Anis Kacem, Mohamed Daoudi, Boulbaba Ben Amor, Stefano Berretti, and Juan Carlos Alvarez-Paiva"
0322e69172f54b95ae6a90eb3af91d3daa5e36ea,Face Classification using Adjusted Histogram in Grayscale,"Face Classification using Adjusted Histogram in
Grayscale
Weenakorn Ieosanurak, and Watcharin Klongdee"
03f7041515d8a6dcb9170763d4f6debd50202c2b,Clustering Millions of Faces by Identity,"Clustering Millions of Faces by Identity
Charles Otto, Student Member, IEEE, Dayong Wang, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
038ce930a02d38fb30d15aac654ec95640fe5cb0,Approximate structured output learning for Constrained Local Models with application to real-time facial feature detection and tracking on low-power devices,"Approximate Structured Output Learning for Constrained Local
Models with Application to Real-time Facial Feature Detection and
Tracking on Low-power Devices
Shuai Zheng, Paul Sturgess and Philip H. S. Torr"
03c1fc9c3339813ed81ad0de540132f9f695a0f8,Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification,"Proceedings of Machine Learning Research 81:1–15, 2018
Conference on Fairness, Accountability, and Transparency
Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification∗
Joy Buolamwini
MIT Media Lab 75 Amherst St. Cambridge, MA 02139
Timnit Gebru
Microsoft Research 641 Avenue of the Americas, New York, NY 10011
Editors: Sorelle A. Friedler and Christo Wilson"
0339459a5b5439d38acd9c40a0c5fea178ba52fb,Multimodal recognition of emotions in car environments,"D|C|I&I 2009 Prague
Multimodal recognition of emotions in car
environments
Dragoş DatcuA and Léon J.M. RothkrantzB"
032825000c03b8ab4c207e1af4daeb1f225eb025,A Novel Approach for Human Face Detection in Color Images Using Skin Color and Golden Ratio,"J. Appl. Environ. Biol. Sci., 7(10)159-164, 2017
ISSN: 2090-4274
© 2017, TextRoad Publication
Journal of Applied Environmental
nd Biological Sciences
www.textroad.com
A Novel Approach for Human Face Detection in Color Images Using Skin
Color and Golden Ratio
Faizan Ullah*1, Dilawar Shah1, Sabir Shah1, Abdus Salam2, Shujaat Ali1
Department of Computer Science, Bacha Khan University, Charsadda, KPK, Pakistan1
Department of Computer Science, Abdul WaliKhan University, Mardan, KPK, Pakistan2
Received: May 9, 2017
Accepted: August 2, 2017"
03a8f53058127798bc2bc0245d21e78354f6c93b,Max-margin additive classifiers for detection,"Max-Margin Additive Classifiers for Detection
Subhransu Maji and Alexander C. Berg
Sam Hare
VGG Reading Group
October 30, 2009"
03b98b4a2c0b7cc7dae7724b5fe623a43eaf877b,Acume: A Novel Visualization Tool for Understanding Facial Expression and Gesture Data,"Acume: A Novel Visualization Tool for Understanding Facial
Expression and Gesture Data"
03adcf58d947a412f3904a79f2ab51cfdf0e838a,Video-based face recognition: a survey,"World Journal of Science and Technology 2012, 2(4):136-139
ISSN: 2231 – 2587
Available Online: www.worldjournalofscience.com
_________________________________________________________________
Proceedings of ""Conference on Advances in Communication and Computing (NCACC'12)”
Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule,Maharastra,India.
April 21, 2012
Video-based face recognition: a survey
Shailaja A Patil1 and Pramod J Deore2
Department of Electronics and Telecommunication, R.C.Patel Institute of Technology,Shirpur,Dist.Dhule.Maharashtra,India."
03f14159718cb495ca50786f278f8518c0d8c8c9,Performance evaluation of HOG and Gabor features for vision-based vehicle detection,"015 IEEE International Conference on Control System, Computing and Engineering, Nov 27 – Nov 29, 2015 Penang, Malaysia
015 IEEE International Conference on Control System,
Computing and Engineering (ICCSCE2015)
Technical Session 1A – DAY 1 – 27th Nov 2015
Time: 3.00 pm – 4.30 pm
Venue: Jintan
Topic: Signal and Image Processing
.00 pm – 3.15pm
.15 pm – 3.30pm
.30 pm – 3.45pm
.45 pm – 4.00pm
.00 pm – 4.15pm
.15 pm – 4.30pm
.30 pm – 4.45pm
A 01 ID3
Can  Subspace  Based  Learning  Approach  Perform  on  Makeup  Face
Recognition?
Khor Ean Yee, Pang Ying Han, Ooi Shih Yin and Wee Kuok Kwee
A 02 ID35
Performance  Evaluation  of  HOG  and  Gabor  Features  for  Vision-based"
0394040749195937e535af4dda134206aa830258,Geodesic entropic graphs for dimension and entropy estimation in manifold learning,"Geodesic Entropic Graphs for Dimension and
Entropy Estimation in Manifold Learning
Jose A. Costa and Alfred O. Hero III
December 16, 2003"
03ac1c694bc84a27621da6bfe73ea9f7210c6d45,Chapter 1 Introduction to information security foundations and applications,"Chapter 1
Introduction to information security
foundations and applications
Ali Ismail Awad1,2
.1 Background
Information security has extended to include several research directions like user
uthentication and authorization, network security, hardware security, software secu-
rity, and data cryptography. Information security has become a crucial need for
protecting almost all information transaction applications. Security is considered as
n important science discipline whose many multifaceted complexities deserve the
synergy of the computer science and engineering communities.
Recently, due to the proliferation of Information and Communication Tech-
nologies, information security has started to cover emerging topics such as cloud
omputing security, smart cities’ security and privacy, healthcare and telemedicine,
the Internet-of-Things (IoT) security [1], the Internet-of-Vehicles security, and sev-
eral types of wireless sensor networks security [2,3]. In addition, information security
has extended further to cover not only technical security problems but also social and
organizational security challenges [4,5].
Traditional systems’ development approaches were focusing on the system’s
usability where security was left to the last stage with less priority. However, the"
0394e684bd0a94fc2ff09d2baef8059c2652ffb0,Median Robust Extended Local Binary Pattern for Texture Classification,"Median Robust Extended Local Binary Pattern
for Texture Classification
Li Liu, Songyang Lao, Paul W. Fieguth, Member, IEEE, Yulan Guo,
Xiaogang Wang, and Matti Pietikäinen, Fellow, IEEE
Index Terms— Texture descriptors, rotation invariance, local
inary pattern (LBP), feature extraction, texture analysis.
how the texture recognition process works in humans as
well as in the important role it plays in the wide variety of
pplications of computer vision and image analysis [1], [2].
The many applications of texture classification include medical
image analysis and understanding, object recognition, biomet-
rics, content-based image retrieval, remote sensing, industrial
inspection, and document classification.
As a classical pattern recognition problem, texture classifi-
ation primarily consists of two critical subproblems: feature
extraction and classifier designation [1], [2]. It is generally
greed that the extraction of powerful texture features plays a
relatively more important role, since if poor features are used
even the best classifier will fail to achieve good recognition
results. Consequently, most research in texture classification"
03f4c0fe190e5e451d51310bca61c704b39dcac8,CHEAVD: a Chinese natural emotional audio-visual database,"J Ambient Intell Human Comput
DOI 10.1007/s12652-016-0406-z
O R I G I N A L R E S E A R C H
CHEAVD: a Chinese natural emotional audio–visual database
Ya Li1
• Jianhua Tao1,2,3
• Linlin Chao1
• Wei Bao1,4
• Yazhu Liu1,4
Received: 30 March 2016 / Accepted: 22 August 2016
Ó Springer-Verlag Berlin Heidelberg 2016"
031055c241b92d66b6984643eb9e05fd605f24e2,Multi-fold MIL Training for Weakly Supervised Object Localization,"Multi-fold MIL Training for Weakly Supervised Object Localization
Ramazan Gokberk Cinbis
Jakob Verbeek Cordelia Schmid
Inria∗"
0332ae32aeaf8fdd8cae59a608dc8ea14c6e3136,Large Scale 3D Morphable Models,"Int J Comput Vis
DOI 10.1007/s11263-017-1009-7
Large Scale 3D Morphable Models
James Booth1
Stefanos Zafeiriou1
· Anastasios Roussos1,3 · Allan Ponniah2 · David Dunaway2 ·
Received: 15 March 2016 / Accepted: 24 March 2017
© The Author(s) 2017. This article is an open access publication"
034addac4637121e953511301ef3a3226a9e75fd,Implied Feedback: Learning Nuances of User Behavior in Image Search,"Implied Feedback: Learning Nuances of User Behavior in Image Search
Devi Parikh
Virginia Tech"
03701e66eda54d5ab1dc36a3a6d165389be0ce79,Improved Principal Component Regression for Face Recognition Under Illumination Variations,"Improved Principal Component Regression for Face
Recognition Under Illumination Variations
Shih-Ming Huang and Jar-Ferr Yang, Fellow, IEEE"
9b318098f3660b453fbdb7a579778ab5e9118c4c,Joint Patch and Multi-label Learning for Facial Action Unit and Holistic Expression Recognition,"Joint Patch and Multi-label Learning for Facial
Action Unit and Holistic Expression Recognition
Kaili Zhao, Wen-Sheng Chu, Student Member, IEEE, Fernando De la Torre,
Jeffrey F. Cohn, and Honggang Zhang, Senior Member, IEEE
lassifiers without"
9b474d6e81e3b94e0c7881210e249689139b3e04,VG-RAM Weightless Neural Networks for Face Recognition,"VG-RAM Weightless Neural Networks for
Face Recognition
Alberto F. De Souza, Claudine Badue, Felipe Pedroni, Stiven Schwanz Dias,
Hallysson Oliveira and Soterio Ferreira de Souza
Departamento de Inform´atica
Universidade Federal do Esp´ırito Santo
Av. Fernando Ferrari, 514, 29075-910 - Vit´oria-ES
Brazil
. Introduction
Computerized human face recognition has many practical applications, such as access control,
security monitoring, and surveillance systems, and has been one of the most challenging and
ctive research areas in computer vision for many decades (Zhao et al.; 2003). Even though
urrent machine recognition systems have reached a certain level of maturity, the recognition
of faces with different facial expressions, occlusions, and changes in illumination and/or pose
is still a hard problem.
A general statement of the problem of machine recognition of faces can be formulated as fol-
lows: given an image of a scene, (i) identify or (ii) verify one or more persons in the scene
using a database of faces. In identification problems, given a face as input, the system reports
ack the identity of an individual based on a database of known individuals; whereas in veri-
fication problems, the system confirms or rejects the claimed identity of the input face. In both"
9bcfadd22b2c84a717c56a2725971b6d49d3a804,How to Detect a Loss of Attention in a Tutoring System using Facial Expressions and Gaze Direction,"How to Detect a Loss of Attention in a Tutoring System
using Facial Expressions and Gaze Direction
Mark ter Maat"
9b164cef4b4ad93e89f7c1aada81ae7af802f3a4,A Fully Automatic and Haar like Feature Extraction-Based Method for Lip Contour Detection,"Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502
Vol. 2(1), 17-20, January (2013)
Res.J.Recent Sci.
A Fully Automatic and Haar like Feature Extraction-Based Method for Lip
Contour Detection
Zahedi Morteza and Mohamadian Zahra
School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN
Received 26th September 2012, revised 27th October 2012, accepted 6th November 2012
Available online at: www.isca.in"
9bac481dc4171aa2d847feac546c9f7299cc5aa0,Matrix Product State for Higher-Order Tensor Compression and Classification,"Matrix Product State for Higher-Order Tensor
Compression and Classification
Johann A. Bengua1, Ho N. Phien1, Hoang D. Tuan1 and Minh N. Do2"
9b7974d9ad19bb4ba1ea147c55e629ad7927c5d7,Faical Expression Recognition by Combining Texture and Geometrical Features,"Faical Expression Recognition by Combining
Texture and Geometrical Features
Renjie Liu, Ruofei Du, Bao-Liang Lu*"
9b6d0b3fbf7d07a7bb0d86290f97058aa6153179,"NII , Japan at the first THUMOS Workshop 2013","NII, Japan at the first THUMOS Workshop 2013
Sang Phan, Duy-Dinh Le, Shin’ichi Satoh
National Institute of Informatics
-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430"
9e8637a5419fec97f162153569ec4fc53579c21e,Segmentation and Normalization of Human Ears Using Cascaded Pose Regression,"Segmentation and Normalization of Human Ears
using Cascaded Pose Regression
Anika Pflug and Christoph Busch
University of Applied Sciences Darmstadt - CASED,
Haardtring 100,
64295 Darmstadt, Germany
http://www.h-da.de"
9e4b052844d154c3431120ec27e78813b637b4fc,Local gradient pattern - A novel feature representation for facial expression recognition,"Journal of AI and Data Mining
Vol. 2, No .1, 2014, 33-38.
Local gradient pattern - A novel feature representation for facial
expression recognition
M. Shahidul Islam
Department of Computer Science, School of Applied Statistics, National Institute of Development Administration, Bangkok, Thailand.
Received 23 April 2013; accepted 16 June 2013
*Corresponding author: (M.Shahidul Islam)"
9ea73660fccc4da51c7bc6eb6eedabcce7b5cead,Talking head detection by likelihood-ratio test,"Talking Head Detection by Likelihood-Ratio Test†
Carl Quillen, Kara Greenfield, and William Campbell
MIT Lincoln Laboratory,
Lexington MA 02420, USA"
9e9052256442f4e254663ea55c87303c85310df9,Review On Attribute - assisted Reranking for Image Search,"International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)
Volume 4 Issue 10, October 2015
Review On Attribute-assisted Reranking for
Image Search
Waghmare Supriya, Wavhal Archana, Patil Nital, Tapkir Yogita, Prof. Yogesh Thorat"
9eeada49fc2cba846b4dad1012ba8a7ee78a8bb7,A New Facial Expression Recognition Method Based on Local Gabor Filter Bank and PCA plus LDA,"Hong-Bo Deng, Lian-Wen Jin, Li-Xin Zhen, Jian-Cheng Huang
A New Facial Expression Recognition Method Based on Local Gabor Filter Bank and PCA plus LDA
A New Facial Expression Recognition Method Based on
Local Gabor Filter Bank and PCA plus LDA
Hong-Bo Deng1, Lian-Wen Jin1, Li-Xin Zhen2, Jian-Cheng Huang2
School of Electronic and Information Engineering, South China
University of Technology, Guangzhou, 510640, P.R.China
Motorola China Research Center, Shanghai, 210000, P.R.China
{hbdeng,
{Li-Xin.Zhen,"
9ef2b2db11ed117521424c275c3ce1b5c696b9b3,Robust Face Alignment Using a Mixture of Invariant Experts,"Robust Face Alignment Using a Mixture of Invariant Experts
Oncel Tuzel†
Salil Tambe‡∗
Tim K. Marks†
Intel Corporation
Mitsubishi Electric Research Labs (MERL)
{oncel,"
9e5acdda54481104aaf19974dca6382ed5ff21ed,Automatic localization of facial landmarks from expressive images of high complexity,"Yulia Gizatdinova and Veikko Surakka
Automatic localization of facial
landmarks from expressive images
of high complexity
DEPARTMENT OF COMPUTER SCIENCES
UNIVERSITY OF TAMPERE
D‐2008‐9
TAMPERE 2008"
9e0285debd4b0ba7769b389181bd3e0fd7a02af6,From Face Images and Attributes to Attributes,"From face images and attributes to attributes
Robert Torfason, Eirikur Agustsson, Rasmus Rothe, Radu Timofte
Computer Vision Laboratory, ETH Zurich, Switzerland"
040dc119d5ca9ea3d5fc39953a91ec507ed8cc5d,Large-scale Bisample Learning on ID vs. Spot Face Recognition,"Noname manuscript No.
(will be inserted by the editor)
Large-scale Bisample Learning on ID vs. Spot Face Recognition
Xiangyu Zhu∗ · Hao Liu∗ · Zhen Lei · Hailin Shi · Fan Yang · Dong
Yi · Stan Z. Li
Received: date / Accepted: date"
047f6afa87f48de7e32e14229844d1587185ce45,An Improvement of Energy-Transfer Features Using DCT for Face Detection,"An Improvement of Energy-Transfer Features
Using DCT for Face Detection
Radovan Fusek, Eduard Sojka, Karel Mozdˇreˇn, and Milan ˇSurkala
Technical University of Ostrava, FEECS, Department of Computer Science,
7. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic"
04b851f25d6d49e61a528606953e11cfac7df2b2,Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition,"Optical Flow Guided Feature: A Fast and Robust Motion Representation for
Video Action Recognition
Shuyang Sun1,2, Zhanghui Kuang2, Lu Sheng3, Wanli Ouyang1, Wei Zhang2
The University of Sydney 2SenseTime Research 3The Chinese University of Hong Kong
{shuyang.sun
{wayne.zhang"
0447bdb71490c24dd9c865e187824dee5813a676,Manifold Estimation in View-based Feature Space for Face Synthesis Across Pose,"Manifold Estimation in View-based Feature
Space for Face Synthesis Across Pose
Paper 27"
0435a34e93b8dda459de49b499dd71dbb478dc18,"VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification Using Convolutional Neural Networks","VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification
Using Convolutional Neural Networks
Ayesha Gurnani£1, Vandit Gajjar£1, Viraj Mavani£1, Yash Khandhediya£1
Department of Electronics and Communication Engineering and
Computer Vision Group, L. D. College of Engineering, Ahmedabad, India
{gurnani.ayesha.52, gajjar.vandit.381, mavani.viraj.604,
the  need  for  handcrafted  facial  descriptors  and  data
preprocessing.  D-CNN  models  have  been  not  only
successfully  applied  to  human  face  analysis,  but  also  for
the visual saliency detection [21, 22, 23]. Visual Saliency
is  fundamentally  an  intensity  map  where  higher  intensity
signifies  regions,  where  a  general  human  being  would
look, and lower intensities mean decreasing level of visual
ttention.  It’s  a  measure  of  visual  attention  of  humans
ased  on  the  content  of  the  image.  It  has  numerous
pplications  in  computer  vision  and  image  processing
tasks. It is still an open problem when considering the MIT
Saliency Benchmark [24].
In  previous  five  years,  considering  age  estimation,
gender  classification  and  facial  expression  classification"
044ba70e6744e80c6a09fa63ed6822ae241386f2,Early Prediction for Physical Human Robot Collaboration in the Operating Room,"TO APPEAR IN AUTONOMOUS ROBOTS, SPECIAL ISSUE IN LEARNING FOR HUMAN-ROBOT COLLABORATION
Early Prediction for Physical Human Robot
Collaboration in the Operating Room
Tian Zhou, Student Member, IEEE, and Juan Wachs, Member, IEEE"
04dcdb7cb0d3c462bdefdd05508edfcff5a6d315,Assisting the training of deep neural networks with applications to computer vision,"Assisting the training of deep neural networks
with applications to computer vision
Adriana Romero
tesi  doctoral  està  subjecta  a
Aquesta
CompartirIgual  4.0. Espanya de Creative Commons.
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - NoComercial – CompartirIgual
.0.  España de Creative Commons.
This  doctoral  thesis  is  licensed  under  the Creative  Commons  Attribution-NonCommercial-
ShareAlike 4.0. Spain License.
llicència Reconeixement-  NoComercial  –"
044fdb693a8d96a61a9b2622dd1737ce8e5ff4fa,Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions,"Dynamic Texture Recognition Using Local Binary
Patterns with an Application to Facial Expressions
Guoying Zhao and Matti Pietik¨ainen, Senior Member, IEEE"
04f55f81bbd879773e2b8df9c6b7c1d324bc72d8,Multi-view Face Analysis Based on Gabor Features,"Multi-view Face Analysis Based on Gabor Features
Hongli Liu,  Weifeng Liu,  Yanjiang Wang
College of Information and Control Engineering in China University of Petroleum,
Qingdao 266580, China"
0431e8a01bae556c0d8b2b431e334f7395dd803a,Learning Localized Perceptual Similarity Metrics for Interactive Categorization,"Learning Localized Perceptual Similarity Metrics for Interactive Categorization
Catherine Wah ∗
Google Inc.
google.com"
04b4c779b43b830220bf938223f685d1057368e9,Video retrieval based on deep convolutional neural network,"Video retrieval based on deep convolutional
neural network
Yajiao Dong
School of Information and Electronics,
Beijing Institution of Technology, Beijing, China
Jianguo Li
School of Information and Electronics,
Beijing Institution of Technology, Beijing, China"
04616814f1aabe3799f8ab67101fbaf9fd115ae4,UNIVERSITÉ DE CAEN BASSE NORMANDIE U . F . R . de Sciences,"UNIVERSIT´EDECAENBASSENORMANDIEU.F.R.deSciences´ECOLEDOCTORALESIMEMTH`ESEPr´esent´eeparM.GauravSHARMAsoutenuele17D´ecembre2012envuedel’obtentionduDOCTORATdel’UNIVERSIT´EdeCAENSp´ecialit´e:InformatiqueetapplicationsArrˆet´edu07aoˆut2006Titre:DescriptionS´emantiquedesHumainsPr´esentsdansdesImagesVid´eo(SemanticDescriptionofHumansinImages)TheworkpresentedinthisthesiswascarriedoutatGREYC-UniversityofCaenandLEAR–INRIAGrenobleJuryM.PatrickPEREZDirecteurdeRechercheINRIA/Technicolor,RennesRapporteurM.FlorentPERRONNINPrincipalScientistXeroxRCE,GrenobleRapporteurM.JeanPONCEProfesseurdesUniversit´esENS,ParisExaminateurMme.CordeliaSCHMIDDirectricedeRechercheINRIA,GrenobleDirectricedeth`eseM.Fr´ed´ericJURIEProfesseurdesUniversit´esUniversit´edeCaenDirecteurdeth`ese"
047d7cf4301cae3d318468fe03a1c4ce43b086ed,Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression,"Co-Localization of Audio Sources in Images Using
Binaural Features and Locally-Linear Regression
Antoine Deleforge, Radu Horaud, Yoav Y. Schechner, Laurent Girin
To cite this version:
Antoine Deleforge, Radu Horaud, Yoav Y. Schechner, Laurent Girin. Co-Localization of Audio
Sources in Images Using Binaural Features and Locally-Linear Regression. IEEE Transactions
on Audio Speech and Language Processing, 2015, 15p. <hal-01112834>
HAL Id: hal-01112834
https://hal.inria.fr/hal-01112834
Submitted on 3 Feb 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
04317e63c08e7888cef480fe79f12d3c255c5b00,Face Recognition Using a Unified 3D Morphable Model,"Face Recognition Using a Unified 3D Morphable Model
Hu, G., Yan, F., Chan, C-H., Deng, W., Christmas, W., Kittler, J., & Robertson, N. M. (2016). Face Recognition
Using a Unified 3D Morphable Model. In Computer Vision – ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII (pp. 73-89). (Lecture Notes in
Computer Science; Vol. 9912). Springer Verlag. DOI: 10.1007/978-3-319-46484-8_5
Published in:
Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14,
016, Proceedings, Part VIII
Document Version:
Peer reviewed version
Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal
Publisher rights
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-46484-8_5
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.
Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to"
0470b0ab569fac5bbe385fa5565036739d4c37f8,Automatic face naming with caption-based supervision,"Automatic Face Naming with Caption-based Supervision
Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid
To cite this version:
Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid. Automatic Face Naming
with Caption-based Supervision. CVPR 2008 - IEEE Conference on Computer Vision
Pattern Recognition,
iety,
<10.1109/CVPR.2008.4587603>. <inria-00321048v2>
008,
pp.1-8,
008, Anchorage, United
<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4587603>.
IEEE Computer
States.
HAL Id: inria-00321048
https://hal.inria.fr/inria-00321048v2
Submitted on 11 Apr 2011
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-"
6a3a07deadcaaab42a0689fbe5879b5dfc3ede52,Learning to Estimate Pose by Watching Videos,"Learning to Estimate Pose by Watching Videos
Prabuddha Chakraborty and Vinay P. Namboodiri
Department of Computer Science and Engineering
IIT Kanpur
{prabudc, vinaypn}"
6afed8dc29bc568b58778f066dc44146cad5366c,Kernel Hebbian Algorithm for Single-Frame Super-Resolution,"Kernel Hebbian Algorithm for Single-Frame
Super-Resolution
Kwang In Kim1, Matthias O. Franz1, and Bernhard Sch¨olkopf1
Max Planck Institute f¨ur biologische Kybernetik
Spemannstr. 38, D-72076 T¨ubingen, Germany
{kimki, mof,
http://www.kyb.tuebingen.mpg.de/"
6a16b91b2db0a3164f62bfd956530a4206b23fea,A Method for Real-Time Eye Blink Detection and Its Application,"A Method for Real-Time Eye Blink Detection and Its Application
Chinnawat Devahasdin Na Ayudhya
Mahidol Wittayanusorn School
Puttamonton, Nakornpatom 73170, Thailand"
6a806978ca5cd593d0ccd8b3711b6ef2a163d810,Facial Feature Tracking for Emotional Dynamic Analysis,"Facial feature tracking for Emotional Dynamic
Analysis
Thibaud Senechal1, Vincent Rapp1, and Lionel Prevost2
ISIR, CNRS UMR 7222
Univ. Pierre et Marie Curie, Paris
{rapp,
LAMIA, EA 4540
Univ. of Fr. West Indies & Guyana"
6a8a3c604591e7dd4346611c14dbef0c8ce9ba54,An Affect-Responsive Interactive Photo Frame,"ENTERFACE’10, JULY 12TH - AUGUST 6TH, AMSTERDAM, THE NETHERLANDS.
An Affect-Responsive Interactive Photo Frame
Hamdi Dibeklio˘glu, Ilkka Kosunen, Marcos Ortega Hortas, Albert Ali Salah, Petr Zuz´anek"
6a52e6fce541126ff429f3c6d573bc774f5b8d89,Role of Facial Emotion in Social Correlation,"Role of Facial Emotion in Social Correlation
Pankaj Mishra, Rafik Hadfi, and Takayuki Ito
Department of Computer Science and Engineering
Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan
{pankaj.mishra,"
6aefe7460e1540438ffa63f7757c4750c844764d,Non-rigid Segmentation Using Sparse Low Dimensional Manifolds and Deep Belief Networks,"Non-rigid Segmentation using Sparse Low Dimensional Manifolds and
Deep Belief Networks ∗
Jacinto C. Nascimento
Instituto de Sistemas e Rob´otica
Instituto Superior T´ecnico, Portugal"
6a7e464464f70afea78552c8386f4d2763ea1d9c,Facial Landmark Localization – A Literature Survey,"Review Article
International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161
©2014 INPRESSCO
, All Rights Reserved
Available at http://inpressco.com/category/ijcet
Facial Landmark Localization – A Literature Survey
Dhananjay RathodȦ*, Vinay A, Shylaja SSȦ and S NatarajanȦ
ȦDepartment of Information Science and Engineering, PES Institute of Technology, Bangalore, Karnataka, India
Accepted 25 May 2014, Available online 01 June2014, Vol.4, No.3 (June 2014)"
32925200665a1bbb4fc8131cd192cb34c2d7d9e3,An Active Appearance Model with a Derivative-Free Optimization,"MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN
An Active Appearance Model with a Derivative-Free
Optimization
Jixia ZHANG‡, Franck DAVOINE†, Chunhong PAN‡
CNRS†, Institute of Automation of the Chinese Academy of Sciences‡
95, Zhongguancun Dong Lu, PO Box 2728 − Beijing 100190 − PR China
LIAMA Sino-French IT Lab."
322c063e97cd26f75191ae908f09a41c534eba90,Improving Image Classification Using Semantic Attributes,"Noname manuscript No.
(will be inserted by the editor)
Improving Image Classification using Semantic Attributes
Yu Su · Fr´ed´eric Jurie
Received: date / Accepted: date"
325b048ecd5b4d14dce32f92bff093cd744aa7f8,Multi-Image Graph Cut Clothing Segmentation for Recognizing People,"#2670
CVPR 2008 Submission #2670. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
#2670
Multi-Image Graph Cut Clothing Segmentation for Recognizing People
Anonymous CVPR submission
Paper ID 2670"
32f7e1d7fa62b48bedc3fcfc9d18fccc4074d347,Hierarchical Sparse and Collaborative Low-Rank representation for emotion recognition,"HIERARCHICAL SPARSE AND COLLABORATIVE LOW-RANK REPRESENTATION FOR
EMOTION RECOGNITION
Xiang Xiang, Minh Dao, Gregory D. Hager, Trac D. Tran
Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
{xxiang, minh.dao, ghager1,"
324f39fb5673ec2296d90142cf9a909e595d82cf,Relationship Matrix Nonnegative Decomposition for Clustering,"Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 864540, 15 pages
doi:10.1155/2011/864540
Research Article
Relationship Matrix Nonnegative
Decomposition for Clustering
Ji-Yuan Pan and Jiang-She Zhang
Faculty of Science and State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong
University, Xi’an Shaanxi Province, Xi’an 710049, China
Correspondence should be addressed to Ji-Yuan Pan,
Received 18 January 2011; Revised 28 February 2011; Accepted 9 March 2011
Academic Editor: Angelo Luongo
Copyright q 2011 J.-Y. Pan and J.-S. Zhang. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
Nonnegative matrix factorization (cid:2)NMF(cid:3) is a popular tool for analyzing the latent structure of non-
negative data. For a positive pairwise similarity matrix, symmetric NMF (cid:2)SNMF(cid:3) and weighted
NMF (cid:2)WNMF(cid:3) can be used to cluster the data. However, both of them are not very ef‌f‌icient
for the ill-structured pairwise similarity matrix. In this paper, a novel model, called relationship"
321bd4d5d80abb1bae675a48583f872af3919172,Entropy-weighted feature-fusion method for head-pose estimation,"Wang et al. EURASIP Journal on Image and Video Processing  (2016) 2016:44
DOI 10.1186/s13640-016-0152-3
EURASIP Journal on Image
nd Video Processing
R EV I E W
Entropy-weighted feature-fusion method
for head-pose estimation
Xiao-Meng Wang*, Kang Liu and Xu Qian
Open Access"
32575ffa69d85bbc6aef5b21d73e809b37bf376d,Measuring Biometric Sample Quality in Terms of Biometric Information,"-)5741/ *1-641+ 5)2- 37)16; 1 6-45 . *1-641+ 1.4)61
;K=H=
5?D B 1BH=JE 6A?DCO -CEAAHEC
7ELAHIEJO B JJ=M=
J=HE
)*564)+6
6DEI F=FAH = AM =FFH=?D J A=
IKHA L=HE=JEI E >EAJHE? I=FA GK=EJO 9A >ACE MEJD
JDA EJKEJE JD=J J = >EAJHE? I=FA ME HA
JDA =KJ B EBH=JE =L=E=>A 1 H
J A=IKHA JDA =KJ B EBH=JE MA
>EAJHE? EBH=JE =I JDA E K?AHJ=EJO
=>KJ JDA B = FAHI J = IAJ B >EAJHE? A=
IKHAAJI 9A JDA IDM JD=J JDA >EAJHE? EBH=JE BH
= FAHI =O >A >O JDA HA=JELA AJHFO D(p(cid:107)q)
>AJMAA JDA FFK=JE BA=JKHA q JDA FAHII
BA=JKHA p 6DA >EAJHE? EBH=JE BH = IOI
JA EI JDA A= D(p(cid:107)q) BH = FAHII E JDA FFK=JE 1
J FH=?JE?=O A=IKHA D(p(cid:107)q) MEJD I=
FAI MA = =CHEJD MDE?D HACK=HEAI = /=KIIE="
32728e1eb1da13686b69cc0bd7cce55a5c963cdd,Automatic Facial Emotion Recognition Method Based on Eye Region Changes,"Automatic Facial Emotion Recognition Method Based on Eye
Region Changes
Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
Mina Navraan
Nasrollah Moghadam Charkari*
Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
Muharram Mansoorizadeh
Faculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran
Received: 19/Apr/2015            Revised: 19/Mar/2016            Accepted: 19/Apr/2016"
324b9369a1457213ec7a5a12fe77c0ee9aef1ad4,Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network,"Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network
Jinwei Gu Xiaodong Yang Shalini De Mello Jan Kautz
NVIDIA"
32df63d395b5462a8a4a3c3574ae7916b0cd4d1d,Facial expression recognition using ensemble of classifiers,"978-1-4577-0539-7/11/$26.00 ©2011 IEEE
ICASSP 2011"
35308a3fd49d4f33bdbd35fefee39e39fe6b30b7,Efficient and effective human action recognition in video through motion boundary description with a compact set of trajectories,"biblio.ugent.be   The UGent Institutional Repository is the electronic archiving and dissemination platform for allUGent research publications. Ghent University has implemented a mandate stipulating that allacademic publications of UGent researchers should be deposited and archived in this repository.Except for items where current copyright restrictions apply, these papers are available in OpenAccess.   This item is the archived peer-reviewed author-version of:   Efficient and effective human action recognition in video through motion boundary description witha compact set of trajectories   Jeong-Jik Seo, Jisoo Son, Hyung-Il Kim, Wesley De Neve, and Yong Man Ro   In: 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition,1, 1-6, 2015.     To refer to or to cite this work, please use the citation to the published version:   Seo, J., Son, J., Kim, H., De Neve, W., and Ro, Y. M. (2015). Efficient and effective human actionrecognition in video through motion boundary description with a compact set of trajectories. 11thIEEE International Conference and Workshops on Automatic Face and Gesture Recognition 1 1-6.http://dx.doi.org/10.1109/FG.2015.7163123"
352d61eb66b053ae5689bd194840fd5d33f0e9c0,Analysis Dictionary Learning based Classification: Structure for Robustness,"Analysis Dictionary Learning based
Classification: Structure for Robustness
Wen Tang, Ashkan Panahi, Hamid Krim, and Liyi Dai"
3538d2b5f7ab393387ce138611ffa325b6400774,A DSP-based approach for the implementation of face recognition algorithms,"A DSP-BASED APPROACH FOR THE IMPLEMENTATION OF FACE RECOGNITION
ALGORITHMS
A. U. Batur
B. E. Flinchbaugh
M. H. Hayes IIl
Center for Signal and Image Proc.
Georgia Inst. Of Technology
Atlanta, GA
Imaging and Audio Lab.
Texas Instruments
Dallas, TX
Center for Signal and Image Proc.
Georgia Inst. Of Technology
Atlanta, CA"
3504907a2e3c81d78e9dfe71c93ac145b1318f9c,Unconstrained Still/Video-Based Face Verification with Deep Convolutional Neural Networks,"Noname manuscript No.
(will be inserted by the editor)
Unconstrained Still/Video-Based Face Verification with Deep
Convolutional Neural Networks
Jun-Cheng Chen∗
Kumar∗ · Ching-Hui Chen∗ · Vishal M. Patel · Carlos D. Castillo ·
Rama Chellappa
· Rajeev Ranjan∗ · Swami Sankaranarayanan∗ · Amit
Received: date / Accepted: date"
35b1c1f2851e9ac4381ef41b4d980f398f1aad68,Geometry Guided Convolutional Neural Networks for Self-Supervised Video Representation Learning,"Geometry Guided Convolutional Neural Networks for
Self-Supervised Video Representation Learning
Chuang Gan1, Boqing Gong2, Kun Liu3, Hao Su 4, Leonidas J. Guibas 5
MIT-IBM Watson AI Lab , 2 Tencent AI Lab, 3 BUPT, 4 UCSD, 5 Stanford University"
351c02d4775ae95e04ab1e5dd0c758d2d80c3ddd,ActionSnapping: Motion-Based Video Synchronization,"ActionSnapping: Motion-based Video
Synchronization
Jean-Charles Bazin and Alexander Sorkine-Hornung
Disney Research"
35e4b6c20756cd6388a3c0012b58acee14ffa604,Gender Classification in Large Databases,"Gender Classification in Large Databases
E. Ram´on-Balmaseda, J. Lorenzo-Navarro, and M. Castrill´on-Santana (cid:63)
Universidad de Las Palmas de Gran Canaria
SIANI
Spain"
35f084ddee49072fdb6e0e2e6344ce50c02457ef,A bilinear illumination model for robust face recognition,"A Bilinear Illumination Model
for Robust Face Recognition
The Harvard community has made this
rticle openly available.  Please share  how
this access benefits you. Your story matters
Citation
Lee, Jinho, Baback Moghaddam, Hanspeter Pfister, and Raghu
Machiraju. 2005. A bilinear illumination model for robust face
recognition. Proceedings of the Tenth IEEE International Conference
on Computer Vision: October 17-21, 2005, Beijing, China. 1177-1184.
Los Almamitos, C.A.: IEEE Computer Society.
Published Version
doi:10.1109/ICCV.2005.5
Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4238979
Terms of Use
This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
pplicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-"
353a89c277cca3e3e4e8c6a199ae3442cdad59b5,Learning from Multiple Views of Data,
35e0256b33212ddad2db548484c595334f15b4da,Attentive Fashion Grammar Network for Fashion Landmark Detection and Clothing Category Classification,"Attentive Fashion Grammar Network for
Fashion Landmark Detection and Clothing Category Classification
Wenguan Wang∗1,2, Yuanlu Xu∗2, Jianbing Shen†1, and Song-Chun Zhu2
Beijing Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, China
Department of Computer Science and Statistics, University of California, Los Angeles, USA"
35e6f6e5f4f780508e5f58e87f9efe2b07d8a864,Summarization of User-Generated Sports Video by Using Deep Action Recognition Features,"This paper is a preprint (IEEE accepted status). IEEE copyright notice. 2018 IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for
dvertising or promotional purposes, creating new collective works, for resale or redistribu-
tion to servers or lists, or reuse of any copyrighted.
A. Tejero-de-Pablos, Y. Nakashima, T. Sato, N. Yokoya, M. Linna and E. Rahtu, ”Sum-
marization of User-Generated Sports Video by Using Deep Action Recognition Features,” in
doi: 10.1109/TMM.2018.2794265
keywords: Cameras; Feature extraction; Games; Hidden Markov models; Semantics;
Three-dimensional displays; 3D convolutional neural networks; Sports video summarization;
ction recognition; deep learning; long short-term memory; user-generated video,
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8259321&isnumber=4456689"
35e87e06cf19908855a16ede8c79a0d3d7687b5c,Strategies for Multi-View Face Recognition for Identification of Human Faces: A Review,"Strategies for Multi-View Face Recognition for
Identification of Human Faces: A Review
Pritesh G. Shah
Department of Computer Science
Mahatma Gandhi Shikshan Mandal’s,
Arts, Science and Commerce College, Chopda
Dist: Jalgaon (M.S)
Dr. R.R.Manza
Department of Computer Science and IT
Dr. Babasaheb Ambedkar Marathwada University
Aurangabad."
352110778d2cc2e7110f0bf773398812fd905eb1,Matrix Completion for Weakly-Supervised Multi-Label Image Classification,"TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2014
Matrix Completion for Weakly-supervised
Multi-label Image Classification
Ricardo Cabral, Fernando De la Torre, João P. Costeira, Alexandre Bernardino"
69ff40fd5ce7c3e6db95a2b63d763edd8db3a102,Human Age Estimation via Geometric and Textural Features,"HUMAN AGE ESTIMATION VIA GEOMETRIC AND TEXTURAL
FEATURES
Merve KILINC1 and Yusuf Sinan AKGUL2
TUBITAK BILGEM UEKAE, Anibal Street, 41470, Gebze, Kocaeli, Turkey
GIT Vision Lab, http://vision.gyte.edu.tr/, Department of Computer Engineering, Gebze Institute of Technology, 41400,
Kocaeli, Turkey
Keywords:
Age estimation:age classification:geometric features:LBP:Gabor:LGBP:cross ratio:FGNET:MORPH"
69a55c30c085ad1b72dd2789b3f699b2f4d3169f,Automatic Happiness Strength Analysis of a Group of People using Facial Expressions,"International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 3 - April 2016
Automatic Happiness Strength Analysis of a
Group of People using Facial Expressions
Sagiri Prasanthi#1, Maddali M.V.M. Kumar*2,
#1PG Student, #2Assistant Professor
#1, #2Department of MCA, St. Ann’s College of Engineering & Technology, Andhra Pradesh, India
is  a  collective  concern"
69526cdf6abbfc4bcd39616acde544568326d856,Face Verification Using Template Matching,"[17] B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian face recogni-
tion,” Pattern Recognit., vol. 33, no. 11, pp. 1771–1782, Nov. 2000.
[18] A. Nefian, “A hidden Markov model-based approach for face detection
nd recognition,” Ph.D. dissertation, Dept. Elect. Comput. Eng. Elect.
Eng., Georgia Inst. Technol., Atlanta, 1999.
[19] P. J. Phillips et al., “Overview of the face recognition grand challenge,”
presented at the IEEE CVPR, San Diego, CA, Jun. 2005.
[20] H. T. Tanaka, M. Ikeda, and H. Chiaki, “Curvature-based face surface
recognition using spherical correlation-principal direction for curved
object recognition,” in Proc. Int. Conf. Automatic Face and Gesture
Recognition, 1998, pp. 372–377.
[21] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognit. Sci.,
pp. 71–86, 1991.
[22] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[23] W. Zhao, R. Chellappa, A. Rosenfeld, and P. Phillips, “Face recogni-
tion: A literature survey,” ACM Comput. Surveys, vol. 35, no. 44, pp.
99–458, 2003.
[24] W. Zhao, R. Chellappa, and P. J. Phillips, “Subspace linear discrimi-
nant analysis for face recognition,” UMD TR4009, 1999.
Face Verification Using Template Matching"
690d669115ad6fabd53e0562de95e35f1078dfbb,"Progressive versus Random Projections for Compressive Capture of Images, Lightfields and Higher Dimensional Visual Signals","Progressive versus Random Projections for Compressive Capture of Images,
Lightfields and Higher Dimensional Visual Signals
Rohit Pandharkar
MIT Media Lab
75 Amherst St, Cambridge, MA
Ashok Veeraraghavan
01 Broadway, Cambridge MA
Ramesh Raskar
MIT Media Lab
75 Amherst St, Cambridge, MA"
69063f7e0a60ad6ce16a877bc8f11b59e5f7348e,Class-Specific Image Deblurring,"Class-Specific Image Deblurring
Saeed Anwar1, Cong Phuoc Huynh1
, Fatih Porikli1
The Australian National University∗ Canberra ACT 2601, Australia
NICTA, Locked Bag 8001, Canberra ACT 2601, Australia"
3cb2841302af1fb9656f144abc79d4f3d0b27380,When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition,"See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/319928941
When	3D-Aided	2D	Face	Recognition	Meets	Deep
Learning:	An	extended	UR2D	for	Pose-Invariant
Face	Recognition
Article	·	September	2017
CITATIONS
authors:
READS
Xiang	Xu
University	of	Houston
Pengfei	Dou
University	of	Houston
8	PUBLICATIONS			10	CITATIONS
9	PUBLICATIONS			29	CITATIONS
SEE	PROFILE
SEE	PROFILE
Ha	Le
University	of	Houston
7	PUBLICATIONS			2	CITATIONS
Ioannis	A	Kakadiaris"
3cc3cf57326eceb5f20a02aefae17108e8c8ab57,Benchmark for Evaluating Biological Image Analysis Tools,"BENCHMARK FOR EVALUATING BIOLOGICAL IMAGE ANALYSIS TOOLS
Elisa Drelie Gelasca, Jiyun Byun, Boguslaw Obara, B.S. Manjunath
Center for Bio-Image Informatics, Electrical and Computer Engineering Department,
University of California, Santa Barbara 93106-9560,
http://www.bioimage.ucsb.edu
Biological images are critical components for a detailed understanding of the structure and functioning of cells and proteins.
Image processing and analysis tools increasingly play a significant role in better harvesting this vast amount of data, most of
which is currently analyzed manually and qualitatively. A number of image analysis tools have been proposed to automatically
extract the image information. As the studies relying on image analysis tools have become widespread, the validation of
these methods, in particular, segmentation methods, has become more critical. There have been very few efforts at creating
enchmark datasets in the context of cell and tissue imaging, while, there have been successful benchmarks in other fields, such
s the Berkeley segmentation dataset [1], the handwritten digit recognition dataset MNIST [2] and face recognition dataset [3, 4].
In the field of biomedical image processing, most of standardized benchmark data sets concentrates on macrobiological images
such as mammograms and magnet resonance imaging (MRI) images [5], however, there is still a lack of a standardized dataset
for microbiological structures (e.g. cells and tissues) and it is well known in biomedical imaging [5].
We propose a benchmark for biological images to: 1) provide image collections with well defined ground truth; 2) provide
image analysis tools and evaluation methods to compare and validate analysis tools. We include a representative dataset of
microbiological structures whose scales range from a subcellular level (nm) to a tissue level (µm), inheriting intrinsic challenges
in the domain of biomedical image analysis (Fig. 1). The dataset is acquired through two of the main microscopic imaging
techniques: transmitted light microscopy and confocal laser scanning microscopy. The analysis tools1in the benchmark are"
3cfbe1f100619a932ba7e2f068cd4c41505c9f58,A Realistic Simulation Tool for Testing Face Recognition Systems under Real-World Conditions,"A Realistic Simulation Tool for Testing Face Recognition
Systems under Real-World Conditions∗
M. Correa, J. Ruiz-del-Solar, S. Parra-Tsunekawa, R. Verschae
Department of Electrical Engineering, Universidad de Chile
Advanced Mining Technology Center, Universidad de Chile"
3cd7b15f5647e650db66fbe2ce1852e00c05b2e4,"ACTIVE, an Extensible Cataloging Platform for Automatic Indexing of Audiovisual Content",
3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8,Measuring Gaze Orientation for Human-Robot Interaction,"Measuring Gaze Orientation for Human-Robot
Interaction
R. Brochard∗, B. Burger∗, A. Herbulot∗†, F. Lerasle∗†
CNRS; LAAS; 7 avenue du Colonel Roche, 31077 Toulouse Cedex, France
Universit´e de Toulouse; UPS; LAAS-CNRS : F-31077 Toulouse, France
Introduction
In the context of Human-Robot interaction estimating gaze orientation brings
useful information about human focus of attention. This is a contextual infor-
mation : when you point something you usually look at it. Estimating gaze
orientation requires head pose estimation. There are several techniques to esti-
mate head pose from images, they are mainly based on training [3, 4] or on local
face features tracking [6]. The approach described here is based on local face
features tracking in image space using online learning, it is a mixed approach
since we track face features using some learning at feature level. It uses SURF
features [2] to guide detection and tracking. Such key features can be matched
etween images, used for object detection or object tracking [10]. Several ap-
proaches work on fixed size images like training techniques which mainly work
on low resolution images because of computation costs whereas approaches based
on local features tracking work on high resolution images. Tracking face features
such as eyes, nose and mouth is a common problem in many applications such as"
3c0bbfe664fb083644301c67c04a7f1331d9515f,The Role of Color and Contrast in Facial Age Estimation,"The Role of Color and Contrast in Facial Age Estimation
Paper ID: 7
No Institute Given"
3c4f6d24b55b1fd3c5b85c70308d544faef3f69a,A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics,"A Hybrid Deep Learning Architecture for
Privacy-Preserving Mobile Analytics
Seyed Ali Ossia(cid:63), Ali Shahin Shamsabadi(cid:63), Ali Taheri(cid:63), Hamid R. Rabiee(cid:63),
Nic Lane‡, Hamed Haddadi†
(cid:63)Sharif University of Technology, ‡University College London, †Queen Mary University of London"
3cb0ef5aabc7eb4dd8d32a129cb12b3081ef264f,Absolute Head Pose Estimation From Overhead Wide-Angle Cameras,"Absolute Head Pose Estimation From Overhead Wide-Angle Cameras
Ying-Li Tian, Lisa Brown, Jonathan Connell,
Sharat Pankanti, Arun Hampapur, Andrew Senior, Ruud Bolle
IBM T.J. Watson Research Center
9 Skyline Drive, Hawthorne, NY 10532 USA
{ yltian,lisabr,jconnell,sharat,arunh,aws,bolle"
3c56acaa819f4e2263638b67cea1ec37a226691d,Body Joint Guided 3-D Deep Convolutional Descriptors for Action Recognition,"Body Joint guided 3D Deep Convolutional
Descriptors for Action Recognition
Congqi Cao, Yifan Zhang, Member, IEEE, Chunjie Zhang, Member, IEEE, and Hanqing Lu, Senior Member, IEEE"
3c8da376576938160cbed956ece838682fa50e9f,Aiding face recognition with social context association rule based re-ranking,"Chapter 4
Aiding Face Recognition with
Social Context Association Rule
ased Re-Ranking
Humans are very ef‌f‌icient at recognizing familiar face images even in challenging condi-
tions. One reason for such capabilities is the ability to understand social context between
individuals. Sometimes the identity of the person in a photo can be inferred based on the
identity of other persons in the same photo, when some social context between them is
known. This chapter presents an algorithm to utilize the co-occurrence of individuals as
the social context to improve face recognition. Association rule mining is utilized to infer
multi-level social context among subjects from a large repository of social transactions.
The results are demonstrated on the G-album and on the SN-collection pertaining to 4675
identities prepared by the authors from a social networking website. The results show that
ssociation rules extracted from social context can be used to augment face recognition and
improve the identification performance.
Introduction
Face recognition capabilities of humans have inspired several researchers to understand
the science behind it and use it in developing automated algorithms. Recently, it is also
rgued that encoding social context among individuals can be leveraged for improved
utomatic face recognition [175]. As shown in Figure 4.1, often times a person’s identity"
56e4dead93a63490e6c8402a3c7adc493c230da5,Face Recognition Techniques: A Survey,"World Journal of Computer Application and Technology 1(2): 41-50, 2013
DOI: 10.13189/wjcat.2013.010204
http://www.hrpub.org
Face Recognition Techniques: A Survey
V.Vijayakumari
Department of Electronics and Communication, Sri krishna College of Technology, Coimbatore, India
*Corresponding Author:
Copyright © 2013 Horizon Research Publishing All rights reserved."
56e885b9094391f7d55023a71a09822b38b26447,Face Retrieval using Frequency Decoded Local Descriptor,"FREQUENCY DECODED LOCAL BINARY PATTERN
Face Retrieval using Frequency Decoded Local
Descriptor
Shiv Ram Dubey, Member, IEEE"
56a653fea5c2a7e45246613049fb16b1d204fc96,Quaternion Collaborative and Sparse Representation With Application to Color Face Recognition,"Quaternion Collaborative and Sparse Representation
With Application to Color Face Recognition
Cuiming Zou, Kit Ian Kou, Member, IEEE, and Yulong Wang, Student Member, IEEE
representation-based"
5666ed763698295e41564efda627767ee55cc943,Relatively-Paired Space Analysis: Learning a Latent Common Space From Relatively-Paired Observations,"Manuscript
Click here to download Manuscript: template.tex
Click here to view linked References
Noname manuscript No.
(will be inserted by the editor)
Relatively-Paired Space Analysis: Learning a Latent Common
Space from Relatively-Paired Observations
Zhanghui Kuang · Kwan-Yee K. Wong
Received: date / Accepted: date"
5615d6045301ecbc5be35e46cab711f676aadf3a,Discriminatively Learned Hierarchical Rank Pooling Networks,"Discriminatively Learned Hierarchical Rank Pooling Networks
Basura Fernando · Stephen Gould
Received: date / Accepted: date"
566038a3c2867894a08125efe41ef0a40824a090,Face recognition and gender classification in personal memories,"978-1-4244-2354-5/09/$25.00 ©2009 IEEE
ICASSP 2009"
56dca23481de9119aa21f9044efd7db09f618704,Riemannian Dictionary Learning and Sparse Coding for Positive Definite Matrices,"Riemannian Dictionary Learning and Sparse
Coding for Positive Definite Matrices
Anoop Cherian
Suvrit Sra"
516a27d5dd06622f872f5ef334313350745eadc3,Fine-Grained Facial Expression Analysis Using Dimensional Emotion Model,"> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <
Fine-Grained Facial Expression Analysis Us-
ing Dimensional Emotion Model
ǂFeng Zhou, ǂShu Kong, Charless C. Fowlkes, Tao Chen, *Baiying Lei, Member, IEEE"
51c3050fb509ca685de3d9ac2e965f0de1fb21cc,Fantope Regularization in Metric Learning,"Fantope Regularization in Metric Learning
Marc T. Law
Nicolas Thome
Matthieu Cord
Sorbonne Universit´es, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France"
51c7c5dfda47647aef2797ac3103cf0e108fdfb4,Cs 395t: Celebrity Look-alikes *,"CS 395T: Celebrity Look-Alikes ∗
Adrian Quark"
519f4eb5fe15a25a46f1a49e2632b12a3b18c94d,Non-Lambertian Reflectance Modeling and Shape Recovery of Faces Using Tensor Splines,"Non-Lambertian Reflectance Modeling and
Shape Recovery of Faces using Tensor Splines
Ritwik Kumar, Student Member, IEEE, Angelos Barmpoutis, Member, IEEE,
Arunava Banerjee, Member, IEEE, and Baba C. Vemuri, Fellow, IEEE"
51cc78bc719d7ff2956b645e2fb61bab59843d2b,Face and Facial Expression Recognition with an Embedded System for Human-Robot Interaction,"Face and Facial Expression Recognition with an
Embedded System for Human-Robot Interaction
Yang-Bok Lee1, Seung-Bin Moon1, and Yong-Guk Kim 1*
School of Computer Engineering, Sejong University, Seoul, Korea"
511b06c26b0628175c66ab70dd4c1a4c0c19aee9,Face Recognition using Laplace Beltrami Operator by Optimal Linear Approximations,"International Journal of Engineering Research and General ScienceVolume 2, Issue 5, August – September 2014
ISSN 2091-2730
Face Recognition using Laplace Beltrami Operator by Optimal Linear
Approximations
Tapasya Sinsinwar1, P.K.Dwivedi2
Professor and Director Academics, Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj.)
Research Scholar (M.Tech, IT), Institute of Engineering and Technology"
5161e38e4ea716dcfb554ccb88901b3d97778f64,SSPP-DAN: Deep domain adaptation network for face recognition with single sample per person,"SSPP-DAN: DEEP DOMAIN ADAPTATION NETWORK FOR
FACE RECOGNITION WITH SINGLE SAMPLE PER PERSON
Sungeun Hong, Woobin Im, Jongbin Ryu, Hyun S. Yang
School of Computing, KAIST, Republic of Korea"
5121f42de7cb9e41f93646e087df82b573b23311,Classifying Online Dating Profiles on Tinder using FaceNet Facial Embeddings,"CLASSIFYING ONLINE DATING PROFILES ON TINDER USING FACENET FACIAL
EMBEDDINGS
Charles F. Jekel and Raphael T. Haftka
Department of Mechanical & Aerospace Engineering - University of Florida - Gainesville, FL 32611"
51d1a6e15936727e8dd487ac7b7fd39bd2baf5ee,"A Fast and Accurate System for Face Detection, Identification, and Verification","JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
A Fast and Accurate System for Face Detection,
Identification, and Verification
Rajeev Ranjan, Ankan Bansal, Jingxiao Zheng, Hongyu Xu, Joshua Gleason, Boyu Lu, Anirudh Nanduri,
Jun-Cheng Chen, Carlos D. Castillo, Rama Chellappa"
5157dde17a69f12c51186ffc20a0a6c6847f1a29,Evolutionary Cost-Sensitive Extreme Learning Machine,"Evolutionary Cost-sensitive Extreme Learning
Machine
Lei Zhang, Member, IEEE, and David Zhang, Fellow, IEEE"
3daafe6389d877fe15d8823cdf5ac15fd919676f,Human Action Localization with Sparse Spatial Supervision,"Human Action Localization
with Sparse Spatial Supervision
Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid, Fellow, IEEE"
3daf1191d43e21a8302d98567630b0e2025913b0,Can Autism be Catered with Artificial Intelligence-Assisted Intervention Technology? A Literature Review,"Can Autism be Catered with Artificial Intelligence-Assisted Intervention
Technology? A Literature Review
Muhammad Shoaib Jaliawala∗, Rizwan Ahmed Khan∗†
Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan
Universit´e Claude Bernard Lyon 1, France"
3d36f941d8ec613bb25e80fb8f4c160c1a2848df,Out-of-Sample Generalizations for Supervised Manifold Learning for Classification,"Out-of-sample generalizations for supervised
manifold learning for classification
Elif Vural and Christine Guillemot"
3d5a1be4c1595b4805a35414dfb55716e3bf80d8,Hidden Two-Stream Convolutional Networks for Action Recognition,"Hidden Two-Stream Convolutional Networks for
Action Recognition
Yi Zhu, Zhenzhong Lan, Shawn Newsam, Alexander G. Hauptmann"
3d62b2f9cef997fc37099305dabff356d39ed477,Joint Face Alignment and 3D Face Reconstruction with Application to Face Recognition,"Joint Face Alignment and 3D Face
Reconstruction with Application to Face
Recognition
Feng Liu, Qijun Zhao, Member, IEEE, Xiaoming Liu, Member, IEEE and Dan Zeng"
3dd4d719b2185f7c7f92cc97f3b5a65990fcd5dd,Ensemble of Hankel Matrices for Face Emotion Recognition,"Ensemble of Hankel Matrices for
Face Emotion Recognition
Liliana Lo Presti and Marco La Cascia
DICGIM, Universit´a degli Studi di Palermo,
V.le delle Scienze, Ed. 6, 90128 Palermo, Italy,
DRAFT
To appear in ICIAP 2015"
3dcebd4a1d66313dcd043f71162d677761b07a0d,Local binary pattern domain local appearance face recognition,"Yerel Đkili Örüntü Ortamında Yerel Görünüme Dayalı Yüz Tanıma
Local Binary Pattern Domain Local Appearance Face Recognition
Hazım K. Ekenel1, Mika Fischer1, Erkin Tekeli2, Rainer Stiefelhagen1, Aytül Erçil2
Institut für Theorestische Informatik, Universität Karlsruhe (TH), Karlsruhe, Germany
Faculty of Engineering and Natural Sciences, Sabancı University, Đstanbul, Turkey
Özetçe
Bu bildiride, ayrık kosinüs dönüşümü tabanlı yerel görünüme
dayalı  yüz  tanıma  algoritması  ile  yüz  imgelerinin  yerel  ikili
örüntüye  (YĐÖ)  dayalı  betimlemesini  birleştiren  hızlı  bir  yüz
tanıma  algoritması  sunulmuştur.  Bu  tümleştirmedeki  amaç,
yerel  ikili  örüntünün  dayanıklı  imge  betimleme  yeteneği  ile
yrık  kosinüs  dönüşümünün  derli-toplu  veri  betimleme
yeteneğinden  yararlanmaktır.  Önerilen  yaklaşımda,  yerel
görünümün  modellenmesinden  önce  girdi  yüz  imgesi  yerel
ikili  örüntü  ile  betimlenmiştir.  Elde  edilen  YĐÖ  betimlemesi,
irbirleri  ile  örtüşmeyen  bloklara  ayrılmış  ve  her  blok
üzerinde  yerel  özniteliklerin  çıkartımı  için  ayrık  kosinüs
dönüşümü uygulanmıştır.  Çıkartımı  yapılan  yerel  öznitelikler
daha  sonra  arka  arkaya  eklenerek  global  öznitelik  vektörü
oluşturulmuştur.  Önerilen  algoritma,  CMU  PIE  ve  FRGC"
3d42e17266475e5d34a32103d879b13de2366561,The Global Dimensionality of Face Space,"Proc.4thIEEEInt’lConf.AutomaticFace&GestureRecognition,Grenoble,France,pp264–270
The Global Dimensionality of Face Space
(cid:3)
http://venezia.rockefeller.edu/
The Rockefeller University
Penio S. Penev
Laboratory of Computational Neuroscience
Lawrence Sirovich
Laboratory for Applied Mathematics
Mount Sinai School of Medicine
(cid:13) IEEE2000
230 York Avenue, New York, NY 10021
One Gustave L. Levy Place, New York, NY 10029"
3df7401906ae315e6aef3b4f13126de64b894a54,Robust learning of discriminative projection for multicategory classification on the Stiefel manifold,"Robust Learning of Discriminative Projection for Multicategory Classification on
the Stiefel Manifold
Duc-Son Pham and Svetha Venkatesh
Dept. of Computing, Curtin University of Technology
GPO Box U1987, Perth, WA 6845, Australia"
3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a,Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs,"Random Multispace Quantization as
n Analytic Mechanism for BioHashing
of Biometric and Random Identity Inputs
Andrew B.J. Teoh, Member, IEEE, Alwyn Goh, and David C.L. Ngo, Member, IEEE"
3d94f81cf4c3a7307e1a976dc6cb7bf38068a381,Data-Dependent Label Distribution Learning for Age Estimation,"Data-Dependent Label Distribution Learning
for Age Estimation
Zhouzhou He, Xi Li, Zhongfei Zhang, Fei Wu, Xin Geng, Yaqing Zhang, Ming-Hsuan Yang, and Yueting Zhuang"
5892f8367639e9c1e3cf27fdf6c09bb3247651ed,Estimating Missing Features to Improve Multimedia Information Retrieval,"Estimating Missing Features to Improve Multimedia Information Retrieval
Abraham Bagherjeiran
Nicole S. Love
Chandrika Kamath (cid:3)"
587f81ae87b42c18c565694c694439c65557d6d5,DeepFace: Face Generation using Deep Learning,"DeepFace: Face Generation using Deep Learning
Hardie Cate
Fahim Dalvi
Zeshan Hussain"
580054294ca761500ada71f7d5a78acb0e622f19,A Subspace Model-Based Approach to Face Relighting Under Unknown Lighting and Poses,"A Subspace Model-Based Approach to Face
Relighting Under Unknown Lighting and Poses
Hyunjung Shim, Student Member, IEEE, Jiebo Luo, Senior Member, IEEE, and Tsuhan Chen, Fellow, IEEE"
587c48ec417be8b0334fa39075b3bfd66cc29dbe,Serial dependence in the perception of attractiveness,"Journal of Vision (2016) 16(15):28, 1–8
Serial dependence in the perception of attractiveness
Ye Xia
Department of Psychology, University of California,
Berkeley, CA, USA
Allison Yamanashi Leib
Department of Psychology, University of California,
Berkeley, CA, USA
David Whitney
Department of Psychology, University of California,
Berkeley, CA, USA
Helen Wills Neuroscience Institute, University of
California, Berkeley, CA, USA
Vision Science Group, University of California,
Berkeley, CA, USA
The perception of attractiveness is essential for choices
of food, object, and mate preference. Like perception of
other visual features, perception of attractiveness is
stable despite constant changes of image properties due
to factors like occlusion, visual noise, and eye"
58081cb20d397ce80f638d38ed80b3384af76869,Embedded Real-Time Fall Detection Using Deep Learning For Elderly Care,"Embedded Real-Time Fall Detection Using Deep
Learning For Elderly Care
Hyunwoo Lee∗
Jooyoung Kim
Dojun Yang
Joon-Ho Kim
Samsung Research, Samsung Electronics
{hyun0772.lee, joody.kim, dojun.yang,"
581e920ddb6ecfc2a313a3aa6fed3d933b917ab0,Automatic Mapping of Remote Crowd Gaze to Stimuli in the Classroom,"Automatic Mapping of Remote Crowd Gaze to
Stimuli in the Classroom
Thiago Santini1, Thomas K¨ubler1, Lucas Draghetti1, Peter Gerjets2, Wolfgang
Wagner3, Ulrich Trautwein3, and Enkelejda Kasneci1
University of T¨ubingen, T¨ubingen, Germany
Leibniz-Institut f¨ur Wissensmedien, T¨ubingen, Germany
Hector Research Institute of Education Sciences and Psychology, T¨ubingen,
Germany"
58fa85ed57e661df93ca4cdb27d210afe5d2cdcd,Facial expression recognition by re-ranking with global and local generic features,"Cancún Center, Cancún, México, December 4-8, 2016
978-1-5090-4847-2/16/$31.00 ©2016 IEEE"
5860cf0f24f2ec3f8cbc39292976eed52ba2eafd,COMPUTATION EvaBio: A TOOL FOR PERFORMANCE EVALUATION IN BIOMETRICS,"International Journal of Automated Identification Technology, 3(2), July-December 2011, pp. 51-60
COMPUTATION EvaBio: A TOOL FOR PERFORMANCE
EVALUATION IN BIOMETRICS
Julien Mahier, Baptiste Hemery, Mohamad El-Abed*, Mohamed T. El-Allam, Mohamed Y.
Bouhaddaoui and Christophe Rosenberger
GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS,
6 Boulevard Maréchal Juin, 14000 Caen Cedex - France"
58bf72750a8f5100e0c01e55fd1b959b31e7dbce,PyramidBox: A Context-assisted Single Shot Face Detector,"PyramidBox: A Context-assisted Single Shot
Face Detector.
Xu Tang∗, Daniel K. Du∗, Zeqiang He, and Jingtuo Liu†
Baidu Inc."
58542eeef9317ffab9b155579256d11efb4610f2,"Face Recognition Revisited On Pose , Alignment , Color , Illumination And Expression-Pyten","International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611
Face Recognition Revisited on Pose, Alignment,
Color, Illumination and Expression-PyTen
Mugdha Tripathi
Computer Science, BIT Noida, India"
58823377757e7dc92f3b70a973be697651089756,Automatic facial expression analysis,"Technical Report
UCAM-CL-TR-861
ISSN 1476-2986
Number 861
Computer Laboratory
Automatic facial expression analysis
Tadas Baltrusaitis
October 2014
5 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500
http://www.cl.cam.ac.uk/"
5865e824e3d8560e07840dd5f75cfe9bf68f9d96,Embodied conversational agents for multimodal automated social skills training in people with autism spectrum disorders,"RESEARCH ARTICLE
Embodied conversational agents for
multimodal automated social skills training in
people with autism spectrum disorders
Hiroki Tanaka1*, Hideki Negoro2, Hidemi Iwasaka3, Satoshi Nakamura1
Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara, 630-
0101, Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara, 630-8538,
Japan, 3 Developmental Center for Child and Adult, Shigisan Hospital, Ikoma-gun, Nara, 636-0815, Japan"
58bb77dff5f6ee0fb5ab7f5079a5e788276184cc,Facial expression recognition with PCA and LBP features extracting from active facial patches,"Facial Expression Recognition with PCA and LBP
Features Extracting from Active Facial Patches
Yanpeng Liua, Yuwen Caoa, Yibin Lia, Ming Liu, Rui Songa
Yafang Wang, Zhigang Xu , Xin Maa†"
58db008b204d0c3c6744f280e8367b4057173259,Facial Expression Recognition,"International  Journal  of Current Engineering  and Technology
ISSN 2277 - 4106
© 2012  INPRESSCO.  All  Rights Reserved.
Available at http://inpressco.com/category/ijcet
Research Article
Facial Expression  Recognition
Riti Kushwahaa and  Neeta Naina*
Department of Computer  Engineering Malaviya National Institute of Technology, Jaipur, Rajasthan, India
Accepted 3June  2012,  Available online 8 June 2012"
677585ccf8619ec2330b7f2d2b589a37146ffad7,A flexible model for training action localization with varying levels of supervision,"A flexible model for training action localization
with varying levels of supervision
Guilhem Chéron∗ 1 2
Jean-Baptiste Alayrac∗ 1
Ivan Laptev1
Cordelia Schmid2"
6789bddbabf234f31df992a3356b36a47451efc7,Unsupervised Generation of Free-Form and Parameterized Avatars.,"Unsupervised Generation of Free-Form and
Parameterized Avatars
Adam Polyak, Yaniv Taigman, and Lior Wolf, Member, IEEE"
675b2caee111cb6aa7404b4d6aa371314bf0e647,AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions,"AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions
Chunhui Gu∗
Yeqing Li∗
Chen Sun∗
David A. Ross∗
Sudheendra Vijayanarasimhan∗
Carl Vondrick∗
George Toderici∗
Caroline Pantofaru∗
Susanna Ricco∗
Rahul Sukthankar∗
Cordelia Schmid† ∗
Jitendra Malik‡ ∗"
67484723e0c2cbeb936b2e863710385bdc7d5368,Anchor Cascade for Efficient Face Detection,"Anchor Cascade for Efficient Face Detection
Baosheng Yu and Dacheng Tao, Fellow, IEEE"
670637d0303a863c1548d5b19f705860a23e285c,Face swapping: automatically replacing faces in photographs,"Face Swapping: Automatically Replacing Faces in Photographs
Dmitri Bitouk
Neeraj Kumar
Samreen Dhillon∗
Columbia University†
Peter Belhumeur
Shree K. Nayar
Figure 1: We have developed a system that automatically replaces faces in an input image with ones selected from a large collection of
face images, obtained by applying face detection to publicly available photographs on the internet. In this example, the faces of (a) two
people are shown after (b) automatic replacement with the top three ranked candidates. Our system for face replacement can be used for face
de-identification, personalized face replacement, and creating an appealing group photograph from a set of “burst” mode images. Original
images in (a) used with permission from Retna Ltd. (top) and Getty Images Inc. (bottom).
Rendering, Computational Photography
Introduction
Advances in digital photography have made it possible to cap-
ture large collections of high-resolution images and share them
on the internet. While the size and availability of these col-
lections is leading to many exciting new applications,
lso creating new problems. One of the most
important of"
6742c0a26315d7354ab6b1fa62a5fffaea06da14,What does 2D geometric information really tell us about 3D face shape?,"BAS AND SMITH: WHAT DOES 2D GEOMETRIC INFORMATION REALLY TELL US ABOUT 3D FACE SHAPE?
What does 2D geometric information
really tell us about 3D face shape?
Anil Bas and William A. P. Smith, Member, IEEE"
67c703a864aab47eba80b94d1935e6d244e00bcb,Face Retrieval Based On Local Binary Pattern and Its Variants: A Comprehensive Study,"(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 7, No. 6, 2016
Face Retrieval Based On Local Binary Pattern and Its
Variants: A Comprehensive Study
Department of Computer Vision and Robotics, University of Science, VNU-HCM, Viet Nam
Phan Khoi, Lam Huu Thien, Vo Hoai Viet
face  searching,"
67ba3524e135c1375c74fe53ebb03684754aae56,A compact pairwise trajectory representation for action recognition,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
6769cfbd85329e4815bb1332b118b01119975a95,Tied factor analysis for face recognition across large pose changes,"Tied factor analysis for face recognition across
large pose changes"
0be43cf4299ce2067a0435798ef4ca2fbd255901,Title A temporal latent topic model for facial expression recognition,"Title
A temporal latent topic model for facial expression recognition
Author(s)
Shang, L; Chan, KP
Citation
The 10th Asian Conference on Computer Vision (ACCV 2010),
Queenstown, New Zealand, 8-12 November 2010. In Lecture
Notes in Computer Science, 2010, v. 6495, p. 51-63
Issued Date
http://hdl.handle.net/10722/142604
Rights
Creative Commons: Attribution 3.0 Hong Kong License"
0b2277a0609565c30a8ee3e7e193ce7f79ab48b0,Cost-Sensitive Semi-Supervised Discriminant Analysis for Face Recognition,"Cost-Sensitive Semi-Supervised Discriminant
Analysis for Face Recognition
Jiwen Lu, Member, IEEE, Xiuzhuang Zhou, Member, IEEE, Yap-Peng Tan, Senior Member, IEEE,
Yuanyuan Shang, Member, IEEE, and Jie Zhou, Senior Member, IEEE"
0b9ce839b3c77762fff947e60a0eb7ebbf261e84,Logarithmic Fourier Pca: a New Approach to Face Recognition,"Proceedings of the IASTED International Conference
Computer Vision (CV 2011)
June 1 - 3, 2011  Vancouver, BC, Canada
LOGARITHMIC FOURIER PCA: A NEW APPROACH TO FACE
RECOGNITION
Lakshmiprabha  Nattamai  Sekar,
Jhilik Bhattacharya,
omjyoti
Majumder
Surface Robotics Lab
Central Mechanical Engineering Research Institute
Mahatma Gandhi Avenue,
Durgapur - 713209, West Bengal, India.
email: 1 n prabha 2 3"
0b6a5200c33434cbfa9bf24ba482f6e06bf5fff7,"The use of deep learning in image segmentation, classification and detection","The Use of Deep Learning in Image
Segmentation, Classification and Detection
Mihai-Sorin Badea, Iulian-Ionuț Felea, Laura Maria Florea, Constantin Vertan
The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania"
0b605b40d4fef23baa5d21ead11f522d7af1df06,Label-Embedding for Attribute-Based Classification,"Label-Embedding for Attribute-Based Classification
Zeynep Akataa,b, Florent Perronnina, Zaid Harchaouib and Cordelia Schmidb
Computer Vision Group∗, XRCE, France
LEAR†, INRIA, France"
0b0eb562d7341231c3f82a65cf51943194add0bb,Line with Your Paper Identification Number ( Double - Click Here to Edit,"> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <
Facial Image Analysis Based on Local Binary
Patterns: A Survey
Di Huang, Caifeng Shan, Mohsen Ardebilian, Liming Chen"
0b3a146c474166bba71e645452b3a8276ac05998,Whos In the Picture,"Who’s in the Picture?
Tamara L. Berg, Alexander C. Berg, Jaety Edwards and D.A. Forsyth
Berkeley, CA 94720
Computer Science Division
U.C. Berkeley"
0b0958493e43ca9c131315bcfb9a171d52ecbb8a,A Unified Neural Based Model for Structured Output Problems,"A Unified Neural Based Model for Structured Output Problems
Soufiane Belharbi∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien Adam∗2
LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France
LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France.
April 13, 2015"
0b20f75dbb0823766d8c7b04030670ef7147ccdd,Feature selection using nearest attributes,"Feature selection using nearest attributes
Alex Pappachen James, Member, IEEE, and Sima Dimitrijev, Senior Member, IEEE"
0b5a82f8c0ee3640503ba24ef73e672d93aeebbf,On Learning 3D Face Morphable Model from In-the-wild Images,"On Learning 3D Face Morphable Model
from In-the-wild Images
Luan Tran, and Xiaoming Liu, Member, IEEE"
0b174d4a67805b8796bfe86cd69a967d357ba9b6,A Survey on Face Detection and Recognition Approaches,"Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502
Vol. 3(4), 56-62, April (2014)
Res.J.Recent Sci."
0b87d91fbda61cdea79a4b4dcdcb6d579f063884,Research on Theory and Method for Facial Expression Recognition Sys- tem Based on Dynamic Image Sequence,"The Open Automation and Control Systems Journal, 2015, 7, 569-579
Open Access
Research  on  Theory  and  Method  for  Facial  Expression  Recognition  Sys-
tem Based on Dynamic Image Sequence
Send Orders for Reprints to
Yang Xinfeng1,* and Jiang Shan2
School  of  Computer  &  Information  Engineering,  Nanyang  Institute  of  Technology,  Henan,  Nanyang,  473000,  P.R.
China
Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China"
0b79356e58a0df1d0efcf428d0c7c4651afa140d,Bayesian Modeling of Facial Similarity,"Appears In: Advances in Neural Information Processing Systems , MIT Press, 			.
Bayesian Modeling of Facial Similarity
Baback Moghaddam
Mitsubishi Electric Research Laboratory
 Broadway
Cambridge, MA 	, USA
Tony Jebara and Alex Pentland
Massachusettes Institute of Technology
 Ames St.
Cambridge, MA 	, USA"
0b572a2b7052b15c8599dbb17d59ff4f02838ff7,Automatic Subspace Learning via Principal Coefficients Embedding,"Automatic Subspace Learning via Principal
Coefficients Embedding
Xi Peng, Jiwen Lu, Senior Member, IEEE, Zhang Yi, Fellow, IEEE and Rui Yan, Member, IEEE,"
0b02bfa5f3a238716a83aebceb0e75d22c549975,Learning Probabilistic Models for Recognizing Faces under Pose Variations,"Learning Probabilistic Models for Recognizing Faces
under Pose Variations
M. Saquib Sarfraz and Olaf Hellwich
Computer vision and Remote Sensing, Berlin university of Technology
Sekr. FR-3-1, Franklinstr. 28/29, Berlin, Germany"
0bce54bfbd8119c73eb431559fc6ffbba741e6aa,Recurrent Neural Networks,"Published as a conference paper at ICLR 2018
SKIP RNN: LEARNING TO SKIP STATE UPDATES IN
RECURRENT NEURAL NETWORKS
V´ıctor Campos∗†, Brendan Jou‡, Xavier Gir´o-i-Nieto§, Jordi Torres†, Shih-Fu ChangΓ
Barcelona Supercomputing Center, ‡Google Inc,
§Universitat Polit`ecnica de Catalunya, ΓColumbia University
{victor.campos,"
0b4c4ea4a133b9eab46b217e22bda4d9d13559e6,MORF: Multi-Objective Random Forests for face characteristic estimation,"MORF: Multi-Objective Random Forests for Face Characteristic Estimation
Dario Di Fina1
MICC - University of Florence
Svebor Karaman1,3
Andrew D. Bagdanov2
{dario.difina,
CVC - Universitat Autonoma de Barcelona
Alberto Del Bimbo1
DVMM Lab - Columbia University"
0b8c92463f8f5087696681fb62dad003c308ebe2,On matching sketches with digital face images,"On Matching Sketches with Digital Face Images
Himanshu S. Bhatt, Samarth Bharadwaj, Richa Singh, and Mayank Vatsa
in local"
0bc0f9178999e5c2f23a45325fa50300961e0226,Recognizing facial expressions from videos using Deep Belief Networks,"Recognizing facial expressions from videos using Deep
Belief Networks
CS 229 Project
Advisor: Prof. Andrew Ng
Adithya Rao Narendran Thiagarajan"
9391618c09a51f72a1c30b2e890f4fac1f595ebd,Globally Tuned Cascade Pose Regression via Back Propagation with Application in 2D Face Pose Estimation and Heart Segmentation in 3D CT Images,"Globally Tuned Cascade Pose Regression via
Back Propagation with Application in 2D Face
Pose Estimation and Heart Segmentation in 3D
CT Images
Peng Sun
James K Min
Guanglei Xiong
Dalio Institute of Cardiovascular Imaging, Weill Cornell Medical College
April 1, 2015
This work was submitted to ICML 2015 but got rejected. We put the initial
submission ”as is” in Page 2 - 11 and add updated contents at the tail. The
ode of this work is available at https://github.com/pengsun/bpcpr5."
93675f86d03256f9a010033d3c4c842a732bf661,Localized Growth and Characterization of Silicon Nanowires,Universit´edesSciencesetTechnologiesdeLilleEcoleDoctoraleSciencesPourl’ing´enieurUniversit´eLilleNord-de-FranceTHESEPr´esent´ee`al’Universit´edesSciencesetTechnologiesdeLillePourobtenirletitredeDOCTEURDEL’UNIVERSIT´ESp´ecialit´e:MicroetNanotechnologieParTaoXULocalizedgrowthandcharacterizationofsiliconnanowiresSoutenuele25Septembre2009Compositiondujury:Pr´esident:TuamiLASRIRapporteurs:ThierryBARONHenriMARIETTEExaminateurs:EricBAKKERSXavierWALLARTDirecteurdeth`ese:BrunoGRANDIDIER
936c7406de1dfdd22493785fc5d1e5614c6c2882,Detecting Visual Text,"012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 762–772,
Montr´eal, Canada, June 3-8, 2012. c(cid:13)2012 Association for Computational Linguistics"
93721023dd6423ab06ff7a491d01bdfe83db7754,Robust Face Alignment Using Convolutional Neural Networks,"ROBUST FACE ALIGNMENT USING CONVOLUTIONAL NEURAL
NETWORKS
Stefan Duffner and Christophe Garcia
Orange Labs, 4, Rue du Clos Courtel, 35512 Cesson-S´evign´e, France
{stefan.duffner,
Keywords:
Face alignment, Face registration, Convolutional Neural Networks."
93cbb3b3e40321c4990c36f89a63534b506b6daf,Learning from examples in the small sample case: face expression recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005
Learning From Examples in the Small Sample Case:
Face Expression Recognition
Guodong Guo and Charles R. Dyer, Fellow, IEEE"
94b9c0a6515913bad345f0940ee233cdf82fffe1,Face Recognition using Local Ternary Pattern for Low Resolution Image,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358
Face Recognition using Local Ternary Pattern for
Low Resolution Image
Vikas1, Amanpreet Kaur2
Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India
Assistant Professor, Department of Computer Science Engineering, Chandigarh University, Gharuan, Punjab, India"
94eeae23786e128c0635f305ba7eebbb89af0023,On the Emergence of Invariance and Disentangling in Deep Representations,"Journal of Machine Learning Research 18 (2018) 1-34
Submitted 01/17; Revised 4/18; Published 6/18
Emergence of Invariance and Disentanglement
in Deep Representations∗
Alessandro Achille
Department of Computer Science
University of California
Los Angeles, CA 90095, USA
Stefano Soatto
Department of Computer Science
University of California
Los Angeles, CA 90095, USA
Editor: Yoshua Bengio"
944faf7f14f1bead911aeec30cc80c861442b610,Action Tubelet Detector for Spatio-Temporal Action Localization,"Action Tubelet Detector for Spatio-Temporal Action Localization
Vicky Kalogeiton1,2
Philippe Weinzaepfel3
Vittorio Ferrari2
Cordelia Schmid1"
9458c518a6e2d40fb1d6ca1066d6a0c73e1d6b73,A Benchmark and Comparative Study of Video-Based Face Recognition on COX Face Database,"A Benchmark and Comparative Study of
Video-Based Face Recognition
on COX Face Database
Zhiwu Huang, Student Member, IEEE, Shiguang Shan, Senior Member, IEEE,
Ruiping Wang, Member, IEEE, Haihong Zhang, Member, IEEE,
Shihong Lao, Member, IEEE, Alifu Kuerban,
nd Xilin Chen, Senior Member, IEEE"
948af4b04b4a9ae4bff2777ffbcb29d5bfeeb494,Face Recognition From Single Sample Per Person by Learning of Generic Discriminant Vectors,"Available online at www.sciencedirect.com
Procedia Engineering   41  ( 2012 )  465 – 472
International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012)
Face Recognition From Single Sample Per Person by Learning of
Generic Discriminant Vectors
Fadhlan Hafiza*, Amir A. Shafieb, Yasir Mohd Mustafahb
Faculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia
Faculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia"
9441253b638373a0027a5b4324b4ee5f0dffd670,A Novel Scheme for Generating Secure Face Templates Using BDA,"A Novel Scheme for Generating Secure Face
Templates Using BDA
Shraddha S. Shinde
Prof. Anagha P. Khedkar
P.G. Student, Department of Computer Engineering,
Associate Professor, Department of Computer
MCERC,
Nashik (M.S.), India
e-mail:"
94a11b601af77f0ad46338afd0fa4ccbab909e82,"Title of dissertation : EFFICIENT SENSING , SUMMARIZATION AND CLASSIFICATION OF VIDEOS",
0efdd82a4753a8309ff0a3c22106c570d8a84c20,Lda with Subgroup Pca Method for Facial Image Retrieval,"LDA WITH SUBGROUP PCA METHOD FOR FACIAL IMAGE RETRIEVAL
Wonjun Hwang, Tae-Kyun Kim, Seokcheol Kee
Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea."
0eac652139f7ab44ff1051584b59f2dc1757f53b,Efficient Branching Cascaded Regression for Face Alignment under Significant Head Rotation,"Efficient Branching Cascaded Regression
for Face Alignment under Significant Head Rotation
Brandon M. Smith
Charles R. Dyer
University of Wisconsin–Madison"
0e50fe28229fea45527000b876eb4068abd6ed8c,Angle Principal Component Analysis,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
0eff410cd6a93d0e37048e236f62e209bc4383d1,Learning discriminative MspLBP features based on Ada-LDA for multi-class pattern classification,"Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA
978-1-4244-5040-4/10/$26.00 ©2010 IEEE"
0ee737085af468f264f57f052ea9b9b1f58d7222,SiGAN: Siamese Generative Adversarial Network for Identity-Preserving Face Hallucination,"SiGAN: Siamese Generative Adversarial Network
for Identity-Preserving Face Hallucination
Chih-Chung Hsu, Member, IEEE, Chia-Wen Lin, Fellow, IEEE, Weng-Tai Su, Student Member, IEEE,
nd Gene Cheung, Senior Member, IEEE,"
0ee661a1b6bbfadb5a482ec643573de53a9adf5e,On the Use of Discriminative Cohort Score Normalization for Unconstrained Face Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH YEAR
On the Use of Discriminative Cohort Score
Normalization for Unconstrained Face Recognition
Massimo Tistarelli, Senior Member, IEEE, Yunlian Sun, and Norman Poh, Member, IEEE"
0e986f51fe45b00633de9fd0c94d082d2be51406,"Face detection, pose estimation, and landmark localization in the wild","Face Detection, Pose Estimation, and Landmark Localization in the Wild
Xiangxin Zhu Deva Ramanan
Dept. of Computer Science, University of California, Irvine"
0e49a23fafa4b2e2ac097292acf00298458932b4,Unsupervised Detection of Outlier Images Using Multi-Order Image Transforms,"Theory and Applications of Mathematics & Computer Science 3 (1) (2013) 13–31
Unsupervised Detection of Outlier Images Using Multi-Order
Image Transforms
Lior Shamira,∗
Lawrence Technological University, 21000 W Ten Mile Rd., Southfield, MI 48075, United States."
0e78af9bd0f9a0ce4ceb5f09f24bc4e4823bd698,Spontaneous Subtle Expression Recognition: Imbalanced Databases & Solutions,"Spontaneous Subtle Expression Recognition:
Imbalanced Databases & Solutions (cid:63)
Anh Cat Le Ngo1, Raphael Chung-Wei Phan1, John See2
Faculty of Engineering,
Multimedia University (MMU), Cyberjaya, Malaysia
Faculty of Computing & Informatics,
Multimedia University (MMU), Cyberjaya, Malaysia"
0e2ea7af369dbcaeb5e334b02dd9ba5271b10265,Multi-Level Feature Abstraction from Convolutional Neural Networks for Multimodal Biometric Identification,
0e7c70321462694757511a1776f53d629a1b38f3,2012 Proceedings of the Performance Metrics for Intelligent Systems (PerMI'12) Workshop,"NIST Special Publication 1136
012 Proceedings of the
Performance Metrics for Intelligent
Systems (PerMI ‘12) Workshop
Rajmohan Madhavan
Elena R. Messina
Brian A. Weiss
http://dx.doi.org/10.6028/NIST.SP.1136"
600025c9a13ff09c6d8b606a286a79c823d89db8,A Review on Linear and Non-linear Dimensionality Reduction Techniques,"Machine Learning and Applications: An International Journal (MLAIJ) Vol.1, No.1, September 2014
A REVIEW ON LINEAR AND NON-LINEAR
DIMENSIONALITY REDUCTION
TECHNIQUES
Arunasakthi. K, 2KamatchiPriya. L
Assistant Professor
Department of Computer Science and Engineering
Ultra College of Engineering and Technology for Women,India.
Assistant Professor
Department of Computer Science and Engineering
Vickram College of Engineering, Enathi, Tamil Nadu, India."
60e2b9b2e0db3089237d0208f57b22a3aac932c1,Frankenstein: Learning Deep Face Representations Using Small Data,"Frankenstein: Learning Deep Face Representations
using Small Data
Guosheng Hu, Member, IEEE, Xiaojiang Peng, Yongxin Yang, Timothy M. Hospedales, and Jakob Verbeek"
60ce4a9602c27ad17a1366165033fe5e0cf68078,Combination of Face Regions in Forensic Scenarios.,"TECHNICAL NOTE
DIGITAL & MULTIMEDIA SCIENCES
J Forensic Sci, 2015
doi: 10.1111/1556-4029.12800
Available online at: onlinelibrary.wiley.com
Pedro Tome,1 Ph.D.; Julian Fierrez,1 Ph.D.; Ruben Vera-Rodriguez,1 Ph.D.; and Javier Ortega-Garcia,1
Ph.D.
Combination of Face Regions in Forensic
Scenarios*"
60efdb2e204b2be6701a8e168983fa666feac1be,Transferring Deep Object and Scene Representations for Event Recognition in Still Images,"Int J Comput Vis
DOI 10.1007/s11263-017-1043-5
Transferring Deep Object and Scene Representations for Event
Recognition in Still Images
Limin Wang1
· Zhe Wang2 · Yu Qiao3 · Luc Van Gool1
Received: 31 March 2016 / Accepted: 1 September 2017
© Springer Science+Business Media, LLC 2017"
60824ee635777b4ee30fcc2485ef1e103b8e7af9,Cascaded Collaborative Regression for Robust Facial Landmark Detection Trained Using a Mixture of Synthetic and Real Images With Dynamic Weighting,"Cascaded Collaborative Regression for Robust Facial
Landmark Detection Trained using a Mixture of Synthetic and
Real Images with Dynamic Weighting
Zhen-Hua Feng, Student Member, IEEE, Guosheng Hu, Student Member, IEEE, Josef Kittler,
Life Member, IEEE, William Christmas, and Xiao-Jun Wu"
60cdcf75e97e88638ec973f468598ae7f75c59b4,Face Annotation Using Transductive Kernel Fisher Discriminant,"Face Annotation Using Transductive
Kernel Fisher Discriminant
Jianke Zhu, Steven C.H. Hoi, and Michael R. Lyu"
60040e4eae81ab6974ce12f1c789e0c05be00303,Graphical Facial Expression Analysis and Design Method: An Approach to Determine Humanoid Skin Deformation,"Yonas Tadesse1,2
e-mail:
Shashank Priya
e-mail:
Center for Energy Harvesting
Materials and Systems (CEHMS),
Bio-Inspired Materials and
Devices Laboratory (BMDL),
Center for Intelligent Material
Systems and Structure (CIMSS),
Department of Mechanical Engineering,
Virginia Tech,
Blacksburg, VA 24061
Graphical Facial Expression
Analysis and Design Method:
An Approach to Determine
Humanoid Skin Deformation
The architecture of human face is complex consisting of 268 voluntary muscles that perform
oordinated action to create real-time facial expression. In order to replicate facial expres-
sion on humanoid face by utilizing discrete actuators, the first and foremost step is the identi-"
60b3601d70f5cdcfef9934b24bcb3cc4dde663e7,Binary Gradient Correlation Patterns for Robust Face Recognition,"SUBMITTED TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Binary Gradient Correlation Patterns
for Robust Face Recognition
Weilin Huang, Student Member, IEEE, and Hujun Yin, Senior Member, IEEE"
60bffecd79193d05742e5ab8550a5f89accd8488,Proposal Classification using sparse representation and applications to skin lesion diagnosis,"PhD Thesis Proposal
Classification using sparse representation and applications to skin
lesion diagnosis
I. Description
In only a few decades, sparse representation modeling has undergone a tremendous expansion with
successful applications in many fields including signal and image processing, computer science,
machine  learning,  statistics.  Mathematically,  it  can  be  considered  as  the  problem  of  finding  the
sparsest solution (the one with the fewest non-zeros entries) to an underdetermined linear system
of equations [1]. Based on the observation for natural images (or images rich in textures) that small
scale  structures  tend  to  repeat  themselves  in  an  image  or  in  a  group  of  similar  images,  a  signal
source can be sparsely represented over some well-chosen redundant basis (a dictionary). In other
words, it can be approximately representable by a linear combination of a few elements (also called
toms or basis vectors) of a redundant/over-complete dictionary.
Such models have been proven successful in many tasks including denoising [2]-[5], compression
[6],[7], super-resolution [8],[9], classification and pattern recognition [10]-[16]. In the context of
lassification, the objective is to find the class to which a test signal belongs, given training data
from multiple classes. Sparse representation has become a powerful technique in classification and
pplications, including texture classification [16], face recognition [12], object detection [10], and
segmentation of medical images [17], [18]. In conventional Sparse Representation Classification
(SRC) schemes, learned dictionaries and sparse representation are involved to classify image pixels"
601834a4150e9af028df90535ab61d812c45082c,A short review and primer on using video for psychophysiological observations in human-computer interaction applications,"A short review and primer on using video for
psychophysiological observations in
human-computer interaction applications
Teppo Valtonen1
Quantified Employee unit, Finnish Institute of Occupational Health,
teppo. valtonen fi,
POBox 40, 00250, Helsinki, Finland"
346dbc7484a1d930e7cc44276c29d134ad76dc3f,Artists portray human faces with the Fourier statistics of complex natural scenes.,"This article was downloaded by:[University of Toronto]
On: 21 November 2007
Access Details: [subscription number 785020433]
Publisher: Informa Healthcare
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK
Systems
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713663148
Artists portray human faces with the Fourier statistics of
omplex natural scenes
Christoph Redies a; Jan Hänisch b; Marko Blickhan a; Joachim Denzler b
Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany
Department of Computer Science, Friedrich Schiller University, D-07740 Jena,
Germany
First Published on: 28 August 2007
To cite this Article: Redies, Christoph, Hänisch, Jan, Blickhan, Marko and Denzler,
Joachim (2007) 'Artists portray human faces with the Fourier statistics of complex
To link to this article: DOI: 10.1080/09548980701574496
URL: http://dx.doi.org/10.1080/09548980701574496"
34b3b14b4b7bfd149a0bd63749f416e1f2fc0c4c,The AXES submissions at TrecVid 2013,"The AXES submissions at TrecVid 2013
Robin Aly1, Relja Arandjelovi´c3, Ken Chatfield3, Matthijs Douze6, Basura Fernando4, Zaid Harchaoui6,
Kevin McGuinness2, Noel E. O’Conner2, Dan Oneata6, Omkar M. Parkhi3, Danila Potapov6, Jérôme Revaud6,
Cordelia Schmid6, Jochen Schwenninger5, David Scott2, Tinne Tuytelaars4, Jakob Verbeek6, Heng Wang6,
Andrew Zisserman3
University of Twente 2Dublin City University 3Oxford University
KU Leuven 5Fraunhofer Sankt Augustin 6INRIA Grenoble"
34d484b47af705e303fc6987413dc0180f5f04a9,RI:Medium: Unsupervised and Weakly-Supervised Discovery of Facial Events,"RI:Medium: Unsupervised and Weakly-Supervised
Discovery of Facial Events
Introduction
The face is one of the most powerful channels of nonverbal communication. Facial expression has been a
focus of emotion research for over a hundred years [11]. It is central to several leading theories of emotion
[16, 28, 44] and has been the focus of at times heated debate about issues in emotion science [17, 23, 40].
Facial expression figures prominently in research on almost every aspect of emotion, including psychophys-
iology [30], neural correlates [18], development [31], perception [4], addiction [24], social processes [26],
depression [39] and other emotion disorders [46], to name a few. In general, facial expression provides cues
bout emotional response, regulates interpersonal behavior, and communicates aspects of psychopathology.
While people have believed for centuries that facial expressions can reveal what people are thinking and
feeling, it is relatively recently that the face has been studied scientifically for what it can tell us about
internal states, social behavior, and psychopathology.
Faces possess their own language. Beginning with Darwin and his contemporaries, extensive efforts
have been made to manually describe this language. A leading approach, the Facial Action Coding System
(FACS) [19] , segments the visible effects of facial muscle activation into ”action units.” Because of its
descriptive power, FACS has become the state of the art in manual measurement of facial expression and is
widely used in studies of spontaneous facial behavior. The FACS taxonomy was develop by manually ob-
serving graylevel variation between expressions in images and to a lesser extent by recording the electrical
ctivity of underlying facial muscles [9]. Because of its importance to human social dynamics, person per-"
341002fac5ae6c193b78018a164d3c7295a495e4,von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification,"von Mises-Fisher Mixture Model-based Deep
learning: Application to Face Verification
Md. Abul Hasnat, Julien Bohn´e, Jonathan Milgram, St´ephane Gentric and Liming Chen"
34ec83c8ff214128e7a4a4763059eebac59268a6,Action Anticipation By Predicting Future Dynamic Images,"Action Anticipation By Predicting Future
Dynamic Images
Cristian Rodriguez, Basura Fernando and Hongdong Li
Australian Centre for Robotic Vision, ANU, Canberra, Australia
{cristian.rodriguez, basura.fernando,"
34c594abba9bb7e5813cfae830e2c4db78cf138c,Transport-based single frame super resolution of very low resolution face images,"Transport-Based Single Frame Super Resolution of Very Low Resolution Face Images
Soheil Kolouri1, Gustavo K. Rohde1,2
Department of Biomedical Engineering, Carnegie Mellon University. 2Department of Electrical and Computer Engineering, Carnegie Mellon University.
We describe a single-frame super-resolution method for reconstructing high-
resolution (abbr. high-res) faces from very low-resolution (abbr. low-res)
face images (e.g. smaller than 16× 16 pixels) by learning a nonlinear La-
grangian model for the high-res face images. Our technique is based on the
mathematics of optimal transport, and hence we denote it as transport-based
SFSR (TB-SFSR). In the training phase, a nonlinear model of high-res fa-
ial images is constructed based on transport maps that morph a reference
image into the training face images. In the testing phase, the resolution of
degraded image is enhanced by finding the model parameters that best fit
the given low resolution data.
Generally speaking, most SFSR methods [2, 3, 4, 5] are based on a
linear model for the high-res images. Hence, ultimately, the majority of
SFSR models in the literature can be written as, Ih(x) = ∑i wiψi(x), where
Ih is a high-res image or a high-res image patch, w’s are weight coefficients,
nd ψ’s are high-res images (or image patches), which are learned from the
training images using a specific model. Here we propose a fundamentally
different approach toward modeling high-res images. In our approach the"
341ed69a6e5d7a89ff897c72c1456f50cfb23c96,"DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network","DAGER: Deep Age, Gender and Emotion
Recognition Using Convolutional Neural
Networks
Afshin Dehghan
Enrique G. Ortiz
Guang Shu
Syed Zain Masood
{afshindehghan, egortiz, guangshu,
Computer Vision Lab, Sighthound Inc., Winter Park, FL"
340d1a9852747b03061e5358a8d12055136599b0,Audio-Visual Recognition System Insusceptible to Illumination Variation over Internet Protocol _ICIE_28_,"Audio-Visual Recognition System Insusceptible
to Illumination Variation over Internet Protocol
Yee Wan Wong, Kah Phooi Seng, and Li-Minn Ang"
5a3da29970d0c3c75ef4cb372b336fc8b10381d7,CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images.,"CNN-based Real-time Dense Face Reconstruction
with Inverse-rendered Photo-realistic Face Images
Yudong Guo, Juyong Zhang†, Jianfei Cai, Boyi Jiang and Jianmin Zheng"
5a93f9084e59cb9730a498ff602a8c8703e5d8a5,Face Recognition using Local Quantized Patterns,"HUSSAIN ET. AL: FACE RECOGNITION USING LOCAL QUANTIZED PATTERNS
Face Recognition using Local Quantized
Patterns
Sibt ul Hussain
Thibault Napoléon
Fréderic Jurie
GREYC — CNRS UMR 6072,
University of Caen Basse-Normandie,
Caen, France"
5a34a9bb264a2594c02b5f46b038aa1ec3389072,Label-Embedding for Image Classification,"Label-Embedding for Image Classification
Zeynep Akata, Member, IEEE, Florent Perronnin, Member, IEEE, Zaid Harchaoui, Member, IEEE,
nd Cordelia Schmid, Fellow, IEEE"
5a4c6246758c522f68e75491eb65eafda375b701,Contourlet structural similarity for facial expression recognition,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE
ICASSP 2010"
5aad5e7390211267f3511ffa75c69febe3b84cc7,Driver Gaze Region Estimation Without Using Eye Movement,"Driver Gaze Estimation
Without Using Eye Movement
Lex Fridman, Philipp Langhans, Joonbum Lee, Bryan Reimer
MIT AgeLab"
5a86842ab586de9d62d5badb2ad8f4f01eada885,Facial Emotion Recognition and Classification Using Hybridization Method,"International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015
ISSN 2091-2730
Facial Emotion Recognition and Classification Using Hybridization
Method
Anchal Garg , Dr. Rohit Bajaj
Deptt. of CSE, Chandigarh Engg. College,  Mohali, Punjab, India.
07696449500"
5a4ec5c79f3699ba037a5f06d8ad309fb4ee682c,Automatic age and gender classification using supervised appearance model,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12/17/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
AutomaticageandgenderclassificationusingsupervisedappearancemodelAliMainaBukarHassanUgailDavidConnahAliMainaBukar,HassanUgail,DavidConnah,“Automaticageandgenderclassificationusingsupervisedappearancemodel,”J.Electron.Imaging25(6),061605(2016),doi:10.1117/1.JEI.25.6.061605."
5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6,Human Expression Recognition using Facial Features,"International Journal of Computer Applications® (IJCA) (0975 – 8887)
International Conference on Knowledge Collaboration in Engineering, ICKCE-2014
Human Expression Recognition using Facial Features
G.Saranya
Post graduate student, Dept. of ECE
Parisutham Institute of Technology & Science
Thanjavur.
Affiliated to Anna university, Chennai
recognition  can  be  used"
5a7520380d9960ff3b4f5f0fe526a00f63791e99,The Indian Spontaneous Expression Database for Emotion Recognition,"The Indian Spontaneous Expression
Database for Emotion Recognition
S L Happy, Student Member, IEEE, Priyadarshi Patnaik, Aurobinda Routray, Member, IEEE,
nd Rajlakshmi Guha"
5fff61302adc65d554d5db3722b8a604e62a8377,Additive Margin Softmax for Face Verification,"Additive Margin Softmax for Face Verification
Feng Wang
UESTC
Weiyang Liu
Georgia Tech
Haijun Liu
UESTC
Jian Cheng
UESTC
haijun"
5fa6e4a23da0b39e4b35ac73a15d55cee8608736,RED-Net: A Recurrent Encoder–Decoder Network for Video-Based Face Alignment,"IJCV special issue (Best papers of ECCV 2016) manuscript No.
(will be inserted by the editor)
RED-Net:
A Recurrent Encoder-Decoder Network for Video-based Face Alignment
Xi Peng · Rogerio S. Feris · Xiaoyu Wang · Dimitris N. Metaxas
Submitted: April 19 2017 / Revised: December 12 2017"
5f871838710a6b408cf647aacb3b198983719c31,Locally Linear Regression for Pose-Invariant Face Recognition,"Locally Linear Regression for Pose-Invariant
Face Recognition
Xiujuan Chai, Shiguang Shan, Member, IEEE, Xilin Chen, Member, IEEE, and Wen Gao, Senior Member, IEEE"
5f344a4ef7edfd87c5c4bc531833774c3ed23542,Semisupervised Learning of Classifiers with Application to Human-computer Interaction," Copyright by Ira Cohen, 2003"
5f5906168235613c81ad2129e2431a0e5ef2b6e4,A Unified Framework for Compositional Fitting of Active Appearance Models,"Noname manuscript No.
(will be inserted by the editor)
A Unified Framework for Compositional Fitting of
Active Appearance Models
Joan Alabort-i-Medina · Stefanos Zafeiriou
Received: date / Accepted: date"
5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70c,Multiple Facial Attributes Estimation Based on Weighted Heterogeneous Learning,"Multiple Facial Attributes Estimation based on
Weighted Heterogeneous Learning
H.Fukui* T.Yamashita* Y.Kato* R.Matsui*
T. Ogata** Y.Yamauchi* H.Fujiyoshi*
*Chubu University
**Abeja Inc.
200, Matuoto-cho, Kasugai,
-1-20, Toranomon, Minato-ku,
Aichi, Japan
Tokyo, Japan"
5fc664202208aaf01c9b62da5dfdcd71fdadab29,Automatic Face Recognition from Video,rXiv:1504.05308v1  [cs.CV]  21 Apr 2015
5fa1724a79a9f7090c54925f6ac52f1697d6b570,The Development of Multimodal Lexical Resources,"Proceedings of the Workshop on Grammar and Lexicon: Interactions and Interfaces,
pages 41–47, Osaka, Japan, December 11 2016."
33a1a049d15e22befc7ddefdd3ae719ced8394bf,An Efficient Approach to Facial Feature Detection for Expression Recognition,"FULL PAPER
International Journal of Recent Trends in Engineering, Vol 2, No. 1, November 2009
An Efficient Approach to Facial Feature Detection
for Expression Recognition
S.P. Khandait1, P.D. Khandait2 and Dr.R.C.Thool2
Deptt. of Info.Tech., K.D.K.C.E., Nagpur, India
2Deptt.of Electronics Engg., K.D.K.C.E., Nagpur, India, 2Deptt. of Info.Tech., SGGSIET, Nanded"
3399f8f0dff8fcf001b711174d29c9d4fde89379,Face R-CNN,"Face R-CNN
Hao Wang Zhifeng Li∗ Xing Ji Yitong Wang
Tencent AI Lab, China"
333aa36e80f1a7fa29cf069d81d4d2e12679bc67,Suggesting Sounds for Images from Video Collections,"Suggesting Sounds for Images
from Video Collections
Matthias Sol`er1, Jean-Charles Bazin2, Oliver Wang2, Andreas Krause1 and
Alexander Sorkine-Hornung2
Computer Science Department, ETH Z¨urich, Switzerland
Disney Research, Switzerland"
33792bb27ef392973e951ca5a5a3be4a22a0d0c6,Two-Dimensional Whitening Reconstruction for Enhancing Robustness of Principal Component Analysis,"Two-dimensional Whitening Reconstruction for
Enhancing Robustness of Principal Component
Analysis
Xiaoshuang Shi, Zhenhua Guo, Feiping Nie, Lin Yang, Jane You, and Dacheng Tao"
3328674d71a18ed649e828963a0edb54348ee598,A face and palmprint recognition approach based on discriminant DCT feature extraction,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004
A Face and Palmprint Recognition Approach Based
on Discriminant DCT Feature Extraction
Xiao-Yuan Jing and David Zhang"
339937141ffb547af8e746718fbf2365cc1570c8,Facial Emotion Recognition in Real Time,"Facial Emotion Recognition in Real Time
Dan Duncan
Gautam Shine
Chris English"
33ae696546eed070717192d393f75a1583cd8e2c,Subspace selection to suppress confounding source domain information in AAM transfer learning,
3393459600368be2c4c9878a3f65a57dcc0c2cfa,Eigen-PEP for Video Face Recognition,"Eigen-PEP for Video Face Recognition
Haoxiang Li†, Gang Hua†, Xiaohui Shen‡, Zhe Lin‡, Jonathan Brandt‡
Stevens Institute of Technology ‡Adobe Systems Inc."
3352426a67eabe3516812cb66a77aeb8b4df4d1b,Joint Multi-view Face Alignment in the Wild,"JOURNAL OF LATEX CLASS FILES, VOL. 4, NO. 5, APRIL 2015
Joint Multi-view Face Alignment in the Wild
Jiankang Deng, Student Member, IEEE, George Trigeorgis, Yuxiang Zhou, and Stefanos Zafeiriou, Member, IEEE"
334d6c71b6bce8dfbd376c4203004bd4464c2099,Biconvex Relaxation for Semidefinite Programming in Computer Vision,"BICONVEX RELAXATION FOR SEMIDEFINITE PROGRAMMING IN
COMPUTER VISION
SOHIL SHAH*, ABHAY KUMAR*, DAVID JACOBS,
CHRISTOPH STUDER, AND TOM GOLDSTEIN"
33695e0779e67c7722449e9a3e2e55fde64cfd99,Riemannian coding and dictionary learning: Kernels to the rescue,"Riemannian Coding and Dictionary Learning: Kernels to the Rescue
Mehrtash Harandi, Mathieu Salzmann
Australian National University & NICTA
While sparse coding on non-flat Riemannian manifolds has recently become
increasingly popular, existing solutions either are dedicated to specific man-
ifolds, or rely on optimization problems that are difficult to solve, especially
when it comes to dictionary learning. In this paper, we propose to make use
of kernels to perform coding and dictionary learning on Riemannian man-
ifolds. To this end, we introduce a general Riemannian coding framework
with its kernel-based counterpart. This lets us (i) generalize beyond the spe-
ial case of sparse coding; (ii) introduce efficient solutions to two coding
schemes; (iii) learn the kernel parameters; (iv) perform unsupervised and
supervised dictionary learning in a much simpler manner than previous Rie-
mannian coding approaches.
i=1, di ∈ M, be a dictionary on a Rie-
mannian manifold M, and x ∈ M be a query point on the manifold. We
(cid:17)
define a general Riemannian coding formulation as
More specifically, let D = {di}N
(cid:93)N"
33e20449aa40488c6d4b430a48edf5c4b43afdab,The Faces of Engagement: Automatic Recognition of Student Engagementfrom Facial Expressions,"TRANSACTIONS ON AFFECTIVE COMPUTING
The Faces of Engagement: Automatic
Recognition of Student Engagement from Facial
Expressions
Jacob Whitehill, Zewelanji Serpell, Yi-Ching Lin, Aysha Foster, and Javier R. Movellan"
333e7ad7f915d8ee3bb43a93ea167d6026aa3c22,3D Assisted Face Recognition: Dealing With Expression Variations,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIFS.2014.2309851
DRAFT
D Assisted Face Recognition: Dealing With
Expression Variations
Nesli Erdogmus, Member, IEEE, Jean-Luc Dugelay, Fellow Member, IEEE"
334166a942acb15ccc4517cefde751a381512605,Facial Expression Analysis using Deep Learning,"International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056
Volume: 04 Issue: 10 | Oct -2017                     www.irjet.net                                                                 p-ISSN: 2395-0072
Facial Expression Analysis using Deep Learning
Hemanth Singh1, Raman Patel2
,2 M.Tech Student, SSG Engineering College, Odisha, India
---------------------------------------------------------------------***---------------------------------------------------------------------
examination structures need to analyse the facial exercises"
05b8673d810fadf888c62b7e6c7185355ffa4121,A Comprehensive Survey to Face Hallucination,"(will be inserted by the editor)
A Comprehensive Survey to Face Hallucination
Nannan Wang · Dacheng Tao · Xinbo Gao · Xuelong Li · Jie Li
Received: date / Accepted: date"
05e658fed4a1ce877199a4ce1a8f8cf6f449a890,Domain Transfer Learning for Object and Action Recognition,
05ad478ca69b935c1bba755ac1a2a90be6679129,Attribute Dominance: What Pops Out?,"Attribute Dominance: What Pops Out?
Naman Turakhia
Georgia Tech"
054738ce39920975b8dcc97e01b3b6cc0d0bdf32,Towards the design of an end-to-end automated system for image and video-based recognition,"Towards the Design of an End-to-End Automated
System for Image and Video-based Recognition
Rama Chellappa1, Jun-Cheng Chen3, Rajeev Ranjan1, Swami Sankaranarayanan1, Amit Kumar1,
Vishal M. Patel2 and Carlos D. Castillo4"
05e03c48f32bd89c8a15ba82891f40f1cfdc7562,Scalable Robust Principal Component Analysis Using Grassmann Averages,"Scalable Robust Principal Component
Analysis using Grassmann Averages
Søren Hauberg, Aasa Feragen, Raffi Enficiaud, and Michael J. Black"
056ba488898a1a1b32daec7a45e0d550e0c51ae4,Cascaded Continuous Regression for Real-Time Incremental Face Tracking,"Cascaded Continuous Regression for Real-time
Incremental Face Tracking
Enrique S´anchez-Lozano, Brais Martinez,
Georgios Tzimiropoulos, and Michel Valstar
Computer Vision Laboratory. University of Nottingham"
050fdbd2e1aa8b1a09ed42b2e5cc24d4fe8c7371,Spatio-Temporal Scale Selection in Video Data,"Contents
Scale Space and PDE Methods
Spatio-Temporal Scale Selection in Video Data . . . . . . . . . . . . . . . . . . . . .
Tony Lindeberg
Dynamic Texture Recognition Using Time-Causal Spatio-Temporal
Scale-Space Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ylva Jansson and Tony Lindeberg
Corner Detection Using the Affine Morphological Scale Space . . . . . . . . . . .
Luis Alvarez
Nonlinear Spectral Image Fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Martin Benning, Michael Möller, Raz Z. Nossek, Martin Burger,
Daniel Cremers, Guy Gilboa, and Carola-Bibiane Schönlieb
Tubular Structure Segmentation Based on Heat Diffusion. . . . . . . . . . . . . . .
Fang Yang and Laurent D. Cohen
Analytic Existence and Uniqueness Results for PDE-Based Image
Reconstruction with the Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laurent Hoeltgen, Isaac Harris, Michael Breuß, and Andreas Kleefeld
Combining Contrast Invariant L1 Data Fidelities with Nonlinear
Spectral Image Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leonie Zeune, Stephan A. van Gils, Leon W.M.M. Terstappen,"
052880031be0a760a5b606b2ad3d22f237e8af70,Datasets on object manipulation and interaction: a survey,"Datasets on object manipulation and interaction: a survey
Yongqiang Huang and Yu Sun"
053c2f592a7f153e5f3746aa5ab58b62f2cf1d21,Performance Evaluation of Illumination Normalization Techniques for Face Recognition,"International Journal of Research in
Engineering & Technology (IJRET)
ISSN 2321-8843
Vol. 1, Issue 2, July 2013, 11-20
© Impact Journals
PERFORMANCE EVALUATION OF ILLUMINATION NORMALIZATION TECHNIQUES
FOR FACE RECOGNITION
A. P. C. SARATHA DEVI & V. MAHESH
Department of Information Technology, PSG College of Technology, Coimbatore, Tamil Nadu, India"
05ea7930ae26165e7e51ff11b91c7aa8d7722002,Learning And-Or Model to Represent Context and Occlusion for Car Detection and Viewpoint Estimation,"Learning And-Or Model to Represent Context and
Occlusion for Car Detection and Viewpoint Estimation
Tianfu Wu∗, Bo Li∗ and Song-Chun Zhu"
051a84f0e39126c1ebeeb379a405816d5d06604d,Biometric Recognition Performing in a Bioinspired System,"Cogn Comput (2009) 1:257–267
DOI 10.1007/s12559-009-9018-7
Biometric Recognition Performing in a Bioinspired System
Joan Fa`bregas Æ Marcos Faundez-Zanuy
Published online: 20 May 2009
Ó Springer Science+Business Media, LLC 2009"
0559fb9f5e8627fecc026c8ee6f7ad30e54ee929,Facial Expression Recognition,"Facial Expression Recognition
Bogdan J. Matuszewski, Wei Quan and Lik-Kwan Shark
ADSIP Research Centre, University of Central Lancashire
. Introduction
Facial  expressions  are  visible  signs  of  a  person’s  affective  state,  cognitive  activity  and
personality.  Humans  can  perform  expression  recognition  with  a  remarkable  robustness
without  conscious  effort  even  under  a  variety  of  adverse  conditions  such  as  partially
occluded faces, different appearances and poor illumination. Over the last two decades, the
dvances in imaging technology and ever increasing computing power have opened up a
possibility of automatic facial expression recognition and this has led to significant research
efforts from the computer vision and pattern recognition communities. One reason for this
growing interest is due to a wide spectrum of possible applications in diverse areas, such as
more engaging human-computer interaction (HCI) systems, video conferencing, augmented
reality.  Additionally  from  the  biometric  perspective,  automatic  recognition  of  facial
expressions has been investigated in the context of monitoring patients in the intensive care
nd neonatal units for signs of pain and anxiety, behavioural research, identifying level of
oncentration, and improving face recognition.
Automatic  facial  expression  recognition  is  a  difficult  task  due  to  its  inherent  subjective
nature,  which  is  additionally  hampered  by  usual  difficulties  encountered  in  pattern
recognition and computer vision research. The vast majority of the current state-of-the-art"
05a7be10fa9af8fb33ae2b5b72d108415519a698,Multilayer and Multimodal Fusion of Deep Neural Networks for Video Classification,"Multilayer and Multimodal Fusion of Deep Neural Networks
for Video Classification
Xiaodong Yang Pavlo Molchanov Jan Kautz
{xiaodongy, pmolchanov,
NVIDIA"
050a149051a5d268fcc5539e8b654c2240070c82,Magisterské a doktorské studijnı́ programy,MAGISTERSKÉ A DOKTORSKÉSTUDIJNÍ PROGRAMY31. 5. 2018SBORNÍKSTUDENTSKÁ VĚDECKÁ KONFERENCE
0580edbd7865414c62a36da9504d1169dea78d6f,Baseline CNN structure analysis for facial expression recognition,"Baseline CNN structure analysis for facial expression recognition
Minchul Shin1, Munsang Kim2 and Dong-Soo Kwon1"
9d58e8ab656772d2c8a99a9fb876d5611fe2fe20,Beyond Temporal Pooling: Recurrence and Temporal Convolutions for Gesture Recognition in Video,"Beyond Temporal Pooling: Recurrence and Temporal
Convolutions for Gesture Recognition in Video
Lionel Pigou, A¨aron van den Oord∗ , Sander Dieleman∗ ,
{lionel.pigou,aaron.vandenoord,sander.dieleman,
Mieke Van Herreweghe & Joni Dambre
mieke.vanherreweghe,
Ghent University
February 11, 2016"
9d42df42132c3d76e3447ea61e900d3a6271f5fe,AutoCAP: An Automatic Caption Generation System based on the Text Knowledge Power Series Representation Model,"International Journal of Computer Applications (0975 – 8887)
Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)
AutoCAP: An Automatic Caption Generation System
ased on the Text Knowledge Power Series
Representation Model
Krishnapriya P S
M.Tech Dept of CSE
NSS College of Engineering
Palakkad, Kerala"
9d8fd639a7aeab0dd1bc6eef9d11540199fd6fe2,L Earning to C Luster,"Workshop track - ICLR 2018
LEARNING TO CLUSTER
Benjamin B. Meier, Thilo Stadelmann & Oliver D¨urr
ZHAW Datalab, Zurich University of Applied Sciences
Winterthur, Switzerland"
9d357bbf014289fb5f64183c32aa64dc0bd9f454,Face Identification by Fitting a 3D Morphable Model Using Linear Shape and Texture Error Functions,"Face Identification by Fitting a 3D Morphable Model
using Linear Shape and Texture Error Functions
Sami Romdhani, Volker Blanz, and Thomas Vetter
University of Freiburg, Instit¨ut f¨ur Informatik,
Georges-K¨ohler-Allee 52, 79110 Freiburg, Germany,
fromdhani, volker,"
9d839dfc9b6a274e7c193039dfa7166d3c07040b,Augmented faces,"Augmented Faces
Matthias Dantone1
Lukas Bossard1
Till Quack1,2
Luc van Gool1,3
ETH Z¨urich
Kooaba AG
K.U. Leuven"
9d36c81b27e67c515df661913a54a797cd1260bb,3d Face Recognition Techniques - a Review,"Preeti.B.Sharma, Mahesh M. Goyani / International Journal of Engineering Research and
Applications (IJERA)      ISSN: 2248-9622                           www.ijera.com
Vol. 2, Issue 1,Jan-Feb 2012, pp.787-793
3D FACE RECOGNITION TECHNIQUES - A REVIEW
Preeti B. Sharma*, Mahesh M. Goyani**
*(Department of Information Technology, Gujarat Technological University, India)
**( Department of Computer Engineering, Gujarat Technological University, India)
security  at  many  places"
9d757c0fede931b1c6ac344f67767533043cba14,Search Based Face Annotation Using PCA and Unsupervised Label Refinement Algorithms,"Search Based Face Annotation Using PCA and
Unsupervised Label Refinement Algorithms
Shital Shinde1, Archana Chaugule2
Computer Department, Savitribai Phule Pune University
D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18
Mahatma Phulenagar, 120/2 Mahaganpati soc, Chinchwad, Pune-19, MH, India
D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18
Computer Department, D.Y.PIET, Pimpri, Pune-18, MH, India
presents"
9d60ad72bde7b62be3be0c30c09b7d03f9710c5f,A Survey: Face Recognition Techniques,"A Survey: Face Recognition Techniques
Arun Agrawal
Assistant Professor, ITM GOI
Ranjana Sikarwar
M Tech, ITM GOI
video
(Eigen
passport-verification,"
9d24179aa33a94c8c61f314203bf9e906d6b64de,Searching for People through Textual and Visual Attributes,"Searching for People through
Textual and Visual Attributes
Junior Fabian, Ramon Pires, Anderson Rocha
Institute of Computing
University of Campinas (Unicamp)
Campinas-SP, Brazil
Fig. 1. The proposed approach aims at searching for people using textual and visual attributes. Given an image database of faces, we extract the points of
interest (PoIs) to construct a visual dictionary that allow us to obtain the feature vectors by a quantization process (top). Then we train attribute classifiers to
generate a score for each image (middle). Finally, given a textual query (e.g., male), we fusion obtained scores to return a unique final rank (bottom)."
9c1305383ce2c108421e9f5e75f092eaa4a5aa3c,Speaker Retrieval for Tv Show Videos by Associating Audio Speaker Recognition Result to Visual Faces∗,"SPEAKER RETRIEVAL FOR TV SHOW VIDEOS BY ASSOCIATING AUDIO SPEAKER
RECOGNITION RESULT TO VISUAL FACES∗
Yina Han*’, Joseph Razik’, Gerard Chollet’, and Guizhong Liu*
*School of Electrical and Information Engineering, Xi’an Jiaotong University, Xi’an, China
’CNRS-LTCI, TELECOM-ParisTech, Paris, France"
9c1860de6d6e991a45325c997bf9651c8a9d716f,3D reconstruction and face recognition using kernel-based ICA and neural networks,"D Reconstruction and Face Recognition Using Kernel-Based
ICA and Neural Networks
Cheng-Jian Lin                  Ya-Tzu Huang
Chi-Yung Lee
Dept. of Electrical                Dept. of CSIE                    Dept. of CSIE
Engineering              Chaoyang University              Nankai Institute of
National University            of Technology                        Technology
of Kaohsiung"
9ca7899338129f4ba6744f801e722d53a44e4622,Deep neural networks regularization for structured output prediction,"Deep Neural Networks Regularization for Structured
Output Prediction
Soufiane Belharbi∗
INSA Rouen, LITIS
76000 Rouen, France
Clément Chatelain
INSA Rouen, LITIS
76000 Rouen, France
Romain Hérault
INSA Rouen, LITIS
76000 Rouen, France
Sébastien Adam
INSA Rouen, LITIS
76000 Rouen, France
Normandie Univ, UNIROUEN, UNIHAVRE,
Normandie Univ, UNIROUEN, UNIHAVRE,
Normandie Univ, UNIROUEN, UNIHAVRE,
Normandie Univ, UNIROUEN, UNIHAVRE,"
9c1664f69d0d832e05759e8f2f001774fad354d6,Action Representations in Robotics: A Taxonomy and Systematic Classification,"Action representations in robotics: A
taxonomy and systematic classification
Journal Title
XX(X):1–32
(cid:13)The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/
Philipp Zech, Erwan Renaudo, Simon Haller, Xiang Zhang and Justus Piater"
9c065dfb26ce280610a492c887b7f6beccf27319,Learning from Video and Text via Large-Scale Discriminative Clustering,"Learning from Video and Text via Large-Scale Discriminative Clustering
Antoine Miech1,2
Jean-Baptiste Alayrac1,2
Piotr Bojanowski2
Ivan Laptev 1,2
Josef Sivic1,2,3
´Ecole Normale Sup´erieure
Inria
CIIRC"
9c781f7fd5d8168ddae1ce5bb4a77e3ca12b40b6,Attribute Based Face Classification Using Support Vector Machine,"International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056
Volume: 03 Issue: 07 | July-2016                       www.irjet.net                                                               p-ISSN: 2395-0072
Attribute Based Face Classification Using Support Vector Machine
Brindha.M1, Amsaveni.R2
Research Scholar, Dept. of Computer Science, PSGR Krishnammal College for Women, Coimbatore
Assistant Professor, Dept. of Information Technology, PSGR Krishnammal College for Women, Coimbatore."
9ce0d64125fbaf625c466d86221505ad2aced7b1,Recognizing expressions of children in real life scenarios View project PhD ( Doctor of Philosophy ) View project,"Saliency Based Framework for Facial Expression
Recognition
Rizwan Ahmed Khan, Alexandre Meyer, Hubert Konik, Saïda Bouakaz
To cite this version:
Rizwan Ahmed Khan, Alexandre Meyer, Hubert Konik, Saïda Bouakaz. Saliency Based Framework for
Facial Expression Recognition. Frontiers of Computer Science, 2017, <10.1007/s11704-017-6114-9>.
<hal-01546192>
HAL Id: hal-01546192
https://hal.archives-ouvertes.fr/hal-01546192
Submitted on 23 Jun 2017
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
02601d184d79742c7cd0c0ed80e846d95def052e,Graphical Representation for Heterogeneous Face Recognition,"Graphical Representation for Heterogeneous
Face Recognition
Chunlei Peng, Xinbo Gao, Senior Member, IEEE, Nannan Wang, Member, IEEE, and Jie Li"
02e43d9ca736802d72824892c864e8cfde13718e,Transferring a semantic representation for person re-identification and search,"Transferring a Semantic Representation for Person Re-Identification and
Search
Shi, Z; Yang, Y; Hospedales, T; XIANG, T; IEEE Conference on Computer Vision and
Pattern Recognition
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/10075
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
02fda07735bdf84554c193811ba4267c24fe2e4a,Illumination Invariant Face Recognition Using Near-Infrared Images,"Illumination Invariant Face Recognition
Using Near-Infrared Images
Stan Z. Li, Senior Member, IEEE, RuFeng Chu, ShengCai Liao, and Lun Zhang"
0241513eeb4320d7848364e9a7ef134a69cbfd55,Supervised translation-invariant sparse coding,"Supervised Translation-Invariant Sparse
Coding
¹Jianchao Yang, ²Kai Yu, and ¹Thomas Huang
¹University of Illinois at Urbana Champaign
²NEC Laboratories America at Cupertino"
02dd0af998c3473d85bdd1f77254ebd71e6158c6,PPP: Joint Pointwise and Pairwise Image Label Prediction,"PPP: Joint Pointwise and Pairwise Image Label Prediction
Yilin Wang1 Suhang Wang1
Jiliang Tang2 Huan Liu1 Baoxin Li1
Department of Computer Science, Arizona State Univerity
Yahoo Research"
029317f260b3303c20dd58e8404a665c7c5e7339,Character Identification in Feature-Length Films Using Global Face-Name Matching,"Character Identification in Feature-Length Films
Using Global Face-Name Matching
Yi-Fan Zhang, Student Member, IEEE, Changsheng Xu, Senior Member, IEEE, Hanqing Lu, Senior Member, IEEE,
nd Yeh-Min Huang, Member, IEEE"
0273414ba7d56ab9ff894959b9d46e4b2fef7fd0,Photographic home styles in Congress: a computer vision approach,"Photographic home styles in Congress: a
omputer vision approach∗
L. Jason Anastasopoulos†.
Dhruvil Badani‡
Crystal Lee§
Shiry Ginosar¶
Jake Williams(cid:107)
December 1, 2016"
02e133aacde6d0977bca01ffe971c79097097b7f,Convolutional Neural Fabrics,
02567fd428a675ca91a0c6786f47f3e35881bcbd,Deep Label Distribution Learning With Label Ambiguity,"ACCEPTED BY IEEE TIP
Deep Label Distribution Learning
With Label Ambiguity
Bin-Bin Gao, Chao Xing, Chen-Wei Xie, Jianxin Wu, Member, IEEE, and Xin Geng, Member, IEEE"
0278acdc8632f463232e961563e177aa8c6d6833,Selective Transfer Machine for Personalized Facial Expression Analysis,"Selective Transfer Machine for Personalized
Facial Expression Analysis
Wen-Sheng Chu, Fernando De la Torre, and Jeffrey F. Cohn
INTRODUCTION
Index Terms—Facial expression analysis, personalization, domain adaptation, transfer learning, support vector machine (SVM)
A UTOMATIC facial AU detection confronts a number of"
a4a5ad6f1cc489427ac1021da7d7b70fa9a770f2,Gated spatio and temporal convolutional neural network for activity recognition: towards gated multimodal deep learning,"Yudistira and Kurita EURASIP Journal on Image and Video
Processing  (2017) 2017:85
DOI 10.1186/s13640-017-0235-9
EURASIP Journal on Image
nd Video Processing
RESEARCH
Open Access
Gated spatio and temporal convolutional
neural network for activity recognition:
towards gated multimodal deep learning
Novanto Yudistira1* and Takio Kurita2"
a40f8881a36bc01f3ae356b3e57eac84e989eef0,"End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks","End-to-end semantic face segmentation with conditional
random fields as convolutional, recurrent and adversarial
networks
Umut Güçlü*, 1, Yağmur Güçlütürk*, 1,
Meysam Madadi2, Sergio Escalera3, Xavier Baró4, Jordi González2,
Rob van Lier1, Marcel van Gerven1"
a4a0b5f08198f6d7ea2d1e81bd97fea21afe3fc3,Efficient Recurrent Residual Networks Improved by Feature Transfer,"Ecient Recurrent Residual Networks Improved by
Feature Transfer
MSc Thesis
written by
Yue Liu
under the supervision of Dr. Silvia-Laura Pintea, Dr. Jan van Gemert,
nd Dr. Ildiko Suveg and submitted to the Board of Examiners for the
degree of
Master of Science
t the Delft University of Technology.
Date of the public defense: Members of the Thesis Committee:
August 31, 2017
Prof. Marcel Reinders
Dr. Jan van Gemert
Dr. Julian Urbano Merino
Dr. Silvia-Laura Pintea
Dr. Ildiko Suveg (Bosch)
Dr. Gonzalez Adrlana (Bosch)"
a44590528b18059b00d24ece4670668e86378a79,Learning the Hierarchical Parts of Objects by Deep Non-Smooth Nonnegative Matrix Factorization,"Learning the Hierarchical Parts of Objects by Deep
Non-Smooth Nonnegative Matrix Factorization
Jinshi Yu, Guoxu Zhou, Andrzej Cichocki
IEEE Fellow, and Shengli Xie IEEE Senior Member"
a472d59cff9d822f15f326a874e666be09b70cfd,Visual Learning with Weakly Labeled Video a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"VISUAL LEARNING WITH WEAKLY LABELED VIDEO
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Kevin Tang
May 2015"
a4c430b7d849a8f23713dc283794d8c1782198b2,Video Concept Embedding,"Video Concept Embedding
Anirudh Vemula
Rahul Nallamothu
Syed Zahir Bokhari
. Introduction
In the area of natural language processing, there has been
much success in learning distributed representations for
words as vectors. Doing so has an advantage over using
simple labels, or a one-hot coding scheme for representing
individual words. In learning distributed vector representa-
tions for words, we manage to capture semantic relatedness
of words in vector distance. For example, the word vector
for ”car” and ”road” should end up being closer together in
the vector space representation than ”car” and ”penguin”.
This has been very useful in NLP areas of machine transla-
tion and semantic understanding.
In the computer vision domain, video understanding is a
very important topic.
It is made hard due to the large
mount of high dimensional data in videos. One strategy"
a4f37cfdde3af723336205b361aefc9eca688f5c,Recent Advances in Face Recognition,"Recent Advances
in Face Recognition"
a30869c5d4052ed1da8675128651e17f97b87918,Fine-Grained Comparisons with Attributes,"Fine-Grained Comparisons with Attributes
Aron Yu and Kristen Grauman"
a3ebacd8bcbc7ddbd5753935496e22a0f74dcf7b,"First International Workshop on Adaptive Shot Learning for Gesture Understanding and Production ASL4GUP 2017 Held in conjunction with IEEE FG 2017, in May 30, 2017, Washington DC, USA","First International Workshop on Adaptive Shot Learning
for Gesture Understanding and Production
ASL4GUP 2017
Held in conjunction with IEEE FG 2017, in May 30, 2017,
Washington DC, USA"
a3d8b5622c4b9af1f753aade57e4774730787a00,Pose-Aware Person Recognition,"Pose-Aware Person Recognition
Vijay Kumar (cid:63)
Anoop Namboodiri (cid:63)
(cid:63) CVIT, IIIT Hyderabad, India
Manohar Paluri †
Facebook AI Research
C. V. Jawahar (cid:63)"
a3017bb14a507abcf8446b56243cfddd6cdb542b,Face Localization and Recognition in Varied Expressions and Illumination,"Face Localization and Recognition in Varied
Expressions and Illumination
Hui-Yu Huang, Shih-Hang Hsu"
a3c8c7da177cd08978b2ad613c1d5cb89e0de741,A Spatio-temporal Approach for Multiple Object Detection in Videos Using Graphs and Probability Maps,"A Spatio-temporal Approach for Multiple
Object Detection in Videos Using Graphs
nd Probability Maps
Henrique Morimitsu1(B), Roberto M. Cesar Jr.1, and Isabelle Bloch2
University of S˜ao Paulo, S˜ao Paulo, Brazil
Institut Mines T´el´ecom, T´el´ecom ParisTech, CNRS LTCI, Paris, France"
a378fc39128107815a9a68b0b07cffaa1ed32d1f,Determining a Suitable Metric when Using Non-Negative Matrix Factorization,"Determining a Suitable Metric When using Non-negative Matrix Factorization∗
David Guillamet and Jordi Vitri`a
Computer Vision Center, Dept. Inform`atica
Universitat Aut`onoma de Barcelona
08193 Bellaterra, Barcelona, Spain"
a34d75da87525d1192bda240b7675349ee85c123,Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?,"Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?
Erjin Zhou
Face++, Megvii Inc.
Zhimin Cao
Face++, Megvii Inc.
Qi Yin
Face++, Megvii Inc."
a3dc109b1dff3846f5a2cc1fe2448230a76ad83f,Active Appearance Model and Pca Based Face Recognition System,"J.Savitha et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.4, April- 2015, pg. 722-731
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IJCSMC, Vol. 4, Issue. 4, April 2015, pg.722 – 731
RESEARCH ARTICLE
ACTIVE APPEARANCE MODEL AND PCA
BASED FACE RECOGNITION SYSTEM
Mrs. J.Savitha M.Sc., M.Phil.
Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India
Email:
Dr. A.V.Senthil Kumar
Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India
Email:"
a3f69a073dcfb6da8038607a9f14eb28b5dab2db,3D-Aided Deep Pose-Invariant Face Recognition,Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
a38045ed82d6800cbc7a4feb498e694740568258,African American and Caucasian males ' evaluation of racialized female facial averages,"UNLV Theses, Dissertations, Professional Papers, and Capstones
5-2010
African American and Caucasian males' evaluation
of racialized female facial averages
Rhea M. Watson
University of Nevada Las Vegas
Follow this and additional works at: http://digitalscholarship.unlv.edu/thesesdissertations
Part of the Cognition and Perception Commons, Race and Ethnicity Commons, and the Social
Psychology Commons
Repository Citation
Watson, Rhea M., ""African American and Caucasian males' evaluation of racialized female facial averages"" (2010). UNLV Theses,
Dissertations, Professional Papers, and Capstones. 366.
http://digitalscholarship.unlv.edu/thesesdissertations/366
This Thesis is brought to you for free and open access by Digital It has been accepted for inclusion in UNLV Theses, Dissertations,
Professional Papers, and Capstones by an authorized administrator of Digital For more information, please contact"
a3f78cc944ac189632f25925ba807a0e0678c4d5,Action Recognition in Realistic Sports Videos,"Action Recognition in Realistic Sports Videos
Khurram Soomro and Amir Roshan Zamir"
a3a6a6a2eb1d32b4dead9e702824375ee76e3ce7,Multiple Local Curvature Gabor Binary Patterns for Facial Action Recognition,"Multiple Local Curvature Gabor Binary
Patterns for Facial Action Recognition
Anıl Y¨uce, Nuri Murat Arar and Jean-Philippe Thiran
Signal Processing Laboratory (LTS5),
´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland"
a32c5138c6a0b3d3aff69bcab1015d8b043c91fb,Video redaction: a survey and comparison of enabling technologies,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/19/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Videoredaction:asurveyandcomparisonofenablingtechnologiesShaganSahAmeyaShringiRaymondPtuchaAaronBurryRobertLoceShaganSah,AmeyaShringi,RaymondPtucha,AaronBurry,RobertLoce,“Videoredaction:asurveyandcomparisonofenablingtechnologies,”J.Electron.Imaging26(5),051406(2017),doi:10.1117/1.JEI.26.5.051406."
a3eab933e1b3db1a7377a119573ff38e780ea6a3,Sparse Representation for accurate classification of corrupted and occluded facial expressions,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE
ICASSP 2010"
a3a34c1b876002e0393038fcf2bcb00821737105,Face Identification across Different Poses and Illuminations with a 3D Morphable Model,"Face Identification across Different Poses and Illuminations
with a 3D Morphable Model
V. Blanz, S. Romdhani, and T. Vetter
University of Freiburg
Georges-K¨ohler-Allee 52, 79110 Freiburg, Germany
fvolker, romdhani,"
a3f1db123ce1818971a57330d82901683d7c2b67,Poselets and Their Applications in High-Level Computer Vision,"Poselets and Their Applications in High-Level
Computer Vision
Lubomir Bourdev
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2012-52
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-52.html
May 1, 2012"
a3a97bb5131e7e67316b649bbc2432aaa1a6556e,Role of the hippocampus and orbitofrontal cortex during the disambiguation of social cues in working memory.,"Cogn Affect Behav Neurosci
DOI 10.3758/s13415-013-0170-x
Role of the hippocampus and orbitofrontal cortex
during the disambiguation of social cues in working memory
Robert S. Ross & Matthew L. LoPresti & Karin Schon &
Chantal E. Stern
# Psychonomic Society, Inc. 2013"
a35d3ba191137224576f312353e1e0267e6699a1,Increasing security in DRM systems through biometric authentication,"Javier Ortega-Garcia, Josef Bigun, Douglas Reynolds,
nd Joaquin Gonzalez-Rodriguez
Increasing security in DRM systems
through biometric authentication.
ecuring  the  exchange
of  intellectual  property
nd  providing  protection
to  multimedia  contents  in
distribution systems have enabled the
dvent  of  digital  rights  management
(DRM)  systems  [5],  [14],  [21],  [47],
[51], [53]. Rights holders should be able to
license, monitor, and track the usage of rights
in  a  dynamic  digital  trading  environment,  espe-
ially in the near future when universal multimedia
ccess (UMA) becomes a reality, and any multimedia
ontent  will  be  available  anytime,  anywhere.  In  such
DRM  systems,  encryption  algorithms,  access  control,
key  management  strategies,  identification  and  tracing
of contents, or copy control will play a prominent role"
b558be7e182809f5404ea0fcf8a1d1d9498dc01a,Bottom-up and top-down reasoning with convolutional latent-variable models,"Bottom-up and top-down reasoning with convolutional latent-variable models
Peiyun Hu
UC Irvine
Deva Ramanan
UC Irvine"
b5cd8151f9354ee38b73be1d1457d28e39d3c2c6,Finding Celebrities in Video,"Finding Celebrities in Video
Nazli Ikizler
Jai Vasanth
Linus Wong
David Forsyth
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2006-77
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-77.html
May 23, 2006"
b5fc4f9ad751c3784eaf740880a1db14843a85ba,Significance of image representation for face verification,"SIViP (2007) 1:225–237
DOI 10.1007/s11760-007-0016-5
ORIGINAL PAPER
Significance of image representation for face verification
Anil Kumar Sao · B. Yegnanarayana ·
B. V. K. Vijaya Kumar
Received: 29 August 2006 / Revised: 28 March 2007 / Accepted: 28 March 2007 / Published online: 1 May 2007
© Springer-Verlag London Limited 2007"
b506aa23949b6d1f0c868ad03aaaeb5e5f7f6b57,Modeling Social and Temporal Context for Video Analysis,"UNIVERSITY OF CALIFORNIA
RIVERSIDE
Modeling Social and Temporal Context for Video Analysis
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Computer Science
Zhen Qin
June 2015
Dissertation Committee:
Dr. Christian R. Shelton, Chairperson
Dr. Tao Jiang
Dr. Stefano Lonardi
Dr. Amit Roy-Chowdhury"
b599f323ee17f12bf251aba928b19a09bfbb13bb,Autonomous Quadcopter Videographer,"AUTONOMOUS QUADCOPTER VIDEOGRAPHER
REY R. COAGUILA
B.S. Universidad Peruana de Ciencias Aplicadas, 2009
A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science
t the University of Central Florida
Orlando, Florida
Spring Term
Major Professor: Gita R. Sukthankar"
b5160e95192340c848370f5092602cad8a4050cd,Video Classification With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor,"IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, TO APPEAR
Video Classification With CNNs: Using The Codec
As A Spatio-Temporal Activity Sensor
Aaron Chadha, Alhabib Abbas and Yiannis Andreopoulos, Senior Member, IEEE"
b52886610eda6265a2c1aaf04ce209c047432b6d,Microexpression Identification and Categorization Using a Facial Dynamics Map,"Microexpression Identification and Categorization
using a Facial Dynamics Map
Feng Xu, Junping Zhang, James Z. Wang"
b5857b5bd6cb72508a166304f909ddc94afe53e3,SSIG and IRISA at Multimodal Person Discovery,"SSIG and IRISA at Multimodal Person Discovery
Cassio E. dos Santos Jr1, Guillaume Gravier2, William Robson Schwartz1
Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
IRISA & Inria Rennes , CNRS, Rennes, France"
b51e3d59d1bcbc023f39cec233f38510819a2cf9,"Can a biologically-plausible hierarchy effectively replace face detection, alignment, and recognition pipelines?","CBMM Memo No. 003
March 27, 2014
Can a biologically-plausible hierarchy effectively
replace face detection, alignment, and
recognition pipelines?
Qianli Liao1, Joel Z Leibo1, Youssef Mroueh1, Tomaso Poggio1"
b54c477885d53a27039c81f028e710ca54c83f11,Semi-Supervised Kernel Mean Shift Clustering,"Semi-Supervised Kernel Mean Shift Clustering
Saket Anand, Member, IEEE, Sushil Mittal, Member, IEEE, Oncel Tuzel, Member, IEEE,
nd Peter Meer, Fellow, IEEE"
b503f481120e69b62e076dcccf334ee50559451e,Recognition of Facial Action Units with Action Unit Classifiers and an Association Network,"Recognition of Facial Action Units with Action
Unit Classifiers and An Association Network
Junkai Chen1, Zenghai Chen1, Zheru Chi1 and Hong Fu1,2
Department of Electronic and Information Engineering, The Hong Kong Polytechnic
University, Hong Kong
Department of Computer Science, Chu Hai College of Higher Education, Hong Kong"
b55d0c9a022874fb78653a0004998a66f8242cad,Hybrid Facial Representations for Emotion Recognition Woo,"Hybrid Facial Representations
for Emotion Recognition
Woo-han Yun, DoHyung Kim, Chankyu Park, and Jaehong Kim
Automatic  facial  expression  recognition  is  a  widely
studied  problem  in  computer  vision  and  human-robot
interaction.  There  has  been  a  range  of  studies  for
representing  facial  descriptors  for  facial  expression
recognition. Some prominent descriptors were presented
in  the  first  facial  expression  recognition  and  analysis
hallenge  (FERA2011).  In  that  competition,  the  Local
Gabor  Binary  Pattern  Histogram  Sequence  descriptor
showed the most powerful description capability. In this
paper, we introduce hybrid facial representations for facial
expression  recognition,  which  have  more  powerful
description  capability  with  lower  dimensionality.  Our
descriptors consist of a block-based descriptor and a pixel-
ased  descriptor.  The  block-based  descriptor  represents
the  micro-orientation  and  micro-geometric  structure
information. The pixel-based descriptor represents texture
information.  We  validate  our  descriptors  on  two  public"
b216040f110d2549f61e3f5a7261cab128cab361,Weighted Voting of Discriminative Regions for Face Recognition,"IEICE TRANS. INF. & SYST., VOL.E100–D, NO.11 NOVEMBER 2017
LETTER
Weighted Voting of Discriminative Regions for Face Recognition∗
Wenming YANG†, Member, Riqiang GAO†a), and Qingmin LIAO†, Nonmembers
SUMMARY
This paper presents a strategy, Weighted Voting of Dis-
riminative Regions (WVDR), to improve the face recognition perfor-
mance, especially in Small Sample Size (SSS) and occlusion situations.
In WVDR, we extract the discriminative regions according to facial key
points and abandon the rest parts. Considering different regions of face
make different contributions to recognition, we assign weights to regions
for weighted voting. We construct a decision dictionary according to the
recognition results of selected regions in the training phase, and this dic-
tionary is used in a self-defined loss function to obtain weights. The final
identity of test sample is the weighted voting of selected regions. In this
paper, we combine the WVDR strategy with CRC and SRC separately, and
extensive experiments show that our method outperforms the baseline and
some representative algorithms.
key words: discriminative regions, small sample size, occlusion, weighted
strategy, face recognition"
b261439b5cde39ec52d932a222450df085eb5a91,Facial Expression Recognition using Analytical Hierarchy Process,"International Journal of Computer Trends and Technology (IJCTT) – volume 24 Number 2 – June 2015
Facial Expression Recognition using Analytical Hierarchy
Process
MTech Student 1 , Assistant Professor 2  , Department of Computer Science and Engineeringt1, 2, Disha Institute of
Management and Technology, Raipur Chhattisgarh, India1, 2
Vinita Phatnani1, Akash Wanjari2,
its  significant  contribution"
b2b535118c5c4dfcc96f547274cdc05dde629976,Automatic Recognition of Facial Displays of Unfelt Emotions,"JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017
Automatic Recognition of Facial Displays of
Unfelt Emotions
Kaustubh Kulkarni*, Ciprian Adrian Corneanu*, Ikechukwu Ofodile*, Student Member, IEEE, Sergio
Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik,
nd Gholamreza Anbarjafari, Senior Member, IEEE"
b235b4ccd01a204b95f7408bed7a10e080623d2e,Regularizing Flat Latent Variables with Hierarchical Structures,"Regularizing Flat Latent Variables with Hierarchical Structures
Rongcheng Lin(cid:117) , Huayu Li(cid:117) , Xiaojun Quan† , Richang Hong(cid:63) , Zhiang Wu∓ , Yong Ge(cid:117)
(cid:117)UNC Charlotte. Email: {rlin4, hli38,
(cid:63) Hefei University of Technology. Email:
Institute for Infocomm Research. Email:
∓ Nanjing University of Finance and Economics. Email:"
b2c25af8a8e191c000f6a55d5f85cf60794c2709,A novel dimensionality reduction technique based on kernel optimization through graph embedding,"Noname manuscript No.
(will be inserted by the editor)
A Novel Dimensionality Reduction Technique based on
Kernel Optimization Through Graph Embedding
N. Vretos, A. Tefas and I. Pitas
the date of receipt and acceptance should be inserted later"
d904f945c1506e7b51b19c99c632ef13f340ef4c,0 ° 15 ° 30 ° 45 ° 60 ° 75 ° 90 °,"A scalable 3D HOG model for fast object detection and viewpoint estimation
Marco Pedersoli
Tinne Tuytelaars
KU Leuven, ESAT/PSI - iMinds
Kasteelpark Arenberg 10 B-3001 Leuven, Belgium"
d9810786fccee5f5affaef59bc58d2282718af9b,Adaptive Frame Selection for Enhanced Face Recognition in Low-Resolution Videos,"Adaptive Frame Selection for
Enhanced Face Recognition in
Low-Resolution Videos
Raghavender Reddy Jillela
Thesis submitted to the
College of Engineering and Mineral Resources
t West Virginia University
in partial fulfillment of the requirements
for the degree of
Master of Science
Electrical Engineering
Arun Ross, PhD., Chair
Xin Li, PhD.
Donald Adjeroh, PhD.
Lane Department of Computer Science and Electrical Engineering
Morgantown, West Virginia
Keywords: Face Biometrics, Super-Resolution, Optical Flow, Super-Resolution using
Optical Flow, Adaptive Frame Selection, Inter-Frame Motion Parameter, Image Quality,
Image-Level Fusion, Score-Level Fusion
Copyright 2008 Raghavender Reddy Jillela"
d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c,Face Album: Towards automatic photo management based on person identity on mobile phones,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
d930ec59b87004fd172721f6684963e00137745f,Face Pose Estimation using a Tree of Boosted Classifiers,"Face Pose Estimation using a
Tree of Boosted Classifiers
Javier Cruz Mota
Project Assistant: Julien Meynet
Professor: Jean-Philippe Thiran
Signal Processing Institute,
´Ecole Polytechnique F´ed´erale de Lausanne (EPFL)
September 11, 2006"
d9318c7259e394b3060b424eb6feca0f71219179,Face Matching and Retrieval Using Soft Biometrics,"Face Matching and Retrieval Using Soft Biometrics
Unsang Park, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
d9ef1a80738bbdd35655c320761f95ee609b8f49,A Research - Face Recognition by Using Near Set Theory,"Volume 5, Issue 4, 2015                                     ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
A Research - Face Recognition by Using Near Set Theory
Manisha V. Borkar, Bhakti Kurhade
Department of Computer Science and  Engineering
Abha Gaikwad -Patil College of  Engineering, Nagpur, Maharashtra, India"
d9c4b1ca997583047a8721b7dfd9f0ea2efdc42c,Learning Inference Models for Computer Vision,Learning Inference Models for Computer Vision
d9bad7c3c874169e3e0b66a031c8199ec0bc2c1f,"It All Matters: Reporting Accuracy, Inference Time and Power Consumption for Face Emotion Recognition on Embedded Systems","It All Matters:
Reporting Accuracy, Inference Time and Power Consumption
for Face Emotion Recognition on Embedded Systems
Jelena Milosevic
Institute of Telecommunications, TU Wien
Andrew Forembsky
Movidius an Intel Company
Dexmont Pe˜na
Movidius an Intel Company
David Moloney
Movidius an Intel Company
Miroslaw Malek
ALaRI, Faculty of Informatics, USI"
d9327b9621a97244d351b5b93e057f159f24a21e,Laplacian smoothing transform for face recognition,"SCIENCE CHINA
Information Sciences
. RESEARCH PAPERS .
December 2010 Vol. 53 No. 12: 2415–2428
doi: 10.1007/s11432-010-4099-1
Laplacian smoothing transform for face recognition
GU SuiCheng, TAN Ying
& HE XinGui
Key Laboratory of Machine Perception (MOE); Department of Machine Intelligence,
School of Electronics Engineering and Computer Science; Peking University, Beijing 100871, China
Received March 16, 2009; accepted April 1, 2010"
aca232de87c4c61537c730ee59a8f7ebf5ecb14f,Ebgm Vs Subspace Projection for Face Recognition,"EBGM VS SUBSPACE PROJECTION FOR FACE RECOGNITION
Andreas Stergiou, Aristodemos Pnevmatikakis, Lazaros Polymenakos
9.5 Km Markopoulou Avenue, P.O. Box 68, Peania, Athens, Greece
Athens Information Technology
Keywords:
Human-Machine Interfaces, Computer Vision, Face Recognition."
ac6a9f80d850b544a2cbfdde7002ad5e25c05ac6,Privacy-Protected Facial Biometric Verification Using Fuzzy Forest Learning,"Privacy-Protected Facial Biometric Verification
Using Fuzzy Forest Learning
Richard Jiang, Ahmed Bouridane, Senior Member, IEEE, Danny Crookes, Senior Member, IEEE,
M. Emre Celebi, Senior Member, IEEE, and Hua-Liang Wei"
accbd6cd5dd649137a7c57ad6ef99232759f7544,Facial Expression Recognition with Local Binary Patterns and Linear Programming,"FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS
AND LINEAR PROGRAMMING
Xiaoyi Feng1, 2, Matti Pietikäinen1, Abdenour Hadid1
Machine Vision Group, Infotech Oulu and Dept. of Electrical and Information Engineering
P. O. Box 4500 Fin-90014 University of Oulu, Finland
2 College of Electronics and Information, Northwestern Polytechnic University
710072 Xi’an, China
In  this  work,  we  propose  a  novel  approach  to  recognize  facial  expressions  from  static
images. First, the Local Binary Patterns (LBP) are used to efficiently represent the facial
images and then the Linear Programming (LP) technique is adopted to classify the seven
facial  expressions  anger,  disgust,  fear,  happiness,  sadness,  surprise  and  neutral.
Experimental results demonstrate an average recognition accuracy of 93.8% on the JAFFE
database, which outperforms the rates of all other reported methods on the same database.
Introduction
Facial  expression  recognition  from  static
images  is  a  more  challenging  problem
than  from  image  sequences  because  less
information  for  expression  actions
vailable.  However,  information  in  a
single  image  is  sometimes  enough  for"
ac26166857e55fd5c64ae7194a169ff4e473eb8b,Personalized Age Progression with Bi-Level Aging Dictionary Learning,"Personalized Age Progression with Bi-level
Aging Dictionary Learning
Xiangbo Shu, Jinhui Tang, Senior Member, IEEE, Zechao Li, Hanjiang Lai, Liyan Zhang
nd Shuicheng Yan, Fellow, IEEE"
ac559873b288f3ac28ee8a38c0f3710ea3f986d9,Team DEEP-HRI Moments in Time Challenge 2018 Technical Report,"Team DEEP-HRI Moments in Time Challenge 2018 Technical Report
Chao Li, Zhi Hou, Jiaxu Chen, Yingjia Bu, Jiqiang Zhou, Qiaoyong Zhong, Di Xie and Shiliang Pu
Hikvision Research Institute"
ac8e09128e1e48a2eae5fa90f252ada689f6eae7,Leolani: A Reference Machine with a Theory of Mind for Social Communication,"Leolani: a reference machine with a theory of
mind for social communication
Piek Vossen, Selene Baez, Lenka Baj˘ceti´c, and Bram Kraaijeveld
VU University Amsterdam, Computational Lexicology and Terminology Lab, De
Boelelaan 1105, 1081HV Amsterdam, The Netherlands
www.cltl.nl"
ac8441e30833a8e2a96a57c5e6fede5df81794af,Hierarchical Representation Learning for Kinship Verification,"IEEE TRANSACTIONS ON IMAGE PROCESSING
Hierarchical Representation Learning for Kinship
Verification
Naman Kohli, Student Member, IEEE, Mayank Vatsa, Senior Member, IEEE, Richa Singh, Senior Member, IEEE,
Afzel Noore, Senior Member, IEEE, and Angshul Majumdar, Senior Member, IEEE"
ac12ba5bf81de83991210b4cd95b4ad048317681,Combining Deep Facial and Ambient Features for First Impression Estimation,"Combining Deep Facial and Ambient Features
for First Impression Estimation
Furkan G¨urpınar1, Heysem Kaya2, Albert Ali Salah3
Program of Computational Science and Engineering, Bo˘gazi¸ci University,
Bebek, Istanbul, Turkey
Department of Computer Engineering, Namık Kemal University,
C¸ orlu, Tekirda˘g, Turkey
Department of Computer Engineering, Bo˘gazi¸ci University,
Bebek, Istanbul, Turkey"
acb83d68345fe9a6eb9840c6e1ff0e41fa373229,"Kernel methods in computer vision: object localization, clustering, and taxonomy discovery","Kernel Methods in Computer Vision:
Object Localization, Clustering,
nd Taxonomy Discovery
vorgelegt von
Matthew Brian Blaschko, M.S.
us La Jolla
Von der Fakult¨at IV - Elektrotechnik und Informatik
der Technischen Universit¨at Berlin
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
Dr. rer. nat.
genehmigte Dissertation
Promotionsausschuß:
Vorsitzender: Prof. Dr. O. Hellwich
Berichter: Prof. Dr. T. Hofmann
Berichter: Prof. Dr. K.-R. M¨uller
Berichter: Prof. Dr. B. Sch¨olkopf
Tag der wissenschaftlichen Aussprache: 23.03.2009
Berlin 2009"
ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7,Multimodal Caricatural Mirror,"Multimodal Caricatural Mirror
Martin O.(1), Adell J.(2), Huerta A.(3), Kotsia I.(4), Savran A.(5), Sebbe R.(6)
(1)  : Université catholique de Louvain, Belgium
(2)  Universitat Polytecnica de Barcelona, Spain
(3)  Universidad Polytècnica de Madrid, Spain
(4)  Aristotle University of Thessaloniki, Greece
(5)  Bogazici University, Turkey
(6)  Faculté Polytechnique de Mons, Belgium"
adf7ccb81b8515a2d05fd3b4c7ce5adf5377d9be,Apprentissage de métrique appliqué à la détection de changement de page Web et aux attributs relatifs,"Apprentissage de métrique appliqué à la
détection de changement de page Web et
ux attributs relatifs
Marc T. Law* — Nicolas Thome* — Stéphane Gançarski* — Mat-
thieu Cord*
* Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris,
France
RÉSUMÉ. Nous proposons dans cet article un nouveau schéma d’apprentissage de métrique.
Basé sur l’exploitation de contraintes qui impliquent des quadruplets d’images, notre approche
vise à modéliser des relations sémantiques de similarités riches ou complexes. Nous étudions
omment ce schéma peut être utilisé dans des contextes tels que la détection de régions impor-
tantes dans des pages Web ou la reconnaissance à partir d’attributs relatifs."
ada73060c0813d957576be471756fa7190d1e72d,VRPBench: A Vehicle Routing Benchmark Tool,"VRPBench: A Vehicle Routing Benchmark Tool
October 19, 2016
Guilherme A. Zeni1 , Mauro Menzori1, P. S. Martins1, Luis A. A. Meira1"
adfaf01773c8af859faa5a9f40fb3aa9770a8aa7,Large Scale Visual Recognition,"LARGE SCALE VISUAL RECOGNITION
JIA DENG
A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY
RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE
ADVISER: FEI-FEI LI
JUNE 2012"
adf5caca605e07ee40a3b3408f7c7c92a09b0f70,Line-Based PCA and LDA Approaches for Face Recognition,"Line-based PCA and LDA approaches for Face Recognition
Vo Dinh Minh Nhat, and Sungyoung Lee
Kyung Hee University – South of Korea
{vdmnhat,"
adaf2b138094981edd615dbfc4b7787693dbc396,Statistical methods for facial shape-from-shading and recognition,"Statistical Methods For Facial
Shape-from-shading and Recognition
William A. P. Smith
Submitted for the degree of Doctor of Philosophy
Department of Computer Science
0th February 2007"
adf62dfa00748381ac21634ae97710bb80fc2922,ViFaI : A trained video face indexing scheme Harsh,"ViFaI: A trained video face indexing scheme
Harsh Nayyar
Audrey Wei
. Introduction
With the increasing prominence of inexpensive
video recording devices (e.g., digital camcorders and
video recording smartphones),
the average user’s
video collection today is increasing rapidly. With this
development, there arises a natural desire to rapidly
ccess a subset of one’s collection of videos. The solu-
tion to this problem requires an effective video index-
ing scheme. In particular, we must be able to easily
process a video to extract such indexes.
Today, there also exist large sets of labeled (tagged)
face images. One important example is an individual’s
Facebook profile. Such a set of of tagged images of
one’s self, family, friends, and colleagues represents
n extremely valuable potential training set.
In this work, we explore how to leverage the afore-"
bb489e4de6f9b835d70ab46217f11e32887931a2,Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask,"Everything you wanted to know about Deep Learning for Computer Vision but were
fraid to ask
Moacir A. Ponti, Leonardo S. F. Ribeiro, Tiago S. Nazare
ICMC – University of S˜ao Paulo
S˜ao Carlos/SP, 13566-590, Brazil
Tu Bui, John Collomosse
CVSSP – University of Surrey
Guildford, GU2 7XH, UK
Email: [ponti, leonardo.sampaio.ribeiro,
Email: [t.bui,
tools,"
bba281fe9c309afe4e5cc7d61d7cff1413b29558,An unpleasant emotional state reduces working memory capacity: electrophysiological evidence,"Social Cognitive and Affective Neuroscience, 2017, 984–992
doi: 10.1093/scan/nsx030
Advance Access Publication Date: 11 April 2017
Original article
An unpleasant emotional state reduces working
memory capacity: electrophysiological evidence
Jessica S. B. Figueira,1 Leticia Oliveira,1 Mirtes G. Pereira,1 Luiza B. Pacheco,1
Isabela Lobo,1,2 Gabriel C. Motta-Ribeiro,3 and Isabel A. David1
Laboratorio de Neurofisiologia do Comportamento, Departamento de Fisiologia e Farmacologia, Instituto
Biome´dico, Universidade Federal Fluminense, Niteroi, Brazil, 2MograbiLab, Departamento de Psicologia,
Pontifıcia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil, and 3Laboratorio de Engenharia
Pulmonar, Programa de Engenharia Biome´dica, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Correspondence should be addressed to Isabel A. David, Departamento de Fisiologia e Farmacologia, Instituto Biome´dico, Universidade Federal
Fluminense, Rua Hernani Pires de Mello, 101, Niteroi, RJ 24210-130, Brazil. E-mail:"
bb22104d2128e323051fb58a6fe1b3d24a9e9a46,Analyzing Facial Expression by Fusing Manifolds,")=OEC .=?E= -NFHAIIE >O .KIEC
9A;= +D=C1,2 +DK5C +DA1,3 ;E2EC 0KC1,2,3
1IJEJKJA B 1BH=JE 5?EA?A 5EE?= 6=EM=
,AFJ B +FKJAH 5?EA?A 1BH=JE -CEAAHEC =JE= 6=EM= 7ELAHIEJO
IJEJKJA B AJMHEC =JE= 6=EM= 7ELAHIEJO
{wychang,
)>IJH=?J .A=JKHA HAFHAIAJ=JE ?=IIE?=JE =HA JM =H EIIKAI E B=?E=
ANFHAIIE ==OIEI 1 JDA F=IJ IJ AEJDAH DEIJE? H ?= HAFHA
IAJ=JE BH ==OIEI 1 AIIA?A ?= EBH=JE =EO B?KIAI  JDA IK>JA
L=HE=JEI B ANFHAIIEI DEIJE? HAFHAIAJ=JE IJHAIIAI  C>=
JEAI 6 J=A JDA B >JD = HAFHAIAJ=JE EI E JDEI
F=FAH A=HEC EI J ?D=H=?JAHEA C>= ?= EBH=
JE 7EA IA KIEC A=H
EC =FFH=?DAI B JDA HAFHAIAJ=JE =HA >O
= A=HEC JA?DEGKA 6 EJACH=JA JDAIA
ABBA?JELAO = BKIE ?=IIEAH EI MDE?D ?= DAF J AFO IKEJ=>A
?>E=JE MAECDJI B B=?E= ?FAJI J = ANFHAIIE +FHADA
IELA ?F=HEII  B=?E= ANFHAIIE HA?CEJE =HA J JDA
ABBA?JELAAII B KH =CHEJD
A=EEC DK= AJEI F=OI = EFHJ=J HA E DK= ?KE?=JE 6"
bb7f2c5d84797742f1d819ea34d1f4b4f8d7c197,From Images to 3D Shape Attributes.,"TO APPEAR IN TPAMI
From Images to 3D Shape Attributes
David F. Fouhey, Abhinav Gupta, Andrew Zisserman"
bb451dc2420e1a090c4796c19716f93a9ef867c9,A Review on: Automatic Movie Character Annotation by Robust Face-Name Graph Matching,"International Journal of Computer Applications (0975 – 8887)
Volume 104 – No.5, October 2014
A Review on: Automatic Movie Character Annotation
y Robust Face-Name Graph Matching
Bhandare P.S.
Research Scholar
Sinhgad College of
Engineering, korti, Pandharpur,
Solapur University, INDIA
Gadekar P.R.
Assistant Professor
Sinhgad College of
Engineering, korti, Pandharpur,
Solapur University, INDIA
Bandgar Vishal V.
Assistant Professor
College of Engineering (Poly),
Pandharpur, Solapur, INDIA
Bhise Avdhut S.
HOD, Department of"
bbd1eb87c0686fddb838421050007e934b2d74ab,Look at Boundary: A Boundary-Aware Face Alignment Algorithm,"(68	points)	COFW	(29	points)	AFLW	(19	points)	Figure1:Thefirstcolumnshowsthefaceimagesfromdifferentdatasetswithdifferentnumberoflandmarks.Thesecondcolumnillustratestheuniversallydefinedfacialboundariesestimatedbyourmethods.Withthehelpofboundaryinformation,ourapproachachieveshighaccuracylocalisationresultsacrossmultipledatasetsandannotationprotocols,asshowninthethirdcolumn.Differenttofacedetection[45]andrecognition[75],facealignmentidentifiesgeometrystructureofhumanfacewhichcanbeviewedasmodelinghighlystructuredout-put.Eachfaciallandmarkisstronglyassociatedwithawell-definedfacialboundary,e.g.,eyelidandnosebridge.However,comparedtoboundaries,faciallandmarksarenotsowell-defined.Faciallandmarksotherthancornerscanhardlyremainthesamesemanticallocationswithlargeposevariationandocclusion.Besides,differentannotationschemesofexistingdatasetsleadtoadifferentnumberoflandmarks[28,5,66,30](19/29/68/194points)andanno-tationschemeoffuturefacealignmentdatasetscanhardlybedetermined.Webelievethereasoningofauniquefacial"
d7fe2a52d0ad915b78330340a8111e0b5a66513a,Photo-to-Caricature Translation on Faces in the Wild,"Unpaired Photo-to-Caricature Translation on Faces in
the Wild
Ziqiang Zhenga, Chao Wanga, Zhibin Yua, Nan Wanga, Haiyong Zhenga,∗,
Bing Zhenga
No. 238 Songling Road, Department of Electronic Engineering, Ocean University of
China, Qingdao, China"
d708ce7103a992634b1b4e87612815f03ba3ab24,FCVID: Fudan-Columbia Video Dataset,"FCVID: Fudan-Columbia Video Dataset
Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, Shih-Fu Chang
Available at: http://bigvid.fudan.edu.cn/FCVID/
OVERVIEW
Recognizing visual contents in unconstrained videos
has become a very important problem for many ap-
plications, such as Web video search and recommen-
dation, smart content-aware advertising, robotics, etc.
Existing datasets for video content recognition are
either small or do not have reliable manual labels.
In this work, we construct and release a new Inter-
net video dataset called Fudan-Columbia Video Dataset
(FCVID), containing 91,223 Web videos (total duration
,232 hours) annotated manually according to 239
ategories. We believe that the release of FCVID can
stimulate innovative research on this challenging and
important problem.
COLLECTION AND ANNOTATION
The categories in FCVID cover a wide range of topics
like social events (e.g., “tailgate party”), procedural"
d7b6bbb94ac20f5e75893f140ef7e207db7cd483,griffith . edu . au Face Recognition across Pose : A Review,"Griffith Research Online
https://research-repository.griffith.edu.au
Face Recognition across Pose: A
Review
Author
Zhang, Paul, Gao, Yongsheng
Published
Journal Title
Pattern Recognition
https://doi.org/10.1016/j.patcog.2009.04.017
Copyright Statement
Copyright 2009 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance
with the copyright policy of the publisher. Please refer to the journal's website for access to the
definitive, published version.
Downloaded from
http://hdl.handle.net/10072/30193"
d7d166aee5369b79ea2d71a6edd73b7599597aaa,Fast Subspace Clustering Based on the Kronecker Product,"Fast Subspace Clustering Based on the
Kronecker Product
Lei Zhou1, Xiao Bai1, Xianglong Liu1, Jun Zhou2, and Hancock Edwin3
Beihang University 2Grif‌f‌ith University 3University of York, UK"
d79f9ada35e4410cd255db39d7cc557017f8111a,Evaluation of accurate eye corner detection methods for gaze estimation,"Journal of Eye Movement Research
7(3):3, 1-8
Evaluation of accurate eye corner detection methods for gaze
estimation
Jose Javier Bengoechea
Public University of Navarra, Spain
Juan J. Cerrolaza
Childrens National Medical Center, USA
Arantxa Villanueva
Public University of Navarra, Spain
Rafael Cabeza
Public University of Navarra, Spain
Accurate detection of iris center and eye corners appears to be a promising
pproach for low cost gaze estimation.
In this paper we propose novel eye
inner corner detection methods. Appearance and feature based segmentation
pproaches are suggested. All these methods are exhaustively tested on a realistic
dataset containing images of subjects gazing at different points on a screen.
We have demonstrated that a method based on a neural network presents the
est performance even in light changing scenarios."
d03265ea9200a993af857b473c6bf12a095ca178,Multiple deep convolutional neural networks averaging for face alignment,"Multiple deep convolutional neural
networks averaging for face
lignment
Shaohua Zhang
Hua Yang
Zhouping Yin
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 05/28/2015 Terms of Use: http://spiedl.org/terms"
d00c335fbb542bc628642c1db36791eae24e02b7,Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor,"Article
Deep Learning-Based Gaze Detection System for
Automobile Drivers Using a NIR Camera Sensor
Rizwan Ali Naqvi, Muhammad Arsalan, Ganbayar Batchuluun, Hyo Sik Yoon and
Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu,
Seoul 100-715, Korea; (R.A.N.); (M.A.);
(G.B.); (H.S.Y.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Received: 5 January 2018; Accepted: 1 February 2018; Published: 3 February 2018"
d0144d76b8b926d22411d388e7a26506519372eb,Improving Regression Performance with Distributional Losses,"Improving Regression Performance with Distributional Losses
Ehsan Imani 1 Martha White 1"
d0a21f94de312a0ff31657fd103d6b29db823caa,Facial Expression Analysis,"Facial Expression Analysis
Fernando De la Torre and Jeffrey F. Cohn"
d03e4e938bcbc25aa0feb83d8a0830f9cd3eb3ea,Face Recognition with Patterns of Oriented Edge Magnitudes,"Face Recognition with Patterns of Oriented
Edge Magnitudes
Ngoc-Son Vu1,2 and Alice Caplier2
Vesalis Sarl, Clermont Ferrand, France
Gipsa-lab, Grenoble INP, France"
d02c54192dbd0798b43231efe1159d6b4375ad36,3 D Reconstruction and Face Recognition Using Kernel-Based ICA and Neural Networks,"D Reconstruction and Face Recognition Using Kernel-Based
ICA and Neural Networks
Cheng-Jian Lin                  Ya-Tzu Huang
Chi-Yung Lee
Dept. of Electrical                Dept. of CSIE                    Dept. of CSIE
Engineering              Chaoyang University              Nankai Institute of
National University            of Technology                        Technology
of Kaohsiung"
d00787e215bd74d32d80a6c115c4789214da5edb,Faster and Lighter Online Sparse Dictionary Learning,"Faster and Lighter Online
Sparse Dictionary Learning
Project report
By: Shay Ben-Assayag, Omer Dahary
Supervisor: Jeremias Sulam"
be8c517406528edc47c4ec0222e2a603950c2762,Measuring Facial Action,"Harrigan / The new handbook of methods in nonverbal behaviour research 02-harrigan-chap02 Page Proof page 7
7.6.2005
5:45pm
B A S I C R E S E A RC H
M E T H O D S A N D
P RO C E D U R E S"
beb3fd2da7f8f3b0c3ebceaa2150a0e65736d1a2,Adaptive Histogram Equalization and Logarithm Transform with Rescaled Low Frequency DCT Coefficients for Illumination Normalization,"RESEARCH PAPER
International Journal of Recent Trends in Engineering Vol 1, No. 1, May 2009,
Adaptive Histogram Equalization and Logarithm
Transform with Rescaled Low Frequency DCT
Coefficients for Illumination Normalization
Virendra P. Vishwakarma, Sujata Pandey and M. N. Gupta
Department of Computer Science and Engineering
Amity School of Engineering Technology, 580, Bijwasan, New Delhi-110061, India
(Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India)
Email:
illumination  normalization.  The
lighting  conditions.  Most  of  the"
be48b5dcd10ab834cd68d5b2a24187180e2b408f,Constrained Low-Rank Learning Using Least Squares-Based Regularization,"FOR PERSONAL USE ONLY
Constrained Low-rank Learning Using Least
Squares Based Regularization
Ping Li, Member, IEEE, Jun Yu, Member, IEEE, Meng Wang, Member, IEEE,
Luming Zhang, Member, IEEE, Deng Cai, Member, IEEE, and Xuelong Li, Fellow, IEEE,"
be437b53a376085b01ebd0f4c7c6c9e40a4b1a75,Face Recognition and Retrieval Using Cross Age Reference Coding,"ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526
INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
Vol. 4, Issue 5, May 2016
IJIREEICE
Face Recognition and Retrieval Using Cross
Age Reference Coding
Sricharan H S1, Srinidhi K S1, Rajath D N1, Tejas J N1, Chandrakala B M2
BE, DSCE, Bangalore1
Assistant Professor, DSCE, Bangalore2"
be07f2950771d318a78d2b64de340394f7d6b717,3D HMM-based Facial Expression Recognition using Histogram of Oriented Optical Flow,"See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/290192867
D	HMM-based	Facial	Expression	Recognition
using	Histogram	of	Oriented	Optical	Flow
ARTICLE		in		SYNTHESIS	LECTURES	ON	ARTIFICIAL	INTELLIGENCE	AND	MACHINE	LEARNING	·	DECEMBER	2015
DOI:	10.14738/tmlai.36.1661
READS
AUTHORS,	INCLUDING:
Sheng	Kung
Oakland	University
Djamel	Bouchaffra
Institute	of	Electrical	and	Electronics	Engineers
PUBLICATION			0	CITATIONS
57	PUBLICATIONS			402	CITATIONS
SEE	PROFILE
SEE	PROFILE
All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,
letting	you	access	and	read	them	immediately.
Available	from:	Djamel	Bouchaffra
Retrieved	on:	11	February	2016"
beb4546ae95f79235c5f3c0e9cc301b5d6fc9374,A Modular Approach to Facial Expression Recognition,"A Modular Approach to Facial Expression Recognition
Michal Sindlar
Cognitive Artificial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht
Marco Wiering
Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht"
bebea83479a8e1988a7da32584e37bfc463d32d4,Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning,"Discovery of Latent 3D Keypoints via
End-to-end Geometric Reasoning
Supasorn Suwajanakorn∗ Noah Snavely
Jonathan Tompson Mohammad Norouzi
{supasorn, snavely, tompson,
Google AI"
bed06e7ff0b510b4a1762283640b4233de4c18e0,Face Interpretation Problems on Low Quality Images,"Bachelor Project
Czech
Technical
University
in Prague
Faculty of Electrical Engineering
Department of Cybernetics
Face Interpretation Problems on Low
Quality Images
Adéla Šubrtová
Supervisor: Ing. Jan Čech, Ph.D
May 2018"
beab10d1bdb0c95b2f880a81a747f6dd17caa9c2,DeepDeblur: Fast one-step blurry face images restoration,"DeepDeblur: Fast one-step blurry face images restoration
Lingxiao Wang, Yali Li, Shengjin Wang
Tsinghua Unversity"
b331ca23aed90394c05f06701f90afd550131fe3,Double regularized matrix factorization for image classification and clustering,"Zhou et al. EURASIP Journal on Image and Video Processing  (2018) 2018:49
https://doi.org/10.1186/s13640-018-0287-5
EURASIP Journal on Image
nd Video Processing
R ES EAR CH
Double regularized matrix factorization for
image classification and clustering
Wei Zhou1*
, Chengdong Wu2, Jianzhong Wang3,4, Xiaosheng Yu2 and Yugen Yi5
Open Access"
b37f57edab685dba5c23de00e4fa032a3a6e8841,Towards social interaction detection in egocentric photo-streams,"Towards Social Interaction Detection in Egocentric Photo-streams
Maedeh Aghaei, Mariella Dimiccoli, Petia Radeva
University of Barcelona and Computer Vision Centre, Barcelona, Spain
Recent advances in wearable camera technology have
led to novel applications in the field of Preventive Medicine.
For some of them, such as cognitive training of elderly peo-
ple by digital memories and detection of unhealthy social
trends associated to neuropsychological disorders, social in-
teraction are of special interest. Our purpose is to address
this problem in the domain of egocentric photo-streams cap-
tured by a low temporal resolution wearable camera (2fpm).
These cameras are suited for collecting visual information
for long period of time, as required by the aforementioned
pplications. The major difficulties to be handled in this
ontext are the sparsity of observations as well as the unpre-
dictability of camera motion and attention orientation due
to the fact that the camera is worn as part of clothing (see
Fig. 1). Inspired by the theory of F-formation which is a
pattern that people tend to follow when interacting [5], our
proposed approach consists of three steps: multi-faces as-"
b3cb91a08be4117d6efe57251061b62417867de9,Label propagation approach for predicting missing biographic labels in face-based biometric records,"T. Swearingen and A. Ross. ""A label propagation approach for predicting missing biographic labels in
A Label Propagation Approach for
Predicting Missing Biographic Labels
in Face-Based Biometric Records
Thomas Swearingen and Arun Ross"
b340f275518aa5dd2c3663eed951045a5b8b0ab1,Visual inference of human emotion and behaviour,"Visual Inference of Human Emotion and Behaviour
Shaogang Gong
Caifeng Shan
Tao Xiang
Dept of Computer Science
Queen Mary College, London
Dept of Computer Science
Queen Mary College, London
Dept of Computer Science
Queen Mary College, London
England, UK
England, UK
England, UK"
b375db63742f8a67c2a7d663f23774aedccc84e5,Brain-Inspired Classroom Occupancy Monitoring on a Low-Power Mobile Platform,"Brain-inspired Classroom Occupancy
Monitoring on a Low-Power Mobile Platform
Department of Electrical, Electronic and Information Engineering, University of Bologna, Italy
Francesco Conti∗, Antonio Pullini† and Luca Benini∗†
Integrated Systems Laboratory, ETH Zurich, Switzerland"
b3c60b642a1c64699ed069e3740a0edeabf1922c,Max-Margin Object Detection,"Max-Margin Object Detection
Davis E. King"
b3f7c772acc8bc42291e09f7a2b081024a172564,"A novel approach for performance parameter estimation of face recognition based on clustering , shape and corner detection","www.ijmer.com            Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3225-3230                 ISSN: 2249-6645
International Journal of Modern Engineering Research (IJMER)
A novel approach for performance parameter estimation of face
recognition based on clustering, shape and corner detection
.Smt.Minj Salen Kujur , 2.Prof. Prashant Jain,
Department of Electronics & Communication Engineering college Jabalpur"
b3c398da38d529b907b0bac7ec586c81b851708f,Face recognition under varying lighting conditions using self quotient image,"Face Recognition under Varying Lighting Conditions Using Self Quotient
Haitao Wang, 2Stan Z Li, 1Yangsheng Wang
Image
Institute of Automation, Chinese Academy of
Sciences, Beijing, 100080, China,
Email:"
b32cf547a764a4efa475e9c99a72a5db36eeced6,Mimicry of ingroup and outgroup emotional expressions,"UvA-DARE (Digital Academic Repository)
Mimicry of ingroup and outgroup emotional expressions
Sachisthal, M.S.M.; Sauter, D.A.; Fischer, A.H.
Published in:
Comprehensive Results in Social Psychology
0.1080/23743603.2017.1298355
Link to publication
Citation for published version (APA):
Sachisthal, M. S. M., Sauter, D. A., & Fischer, A. H. (2016). Mimicry of ingroup and outgroup emotional
expressions. Comprehensive Results in Social Psychology, 1(1-3), 86-105. DOI:
0.1080/23743603.2017.1298355
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.
Download date: 08 Aug 2018"
b32631f456397462b3530757f3a73a2ccc362342,Discriminant Tensor Dictionary Learning with Neighbor Uncorrelation for Image Set Based Classification,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
df90850f1c153bfab691b985bfe536a5544e438b,"Face Tracking Algorithm Robust to Pose , Illumination and Face Expression Changes : a 3 D Parametric Model Approach","FACE TRACKING ALGORITHM ROBUST TO POSE,
ILLUMINATION AND FACE EXPRESSION CHANGES: A 3D
PARAMETRIC MODEL APPROACH
Marco Anisetti, Valerio Bellandi
University of Milan - Department of Information Technology
via Bramante 65 - 26013, Crema (CR), Italy
Luigi Arnone, Fabrizio Beverina
STMicroelectronics - Advanced System Technology Group
via Olivetti 5 - 20041, Agrate Brianza, Italy
Keywords:
Face tracking, expression changes, FACS, illumination changes."
df8da144a695269e159fb0120bf5355a558f4b02,Face Recognition using PCA and Eigen Face Approach,"International Journal of Computer Applications (0975 – 8887)
International Conference on Recent Trends in engineering & Technology - 2013(ICRTET'2013)
Face Recognition using PCA and Eigen Face
Approach
Anagha A. Shinde
ME EXTC [VLSI & Embedded System]
Sinhgad Academy of Engineering
EXTC Department
Pune, India"
df577a89830be69c1bfb196e925df3055cafc0ed,"Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions","Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions
Bichen Wu, Alvin Wan∗, Xiangyu Yue∗, Peter Jin, Sicheng Zhao,
Noah Golmant, Amir Gholaminejad, Joseph Gonzalez, Kurt Keutzer
UC Berkeley"
df51dfe55912d30fc2f792561e9e0c2b43179089,Face Hallucination Using Linear Models of Coupled Sparse Support,"Face Hallucination using Linear Models of Coupled
Sparse Support
Reuben A. Farrugia, Member, IEEE, and Christine Guillemot, Fellow, IEEE
grid and fuse them to suppress the aliasing caused by under-
sampling [5], [6]. On the other hand, learning based meth-
ods use coupled dictionaries to learn the mapping relations
etween low- and high- resolution image pairs to synthesize
high-resolution images from low-resolution images [4], [7].
The research community has lately focused on the latter
ategory of super-resolution methods, since they can provide
higher quality images and larger magnification factors."
df054fa8ee6bb7d2a50909939d90ef417c73604c,Image Quality-aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild,"Image Quality-Aware Deep Networks Ensemble for Efficient
Gender Recognition in the Wild
Mohamed Selim1, Suraj Sundararajan1, Alain Pagani2 and Didier Stricker1,2
Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany
German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
{mohamed.selim, alain.pagani, s
Keywords:
Gender, Face, Deep Neural Networks, Quality, In the Wild"
df80fed59ffdf751a20af317f265848fe6bfb9c9,Learning Deep Sharable and Structural Detectors for Face Alignment,"Learning Deep Sharable and Structural
Detectors for Face Alignment
Hao Liu, Jiwen Lu, Senior Member, IEEE, Jianjiang Feng, Member, IEEE, and Jie Zhou, Senior Member, IEEE"
dfa80e52b0489bc2585339ad3351626dee1a8395,Human Action Forecasting by Learning Task Grammars,"Human Action Forecasting by Learning Task Grammars
Tengda Han
Jue Wang
Anoop Cherian
Stephen Gould"
dfecaedeaf618041a5498cd3f0942c15302e75c3,A recursive framework for expression recognition: from web images to deep models to game dataset,"Noname manuscript No.
(will be inserted by the editor)
A Recursive Framework for Expression Recognition: From
Web Images to Deep Models to Game Dataset
Wei Li · Christina Tsangouri · Farnaz Abtahi · Zhigang Zhu
Received: date / Accepted: date"
df5fe0c195eea34ddc8d80efedb25f1b9034d07d,Robust modified Active Shape Model for automatic facial landmark annotation of frontal faces,"Robust Modified Active Shape Model for Automatic Facial Landmark
Annotation of Frontal Faces
Keshav Seshadri and Marios Savvides"
df2494da8efa44d70c27abf23f73387318cf1ca8,Supervised Filter Learning for Representation Based Face Recognition,"RESEARCH ARTICLE
Supervised Filter Learning for Representation
Based Face Recognition
Chao Bi1, Lei Zhang2, Miao Qi1, Caixia Zheng1, Yugen Yi3, Jianzhong Wang1*,
Baoxue Zhang4*
College of Computer Science and Information Technology, Northeast Normal University, Changchun,
China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of
Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of
Economics and Business, Beijing, China
11111
* (JW); (BZ)"
df674dc0fc813c2a6d539e892bfc74f9a761fbc8,An Image Mining System for Gender Classification & Age Prediction Based on Facial Features,"IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 6 (May. - Jun. 2013), PP 21-29
www.iosrjournals.org
An Image Mining System for Gender Classification & Age
Prediction Based on Facial Features
1.Ms.Dhanashri Shirkey  , 2Prof.Dr.S.R.Gupta,
M.E(Scholar),Department Computer Science & Engineering, PRMIT & R, Badnera
Asstt.Prof. Department Computer Science & Engineering, PRMIT & R, Badnera"
dad7b8be074d7ea6c3f970bd18884d496cbb0f91,Super-Sparse Regression for Fast Age Estimation from Faces at Test Time,"Super-Sparse Regression for Fast Age
Estimation From Faces at Test Time
Ambra Demontis, Battista Biggio, Giorgio Fumera, and Fabio Roli
Dept. of Electrical and Electronic Engineering, University of Cagliari
Piazza d’Armi, 09123 Cagliari, Italy
WWW home page: http://prag.diee.unica.it"
da4170c862d8ae39861aa193667bfdbdf0ecb363,Multi-Task CNN Model for Attribute Prediction,"Multi-task CNN Model for Attribute Prediction
Abrar H. Abdulnabi, Student Member, IEEE, Gang Wang, Member, IEEE, , Jiwen Lu, Member, IEEE
nd Kui Jia, Member, IEEE"
dac2103843adc40191e48ee7f35b6d86a02ef019,Unsupervised Celebrity Face Naming in Web Videos,"Unsupervised Celebrity Face Naming in Web Videos
Lei Pang and Chong-Wah Ngo"
dae420b776957e6b8cf5fbbacd7bc0ec226b3e2e,Recognizing Emotions in Spontaneous Facial Expressions,"RECOGNIZING EMOTIONS IN SPONTANEOUS FACIAL EXPRESSIONS
Michael Grimm, Dhrubabrata Ghosh Dastidar, and Kristian Kroschel
Institut f¨ur Nachrichtentechnik
Universit¨at Karlsruhe (TH), Germany"
daa02cf195818cbf651ef81941a233727f71591f,Face recognition system on Raspberry Pi,"Face recognition system on Raspberry Pi
Olegs Nikisins, Rihards Fuksis, Arturs Kadikis, Modris Greitans
Institute of Electronics and Computer Science,
4 Dzerbenes Street, Riga, LV 1006, Latvia"
daefac0610fdeff415c2a3f49b47968d84692e87,Multimodal Frame Identification with Multilingual Evaluation,"New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics
Proceedings of NAACL-HLT 2018, pages 1481–1491"
b49affdff167f5d170da18de3efa6fd6a50262a2,Linking Names and Faces : Seeing the Problem in Different Ways,"Author manuscript, published in ""Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France
(2008)"""
b41374f4f31906cf1a73c7adda6c50a78b4eb498,Iterative Gaussianization: From ICA to Random Rotations,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Iterative Gaussianization: From ICA to
Random Rotations
Valero Laparra, Gustavo Camps-Valls, Senior Member, IEEE, and Jesús Malo"
b4ee64022cc3ccd14c7f9d4935c59b16456067d3,Unsupervised Cross-Domain Image Generation,"Unsupervised Cross-Domain Image Generation
Xinru Hua, Davis Rempe, and Haotian Zhang"
b40290a694075868e0daef77303f2c4ca1c43269,Combining Local and Global Information for Hair Shape Modeling,"第 40 卷 第 4 期
014 年 4 月
自 动 化 学 报
ACTA AUTOMATICA SINICA
Vol. 40, No. 4
April, 2014
融合局部与全局信息的头发形状模型
王 楠 1 艾海舟 1
摘 要 头发在人体表观中具有重要作用, 然而, 因为缺少有效的形状模型, 头发分割仍然是一个非常具有挑战性的问题. 本
文提出了一种基于部件的模型, 它对头发形状以及环境变化更加鲁棒. 该模型将局部与全局信息相结合以描述头发的形状. 局
部模型通过一系列算法构建, 包括全局形状词表生成, 词表分类器学习以及参数优化; 而全局模型刻画不同的发型, 采用支持
向量机 (Support vector machine, SVM) 来学习, 它为所有潜在的发型配置部件并确定势函数. 在消费者图片上的实验证明
了本文算法在头发形状多变和复杂环境等条件下的准确性与有效性.
关键词 头发形状建模, 部件模型, 部件配置算法, 支持向量机
引用格式 王楠, 艾海舟. 融合局部与全局信息的头发形状模型. 自动化学报, 2014, 40(4): 615−623
DOI 10.3724/SP.J.1004.2014.00615
Combining Local and Global Information for Hair Shape Modeling
WANG Nan1
AI Hai-Zhou1"
b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4,Autonomous Learning Framework Based on Online Hybrid Classifier for Multi-view Object Detection in Video,"Autonomous Learning Framework Based on Online Hybrid
Classifier for Multi-view Object Detection in Video
Dapeng Luoa*Zhipeng Zenga Longsheng Weib Yongwen Liua Chen Luoc Jun Chenb Nong Sangd
School of Electronic Information and Mechanics, China University of Geosciences, Wuhan, Hubei 430074, China
School of Automation, China University of Geosciences, Wuhan, Hubei 430074, China
Huizhou School Affiliated to Beijing Normal University, Huizhou 516002, China
dNational Key Laboratory of Science and Technology on Multispectral Information Processing, School of Automation, Huazhong
University of Science and Technology, Wuhan, 430074, China"
a285b6edd47f9b8966935878ad4539d270b406d1,Facial Expression Recognition Based on Local Binary Patterns and Kernel Discriminant Isomap,"Sensors 2011, 11, 9573-9588; doi:10.3390/s111009573
OPEN ACCESS
sensors
ISSN 1424-8220
www.mdpi.com/journal/sensors
Article
Facial Expression Recognition Based on Local Binary Patterns
nd Kernel Discriminant Isomap
Xiaoming Zhao 1,* and Shiqing Zhang 2
Department of Computer Science, Taizhou University, Taizhou 317000, China
School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, China;
E-Mail:
*  Author to whom correspondence should be addressed; E-Mail:
Tel.: +86-576-8513-7178; Fax: ++86-576-8513-7178.
Received: 31 August 2011; in revised form: 27 September 2011 / Accepted: 9 October 2011 /
Published: 11 October 2011"
a2359c0f81a7eb032cff1fe45e3b80007facaa2a,Towards Structured Analysis of Broadcast Badminton Videos,"Towards Structured Analysis of Broadcast Badminton Videos
Anurag Ghosh
Suriya Singh
C.V.Jawahar
{anurag.ghosh,
CVIT, KCIS, IIIT Hyderabad"
a27735e4cbb108db4a52ef9033e3a19f4dc0e5fa,Intention from Motion,"Intention from Motion
Andrea Zunino, Jacopo Cavazza, Atesh Koul, Andrea Cavallo, Cristina Becchio and Vittorio Murino"
a2fbaa0b849ecc74f34ebb36d1442d63212b29d2,An Efficient Approach to Face Recognition of Surgically Altered Images,"Volume 5, Issue 6, June 2015                                           ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
An Efficient Approach to Face Recognition of Surgically
Altered Images
Er. Supriya, Er. Sukhpreet Kaur
Department of computer science and engineering
SUS college of Engineering and Technology,
Tangori, District, Mohali, Punjab, India"
a50b4d404576695be7cd4194a064f0602806f3c4,Efficiently Estimating Facial Expression and Illumination in Appearance-based Tracking,"In Proceedings of BMVC, Edimburgh, UK, September 2006
Efficiently estimating facial expression and
illumination in appearance-based tracking
Jos´e M. Buenaposada†, Enrique Mu˜noz‡, Luis Baumela‡
ESCET, U. Rey Juan Carlos
C/ Tulip´an, s/n
8933 M´ostoles, Spain
Facultad Inform´atica, UPM
Campus de Montegancedo s/n
8660 Boadilla del Monte, Spain
http://www.dia.fi.upm.es/~pcr"
a5e5094a1e052fa44f539b0d62b54ef03c78bf6a,Detection without Recognition for Redaction,"Detection without Recognition for Redaction
Shagan Sah1, Ram Longman1, Ameya Shringi1, Robert Loce2, Majid Rabbani1, and Raymond Ptucha1
Rochester Institute of Technology - 83 Lomb Memorial Drive, Rochester, NY USA, 14623
Conduent, Conduent Labs - US, 800 Phillips Rd, MS128, Webster, NY USA, 14580
Email:"
a56c1331750bf3ac33ee07004e083310a1e63ddc,Efficient Point-to-Subspace Query in ℓ1 with Application to Robust Object Instance Recognition,"Vol. xx, pp. x
(cid:13) xxxx Society for Industrial and Applied Mathematics
Ef‌f‌icient Point-to-Subspace Query in (cid:96)1 with Application to Robust Object
Instance Recognition
Ju Sun∗, Yuqian Zhang†, and John Wright‡"
a54e0f2983e0b5af6eaafd4d3467b655a3de52f4,Face Recognition Using Convolution Filters and Neural Networks,"Face Recognition Using Convolution Filters and
Neural Networks
V. Rihani
Head, Dept. of E&E,PEC
Sec-12, Chandigarh – 160012
Amit Bhandari
Department of CSE & IT, PEC
Sec-12, Chandigarh – 160012
C.P. Singh
Physics Department, CFSL,
Sec-36, Chandigarh - 160036
to:  (a)
potential  method"
a5625cfe16d72bd00e987857d68eb4d8fc3ce4fb,VFSC: A Very Fast Sparse Clustering to Cluster Faces from Videos,"VFSC: A Very Fast Sparse Clustering to Cluster Faces
from Videos
Dinh-Luan Nguyen, Minh-Triet Tran
University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam"
a546fd229f99d7fe3cf634234e04bae920a2ec33,Fast Fight Detection,"RESEARCH ARTICLE
Fast Fight Detection
Ismael Serrano Gracia1*, Oscar Deniz Suarez1*, Gloria Bueno Garcia1*, Tae-Kyun Kim2
Department of Systems Engineering and Automation, E.T.S.I. Industriales, Ciudad Real, Castilla-La
Mancha, Spain, 2 Department of Electrical and Electronic Engineering, Imperial College, London, UK
* (ISG); (ODS); (GBG)"
a5ae7fe2bb268adf0c1cd8e3377f478fca5e4529,Exemplar Hidden Markov Models for classification of facial expressions in videos,"Exemplar Hidden Markov Models for Classification of Facial Expressions in
Videos
Univ. of California San Diego
Univ. of Canberra, Australian
Univ. of California San Diego
Abhinav Dhall
Marian Bartlett
Karan Sikka
California, USA
National University
Australia
California, USA"
a55efc4a6f273c5895b5e4c5009eabf8e5ed0d6a,"Continuous Head Movement Estimator for Driver Assistance: Issues, Algorithms, and On-Road Evaluations","Continuous Head Movement Estimator for
Driver Assistance: Issues, Algorithms,
nd On-Road Evaluations
Ashish Tawari, Student Member, IEEE, Sujitha Martin, Student Member, IEEE, and
Mohan Manubhai Trivedi, Fellow, IEEE"
a51d5c2f8db48a42446cc4f1718c75ac9303cb7a,Cross-validating Image Description Datasets and Evaluation Metrics,"Cross-validating Image Description Datasets and Evaluation Metrics
Josiah Wang and Robert Gaizauskas
Department of Computer Science
University of Sheffield, UK
{j.k.wang,"
a52d9e9daf2cb26b31bf2902f78774bd31c0dd88,Understanding and Designing Convolutional Networks for Local Recognition Problems,"Understanding and Designing Convolutional Networks
for Local Recognition Problems
Jonathan Long
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2016-97
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-97.html
May 13, 2016"
a5a44a32a91474f00a3cda671a802e87c899fbb4,Moments in Time Dataset: one million videos for event understanding,"Moments in Time Dataset: one million
videos for event understanding
Mathew Monfort, Bolei Zhou, Sarah Adel Bargal,
Alex Andonian, Tom Yan, Kandan Ramakrishnan, Lisa Brown,
Quanfu Fan, Dan Gutfruend, Carl Vondrick, Aude Oliva"
bd0e100a91ff179ee5c1d3383c75c85eddc81723,Okutama-Action: An Aerial View Video Dataset for Concurrent Human Action Detection,"Okutama-Action: An Aerial View Video Dataset for Concurrent Human Action
Detection∗
Mohammadamin Barekatain1, Miquel Mart´ı2,3, Hsueh-Fu Shih4, Samuel Murray2, Kotaro Nakayama5,
Yutaka Matsuo5, Helmut Prendinger6
Technical University of Munich, Munich, 2KTH Royal Institute of Technology, Stockholm,
Polytechnic University of Catalonia, Barcelona, 4National Taiwan University, Taipei, 5University of
Tokyo, Tokyo, 6National Institute of Informatics, Tokyo"
bd07d1f68486052b7e4429dccecdb8deab1924db,Face representation under different illumination conditions,
bd13f50b8997d0733169ceba39b6eb1bda3eb1aa,Occlusion Coherence: Detecting and Localizing Occluded Faces,"Occlusion Coherence: Detecting and Localizing Occluded Faces
Golnaz Ghiasi, Charless C. Fowlkes
University of California at Irvine, Irvine, CA 92697"
bd78a853df61d03b7133aea58e45cd27d464c3cf,A Sparse Representation Approach to Facial Expression Recognition Based on LBP plus LFDA,"A Sparse Representation Approach to Facial
Expression Recognition Based on LBP plus LFDA
Ritesh Bora, V.A.Chakkarvar
Computer science and Engineering Department,
Government College of Engineering, Aurangabad [Autonomous]
Station Road, Aurangabad, Maharashtra, India."
bd2d7c7f0145028e85c102fe52655c2b6c26aeb5,Attribute-based People Search: Lessons Learnt from a Practical Surveillance System,"Attribute-based People Search: Lessons Learnt from a
Practical Surveillance System
Rogerio Feris
IBM Watson
http://rogerioferis.com
Russel Bobbitt
IBM Watson
Lisa Brown
IBM Watson
Sharath Pankanti
IBM Watson"
bdbba95e5abc543981fb557f21e3e6551a563b45,Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks,"International Journal of Computational Intelligence and Applications
Vol. 17, No. 2 (2018) 1850008 (15 pages)
#.c The Author(s)
DOI: 10.1142/S1469026818500086
Speeding up the Hyperparameter Optimization of Deep
Convolutional Neural Networks
Tobias Hinz*, Nicolas Navarro-Guerrero†, Sven Magg‡
nd Stefan Wermter§
Knowledge Technology, Department of Informatics
Universit€at Hamburg
Vogt-K€olln-Str. 30, Hamburg 22527, Germany
Received 15 August 2017
Accepted 23 March 2018
Published 18 June 2018
Most learning algorithms require the practitioner to manually set the values of many hyper-
parameters before the learning process can begin. However, with modern algorithms, the
evaluation of a given hyperparameter setting can take a considerable amount of time and the
search space is often very high-dimensional. We suggest using a lower-dimensional represen-
tation of the original data to quickly identify promising areas in the hyperparameter space. This
information can then be used to initialize the optimization algorithm for the original, higher-"
d1dfdc107fa5f2c4820570e369cda10ab1661b87,Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation,"Super SloMo: High Quality Estimation of Multiple Intermediate Frames
for Video Interpolation
Huaizu Jiang1
Deqing Sun2
Varun Jampani2
Ming-Hsuan Yang3,2
Erik Learned-Miller1
Jan Kautz2
UMass Amherst
NVIDIA 3UC Merced"
d1dae2993bdbb2667d1439ff538ac928c0a593dc,Gamma Correction Technique Based Feature Extraction for Face Recognition System,"International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013
Gamma Correction Technique Based Feature Extraction
for Face Recognition System
B Vinothkumar
P Kumar
Electronics and Communication Engineering
K S Rangasamy College of Technology
Electronics and Communication Engineering
K S Rangasamy College of Technology
Tamilnadu, India
Tamilnadu, India"
d1f58798db460996501f224fff6cceada08f59f9,Transferrable Representations for Visual Recognition,"Transferrable Representations for Visual Recognition
Jeffrey Donahue
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2017-106
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-106.html
May 14, 2017"
d1a43737ca8be02d65684cf64ab2331f66947207,IJB–S: IARPA Janus Surveillance Video Benchmark,"IJB–S: IARPA Janus Surveillance Video Benchmark (cid:3)
Nathan D. Kalka y
Stephen Elliott z
Brianna Maze y
Kaleb Hebert y
James A. Duncan y
Julia Bryan z
Kevin O’Connor z
Anil K. Jain x"
d122d66c51606a8157a461b9d7eb8b6af3d819b0,Automated Recognition of Facial Expressions,"Vol-3 Issue-4 2017
IJARIIE-ISSN(O)-2395-4396
AUTOMATED RECOGNITION OF FACIAL
EXPRESSIONS
Pavan S. Ahire, PG Student, Dept. of Computer Engineering, METs Institute of Engineering,
Prof. R. P. Dahake, Dept. of Computer Engineering, METs Institute of  Engineering,
Adgoan,Nashik,Maharashtra.
Adgoan, Nashik, Maharashtra."
d142e74c6a7457e77237cf2a3ded4e20f8894e1a,Human Emotion Estimation from Eeg and Face Using Statistical Features and Svm,"HUMAN EMOTION ESTIMATION FROM
EEG AND FACE USING STATISTICAL
FEATURES AND SVM
Strahil Sokolov1, Yuliyan Velchev2, Svetla Radeva3 and Dimitar Radev4
,3Department of Information Technologies,
University of telecommunications and post, Sofia, Bulgaria
2,4Department of Telecommunications,
University of telecommunications and post, Sofia, Bulgaria"
d1082eff91e8009bf2ce933ac87649c686205195,Pruning of Error Correcting Output Codes by optimization of accuracy–diversity trade off,"(will be inserted by the editor)
Pruning of Error Correcting Output Codes by
Optimization of Accuracy-Diversity Trade off
S¨ureyya ¨Oz¨o˘g¨ur Aky¨uz · Terry
Windeatt · Raymond Smith
Received: date / Accepted: date"
d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576,Neural Face Editing with Intrinsic Image Disentangling,"Neural Face Editing with Intrinsic Image Disentangling
Zhixin Shu1 Ersin Yumer2 Sunil Hadap2 Kalyan Sunkavalli2 Eli Shechtman 2 Dimitris Samaras1,3
Stony Brook University 2Adobe Research 3 CentraleSup´elec, Universit´e Paris-Saclay"
d69df51cff3d6b9b0625acdcbea27cd2bbf4b9c0,Robust Remote Heart Rate Determination for E-Rehabilitation - A Method that Overcomes Motion and Intensity Artefacts,
d61578468d267c2d50672077918c1cda9b91429b,Face Image Retrieval Using Pose Specific Set Sparse Feature Representation,"Abdul Afeef N et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.9, September- 2014, pg. 314-323
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IJCSMC, Vol. 3, Issue. 9, September 2014, pg.314 – 323
RESEARCH ARTICLE
Face Image Retrieval Using Pose Specific
Set Sparse Feature Representation
Department of Computer Science, Viswajyothi College of Engineering and Technology Kerala, India
Assistant Professor of Computer Science, Viswajyothi College of Engineering and Technology Kerala, India
Abdul Afeef N1, Sebastian George2"
d687fa99586a9ad229284229f20a157ba2d41aea,Face Recognition Based on Wavelet Packet Coefficients and Radial Basis Function Neural Networks,"Journal of Intelligent Learning Systems and Applications, 2013, 5, 115-122
http://dx.doi.org/10.4236/jilsa.2013.52013 Published Online May 2013 (http://www.scirp.org/journal/jilsa)
Face Recognition Based on Wavelet Packet Coefficients
nd Radial Basis Function Neural Networks
Thangairulappan Kathirvalavakumar1*, Jeyasingh Jebakumari Beulah Vasanthi2
Department of Computer Science, Virudhunagar Hindu Nadars’ Senthikumara Nadar College, Virudhunagar, India; 2Department of
Computer Applications, Ayya Nadar Janaki Ammal College, Sivakasi, India.
Email:
Received December 12th, 2012; revised April 19th, 2013; accepted April 26th, 2013
Copyright © 2013 Thangairulappan Kathirvalavakumar, Jeyasingh Jebakumari Beulah Vasanthi. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any me-
dium, provided the original work is properly cited."
d6a9ea9b40a7377c91c705f4c7f206a669a9eea2,Visual Representations for Fine-grained Categorization,"Visual Representations for Fine-grained
Categorization
Ning Zhang
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2015-244
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-244.html
December 17, 2015"
d671a210990f67eba9b2d3dda8c2cb91575b4a7a,Social Environment Description from Data Collected with a Wearable Device,"Journal of Machine Learning Research ()
Submitted ; Published
Social Environment Description from Data Collected with a
Wearable Device
Pierluigi Casale
Computer Vision Center
Autonomous University of Barcelona
Barcelona, Spain
Editor: Radeva Petia, Pujol Oriol"
d65b82b862cf1dbba3dee6541358f69849004f30,2.5D Elastic graph matching,"Contents lists available at ScienceDirect
j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c v i u
.5D Elastic graph matching
Stefanos Zafeiriou
, Maria Petrou
Imperial College, Department of Electrical and Electronic Engineering, London, UK
r t i c l e
i n f o
b s t r a c t
Article history:
Received 29 November 2009
Accepted 1 December 2010
Available online 17 March 2011
Keywords:
Elastic graph matching
D face recognition
Multiscale mathematical morphology
Geodesic distances
In this paper, we propose novel elastic graph matching (EGM) algorithms for face recognition assisted by
the availability of 3D facial geometry. More specifically, we conceptually extend the EGM algorithm in"
d6102a7ddb19a185019fd2112d2f29d9258f6dec,Fashion Style Generator,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
GeneratorPatch……Global+…lstyle(2)lstyle(1)lcontent(1)lcontent(2)φθϕsϕcDiscriminatorDGXX(1)X(2)(a) Framework of the training stage(b) Examples of fashion style generationFigure1:Fashionstylegeneratorframeworkoverview.TheinputXconsistsofasetofclothingpatchesX(1)andfullclothingimagesX(2).Thesystemconsistsoftwocomponents:animagetransfor-mationnetworkGservedasfashionstylegenerator,andadiscrimi-natornetworkDcalculatesbothglobalandpatchbasedcontentandstylelosses.Gisaconvolutionalencoderdecodernetworkparam-eterizedbyweights(cid:18).Sixgeneratedshirtswithdifferentstylesbyourmethodareshownasexamples.(Wehighlyrecommendtozoominallthefigureswithcolorversionformoredetails.)recentneuralstyletransferworks[Gatysetal.,2015].Tak-ingVanGogh’s“StarryNight”astheexamplestyleimage,styleisbetweenthelow-levelcolor/texture(e.g.,blueandyellowcolor,roughorsmoothertexture)andthehigh-levelobjects(e.g.,houseandmountain).“Style”isarelativelyab-stractconcept.Fashionstylegenerationhasatleasttwoprac-ticalusages.Designerscouldquicklyseehowtheclothinglookslikeinagivenstyletofacilitatethedesignprocessing.Shopperscouldsynthesizetheclothingimagewiththeidealstyleandapplyclothingretrievaltools[Jiangetal.,2016b]tosearchthesimilaritems.Fashionstylegenerationisrelatedtoexistingneuralstyletransferworks[Gatysetal.,2015;LiandWand,2016a;EfrosandFreeman,2001],buthasitsownchallenges.Infashionstylegeneration,thesyntheticclothingimageshould"
d6bfa9026a563ca109d088bdb0252ccf33b76bc6,Unsupervised Temporal Segmentation of Facial Behaviour,"Unsupervised Temporal Segmentation of Facial Behaviour
Abhishek Kar
Advisors: Dr. Amitabha Mukerjee & Dr. Prithwijit Guha
Department of Computer Science and Engineering, IIT Kanpur"
d6c7092111a8619ed7a6b01b00c5f75949f137bf,A Novel Feature Extraction Technique for Facial Expression Recognition,"A Novel Feature Extraction Technique for Facial Expression
Recognition
*Mohammad Shahidul Islam1,  Surapong Auwatanamongkol2
1 Department of Computer Science, School of Applied Statistics,
National Institute of Development Administration,
Bangkok, 10240, Thailand
Department of Computer Science, School of Applied Statistics,
National Institute of Development Administration,
Bangkok, 10240, Thailand"
bcee40c25e8819955263b89a433c735f82755a03,Biologically Inspired Vision for Human-Robot Interaction,"Biologically inspired vision for human-robot
interaction
M. Saleiro, M. Farrajota, K. Terzi´c, S. Krishna, J.M.F. Rodrigues, and J.M.H.
du Buf
Vision Laboratory, LARSyS, University of the Algarve, 8005-139 Faro, Portugal,
{masaleiro, mafarrajota, kterzic, jrodrig,"
bc6de183cd8b2baeebafeefcf40be88468b04b74,Age Group Recognition using Human Facial Images,"Age Group Recognition using Human Facial Images
International Journal of Computer Applications (0975 – 8887)
Volume 126 – No.13, September 2015
Shailesh S. Kulkarni
Dept. of Electronics and Telecommunication
Government College of Engineering,
Aurangabad, Maharashtra, India"
bcf19b964e7d1134d00332cf1acf1ee6184aff00,Trajectory-Set Feature for Action Recognition,"IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017
LETTER
Trajectory-Set Feature for Action Recognition
Kenji MATSUI†, Nonmember, Toru TAMAKI†a), Member, Bisser RAYTCHEV†, Nonmember,
nd Kazufumi KANEDA†, Member
SUMMARY We propose a feature for action recognition called
Trajectory-Set (TS), on top of the improved Dense Trajectory (iDT).
The TS feature encodes only trajectories around densely sampled inter-
est points, without any appearance features. Experimental results on the
UCF50 action dataset demonstrates that TS is comparable to state-of-the-
rts, and outperforms iDT; the accuracy of 95.0%, compared to 91.7% by
key words: action recognition, trajectory, improved Dense Trajectory
the two-stream CNN [2] that uses a single frame and a opti-
al flow stack. In their paper stacking trajectories was also
reported but did not perform well, probably the sparseness
of trajectories does not fit to CNN architectures. In contrast,
we take a hand-crafted approach that can be fused later with
CNN outputs.
Introduction
Action recognition has been well studied in the computer"
bcc172a1051be261afacdd5313619881cbe0f676,A fast face clustering method for indexing applications on mobile phones,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
bc811a66855aae130ca78cd0016fd820db1603ec,Towards three-dimensional face recognition in the real Huibin,"Towards three-dimensional face recognition in the real
Huibin Li
To cite this version:
Huibin Li. Towards three-dimensional face recognition in the real. Other. Ecole Centrale de
Lyon, 2013. English. <NNT : 2013ECDL0037>. <tel-00998798>
HAL Id: tel-00998798
https://tel.archives-ouvertes.fr/tel-00998798
Submitted on 2 Jun 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de
recherche fran¸cais ou ´etrangers, des laboratoires
publics ou priv´es."
bc98027b331c090448492eb9e0b9721e812fac84,"Face Representation Using Combined Method of Gabor Filters, Wavelet Transformation and DCV and Recognition Using RBF","Journal of Intelligent Learning Systems and Applications, 2012, 4, 266-273
http://dx.doi.org/10.4236/jilsa.2012.44027 Published Online November 2012 (http://www.SciRP.org/journal/jilsa)
Face Representation Using Combined Method of Gabor
Filters, Wavelet Transformation and DCV and Recognition
Using RBF
Kathirvalavakumar Thangairulappan1*, Jebakumari Beulah Vasanthi Jeyasingh2
Department of Computer Science, VHNSN College, Virudhunagar, India; 2Department of Computer Applications, ANJA College,
Sivakasi, India.
Email:
Received April 27th, 2012; revised July 19th, 2012; accepted July 26th, 2012"
bc9af4c2c22a82d2c84ef7c7fcc69073c19b30ab,MoCoGAN: Decomposing Motion and Content for Video Generation,"MoCoGAN: Decomposing Motion and Content for Video Generation
Sergey Tulyakov,
Snap Research
Ming-Yu Liu, Xiaodong Yang,
NVIDIA
Jan Kautz"
bcac3a870501c5510df80c2a5631f371f2f6f74a,Structured Face Hallucination,"#1387
CVPR 2013 Submission #1387. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
#1387
Structured Face Hallucination
Anonymous CVPR submission
Paper ID 1387"
ae8d5be3caea59a21221f02ef04d49a86cb80191,Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks,"Published as a conference paper at ICLR 2018
SKIP RNN: LEARNING TO SKIP STATE UPDATES IN
RECURRENT NEURAL NETWORKS
V´ıctor Campos∗†, Brendan Jou‡, Xavier Gir´o-i-Nieto§, Jordi Torres†, Shih-Fu ChangΓ
Barcelona Supercomputing Center, ‡Google Inc,
§Universitat Polit`ecnica de Catalunya, ΓColumbia University
{victor.campos,"
ae2cf545565c157813798910401e1da5dc8a6199,Cascade of Boolean detector combinations,"Mahkonen et al. EURASIP Journal on Image and Video
Processing  (2018) 2018:61
https://doi.org/10.1186/s13640-018-0303-9
EURASIP Journal on Image
nd Video Processing
RESEARCH
Open Access
Cascade of Boolean detector
ombinations
Katariina Mahkonen*
, Tuomas Virtanen and Joni Kämäräinen"
aebb9649bc38e878baef082b518fa68f5cda23a5,A Multi - scale TVQI - based Illumination Normalization Model,
aeeea6eec2f063c006c13be865cec0c350244e5b,"Induced Disgust, Happiness and Surprise: an Addition to the MMI Facial Expression Database","Induced Disgust, Happiness and Surprise: an Addition to the MMI Facial
Expression Database
Michel F. Valstar, Maja Pantic
Imperial College London / Twente University
Department of Computing / EEMCS
80 Queen’s Gate / Drienerlolaan 5
London / Twente"
ae9257f3be9f815db8d72819332372ac59c1316b,Deciphering the enigmatic face: the importance of facial dynamics in interpreting subtle facial expressions.,"P SY CH O L O GIC AL SC I E NC E
Research Article
Deciphering the Enigmatic Face
The Importance of Facial Dynamics in Interpreting Subtle
Facial Expressions
Zara Ambadar,1 Jonathan W. Schooler,2 and Jeffrey F. Cohn1
University of Pittsburgh and 2University of British Columbia, Vancouver, British Columbia, Canada"
ae89b7748d25878c4dc17bdaa39dd63e9d442a0d,On evaluating face tracks in movies,"On evaluating face tracks in movies
Alexey Ozerov, Jean-Ronan Vigouroux, Louis Chevallier, Patrick Pérez
To cite this version:
Alexey Ozerov, Jean-Ronan Vigouroux, Louis Chevallier, Patrick Pérez. On evaluating face tracks
in movies. IEEE International Conference on Image Processing (ICIP 2013), Sep 2013, Melbourne,
Australia. 2013. <hal-00870059>
HAL Id: hal-00870059
https://hal.inria.fr/hal-00870059
Submitted on 4 Oct 2013
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
aeff403079022683b233decda556a6aee3225065,DeepFace: Face Generation using Deep Learning,"DeepFace: Face Generation using Deep Learning
Hardie Cate
Fahim Dalvi
Zeshan Hussain"
ae753fd46a744725424690d22d0d00fb05e53350,Describing Clothing by Semantic Attributes,"Describing Clothing by Semantic Attributes
Anonymous ECCV submission
Paper ID 727"
ae85c822c6aec8b0f67762c625a73a5d08f5060d,Retrieving Similar Styles to Parse Clothing,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2353624
IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. M, NO. N, MONTH YEAR
Retrieving Similar Styles to Parse Clothing
Kota Yamaguchi, Member, IEEE, M. Hadi Kiapour, Student Member, IEEE,
Luis E. Ortiz, and Tamara L. Berg, Member, IEEE"
d861c658db2fd03558f44c265c328b53e492383a,Automated face extraction and normalization of 3D Mesh Data,"Automated Face Extraction and Normalization of 3D Mesh Data
Jia Wu1, Raymond Tse2, Linda G. Shapiro1"
d8f0bda19a345fac81a1d560d7db73f2b4868836,Online Activity Understanding and Labeling in Natural Videos,"UNIVERSITY OF CALIFORNIA
RIVERSIDE
Online Activity Understanding and Labeling in Natural Videos
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Computer Science
Md Mahmudul Hasan
August 2016
Dissertation Committee:
Dr. Amit K. Roy-Chowdhury, Chairperson
Dr. Eamonn Keogh
Dr. Evangelos Christidis
Dr. Christian Shelton"
d82b93f848d5442f82154a6011d26df8a9cd00e7,Neural Network Based Age Classification Using Linear Wavelet Transforms,"NEURAL NETWORK BASED AGE CLASSIFICATION USING
LINEAR WAVELET TRANSFORMS
NITHYASHRI JAYARAMAN1 & G.KULANTHAIVEL2
Department of Computer Science & Engineering,
Sathyabama University Old Mamallapuram Road, Chennai, India
Electronics Engineering, National Institute of  Technical Teachers
Training & Research, Taramani, Chennai, India
E-mail :"
d83d2fb5403c823287f5889b44c1971f049a1c93,Introducing the sick face,"Motiv Emot
DOI 10.1007/s11031-013-9353-6
O R I G I N A L P A P E R
Introducing the sick face
Sherri C. Widen • Joseph T. Pochedly •
Kerrie Pieloch • James A. Russell
Ó Springer Science+Business Media New York 2013"
d8b568392970b68794a55c090c4dd2d7f90909d2,PDA Face Recognition System Using Advanced Correlation Filters,"PDA Face  Recognition  System
Using  Advanced  Correlation
Filters
Chee  Kiat  Ng
Advisor:  Prof.  Khosla/Reviere"
d83ae5926b05894fcda0bc89bdc621e4f21272da,Frugal Forests: Learning a Dynamic and Cost Sensitive Feature Extraction Policy for Anytime Activity Classification,"The Thesis committee for Joshua Allen Kelle certifies that this is the approved
version of the following thesis:
Frugal Forests: Learning a Dynamic and Cost Sensitive
Feature Extraction Policy for Anytime Activity Classification
APPROVED BY
SUPERVISING COMMITTEE:
Kristen Grauman, Supervisor
Peter Stone"
d86fabd4498c8feaed80ec342d254fb877fb92f5,Region-Object Relevance-Guided Visual Relationship Detection,"Y. GOUTSU: REGION-OBJECT RELEVANCE-GUIDED VRD
Region-Object Relevance-Guided
Visual Relationship Detection
Yusuke Goutsu
National Institute of Informatics
Tokyo, Japan"
d850aff9d10a01ad5f1d8a1b489fbb3998d0d80e,Recognizing and Segmenting Objects in the Presence of Occlusion and Clutter,"UNIVERSITY OF CALIFORNIA,
IRVINE
Recognizing and Segmenting Objects in the Presence of Occlusion and Clutter
DISSERTATION
submitted in partial satisfaction of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
in Computer Science
Golnaz Ghiasi
Dissertation Committee:
Professor Charless Fowlkes, Chair
Professor Deva Ramanan
Professor Alexander Ihler"
d89cfed36ce8ffdb2097c2ba2dac3e2b2501100d,Robust Face Recognition via Multimodal Deep Face Representation,"Robust Face Recognition via Multimodal Deep
Face Representation
Changxing Ding, Student Member, IEEE, Dacheng Tao, Fellow, IEEE"
ab8f9a6bd8f582501c6b41c0e7179546e21c5e91,Nonparametric Face Verification Using a Novel Face Representation,"Nonparametric Face Verification Using a Novel
Face Representation
Hae Jong Seo, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE,"
ab58a7db32683aea9281c188c756ddf969b4cdbd,Efficient Solvers for Sparse Subspace Clustering,"Efficient Solvers for Sparse Subspace Clustering
Farhad Pourkamali-Anaraki and Stephen Becker"
aba770a7c45e82b2f9de6ea2a12738722566a149,Face Recognition in the Scrambled Domain via Salience-Aware Ensembles of Many Kernels,"Face Recognition in the Scrambled Domain via Salience-Aware
Ensembles of Many Kernels
Jiang, R., Al-Maadeed, S., Bouridane, A., Crookes, D., & Celebi, M. E. (2016). Face Recognition in the
Scrambled Domain via Salience-Aware Ensembles of Many Kernels. IEEE Transactions on Information
Forensics and Security, 11(8), 1807-1817. DOI: 10.1109/TIFS.2016.2555792
Published in:
Document Version:
Peer reviewed version
Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal
Publisher rights
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works.
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.
Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to"
ab0f9bc35b777eaefff735cb0dd0663f0c34ad31,Semi-supervised Learning of Geospatial Objects through Multi-modal Data Integration,"Semi-Supervised Learning of Geospatial Objects
Through Multi-Modal Data Integration
Yi Yang and Shawn Newsam
Electrical Engineering and Computer Science
University of California, Merced, CA, 95343
Email:"
ab989225a55a2ddcd3b60a99672e78e4373c0df1,"Sample, computation vs storage tradeoffs for classification using tensor subspace models","Sample, Computation vs Storage Tradeoffs for
Classification Using Tensor Subspace Models
Mohammadhossein Chaghazardi and Shuchin Aeron, Senior Member, IEEE"
ab6776f500ed1ab23b7789599f3a6153cdac84f7,A Survey on Various Facial Expression Techniques,"International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015                                                                                                   1212
ISSN 2229-5518
A Survey on Various Facial Expression
Techniques
Md. Sarfaraz Jalil, Joy Bhattacharya"
ab1719f573a6c121d7d7da5053fe5f12de0182e7,Combining visual recognition and computational linguistics : linguistic knowledge for visual recognition and natural language descriptions of visual content,"Combining Visual Recognition
nd Computational Linguistics
Linguistic Knowledge for Visual Recognition
nd Natural Language Descriptions
of Visual Content
Thesis for obtaining the title of
Doctor of Engineering Science
(Dr.-Ing.)
of the Faculty of Natural Science and Technology I
of Saarland University
Marcus Rohrbach, M.Sc.
Saarbrücken
March 2014"
ab2b09b65fdc91a711e424524e666fc75aae7a51,Multi-modal Biomarkers to Discriminate Cognitive State *,"Multi-modal Biomarkers to Discriminate Cognitive State*
Thomas F. Quatieri 1, James R. Williamson1, Christopher J. Smalt1,
Joey Perricone, Tejash Patel, Laura Brattain, Brian S. Helfer, Daryush D. Mehta, Jeffrey Palmer
Kristin Heaton2, Marianna Eddy3, Joseph Moran3
MIT Lincoln Laboratory, Lexington, Massachusetts, USA
USARIEM, 3NSRDEC
. Introduction
Multimodal biomarkers based on behavorial, neurophysiolgical, and cognitive measurements have
recently obtained increasing popularity in the detection of cognitive stress- and neurological-based
disorders. Such conditions are significantly and adversely affecting human performance and quality
of life for a large fraction of the world’s population. Example modalities used in detection of these
onditions  include  voice,  facial  expression,  physiology,  eye  tracking,  gait,  and  EEG  analysis.
Toward  the  goal  of  finding  simple,  noninvasive  means  to  detect,  predict  and  monitor  cognitive
stress and neurological conditions, MIT Lincoln Laboratory is developing biomarkers that satisfy
three  criteria.  First,  we  seek  biomarkers  that  reflect  core  components  of  cognitive  status  such  as
working memory capacity, processing speed, attention, and arousal. Second, and as importantly, we
seek  biomarkers  that  reflect  timing  and  coordination  relations  both  within  components  of  each
modality and across different modalities. This is based on the hypothesis that neural coordination
cross different parts of the brain is essential in cognition (Figure 1). An example of timing and
oordination  within  a  modality  is  the  set  of  finely  timed  and  synchronized  physiological"
ab87dfccb1818bdf0b41d732da1f9335b43b74ae,Structured Dictionary Learning for Classification,"SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING
Structured Dictionary Learning for Classification
Yuanming Suo, Student Member, IEEE, Minh Dao, Student Member, IEEE, Umamahesh Srinivas, Student
Member, IEEE, Vishal Monga, Senior Member, IEEE, and Trac D. Tran, Fellow, IEEE"
abc1ef570bb2d7ea92cbe69e101eefa9a53e1d72,Raisonnement abductif en logique de description exploitant les domaines concrets spatiaux pour l'interprétation d'images,"Raisonnement abductif en logique de
description exploitant les domaines concrets
spatiaux pour l’interprétation d’images
Yifan Yang 1, Jamal Atif 2, Isabelle Bloch 1
. LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
. Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243,
LAMSADE, 75016 Paris, France
RÉSUMÉ. L’interprétation d’images a pour objectif non seulement de détecter et reconnaître des
objets dans une scène mais aussi de fournir une description sémantique tenant compte des in-
formations contextuelles dans toute la scène. Le problème de l’interprétation d’images peut être
formalisé comme un problème de raisonnement abductif, c’est-à-dire comme la recherche de la
meilleure explication en utilisant une base de connaissances. Dans ce travail, nous présentons
une nouvelle approche utilisant une méthode par tableau pour la génération et la sélection
d’explications possibles d’une image donnée lorsque les connaissances, exprimées dans une
logique de description, comportent des concepts décrivant les objets mais aussi les relations
spatiales entre ces objets. La meilleure explication est sélectionnée en exploitant les domaines
oncrets pour évaluer le degré de satisfaction des relations spatiales entre les objets."
abeda55a7be0bbe25a25139fb9a3d823215d7536,Understanding Human-Centric Images: From Geometry to Fashion,"UNIVERSITATPOLITÈCNICADECATALUNYAProgramadeDoctorat:AUTOMÀTICA,ROBÒTICAIVISIÓTesiDoctoralUnderstandingHuman-CentricImages:FromGeometrytoFashionEdgarSimoSerraDirectors:FrancescMorenoNoguerCarmeTorrasMay2015"
ab8fb278db4405f7db08fa59404d9dd22d38bc83,Implicit and Automated Emotional Tagging of Videos,"UNIVERSITÉ DE GENÈVE
Département d'Informatique
FACULTÉ DES SCIENCES
Professeur Thierry Pun
Implicit and Automated Emotional
Tagging of Videos
THÈSE
présenté à la Faculté des sciences de l'Université de Genève
pour obtenir le grade de Docteur ès sciences, mention informatique
Mohammad SOLEYMANI
Téhéran (IRAN)
Thèse No 4368
GENÈVE
Repro-Mail - Université de Genève"
e5823a9d3e5e33e119576a34cb8aed497af20eea,DocFace+: ID Document to Selfie Matching,"DocFace+: ID Document to Selfie* Matching
Yichun Shi, Student Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
e510f2412999399149d8635a83eca89c338a99a1,Face Recognition using Block-Based DCT Feature Extraction,"Journal of Advanced Computer Science and Technology, 1 (4) (2012) 266-283
(cid:13)Science Publishing Corporation
www.sciencepubco.com/index.php/JACST
Face Recognition using Block-Based
DCT Feature Extraction
K Manikantan1, Vaishnavi Govindarajan1,
V V S Sasi Kiran1, S Ramachandran2
Department of Electronics and Communication Engineering,
M S Ramaiah Institute of Technology, Bangalore, Karnataka, India 560054
E-mail:
E-mail:
E-mail:
Department of Electronics and Communication Engineering,
S J B Institute of Technology, Bangalore, Karnataka, India 560060
E-mail:"
e56c4c41bfa5ec2d86c7c9dd631a9a69cdc05e69,Human Activity Recognition Based on Wearable Sensor Data: A Standardization of the State-of-the-Art,"Human Activity Recognition Based on Wearable
Sensor Data: A Standardization of the
State-of-the-Art
Artur Jord˜ao, Antonio C. Nazare Jr., Jessica Sena and William Robson Schwartz
Smart Surveillance Interest Group, Computer Science Department
Universidade Federal de Minas Gerais, Brazil
Email: {arturjordao, antonio.nazare, jessicasena,"
e5342233141a1d3858ed99ccd8ca0fead519f58b,Finger print and Palm print based Multibiometric Authentication System with GUI Interface,"ISSN: 2277 – 9043
International Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE)
Volume 2, Issue 2, February 2013
Finger print and Palm print based Multibiometric
Authentication System with GUI Interface
KALAIGNANASELVI.A#1, NARASIMMALOU.T*2
#PG Scholar, Dept. of CSE, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India.
*Assistant Professor, Dept. of CSE, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India."
e52be9a083e621d9ed29c8e9914451a6a327ff59,UvA - DARE ( Digital Academic Repository ) Communication and Automatic Interpretation of Affect from Facial Expressions,"UvA-DARE (Digital Academic Repository)
Communication and Automatic Interpretation of Affect from Facial Expressions
Salah, A.A.; Sebe, N.; Gevers, T.
Published in:
Affective computing and interaction: psychological, cognitive, and neuroscientific perspectives
Link to publication
Citation for published version (APA):
Salah, A. A., Sebe, N., & Gevers, T. (2010). Communication and Automatic Interpretation of Affect from Facial
Expressions. In D. Gökçay, & G. Yildirim (Eds.), Affective computing and interaction: psychological, cognitive,
nd neuroscientific perspectives (pp. 157-183). Hershey, PA: Information Science Reference.
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.
Download date: 12 Sep 2017
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)"
e5799fd239531644ad9270f49a3961d7540ce358,Kinship classification by modeling facial feature heredity,"KINSHIP CLASSIFICATION BY MODELING FACIAL FEATURE HEREDITY
Ruogu Fang1, Andrew C. Gallagher1, Tsuhan Chen1, Alexander Loui2
Dept. of Elec. and Computer Eng., Cornell University 2Eastman Kodak Company"
e5eb7fa8c9a812d402facfe8e4672670541ed108,Performance of PCA Based Semi-supervised Learning in Face Recognition Using MPEG-7 Edge Histogram Descriptor,"Performance of PCA Based Semi-supervised
Learning in Face Recognition Using MPEG-7
Edge Histogram Descriptor
Shafin Rahman, Sheikh Motahar Naim, Abdullah Al Farooq and Md. Monirul Islam
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology(BUET)
Dhaka-1000, Bangladesh
Email: {shafin buet, naim sbh2007,"
e2d265f606cd25f1fd72e5ee8b8f4c5127b764df,Real-Time End-to-End Action Detection with Two-Stream Networks,"Real-Time End-to-End Action Detection
with Two-Stream Networks
Alaaeldin El-Nouby∗†, Graham W. Taylor∗†‡
School of Engineering, University of Guelph
Vector Institute for Artificial Intelligence
Canadian Institute for Advanced Research"
f437b3884a9e5fab66740ca2a6f1f3a5724385ea,Human identification technical challenges,"Human Identification Technical Challenges
P. Jonathon Phillips
DARPA
701 N. Fairfax Dr
Arlington, VA 22203"
f412d9d7bc7534e7daafa43f8f5eab811e7e4148,Running Head : Anxiety and Emotional Faces in WS 2,"Durham Research Online
Deposited in DRO:
6 December 2014
Version of attached le:
Accepted Version
Peer-review status of attached le:
Peer-reviewed
Citation for published item:
Kirk, H. E. and Hocking, D. R. and Riby, D. M. and Cornish, K. M. (2013) 'Linking social behaviour and
nxiety to attention to emotional faces in Williams syndrome.', Research in developmental disabilities., 34
(12). pp. 4608-4616.
Further information on publisher's website:
http://dx.doi.org/10.1016/j.ridd.2013.09.042
Publisher's copyright statement:
NOTICE: this is the author's version of a work that was accepted for publication in Research in Developmental
Disabilities. Changes resulting from the publishing process, such as peer review, editing, corrections, structural
formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made
to this work since it was submitted for publication. A denitive version was subsequently published in Research in
Developmental Disabilities, 34, 12, December 2013, 10.1016/j.ridd.2013.09.042.
Additional information:"
f442a2f2749f921849e22f37e0480ac04a3c3fec,Critical Features for Face Recognition in Humans and Machines,"Critical Features for Face Recognition in Humans and Machines  Naphtali Abudarham1, Lior Shkiller1, Galit Yovel1,2 1School of Psychological Sciences, 2Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel   Correspondence regarding this manuscript should be addressed to: Galit Yovel  School of Psychological Sciences & Sagol School of Neuroscience Tel Aviv University Tel Aviv, 69978, Israel Email:"
f4f6fc473effb063b7a29aa221c65f64a791d7f4,Facial expression recognition in the wild based on multimodal texture features,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 4/20/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
FacialexpressionrecognitioninthewildbasedonmultimodaltexturefeaturesBoSunLiandongLiGuoyanZhouJunHeBoSun,LiandongLi,GuoyanZhou,JunHe,“Facialexpressionrecognitioninthewildbasedonmultimodaltexturefeatures,”J.Electron.Imaging25(6),061407(2016),doi:10.1117/1.JEI.25.6.061407."
f4373f5631329f77d85182ec2df6730cbd4686a9,Recognizing Gender from Human Facial Regions using Genetic Algorithm,"Soft Computing manuscript No.
(will be inserted by the editor)
Recognizing Gender from Human Facial Regions using
Genetic Algorithm
Avirup Bhattacharyya · Rajkumar Saini ·
Partha Pratim Roy · Debi Prosad Dogra ·
Samarjit Kar
Received: date / Accepted: date"
f47404424270f6a20ba1ba8c2211adfba032f405,Identification of Face Age range Group using Neural Network,"International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5, May 2012)
Identification of Face Age range Group using Neural
Network
Sneha Thakur1, Ligendra Verma2
1M.Tech scholar, CSE, RITEE Raipur
2 Reader, MCA dept, RITEE Raipur"
f4ebbeb77249d1136c355f5bae30f02961b9a359,Human Computation for Attribute and Attribute Value Acquisition,"Human Computation for Attribute and Attribute Value Acquisition
Edith Law, Burr Settles, Aaron Snook, Harshit Surana, Luis von Ahn, Tom Mitchell
School of Computer Science
Carnegie Melon University"
f42dca4a4426e5873a981712102aa961be34539a,Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost Optical-Flow Estimation in the Wild,"Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost
Optical-Flow Estimation in the Wild
Nima Sedaghat
University of Freiburg
Germany"
f3d9e347eadcf0d21cb0e92710bc906b22f2b3e7,"NosePose: a competitive, landmark-free methodology for head pose estimation in the wild","NosePose: a competitive, landmark-free
methodology for head pose estimation in the wild
Fl´avio H. B. Zavan, Antonio C. P. Nascimento, Olga R. P. Bellon and Luciano Silva
IMAGO Research Group - Universidade Federal do Paran´a"
f3ea181507db292b762aa798da30bc307be95344,Covariance Pooling For Facial Expression Recognition,"Covariance Pooling for Facial Expression Recognition
Computer Vision Lab, ETH Zurich, Switzerland
VISICS, KU Leuven, Belgium
Dinesh Acharya†, Zhiwu Huang†, Danda Pani Paudel†, Luc Van Gool†‡
{acharyad, zhiwu.huang, paudel,"
f3cf10c84c4665a0b28734f5233d423a65ef1f23,Title Temporal Exemplar-based Bayesian Networks for facialexpression recognition,"Title
Temporal Exemplar-based Bayesian Networks for facial
expression recognition
Author(s)
Shang, L; Chan, KP
Citation
Proceedings - 7Th International Conference On Machine
Learning And Applications, Icmla 2008, 2008, p. 16-22
Issued Date
http://hdl.handle.net/10722/61208
Rights
This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.;
International Conference on Machine Learning and Applications
Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of
this material is permitted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
omponent of this work in other works must be obtained from"
f3b7938de5f178e25a3cf477107c76286c0ad691,Object Detection with Deep Learning: A Review,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2017
Object Detection with Deep Learning: A Review
Zhong-Qiu Zhao, Member, IEEE, Peng Zheng,
Shou-tao Xu, and Xindong Wu, Fellow, IEEE"
eb526174fa071345ff7b1fad1fad240cd943a6d7,Deeply vulnerable: a study of the robustness of face recognition to presentation attacks,"Deeply Vulnerable – A Study of the Robustness of Face Recognition to
Presentation Attacks
Amir Mohammadi, Sushil Bhattacharjee, and S´ebastien Marcel ∗†"
eb566490cd1aa9338831de8161c6659984e923fd,From Lifestyle Vlogs to Everyday Interactions,"From Lifestyle Vlogs to Everyday Interactions
David F. Fouhey, Wei-cheng Kuo, Alexei A. Efros, Jitendra Malik
EECS Department, UC Berkeley"
eb9312458f84a366e98bd0a2265747aaed40b1a6,Facial Expression Sequence Synthesis Based on Shape and Texture Fusion Model,"-4244-1437-7/07/$20.00 ©2007 IEEE
IV - 473
ICIP 2007"
eb716dd3dbd0f04e6d89f1703b9975cad62ffb09, Visual Object Category Discovery in Images and Videos,"Copyright
Yong Jae Lee"
eb4d2ec77fae67141f6cf74b3ed773997c2c0cf6,A new soft biometric approach for keystroke dynamics based on gender recognition,"Int. J. Information Technology and Management, Vol. 11, Nos. 1/2, 2012
A new soft biometric approach for keystroke
dynamics based on gender recognition
Romain Giot* and Christophe Rosenberger
GREYC Research Lab,
ENSICAEN – Université de Caen Basse Normandie – CNRS,
4000 Caen, France
Fax: +33-231538110
E-mail:
E-mail:
*Corresponding author"
ebb7cc67df6d90f1c88817b20e7a3baad5dc29b9,Fast algorithms for Higher-order Singular Value Decomposition from incomplete data,"Journal of Computational Mathematics
Vol.xx, No.x, 200x, 1–25.
http://www.global-sci.org/jcm
doi:??
Fast algorithms for Higher-order Singular Value Decomposition
from incomplete data*
Department of Mathematics, University of Alabama, Tuscaloosa, AL
Yangyang Xu
Email:"
ebabd1f7bc0274fec88a3dabaf115d3e226f198f,Driver Drowsiness Detection System Based on Feature Representation Learning Using Various Deep Networks,"Driver drowsiness detection system based on feature
representation learning using various deep networks
Sanghyuk Park, Fei Pan, Sunghun Kang and Chang D. Yoo
School of Electrical Engineering, KAIST,
Guseong-dong, Yuseong-gu, Dajeon, Rep. of Korea
{shine0624, feipan, sunghun.kang, cd"
eb48a58b873295d719827e746d51b110f5716d6c,Face Alignment Using K-Cluster Regression Forests With Weighted Splitting,"Face Alignment Using K-cluster Regression Forests
With Weighted Splitting
Marek Kowalski and Jacek Naruniec"
ebd5df2b4105ba04cef4ca334fcb9bfd6ea0430c,Fast Localization of Facial Landmark Points,"Fast Localization of Facial Landmark Points
Nenad Markuˇs*, Miroslav Frljak*, Igor S. Pandˇzi´c*, J¨orgen Ahlberg†, and Robert Forchheimer†
* University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
Link¨oping University, Department of Electrical Engineering, SE-581 83 Link¨oping, Sweden
March 28, 2014"
ebf204e0a3e137b6c24e271b0d55fa49a6c52b41,Visual Tracking Using Deep Motion Features,"Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2016
Visual Tracking Using
Deep Motion Features
Susanna Gladh"
c7e4c7be0d37013de07b6d829a3bf73e1b95ad4e,Dynemo: a Video Database of Natural Facial Expressions of Emotions,"The International Journal of Multimedia & Its Applications (IJMA) Vol.5, No.5, October 2013
DYNEMO: A VIDEO DATABASE OF NATURAL FACIAL
EXPRESSIONS OF EMOTIONS
Anna Tcherkassof1, Damien Dupré1, Brigitte Meillon2, Nadine Mandran2,
Michel Dubois1 and Jean-Michel Adam2
LIP, Univ. Grenoble Alpes, BP 47 - 38040 Grenoble Cedex 9, France
LIG, Univ. Grenoble Alpes, BP 53 - 38041 Grenoble Cedex 9, France"
c7de0c85432ad17a284b5b97c4f36c23f506d9d1,RANSAC-Based Training Data Selection for Speaker State Recognition,"INTERSPEECH 2011
RANSAC-based Training Data Selection for Speaker State Recognition
Elif Bozkurt1, Engin Erzin1, C¸ i˘gdem Ero˘glu Erdem2, A.Tanju Erdem3
Multimedia, Vision and Graphics Laboratory, Koc¸ University, Istanbul, Turkey
Department of Electrical and Electronics Engineering, Bahc¸es¸ehir University, Istanbul, Turkey
Department of Electrical and Computer Engineering, ¨Ozye˘gin University, Istanbul, Turkey
ebozkurt,"
c7f752eea91bf5495a4f6e6a67f14800ec246d08,Exploring the Transfer Learning Aspect of Deep Neural Networks in Facial Information Processing,"EXPLORING THE TRANSFER
LEARNING ASPECT OF DEEP
NEURAL NETWORKS IN FACIAL
INFORMATION PROCESSING
A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF MASTER OF SCIENCE
IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
Crefeda Faviola Rodrigues
School of Computer Science"
c758b9c82b603904ba8806e6193c5fefa57e9613,Heterogeneous Face Recognition with CNNs,"Heterogeneous Face Recognition with CNNs
Shreyas Saxena
Jakob Verbeek
INRIA Grenoble, Laboratoire Jean Kuntzmann"
c7c03324833ba262eeaada0349afa1b5990c1ea7,A Wearable Face Recognition System on Google Glass for Assisting Social Interactions,"A Wearable Face Recognition System on Google
Glass for Assisting Social Interactions
Bappaditya Mandal∗, Chia Shue Ching, Liyuan Li, Vijay Ramaseshan
Chandrasekhar, Cheston Tan Yin Chet and Lim Joo Hwee
Visual Computing Department, Institute for Infocomm Research, Singapore
Email address: (∗Contact author: Bappaditya Mandal);
{scchia, lyli, vijay, cheston-tan,"
c7c8d150ece08b12e3abdb6224000c07a6ce7d47,DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification,"DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification
National Laboratory of Pattern Recognition, CASIA
Center for Research on Intelligent Perception and Computing, CASIA
Shu Zhang Ran He Tieniu Tan"
c78fdd080df01fff400a32fb4cc932621926021f,Robust Automatic Facial Expression Detection Method,"Robust Automatic Facial Expression Detection
Method
Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan,
Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan,
Yan Ouyang
China
Nong Sang
China
Email:"
c03f48e211ac81c3867c0e787bea3192fcfe323e,Mahalanobis Metric Scoring Learned from Weighted Pairwise Constraints in I-Vector Speaker Recognition System,"INTERSPEECH 2016
September 8–12, 2016, San Francisco, USA
Mahalanobis Metric Scoring Learned from Weighted Pairwise Constraints in
I-vector Speaker Recognition System
Zhenchun Lei1, Yanhong Wan1, Jian Luo1, Yingen Yang1
School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China"
c038beaa228aeec174e5bd52460f0de75e9cccbe,Temporal Segment Networks for Action Recognition in Videos,"Temporal Segment Networks for Action
Recognition in Videos
Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool"
c043f8924717a3023a869777d4c9bee33e607fb5,Emotion Separation Is Completed Early and It Depends on Visual Field Presentation,"Emotion Separation Is Completed Early and It Depends
on Visual Field Presentation
Lichan Liu1,2*, Andreas A. Ioannides1,2
Lab for Human Brain Dynamics, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan, 2 Lab for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia,
Cyprus"
c05a7c72e679745deab9c9d7d481f7b5b9b36bdd,"Naval Postgraduate School Monterey, California Approved for Public Release; Distribution Is Unlimited Biometric Challenges for Future Deployments: a Study of the Impact of Geography, Climate, Culture, and Social Conditions on the Effective Collection of Biometrics","NPS-CS-11-005
NAVAL
POSTGRADUATE
SCHOOL
MONTEREY, CALIFORNIA
BIOMETRIC CHALLENGES FOR FUTURE DEPLOYMENTS:
A STUDY OF THE IMPACT OF GEOGRAPHY, CLIMATE, CULTURE,
AND SOCIAL CONDITIONS ON THE EFFECTIVE
COLLECTION OF BIOMETRICS
Paul C. Clark, Heather S. Gregg, with preface by Cynthia E. Irvine
April 2011
Approved for public release; distribution is unlimited"
c0ff7dc0d575658bf402719c12b676a34271dfcd,A New Incremental Optimal Feature Extraction Method for On-Line Applications,"A New Incremental Optimal Feature Extraction
Method for On-line Applications
Youness Aliyari Ghassabeh, Hamid Abrishami Moghaddam
Electrical Engineering Department, K. N. Toosi University of
Technology, Tehran, Iran"
c02847a04a99a5a6e784ab580907278ee3c12653,Fine Grained Video Classification for Endangered Bird Species Protection,"Fine Grained Video Classification for
Endangered Bird Species Protection
Non-Thesis MS Final Report
Chenyu Wang
.  Introduction
.1 Background
This project is about detecting eagles in videos. Eagles are endangered species at the brim of
extinction since 1980s. With the bans of harmful pesticides, the number of eagles keep increasing.
However, recent studies on golden eagles’ activities in the vicinity of wind turbines have shown
significant number of turbine blade collisions with eagles as the major cause of eagles’ mortality. [1]
This project is a part of a larger research project to build an eagle detection and deterrent system
on wind turbine toward reducing eagles’ mortality. [2] The critical component of this study is a
omputer vision system for eagle detection in videos. The key requirement are that the system should
work in real time and detect eagles at a far distance from the camera (i.e. in low resolution).
There are three different bird species in my dataset - falcon, eagle and seagull. The reason for
involving only these three species is based on the real world situation. Wind turbines are always
installed near coast and mountain hill where falcons and seagulls will be the majority. So my model
will classify the minority eagles out of other bird species during the immigration season and protecting
them by using the deterrent system.
.2 Brief Approach"
c0c8d720658374cc1ffd6116554a615e846c74b5,Modeling Multimodal Clues in a Hybrid Deep Learning Framework for Video Classification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Modeling Multimodal Clues in a Hybrid Deep
Learning Framework for Video Classification
Yu-Gang Jiang, Zuxuan Wu, Jinhui Tang, Zechao Li, Xiangyang Xue, Shih-Fu Chang"
eee8a37a12506ff5df72c402ccc3d59216321346,Volume C,"Uredniki:
dr. Tomaž Erjavec
Odsek za tehnologije znanja
Institut »Jožef Stefan«, Ljubljana
dr. Jerneja Žganec Gros
Alpineon d.o.o, Ljubljana
Založnik: Institut »Jožef Stefan«, Ljubljana
Tisk: Birografika BORI d.o.o.
Priprava zbornika: Mitja Lasič
Oblikovanje naslovnice: dr. Damjan Demšar
Tiskano iz predloga avtorjev
Naklada:  50
Ljubljana, oktober 2008
Konferenco IS 2008 sofinancirata
Ministrstvo za visoko šolstvo, znanost in tehnologijo
Institut »Jožef Stefan«
Informacijska družba
ISSN 1581-9973
CIP - Kataložni zapis o publikaciji
Narodna in univerzitetna knjižnica, Ljubljana"
ee18e29a2b998eddb7f6663bb07891bfc7262248,Local Linear Discriminant Analysis Framework Using Sample Neighbors,"Local Linear Discriminant Analysis Framework
Using Sample Neighbors
Zizhu Fan, Yong Xu, Member, IEEE, and David Zhang, Fellow, IEEE"
eefb8768f60c17d76fe156b55b8a00555eb40f4d,Subspace Scores for Feature Selection in Computer Vision,"Subspace Scores for Feature Selection in Computer Vision
Cameron Musco
Christopher Musco"
ee463f1f72a7e007bae274d2d42cd2e5d817e751,Automatically Extracting Qualia Relations for the Rich Event Ontology,"Automatically Extracting Qualia Relations for the Rich Event Ontology
Ghazaleh Kazeminejad1, Claire Bonial2, Susan Windisch Brown1 and Martha Palmer1
{ghazaleh.kazeminejad, susan.brown,
University of Colorado Boulder, 2U.S. Army Research Lab"
eed1dd2a5959647896e73d129272cb7c3a2e145c,The Elements of Fashion Style,"INPUTSTYLE DOCUMENTTOP ITEMS“             ”I need an outfit for a beach wedding that I'm going to early this summer. I'm so excited -- it's going to be warm and exotic and tropical... I want my outfit to look effortless, breezy, flowy, like I’m floating over the sand! Oh, and obviously no white! For a tropical spot, I think my outfit should be bright and"
ee92d36d72075048a7c8b2af5cc1720c7bace6dd,Face recognition using mixtures of principal components,"FACE RECOGNITION USING MIXTURES OF PRINCIPAL COMPONENTS
Deepak S. Turaga and Tsuhan Chen
Video and Display Processing
Philips Research USA
Briarcliff Manor, NY 10510"
eedfb384a5e42511013b33104f4cd3149432bd9e,Multimodal probabilistic person tracking and identification in smart spaces,"Multimodal Probabilistic Person
Tracking and Identification
in Smart Spaces
zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
der Fakultät für Informatik
der Universität Fridericiana zu Karlsruhe (TH)
genehmigte
Dissertation
Keni Bernardin
us Karlsruhe
Tag der mündlichen Prüfung: 20.11.2009
Erster Gutachter:
Zweiter Gutachter:
Prof. Dr. A. Waibel
Prof. Dr. R. Stiefelhagen"
c91103e6612fa7e664ccbc3ed1b0b5deac865b02,Automatic Facial Expression Recognition Using Statistical-Like Moments,"Automatic facial expression recognition using
statistical-like moments
Roberto D’Ambrosio, Giulio Iannello, and Paolo Soda
{r.dambrosio, g.iannello,
Integrated Research Center, Universit`a Campus Bio-Medico di Roma,
Via Alvaro del Portillo, 00128 Roma, Italy"
fc1e37fb16006b62848def92a51434fc74a2431a,A Comprehensive Analysis of Deep Regression,"DRAFT
A Comprehensive Analysis of Deep Regression
St´ephane Lathuili`ere, Pablo Mesejo, Xavier Alameda-Pineda, Member IEEE, and Radu Horaud"
fcd3d69b418d56ae6800a421c8b89ef363418665,Effects of Aging over Facial Feature Analysis and Face Recognition,"Effects of Aging over Facial Feature Analysis and Face
Recognition
Bilgin Esme & Bulent Sankur
Bogaziçi Un. Electronics Eng. Dept. March 2010"
fcd77f3ca6b40aad6edbd1dab9681d201f85f365,Machine Learning Based Attacks and Defenses in Computer Security: Towards Privacy and Utility Balance in Sensor Environments,"(cid:13)Copyright 2014
Miro Enev"
fcf8bb1bf2b7e3f71fb337ca3fcf3d9cf18daa46,Feature Selection via Sparse Approximation for Face Recognition,"MANUSCRIPT SUBMITTED TO IEEE TRANS. PATTERN ANAL. MACH. INTELL., JULY 2010
Feature Selection via Sparse Approximation for
Face Recognition
Yixiong Liang, Lei Wang, Yao Xiang, and Beiji Zou"
fcbf808bdf140442cddf0710defb2766c2d25c30,Unsupervised Semantic Action Discovery from Video Collections,"IJCV manuscript No.
(will be inserted by the editor)
Unsupervised Semantic Action Discovery from Video
Collections
Ozan Sener · Amir Roshan Zamir · Chenxia Wu · Silvio Savarese ·
Ashutosh Saxena
Received: date / Accepted: date"
fd4ac1da699885f71970588f84316589b7d8317b,Supervised Descent Method for Solving Nonlinear Least Squares Problems in Computer Vision,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007
Supervised Descent Method
for Solving Nonlinear Least Squares
Problems in Computer Vision
Xuehan Xiong, and Fernando De la Torre"
fdf533eeb1306ba418b09210387833bdf27bb756,Exploiting Unrelated Tasks in Multi-Task Learning,
fdda5852f2cffc871fd40b0cb1aa14cea54cd7e3,Im2Flow: Motion Hallucination from Static Images for Action Recognition,"Im2Flow: Motion Hallucination from Static Images for Action Recognition
Ruohan Gao
UT Austin
Bo Xiong
UT Austin
Kristen Grauman
UT Austin"
fdfaf46910012c7cdf72bba12e802a318b5bef5a,Computerized Face Recognition in Renaissance Portrait Art,"Computerized Face Recognition in Renaissance
Portrait Art
Ramya Srinivasan, Conrad Rudolph and Amit Roy-Chowdhury"
fdca08416bdadda91ae977db7d503e8610dd744f,ICT - 2009 . 7 . 1 KSERA Project 2010 - 248085,"ICT-2009.7.1
KSERA Project
010-248085
Deliverable D3.1
Deliverable D3.1
Human Robot Interaction
Human Robot Interaction
8 October 2010
Public Document
The KSERA project (http://www.ksera
KSERA project (http://www.ksera-project.eu) has received funding from the European Commission
project.eu) has received funding from the European Commission
under the 7th Framework Programme (FP7) for Research and Technological Development under grant
under the 7th Framework Programme (FP7) for Research and Technological Development under grant
under the 7th Framework Programme (FP7) for Research and Technological Development under grant
greement n°2010-248085."
fd96432675911a702b8a4ce857b7c8619498bf9f,Improved Face Detection and Alignment using Cascade Deep Convolutional Network,"Improved Face Detection and Alignment using Cascade
Deep Convolutional Network
Weilin Cong†, Sanyuan Zhao†, Hui Tian‡, and Jianbing Shen†
Beijing Key Laboratory of Intelligent Information Technology, School of
Computer Science,Beijing Institute of Technology, Beijing 100081, P.R.China
China Mobile Research Institute, Xuanwu Men West Street, Beijing"
fdb33141005ca1b208a725796732ab10a9c37d75,A connectionist computational method for face recognition,"Int.J.Appl. Math. Comput.Sci.,2016,Vol. 26,No. 2,451–465
DOI: 10.1515/amcs-2016-0032
A CONNECTIONIST COMPUTATIONAL METHOD FOR FACE RECOGNITION
FRANCISCO A. PUJOL a, HIGINIO MORA a,∗
, JOS ´E A. GIRONA-SELVA a
Department of Computer Technology
University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
e-mail:
In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced.
First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial
graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of
the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining
each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and
the recognition process are performed by using a similarity function that takes into account both the geometric and texture
information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our
proposal when compared with other state-of the-art methods.
Keywords: pattern recognition, face recognition, neural networks, self-organizing maps.
Introduction
libraries,
In recent years, there has been intensive research carried"
fde0180735699ea31f6c001c71eae507848b190f,Face Detection and Sex Identification from Color Images using AdaBoost with SVM based Component Classifier,"International Journal of Computer Applications (0975 – 8887)
Volume 76– No.3, August 2013
Face Detection and Sex Identification from Color Images
using AdaBoost with SVM based Component Classifier
Tonmoy Das
Lecturer, Department of EEE
University of Information
Technology and Sciences
(UITS)
Dhaka, Bangladesh
Manamatha Sarnaker
B.Sc. in EEE
International University of
Business Agriculture and
Technology (IUBAT)
Dhaka-1230, Bangladesh
Md. Hafizur Rahman
Lecturer, Department of EEE
International University of
Business Agriculture and"
fd615118fb290a8e3883e1f75390de8a6c68bfde,Joint Face Alignment with Non-parametric Shape Models,"Joint Face Alignment with Non-Parametric
Shape Models
Brandon M. Smith and Li Zhang
University of Wisconsin – Madison
http://www.cs.wisc.edu/~lizhang/projects/joint-align/"
fdaf65b314faee97220162980e76dbc8f32db9d6,Face recognition using both visible light image and near-infrared image and a deep network,"Accepted Manuscript
Face recognition using both visible light image and near-infrared image and a deep
network
Kai Guo, Shuai Wu, Yong Xu
Reference:
S2468-2322(17)30014-8
0.1016/j.trit.2017.03.001
TRIT 41
To appear in:
CAAI Transactions on Intelligence Technology
Received Date: 30 January 2017
Accepted Date: 28 March 2017
Please cite this article as: K. Guo, S. Wu, Y. Xu, Face recognition using both visible light image and
near-infrared image and a deep network, CAAI Transactions on Intelligence Technology (2017), doi:
0.1016/j.trit.2017.03.001.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
opyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain."
f2e9494d0dca9fb6b274107032781d435a508de6,Title of Dissertation : UNCONSTRAINED FACE RECOGNITION,
f2a7f9bd040aa8ea87672d38606a84c31163e171,Human Action Recognition without Human,"Human Action Recognition without Human
Yun He, Soma Shirakabe, Yutaka Satoh, Hirokatsu Kataoka
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Ibaraki, Japan
{yun.he, shirakabe-s, yu.satou,"
f20e0eefd007bc310d2a753ba526d33a8aba812c,Accurate and robust face recognition from RGB-D images with a deep learning approach,"Lee et al.:  RGB-D FACE RECOGNITION WITH A DEEP LEARNING APPROACH
Accurate and robust face recognition from
RGB-D images with a deep learning
pproach
Yuancheng Lee
http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=150
Jiancong Chen
http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=153
Ching-Wei Tseng
http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=156
Computer Vision Lab,
Department of
Computer Science,
National Tsing Hua
University,
Hsinchu, Taiwan
Shang-Hong Lai
http://www.cs.nthu.edu.tw/~lai/"
f231046d5f5d87e2ca5fae88f41e8d74964e8f4f,Perceived Age Estimation from Face Images,"We are IntechOpen,
the first native scientific
publisher of Open Access books
,350
08,000
.7 M
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
f5770dd225501ff3764f9023f19a76fad28127d4,Real Time Online Facial Expression Transfer with Single Video Camera,"Real Time Online Facial Expression Transfer
with Single Video Camera"
f558af209dd4c48e4b2f551b01065a6435c3ef33,An Enhanced Attribute Reranking Design for Web Image Search,"International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 23 Issue 1 –JUNE 2016.
AN ENHANCED ATTRIBUTE
RERANKING DESIGN FOR WEB IMAGE
SEARCH
Sai Tejaswi Dasari#1 and G K Kishore Babu*2
#Student,Cse, CIET, Lam,Guntur, India
* Assistant Professort,Cse, CIET, Lam,Guntur , India"
e378ce25579f3676ca50c8f6454e92a886b9e4d7,Robust Video Super-Resolution with Learned Temporal Dynamics,"Robust Video Super-Resolution with Learned Temporal Dynamics
Ding Liu1 Zhaowen Wang2 Yuchen Fan1 Xianming Liu3
Zhangyang Wang4 Shiyu Chang5 Thomas Huang1
University of Illinois at Urbana-Champaign 2Adobe Research
Facebook 4Texas A&M University 5IBM Research"
e393a038d520a073b9835df7a3ff104ad610c552,Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks,"Automatic temporal segment
detection via bilateral long short-
term memory recurrent neural
networks
Bo Sun
Siming Cao
Jun He
Lejun Yu
Liandong Li
Bo Sun, Siming Cao, Jun He, Lejun Yu, Liandong Li, “Automatic temporal segment
detection via bilateral long short-term memory recurrent neural networks,” J.
Electron. Imaging 26(2), 020501 (2017), doi: 10.1117/1.JEI.26.2.020501.
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/03/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx"
e315959d6e806c8fbfc91f072c322fb26ce0862b,An Efficient Face Recognition System Based on Sub-Window Extraction Algorithm,"An Efficient Face Recognition System Based on Sub-Window
International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-1, Issue-6, January 2012
Extraction Algorithm
Manish Gupta, Govind sharma"
e39a0834122e08ba28e7b411db896d0fdbbad9ba,Maximum Likelihood Estimation of Depth Maps Using Photometric Stereo,"Maximum Likelihood Estimation of Depth Maps
Using Photometric Stereo
Adam P. Harrison, Student Member, IEEE, and Dileepan Joseph, Member, IEEE"
e30dc2abac4ecc48aa51863858f6f60c7afdf82a,Facial Signs and Psycho-physical Status Estimation for Well-being Assessment,"Facial Signs and Psycho-physical Status Estimation for Well-being
Assessment
F. Chiarugi, G. Iatraki, E. Christinaki, D. Manousos, G. Giannakakis, M. Pediaditis,
A. Pampouchidou, K. Marias and M. Tsiknakis
Computational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas,
{chiarugi, giatraki, echrist, mandim, ggian, mped, pampouch, kmarias,
70013 Vasilika Vouton, Heraklion, Crete, Greece
Keywords:
Facial Expression, Stress, Anxiety, Feature Selection, Well-being Evaluation, FACS, FAPS, Classification."
e3917d6935586b90baae18d938295e5b089b5c62,Face localization and authentication using color and depth images,"Face Localization and Authentication
Using Color and Depth Images
Filareti Tsalakanidou, Sotiris Malassiotis, and Michael G. Strintzis, Fellow, IEEE"
e3144f39f473e238374dd4005c8b83e19764ae9e,Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost Optical-Flow Estimation in the Wild,"Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost
Optical-Flow Estimation in the Wild
Nima Sedaghat
University of Freiburg
Germany"
cfffae38fe34e29d47e6deccfd259788176dc213,Training bookcowgrass flower ? ? water sky doggrass water boat water chair road ? cow grass chair grass dog building ?,"TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, DECEMBER 2012
Matrix Completion for Weakly-supervised
Multi-label Image Classification
Ricardo Cabral, Fernando De la Torre, João P. Costeira, Alexandre Bernardino"
cfd4004054399f3a5f536df71f9b9987f060f434,Person Recognition in Social Media Photos,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ??, ?? 20??
Person Recognition in Personal Photo Collections
Seong Joon Oh,Rodrigo Benenson, Mario Fritz, and Bernt Schiele, Fellow, IEEE"
cfd933f71f4a69625390819b7645598867900eab,Person Authentication Using Face And Palm Vein: A Survey Of Recognition And Fusion Techniques,"INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 03                       55
ISSN 2347-4289
Person Authentication Using Face And Palm Vein:
A Survey Of Recognition And Fusion Techniques
Preethi M, Dhanashree Vaidya, Dr. S. Kar, Dr. A. M. Sapkal, Dr. Madhuri A. Joshi
Dept. of Electronics and Telecommunication, College of Engineering, Pune, India,
Image Processing & Machine Vision Section, Electronics & Instrumentation Services Division, BARC
Email:"
cf875336d5a196ce0981e2e2ae9602580f3f6243,"7 What 1 S It Mean for a Computer to ""have"" Emotions?","7  What 1
Rosalind W. Picard
It Mean for a Computer to  ""Have""  Emotions?
There  is a  lot  of  talk  about  giving machines  emotions,  some  of
it fluff. Recently at a large technical meeting, a researcher stood up
nd talked of how a Bamey stuffed animal [the purple dinosaur for
kids) ""has  emotions.""  He did not define what he meant by this, but
fter  repeating  it several  times,  it became  apparent  that  children
ttributed  emotions  to  Barney,  and that  Barney  had  deliberately
expressive behaviors that would  encourage the  kids to think. Bar-
ney had emotions. But kids have  attributed  emotions to  dolls and
stuffed animals for as long a s  we  know; and most of  my technical
olleagues would agree that such toys have never had and still do
not have emotions. What is different now that prompts a researcher
to make such a claim? Is the computational plush an example of  a
omputer that really does have emotions?
If  not Barney, then what would  be  an example  of  a  computa-
tional system that has emotions? I am not a philosopher, and this
paper will not be  a  discussion  of  the meaning  of  this question in
ny philosophical sense. However, as an engineer I am interested"
cfd8c66e71e98410f564babeb1c5fd6f77182c55,Comparative Study of Coarse Head Pose Estimation,"Comparative Study of Coarse Head Pose Estimation
Lisa M. Brown and Ying-Li Tian
IBM T.J. Watson Research Center
Hawthorne, NY 10532"
cfbb2d32586b58f5681e459afd236380acd86e28,Improving alignment of faces for recognition,"Improving Alignment of Faces for Recognition
Md. Kamrul Hasan
Christopher J. Pal
D´epartement de g´enie informatique et g´enie logiciel
´Ecole Polytechnique de Montr´eal,
D´epartement de g´enie informatique et g´enie logiciel
´Ecole Polytechnique de Montr´eal,
Qu´ebec, Canada
Qu´ebec, Canada"
cfa92e17809e8d20ebc73b4e531a1b106d02b38c,Parametric classification with soft labels using the evidential EM algorithm: linear discriminant analysis versus logistic regression,"Advances in Data Analysis and Classification manuscript No.
(will be inserted by the editor)
Parametric Classification with Soft Labels using the
Evidential EM Algorithm
Linear Discriminant Analysis vs. Logistic Regression
Benjamin Quost · Thierry Denœux ·
Shoumei Li
Received: date / Accepted: date"
cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150,Detection of emotions from video in non-controlled environment. (Détection des émotions à partir de vidéos dans un environnement non contrôlé),"Detection of emotions from video in non-controlled
environment
Rizwan Ahmed Khan
To cite this version:
Rizwan Ahmed Khan. Detection of emotions from video in non-controlled environment. Image
Processing. Universit´e Claude Bernard - Lyon I, 2013. English. <NNT : 2013LYO10227>.
<tel-01166539v2>
HAL Id: tel-01166539
https://tel.archives-ouvertes.fr/tel-01166539v2
Submitted on 23 Jun 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
cfdc632adcb799dba14af6a8339ca761725abf0a,Probabilistic Formulations of Regression with Mixed Guidance,"Probabilistic Formulations of Regression with Mixed
Guidance
Aubrey Gress, Ian Davidson University of California, Davis"
cfc30ce53bfc204b8764ebb764a029a8d0ad01f4,Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization,"Regularizing Deep Neural Networks by Noise:
Its Interpretation and Optimization
Hyeonwoo Noh
Tackgeun You
Dept. of Computer Science and Engineering, POSTECH, Korea
Jonghwan Mun
Bohyung Han"
cf805d478aeb53520c0ab4fcdc9307d093c21e52,Finding Tiny Faces in the Wild with Generative Adversarial Network,"Finding Tiny Faces in the Wild with Generative Adversarial Network
Yancheng Bai1
Yongqiang Zhang1
Mingli Ding2
Bernard Ghanem1
Visual Computing Center, King Abdullah University of Science and Technology (KAUST)
School of Electrical Engineering and Automation, Harbin Institute of Technology (HIT)
Institute of Software, Chinese Academy of Sciences (CAS)
{zhangyongqiang,
Figure1. The detection results of tiny faces in the wild. (a) is the original low-resolution blurry face, (b) is the result of
re-sizing directly by a bi-linear kernel, (c) is the generated image by the super-resolution method, and our result (d) is learned
y the super-resolution (×4 upscaling) and refinement network simultaneously. Best viewed in color and zoomed in."
cf86616b5a35d5ee777585196736dfafbb9853b5,Learning Multiscale Active Facial Patches for Expression Analysis,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Learning Multiscale Active Facial Patches for
Expression Analysis
Lin Zhong, Qingshan Liu, Peng Yang, Junzhou Huang, and Dimitris N. Metaxas, Senior Member, IEEE"
cacd51221c592012bf2d9e4894178c1c1fa307ca,Face and Expression Recognition Techniques: A Review,"ISSN: 2277-3754
ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)
Volume 4, Issue 11, May 2015
Face and Expression Recognition Techniques: A
Review
Advanced Communication & Signal Processing Laboratory, Department of Electronics & Communication
engineering, Government College of Engineering Kannur, Kerala, India.
Rishin C. K, Aswani Pookkudi, A. Ranjith Ram"
ca0363d29e790f80f924cedaf93cb42308365b3d,Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines,"Facial Expression Recognition in Image Sequences
using Geometric Deformation Features and Support
Vector Machines
Irene Kotsiay and Ioannis Pitasy,Senior Member IEEE
yAristotle University of Thessaloniki
Department of Informatics
Box 451
54124 Thessaloniki, Greece
email:"
cad52d74c1a21043f851ae14c924ac689e197d1f,From Ego to Nos-Vision: Detecting Social Relationships in First-Person Views,"From Ego to Nos-vision:
Detecting Social Relationships in First-Person Views
Stefano Alletto, Giuseppe Serra, Simone Calderara, Francesco Solera and Rita Cucchiara
Universit`a degli Studi di Modena e Reggio Emilia
Via Vignolese 905, 41125 Modena - Italy"
cad24ba99c7b6834faf6f5be820dd65f1a755b29,"Understanding hand-object manipulation by modeling the contextual relationship between actions, grasp types and object attributes","Understanding hand-object
manipulation by modeling the
ontextual relationship between actions,
grasp types and object attributes
Minjie Cai1, Kris M. Kitani2 and Yoichi Sato1
Journal Title
XX(X):1–14
(cid:13)The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/"
cadba72aa3e95d6dcf0acac828401ddda7ed8924,Algorithms and VLSI Architectures for Low-Power Mobile Face Verification,"THÈSE PRÉSENTÉE À LA FACULTÉ DES SCIENCES
POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES
Algorithms and VLSI Architectures
for Low-Power Mobile Face Verification
Jean-Luc Nagel
Acceptée sur proposition du jury:
Prof. F. Pellandini, directeur de thèse
PD Dr. M. Ansorge, co-directeur de thèse
Prof. P.-A. Farine, rapporteur
Dr. C. Piguet, rapporteur
Soutenue le 2 juin 2005
INSTITUT DE MICROTECHNIQUE
UNIVERSITÉ DE NEUCHÂTEL"
ca37eda56b9ee53610c66951ee7ca66a35d0a846,Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection,"Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection
Xiaojun Chang1,2, Yi Yang1, Alexander G. Hauptmann2, Eric P. Xing3 and Yao-Liang Yu3∗
Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney.
Language Technologies Institute, Carnegie Mellon University.
Machine Learning Department, Carnegie Mellon University.
{cxj273, {alex, epxing,"
ca606186715e84d270fc9052af8500fe23befbda,"Using subclass discriminant analysis, fuzzy integral and symlet decomposition for face recognition","Using Subclass Discriminant Analysis, Fuzzy Integral and Symlet Decomposition for
Face Recognition
Seyed Mohammad Seyedzade
Department of Electrical Engineering,
Iran Univ. of Science and Technology,
Narmak, Tehran, Iran
Email:
Sattar Mirzakuchaki
Amir Tahmasbi
Department of Electrical Engineering,
Iran Univ. of Science and Technology,
Department of Electrical Engineering,
Iran Univ. of Science and Technology,
Narmak, Tehran, Iran
Email:
Narmak, Tehran, Iran
Email:"
e4bf70e818e507b54f7d94856fecc42cc9e0f73d,Face Recognition under Varying Blur in an Unconstrained Environment,"IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308
FACE RECOGNITION UNDER VARYING BLUR IN AN
UNCONSTRAINED ENVIRONMENT
Anubha Pearline.S1, Hemalatha.M2
M.Tech, Information Technology,Madras Institute of Technology, TamilNadu,India,
Assistant Professor, Information Technology,Madras Institute of Technology, TamilNadu,India, email:,"
e4a1b46b5c639d433d21b34b788df8d81b518729,Side Information for Face Completion: a Robust PCA Approach,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Side Information for Face Completion: a Robust
PCA Approach
Niannan Xue, Student Member, IEEE, Jiankang Deng, Student Member,IEEE,
Shiyang Cheng, Student Member,IEEE, Yannis Panagakis, Member,IEEE,
nd Stefanos Zafeiriou, Member, IEEE"
e4c81c56966a763e021938be392718686ba9135e,Bio-Inspired Architecture for Clustering into Natural and Non-Natural Facial Expressions,",100+OPEN ACCESS BOOKS103,000+INTERNATIONALAUTHORS AND EDITORS106+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Visual Cortex - Current Status and PerspectivesDownloaded from: http://www.intechopen.com/books/visual-cortex-current-status-and-perspectivesPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at"
e4e95b8bca585a15f13ef1ab4f48a884cd6ecfcc,Face Recognition with Independent Component Based Super-resolution,"Face Recognition with Independent Component Based
Super-resolution
Osman Gokhan Sezer†,a, Yucel Altunbasakb, Aytul Ercila
Faculty of Engineering and Natural Sciences, Sabanci Univ., Istanbul, Turkiye, 34956
School of Elec. and Comp. Eng. , Georgia Inst. of Tech., Atlanta, GA, USA, 30332-0250"
e43ea078749d1f9b8254e0c3df4c51ba2f4eebd5,Facial Expression Recognition Based on Constrained Local Models and Support Vector Machines,"Facial Expression Recognition Based on Constrained
Local Models and Support Vector Machines
Nikolay Neshov1, Ivo Draganov2, Agata Manolova3"
e4c2f8e4aace8cb851cb74478a63d9111ca550ae,Distributed One-class Learning,"DISTRIBUTED ONE-CLASS LEARNING
Ali Shahin Shamsabadi(cid:63), Hamed Haddadi†, Andrea Cavallaro(cid:63)
(cid:63)Queen Mary University of London,†Imperial College London"
e475e857b2f5574eb626e7e01be47b416deff268,Facial Emotion Recognition Using Nonparametric Weighted Feature Extraction and Fuzzy Classifier,"Facial Emotion Recognition Using Nonparametric
Weighted Feature Extraction and Fuzzy Classifier
Maryam Imani and Gholam Ali Montazer"
e4391993f5270bdbc621b8d01702f626fba36fc2,Head Pose Estimation Using Multi-scale Gaussian Derivatives,"Author manuscript, published in ""18th Scandinavian Conference on Image Analysis (2013)""
DOI : 10.1007/978-3-642-38886-6_31"
e4d8ba577cabcb67b4e9e1260573aea708574886,Um Sistema De Recomendaç˜ao Inteligente Baseado Em V ´ Idio Aulas Para Educaç˜ao a Distˆancia an Intelligent Recommendation System Based on Video Lectures for Distance Education (revelation),"UM SISTEMA DE RECOMENDAC¸ ˜AO INTELIGENTE BASEADO EM V´IDIO
AULAS PARA EDUCAC¸ ˜AO A DIST ˆANCIA
Gaspare Giuliano Elias Bruno
Tese de Doutorado apresentada ao Programa
de P´os-gradua¸c˜ao em Engenharia de Sistemas e
Computa¸c˜ao, COPPE, da Universidade Federal
do Rio de Janeiro, como parte dos requisitos
necess´arios `a obten¸c˜ao do t´ıtulo de Doutor em
Engenharia de Sistemas e Computa¸c˜ao.
Orientadores: Edmundo Albuquerque de
Souza e Silva
Rosa Maria Meri Le˜ao
Rio de Janeiro
Janeiro de 2016"
e4abc40f79f86dbc06f5af1df314c67681dedc51,Head Detection with Depth Images in the Wild,"Head Detection with Depth Images in the Wild
Diego Ballotta, Guido Borghi, Roberto Vezzani and Rita Cucchiara
Department of Engineering ”Enzo Ferrari”
University of Modena and Reggio Emilia, Italy
Keywords:
Head Detection, Head Localization, Depth Maps, Convolutional Neural Network"
e4d0e87d0bd6ead4ccd39fc5b6c62287560bac5b,Implicit video multi-emotion tagging by exploiting multi-expression relations,"Implicit Video Multi-Emotion Tagging by Exploiting Multi-Expression
Relations
Zhilei Liu, Shangfei Wang*, Zhaoyu Wang and Qiang Ji"
e48e94959c4ce799fc61f3f4aa8a209c00be8d7f,Design of an Efficient Real-Time Algorithm Using Reduced Feature Dimension for Recognition of Speed Limit Signs,"Hindawi Publishing Corporation
The Scientific World Journal
Volume 2013, Article ID 135614, 6 pages
http://dx.doi.org/10.1155/2013/135614
Research Article
Design of an Efficient Real-Time Algorithm Using Reduced
Feature Dimension for Recognition of Speed Limit Signs
Hanmin Cho,1 Seungwha Han,2 and Sun-Young Hwang1
Department of Electronic Engineering, Sogang University, Seoul 121-742, Republic of Korea
Samsung Techwin R&D Center, Security Solution Division, 701 Sampyeong-dong, Bundang-gu, Seongnam-si,
Gyeonggi 463-400, Republic of Korea
Correspondence should be addressed to Sun-Young Hwang;
Received 28 August 2013; Accepted 1 October 2013
Academic Editors: P. Daponte, M. Nappi, and N. Nishchal
Copyright © 2013 Hanmin Cho et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
We propose a real-time algorithm for recognition of speed limit signs from a moving vehicle. Linear Discriminant Analysis (LDA)
required for classification is performed by using Discrete Cosine Transform (DCT) coefficients. To reduce feature dimension in
LDA, DCT coefficients are selected by a devised discriminant function derived from information obtained by training. Binarization
nd thinning are performed on a Region of Interest (ROI) obtained by preprocessing a detected ROI prior to DCT for further"
e496d6be415038de1636bbe8202cac9c1cea9dbe,Facial Expression Recognition in Older Adults using Deep Machine Learning,"Facial Expression Recognition in Older Adults using
Deep Machine Learning
Andrea Caroppo, Alessandro Leone and Pietro Siciliano
National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce,
Italy"
e43cc682453cf3874785584fca813665878adaa7,Face Recognition using Local Derivative Pattern Face Descriptor,"www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 10 October, 2014 Page No.8830-8834
Face Recognition using Local Derivative Pattern Face
Descriptor
Pranita R. Chavan1,  Dr. Dnyandeo J. Pete2
Department of Electronics and Telecommunication
Datta Meghe College of Engineering
Airoli, Navi Mumbai, India 1,2
Mob: 99206746061
Mob: 99870353142"
fec6648b4154fc7e0892c74f98898f0b51036dfe,"A Generic Face Processing Framework: Technologies, Analyses and Applications","A Generic Face Processing
Framework: Technologies,
Analyses and Applications
JANG Kim-fung
A Thesis Submitted in Partial Ful(cid:12)lment
of the Requirements for the Degree of
Master of Philosophy
Computer Science and Engineering
Supervised by
Prof. Michael R. Lyu
(cid:13)The Chinese University of Hong Kong
July 2003
The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in
proposed publication must seek copyright release from the Dean of the
Graduate School."
fea0a5ed1bc83dd1b545a5d75db2e37a69489ac9,Enhancing Recommender Systems for TV by Face Recognition,"Enhancing Recommender Systems for TV by Face Recognition
Toon De Pessemier, Damien Verlee and Luc Martens
iMinds - Ghent University, Technologiepark 15, B-9052 Ghent, Belgium
{toon.depessemier,
Keywords:
Recommender System, Face Recognition, Face Detection, TV, Emotion Detection."
fe9c460d5ca625402aa4d6dd308d15a40e1010fa,Neural Architecture for Temporal Emotion Classification,"Neural Architecture for Temporal Emotion
Classification
Roland Schweiger, Pierre Bayerl, and Heiko Neumann
Universit¨at Ulm, Neuroinformatik, Germany"
fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5,Performance Evaluation of Gabor Wavelet Features for Face Representation and Recognition,"IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)
Volume 6, Issue 2, Ver. I (Mar. -Apr. 2016), PP 47-53
e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197
www.iosrjournals.org
Performance Evaluation of Gabor Wavelet Features for Face
Representation and Recognition
M. E. Ashalatha1, Mallikarjun S. Holi2
Dept. of Biomedical Engineering, Bapuji Institute of Engineering & Technology Davanagere, Karnataka,India
Dept. of Electronics and Instrumentation Engineering, University B.D.T.College of Engineering, Visvesvaraya
Technological University,  Davanagere, Karnataka, India"
fea83550a21f4b41057b031ac338170bacda8805,Learning a Metric Embedding for Face Recognition using the Multibatch Method,"Learning a Metric Embedding
for Face Recognition
using the Multibatch Method
Oren Tadmor
Yonatan Wexler
Tal Rosenwein
Shai Shalev-Shwartz
Amnon Shashua
Orcam Ltd., Jerusalem, Israel"
fe0c51fd41cb2d5afa1bc1900bbbadb38a0de139,Bayesian face recognition using 2D Gaussian-Hermite moments,"Rahman et al. EURASIP Journal on Image and Video Processing  (2015) 2015:35
DOI 10.1186/s13640-015-0090-5
RESEARCH
Open Access
Bayesian face recognition using 2D
Gaussian-Hermite moments
S. M. Mahbubur Rahman1*, Shahana Parvin Lata2 and Tamanna Howlader2"
c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3d,Modeling for part-based visual object detection based on local features,"Modeling for part-based visual object
detection based on local features
Von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik
der Rheinisch-Westf¨alischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines Doktors
der Ingenieurwissenschaften genehmigte Dissertation
vorgelegt von
Diplom-Ingenieur
Mark Asbach
us Neuss
Berichter:
Univ.-Prof. Dr.-Ing. Jens-Rainer Ohm
Univ.-Prof. Dr.-Ing. Til Aach
Tag der m¨undlichen Pr¨ufung: 28. September 2011
Diese Dissertation ist auf den Internetseiten der
Hochschulbibliothek online verf¨ugbar."
c86e6ed734d3aa967deae00df003557b6e937d3d,Generative Adversarial Networks with Decoder-Encoder Output Noise,"Generative Adversarial Networks with
Decoder-Encoder Output Noise
Guoqiang Zhong, Member, IEEE, Wei Gao, Yongbin Liu, Youzhao Yang
onditional distribution of their neighbors. In [32], Portilla and
Simoncelli proposed a parametric texture model based on joint
statistics, which uses a decomposition method that is called
steerable pyramid decomposition to decompose the texture
of images. An example-based super-resolution algorithm [11]
was proposed in 2002, which uses a Markov network to model
the spatial relationship between the pixels of an image. A
scene completion algorithm [16] was proposed in 2007, which
pplied a semantic scene match technique. These traditional
lgorithms can be applied to particular image generation tasks,
such as texture synthesis and super-resolution. Their common
haracteristic is that they predict the images pixel by pixel
rather than generate an image as a whole, and the basic idea
of them is to make an interpolation according to the existing
part of the images. Here, the problem is, given a set of images,
an we generate totally new images with the same distribution
of the given ones?"
c8a4b4fe5ff2ace9ab9171a9a24064b5a91207a3,Locating facial landmarks with binary map cross-correlations,"LOCATING FACIAL LANDMARKS WITH BINARY MAP CROSS-CORRELATIONS
J´er´emie Nicolle
K´evin Bailly
Vincent Rapp
Mohamed Chetouani
Univ. Pierre & Marie Curie, ISIR - CNRS UMR 7222, F-75005, Paris - France
{nicolle, bailly, rapp,"
c866a2afc871910e3282fd9498dce4ab20f6a332,Surveillance Face Recognition Challenge,"Noname manuscript No.
(will be inserted by the editor)
Surveillance Face Recognition Challenge
Zhiyi Cheng · Xiatian Zhu · Shaogang Gong
Received: date / Accepted: date"
c84233f854bbed17c22ba0df6048cbb1dd4d3248,Exploring Locally Rigid Discriminative Patches for Learning Relative Attributes,"Y. VERMA, C. V. JAWAHAR: EXPLORING PATCHES FOR RELATIVE ATTRIBUTES
Exploring Locally Rigid Discriminative
Patches for Learning Relative Attributes
Yashaswi Verma
http://researchweb.iiit.ac.in/~yashaswi.verma/
C. V. Jawahar
http://www.iiit.ac.in/~jawahar/
IIIT-Hyderabad, India
http://cvit.iiit.ac.in"
c81ee278d27423fd16c1a114dcae486687ee27ff,Search Based Face Annotation Using Weakly Labeled Facial Images,"Search Based Face Annotation Using Weakly
Labeled Facial Images
Shital Shinde1, Archana Chaugule2
Computer Department, Savitribai Phule Pune University
D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18
Mahatma Phulenagar, 120/2 Mahaganpati soc, Chinchwad, Pune-19, MH, India
D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University
DYPIET, Pimpri, Pune-18, MH, India"
c83a05de1b4b20f7cd7cd872863ba2e66ada4d3f,A Deep Learning Perspective on the Origin of Facial Expressions,"BREUER, KIMMEL: A DEEP LEARNING PERSPECTIVE ON FACIAL EXPRESSIONS
A Deep Learning Perspective on the Origin
of Facial Expressions
Ran Breuer
Ron Kimmel
Department of Computer Science
Technion - Israel Institute of Technology
Technion City, Haifa, Israel
Figure 1: Demonstration of the filter visualization process."
c8adbe00b5661ab9b3726d01c6842c0d72c8d997,Deep Architectures for Face Attributes,"Deep Architectures for Face Attributes
Tobi Baumgartner, Jack Culpepper
Computer Vision and Machine Learning Group, Flickr, Yahoo,
{tobi,"
fb4545782d9df65d484009558e1824538030bbb1,"Learning Visual Patterns: Imposing Order on Objects, Trajectories and Networks",
fbf196d83a41d57dfe577b3a54b1b7fa06666e3b,Extreme Learning Machine for Large-Scale Action Recognition,"Extreme Learning Machine for Large-Scale
Action Recognition
G¨ul Varol and Albert Ali Salah
Department of Computer Engineering, Bo˘gazi¸ci University, Turkey"
fba464cb8e3eff455fe80e8fb6d3547768efba2f,Survey Paper on Emotion Recognition,"International Journal of Engineering and Applied Sciences (IJEAS)
ISSN: 2394-3661, Volume-3, Issue-2, February 2016
Survey Paper on Emotion Recognition
Prachi Shukla, Sandeep Patil"
fbb2f81fc00ee0f257d4aa79bbef8cad5000ac59,Reading Hidden Emotions: Spontaneous Micro-expression Spotting and Recognition,"Reading Hidden Emotions: Spontaneous
Micro-expression Spotting and Recognition
Xiaobai Li, Student Member, IEEE, Xiaopeng Hong, Member, IEEE, Antti Moilanen, Xiaohua Huang, Student
Member, IEEE, Tomas Pfister, Guoying Zhao, Senior Member, IEEE, and Matti Pietik¨ainen, Fellow, IEEE"
fb9ad920809669c1b1455cc26dbd900d8e719e61,3 D Gaze Estimation from Remote RGB-D Sensors THÈSE,"D Gaze Estimation from Remote RGB-D Sensors
THÈSE NO 6680 (2015)
PRÉSENTÉE LE 9 OCTOBRE 2015
À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE L'IDIAP
PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES
Kenneth Alberto FUNES MORA
cceptée sur proposition du jury:
Prof. K. Aminian, président du jury
Dr J.-M. Odobez,   directeur de thèse
Prof. L.-Ph. Morency, rapporteur
Prof. D. Witzner Hansen, rapporteur
Dr R. Boulic, rapporteur
Suisse"
ed28e8367fcb7df7e51963add9e2d85b46e2d5d6,A Novel Approach of Face Recognition Using Convolutional Neural Networks with Auto Encoder,"International J. of Engg. Research & Indu. Appls. (IJERIA).
ISSN 0974-1518, Vol.9, No. III (December 2016), pp.23-42
A NOVEL APPROACH OF FACE RECOGNITION USING
CONVOLUTIONAL NEURAL  NETWORKS WITH AUTO
ENCODER
T. SYED AKHEEL1 AND DR. S. A. K JILANI2
Research Scholar, Dept. of Electronics & Communication Engineering,
Rayalaseema University Kurnool, Andhra Pradesh.
2 Research Supervisor, Professor, Dept. of Electronics & Communication Engineering,
Madanapalle Institute of Technology & Science, Madanapalle, Andhra Pradesh."
ed08ac6da6f8ead590b390b1d14e8a9b97370794,An Efficient Approach for 3D Face Recognition Using ANN Based Classifiers,"ISSN(Online): 2320-9801
ISSN (Print):  2320-9798
International Journal of Innovative Research in Computer
nd Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol. 3, Issue 9, September 2015
An Efficient Approach for 3D Face
Recognition Using ANN Based Classifiers
Vaibhav M. Pathak1, Suhas S.Satonkar2, Dr.Prakash B.Khanale3
Assistant Professor, Dept. of C.S., Shri Shivaji College, Parbhani, M.S, India1
Assistant Professor, Dept. of C.S., Arts, Commerce and Science College, Gangakhed, M.S, India2
Associate Professor, Dept. of C.S., Dnyanopasak College Parbhani, M.S, India3"
edef98d2b021464576d8d28690d29f5431fd5828,Pixel-Level Alignment of Facial Images for High Accuracy Recognition Using Ensemble of Patches,"Pixel-Level Alignment of Facial Images
for High Accuracy Recognition
Using Ensemble of Patches
Hoda Mohammadzade, Amirhossein Sayyafan, Benyamin Ghojogh"
ed04e161c953d345bcf5b910991d7566f7c486f7,Mirror my emotions! Combining facial expression analysis and synthesis on a robot,"Combining facial expression analysis and synthesis on a
Mirror my emotions!
robot
Stefan Sosnowski1 and Christoph Mayer2 and Kolja K¨uhnlenz3 and Bernd Radig4"
c1d2d12ade031d57f8d6a0333cbe8a772d752e01,Convex optimization techniques for the efficient recovery of a sparsely corrupted low-rank matrix,"Journal of Math-for-Industry, Vol.2(2010B-5), pp.147–156
Convex optimization techniques for the ef‌f‌icient recovery of a sparsely
orrupted low-rank matrix
Silvia Gandy and Isao Yamada
Received on August 10, 2010 / Revised on August 31, 2010"
c10a15e52c85654db9c9343ae1dd892a2ac4a279,Learning the Relative Importance of Objects from Tagged Images for Retrieval and Cross-Modal Search,"Int J Comput Vis (2012) 100:134–153
DOI 10.1007/s11263-011-0494-3
Learning the Relative Importance of Objects from Tagged Images
for Retrieval and Cross-Modal Search
Sung Ju Hwang · Kristen Grauman
Received: 16 December 2010 / Accepted: 23 August 2011 / Published online: 18 October 2011
© Springer Science+Business Media, LLC 2011"
c1dfabe36a4db26bf378417985a6aacb0f769735,Describing Visual Scene through EigenMaps,"Journal of Computer Vision and Image Processing, NWPJ-201109-50
Describing Visual Scene through EigenMaps
Shizhi Chen, Student Member, IEEE, and YingLi Tian, Senior Member, IEEE"
c1ff88493721af1940df0d00bcfeefaa14f1711f,Subspace Regression: Predicting a Subspace from one Sample,"#1369
CVPR 2010 Submission #1369. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
#1369
Subspace Regression: Predicting a Subspace from one Sample
Anonymous CVPR submission
Paper ID 1369"
c11eb653746afa8148dc9153780a4584ea529d28,Global and Local Consistent Wavelet-domain Age Synthesis,"Global and Local Consistent Wavelet-domain Age
Synthesis
Peipei Li†, Yibo Hu†, Ran He Member, IEEE and Zhenan Sun Member, IEEE"
c1ebbdb47cb6a0ed49c4d1cf39d7565060e6a7ee,Robust Facial Landmark Localization Based on Texture and Pose Correlated Initialization,"Robust Facial Landmark Localization Based on
Yiyun Pan, Junwei Zhou, Member, IEEE, Yongsheng Gao, Senior Member, IEEE, Shengwu Xiong"
c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290,Unconstrained face identification with multi-scale block-based correlation,"Unconstrained face identification with multi-scale block-based
orrelation
Gaston, J., MIng, J., & Crookes, D. (2016). Unconstrained face identification with multi-scale block-based
orrelation. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (pp. 1477-1481). [978-1-5090-4117-6/17] Institute of Electrical and Electronics Engineers (IEEE).
Published in:
Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
Document Version:
Peer reviewed version
Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal
Publisher rights
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.
Take down policy"
c68ec931585847b37cde9f910f40b2091a662e83,A Comparative Evaluation of Dotted Raster-Stereography and Feature-Based Techniques for Automated Face Recognition,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 6, 2018
A Comparative Evaluation of Dotted Raster-
Stereography and Feature-Based Techniques for
Automated Face Recognition
Muhammad Wasim
S. Talha Ahsan
Department of Computer Science
Department of Electrical Engineering
Usman Institute of Technology
Usman Institute of Technology
Karachi, Pakistan
Karachi, Pakistan
Lubaid Ahmed, Syed Faisal Ali,
Fauzan Saeed
Department of Computer Science
Usman Institute of Technology
Karachi, Pakistan
feature-based
system.  The"
c696c9bbe27434cb6279223a79b17535cd6e88c8,Facial Expression Recognition with Pyramid Gabor Features and Complete Kernel Fisher Linear Discriminant Analysis,"International Journal of Information Technology    Vol.11   No.9  2005
Discriminant Analysis
Facial Expression Recognition with Pyramid Gabor
Features and Complete Kernel Fisher Linear
Duan-Duan Yang1, Lian-Wen Jin1, Jun-Xun Yin1, Li-Xin Zhen2, Jian-Cheng Huang2
School of Electronic and Information Engineering, South China
University of Technology, Guangzhou, 510640, P.R.China
{ddyang,
Motorola China Research Center, Shanghai, 210000, P.R.China
{Li-Xin.Zhen,"
c614450c9b1d89d5fda23a54dbf6a27a4b821ac0,Face Image Retrieval of Efficient Sparse Code words and Multiple Attribute in Binning Image,"Vol.60: e17160480, January-December 2017
http://dx.doi.org/10.1590/1678-4324-2017160480
ISSN 1678-4324 Online Edition
Engineering,Technology and Techniques
BRAZILIAN ARCHIVES OF
BIOLOGY AND TECHNOLOGY
A N   I N T E R N A T I O N A L   J O U R N A L
Face  Image  Retrieval  of  Efficient  Sparse  Code  words  and
Multiple Attribute in Binning Image
Suchitra S1*.
Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India."
c6f3399edb73cfba1248aec964630c8d54a9c534,A comparison of CNN-based face and head detectors for real-time video surveillance applications,"A Comparison of CNN-based Face and Head Detectors for
Real-Time Video Surveillance Applications
Le Thanh Nguyen-Meidine1, Eric Granger 1, Madhu Kiran1 and Louis-Antoine Blais-Morin2
´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montreal, Canada
Genetec Inc., Montreal, Canada"
c6ffa09c4a6cacbbd3c41c8ae7a728b0de6e10b6,Feature extraction using constrained maximum variance mapping,"This article appeared in a journal published by Elsevier. The attached
opy is furnished to the author for internal non-commercial research
nd education use, including for instruction at the authors institution
nd sharing with colleagues.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.
In most cases authors are permitted to post their version of the
rticle (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information
regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:
http://www.elsevier.com/copyright"
c62c07de196e95eaaf614fb150a4fa4ce49588b4,SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation,Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
ec90d333588421764dff55658a73bbd3ea3016d2,Protocol for Systematic Literature Review of Face Recognition in Uncontrolled Environment,"Research Article
Protocol for Systematic Literature Review of Face
Recognition in Uncontrolled Environment
Faizan Ullah, Sabir Shah, Dilawar Shah, Abdusalam, Shujaat Ali
Department of Computer Science, Bacha Khan University, Charsadda, KPK, Pakistan"
ec1e03ec72186224b93b2611ff873656ed4d2f74,D Reconstruction of “ Inthe-Wild ” Faces in Images and Videos,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
D Reconstruction of “In-the-Wild” Faces in
Images and Videos
James Booth, Anastasios Roussos, Evangelos Ververas, Epameinondas Anton-
kos, Stylianos Ploumpis, Yannis Panagakis, and Stefanos Zafeiriou"
ec12f805a48004a90e0057c7b844d8119cb21b4a,Distance-Based Descriptors and Their Application in the Task of Object Detection,"Distance-Based Descriptors and Their
Application in the Task of Object Detection
Radovan Fusek(B) and Eduard Sojka
Department of Computer Science, Technical University of Ostrava, FEECS,
7. Listopadu 15, 708 33 Ostrava-Poruba, Czech Republic"
ec54000c6c0e660dd99051bdbd7aed2988e27ab8,Two in One: Joint Pose Estimation and Face Recognition with Pca,"TWO IN ONE: JOINT POSE ESTIMATION AND FACE RECOGNITION WITH P2CA1
Francesc Tarres*, Antonio Rama*
{tarres,
Davide Onofrio+, Stefano Tubaro+
{d.onofrio,
*Dept. Teoria del Senyal i Comunicacions - Universitat Politècnica de Catalunya, Barcelona, Spain
+Dipartimento di Elettronica e Informazione - Politecnico di Milano, Meiland, Italy"
ec0104286c96707f57df26b4f0a4f49b774c486b,An Ensemble CNN2ELM for Age Estimation,"An Ensemble CNN2ELM for Age Estimation
Mingxing Duan , Kenli Li, Senior Member, IEEE, and Keqin Li, Fellow, IEEE"
4e32fbb58154e878dd2fd4b06398f85636fd0cf4,A Hierarchical Matcher using Local Classifier Chains,"A Hierarchical Matcher using Local Classifier Chains
L. Zhang and I.A. Kakadiaris
Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204"
4ea53e76246afae94758c1528002808374b75cfa,A Review of Scholastic Examination and Models for Face Recognition and Retrieval in Video,"Lasbela, U. J.Sci. Techl., vol.IV , pp. 57-70, 2015
Review ARTICLE
A Review of Scholastic  Examination and  Models for Face Recognition
ISSN 2306-8256
nd Retrieval in Video
Varsha Sachdeva1, Junaid Baber2, Maheen Bakhtyar2, Muzamil Bokhari3, Imran Ali4
Department of Computer Science, SBK Women’s University, Quetta, Balochistan
Department of CS and IT, University of Balochistan, Quetta
Department of Physics, University of Balochistan, Quetta
Institute of Biochemistry, University of Balochistan, Quetta"
4e97b53926d997f451139f74ec1601bbef125599,Discriminative Regularization for Generative Models,"Discriminative Regularization for Generative Models
Alex Lamb, Vincent Dumoulin and Aaron Courville
Montreal Institute for Learning Algorithms, Universit´e de Montr´eal"
4e27fec1703408d524d6b7ed805cdb6cba6ca132,SSD-Sface: Single shot multibox detector for small faces,"SSD-Sface: Single shot multibox detector for small faces
C. Thuis"
4e6c9be0b646d60390fe3f72ce5aeb0136222a10,Long-Term Temporal Convolutions for Action Recognition,"Long-term Temporal Convolutions
for Action Recognition
G¨ul Varol, Ivan Laptev, and Cordelia Schmid, Fellow, IEEE"
4ef0a6817a7736c5641dc52cbc62737e2e063420,Study of Face Recognition Techniques,"International Journal of Advanced Computer Research (ISSN (Print): 2249-7277   ISSN (Online): 2277-7970)
Volume-4 Number-4 Issue-17 December-2014
Study of Face Recognition Techniques
Sangeeta Kaushik1*, R. B. Dubey2 and Abhimanyu Madan3
Received: 10-November-2014; Revised: 18-December-2014; Accepted: 23-December-2014
©2014 ACCENTS"
4e0e49c280acbff8ae394b2443fcff1afb9bdce6,Automatic Learning of Gait Signatures for People Identification,"Automatic learning of gait signatures for people identification
F.M. Castro
Univ. of Malaga
fcastro<at>uma.es
M.J. Mar´ın-Jim´enez
Univ. of Cordoba
mjmarin<at>uco.es
N. Guil
Univ. of Malaga
nguil<at>uma.es
N. P´erez de la Blanca
Univ. of Granada
nicolas<at>ugr.es"
20a432a065a06f088d96965f43d0055675f0a6c1,The Effects of Regularization on Learning Facial Expressions with Convolutional Neural Networks,"In: Proc. of the 25th Int. Conference on Artificial Neural Networks (ICANN)
Part II, LNCS 9887, pp. 80-87, Barcelona, Spain, September 2016
The final publication is available at Springer via
http://dx.doi.org//10.1007/978-3-319-44781-0_10
The Effects of Regularization on Learning Facial
Expressions with Convolutional Neural Networks
Tobias Hinz, Pablo Barros, and Stefan Wermter
University of Hamburg Department of Computer Science,
Vogt-Koelln-Strasse 30, 22527 Hamburg, Germany
http://www.informatik.uni-hamburg.de/WTM"
20a3ce81e7ddc1a121f4b13e439c4cbfb01adfba,Sparse-MVRVMs Tree for Fast and Accurate Head Pose Estimation in the Wild,"Sparse-MVRVMs Tree for Fast and Accurate
Head Pose Estimation in the Wild
Mohamed Selim, Alain Pagani, and Didier Stricker
Augmented Vision Research Group,
German Research Center for Artificial Intelligence (DFKI),
Tripstaddterstr. 122, 67663 Kaiserslautern, Germany
Technical University of Kaiserslautern
http://www.av.dfki.de"
2004afb2276a169cdb1f33b2610c5218a1e47332,Deep Convolutional Neural Network Used in Single Sample per Person Face Recognition,"Hindawi
Computational Intelligence and Neuroscience
Volume 2018, Article ID 3803627, 11 pages
https://doi.org/10.1155/2018/3803627
Research Article
Deep Convolutional Neural Network Used in Single Sample per
Person Face Recognition
Junying Zeng , Xiaoxiao Zhao , Junying Gan , Chaoyun Mai
nd Fan Wang
, Yikui Zhai,
School of Information Engineering, Wuyi University, Jiangmen 529020, China
Correspondence should be addressed to Xiaoxiao Zhao;
Received 27 November 2017; Revised 23 May 2018; Accepted 26 July 2018; Published 23 August 2018
Academic Editor: Jos´e Alfredo Hern´andez-P´erez
Copyright © 2018 Junying Zeng et al. 0is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Face recognition (FR) with single sample per person (SSPP) is a challenge in computer vision. Since there is only one sample to be
trained, it makes facial variation such as pose, illumination, and disguise dif‌f‌icult to be predicted. To overcome this problem, this paper
proposes a scheme combined traditional and deep learning (TDL) method to process the task. First, it proposes an expanding sample
method based on traditional approach. Compared with other expanding sample methods, the method can be used easily and"
20e504782951e0c2979d9aec88c76334f7505393,Robust LSTM-Autoencoders for Face De-Occlusion in the Wild,"Robust LSTM-Autoencoders for Face De-Occlusion
in the Wild
Fang Zhao, Jiashi Feng, Jian Zhao, Wenhan Yang, Shuicheng Yan"
209324c152fa8fab9f3553ccb62b693b5b10fb4d,Visual Genome Crowdsourced Visual Knowledge Representations a Thesis Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Masters of Science,"CROWDSOURCED VISUAL KNOWLEDGE REPRESENTATIONS
VISUAL GENOME
A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTERS OF SCIENCE
Ranjay Krishna
March 2016"
20ade100a320cc761c23971d2734388bfe79f7c5,Subspace Clustering via Good Neighbors,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Subspace Clustering via Good Neighbors
Jufeng Yang, Jie Liang, Kai Wang, Ming-Hsuan Yang"
202d8d93b7b747cdbd6e24e5a919640f8d16298a,Face Classification via Sparse Approximation,"Face Classification via Sparse Approximation
Elena Battini S˝onmez1, Bulent Sankur2 and Songul Albayrak3
Computer Science Department, Bilgi University, Dolapdere, Istanbul, TR
Electric and Electronic Engineering Department, Bo¯gazici University, Istanbul, TR
Computer Engineering Department, Yıldız Teknik University, Istanbul, TR"
205b34b6035aa7b23d89f1aed2850b1d3780de35,Log-domain polynomial filters for illumination-robust face recognition,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
Shenzhen Key Lab. of Information Sci&Tech,
♯Nagaoka University of Technology, Japan
RECOGNITION
. INTRODUCTION"
2059d2fecfa61ddc648be61c0cbc9bc1ad8a9f5b,Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression,"TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 4, APRIL 2015
Co-Localization of Audio Sources in Images Using
Binaural Features and Locally-Linear Regression
Antoine Deleforge∗ Radu Horaud∗ Yoav Y. Schechner‡ Laurent Girin∗†
INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France
Univ. Grenoble Alpes, GIPSA-Lab, France
Dept. Electrical Eng., Technion-Israel Inst. of Technology, Haifa, Israel"
20111924fbf616a13d37823cd8712a9c6b458cd6,Linear Regression Line based Partial Face Recognition,"International Journal of Computer Applications (0975 – 8887)
Volume 130 – No.11, November2015
Linear Regression Line based Partial Face Recognition
Naveena M.
Department of Studies in
Computer Science,
Manasagagothri,
Mysore.
G. Hemantha Kumar
Department of Studies in
Computer Science,
Manasagagothri,
Mysore.
P. Nagabhushan
Department of Studies in
Computer Science,
Manasagagothri,
Mysore.
images.  In"
20532b1f80b509f2332b6cfc0126c0f80f438f10,A Deep Matrix Factorization Method for Learning Attribute Representations,"A deep matrix factorization method for learning
ttribute representations
George Trigeorgis, Konstantinos Bousmalis, Student Member, IEEE, Stefanos Zafeiriou, Member, IEEE
Bj¨orn W. Schuller, Senior member, IEEE"
205af28b4fcd6b569d0241bb6b255edb325965a4,Facial expression recognition and tracking for intelligent human-robot interaction,"Intel Serv Robotics (2008) 1:143–157
DOI 10.1007/s11370-007-0014-z
SPECIAL ISSUE
Facial expression recognition and tracking for intelligent human-robot
interaction
Y. Yang · S. S. Ge · T. H. Lee · C. Wang
Received: 27 June 2007 / Accepted: 6 December 2007 / Published online: 23 January 2008
© Springer-Verlag 2008"
20a0b23741824a17c577376fdd0cf40101af5880,Learning to Track for Spatio-Temporal Action Localization,"Learning to track for spatio-temporal action localization
Philippe Weinzaepfela
Zaid Harchaouia,b
NYU
Inria∗
Cordelia Schmida"
18c72175ddbb7d5956d180b65a96005c100f6014,From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 6,
JUNE 2001
From Few to Many: Illumination Cone
Models for Face Recognition under
Variable Lighting and Pose
Athinodoros S. Georghiades, Student Member, IEEE, Peter N. Belhumeur, Member, IEEE, and
David J. Kriegman, Senior Member, IEEE"
18636347b8741d321980e8f91a44ee054b051574,Facial marks: Soft biometric for face recognition,"978-1-4244-5654-3/09/$26.00 ©2009 IEEE
ICIP 2009"
181045164df86c72923906aed93d7f2f987bce6c,Rheinisch-westfälische Technische Hochschule Aachen,"RHEINISCH-WESTFÄLISCHE TECHNISCHE
HOCHSCHULE AACHEN
KNOWLEDGE-BASED SYSTEMS GROUP
PROF. GERHARD LAKEMEYER, PH. D.
Detection and Recognition of Human
Faces using Random Forests for a
Mobile Robot
MASTER OF SCIENCE THESIS
VAISHAK BELLE
MATRICULATION NUMBER: 26 86 51
SUPERVISOR:
SECOND SUPERVISOR:
PROF. GERHARD LAKEMEYER, PH. D.
PROF. ENRICO BLANZIERI, PH. D.
ADVISERS:
STEFAN SCHIFFER, THOMAS DESELAERS"
18d5b0d421332c9321920b07e0e8ac4a240e5f1f,Collaborative Representation Classification Ensemble for Face Recognition,"Collaborative Representation Classification
Ensemble for Face Recognition
Xiao Chao Qu, Suah Kim, Run Cui and Hyoung Joong Kim"
18d51a366ce2b2068e061721f43cb798177b4bb7,Looking into your eyes: observed pupil size influences approach-avoidance responses.,"Cognition and Emotion
ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20
Looking into your eyes: observed pupil size
influences approach-avoidance responses
Marco Brambilla, Marco Biella & Mariska E. Kret
To cite this article: Marco Brambilla, Marco Biella & Mariska E. Kret (2018): Looking into your
eyes: observed pupil size influences approach-avoidance responses, Cognition and Emotion, DOI:
0.1080/02699931.2018.1472554
To link to this article:  https://doi.org/10.1080/02699931.2018.1472554
View supplementary material
Published online: 11 May 2018.
Submit your article to this journal
View related articles
View Crossmark data
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=pcem20"
1885acea0d24e7b953485f78ec57b2f04e946eaf,Combining Local and Global Features for 3D Face Tracking,"Combining Local and Global Features for 3D Face Tracking
Pengfei Xiong, Guoqing Li, Yuhang Sun
Megvii (face++) Research
{xiongpengfei, liguoqing,"
18a849b1f336e3c3b7c0ee311c9ccde582d7214f,"Efficiently Scaling up Crowdsourced Video Annotation A Set of Best Practices for High Quality, Economical Video Labeling","Int J Comput Vis
DOI 10.1007/s11263-012-0564-1
Efficiently Scaling up Crowdsourced Video Annotation
A Set of Best Practices for High Quality, Economical Video Labeling
Carl Vondrick · Donald Patterson · Deva Ramanan
Received: 31 October 2011 / Accepted: 20 August 2012
© Springer Science+Business Media, LLC 2012"
18cd79f3c93b74d856bff6da92bfc87be1109f80,A N a Pplication to H Uman F Ace P Hoto - S Ketch S Ynthesis and R Ecognition,"International Journal of Advances in Engineering & Technology, May 2012.
©IJAET                                                                                                          ISSN: 2231-1963
AN APPLICATION TO HUMAN FACE PHOTO-SKETCH
SYNTHESIS AND RECOGNITION
Amit R. Sharma and 2Prakash. R. Devale
Student and 2Professor & Head,
Department of Information Tech., Bharti Vidyapeeth Deemed University, Pune, India"
1886b6d9c303135c5fbdc33e5f401e7fc4da6da4,Knowledge Guided Disambiguation for Large-Scale Scene Classification With Multi-Resolution CNNs,"Knowledge Guided Disambiguation for Large-Scale
Scene Classification with Multi-Resolution CNNs
Limin Wang, Sheng Guo, Weilin Huang, Member, IEEE, Yuanjun Xiong, and Yu Qiao, Senior Member, IEEE"
1888bf50fd140767352158c0ad5748b501563833,A Guided Tour of Face Processing,"PA R T 1
THE BASICS"
185360fe1d024a3313042805ee201a75eac50131,Person De-Identification in Videos,"Person De-Identification in Videos
Prachi Agrawal and P. J. Narayanan"
1824b1ccace464ba275ccc86619feaa89018c0ad,One millisecond face alignment with an ensemble of regression trees,"One Millisecond Face Alignment with an Ensemble of Regression Trees
Vahid Kazemi and Josephine Sullivan
KTH, Royal Institute of Technology
Computer Vision and Active Perception Lab
Teknikringen 14, Stockholm, Sweden"
27a0a7837f9114143717fc63294a6500565294c2,Face Recognition in Unconstrained Environments: A Comparative Study,"Face Recognition in Unconstrained Environments: A
Comparative Study
Rodrigo Verschae, Javier Ruiz-Del-Solar, Mauricio Correa
To cite this version:
Rodrigo Verschae, Javier Ruiz-Del-Solar, Mauricio Correa. Face Recognition in Unconstrained
Environments: A Comparative Study: . Workshop on Faces in ’Real-Life’ Images: Detection,
Alignment, and Recognition, Oct 2008, Marseille, France. 2008. <inria-00326730>
HAL Id: inria-00326730
https://hal.inria.fr/inria-00326730
Submitted on 5 Oct 2008
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
276dbb667a66c23545534caa80be483222db7769,An Introduction to Image-based 3D Surface Reconstruction and a Survey of Photometric Stereo Methods,"D Res. 2, 03(2011)4
0.1007/3DRes.03(2011)4
DR REVIEW                                                            w
An  Introduction  to  Image-based  3D  Surface  Reconstruction  and  a
Survey of Photometric Stereo Methods
Steffen Herbort • Christian Wöhler
introduction
image-based  3D
techniques.  Then  we  describe
Received: 21Feburary 2011 / Revised: 20 March 2011 / Accepted: 11 May 2011
© 3D Research Center, Kwangwoon University and Springer 2011"
270733d986a1eb72efda847b4b55bc6ba9686df4,Recognizing Facial Expressions Using Model-Based Image Interpretation,"We are IntechOpen,
the first native scientific
publisher of Open Access books
,350
08,000
.7 M
Open access books available
International  authors and editors
Downloads
Our authors are among the
Countries delivered to
TOP 1%
2.2%
most cited scientists
Contributors from top 500 universities
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact
Numbers displayed above are based on latest data collected."
27169761aeab311a428a9dd964c7e34950a62a6b,Face Recognition Using 3D Head Scan Data Based on Procrustes Distance,"International Journal of the Physical Sciences Vol. 5(13), pp. 2020 -2029, 18 October, 2010
Available online at http://www.academicjournals.org/IJPS
ISSN 1992 - 1950 ©2010 Academic Journals
Full Length Research Paper
Face recognition using 3D head scan data based on
Ahmed Mostayed1, Sikyung Kim1, Mohammad Mynuddin Gani Mazumder1* and Se Jin Park2
Procrustes distance
Department of Electrical Engineering, Kongju National University, South Korea.
Korean Research Institute of Standards and Science (KRISS), Korea.
Accepted 6 July, 2010
Recently,  face  recognition  has  attracted  significant  attention  from  the  researchers  and  scientists  in
various  fields  of  research,  such  as  biomedical  informatics,  pattern  recognition,  vision,  etc  due  its
pplications in commercially available systems, defense and security purpose. In this paper a practical
method  for  face  reorganization  utilizing  head  cross  section  data  based  on  Procrustes  analysis  is
proposed. This proposed method relies on shape signatures of the contours extracted from face data.
The shape signatures are created by calculating the centroid distance of the boundary points, which is
translation  and  rotation  invariant  signature.  The  shape  signatures  for  a  selected  region  of  interest
(ROI)  are  used  as  feature  vectors  and  authentication  is  done  using  them.  After  extracting  feature
vectors  a  comparison  analysis  is  performed  utilizing  Procrustes  distance  to  differentiate  their  face
pattern from each other. The proposed scheme attains an equal error rate (EER) of 4.563% for the 400"
27173d0b9bb5ce3a75d05e4dbd8f063375f24bb5,Effect of Different Occlusion on Facial Expressions Recognition,"Ankita Vyas  Int. Journal of Engineering Research and Applications                               www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.40-44
RESEARCH ARTICLE
OPEN ACCESS
Effect of Different Occlusion on Facial Expressions Recognition
Ankita Vyas*, Ramchand Hablani**
*(Department of Computer Science, RGPV University, Indore)
** (Department of Computer Science, RGPV University, Indore)"
2770b095613d4395045942dc60e6c560e882f887,GridFace: Face Rectification via Learning Local Homography Transformations,"GridFace: Face Rectification via Learning Local
Homography Transformations
Erjin Zhou, Zhimin Cao, and Jian Sun
Face++, Megvii Inc."
27cccf992f54966feb2ab4831fab628334c742d8,"Facial Expression Recognition by Statistical, Spatial Features and using Decision Tree","International Journal of Computer Applications (0975 – 8887)
Volume 64– No.18, February 2013
Facial Expression Recognition by Statistical, Spatial
Features and using Decision Tree
Nazil Perveen
Assistant Professor
CSIT Department
GGV BIlaspur, Chhattisgarh
India
Darshan Kumar
Assistant Professor
Electronics (ECE) Department
JECRC Jaipur, Rajasthan India
IshanBhardwaj
Student of Ph.D.
Electrical Department
NIT Raipur, Chhattisgarh India"
27f8b01e628f20ebfcb58d14ea40573d351bbaad,Events based Multimedia Indexing and Retrieval,"DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School
Events based Multimedia Indexing
nd Retrieval
Kashif Ahmad
SUBMITTED TO THE DEPARTMENT OF
INFORMATION ENGINEERING AND COMPUTER SCIENCE (DISI)
IN THE PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
DOCTOR OF PHILOSOPHY
Advisor:
Examiners: Prof. Marco Carli, Universit`a degli Studi di Roma Tre, Italy
Prof. Nicola Conci, Universit`a degli Studi di Trento, Italy
Prof. Pietro Zanuttigh, Universit`a degli Studi di Padova, Italy
Prof. Giulia Boato, Universit`a degli Studi di Trento, Italy
December 2017"
27b1670e1b91ab983b7b1ecfe9eb5e6ba951e0ba,Comparison between k-nn and svm method for speech emotion recognition,"Comparison between k-nn and svm method
for speech emotion recognition
Muzaffar Khan, Tirupati Goskula, Mohmmed Nasiruddin ,Ruhina Quazi
Anjuman College of Engineering & Technology ,Sadar, Nagpur, India"
27ee8482c376ef282d5eb2e673ab042f5ded99d7,Scale Normalization for the Distance Maps AAM,"Scale Normalization for the Distance Maps AAM.
Denis GIRI, Maxime ROSENWALD, Benjamin VILLENEUVE, Sylvain LE GALLOU and Renaud S ´EGUIER
Email: {denis.giri, maxime.rosenwald, benjamin.villeneuve, sylvain.legallou,
Avenue de la boulaie, BP 81127,
5 511 Cesson-S´evign´e, France
Sup´elec, IETR-SCEE Team"
4b4106614c1d553365bad75d7866bff0de6056ed,Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions,"Unconstrained Facial Images: Database for Face
Recognition under Real-world Conditions⋆
Ladislav Lenc1,2 and Pavel Kr´al1,2
Dept. of Computer Science & Engineering
University of West Bohemia
Plzeˇn, Czech Republic
NTIS - New Technologies for the Information Society
University of West Bohemia
Plzeˇn, Czech Republic"
4b89cf7197922ee9418ae93896586c990e0d2867,Unsupervised Discovery of Action Classes,"LATEX Author Guidelines for CVPR Proceedings
First Author
Institution1
Institution1 address"
4b04247c7f22410681b6aab053d9655cf7f3f888,Robust Face Recognition by Constrained Part-based Alignment,"Robust Face Recognition by Constrained Part-based
Alignment
Yuting Zhang, Kui Jia, Yueming Wang, Gang Pan, Tsung-Han Chan, Yi Ma"
4b60e45b6803e2e155f25a2270a28be9f8bec130,Attribute based object identification,"Attribute Based Object Identification
Yuyin Sun, Liefeng Bo and Dieter Fox"
4b48e912a17c79ac95d6a60afed8238c9ab9e553,Minimum Margin Loss for Deep Face Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Minimum Margin Loss for Deep Face Recognition
Xin Wei, Student Member, IEEE, Hui Wang, Member, IEEE, Bryan Scotney, and Huan Wan"
4b5eeea5dd8bd69331bd4bd4c66098b125888dea,Human Activity Recognition Using Conditional Random Fields and Privileged Information,"Human Activity Recognition Using Conditional
Random Fields and Privileged Information
DOCTORAL THESIS
submitted to
the designated by the General Assembly Composition of the
Department of Computer Science & Engineering Inquiry
Committee
Michalis Vrigkas
in partial fulfillment of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
February 2016"
4be03fd3a76b07125cd39777a6875ee59d9889bd,Content-based analysis for accessing audiovisual archives: Alternatives for concept-based indexing and search,"CONTENT-BASED ANALYSIS FOR ACCESSING AUDIOVISUAL ARCHIVES:
ALTERNATIVES FOR CONCEPT-BASED INDEXING AND SEARCH
Tinne Tuytelaars
ESAT/PSI - IBBT
KU Leuven, Belgium"
11f7f939b6fcce51bdd8f3e5ecbcf5b59a0108f5,Rolling Riemannian Manifolds to Solve the Multi-class Classification Problem,"Rolling Riemannian Manifolds to Solve the Multi-class Classification Problem
Rui Caseiro1, Pedro Martins1, João F. Henriques1, Fátima Silva Leite1,2, and Jorge Batista1
Institute of Systems and Robotics - University of Coimbra, Portugal
Department of Mathematics - University of Coimbra, Portugal ,
{ruicaseiro, pedromartins, henriques,"
11691f1e7c9dbcbd6dfd256ba7ac710581552baa,SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos,"SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos
Silvio Giancola, Mohieddine Amine, Tarek Dghaily, Bernard Ghanem
King Abdullah University of Science and Technology (KAUST), Saudi Arabia"
1149c6ac37ae2310fe6be1feb6e7e18336552d95,"Classification of Face Images for Gender, Age, Facial Expression, and Identity","Proc. Int. Conf. on Artificial Neural Networks (ICANN’05), Warsaw, LNCS 3696, vol. I, pp. 569-574, Springer Verlag 2005
Classification of Face Images for Gender, Age,
Facial Expression, and Identity1
Torsten Wilhelm, Hans-Joachim B¨ohme, and Horst-Michael Gross
Department of Neuroinformatics and Cognitive Robotics
Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany"
11f17191bf74c80ad0b16b9f404df6d03f7c8814,Recognition of Visually Perceived Compositional Human Actions by Multiple Spatio-Temporal Scales Recurrent Neural Networks,"Recognition of Visually Perceived Compositional
Human Actions by Multiple Spatio-Temporal Scales
Recurrent Neural Networks
Haanvid Lee, Minju Jung, and Jun Tani"
1198572784788a6d2c44c149886d4e42858d49e4,Learning Discriminative Features using Encoder-Decoder type Deep Neural Nets,"Learning Discriminative Features using Encoder/Decoder type Deep
Neural Nets
Vishwajeet Singh1, Killamsetti Ravi Kumar2, K Eswaran3
ALPES, Bolarum, Hyderabad 500010,
ALPES, Bolarum, Hyderabad 500010,
SNIST, Ghatkesar, Hyderabad 501301,"
11fe6d45aa2b33c2ec10d9786a71c15ec4d3dca8,Tied Factor Analysis for Face Recognition across Large Pose Differences,"JUNE 2008
Tied Factor Analysis for Face Recognition
cross Large Pose Differences
Simon J.D. Prince, Member, IEEE, James H. Elder, Member, IEEE,
Jonathan Warrell, Member, IEEE, and Fatima M. Felisberti"
1134a6be0f469ff2c8caab266bbdacf482f32179,Facial Expression Identification Using Four-bit Co- Occurrence Matrixfeatures and K-nn Classifier,"IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308
FACIAL EXPRESSION IDENTIFICATION USING FOUR-BIT CO-
OCCURRENCE MATRIXFEATURES AND K-NN CLASSIFIER
Bonagiri  C S K Sunil Kumar1, V Bala Shankar2, Pullela S V V S R Kumar3
,2,3 Department of Computer Science & Engineering, Aditya College of Engineering, Surampalem, East Godavari
District, Andhra Pradesh, India"
111a9645ad0108ad472b2f3b243ed3d942e7ff16,Facial Expression Classification Using Combined Neural Networks,"Facial Expression Classification Using
Combined Neural Networks
Rafael V. Santos, Marley M.B.R. Vellasco, Raul Q. Feitosa, Ricardo Tanscheit
DEE/PUC-Rio, Marquês de São Vicente 225, Rio de Janeiro – RJ - Brazil"
111d0b588f3abbbea85d50a28c0506f74161e091,Facial Expression Recognition from Visual Information using Curvelet Transform,"International Journal of Computer Applications (0975 – 8887)
Volume 134 – No.10, January 2016
Facial Expression Recognition from Visual Information
using Curvelet Transform
Pratiksha Singh
Surabhi Group of Institution Bhopal
systems.  Further  applications"
7d98dcd15e28bcc57c9c59b7401fa4a5fdaa632b,Face Appearance Factorization for Expression Analysis and Synthesis,"FACE APPEARANCE FACTORIZATION FOR EXPRESSION ANALYSIS AND SYNTHESIS
Bouchra Abboud, Franck Davoine
Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne.
BP 20529, 60205 COMPIEGNE Cedex, FRANCE.
E-mail:"
7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22,Labeled Faces in the Wild: A Survey,"Labeled Faces in the Wild: A Survey
Erik Learned-Miller, Gary Huang, Aruni RoyChowdhury, Haoxiang Li, Gang Hua"
7d73adcee255469aadc5e926066f71c93f51a1a5,Face alignment by deep convolutional network with adaptive learning rate,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
7d9fe410f24142d2057695ee1d6015fb1d347d4a,Facial Expression Feature Extraction Based on FastLBP,"Facial Expression Feature Extraction Based on
FastLBP
Computer and Information Engineering Department of Beijing Technology and Business University, Beijing, China
Ya Zheng
Email:
Computer and Information Engineering Department of Beijing Technology and Business University, Beijing, China
Email:
Xiuxin Chen, Chongchong Yu and Cheng Gao
facial  expression"
7dffe7498c67e9451db2d04bb8408f376ae86992,LEAR-INRIA submission for the THUMOS workshop,"LEAR-INRIA submission for the THUMOS workshop
Heng Wang and Cordelia Schmid
LEAR, INRIA, France"
7d3f6dd220bec883a44596ddec9b1f0ed4f6aca2,Linear Regression for Face Recognition,"Linear Regression for Face Recognition
Imran Naseem,
Roberto Togneri, Senior Member, IEEE, and
Mohammed Bennamoun"
29ce6b54a87432dc8371f3761a9568eb3c5593b0,Age Sensitivity of Face Recognition Algorithms,"Kent Academic Repository
Full text document (pdf)
Citation for published version
Yassin, DK H. PHM and Hoque, Sanaul and Deravi, Farzin  (2013) Age Sensitivity of Face Recognition
pp. 12-15.
https://doi.org/10.1109/EST.2013.8
Link to record in KAR
http://kar.kent.ac.uk/43222/
Document Version
Author's Accepted Manuscript
Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
ontent is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.
Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.
Enquiries
For any further enquiries regarding the licence status of this document, please contact:"
292eba47ef77495d2613373642b8372d03f7062b,Deep Secure Encoding: An Application to Face Recognition,"Deep Secure Encoding: An Application to Face Recognition
Rohit Pandey
Yingbo Zhou
Venu Govindaraju"
29e96ec163cb12cd5bd33bdf3d32181c136abaf9,Regularized Locality Preserving Projections with Two-Dimensional Discretized Laplacian Smoothing,"Report No. UIUCDCS-R-2006-2748
UILU-ENG-2006-1788
Regularized Locality Preserving Projections with Two-Dimensional
Discretized Laplacian Smoothing
Deng Cai, Xiaofei He, and Jiawei Han
July 2006"
29e793271370c1f9f5ac03d7b1e70d1efa10577c,Face Recognition Based on Multi-classifierWeighted Optimization and Sparse Representation,"International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol.6, No.5 (2013), pp.423-436
http://dx.doi.org/10.14257/ijsip.2013.6.5.37
Face Recognition Based on Multi-classifierWeighted Optimization
nd Sparse Representation
Deng Nan1, Zhengguang Xu2 and ShengQin Bian3
,2,3Institute of control science and engineering,
University of Science and Technology Beijing
,2,330 Xueyuan Road, Haidian District, Beijing 100083 P. R.China"
29c7dfbbba7a74e9aafb6a6919629b0a7f576530,Automatic Facial Expression Analysis and Emotional Classification,"Automatic Facial Expression Analysis and Emotional
Classification
Robert Fischer
Submitted to the Department of Math and Natural Sciences
in partial fulfillment of the requirements for the degree of a
Diplomingenieur der Optotechnik und Bildverarbeitung (FH)
(Diplom Engineer of Photonics and Image Processing)
t the
UNIVERSITY OF APPLIED SCIENCE DARMSTADT (FHD)
Accomplished and written at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT)
October 2004
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Math and Natural Sciences
October 30, 2004
Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dr. Harald Scharfenberg
Professor at FHD
Thesis Supervisor
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ."
292c6b743ff50757b8230395c4a001f210283a34,Fast violence detection in video,"Fast Violence Detection in Video
O. Deniz1, I. Serrano1, G. Bueno1 and T-K. Kim2
VISILAB group, University of Castilla-La Mancha, E.T.S.I.Industriales, Avda. Camilo Jose Cela s.n, 13071 Spain
Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London SW7 2AZ, UK.
{oscar.deniz, ismael.serrano,
Keywords:
ction recognition, violence detection, fight detection"
294d1fa4e1315e1cf7cc50be2370d24cc6363a41,A modular non-negative matrix factorization for parts-based object recognition using subspace representation,"008 SPIE Digital Library -- Subscriber Archive Copy
Processing: Machine Vision Applications, edited by Kurt S. Niel, David Fofi, Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6813, 68130C, © 2008 SPIE-IS&T · 0277-786X/08/$18SPIE-IS&T/ Vol. 6813  68130C-1"
29d414bfde0dfb1478b2bdf67617597dd2d57fc6,Perfect histogram matching PCA for face recognition,"Multidim Syst Sign Process (2010) 21:213–229
DOI 10.1007/s11045-009-0099-y
Perfect histogram matching PCA for face recognition
Ana-Maria Sevcenco · Wu-Sheng Lu
Received: 10 August 2009 / Revised: 21 November 2009 / Accepted: 29 December 2009 /
Published online: 14 January 2010
© Springer Science+Business Media, LLC 2010"
290136947fd44879d914085ee51d8a4f433765fa,On a taxonomy of facial features,"On a Taxonomy of Facial Features
Brendan Klare and Anil K. Jain"
2957715e96a18dbb5ed5c36b92050ec375214aa6,InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity,"Improving Face Attribute Detection with Race and Gender Diversity
InclusiveFaceNet:
Hee Jung Ryu 1 Hartwig Adam * 1 Margaret Mitchell * 1"
2965d092ed72822432c547830fa557794ae7e27b,Improving Representation and Classification of Image and Video Data for Surveillance Applications,"Improving Representation and Classification of Image and
Video Data for Surveillance Applications
Andres Sanin
BSc(Biol), MSc(Biol), MSc(CompSc)
A thesis submitted for the degree of Doctor of Philosophy at
The University of Queensland in 2012
School of Information Technology and Electrical Engineering"
2921719b57544cfe5d0a1614d5ae81710ba804fa,Face Recognition Enhancement Based on Image File Formats and Wavelet De - noising,"Face Recognition Enhancement Based on Image
File Formats and Wavelet De-noising
Isra’a Abdul-Ameer Abdul-Jabbar, Jieqing Tan, and Zhengfeng Hou"
29a013b2faace976f2c532533bd6ab4178ccd348,Hierarchical Manifold Learning With Applications to Supervised Classification for High-Resolution Remotely Sensed Images,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Hierarchical Manifold Learning With Applications
to Supervised Classification for High-Resolution
Remotely Sensed Images
Hong-Bing Huang, Hong Huo, and Tao Fang"
29756b6b16d7b06ea211f21cdaeacad94533e8b4,Thresholding Approach based on GPU for Facial Expression Recognition,"Thresholding Approach based on GPU for Facial
Expression Recognition
Jesús García-Ramírez1, J. Arturo Olvera-López1, Ivan Olmos-Pineda1, Georgina
Flores-Becerra2, Adolfo Aguilar-Rico2
Benemérita Universidad Autónoma de Puebla, Faculty of Computer Science, Puebla, México
Instituto Tecnológico de Puebla, Puebla, México"
293193d24d5c4d2975e836034bbb2329b71c4fe7,Building a Corpus of Facial Expressions for Learning-Centered Emotions,"Building a Corpus of Facial Expressions
for Learning-Centered Emotions
María Lucía Barrón-Estrada, Ramón Zatarain-Cabada,
Bianca Giovanna Aispuro-Medina, Elvia Minerva Valencia-Rodríguez,
Ana Cecilia Lara-Barrera
Instituto Tecnológico de Culiacán, Culiacán, Sinaloa,
Mexico
{lbarron, rzatarain, m06170904, m95170906, m15171452}"
294bd7eb5dc24052237669cdd7b4675144e22306,Automatic Face Annotation,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Automatic Face Annotation
Ashna Shajahan
M.Tech Student, Dept. of Computer Science & Engineering, Mount Zion College of Engineering, Pathanamthitta, Kerala, India"
2988f24908e912259d7a34c84b0edaf7ea50e2b3,A Model of Brightness Variations Due to Illumination Changes and Non-rigid Motion Using Spherical Harmonics,"A Model of Brightness Variations Due to
Illumination Changes and Non-rigid Motion
Using Spherical Harmonics
Jos´e M. Buenaposada
Alessio Del Bue
Dep. Ciencias de la Computaci´on,
U. Rey Juan Carlos, Spain
http://www.dia.fi.upm.es/~pcr
Inst. for Systems and Robotics
Inst. Superior T´ecnico, Portugal
http://www.isr.ist.utl.pt/~adb
Enrique Mu˜noz
Facultad de Inform´atica,
U. Complutense de Madrid, Spain
Luis Baumela
Dep. de Inteligencia Artificial,
U. Polit´ecnica de Madrid, Spain
http://www.dia.fi.upm.es/~pcr
http://www.dia.fi.upm.es/~pcr"
7cee802e083c5e1731ee50e731f23c9b12da7d36,2^B3^C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional Networks,"B3C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional
Networks
Vandit Gajjar
Department of Electronics and Communication Engineering and
Computer Vision Group, L. D. College of Engineering, Ahmedabad, India"
7c47da191f935811f269f9ba3c59556c48282e80,Robust eye centers localization with zero-crossing encoded image projections,"Robust Eye Centers Localization
with Zero–Crossing Encoded Image Projections
Laura Florea
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313
Corneliu Florea
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313
Constantin Vertan
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313"
7c45b5824645ba6d96beec17ca8ecfb22dfcdd7f,News Image Annotation on a Large Parallel Text-image Corpus,"News image annotation on a large parallel text-image corpus
Pierre Tirilly, Vincent Claveau, Patrick Gros
Universit´e de Rennes 1/IRISA, CNRS/IRISA, INRIA Rennes-Bretagne Atlantique
Campus de Beaulieu
5042 Rennes Cedex, France"
7c0a6824b556696ad7bdc6623d742687655852db,MPCA+MDA: A novel approach for face recognition based on tensor objects,"8th Telecommunications forum TELFOR 2010
Serbia, Belgrade, November 23-25, 2010.
MPCA+DATER: A Novel Approach for Face
Recognition Based on Tensor Objects
Ali. A. Shams Baboli, Member, IEEE, G. Rezai-rad, Member, IEEE, Aref. Shams Baboli"
7c95449a5712aac7e8c9a66d131f83a038bb7caa,This is an author produced version of Facial first impressions from another angle: How social judgements are influenced by changeable and invariant facial properties. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/102935/,"This is an author produced version of Facial first impressions from another angle: How
social judgements are influenced by changeable and invariant facial properties.
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/102935/
Article:
Sutherland, Clare, Young, Andrew William orcid.org/0000-0002-1202-6297 and Gillian,
Rhodes (2017) Facial first impressions from another angle: How social judgements are
influenced by changeable and invariant facial properties. British journal of psychology. pp.
97-415. ISSN 0007-1269
https://doi.org/10.1111/bjop.12206
promoting access to
White Rose research papers
http://eprints.whiterose.ac.uk/"
7c3e09e0bd992d3f4670ffacb4ec3a911141c51f,Transferring Object-Scene Convolutional Neural Networks for Event Recognition in Still Images,"Noname manuscript No.
(will be inserted by the editor)
Transferring Object-Scene Convolutional Neural Networks for
Event Recognition in Still Images
Limin Wang · Zhe Wang · Yu Qiao · Luc Van Gool
Received: date / Accepted: date"
7c7b0550ec41e97fcfc635feffe2e53624471c59,"Head, Eye, and Hand Patterns for Driver Activity Recognition","051-4651/14 $31.00 © 2014 IEEE
DOI 10.1109/ICPR.2014.124"
7c119e6bdada2882baca232da76c35ae9b5277f8,Facial expression recognition using embedded Hidden Markov Model,"Facial Expression Recognition Using Embedded
Hidden Markov Model
Languang He, Xuan Wang, Member, IEEE, Chenglong Yu, Member, IEEE, Kun Wu
Intelligence Computing Research Center
HIT Shenzhen Graduate School
Shenzhen, China
{telent, wangxuan, ycl, wukun}"
7c9a65f18f7feb473e993077d087d4806578214e,SpringerLink - Zeitschriftenbeitrag,"SpringerLink - Zeitschriftenbeitrag
http://www.springerlink.com/content/93hr862660nl1164/?p=abe5352...
Deutsch
Deutsch
Vorherige Beitrag    Nächste Beitrag
Beitrag markieren
In den Warenkorb legen
Zu gespeicherten Artikeln
hinzufügen
Permissions & Reprints
Diesen Artikel empfehlen
Ergebnisse
finden
Erweiterte Suche
im gesamten Inhalt
in dieser Zeitschrift
in diesem Heft
Diesen Beitrag exportieren
Diesen Beitrag exportieren als RIS
| Text"
7c1e1c767f7911a390d49bed4f73952df8445936,Non-Rigid Object Detection with LocalInterleaved Sequential Alignment (LISA),"NON-RIGID OBJECT DETECTION WITH LOCAL INTERLEAVED SEQUENTIAL ALIGNMENT (LISA)
Non-Rigid Object Detection with Local
Interleaved Sequential Alignment (LISA)
Karel Zimmermann, Member, IEEE,, David Hurych, Member, IEEE,
nd Tom´aˇs Svoboda, Member, IEEE"
7cf579088e0456d04b531da385002825ca6314e2,Emotion Detection on TV Show Transcripts with Sequence-based Convolutional Neural Networks,"Emotion Detection on TV Show Transcripts with
Sequence-based Convolutional Neural Networks
Sayyed M. Zahiri
Jinho D. Choi
Mathematics and Computer Science
Mathematics and Computer Science
Emory University
Atlanta, GA 30322, USA
Emory University
Atlanta, GA 30322, USA"
7c349932a3d083466da58ab1674129600b12b81c,Leveraging Multiple Features for Image Retrieval and Matching,
162403e189d1b8463952fa4f18a291241275c354,Action Recognition with Spatio-Temporal Visual Attention on Skeleton Image Sequences,"Action Recognition with Spatio-Temporal
Visual Attention on Skeleton Image Sequences
Zhengyuan Yang, Student Member, IEEE, Yuncheng Li, Jianchao Yang, Member, IEEE,
nd Jiebo Luo, Fellow, IEEE
With a strong ability of modeling sequential data, Recur-
rent Neural Networks (RNN) with Long Short-Term Memory
(LSTM) neurons outperform the previous hand-crafted feature
ased methods [9], [10]. Each skeleton frame is converted into
feature vector and the whole sequence is fed into the RNN.
Despite the strong ability in modeling temporal sequences,
RNN structures lack the ability to efficiently learn the spatial
relations between the joints. To better use spatial information,
hierarchical structure is proposed in [11], [12] that feeds
the joints into the network as several pre-defined body part
groups. However,
limit
the effectiveness of representing spatial relations. A spatio-
temporal 2D LSTM (ST-LSTM) network [13] is proposed
to learn the spatial and temporal relations simultaneously.
Furthermore, a two-stream RNN structure [14] is proposed to"
160259f98a6ec4ec3e3557de5e6ac5fa7f2e7f2b,Discriminant multi-label manifold embedding for facial Action Unit detection,"Discriminant Multi-Label Manifold Embedding for Facial Action Unit
Detection
Signal Procesing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland
Anıl Y¨uce, Hua Gao and Jean-Philippe Thiran"
16671b2dc89367ce4ed2a9c241246a0cec9ec10e,Detecting the Number of Clusters in n-Way Probabilistic Clustering,"Detecting the Number of Clusters
in n-Way Probabilistic Clustering
Zhaoshui He, Andrzej Cichocki, Senior Member, IEEE,
Shengli Xie, Senior Member, IEEE, and Kyuwan Choi"
16395b40e19cbc6d5b82543039ffff2a06363845,Action Recognition in Video Using Sparse Coding and Relative Features,"Action Recognition in Video Using Sparse Coding and Relative Features
Anal´ı Alfaro
Domingo Mery
Alvaro Soto
P. Universidad Catolica de Chile
P. Universidad Catolica de Chile
P. Universidad Catolica de Chile
Santiago, Chile
Santiago, Chile
Santiago, Chile"
16c884be18016cc07aec0ef7e914622a1a9fb59d,Exploiting Multimodal Data for Image Understanding,"UNIVERSITÉ DE GRENOBLE
No attribué par la bibliothèque
THÈSE
pour obtenir le grade de
DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques et Informatique
préparée au Laboratoire Jean Kuntzmann
dans le cadre de l’École Doctorale Mathématiques,
Sciences et Technologies de l’Information, Informatique
présentée et soutenue publiquement
Matthieu Guillaumin
le 27 septembre 2010
Exploiting Multimodal Data for Image Understanding
Données multimodales pour l’analyse d’image
Directeurs de thèse : Cordelia Schmid et Jakob Verbeek
M. Éric Gaussier
M. Antonio Torralba
Mme Tinne Tuytelaars Katholieke Universiteit Leuven
M. Mark Everingham University of Leeds
Mme Cordelia Schmid"
1630e839bc23811e340bdadad3c55b6723db361d,Exploiting relationship between attributes for improved face verification,"SONG, TAN, CHEN: EXPLOITING RELATIONSHIP BETWEEN ATTRIBUTES
Exploiting Relationship between Attributes for
Improved Face Verification
Fengyi Song
Xiaoyang Tan
Songcan Chen
Department of Computer Science and
Technology, Nanjing University of Aero-
nautics and Astronautics, Nanjing 210016,
P.R. China"
16286fb0f14f6a7a1acc10fcd28b3ac43f12f3eb,"All Smiles are Not Created Equal: Morphology and Timing of Smiles Perceived as Amused, Polite, and Embarrassed/Nervous.","J Nonverbal Behav
DOI 10.1007/s10919-008-0059-5
O R I G I N A L P A P E R
All Smiles are Not Created Equal: Morphology
nd Timing of Smiles Perceived as Amused, Polite,
nd Embarrassed/Nervous
Zara Ambadar Æ Jeffrey F. Cohn Æ Lawrence Ian Reed
Ó Springer Science+Business Media, LLC 2008"
166186e551b75c9b5adcc9218f0727b73f5de899,Automatic Age and Gender Recognition in Human Face Image Dataset using Convolutional Neural Network System,"Volume 4, Issue 2, February 2016
International Journal of Advance Research in
Computer Science and Management Studies
Research Article / Survey Paper / Case Study
Available online at: www.ijarcsms.com
ISSN: 2321-7782 (Online)
Automatic Age and Gender Recognition in Human Face Image
Dataset using Convolutional Neural Network System
Subhani Shaik1
Assoc. Prof & Head of the Department
Department of CSE,
Anto A. Micheal2
Associate Professor
Department of CSE,
St.Mary’s Group of Institutions Guntur
St.Mary’s Group of Institutions Guntur
Chebrolu(V&M),Guntur(Dt),
Andhra Pradesh - India
Chebrolu(V&M),Guntur(Dt),
Andhra Pradesh - India"
16d9b983796ffcd151bdb8e75fc7eb2e31230809,GazeDirector: Fully Articulated Eye Gaze Redirection in Video,"EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer
(Guest Editors)
Volume 37 (2018), Number 2
GazeDirector: Fully Articulated Eye Gaze Redirection in Video
ID: paper1004"
162c33a2ec8ece0dc96e42d5a86dc3fedcf8cd5e,Large-Scale Classification by an Approximate Least Squares One-Class Support Vector Machine Ensemble,"Mygdalis, V., Iosifidis, A., Tefas, A., & Pitas, I. (2016). Large-Scale
Classification by an Approximate Least Squares One-Class Support Vector
of a meeting held 20-22 August 2015, Helsinki, Finland (Vol. 2, pp. 6-10).
Institute of Electrical and Electronics Engineers (IEEE). DOI:
0.1109/Trustcom.2015.555
Peer reviewed version
Link to published version (if available):
0.1109/Trustcom.2015.555
Link to publication record in Explore Bristol Research
PDF-document
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms"
161eb88031f382e6a1d630cd9a1b9c4bc6b47652,Automatic facial expression recognition using features of salient facial patches,"Automatic Facial Expression Recognition
Using Features of Salient Facial Patches
S L Happy and Aurobinda Routray"
4209783b0cab1f22341f0600eed4512155b1dee6,Accurate and Efficient Similarity Search for Large Scale Face Recognition,"Accurate and Efficient Similarity Search for Large Scale Face Recognition
Ce Qi
Zhizhong Liu
Fei Su"
42e3dac0df30d754c7c7dab9e1bb94990034a90d,PANDA: Pose Aligned Networks for Deep Attribute Modeling,"PANDA: Pose Aligned Networks for Deep Attribute Modeling
Ning Zhang1,2, Manohar Paluri1, Marc’Aurelio Ranzato1, Trevor Darrell2, Lubomir Bourdev1
EECS, UC Berkeley
{mano, ranzato,
Facebook AI Research
{nzhang,"
42cc9ea3da1277b1f19dff3d8007c6cbc0bb9830,Coordinated Local Metric Learning,"Coordinated Local Metric Learning
Shreyas Saxena
Jakob Verbeek
Inria∗"
42350e28d11e33641775bef4c7b41a2c3437e4fd,Multilinear Discriminant Analysis for Face Recognition,"Multilinear Discriminant Analysis
for Face Recognition
Shuicheng Yan, Member, IEEE, Dong Xu, Qiang Yang, Senior Member, IEEE, Lei Zhang, Member, IEEE,
Xiaoou Tang, Senior Member, IEEE, and Hong-Jiang Zhang, Fellow, IEEE"
42e155ea109eae773dadf74d713485be83fca105,Sparse reconstruction of facial expressions with localized gabor moments,
4270460b8bc5299bd6eaf821d5685c6442ea179a,"Partial Similarity of Objects, or How to Compare a Centaur to a Horse","Int J Comput Vis (2009) 84: 163–183
DOI 10.1007/s11263-008-0147-3
Partial Similarity of Objects, or How to Compare a Centaur
to a Horse
Alexander M. Bronstein · Michael M. Bronstein · Alfred
M. Bruckstein · Ron Kimmel
Received: 30 September 2007 / Accepted: 3 June 2008 / Published online: 26 July 2008
© Springer Science+Business Media, LLC 2008"
429d4848d03d2243cc6a1b03695406a6de1a7abd,"Face Recognition based on Logarithmic Fusion of SVD and KT Ramachandra A C , Raja K B , Venugopal K R , L M Patnaik","Face Recognition based on Logarithmic Fusion
International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-2, Issue-3, July 2012
of SVD and KT
Ramachandra A C, Raja K B, Venugopal K R, L M Patnaik"
42dc36550912bc40f7faa195c60ff6ffc04e7cd6,Visible and Infrared Face Identification via Sparse Representation,"Hindawi Publishing Corporation
ISRN Machine Vision
Volume 2013, Article ID 579126, 10 pages
http://dx.doi.org/10.1155/2013/579126
Research Article
Visible and Infrared Face Identification via
Sparse Representation
Pierre Buyssens1 and Marinette Revenu2
LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France
GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar´echal Juin,
4050 Caen, France
Correspondence should be addressed to Pierre Buyssens;
Received 4 April 2013; Accepted 27 April 2013
Academic Editors: O. Ghita, D. Hernandez, Z. Hou, M. La Cascia, and J. M. Tavares
Copyright © 2013 P. Buyssens and M. Revenu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
ited.
We present a facial recognition technique based on facial sparse representation. A dictionary is learned from data, and patches
extracted from a face are decomposed in a sparse manner onto this dictionary. We particularly focus on the design of dictionaries
that play a crucial role in the final identification rates. Applied to various databases and modalities, we show that this approach"
42ecfc3221c2e1377e6ff849afb705ecd056b6ff,Pose Invariant Face Recognition Under Arbitrary Unknown Lighting Using Spherical Harmonics,"Pose Invariant Face Recognition under Arbitrary
Unknown Lighting using Spherical Harmonics
Lei Zhang and Dimitris Samaras
Department of Computer Science,
SUNY at Stony Brook, NY, 11790
{lzhang,"
421955c6d2f7a5ffafaf154a329a525e21bbd6d3,Evolutionary Pursuit and Its Application to Face Recognition,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 6,
JUNE 2000
Evolutionary Pursuit and Its
Application to Face Recognition
Chengjun Liu, Member, IEEE, and Harry Wechsler, Fellow, IEEE"
42df75080e14d32332b39ee5d91e83da8a914e34,Illumination Compensation Using Oriented Local Histogram Equalization and its Application to Face Recognition,"Illumination Compensation Using Oriented
Local Histogram Equalization and
Its Application to Face Recognition
Ping-Han Lee, Szu-Wei Wu, and Yi-Ping Hung"
89945b7cd614310ebae05b8deed0533a9998d212,Divide-and-Conquer Method for L1 Norm Matrix Factorization in the Presence of Outliers and Missing Data,"Divide-and-Conquer Method for L1 Norm Matrix
Factorization in the Presence of Outliers and
Missing Data
Deyu Meng and Zongben Xu"
89c84628b6f63554eec13830851a5d03d740261a,Image Enhancement and Automated Target Recognition Techniques for Underwater Electro-Optic Imagery,"Image Enhancement and Automated Target Recognition
Techniques for Underwater Electro-Optic Imagery
Thomas Giddings (PI), Cetin Savkli and Joseph Shirron
Metron, Inc.
1911 Freedom Dr., Suite 800
Reston, VA 20190
phone: (703) 437-2428   fax: (703) 787-3518    email:
Contract Number N00014-07-C-0351
http:www.metsci.com
LONG TERM GOALS
The long-term goal of this project is to provide a flexible, accurate and extensible automated target
recognition (ATR) system for use with a variety of imaging and non-imaging sensors.  Such an ATR
system, once it achieves a high level of performance, can relieve human operators from the tedious
usiness of pouring over vast quantities of mostly mundane data, calling the operator in only when the
omputer assessment involves an unacceptable level of  ambiguity. The ATR system will provide most
leading edge algorithms for detection, segmentation, and classification while incorporating many novel
lgorithms that we are developing at Metron.  To address one of the most critical challenges in ATR
technology, the system will also provide powerful feature extraction routines designed for specific
pplications of current interest.
OBJECTIVES"
89c51f73ec5ebd1c2a9000123deaf628acf3cdd8,Face Recognition Based on Nonlinear Feature Approach Eimad,"American Journal of Applied Sciences 5 (5): 574-580, 2008
ISSN 1546-9239
© 2008 Science Publications
Face Recognition Based on Nonlinear Feature Approach
Eimad E.A. Abusham, 1Andrew T.B. Jin, 1Wong E. Kiong and 2G. Debashis
Faculty of Information Science and Technology,
Faculty of Engineering and Technology, Multimedia University (Melaka Campus),
Jalan Ayer Keroh Lama, 75450 Bukit Beruang, Melaka, Malaysia"
89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199,Application of an Improved Mean Shift Algorithm in Real-time Facial Expression Recognition,"Application of an Improved Mean Shift Algorithm
in Real-time Facial Expression Recognition
School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008,china
School of Electrical and Information Engineering, Hunan University of Technology, Hunan, Zhuzhou, 412008,china
School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008,china
Zhao-yi PENG
Yu ZHOU
Yan-hui  ZHU
Email:
Zhi-qiang WEN
Email:
School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008,china
facial
real-time
expression"
893239f17dc2d17183410d8a98b0440d98fa2679,UvA-DARE ( Digital Academic Repository ) Expression-Invariant Age Estimation,"UvA-DARE (Digital Academic Repository)
Expression-Invariant Age Estimation
Alnajar, F.; Lou, Z.; Alvarez Lopez, J.M.; Gevers, T.
Published in:
Proceedings of the British Machine Vision Conference 2014
0.5244/C.28.14
Link to publication
Citation for published version (APA):
Alnajar, F., Lou, Z., Alvarez, J., & Gevers, T. (2014). Expression-Invariant Age Estimation. In M. Valstar, A.
French, & T. Pridmore (Eds.), Proceedings of the British Machine Vision Conference 2014 (pp. 14.1-14.11).
BMVA Press. DOI: 10.5244/C.28.14
General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.
Download date: 04 Aug 2017"
8913a5b7ed91c5f6dec95349fbc6919deee4fc75,BigBIRD: A large-scale 3D database of object instances,"BigBIRD: A Large-Scale 3D Database of Object Instances
Arjun Singh, James Sha, Karthik S. Narayan, Tudor Achim, Pieter Abbeel"
89d3a57f663976a9ac5e9cdad01267c1fc1a7e06,Neural Class-Specific Regression for face verification,"Neural Class-Specific Regression for face
verification
Guanqun Cao, Alexandros Iosifidis, Moncef Gabbouj"
89bc311df99ad0127383a9149d1684dfd8a5aa34,Towards ontology driven learning of visual concept detectors,"Towards ontology driven learning of
visual concept detectors
Sanchit ARORA, Chuck CHO, Paul FITZPATRICK, Franc¸ois SCHARFFE 1
Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA"
898a66979c7e8b53a10fd58ac51fbfdb6e6e6e7c,Dynamic vs. Static Recognition of Facial Expressions,"Dynamic vs. Static Recognition of Facial
Expressions
No Author Given
No Institute Given"
89d7cc9bbcd2fdc4f4434d153ecb83764242227b,Face-Name Graph Matching For The Personalities In Movie Screen,"Einstein.J, DivyaBaskaran / International Journal of Engineering Research and Applications
(IJERA)             ISSN: 2248-9622           www.ijera.com
Vol. 3, Issue 2, March -April 2013, pp.351-355
Face-Name Graph Matching For The Personalities In Movie
Screen
*(Asst. Professor, Dept. of IT, VelTech HighTech Dr. Rangarajan Dr.Sakunthala Engineering College,
Einstein.J*, DivyaBaskaran**
** (Final Year Student, M.Tech IT, Vel Tech Dr. RR &Dr. SR Technical University, Chennai.)
Chennai.)"
891b10c4b3b92ca30c9b93170ec9abd71f6099c4,2 New Statement for Structured Output Regression Problems,"Facial landmark detection using structured output deep
neural networks
Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien
Adam∗2
LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France
LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France.
September 24, 2015"
45c340c8e79077a5340387cfff8ed7615efa20fd,Assessment of the Emotional States of Students during e-Learning,
45e7ddd5248977ba8ec61be111db912a4387d62f,Adversarial Learning of Structure-Aware Fully Convolutional Networks for Landmark Localization,"CHEN ET AL.: ADVERSARIAL POSENET
Adversarial Learning of Structure-Aware Fully
Convolutional Networks for Landmark
Localization
Yu Chen1, Chunhua Shen2, Hao Chen2, Xiu-Shen Wei3, Lingqiao Liu2 and Jian Yang1"
4526992d4de4da2c5fae7a5ceaad6b65441adf9d,System for Medical Mask Detection in the Operating Room Through Facial Attributes,"System for Medical Mask Detection
in the Operating Room Through
Facial Attributes
A. Nieto-Rodr´ıguez, M. Mucientes(B), and V.M. Brea
Center for Research in Information Technologies (CiTIUS),
University of Santiago de Compostela, Santiago de Compostela, Spain"
45efd6c2dd4ca19eed38ceeb7c2c5568231451e1,Comparative Analysis of Statistical Approach for Face Recognition,"Comparative Analysis of Statistical Approach
for Face Recognition
S.Pradnya1, M.Riyajoddin2, M.Janga Reddy3
CMR Institute of Technology, Hyderabad, (India)"
4560491820e0ee49736aea9b81d57c3939a69e12,Investigating the Impact of Data Volume and Domain Similarity on Transfer Learning Applications,"Investigating the Impact of Data Volume and
Domain Similarity on Transfer Learning
Applications
Michael Bernico, Yuntao Li, and Dingchao Zhang
State Farm Insurance, Bloomington IL 61710, USA,"
4571626d4d71c0d11928eb99a3c8b10955a74afe,Geometry Guided Adversarial Facial Expression Synthesis,"Geometry Guided Adversarial Facial Expression Synthesis
Lingxiao Song1,2
Zhihe Lu1,3 Ran He1,2,3
Zhenan Sun1,2
Tieniu Tan1,2,3
National Laboratory of Pattern Recognition, CASIA
Center for Research on Intelligent Perception and Computing, CASIA
Center for Excellence in Brain Science and Intelligence Technology, CAS"
4534d78f8beb8aad409f7bfcd857ec7f19247715,Transformation-Based Models of Video Sequences,"Under review as a conference paper at ICLR 2017
TRANSFORMATION-BASED MODELS OF VIDEO
SEQUENCES
Joost van Amersfoort ∗, Anitha Kannan, Marc’Aurelio Ranzato,
Arthur Szlam, Du Tran & Soumith Chintala
Facebook AI Research
{akannan, ranzato, aszlam, trandu,"
459e840ec58ef5ffcee60f49a94424eb503e8982,One-shot Face Recognition by Promoting Underrepresented Classes,"One-shot Face Recognition by Promoting Underrepresented Classes
Yandong Guo, Lei Zhang
Microsoft
One Microsoft Way, Redmond, Washington, United States
{yandong.guo,"
451c42da244edcb1088e3c09d0f14c064ed9077e,Using subclasses in discriminant non-negative subspace learning for facial expression recognition,"© EURASIP, 2011  -  ISSN 2076-1465
9th European Signal Processing Conference (EUSIPCO 2011)
INTRODUCTION"
4568063b7efb66801e67856b3f572069e774ad33,Correspondence driven adaptation for human profile recognition,"Correspondence Driven Adaptation for Human Profile Recognition
Ming Yang1, Shenghuo Zhu1, Fengjun Lv2, Kai Yu1
NEC Laboratories America, Inc.
Huawei Technologies (USA)
Cupertino, CA 95014
Santa Clara, CA 95050"
45e459462a80af03e1bb51a178648c10c4250925,LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning,"LCrowdV: Generating Labeled Videos for
Simulation-based Crowd Behavior Learning
Ernest Cheung1, Tsan Kwong Wong1, Aniket Bera1, Xiaogang Wang2, and
Dinesh Manocha1
The University of North Carolina at Chapel Hill"
458677de7910a5455283a2be99f776a834449f61,Face Image Retrieval Using Facial Attributes By K-Means,"Face Image Retrieval Using Facial Attributes By
K-Means
[1]I.Sudha,  [2]V.Saradha, [3]M.Tamilselvi, [4]D.Vennila
[1]AP, Department of CSE ,[2][3][4] B.Tech(CSE)
Achariya college of Engineering Technology-
Puducherry"
45a6333fc701d14aab19f9e2efd59fe7b0e89fec,Dataset Creation for Gesture Recognition,"HAND POSTURE DATASET CREATION FOR GESTURE
RECOGNITION
Luis Anton-Canalis
Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria
Campus Universitario de Tafira, 35017 Gran Canaria, Spain
Elena Sanchez-Nielsen
Departamento de E.I.O. y Computacion
8271 Universidad de La Laguna, Spain
Keywords:
Image understanding, Gesture recognition, Hand dataset."
1ffe20eb32dbc4fa85ac7844178937bba97f4bf0,Face Clustering: Representation and Pairwise Constraints,"Face Clustering: Representation and Pairwise
Constraints
Yichun Shi, Student Member, IEEE, Charles Otto, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
1f8304f4b51033d2671147b33bb4e51b9a1e16fe,Beyond Trees: MAP Inference in MRFs via Outer-Planar Decomposition,"Noname manuscript No.
(will be inserted by the editor)
Beyond Trees:
MAP Inference in MRFs via Outer-Planar Decomposition
Dhruv Batra · Andrew C. Gallagher · Devi Parikh · Tsuhan Chen
Received: date / Accepted: date"
1f9ae272bb4151817866511bd970bffb22981a49,An Iterative Regression Approach for Face Pose Estimation from RGB Images,"An Iterative Regression Approach for Face Pose Estima-
tion from RGB Images
Wenye He
This paper presents a iterative optimization method, explicit shape regression, for face pose
detection and localization. The regression function is learnt to find out the entire facial shape
nd minimize the alignment errors. A cascaded learning framework is employed to enhance
shape constraint during detection. A combination of a two-level boosted regression, shape
performance. In this paper, we have explain the advantage of ESR for deformable object like
face pose estimation and reveal its generic applications of the method. In the experiment,
we compare the results with different work and demonstrate the accuracy and robustness in
different scenarios.
Introduction
Pose estimation is an important problem in computer vision, and has enabled many practical ap-
plication from face expression 1 to activity tracking 2. Researchers design a new algorithm called
explicit shape regression (ESR) to find out face alignment from a picture 3. Figure 1 shows how
the system uses ESR to learn a shape of a human face image. A simple way to identify a face is to
find out facial landmarks like eyes, nose, mouth and chin. The researchers define a face shape S
nd S is composed of Nf p facial landmarks. Therefore, they get S = [x1, y1, ..., xNf p, yNf p]T . The
objective of the researchers is to estimate a shape S of a face image. The way to know the accuracy"
1fc249ec69b3e23856b42a4e591c59ac60d77118,Evaluation of a 3D-aided pose invariant 2D face recognition system,"Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System
Xiang Xu, Ha A. Le, Pengfei Dou, Yuhang Wu, Ioannis A. Kakadiaris
{xxu18, hale4, pdou, ywu35,
Computational Biomedicine Lab
800 Calhoun Rd. Houston, TX, USA"
1fbde67e87890e5d45864e66edb86136fbdbe20e,The Action Similarity Labeling Challenge,"The Action Similarity Labeling Challenge
Orit Kliper-Gross, Tal Hassner, and
Lior Wolf, Member, IEEE"
1f41a96589c5b5cee4a55fc7c2ce33e1854b09d6,Demographic Estimation from Face Images: Human vs. Machine Performance,"Demographic Estimation from Face Images:
Human vs. Machine Performance
Hu Han, Member, IEEE, Charles Otto, Student Member, IEEE, Xiaoming Liu, Member, IEEE
nd Anil K. Jain, Fellow, IEEE"
1f8e44593eb335c2253d0f22f7f9dc1025af8c0d,Fine-Tuning Regression Forests Votes for Object Alignment in the Wild,"Fine-tuning regression forests votes for object alignment in the wild.
Yang, H; Patras, I
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/22607
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
1f94734847c15fa1da68d4222973950d6b683c9e,Embedding Label Structures for Fine-Grained Feature Representation,"Embedding Label Structures for Fine-Grained Feature Representation
Xiaofan Zhang
UNC Charlotte
Charlotte, NC 28223
Feng Zhou
NEC Lab America
Cupertino, CA 95014
Yuanqing Lin
NEC Lab America
Cupertino, CA 95014
Shaoting Zhang
UNC Charlotte
Charlotte, NC 28223"
1fff309330f85146134e49e0022ac61ac60506a9,Data-Driven Sparse Sensor Placement for Reconstruction,"Data-Driven Sparse Sensor Placement for Reconstruction
Krithika Manohar∗, Bingni W. Brunton, J. Nathan Kutz, and Steven L. Brunton
Corresponding author:"
73f467b4358ac1cafb57f58e902c1cab5b15c590,Combination of Dimensionality Reduction Techniques for Face Image Retrieval: A Review,"ISSN 0976 3724                                                                                                                                  47
Combination of Dimensionality Reduction Techniques for Face
Image Retrieval: A Review
Fousiya K.K 1, Jahfar Ali P 2
M.Tech Scholar, MES College of Engineering, Kuttippuram,
Kerala
Asst. Professor, MES College of Engineering, Kuttippuram,
Kerala"
7323b594d3a8508f809e276aa2d224c4e7ec5a80,An Experimental Evaluation of Covariates Effects on Unconstrained Face Verification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
An Experimental Evaluation of Covariates
Effects on Unconstrained Face Verification
Boyu Lu, Student Member, IEEE, Jun-Cheng Chen, Member, IEEE, Carlos D Castillo, Member, IEEE
nd Rama Chellappa, Fellow, IEEE"
732e8d8f5717f8802426e1b9debc18a8361c1782,Unimodal Probability Distributions for Deep Ordinal Classification,"Unimodal Probability Distributions for Deep Ordinal Classification
Christopher Beckham 1 Christopher Pal 1"
73ed64803d6f2c49f01cffef8e6be8fc9b5273b8,Cooking in the kitchen: Recognizing and Segmenting Human Activities in Videos,"Noname manuscript No.
(will be inserted by the editor)
Cooking in the kitchen: Recognizing and Segmenting Human
Activities in Videos
Hilde Kuehne · Juergen Gall · Thomas Serre
Received: date / Accepted: date"
7306d42ca158d40436cc5167e651d7ebfa6b89c1,Transductive Zero-Shot Action Recognition by Word-Vector Embedding,"Noname manuscript No.
(will be inserted by the editor)
Transductive Zero-Shot Action Recognition by
Word-Vector Embedding
Xun Xu · Timothy Hospedales · Shaogang Gong
Received: date / Accepted: date"
734cdda4a4de2a635404e4c6b61f1b2edb3f501d,Automatic landmark point detection and tracking for human facial expressions,"Tie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8
http://jivp.eurasipjournals.com/content/2013/1/8
R ES EAR CH
Open Access
Automatic landmark point detection and tracking
for human facial expressions
Yun Tie* and Ling Guan"
7373c4a23684e2613f441f2236ed02e3f9942dd4,Feature extraction through Binary Pattern of Phase Congruency for facial expression recognition,"This document is downloaded from DR-NTU, Nanyang Technological
University Library, Singapore.
Title
Feature extraction through binary pattern of phase
ongruency for facial expression recognition
Author(s)
Shojaeilangari, Seyedehsamaneh; Yau, Wei-Yun; Li, Jun;
Teoh, Eam Khwang
Citation
Shojaeilangari, S., Yau, W. Y., Li, J., & Teoh, E. K.
(2012). Feature extraction through binary pattern of
phase congruency for facial expression recognition. 12th
International Conference on Control Automation Robotics
& Vision (ICARCV), 166-170.
http://hdl.handle.net/10220/18012
Rights
© 2012 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other
uses, in any current or future media, including
reprinting/republishing this material for advertising or"
732686d799d760ccca8ad47b49a8308b1ab381fb,Teachers’ differing classroom behaviors: The role of emotional sensitivity and cultural tolerance,"Running head: TEACHERS’ DIFFERING BEHAVIORS
Graduate School of Psychology
RESEARCH MASTER’S PSYCHOLOGY THESıS REPORT
Teachers’ differing classroom behaviors:
The role of emotional sensitivity and cultural tolerance
Ceren Su Abacıoğlu
Supervisor: prof. dr. Agneta Fischer
Second supervisor: dr. Disa Sauter
External Supervisor: prof. dr. Monique Volman
Research Master’s, Social Psychology
Ethics Committee Reference Code: 2016-SP-7084"
73fbdd57270b9f91f2e24989178e264f2d2eb7ae,Kernel linear regression for low resolution face recognition under variable illumination,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c,Unsupervised Learning of Object Landmarks by Factorized Spatial Embeddings,"imagesViewpoint factorizationLearned landmarksFigure1.Wepresentanovelmethodthatcanlearnviewpointin-variantlandmarkswithoutanysupervision.Themethodusesaprocessofviewpointfactorizationwhichlearnsadeeplandmarkdetectorcompatiblewithimagedeformations.Itcanbeappliedtorigidanddeformableobjectsandobjectcategories.terns.Achievingadeeperunderstandingofobjectsrequiresmodelingtheirintrinsicviewpoint-independentstructure.Oftenthisstructureisdefinedmanuallybyspecifyingen-titiessuchaslandmarks,parts,andskeletons.Givensuffi-cientmanualannotations,itispossibletoteachdeepneuralnetworksandothermodelstorecognizesuchstructuresinimages.However,theproblemoflearningsuchstructureswithoutmanualsupervisionremainslargelyopen.Inthispaper,wecontributeanewapproachtolearnviewpoint-independentrepresentationsofobjectsfromim-ageswithoutmanualsupervision(fig.1).Weformulatethistaskasafactorizationproblem,wheretheeffectsofimagedeformations,forexamplearisingfromaviewpointchange,areexplainedbythemotionofareferenceframeattachedtotheobjectandindependentoftheviewpoint.Afterdescribingthegeneralprinciple(sec.3.1),wein-1"
8796f2d54afb0e5c924101f54d469a1d54d5775d,Illumination Invariant Face Recognition Using Fuzzy LDA and FFNN,"Journal of Signal and Information Processing, 2012, 3, 45-50
http://dx.doi.org/10.4236/jsip.2012.31007 Published Online February 2012 (http://www.SciRP.org/journal/jsip)
Illumination Invariant Face Recognition Using Fuzzy LDA
nd FFNN
Behzad Bozorgtabar, Hamed Azami, Farzad Noorian
School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.
Email:
Received October 20th, 2011; revised November 24th, 2011; accepted December 10th, 2011"
87f285782d755eb85d8922840e67ed9602cfd6b9,Incorporating Boltzmann Machine Priors for Semantic Labeling in Images and Videos,"INCORPORATING BOLTZMANN MACHINE PRIORS
FOR SEMANTIC LABELING IN IMAGES AND VIDEOS
A Dissertation Presented
ANDREW KAE
Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of
DOCTOR OF PHILOSOPHY
May 2014
Computer Science"
871f5f1114949e3ddb1bca0982086cc806ce84a8,Discriminative learning of apparel features,"Discriminative Learning of Apparel Features
Rasmus Rothe1, Marko Ristin1, Matthias Dantone1, and Luc Van Gool1,2
Computer Vision Laboratory, D-ITET, ETH Z¨urich, Switzerland
ESAT - PSI / IBBT, K.U. Leuven, Belgium"
87bee0e68dfc86b714f0107860d600fffdaf7996,Automated 3D Face Reconstruction from Multiple Images Using Quality Measures,"Automated 3D Face Reconstruction from Multiple Images
using Quality Measures
Marcel Piotraschke and Volker Blanz
Institute for Vision and Graphics, University of Siegen, Germany"
878169be6e2c87df2d8a1266e9e37de63b524ae7,Image interpretation above and below the object level.,"CBMM Memo No. 089
May 10, 2018
Image interpretation above and below the object level
Guy Ben-Yosef, Shimon Ullman"
878301453e3d5cb1a1f7828002ea00f59cbeab06,Faceness-Net: Face Detection through Deep Facial Part Responses,"Faceness-Net: Face Detection through
Deep Facial Part Responses
Shuo Yang, Ping Luo, Chen Change Loy, Senior Member, IEEE and Xiaoou Tang, Fellow, IEEE"
87e592ee1a7e2d34e6b115da08700a1ae02e9355,Deep Pictorial Gaze Estimation,"Deep Pictorial Gaze Estimation
Seonwook Park, Adrian Spurr, and Otmar Hilliges
AIT Lab, Department of Computer Science, ETH Zurich"
87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5,Spatio-temporal Maximum Average Correlation Height Templates in Action Recognition and Video Summarization,"SPATIO-TEMPORAL MAXIMUM AVERAGE CORRELATION
HEIGHT TEMPLATES IN ACTION RECOGNITION AND VIDEO
SUMMARIZATION
MIKEL RODRIGUEZ
B.A. Earlham College, Richmond Indiana
M.S. University of Central Florida
A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science
t the University of Central Florida
Orlando, Florida
Summer Term
Major Professor: Mubarak Shah"
87bb183d8be0c2b4cfceb9ee158fee4bbf3e19fd,Craniofacial Image Analysis,"Craniofacial Image Analysis
Ezgi Mercan, Indriyati Atmosukarto, Jia Wu, Shu Liang and Linda G. Shapiro"
8006219efb6ab76754616b0e8b7778dcfb46603d,Contributions to large-scale learning for image classification. (Contributions à l'apprentissage grande échelle pour la classification d'images),"CONTRIBUTIONSTOLARGE-SCALELEARNINGFORIMAGECLASSIFICATIONZeynepAkataPhDThesisl’´EcoleDoctoraleMath´ematiques,SciencesetTechnologiesdel’Information,InformatiquedeGrenoble"
804b4c1b553d9d7bae70d55bf8767c603c1a09e3,Subspace clustering with a learned dimensionality reduction projection,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
800cbbe16be0f7cb921842d54967c9a94eaa2a65,Multimodal Recognition of Emotions Multimodal Recognition of Emotions,"MULTIMODAL RECOGNITION OF
EMOTIONS"
80135ed7e34ac1dcc7f858f880edc699a920bf53,Efficient Action and Event Recognition in Videos Using Extreme Learning Machines,"EFFICIENT ACTION AND EVENT RECOGNITION IN VIDEOS USING
EXTREME LEARNING MACHINES
G¨ul Varol
B.S., Computer Engineering, Bo˘gazi¸ci University, 2013
Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science
Graduate Program in Computer Engineering
Bo˘gazi¸ci University"
803c92a3f0815dbf97e30c4ee9450fd005586e1a,Max-Mahalanobis Linear Discriminant Analysis Networks,"Max-Mahalanobis Linear Discriminant Analysis Networks
Tianyu Pang 1 Chao Du 1 Jun Zhu 1"
80c8d143e7f61761f39baec5b6dfb8faeb814be9,Local Directional Pattern based Fuzzy Co- occurrence Matrix Features for Face recognition,"Local Directional Pattern based Fuzzy Co-
occurrence Matrix Features for Face recognition
Dr. P Chandra Sekhar Reddy
Professor, CSE Dept.
Gokaraju Rangaraju Institute of Engineering and Technology, Hyd."
80345fbb6bb6bcc5ab1a7adcc7979a0262b8a923,Soft Biometrics for a Socially Assistive Robotic Platform,"Research Article
Pierluigi Carcagnì*, Dario Cazzato, Marco Del Coco, Pier Luigi Mazzeo, Marco Leo, and
Cosimo Distante
Soft Biometrics for a Socially Assistive Robotic
Platform
Open Access"
80a6bb337b8fdc17bffb8038f3b1467d01204375,Subspace LDA Methods for Solving the Small Sample Size Problem in Face Recognition,"Proceedings of the International Conference on Computer and Information Science and Technology
Ottawa, Ontario, Canada, May 11 – 12, 2015
Paper No. 126
Subspace LDA Methods for Solving the Small Sample Size
Problem in Face Recognition
Ching-Ting Huang, Chaur-Chin Chen
Department of Computer Science/National Tsing Hua University
01 KwanFu Rd., Sec. 2, Hsinchu, Taiwan"
80097a879fceff2a9a955bf7613b0d3bfa68dc23,Active Self-Paced Learning for Cost-Effective and Progressive Face Identification,"Active Self-Paced Learning for Cost-Effective and
Progressive Face Identification
Liang Lin, Keze Wang, Deyu Meng, Wangmeng Zuo, and Lei Zhang"
74408cfd748ad5553cba8ab64e5f83da14875ae8,Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation and Evaluation,"Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation
nd Evaluation"
74dbe6e0486e417a108923295c80551b6d759dbe,An HMM based Model for Prediction of Emotional Composition of a Facial Expression using both Significant and Insignificant Action Units and Associated Gender Differences,"International Journal of Computer Applications (0975 – 8887)
Volume 45– No.11, May 2012
An HMM based Model for Prediction of Emotional
Composition of a Facial Expression using both
Significant and Insignificant Action Units and
Associated Gender Differences
Suvashis Das
Koichi Yamada
Department of Management and Information
Department of Management and Information
Systems Science
603-1 Kamitomioka, Nagaoka
Niigata, Japan
Systems Science
603-1 Kamitomioka, Nagaoka
Niigata, Japan"
747c25bff37b96def96dc039cc13f8a7f42dbbc7,EmoNets: Multimodal deep learning approaches for emotion recognition in video,"EmoNets: Multimodal deep learning approaches for emotion
recognition in video
Samira Ebrahimi Kahou · Xavier Bouthillier · Pascal Lamblin · Caglar Gulcehre ·
Vincent Michalski · Kishore Konda · S´ebastien Jean · Pierre Froumenty · Yann
Dauphin · Nicolas Boulanger-Lewandowski · Raul Chandias Ferrari · Mehdi Mirza ·
David Warde-Farley · Aaron Courville · Pascal Vincent · Roland Memisevic ·
Christopher Pal · Yoshua Bengio"
744fa8062d0ae1a11b79592f0cd3fef133807a03,Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification.,"Aalborg Universitet
Deep Pain
Rodriguez, Pau; Cucurull, Guillem; Gonzàlez, Jordi; M. Gonfaus, Josep ; Nasrollahi, Kamal;
Moeslund, Thomas B.; Xavier Roca, F.
Published in:
I E E E Transactions on Cybernetics
DOI (link to publication from Publisher):
0.1109/TCYB.2017.2662199
Publication date:
Document Version
Accepted author manuscript, peer reviewed version
Link to publication from Aalborg University
Citation for published version (APA):
Rodriguez, P., Cucurull, G., Gonzàlez, J., M. Gonfaus, J., Nasrollahi, K., Moeslund, T. B., & Xavier Roca, F.
(2017). Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification. I E E E
Transactions on Cybernetics, 1-11. DOI: 10.1109/TCYB.2017.2662199
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research."
743e582c3e70c6ec07094887ce8dae7248b970ad,Face Recognition based on Deep Neural Network,"International Journal of Signal Processing, Image Processing and Pattern Recognition
Vol.8, No.10 (2015), pp.29-38
http://dx.doi.org/10.14257/ijsip.2015.8.10.04
Face Recognition based on Deep Neural Network
Li Xinhua,Yu Qian
Shandong Women’s University"
74b0095944c6e29837c208307a67116ebe1231c8,Manifold learning using Euclidean k-nearest neighbor graphs [image processing examples],"beindependentandidenticallydis-tributed(i.i.d.)randomvectorswithvaluesinacompactsubsetof.The(-)nearestneighborofinisgivenby!""$%&(*,.%13575where575istheusualEuclidean(<=)distanceinbe-tweenvectorand.Forgeneralinteger?,the-nearestneighborofapointisdefinedinasimilarway.The-NNgraphputsanedgebetweeneachpointinandits-nearestneighbors.LetBCDBCDFHbethesetof-nearestneighborsofin.Thetotaledgelengthofthe-NNgraphisdefinedas:<JDCFHMN
M%&QRS1575J(1)whereVWXisapowerweightingconstant.2.1.ConvergencetoExtrinsicZ-EntropyThe-NNedgelengthliesinthelargeclassoffunctionalscalledcontinuousquasi-additiveEuclideanfunctionals[7].Othergraphsinthisclassincludetheminimalspanningtree,theminimalmatch-inggraphorthetravelingsalesmantouramongothers.Thesefunc-tionalshaveremarkableasymptoticbehaviorasincreases:Theorem1([7,Theorem8.3])Let
bei.i.d.randomvectorswithvaluesinacompactsubsetofandLebesgueden-sity\.Let]?_,aVb]anddefineZF]7VHf].Then,withprobability(w.p.)gh""jk<JDCFHmoDJDCp\mFrHtr(2)whereoDJDCisaconstantindependentof\.Furthermore,themeanlengthuv<JDCFHwfmconvergestothesamelimit.Thequantitythatdeterminesthelimit(2)inTheorem1istheex-trinsicR´enyiZ-entropyofthemultivariateLebesguedensity\:yz{mF\H7Zg!pz{\mFrHtr(3)III - 9880-7803-8484-9/04/$20.00 ©2004 IEEEICASSP 2004(cid:224)"
74156a11c2997517061df5629be78428e1f09cbd,"Preparatory coordination of head, eyes and hands: Experimental study at intersections","Cancún Center, Cancún, México, December 4-8, 2016
978-1-5090-4846-5/16/$31.00 ©2016 IEEE"
749d605dd12a4af58de1fae6f5ef5e65eb06540e,Multi-Task Video Captioning with Video and Entailment Generation,"Multi-Task Video Captioning with Video and Entailment Generation
Ramakanth Pasunuru and Mohit Bansal
UNC Chapel Hill
{ram,"
749382d19bfe9fb8d0c5e94d0c9b0a63ab531cb7,A Modular Framework to Detect and Analyze Faces for Audience Measurement Systems,"A Modular Framework to Detect and Analyze Faces for
Audience Measurement Systems
Andreas Ernst, Tobias Ruf, Christian Kueblbeck
Fraunhofer Institute for Integrated Circuits IIS
Department Electronic Imaging
Am Wolfsmantel 33, 91058 Erlangen, Germany
{andreas.ernst, tobias.ruf,"
74c19438c78a136677a7cb9004c53684a4ae56ff,RESOUND: Towards Action Recognition without Representation Bias,"RESOUND: Towards Action Recognition
without Representation Bias
Yingwei Li, Yi Li, and Nuno Vasconcelos
UC San Diego"
74618fb4ce8ce0209db85cc6069fe64b1f268ff4,Rendering and animating expressive caricatures,"Rendering and Animating Expressive
Caricatures
Mohammad Obaid* t, Ramakrishnan
Mukundan
*HITLab New Zealand,
University
of Canterbury,
t, and Mark Billinghurst*
Christchurch,
New Zealand
tComputer
Science
nd Software Engineering
Email: {mohammad.obaid,
Dept., University
of Canterbury,
New Zealand
stylized
nd control
on the generated caricature."
74eae724ef197f2822fb7f3029c63014625ce1ca,Feature Extraction based on Local Directional Pattern with SVM Decision-level Fusion for Facial Expression Recognition,"International Journal of Bio-Science and Bio-Technology
Vol. 5, No. 2, April, 2013
Feature Extraction based on Local Directional Pattern with SVM
Decision-level Fusion for Facial Expression Recognition
Juxiang Zhou1, Tianwei Xu1,2 and Jianhou Gan1
Key Laboratory of Education Informalization for Nationalities, Ministry of
Education, Yunnan Normal University, Kunming, China
College of Information, Yunnan Normal University, Kunming, China"
7480d8739eb7ab97c12c14e75658e5444b852e9f,MLBoost Revisited: A Faster Metric Learning Algorithm for Identity-Based Face Retrieval,"NEGREL ET AL.: REVISITED MLBOOST FOR FACE RETRIEVAL
MLBoost Revisited: A Faster Metric
Learning Algorithm for Identity-Based Face
Retrieval
Romain Negrel
Alexis Lechervy
Frederic Jurie
Normandie Univ, UNICAEN,
ENSICAEN, CNRS
France"
74ba4ab407b90592ffdf884a20e10006d2223015,Partial Face Detection in the Mobile Domain,"Partial Face Detection in the Mobile Domain
Upal Mahbub, Student Member, IEEE, Sayantan Sarkar, Student Member, IEEE,
nd Rama Chellappa, Fellow, IEEE"
7405ed035d1a4b9787b78e5566340a98fe4b63a0,Self-Expressive Decompositions for Matrix Approximation and Clustering,"Self-Expressive Decompositions for
Matrix Approximation and Clustering
Eva L. Dyer, Member, IEEE, Tom A. Goldstein, Member, IEEE, Raajen Patel, Student Member, IEEE,
Konrad P. K¨ording, and Richard G. Baraniuk, Fellow, IEEE"
744db9bd550bf5e109d44c2edabffec28c867b91,FX e-Makeup for Muscle Based Interaction,"FX e-Makeup for Muscle Based Interaction
Katia Canepa Vega1, Abel Arrieta2, Felipe Esteves3, and Hugo Fuks1
Department of Informatics, PUC-Rio, Rio de Janeiro, Brazil
Department of Mechanical Engineering, PUC-Rio, Rio de Janeiro, Brazil
Department of Administration, PUC-Rio, Rio de Janeiro, Brazil"
74325f3d9aea3a810fe4eab8863d1a48c099de11,Regression-Based Image Alignment for General Object Categories,"Regression-Based Image Alignment
for General Object Categories
Hilton Bristow1 and Simon Lucey2
Queensland University of Technology (QUT)
Brisbane QLD 4000, Australia
Carnegie Mellon University (CMU)
Pittsburgh PA 15289, USA"
744d23991a2c48d146781405e299e9b3cc14b731,Aging Face Recognition: A Hierarchical Learning Model Based on Local Patterns Selection,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2535284, IEEE
Transactions on Image Processing
Aging Face Recognition: A Hierarchical Learning
Model Based on Local Patterns Selection
Zhifeng Li, Senior Member, IEEE, Dihong Gong, Xuelong Li, Fellow, IEEE, and Dacheng Tao, Fellow, IEEE"
1a45ddaf43bcd49d261abb4a27977a952b5fff12,LDOP: Local Directional Order Pattern for Robust Face Retrieval,"LDOP: Local Directional Order Pattern for Robust
Face Retrieval
Shiv Ram Dubey, Member, IEEE, and Snehasis Mukherjee, Member, IEEE"
1a849b694f2d68c3536ed849ed78c82e979d64d5,This is a repository copy of Symmetric Shape Morphing for 3 D Face and Head Modelling,"This is a repository copy of Symmetric Shape Morphing for 3D Face and Head Modelling.
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/131760/
Version: Accepted Version
Proceedings Paper:
Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634, Smith, William Alfred
Peter orcid.org/0000-0002-6047-0413 et al. (1 more author) (2018) Symmetric Shape
Morphing for 3D Face and Head Modelling. In: The 13th IEEE Conference on Automatic
Face and Gesture Recognition. IEEE .
Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.
Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing including the URL of the record and the reason for the withdrawal request.
https://eprints.whiterose.ac.uk/"
1a878e4667fe55170252e3f41d38ddf85c87fcaf,Discriminative Machine Learning with Structure,"Discriminative Machine Learning with Structure
Simon Lacoste-Julien
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2010-4
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-4.html
January 12, 2010"
1a41831a3d7b0e0df688fb6d4f861176cef97136,A Biological Model of Object Recognition with Feature Learning,"massachusetts institute of technology — artificial intelligence laboratory
A Biological Model of Object
Recognition with Feature Learning
Jennifer Louie
AI Technical Report 2003-009
CBCL Memo 227
June 2003
© 2 0 0 3   m a s s a c h u s e t t s   i n s t i t u t e   o f
t e c h n o l o g y, c a m b r i d g e , m a   0 2 1 3 9   u s a   —   w w w. a i . m i t . e d u"
1a6c3c37c2e62b21ebc0f3533686dde4d0103b3f,Implementation of Partial Face Recognition using Directional Binary Code,"International Journal of Linguistics and Computational Applications (IJLCA)                          ISSN 2394-6385 (Print)
Volume 4, Issue 1, January – March 2017                                                                                   ISSN 2394-6393 (Online)
Implementation of Partial Face Recognition
using Directional Binary Code
N.Pavithra #1, A.Sivapriya*2, K.Hemalatha*3 , D.Lakshmi*4
,2,3Final Year, Department of Computer Science and Engineering, PanimalarInstitute of Technology,
Assistant Professor, Department of Computer Science and Engineering, PanimalarInstitute of Technology, Tamilnadu, India,
faith
is  proposed.  It
face  alignment  and"
1a3eee980a2252bb092666cf15dd1301fa84860e,PCA Gaussianization for image processing,"PCA GAUSSIANIZATION FOR IMAGE PROCESSING
Valero Laparra, Gustavo Camps-Valls and Jes´us Malo
Image Processing Laboratory (IPL), Universitat de Val`encia
Catedr´atico A. Escardino - 46980 Paterna, Val`encia, Spain"
1a031378cf1d2b9088a200d9715d87db8a1bf041,D Eep D Ictionary L Earning : S Ynergizing R E - Construction and C Lassification,"Workshop track - ICLR 2018
DEEP DICTIONARY LEARNING: SYNERGIZING RE-
CONSTRUCTION AND CLASSIFICATION
Shahin Mahdizadehaghdam, Ashkan Panahi, Hamid Krim & Liyi Dai"
1afd481036d57320bf52d784a22dcb07b1ca95e2,Automated Content Metadata Extraction Services Based on MPEG Standards,"The Computer Journal Advance Access published December 6, 2012
© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email:
doi:10.1093/comjnl/bxs146
Automated Content Metadata Extraction
Services Based on MPEG Standards
D.C. Gibbon∗, Z. Liu, A. Basso and B. Shahraray
AT&T Labs Research, Middletown, NJ, USA
Corresponding author:
This paper is concerned with the generation, acquisition, standardized representation and transport
of video metadata. The use of MPEG standards in the design and development of interoperable
media architectures and web services is discussed. A high-level discussion of several algorithms
for metadata extraction is presented. Some architectural and algorithmic issues encountered when
designing services for real-time processing of video streams, as opposed to traditional offline media
processing, are addressed. A prototype real-time video analysis system for generating MPEG-7
Audiovisual Description Profile from MPEG-2 transport stream encapsulated video is presented.
Such a capability can enable a range of new services such as content-based personalization of live
roadcasts given that the MPEG-7 based data models fit in well with specifications for advanced
television services such as TV-Anytime andAlliance for Telecommunications Industry Solutions IPTV
Interoperability Forum."
1a9a192b700c080c7887e5862c1ec578012f9ed1,Discriminant Subspace Analysis for Face Recognition with Small Number of Training Samples,"IEEE TRANSACTIONS ON SYSTEM, MAN AND CYBERNETICS, PART B
Discriminant Subspace Analysis for Face
Recognition with Small Number of Training
Samples
Hui Kong, Xuchun Li, Matthew Turk, and Chandra Kambhamettu"
1a8ccc23ed73db64748e31c61c69fe23c48a2bb1,Extensive Facial Landmark Localization with Coarse-to-Fine Convolutional Network Cascade,"Extensive Facial Landmark Localization
with Coarse-to-fine Convolutional Network Cascade
Erjin Zhou Haoqiang Fan Zhimin Cao Yuning Jiang Qi Yin
Megvii Inc."
1ad97cce5fa8e9c2e001f53f6f3202bddcefba22,Grassmann Averages for Scalable Robust PCA,"Grassmann Averages for Scalable Robust PCA
Aasa Feragen
DIKU and MPIs T¨ubingen∗
Denmark and Germany
Søren Hauberg
DTU Compute∗
Lyngby, Denmark"
1a7a2221fed183b6431e29a014539e45d95f0804,Person Identification Using Text and Image Data,"Person Identification Using Text and Image Data
David S. Bolme, J. Ross Beveridge and Adele E. Howe
Computer Science Department
Colorado State Univeristy
Fort Collins, Colorado 80523"
1a5b39a4b29afc5d2a3cd49087ae23c6838eca2b,Competitive Game Designs for Improving the Cost Effectiveness of Crowdsourcing,"Competitive Game Designs for Improving the Cost
Effectiveness of Crowdsourcing
Markus Rokicki, Sergiu Chelaru, Sergej Zerr, Stefan Siersdorfer
L3S Research Center, Hannover, Germany"
287795991fad3c61d6058352879c7d7ae1fdd2b6,Biometrics Security: Facial Marks Detection from the Low Quality Images,"International Journal of Computer Applications (0975 – 8887)
Volume 66– No.8, March 2013
Biometrics Security: Facial Marks Detection from the
Low Quality Images
nd  facial  marks  are  detected  using  LoG  with  morphological
operator.  This  method  though  was  not  enough  to  detect  the
facial  marks  from  the  low  quality  images  [7].  But,  facial
marks  have  been  used  to  speed  up  the  retrieval  process  in
order to differentiate the human faces [15].
Ziaul Haque Choudhury                                                      K.M.Mehata
B.S.Abdur Rahman University                                                     B.S.Abdur Rahman University
Dept. Of Information Technology                                        Dept. Of Computer Science & Engineering
Chennai, India                                                                               Chennai, India"
28d7029cfb73bcb4ad1997f3779c183972a406b4,Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification,"Discriminative Nonlinear Analysis Operator
Learning: When Cosparse Model Meets Image
Classification
Zaidao Wen, Biao Hou, Member, IEEE, and Licheng Jiao, Senior Member, IEEE"
280d59fa99ead5929ebcde85407bba34b1fcfb59,Online Nonnegative Matrix Factorization With Outliers,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
28cd46a078e8fad370b1aba34762a874374513a5,"cvpaper.challenge in 2016: Futuristic Computer Vision through 1, 600 Papers Survey","CVPAPER.CHALLENGE IN 2016, JULY 2017
vpaper.challenge in 2016: Futuristic Computer
Vision through 1,600 Papers Survey
Hirokatsu Kataoka, Soma Shirak-
be, Yun He, Shunya Ueta, Teppei Suzuki, Kaori Abe, Asako Kanezaki, Shin’ichiro
Morita, Toshiyuki Yabe, Yoshihiro Kanehara, Hiroya Yatsuyanagi, Shinya Maruyama, Ryosuke Taka-
sawa, Masataka Fuchida, Yudai Miyashita, Kazushige Okayasu, Yuta Matsuzaki"
28b5b5f20ad584e560cd9fb4d81b0a22279b2e7b,A New Fuzzy Stacked Generalization Technique and Analysis of its Performance,"A New Fuzzy Stacked Generalization Technique
nd Analysis of its Performance
Mete Ozay, Student Member, IEEE, Fatos T. Yarman Vural, Member, IEEE"
28bc378a6b76142df8762cd3f80f737ca2b79208,Understanding Objects in Detail with Fine-Grained Attributes,"Understanding Objects in Detail with Fine-grained Attributes
Andrea Vedaldi1
Siddharth Mahendran2
Stavros Tsogkas3
Subhransu Maji4
Ross Girshick5
Juho Kannala6
Esa Rahtu6
Matthew B. Blaschko3
David Weiss7
Ben Taskar8
Naomi Saphra2
Sammy Mohamed9
Iasonas Kokkinos3
Karen Simonyan1"
28bcf31f794dc27f73eb248e5a1b2c3294b3ec9d,Improved Combination of LBP plus LFDA for Facial Expression Recognition using SRC,"International Journal of Computer Applications (0975 – 8887)
Volume 96– No.13, June 2014
Improved Combination of LBP plus LFDA for Facial
Expression Recognition using SRC
Ritesh Bora
Research Scholar, CSE Department,
Government College of Engineering, Aurangabad
human
facial
expression
recognition"
28fe6e785b32afdcd2c366c9240a661091b850cf,Facial Expression Recognition using Patch based Gabor Features,"International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 10 – No.7, March 2016 – www.ijais.org
Facial Expression Recognition using Patch based Gabor
Features
Electronics & Telecommunication Engg
Electronics & Telecommunication Engg
St. Francis Institute of Technology
St. Francis Institute of Technology
Vaqar Ansari
Department
Mumbai, India
Anju Chandran
Department
Mumbai, India"
28c9198d30447ffe9c96176805c1cd81615d98c8,No evidence that a range of artificial monitoring cues influence online donations to charity in an MTurk sample,"rsos.royalsocietypublishing.org
Research
Cite this article: Saunders TJ, Taylor AH,
Atkinson QD. 2016 No evidence that a range of
rtificial monitoring cues influence online
donations to charity in an MTurk sample.
R. Soc. open sci. 3: 150710.
http://dx.doi.org/10.1098/rsos.150710
Received: 22 December 2015
Accepted: 13 September 2016
Subject Category:
Psychology and cognitive neuroscience
Subject Areas:
ehaviour/psychology/evolution
Keywords:
prosociality, eye images, charity donation,
reputation, online behaviour
Author for correspondence:
Quentin D. Atkinson
e-mail:"
2866cbeb25551257683cf28f33d829932be651fe,A Two-Step Learning Method For Detecting Landmarks on Faces From Different Domains,"In Proceedings of the 2018 IEEE International Conference on Image Processing (ICIP)
The final publication is available at: http://dx.doi.org/10.1109/ICIP.2018.8451026
A TWO-STEP LEARNING METHOD FOR DETECTING LANDMARKS
ON FACES FROM DIFFERENT DOMAINS
Bruna Vieira Frade
Erickson R. Nascimento
Universidade Federal de Minas Gerais (UFMG), Brazil
{brunafrade,"
28aa89b2c827e5dd65969a5930a0520fdd4a3dc7,Characterization and Classification of Faces across Age Progression,
28b061b5c7f88f48ca5839bc8f1c1bdb1e6adc68,Predicting User Annoyance Using Visual Attributes,"Predicting User Annoyance Using Visual Attributes
Gordon Christie
Virginia Tech
Amar Parkash
Goibibo
Ujwal Krothapalli
Virginia Tech
Devi Parikh
Virginia Tech"
17a85799c59c13f07d4b4d7cf9d7c7986475d01c,Extending Procrustes Analysis: Building Multi-view 2-D Models from 3-D Human Shape Samples,"ADVERTIMENT.  La  consulta  d’aquesta  tesi  queda  condicionada  a  l’acceptació  de  les  següents
ondicions  d'ús:  La  difusió  d’aquesta  tesi  per  mitjà  del  servei  TDX  (www.tesisenxarxa.net)  ha
estat  autoritzada  pels  titulars  dels  drets  de  propietat  intel·lectual  únicament  per  a  usos  privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació  del  seu  contingut  en  una  finestra  o  marc  aliè  a  TDX  (framing).  Aquesta  reserva  de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
ondiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
on finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta  reserva  de  derechos  afecta  tanto  al  resumen  de  presentación  de  la  tesis  como  a  sus
ontenidos.  En  la  utilización  o  cita  de  partes  de  la  tesis  es  obligado  indicar  el  nombre  de  la
persona autora.
WARNING.  On  having  consulted  this  thesis  you’re  accepting  the  following  use  conditions:
Spreading  this  thesis  by  the  TDX  (www.tesisenxarxa.net)  service  has  been  authorized  by  the
titular of the intellectual property rights only for private uses placed in investigation and teaching"
17cf838720f7892dbe567129dcf3f7a982e0b56e,Global-Local Face Upsampling Network,"Global-Local Face Upsampling Network
Oncel Tuzel
Yuichi Taguchi
John R. Hershey
Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA"
178a82e3a0541fa75c6a11350be5bded133a59fd,BioHDD: a dataset for studying biometric identification on heavily degraded data,"Techset Composition Ltd, Salisbury
{IEE}BMT/Articles/Pagination/BMT20140045.3d
www.ietdl.org
Received on 15th July 2014
Revised on 17th September 2014
Accepted on 23rd September 2014
doi: 10.1049/iet-bmt.2014.0045
ISSN 2047-4938
BioHDD: a dataset for studying biometric
identification on heavily degraded data
Gil Santos1, Paulo T. Fiadeiro2, Hugo Proença1
Department of Computer Science, IT – Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal
Department of Physics, Remote Sensing Unit – Optics, Optometry and Vision Sciences Group, University of Beira Interior,
Covilhã, Portugal
E-mail:"
17a995680482183f3463d2e01dd4c113ebb31608,Structured Label Inference for Visual Understanding,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z
Structured Label Inference for
Visual Understanding
Nelson Nauata, Hexiang Hu, Guang-Tong Zhou, Zhiwei Deng,
Zicheng Liao and Greg Mori"
1742ffea0e1051b37f22773613f10f69d2e4ed2c,Interactive Mirror for Smart Home,
174930cac7174257515a189cd3ecfdd80ee7dd54,Multi-view Face Detection Using Deep Convolutional Neural Networks,"Multi-view Face Detection Using Deep Convolutional
Neural Networks
Sachin Sudhakar Farfade
Yahoo
Mohammad Saberian
inc.com
Yahoo
Li-Jia Li
Yahoo"
1750db78b7394b8fb6f6f949d68f7c24d28d934f,Detecting Facial Retouching Using Supervised Deep Learning,"Detecting Facial Retouching Using Supervised
Deep Learning
Aparna Bharati, Richa Singh, Senior Member, IEEE, Mayank Vatsa, Senior Member, IEEE, Kevin W.
Bowyer, Fellow, IEEE"
173657da03e3249f4e47457d360ab83b3cefbe63,HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report,"HKU-Face: A Large Scale Dataset for
Deep Face Recognition
Final Report
Haicheng Wang
035140108
COMP4801 Final Year Project
Project Code: 17007"
7bbaa09c9e318da4370a83b126bcdb214e7f8428,"FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing and HPC","FaaSter, Better, Cheaper: The Prospect of
Serverless Scientific Computing and HPC
Josef Spillner1, Cristian Mateos2, and David A. Monge3
Zurich University of Applied Sciences, School of Engineering
Service Prototyping Lab (blog.zhaw.ch/icclab/), 8401 Winterthur, Switzerland
ISISTAN Research Institute - CONICET - UNICEN
Campus Universitario, Paraje Arroyo Seco, Tandil (7000), Buenos Aires, Argentina
ITIC Research Institute, National University of Cuyo
Padre Jorge Contreras 1300, M5502JMA Mendoza, Argentina"
7b9961094d3e664fc76b12211f06e12c47a7e77d,Bridging biometrics and forensics,"Bridging Biometrics and Forensics
Yanjun Yan and Lisa Ann Osadciw
EECS, Syracuse University, Syracuse, NY, USA
{yayan,"
7b9b3794f79f87ca8a048d86954e0a72a5f97758,Passing an Enhanced Turing Test - Interacting with Lifelike Computer Representations of Specific Individuals,"DOI 10.1515/jisys-2013-0016      Journal of Intelligent Systems 2013; 22(4): 365–415
Avelino J. Gonzalez*, Jason Leigh, Ronald F. DeMara, Andrew
Johnson, Steven Jones, Sangyoon Lee, Victor Hung, Luc
Renambot, Carlos Leon-Barth, Maxine Brown, Miguel Elvir,
James Hollister and Steven Kobosko
Passing an Enhanced Turing Test –
Interacting with Lifelike Computer
Representations of Specific Individuals"
7bce4f4e85a3bfcd6bfb3b173b2769b064fce0ed,A Psychologically-Inspired Match-Score Fusion Model for Video-Based Facial Expression Recognition,"A Psychologically-Inspired Match-Score Fusion Model
for Video-Based Facial Expression Recognition
Albert Cruz, Bir Bhanu, Songfan Yang,
VISLab, EBUII-216, University of California Riverside,
Riverside, California, USA, 92521-0425
{acruz, bhanu,"
7b0f1fc93fb24630eb598330e13f7b839fb46cce,Learning to Find Eye Region Landmarks for Remote Gaze Estimation in Unconstrained Settings,"Learning to Find Eye Region Landmarks for Remote Gaze
Estimation in Unconstrained Settings
Seonwook Park
ETH Zurich
Xucong Zhang
MPI for Informatics
Andreas Bulling
MPI for Informatics
Otmar Hilliges
ETH Zurich"
7bdcd85efd1e3ce14b7934ff642b76f017419751,Learning Discriminant Face Descriptor,"Learning Discriminant Face Descriptor
Zhen Lei, Member, IEEE, Matti Pietika¨ inen, Fellow, IEEE, and Stan Z. Li, Fellow, IEEE"
7b3b7769c3ccbdf7c7e2c73db13a4d32bf93d21f,"On the design and evaluation of robust head pose for visual user interfaces: algorithms, databases, and comparisons","On the Design and Evaluation of Robust Head Pose for
Visual User Interfaces: Algorithms, Databases, and
Comparisons
Sujitha Martin
Laboratory of Intelligent and
Safe Automobiles
UCSD - La Jolla, CA, USA
Ashish Tawari
Laboratory of Intelligent and
Safe Automobiles
UCSD - La Jolla, CA, USA
Erik Murphy-Chutorian
Laboratory of Intelligent and
Safe Automobiles
UCSD - La Jolla, CA, USA
Shinko Y. Cheng
Laboratory of Intelligent and
Safe Automobiles
UCSD - La Jolla, CA, USA
Mohan Trivedi"
8f6d05b8f9860c33c7b1a5d704694ed628db66c7,Non-linear dimensionality reduction and sparse representation models for facial analysis. (Réduction de la dimension non-linéaire et modèles de la représentations parcimonieuse pour l'analyse du visage),"Non-linear dimensionality reduction and sparse
representation models for facial analysis
Yuyao Zhang
To cite this version:
Yuyao Zhang. Non-linear dimensionality reduction and sparse representation models for facial analysis.
Medical Imaging. INSA de Lyon, 2014. English. <NNT : 2014ISAL0019>. <tel-01127217>
HAL Id: tel-01127217
https://tel.archives-ouvertes.fr/tel-01127217
Submitted on 7 Mar 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
8f772d9ce324b2ef5857d6e0b2a420bc93961196,Facial Landmark Point Localization using Coarse-to-Fine Deep Recurrent Neural Network,"MAHPOD et al.: CFDRNN
Facial Landmark Point Localization using
Coarse-to-Fine Deep Recurrent Neural Network
Shahar Mahpod, Rig Das, Emanuele Maiorana, Yosi Keller, and Patrizio Campisi,"
8fda2f6b85c7e34d3e23927e501a4b4f7fc15b2a,Feature Selection with Annealing for Big Data Learning,"Feature Selection with Annealing for Big Data
Learning
Adrian Barbu, Yiyuan She, Liangjing Ding, Gary Gramajo"
8fa3478aaf8e1f94e849d7ffbd12146946badaba,Attributes for Classifier Feedback,"Attributes for Classifier Feedback
Amar Parkash1 and Devi Parikh2
Indraprastha Institute of Information Technology (Delhi, India)
Toyota Technological Institute (Chicago, US)"
8f9c37f351a91ed416baa8b6cdb4022b231b9085,Generative Adversarial Style Transfer Networks for Face Aging,"Generative Adversarial Style Transfer Networks for Face Aging
Sveinn Palsson
D-ITET, ETH Zurich
Eirikur Agustsson
D-ITET, ETH Zurich"
8f8c0243816f16a21dea1c20b5c81bc223088594,Local Directional Number Based Classification and Recognition of Expressions Using Subspace Methods,
8f3e3f0f97844d3bfd9e9ec566ac7a54f6931b09,"A Survey on Human Emotion Recognition Approaches, Databases and Applications","Electronic Letters on Computer Vision and Image Analysis 14(2):24-44; 2015
A Survey on Human Emotion Recognition Approaches,
Databases and Applications
C.Vinola*, K.Vimaladevi†
* Department of Computer Science and Engineering, Francis Xavier Engineering College, Tirunelveli,Tamilnadu,India
Department of Computer Science and Engineering, P.S.R Engineering College, Sivakasi, Tamilnadu,India
Received 7th Aug 2015; accepted 30th Nov 2015"
8f89aed13cb3555b56fccd715753f9ea72f27f05,Attended End-to-end Architecture for Age Estimation from Facial Expression Videos,"Attended End-to-end Architecture for Age
Estimation from Facial Expression Videos
Wenjie Pei, Hamdi Dibeklio˘glu, Member, IEEE, Tadas Baltruˇsaitis and David M.J. Tax"
8fd9c22b00bd8c0bcdbd182e17694046f245335f,Recognizing Facial Expressions in Videos,"Recognizing Facial Expressions in Videos
Lin Su, Matthew Balazsi"
8acdc4be8274e5d189fb67b841c25debf5223840,Improving clustering performance using independent component analysis and unsupervised feature learning,"Gultepe and Makrehchi
Hum. Cent. Comput. Inf. Sci.  (2018) 8:25
https://doi.org/10.1186/s13673-018-0148-3
RESEARCH
Improving clustering performance
using independent component analysis
nd unsupervised feature learning
Open Access
Eren Gultepe* and Masoud Makrehchi
*Correspondence:
Department of Electrical
nd Computer Engineering,
University of Ontario Institute
of Technology, 2000 Simcoe
St N, Oshawa, ON L1H 7K4,
Canada"
8a54f8fcaeeede72641d4b3701bab1fe3c2f730a,What do you think of my picture? Investigating factors of influence in profile images context perception,"What do you think of my picture? Investigating factors
of influence in profile images context perception
Filippo Mazza, Matthieu Perreira da Silva, Patrick Le Callet, Ingrid
Heynderickx
To cite this version:
Filippo Mazza, Matthieu Perreira da Silva, Patrick Le Callet, Ingrid Heynderickx. What do you
think of my picture? Investigating factors of influence in profile images context perception. Human
Vision and Electronic Imaging XX, Mar 2015, San Francisco, United States. Proc. SPIE 9394, Hu-
man Vision and Electronic Imaging XX, 9394, <http://spie.org/EI/conferencedetails/human-vision-
electronic-imaging>. <10.1117/12.2082817>. <hal-01149535>
HAL Id: hal-01149535
https://hal.archives-ouvertes.fr/hal-01149535
Submitted on 7 May 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est"
8aae23847e1beb4a6d51881750ce36822ca7ed0b,Comparison Between Geometry-Based and Gabor-Wavelets-Based Facial Expression Recognition Using Multi-Layer Perceptron,"Comparison Between Geometry-Based and Gabor-Wavelets-Based
Facial Expression Recognition Using Multi-Layer Perceptron
Zhengyou Zhang
Shigeru Akamatsu
 Michael Lyons Michael Schuster
 ATR Human Information Processing Research Laboratories
 ATR Interpreting Telecommunications Research Laboratories
-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan
INRIA, 2004 route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex, France
e-mail:"
8a866bc0d925dfd8bb10769b8b87d7d0ff01774d,WikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art,"WikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art
Saif M. Mohammad and Svetlana Kiritchenko
National Research Council Canada"
8adb2fcab20dab5232099becbd640e9c4b6a905a,Beyond Euclidean Eigenspaces: Bayesian Matching for Visual Recognition,"Beyond Euclidean Eigenspaces:
Bayesian Matching for Visual Recognition
Baback Moghaddam
Alex Pentland
Mitsubishi Electric Research Laboratory
MIT Media Laboratory
 Broadway
 Ames St.
Cambridge, MA 	, USA
Cambridge, MA 	, USA"
8a91ad8c46ca8f4310a442d99b98c80fb8f7625f,2D Segmentation Using a Robust Active Shape Model With the EM Algorithm,"D Segmentation Using a Robust Active
Shape Model With the EM Algorithm
Carlos Santiago, Jacinto C. Nascimento, Member, IEEE, and Jorge S. Marques"
8aed6ec62cfccb4dba0c19ee000e6334ec585d70,Localizing and Visualizing Relative Attributes,"Localizing and Visualizing Relative Attributes
Fanyi Xiao and Yong Jae Lee"
8a336e9a4c42384d4c505c53fb8628a040f2468e,Detecting Visually Observable Disease Symptoms from Faces,"Wang and Luo EURASIP Journal on Bioinformatics
nd Systems Biology  (2016) 2016:13
DOI 10.1186/s13637-016-0048-7
R ES EAR CH
Detecting Visually Observable Disease
Symptoms from Faces
Kuan Wang* and Jiebo Luo
Open Access"
7e3367b9b97f291835cfd0385f45c75ff84f4dc5,Improved local binary pattern based action unit detection using morphological and bilateral filters,"Improved Local Binary Pattern Based Action Unit Detection Using
Morphological and Bilateral Filters
Anıl Y¨uce1, Matteo Sorci2 and Jean-Philippe Thiran1
Signal Processing Laboratory (LTS5)
´Ecole Polytechnique F´ed´erale de Lausanne,
Switzerland
nViso SA
Lausanne, Switzerland"
7ef0cc4f3f7566f96f168123bac1e07053a939b2,Triangular Similarity Metric Learning: a Siamese Architecture Approach. ( L'apprentissage de similarité triangulaire en utilisant des réseaux siamois),"Triangular Similarity Metric Learning: a Siamese
Architecture Approach
Lilei Zheng
To cite this version:
Lilei Zheng. Triangular Similarity Metric Learning: a Siamese Architecture Approach. Com-
puter Science [cs]. UNIVERSITE DE LYON, 2016. English. <NNT : 2016LYSEI045>. <tel-
01314392>
HAL Id: tel-01314392
https://hal.archives-ouvertes.fr/tel-01314392
Submitted on 11 May 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
7ee53d931668fbed1021839db4210a06e4f33190,What If We Do Not have Multiple Videos of the Same Action? &#x2014; Video Action Localization Using Web Images,"What if we do not have multiple videos of the same action? —
Video Action Localization Using Web Images
Center for Research in Computer Vision (CRCV), University of Central Florida (UCF)
Waqas Sultani, Mubarak Shah"
7e9df45ece7843fe050033c81014cc30b3a8903a,Audio-visual intent-to-speak detection for human-computer interaction,"AUDIO-VISUAL INTENT-TO-SPEAK DETECTION FOR HUMAN-COMPUTER
INTERACTION
Philippe de Cuetos
Institut Eurecom
	, route des Cr^etes, BP 	
	 Sophia-Antipolis Cedex, FRANCE
Chalapathy Neti, Andrew W. Senior
IBM T.J. Watson Research Center
Yorktown Heights, NY 	, USA
cneti,aws"
7ebd323ddfe3b6de8368c4682db6d0db7b70df62,Location-based Face Recognition Using Smart Mobile Device Sensors,"Proceedings of the International Conference on Computer and Information Science and Technology
Ottawa, Ontario, Canada, May 11 – 12, 2015
Paper No. 111
Location-based Face Recognition Using Smart Mobile Device
Sensors
Nina Taherimakhsousi, Hausi A. Müller
Department of Computer Science
University of Victoria, Victoria, Canada"
7ed6ff077422f156932fde320e6b3bd66f8ffbcb,State of 3D Face Biometrics for Homeland Security Applications,"State of 3D Face Biometrics for Homeland Security Applications
Anshuman Razdan1, Gerald Farin2, Myung Soo-Bae3 and Mahesh
Chaudhari4"
7e507370124a2ac66fb7a228d75be032ddd083cc,Dynamic Pose-Robust Facial Expression Recognition by Multi-View Pairwise Conditional Random Forests,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2708106, IEEE
Transactions on Affective Computing
Dynamic Pose-Robust Facial Expression
Recognition by Multi-View Pairwise Conditional
Random Forests
Arnaud Dapogny1 and Kevin Bailly1 and S´everine Dubuisson1
Sorbonne Universit´es, UPMC Univ Paris 06
CNRS, UMR 7222, F-75005, Paris, France"
10e7dd3bbbfbc25661213155e0de1a9f043461a2,Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video,"Cross Euclidean-to-Riemannian Metric Learning
with Application to Face Recognition from Video
Zhiwu Huang, Member, IEEE, Ruiping Wang, Member, IEEE, Shiguang Shan, Senior Member, IEEE,
Luc Van Gool, Member, IEEE and Xilin Chen, Fellow, IEEE"
10ce3a4724557d47df8f768670bfdd5cd5738f95,Fisher Light-Fields for Face Recognition across Pose and Illumination,"Fihe igh	Fied f Face Recgii
Ac e ad 	iai
Rah G ai ahew ad Si Bake
The Rbic i	e Caegie e Uiveiy
5000 Fbe Ave	e ib	gh A 15213
Abac.  ay face ecgii ak he e ad i	iai
dii f he be ad gaey iage ae di(cid:11)ee.  he cae
	ie gaey  be iage ay be avaiabe each ca	ed f
di(cid:11)ee e ad 	de a di(cid:11)ee i	iai. We e a face
ecgii agih which ca 	e ay 	be f gaey iage e
	bjec ca	ed a abiay e ad 	de abiay i	iai
d ay 	be f be iage agai ca	ed a abiay e ad
de abiay i	iai. The agih eae by eiaig he
Fihe igh	(cid:12)ed f he 	bjec head f he i	 gaey  be
iage. achig bewee he be ad gaey i he efed 	ig
he Fihe igh	(cid:12)ed.
d	ci
 ay face ecgii ceai he e f he be ad gaey iage ae
di(cid:11)ee. The gaey cai he iage 	ed d	ig aiig f he agih.
The agih ae eed wih he iage i he be e. F exae he"
102e374347698fe5404e1d83f441630b1abf62d9,Facial Image Analysis for Fully Automatic Prediction of Difficult Endotracheal Intubation,"Facial Image Analysis for Fully-Automatic
Prediction of Difficult Endotracheal Intubation
Gabriel L. Cuendet, Student Member, IEEE, Patrick Schoettker, Anıl Y¨uce Student Member, IEEE, Matteo Sorci,
Hua Gao, Christophe Perruchoud, Jean-Philippe Thiran, Senior Member, IEEE"
100641ed8a5472536dde53c1f50fa2dd2d4e9be9,Visual attributes for enhanced human-machine communication,"Visual Attributes for Enhanced Human-Machine Communication*
Devi Parikh1"
101569eeef2cecc576578bd6500f1c2dcc0274e2,Multiaccuracy: Black-Box Post-Processing for Fairness in Classification,"Multiaccuracy: Black-Box Post-Processing for Fairness in
Michael P. Kim∗†
Classification
Amirata Ghorbani∗
James Zou"
106732a010b1baf13c61d0994552aee8336f8c85,Expanded Parts Model for Semantic Description of Humans in Still Images,"Expanded Parts Model for Semantic Description
of Humans in Still Images
Gaurav Sharma, Member, IEEE, Fr´ed´eric Jurie, and Cordelia Schmid, Fellow, IEEE"
102b27922e9bd56667303f986404f0e1243b68ab,Multiscale recurrent regression networks for face alignment,"Wang et al. Appl Inform  (2017) 4:13
DOI 10.1186/s40535-017-0042-5
RESEARCH
Multiscale recurrent regression networks
for face alignment
Open Access
Caixun Wang1,2,3, Haomiao Sun1,2,3, Jiwen Lu1,2,3*, Jianjiang Feng1,2,3 and Jie Zhou1,2,3
*Correspondence:
State Key Lab of Intelligent
Technologies and Systems,
Beijing 100084, People’s
Republic of China
Full list of author information
is available at the end of the
rticle"
10fcbf30723033a5046db791fec2d3d286e34daa,On-Line Cursive Handwriting Recognition: A Survey of Methods and Performances,"On-Line Cursive Handwriting Recognition: A Survey of Methods
nd Performances
Dzulkifli Mohamad* ,  2Muhammad Faisal Zafar*,    and  3Razib M. Othman*
*Faculty of Computer Science & Information Systems, Universiti Teknologi Malaysia (UTM) , 81310
Skudai, Johor, Malaysia."
108b2581e07c6b7ca235717c749d45a1fa15bb24,Using Stereo Matching with General Epipolar Geometry for 2D Face Recognition across Pose,"Using Stereo Matching with General Epipolar
Geometry for 2D Face Recognition
cross Pose
Carlos D. Castillo, Student Member, IEEE, and
David W. Jacobs, Member, IEEE"
10d334a98c1e2a9e96c6c3713aadd42a557abb8b,Scene Text Recognition Using Part-Based Tree-Structured Character Detection,"Scene Text Recognition using Part-based Tree-structured Character Detection
Cunzhao Shi, Chunheng Wang, Baihua Xiao, Yang Zhang, Song Gao and Zhong Zhang
State Key Laboratory of Management and Control for Complex Systems, CASIA, Beijing, China"
1048c753e9488daa2441c50577fe5fdba5aa5d7c,Recognising faces in unseen modes: A tensor based approach,"Recognising faces in unseen modes: a tensor based approach
Santu Rana, Wanquan Liu, Mihai Lazarescu and Svetha Venkatesh
{santu.rana, wanquan, m.lazarescu,
Dept. of Computing, Curtin University of Technology
GPO Box U1987, Perth, WA 6845, Australia."
19841b721bfe31899e238982a22257287b9be66a,Recurrent Neural Networks,"Published as a conference paper at ICLR 2018
SKIP RNN: LEARNING TO SKIP STATE UPDATES IN
RECURRENT NEURAL NETWORKS
V´ıctor Campos∗†, Brendan Jou‡, Xavier Gir´o-i-Nieto§, Jordi Torres†, Shih-Fu ChangΓ
Barcelona Supercomputing Center, ‡Google Inc,
§Universitat Polit`ecnica de Catalunya, ΓColumbia University
{victor.campos,"
192723085945c1d44bdd47e516c716169c06b7c0,Vision and Attention Theory Based Sampling for Continuous Facial Emotion Recognition,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
Vision and Attention Theory Based Sampling
for Continuous Facial Emotion Recognition
Albert C. Cruz, Student Member, IEEE, Bir Bhanu, Fellow, IEEE, and
Ninad S. Thakoor, Member, IEEE"
19fb5e5207b4a964e5ab50d421e2549ce472baa8,Online emotional facial expression dictionary,"International Conference on Computer Systems and Technologies - CompSysTech’14
Online Emotional Facial Expression Dictionary
Léon Rothkrantz"
1962e4c9f60864b96c49d85eb897141486e9f6d1,Locality preserving embedding for face and handwriting digital recognition,"Neural Comput & Applic (2011) 20:565–573
DOI 10.1007/s00521-011-0577-7
O R I G I N A L A R T I C L E
Locality preserving embedding for face and handwriting digital
recognition
Zhihui Lai • MingHua Wan • Zhong Jin
Received: 3 December 2008 / Accepted: 11 March 2011 / Published online: 1 April 2011
Ó Springer-Verlag London Limited 2011
supervised manifold
the local sub-manifolds."
191674c64f89c1b5cba19732869aa48c38698c84,Face Image Retrieval Using Attribute - Enhanced Sparse Codewords,"International Journal of Advanced Technology in Engineering and Science                 www.ijates.com
Volume No.03, Issue No. 03, March 2015                                                   ISSN (online): 2348 – 7550
FACE IMAGE RETRIEVAL USING ATTRIBUTE -
ENHANCED SPARSE CODEWORDS
E.Sakthivel1 , M.Ashok kumar2
PG scholar, Communication Systems, Adhiyamaan College of Engineeing,Hosur,(India)
Asst. Prof., Electronics And Communication Engg., Adhiyamaan College of Engg.,Hosur,(India)"
190d8bd39c50b37b27b17ac1213e6dde105b21b8,Mining Weakly Labeled Web Facial Images for Search-Based Face Annotation,"This document is downloaded from DR-NTU, Nanyang Technological
University Library, Singapore.
Title
Mining weakly labeled web facial images for search-
ased face annotation
Author(s) Wang, Dayong; Hoi, Steven C. H.; He, Ying; Zhu, Jianke
Citation
Wang, D., Hoi, S. C. H., He, Y., & Zhu, J. (2014). Mining
weakly labeled web facial images for search-based face
nnotation. IEEE Transactions on Knowledge and Data
Engineering, 26(1), 166-179.
http://hdl.handle.net/10220/18955
Rights
© 2014 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other
uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any
opyrighted component of this work in other works."
19af008599fb17bbd9b12288c44f310881df951c,Discriminative Local Sparse Representations for Robust Face Recognition,"Discriminative Local Sparse Representations for
Robust Face Recognition
Yi Chen, Umamahesh Srinivas, Thong T. Do, Vishal Monga, and Trac D. Tran"
19296e129c70b332a8c0a67af8990f2f4d4f44d1,Is that you? Metric learning approaches for face identification,"Metric Learning Approaches for Face Identification
Is that you?
M. Guillaumin, J. Verbeek and C. Schmid
LEAR team, INRIA Rhˆone-Alpes, France
Supplementary Material"
19666b9eefcbf764df7c1f5b6938031bcf777191,Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction,"Group Component Analysis for Multi-block Data:
Common and Individual Feature Extraction
Guoxu Zhou, Andrzej Cichocki Fellow, IEEE, Yu Zhang, and Danilo Mandic Fellow, IEEE"
198b6beb53e0e61357825d57938719f614685f75,Vaulted Verification: A Scheme for Revocable Face Recognition,"Vaulted Verification: A Scheme for Revocable Face
Recognition
Michael Wilber
University of Colorado, Colorado Springs"
195d331c958f2da3431f37a344559f9bce09c0f7,Parsing occluded people by flexible compositions,"Parsing Occluded People by Flexible Compositions
Xianjie Chen, Alan Yuille
University of California, Los Angeles.
Figure 1: An illustration of the flexible compositions. Each connected sub-
tree of the full graph (include the full graph itself) is a flexible composition.
The flexible compositions that do not have certain parts are suitable for the
people with those parts occluded.
Figure 2: The absence of body parts evidence can help to predict occlusion.
However, absence of evidence is not evidence of absence.
It can fail in
some challenging scenes. The local image measurements near the occlusion
oundary (i.e., around the right elbow and left shoulder) can reliably provide
evidence of occlusion.
This paper presents an approach to parsing humans when there is signifi-
ant occlusion. We model humans using a graphical model which has a tree
structure building on recent work [1, 6] and exploit the connectivity prior
that, even in presence of occlusion, the visible nodes form a connected sub-
tree of the graphical model. We call each connected subtree a flexible com-
position of object parts. This involves a novel method for learning occlusion
ues. During inference we need to search over a mixture of different flexible"
19c0c7835dba1a319b59359adaa738f0410263e8,Natural Image Statistics and Low-Complexity Feature Selection,"Natural Image Statistics and
Low-Complexity Feature Selection
Manuela Vasconcelos and Nuno Vasconcelos, Senior Member, IEEE"
19d583bf8c5533d1261ccdc068fdc3ef53b9ffb9,FaceNet: A unified embedding for face recognition and clustering,"FaceNet: A Unified Embedding for Face Recognition and Clustering
Florian Schroff
Dmitry Kalenichenko
James Philbin
Google Inc.
Google Inc.
Google Inc."
1910f5f7ac81d4fcc30284e88dee3537887acdf3,Semantic Based Hypergraph Reranking Model for Web Image Search,"Volume 6, Issue 5, May 2016                                   ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
Semantic Based Hypergraph Reranking Model for Web
Image Search
Amol Darkunde, 2Manoj Jalan, 3Yelmar Mahesh, 4Shivadatta Shinde, 5Dnyanda Patil
, 2, 3, 4 B. E.  Dept of CSE, 5 Asst. Prof. Dept of CSE
, 2, 3, 4, 5 Dr.D.Y.Patil College of Engineering, Pune, Maharashtra, India"
197c64c36e8a9d624a05ee98b740d87f94b4040c,Regularized Greedy Column Subset Selection,"Regularized Greedy Column Subset Selection
Bruno Ordozgoiti*a, Alberto Mozoa, Jes´us Garc´ıa L´opez de Lacalleb
Department of Computer Systems, Universidad Polit´ecnica de Madrid
Department of Applied Mathematics, Universidad Polit´ecnica de Madrid"
19d4855f064f0d53cb851e9342025bd8503922e2,Learning SURF Cascade for Fast and Accurate Object Detection,"Learning SURF Cascade for Fast and Accurate Object Detection
Jianguo Li, Yimin Zhang
Intel Labs China"
193ec7bb21321fcf43bbe42233aed06dbdecbc5c,Automatic 3D Facial Expression Analysis in Videos,"UC Santa Barbara
UC Santa Barbara Previously Published Works
Title
Automatic 3D facial expression analysis in videos
Permalink
https://escholarship.org/uc/item/3g44f7k8
Authors
Chang, Y
Vieira, M
Turk, M
et al.
Publication Date
005-01-01
Peer reviewed
eScholarship.org
Powered by the California Digital Library
University of California"
4c6e1840451e1f86af3ef1cb551259cb259493ba,Hand Posture Dataset Creation for Gesture Recognition,"HAND POSTURE DATASET CREATION FOR GESTURE
RECOGNITION
Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria
Luis Anton-Canalis
Campus Universitario de Tafira, 35017 Gran Canaria, Spain
Elena Sanchez-Nielsen
Departamento de E.I.O. y Computacion
8271 Universidad de La Laguna, Spain
Keywords:
Image understanding, Gesture recognition, Hand dataset."
4c815f367213cc0fb8c61773cd04a5ca8be2c959,Facial expression recognition using curvelet based local binary patterns,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE
ICASSP 2010"
4c4e49033737467e28aa2bb32f6c21000deda2ef,Improving Landmark Localization with Semi-Supervised Learning,"Improving Landmark Localization with Semi-Supervised Learning
Sina Honari1∗, Pavlo Molchanov2, Stephen Tyree2, Pascal Vincent1,4,5, Christopher Pal1,3, Jan Kautz2
MILA-University of Montreal, 2NVIDIA, 3Ecole Polytechnique of Montreal, 4CIFAR, 5Facebook AI Research.
{honaris,
{pmolchanov, styree,"
4c81c76f799c48c33bb63b9369d013f51eaf5ada,Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job Candidate Screening from Video CVs,"Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job
Candidate Screening from Video CVs
Heysem Kaya1, Furkan G¨urpınar2, and Albert Ali Salah2
Department of Computer Engineering, Namık Kemal University, Tekirda˘g, Turkey
Department of Computer Engineering, Bo˘gazic¸i University, Istanbul, Turkey"
4c1ce6bced30f5114f135cacf1a37b69bb709ea1,Gaze direction estimation by component separation for recognition of Eye Accessing Cues,"Gaze Direction Estimation by Component Separation for
Recognition of Eye Accessing Cues
Ruxandra Vrˆanceanu
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313
Corneliu Florea
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313
Laura Florea
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313
Constantin Vertan
Image Processing and Analysis Laboratory
University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313"
2661f38aaa0ceb424c70a6258f7695c28b97238a,Multilayer Architectures for Facial Action Unit Recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 4, AUGUST 2012
Multilayer Architectures for Facial
Action Unit Recognition
Tingfan Wu, Nicholas J. Butko, Paul Ruvolo, Jacob Whitehill, Marian S. Bartlett, and Javier R. Movellan"
264a84f4d27cd4bca94270620907cffcb889075c,Deep motion features for visual tracking,"Deep Motion Features for Visual Tracking
Susanna Gladh, Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg
Computer Vision Laboratory, Department of Electrical Engineering, Link¨oping University, Sweden"
26a72e9dd444d2861298d9df9df9f7d147186bcd,Collecting and annotating the large continuous action dataset,"DOI 10.1007/s00138-016-0768-4
ORIGINAL PAPER
Collecting and annotating the large continuous action dataset
Daniel Paul Barrett1 · Ran Xu2 · Haonan Yu1 · Jeffrey Mark Siskind1
Received: 18 June 2015 / Revised: 18 April 2016 / Accepted: 22 April 2016 / Published online: 21 May 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com"
266766818dbc5a4ca1161ae2bc14c9e269ddc490,Boosting a Low-Cost Smart Home Environment with Usage and Access Control Rules,"Article
Boosting a Low-Cost Smart Home Environment with
Usage and Access Control Rules
Paolo Barsocchi * ID , Antonello Calabrò, Erina Ferro, Claudio Gennaro ID and Eda Marchetti and
Claudio Vairo
Institute of Information Science and Technologies of CNR (CNR-ISTI)-Italy, 56124 Pisa, Italy;
(A.C.); (E.F.); (C.G.);
(E.M.); (C.V.)
* Correspondence: Tel.: +39-050-315-2965
Received: 27 April 2018; Accepted: 31 May 2018; Published: 8 June 2018"
265af79627a3d7ccf64e9fe51c10e5268fee2aae,A Mixture of Transformed Hidden Markov Models for Elastic Motion Estimation,"A Mixture of Transformed Hidden Markov
Models for Elastic Motion Estimation
Huijun Di, Linmi Tao, and Guangyou Xu, Senior Member, IEEE"
26af867977f90342c9648ccf7e30f94470d40a73,Joint Gender and Face Recognition System for RGB-D Images with Texture and DCT Features,"IJIRST –International Journal for Innovative Research in Science & Technology| Volume 3 | Issue 04 | September 2016
ISSN (online): 2349-6010
Joint Gender and Face Recognition System for
RGB-D Images with Texture and DCT Features
Jesny Antony
PG Student
Department of Computer Science & Information Systems
Federal Institute of Science and Technology,  Mookkannoor
PO, Angamaly, Ernakulam, Kerala 683577, India
Prasad J. C.
Associate Professor
Department of Computer Science & Engineering
Federal Institute of Science and Technology,  Mookkannoor
PO, Angamaly, Ernakulam, Kerala 683577, India"
26c884829897b3035702800937d4d15fef7010e4,Facial Expression Recognition by Supervised Independent Component Analysis Using MAP Estimation,"IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
PAPER
Facial Expression Recognition by Supervised Independent
Component Analysis using MAP Estimation
Fan CHEN
, Nonmember and Kazunori KOTANI
, Member
SUMMARY Permutation ambiguity of the classical Inde-
pendent Component Analysis (ICA) may cause problems in fea-
ture extraction for pattern classification. Especially when only a
small subset of components is derived from data, these compo-
nents may not be most distinctive for classification, because ICA
is an unsupervised method. We include a selective prior for de-
mixing coef‌f‌icients into the classical ICA to alleviate the problem.
Since the prior is constructed upon the classification information
from the training data, we refer to the proposed ICA model with
selective prior as a supervised ICA (sICA). We formulated the
learning rule for sICA by taking a Maximum a Posteriori (MAP)
scheme and further derived a fixed point algorithm for learning
the de-mixing matrix. We investigate the performance of sICA"
26ad6ceb07a1dc265d405e47a36570cb69b2ace6,Neural Correlates of Cross-Cultural Adaptation,"RESEARCH AND EXPLOR ATORY
DEVELOPMENT DEPARTMENT
REDD-2015-384
Neural Correlates of Cross-Cultural
How to Improve the Training and Selection for
Military Personnel Involved in Cross-Cultural
Operating Under Grant #N00014-12-1-0629/113056
Adaptation
September, 2015
Interactions
Jonathon Kopecky
Jason Spitaletta
Mike Wolmetz
Alice Jackson
Prepared for:
Office of Naval Research"
26437fb289cd7caeb3834361f0cc933a02267766,Innovative Assessment Technologies: Comparing ‘Face-to-Face’ and Game-Based Development of Thinking Skills in Classroom Settings,"012 International Conference on Management and Education Innovation
IPEDR vol.37 (2012) © (2012) IACSIT Press, Singapore
Innovative Assessment Technologies: Comparing ‘Face-to-Face’ and
Game-Based Development of Thinking Skills in Classroom Settings
Gyöngyvér Molnár 1 + and András Lőrincz 2
University of Szeged, 2 Eötvös Loránd University"
26e570049aaedcfa420fc8c7b761bc70a195657c,Hybrid Facial Regions Extraction for Micro-expression Recognition System,"J Sign Process Syst
DOI 10.1007/s11265-017-1276-0
Hybrid Facial Regions Extraction for Micro-expression
Recognition System
Sze-Teng Liong1,2,3 · John See4 · Raphael C.-W. Phan2 · KokSheik Wong5 ·
Su-Wei Tan2
Received: 2 February 2016 / Revised: 20 October 2016 / Accepted: 10 August 2017
© Springer Science+Business Media, LLC 2017"
21ef129c063bad970b309a24a6a18cbcdfb3aff5,Individual and Inter-related Action Unit Detection in Videos for Affect Recognition,"POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCESacceptée sur proposition du jury:Dr J.-M. Vesin, président du juryProf. J.-Ph. Thiran, Prof. D. Sander, directeurs de thèseProf. M. F. Valstar, rapporteurProf. H. K. Ekenel, rapporteurDr S. Marcel, rapporteurIndividual and Inter-related Action Unit Detection in Videos for Affect RecognitionTHÈSE NO 6837 (2016)ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNEPRÉSENTÉE LE 19 FÉVRIER 2016À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEURLABORATOIRE DE TRAITEMENT DES SIGNAUX 5PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE Suisse2016PARAnıl YÜCE"
218b2c5c9d011eb4432be4728b54e39f366354c1,Enhancing Training Collections for Image Annotation: An Instance-Weighted Mixture Modeling Approach,"Enhancing Training Collections for Image
Annotation: An Instance-Weighted Mixture
Modeling Approach
Neela Sawant, Student Member, IEEE, James Z. Wang, Senior Member, IEEE, Jia Li, Senior Member, IEEE."
2162654cb02bcd10794ae7e7d610c011ce0fb51b,Joint gaze-correction and beautification of DIBR-synthesized human face via dual sparse coding,"978-1-4799-5751-4/14/$31.00 ©2014 IEEE
http://www.skype.com/
http://www.google.com/hangouts/
tification, sparse coding"
21f3c5b173503185c1e02a3eb4e76e13d7e9c5bc,Rotation Invariant Real-time Face Detection and Recognition System,"m a s s a c h u s e t t s   i n s t i t u t e   o f
t e c h n o l o g y   — a r t i f i c i a l   i n t e l l i g e n c e   l a b o r a t o r y
Rotation Invariant Real-time
Face Detection and
Recognition System
Purdy Ho
AI Memo 2001-010
CBCL Memo 197
May 31, 2001
© 2 0 0 1   m a s s a c h u s e t t s   i n s t i t u t e   o f
t e c h n o l o g y, c a m b r i d g e , m a   0 2 1 3 9   u s a   —   w w w. a i . m i t . e d u"
214db8a5872f7be48cdb8876e0233efecdcb6061,Semantic-Aware Co-Indexing for Image Retrieval,"Semantic-aware Co-indexing for Image Retrieval
Shiliang Zhang2, Ming Yang1, Xiaoyu Wang1, Yuanqing Lin1, Qi Tian2
NEC Laboratories America, Inc.
Dept. of CS, Univ. of Texas at San Antonio
Cupertino, CA 95014
San Antonio, TX 78249"
214ac8196d8061981bef271b37a279526aab5024,Face Recognition Using Smoothed High-Dimensional Representation,"Face Recognition Using Smoothed High-Dimensional
Representation
Juha Ylioinas, Juho Kannala, Abdenour Hadid, and Matti Pietik¨ainen
Center for Machine Vision Research, PO Box 4500,
FI-90014 University of Oulu, Finland"
213a579af9e4f57f071b884aa872651372b661fd,Automatic and Efficient Human Pose Estimation for Sign Language Videos,"Int J Comput Vis
DOI 10.1007/s11263-013-0672-6
Automatic and Efficient Human Pose Estimation for Sign
Language Videos
James Charles · Tomas Pfister · Mark Everingham ·
Andrew Zisserman
Received: 4 February 2013 / Accepted: 29 October 2013
© Springer Science+Business Media New York 2013"
21626caa46cbf2ae9e43dbc0c8e789b3dbb420f1,Transductive VIS-NIR face matching,"978-1-4673-2533-2/12/$26.00 ©2012 IEEE
ICIP 2012"
21b16df93f0fab4864816f35ccb3207778a51952,Recognition of Static Gestures Applied to Brazilian Sign Language (Libras),"Recognition of Static Gestures applied to Brazilian Sign Language (Libras)
Igor L. O. Bastos
Math Institute
Michele F. Angelo, Angelo C. Loula
Department of Technology, Department of Exact Sciences
Federal University of Bahia (UFBA),
State University of Feira de Santana (UEFS)
Salvador, Brazil
Feira de Santana, Brazil"
4d49c6cff198cccb21f4fa35fd75cbe99cfcbf27,Topological principal component analysis for face encoding and recognition,"Topological Principal Component Analysis for
face encoding and recognition
Albert Pujol , Jordi Vitri(cid:18)a, Felipe Lumbreras,
Juan J. Villanueva
Computer Vision Center and Departament d’Inform(cid:18)atica, Edi(cid:12)ci O, Universitat
Aut(cid:18)onoma de Barcelona 	, Cerdanyola, Spain"
4da735d2ed0deeb0cae4a9d4394449275e316df2,"The rhythms of head, eyes and hands at intersections","Gothenburg, Sweden, June 19-22, 2016
978-1-5090-1820-8/16/$31.00 ©2016 IEEE"
4d530a4629671939d9ded1f294b0183b56a513ef,Facial Expression Classification Method Based on Pseudo Zernike Moment and Radial Basis Function Network,"International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012
Facial Expression Classification Method Based on Pseudo
Zernike Moment and Radial Basis Function Network
Tran Binh Long, Le Hoang Thai, and Tran Hanh"
4d2975445007405f8cdcd74b7fd1dd547066f9b8,Image and Video Processing for Affective Applications,"Image and Video Processing
for Affective Applications
Maja Pantic and George Caridakis"
4db9e5f19366fe5d6a98ca43c1d113dac823a14d,"Are 1, 000 Features Worth A Picture? Combining Crowdsourcing and Face Recognition to Identify Civil War Soldiers","Combining Crowdsourcing and Face Recognition to Identify Civil War Soldiers
Are 1,000 Features Worth A Picture?
Vikram Mohanty, David Thames, Kurt Luther
Department of Computer Science and Center for Human-Computer Interaction
Virginia Tech, Arlington, VA, USA"
4de757faa69c1632066391158648f8611889d862,Review of Face Recognition Technology Using Feature Fusion Vector,"International Journal of Advanced Engineering Research and Science (IJAERS)                             Vol-3, Issue-3 , March- 2016]
ISSN: 2349-6495
Review of Face Recognition Technology Using
Feature Fusion Vector
Shrutika Shukla, Prof. Anuj Bhargav, Prof. Prashant Badal
Department of Electronics and Communication, S.R.C.E.M, Banmore, RGPV, University, Bhopal, Madhya Pradesh, India"
4d7e1eb5d1afecb4e238ba05d4f7f487dff96c11,Largest center-specific margin for dimension reduction,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
4d6ad0c7b3cf74adb0507dc886993e603c863e8c,Human Activity Recognition Based on Wearable Sensor Data : A Standardization of the State-ofthe-Art,"Human Activity Recognition Based on Wearable
Sensor Data: A Standardization of the
State-of-the-Art
Artur Jord˜ao, Antonio C. Nazare Jr., Jessica Sena and William Robson Schwartz
Smart Surveillance Interest Group, Computer Science Department
Universidade Federal de Minas Gerais, Brazil
Email: {arturjordao, antonio.nazare, jessicasena,"
4dca3d6341e1d991c902492952e726dc2a443d1c,Learning towards Minimum Hyperspherical Energy,"Learning towards Minimum Hyperspherical Energy
Weiyang Liu1,*, Rongmei Lin2,*, Zhen Liu1,*, Lixin Liu3,*, Zhiding Yu4, Bo Dai1,5, Le Song1,6
Georgia Institute of Technology 2Emory University
South China University of Technology 4NVIDIA 5Google Brain 6Ant Financial"
4d0ef449de476631a8d107c8ec225628a67c87f9,Face system evaluation toolkit: Recognition is harder than it seems,"© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE
must  be  obtained  for  all  other  uses,  in  any  current  or  future  media,  including
reprinting/republishing  this  material  for  advertising  or  promotional  purposes,
reating  new  collective  works,  for  resale  or  redistribution  to  servers  or  lists,  or
reuse of any copyrighted component of this work in other works.
Pre-print of article that appeared at BTAS 2010.
The published article can be accessed from:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5634517"
4d47261b2f52c361c09f7ab96fcb3f5c22cafb9f,Deep multi-frame face super-resolution,"Deep multi-frame face super-resolution
Evgeniya Ustinova, Victor Lempitsky
October 17, 2017"
4df3143922bcdf7db78eb91e6b5359d6ada004d2,The Chicago face database: A free stimulus set of faces and norming data.,"Behav Res (2015) 47:1122–1135
DOI 10.3758/s13428-014-0532-5
The Chicago face database: A free stimulus set of faces
nd norming data
Debbie S. Ma & Joshua Correll & Bernd Wittenbrink
Published online: 13 January 2015
# Psychonomic Society, Inc. 2015"
75879ab7a77318bbe506cb9df309d99205862f6c,Analysis of emotion recognition from facial expressions using spatial and transform domain methods,"Analysis Of Emotion Recognition From Facial
Expressions Using Spatial And Transform Domain
Methods
Ms. P. Suja* and Dr. Shikha Tripathi"
75503aff70a61ff4810e85838a214be484a674ba,Improved facial expression recognition via uni-hyperplane classification,"Improved Facial Expression Recognition via Uni-Hyperplane Classification
S.W. Chew∗, S. Lucey†, P. Lucey‡, S. Sridharan∗, and J.F. Cohn‡"
75308067ddd3c53721430d7984295838c81d4106,Rapid Facial Reactions in Response to Facial Expressions of Emotion Displayed by Real Versus Virtual Faces,"Article
Rapid Facial Reactions
in Response to Facial
Expressions of Emotion
Displayed by Real Versus
Virtual Faces
i-Perception
018 Vol. 9(4), 1–18
! The Author(s) 2018
DOI: 10.1177/2041669518786527
journals.sagepub.com/home/ipe
Leonor Philip, Jean-Claude Martin and Ce´ line Clavel
LIMSI, CNRS, University of Paris-Sud, Orsay, France"
759a3b3821d9f0e08e0b0a62c8b693230afc3f8d,Attribute and simile classifiers for face verification,"Attribute and Simile Classifiers for Face Verification
Neeraj Kumar
Alexander C. Berg
Peter N. Belhumeur
Columbia University∗
Shree K. Nayar"
75859ac30f5444f0d9acfeff618444ae280d661d,Multibiometric Cryptosystems Based on Feature-Level Fusion,"Multibiometric Cryptosystems based on Feature
Level Fusion
Abhishek Nagar, Student Member, IEEE, Karthik Nandakumar, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
758d7e1be64cc668c59ef33ba8882c8597406e53,"AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild","IEEE TRANSACTIONS ON AFFECTIVE COMPUTING
AffectNet: A Database for Facial Expression,
Valence, and Arousal Computing in the Wild
Ali Mollahosseini, Student Member, IEEE, Behzad Hasani, Student Member, IEEE,
nd Mohammad H. Mahoor, Senior Member, IEEE"
7553fba5c7f73098524fbb58ca534a65f08e91e7,A Practical Approach for Determination of Human Gender & Age,"Harpreet Kaur Bhatia et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.6, June- 2014, pg. 816-824
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IJCSMC, Vol. 3, Issue. 6, June 2014, pg.816 – 824
RESEARCH ARTICLE
A Practical Approach for Determination
of Human Gender & Age
Harpreet Kaur Bhatia1, Ahsan Hussain2
CSE Dept. & CSVTU University, India
CSE Dept. & CSVTU University, India"
75249ebb85b74e8932496272f38af274fbcfd696,Face Identification in Large Galleries,"Face Identification in Large Galleries
Rafael H. Vareto, Filipe Costa, William Robson Schwartz
Smart Surveillance Interest Group, Department of Computer Science
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil"
81a142c751bf0b23315fb6717bc467aa4fdfbc92,Pairwise Trajectory Representation for Action Recognition,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
81bfe562e42f2eab3ae117c46c2e07b3d142dade,A Hajj And Umrah Location Classification System For Video Crowded Scenes,"A Hajj And Umrah Location Classification System For Video
Crowded Scenes
Hossam M. Zawbaa†
Salah A. Aly†‡
Adnan A. Gutub†
Center of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA
College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA"
81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f,Comparison of Face Recognition Neural Networks,"UNIVERSITY OF TARTU
FACULTY OF SCIENCE AND TECHNOLOGY
Institute of Computer Science
Computer Science
Zepp Uibo
Comparison of Face Recognition
Neural Networks
Bachelor's thesis (6 ECST)
Supervisor: Tambet Matiisen
Tartu 2016"
8147ee02ec5ff3a585dddcd000974896cb2edc53,Angular Embedding: A Robust Quadratic Criterion,"Angular Embedding:
A Robust Quadratic Criterion
Stella X. Yu, Member,"
8199803f476c12c7f6c0124d55d156b5d91314b6,The iNaturalist Species Classification and Detection Dataset,"The iNaturalist Species Classification and Detection Dataset
Grant Van Horn1 Oisin Mac Aodha1 Yang Song2 Yin Cui3 Chen Sun2
Alex Shepard4 Hartwig Adam2
Pietro Perona1
Serge Belongie3
Caltech
Google
Cornell Tech
iNaturalist"
81706277ed180a92d2eeb94ac0560f7dc591ee13,Emotion based Contextual Semantic Relevance Feedback in Multimedia Information Retrieval,"International Journal of Computer Applications (0975 – 8887)
Volume 55– No.15, October 2012
Emotion based Contextual Semantic Relevance
Feedback in Multimedia Information Retrieval
Karm Veer Singh
Department of Computer Engineering, Indian
Institute of Technology, Banaras Hindu
University,Varanasi, 221005, India
Anil K. Tripathi
Department of Computer Engineering, Indian
Institute of Technology, Banaras Hindu
University,Varanasi, 221005, India
find  some
issued  by  a  user"
81b2a541d6c42679e946a5281b4b9dc603bc171c,Semi-supervised learning with committees: exploiting unlabeled data using ensemble learning algorithms,"Universit¨at Ulm | 89069 Ulm | Deutschland
Fakult¨at f¨ur Ingenieurwissenschaften und Informatik
Institut f¨ur Neuroinformatik
Direktor: Prof. Dr. G¨unther Palm
Semi-Supervised Learning with Committees:
Exploiting Unlabeled Data Using Ensemble
Learning Algorithms
Dissertation zur Erlangung des Doktorgrades
Doktor der Naturwissenschaften (Dr. rer. nat.)
der Fakult¨at f¨ur Ingenieurwissenschaften und Informatik
der Universit¨at Ulm
vorgelegt von
Mohamed Farouk Abdel Hady
us Kairo, ¨Agypten
Ulm, Deutschland"
8160b3b5f07deaa104769a2abb7017e9c031f1c1,Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification,"Exploiting Discriminant Information in Nonnegative
Matrix Factorization With Application
to Frontal Face Verification
Stefanos Zafeiriou, Anastasios Tefas, Member, IEEE, Ioan Buciu, and Ioannis Pitas, Senior Member, IEEE"
814d091c973ff6033a83d4e44ab3b6a88cc1cb66,The EU-Emotion Stimulus Set: A validation study.,"Behav Res (2016) 48:567–576
DOI 10.3758/s13428-015-0601-4
The EU-Emotion Stimulus Set: A validation study
Helen O’Reilly 1,2 & Delia Pigat 1 & Shimrit Fridenson 5 & Steve Berggren 3,4 & Shahar Tal 5 &
Ofer Golan 5 & Sven Bölte 3,4 & Simon Baron-Cohen 1,6 & Daniel Lundqvist 3
Published online: 30 September 2015
# Psychonomic Society, Inc. 2015"
816eff5e92a6326a8ab50c4c50450a6d02047b5e,fLRR: Fast Low-Rank Representation Using Frobenius Norm,"fLRR: Fast Low-Rank Representation Using
Frobenius Norm
Haixian Zhang, Zhang Yi, and Xi Peng
Low Rank Representation (LRR) intends to find the representation
with lowest-rank of a given data set, which can be formulated as a
rank minimization problem. Since the rank operator is non-convex and
discontinuous, most of the recent works use the nuclear norm as a convex
relaxation. This letter theoretically shows that under some conditions,
Frobenius-norm-based optimization problem has an unique solution that
is also a solution of the original LRR optimization problem. In other
words, it is feasible to apply Frobenius-norm as a surrogate of the
nonconvex matrix rank function. This replacement will largely reduce the
time-costs for obtaining the lowest-rank solution. Experimental results
show that our method (i.e., fast Low Rank Representation, fLRR),
performs well in terms of accuracy and computation speed in image
lustering and motion segmentation compared with nuclear-norm-based
LRR algorithm.
Introduction: Given a data set X ∈ Rm×n(m < n) composed of column
vectors, let A be a data set composed of vectors with the same dimension
s those in X. Both X and A can be considered as matrices. A linear"
8149c30a86e1a7db4b11965fe209fe0b75446a8c,Semi-supervised multiple instance learning based domain adaptation for object detection,"Semi-Supervised Multiple Instance Learning based
Domain Adaptation for Object Detection
Siemens Corporate Research
Siemens Corporate Research
Siemens Corporate Research
Amit Kale
Bangalore
Chhaya Methani
Bangalore
{chhaya.methani,
Rahul Thota
Bangalore
rahul.thota,"
86614c2d2f6ebcb9c600d4aef85fd6bf6eab6663,Benchmarks for Cloud Robotics,"Benchmarks for Cloud Robotics
Arjun Singh
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2016-142
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-142.html
August 12, 2016"
86b69b3718b9350c9d2008880ce88cd035828432,Improving Face Image Extraction by Using Deep Learning Technique,"Improving Face Image Extraction by Using Deep Learning Technique
Zhiyun Xue, Sameer Antani, L. Rodney Long, Dina Demner-Fushman, George R. Thoma
National Library of Medicine, NIH, Bethesda, MD"
86904aee566716d9bef508aa9f0255dc18be3960,Learning Anonymized Representations with Adversarial Neural Networks,"Learning Anonymized Representations with
Adversarial Neural Networks
Cl´ement Feutry, Pablo Piantanida, Yoshua Bengio, and Pierre Duhamel"
867e709a298024a3c9777145e037e239385c0129,Analytical Representation of Undersampled Face Recognition Approach Based on Dictionary Learning and Sparse Representation,"INTERNATIONAL JOURNAL
OF PROFESSIONAL ENGINEERING STUDIES                                                                                                            Volume VIII /Issue 2 / FEB 2017
ANALYTICAL REPRESENTATION OF UNDERSAMPLED FACE
RECOGNITION APPROACH BASED ON DICTIONARY LEARNING
AND  SPARSE REPRESENTATION
Murala Sandeep1 A.Mallikarjuna Reddy2 P.Rajashaker Reddy3 Dr. G. Vishnu murthy4
(M.Tech)1, Assistant Professor2, Assistant Professor3, HOD of CSE Department4
Anurag group of institutions Ghatkesar, Ranga Reddy, Hyderabad, India"
869a2fbe42d3fdf40ed8b768edbf54137be7ac71,Relative Attributes for Enhanced Human-Machine Communication,"Relative Attributes for Enhanced Human-Machine Communication
Devi Parikh1, Adriana Kovashka3, Amar Parkash2, and Kristen Grauman3
Toyota Technological Institute, Chicago
Indraprastha Institute of Information Technology, Delhi
University of Texas, Austin"
86c053c162c08bc3fe093cc10398b9e64367a100,Cascade of forests for face alignment,"Cascade of Forests for Face Alignment
Heng Yang, Changqing Zou, Ioannis Patras"
861802ac19653a7831b314cd751fd8e89494ab12,"Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications","Marcin Grzegorzek, Christian Theobalt, Reinhard Koch,
Andreas Kolb
Time-of-Flight and Depth Imaging. Sensors, Algorithms
nd Applications: Dagstuhl Seminar 2012 and GCPR
Workshop on Imaging New Modalities (Lecture ... Vision,
Pattern Recognition, and Graphics)
Publisher: Springer; 2013 edition
(November 8, 2013)
Language: English
Pages: 320
ISBN: 978-3642449635
Size: 20.46 MB
Format: PDF / ePub / Kindle
Cameras for 3D depth imaging, using
either time-of-flight (ToF) or
structured light sensors, have received
lot of attention recently and have
een improved considerably over the
last few years. The present
techniques..."
861b12f405c464b3ffa2af7408bff0698c6c9bf0,An Effective Technique for Removal of Facial Dupilcation by SBFA,"International Journal on Recent and Innovation Trends in Computing and Communication                                                     ISSN: 2321-8169
Volume: 3 Issue: 5
3337 - 3342
_______________________________________________________________________________________________
An Effective Technique for Removal of Facial Dupilcation by SBFA
Miss. Deepika B. Patil
Computer Department,
GHRCEM,
Pune, India
Dr. Ayesha Butalia
Computer Department,
GHRCEM,
Pune, India"
86e1bdbfd13b9ed137e4c4b8b459a3980eb257f6,The Kinetics Human Action Video Dataset,"The Kinetics Human Action Video Dataset
Will Kay
Jo˜ao Carreira
Karen Simonyan
Brian Zhang
Chloe Hillier
Sudheendra Vijayanarasimhan
Fabio Viola
Tim Green
Trevor Back
Paul Natsev
Mustafa Suleyman
Andrew Zisserman"
86b6de59f17187f6c238853810e01596d37f63cd,Competitive Representation Based Classification Using Facial Noise Detection,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 3, 2016
Competitive Representation Based Classification
Using Facial Noise Detection
Tao Liu
Ying Liu
Chongqing Key Laboratory of Computational Intelligence
College of Computer Science and Technology, Chongqing
Chongqing Key Laboratory of Computational Intelligence
College of Computer Science and Technology, Chongqing
University of Posts and Telecommunications
University of Posts and Telecommunications
Chongqing, China
Chongqing, China
Cong Li
Chao Li
Chongqing Key Laboratory of Computational Intelligence
College of Computer Science and Technology, Chongqing
Chongqing Key Laboratory of Computational Intelligence
College of Computer Science and Technology, Chongqing"
86b105c3619a433b6f9632adcf9b253ff98aee87,A Mutual Information based Face Clustering Algorithm for Movies,"­4244­0367­7/06/$20.00 ©2006 IEEE
ICME 2006"
72a87f509817b3369f2accd7024b2e4b30a1f588,Fault diagnosis of a railway device using semi-supervised independent factor analysis with mixing constraints,"Fault diagnosis of a railway device using semi-supervised
independent factor analysis with mixing constraints
Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin
To cite this version:
Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin. Fault diagnosis of a railway device
using semi-supervised independent factor analysis with mixing constraints. Pattern Analysis and
Applications, Springer Verlag, 2012, 15 (3), pp.313-326. <hal-00750589>
HAL Id: hal-00750589
https://hal.archives-ouvertes.fr/hal-00750589
Submitted on 11 Nov 2012
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
72a00953f3f60a792de019a948174bf680cd6c9f,Understanding the role of facial asymmetry in human face identification,"Stat Comput (2007) 17:57–70
DOI 10.1007/s11222-006-9004-9
Understanding the role of facial asymmetry in human face
identification
Sinjini Mitra · Nicole A. Lazar · Yanxi Liu
Received: May 2005 / Accepted: September 2006 / Published online: 30 January 2007
C(cid:1) Springer Science + Business Media, LLC 2007"
727ecf8c839c9b5f7b6c7afffe219e8b270e7e15,Leveraging Geo-referenced Digital Photographs a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"LEVERAGING GEO-REFERENCED DIGITAL PHOTOGRAPHS
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Mor Naaman
July 2005"
72ecaff8b57023f9fbf8b5b2588f3c7019010ca7,Facial Keypoints Detection,"Facial Keypoints Detection
Shenghao Shi"
72591a75469321074b072daff80477d8911c3af3,Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction,"Group Component Analysis for Multi-block Data:
Common and Individual Feature Extraction
Guoxu Zhou, Andrzej Cichocki Fellow, IEEE, Yu Zhang, and Danilo Mandic Fellow, IEEE"
729a9d35bc291cc7117b924219bef89a864ce62c,Recognizing Material Properties from Images,"Recognizing Material Properties from Images
Gabriel Schwartz and Ko Nishino, Senior Member, IEEE"
721d9c387ed382988fce6fa864446fed5fb23173,Assessing Facial Expressions in Virtual Reality Environments,
72c0c8deb9ea6f59fde4f5043bff67366b86bd66,Age progression in Human Faces : A Survey,"Age progression in Human Faces : A Survey
Narayanan Ramanathan, Rama Chellappa and Soma Biswas"
72f4aaf7e2e3f215cd8762ce283988220f182a5b,Active illumination and appearance model for face alignment,"Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010, c(cid:2) T ¨UB˙ITAK
doi:10.3906/elk-0906-48
Active illumination and appearance model for face
lignment
Fatih KAHRAMAN1, Muhittin G ¨OKMEN 2, Sune DARKNER3, Rasmus LARSEN3
Institute of Informatics, ˙Istanbul Technical University, ˙Istanbul, 34469, TURKEY
Department of Computer Engineering, ˙Istanbul Technical University, ˙Istanbul, 34469, TURKEY
DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, DENMARK
e-mail:
e-mail:
e-mail: {sda,"
72a55554b816b66a865a1ec1b4a5b17b5d3ba784,Real-Time Face Identification via CNN and Boosted Hashing Forest,"Real-Time Face Identification
via CNN
nd Boosted Hashing Forest
Yury Vizilter, Vladimir Gorbatsevich, Andrey Vorotnikov and Nikita Kostromov
State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia
IEEE Computer Society Workshop on Biometrics
In conjunction with CVPR 2016, June 26, 2016"
72bf9c5787d7ff56a1697a3389f11d14654b4fcf,Robust Face Recognition Using Symmetric Shape-from-Shading,"RobustFaceRecognitionUsing
SymmetricShape-from-Shading
W.Zhao
RamaChellappa
CenterforAutomationResearchand
ElectricalandComputerEngineeringDepartment
UniversityofMaryland
CollegePark,MD-
ThesupportoftheO(cid:14)ceofNavalResearchunderGrantN-	--isgratefullyacknowledged.DRAFT"
4414a328466db1e8ab9651bf4e0f9f1fe1a163e4,Weighted voting of sparse representation classifiers for facial expression recognition,"© EURASIP, 2010   ISSN 2076-1465
8th European Signal Processing Conference (EUSIPCO-2010)
INTRODUCTION"
4439746eeb7c7328beba3f3ef47dc67fbb52bcb3,YASAMAN HEYDARZADEH at al: AN EFFICIENT FACE DETECTION METHOD USING ADABOOST,"YASAMAN HEYDARZADEH at al: AN EFFICIENT FACE DETECTION METHOD USING ADABOOST . . .
An Efficient Face Detection Method Using Adaboost and Facial Parts
Yasaman Heydarzadeh, Abolfazl Toroghi Haghighat
Computer, IT and Electronic department
Azad University of Qazvin
Tehran, Iran
qiau.ac.ir ,"
446a99fdedd5bb32d4970842b3ce0fc4f5e5fa03,A Pose-Adaptive Constrained Local Model for Accurate Head Pose Tracking,"A Pose-Adaptive Constrained Local Model For
Accurate Head Pose Tracking
Lucas Zamuner
Eikeo
1 rue Leon Jouhaux,
F-75010, Paris, France
Kevin Bailly
Sorbonne Universit´es
UPMC Univ Paris 06
CNRS UMR 7222, ISIR
F-75005, Paris, France
Erwan Bigorgne
Eikeo
1 rue Leon Jouhaux,
F-75010, Paris, France"
44b1399e8569a29eed0d22d88767b1891dbcf987,Learning Multi-modal Latent Attributes,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Learning Multi-modal Latent Attributes
Yanwei Fu, Timothy M. Hospedales, Tao Xiang and Shaogang Gong"
446dc1413e1cfaee0030dc74a3cee49a47386355,Recent Advances in Zero-shot Recognition,"Recent Advances in Zero-shot Recognition
Yanwei Fu, Tao Xiang, Yu-Gang Jiang, Xiangyang Xue, Leonid Sigal, and Shaogang Gong"
44a3ec27f92c344a15deb8e5dc3a5b3797505c06,A Taxonomy of Part and Attribute Discovery Techniques,"A Taxonomy of Part and Attribute Discovery
Techniques
Subhransu Maji"
44dd150b9020b2253107b4a4af3644f0a51718a3,An Analysis of the Sensitivity of Active Shape Models to Initialization When Applied to Automatic Facial Landmarking,"An Analysis of the Sensitivity of Active Shape
Models to Initialization when Applied to Automatic
Facial Landmarking
Keshav Seshadri, Student Member, IEEE and Marios Savvides, Member, IEEE"
447d8893a4bdc29fa1214e53499ffe67b28a6db5,Electronic Transport in Quantum Confined Systems,"THÈSEPour obtenir le titre deDOCTEUR DE L’UNIVERSITÉSpécialitéSCIENCES DES MATÉRIAUXParMaxime BERTHEElectronic transport in quantum confined systemsSoutenue le 11 décembre 2007 devant la commission d’examen composée de:B. DJAFARI-ROUHANIS. ROUSSETD. RODITCHEVF. CHARRAD. STIÉVENARDH. SHIGEKAWAB. GRANDIDIERPrésidentRapporteurRapporteurExaminateurDirecteur de thèseCo-directeur de thèseCo-directeur de thèsel’Université des Sciences et Technologies de LilleEcole Doctorale Sciences de la Matière, du Rayonnement et de l’EnvironnementPrésentée à"
44f65e3304bdde4be04823fd7ca770c1c05c2cef,On the use of phase of the Fourier transform for face recognition under variations in illumination,"SIViP
DOI 10.1007/s11760-009-0125-4
ORIGINAL PAPER
On the use of phase of the Fourier transform for face recognition
under variations in illumination
Anil Kumar Sao · B. Yegnanarayana
Received: 17 November 2008 / Revised: 20 February 2009 / Accepted: 7 July 2009
© Springer-Verlag London Limited 2009"
447a5e1caf847952d2bb526ab2fb75898466d1bc,Learning Non-linear Transform with Discrim- Inative and Minimum Information Loss Priors,"Under review as a conference paper at ICLR 2018
LEARNING NON-LINEAR TRANSFORM WITH DISCRIM-
INATIVE AND MINIMUM INFORMATION LOSS PRIORS
Anonymous authors
Paper under double-blind review"
2a7bca56e2539c8cf1ae4e9da521879b7951872d,Exploiting Unrelated Tasks in Multi-Task Learning,"Exploiting Unrelated Tasks in Multi-Task Learning
Anonymous Author 1
Unknown Institution 1
Anonymous Author 2
Unknown Institution 2
Anonymous Author 3
Unknown Institution 3"
2a0efb1c17fbe78470acf01e4601a75735a805cc,Illumination-Insensitive Face Recognition Using Symmetric Shape-from-Shading,"Illumination-InsensitiveFaceRecognitionUsing
SymmetricShape-from-Shading
WenYiZhao
RamaChellappa
CenterforAutomationResearch
UniversityofMaryland,CollegePark,MD-"
2aec012bb6dcaacd9d7a1e45bc5204fac7b63b3c,Robust Registration and Geometry Estimation from Unstructured Facial Scans,"Robust Registration and Geometry Estimation from Unstructured
Facial Scans
Maxim Bazik1 and Daniel Crispell2"
2ae139b247057c02cda352f6661f46f7feb38e45,Combining modality specific deep neural networks for emotion recognition in video,"Combining Modality Specific Deep Neural Networks for
Emotion Recognition in Video
Samira Ebrahimi Kahou1, Christopher Pal1, Xavier Bouthillier2, Pierre Froumenty1,
Ça˘glar Gülçehre2,∗ , Roland Memisevic2, Pascal Vincent2, Aaron Courville2, & Yoshua Bengio2
École Polytechique de Montréal, Université de Montréal, Montréal, Canada
Laboratoire d’Informatique des Systèmes Adaptatifs, Université de Montréal, Montréal, Canada
{samira.ebrahimi-kahou, christopher.pal,
{bouthilx, gulcehrc, memisevr, vincentp, courvila,"
2ad0ee93d029e790ebb50574f403a09854b65b7e,Acquiring linear subspaces for face recognition under variable lighting,"Acquiring Linear Subspaces for Face
Recognition under Variable Lighting
Kuang-Chih Lee, Student Member, IEEE, Jeffrey Ho, Member, IEEE, and
David Kriegman, Senior Member, IEEE"
2ff9618ea521df3c916abc88e7c85220d9f0ff06,Facial Tic Detection Using Computer Vision,"Facial Tic Detection Using Computer Vision
Christopher D. Leveille
Advisor: Prof. Aaron Cass
March 20, 2014"
2fda461869f84a9298a0e93ef280f79b9fb76f94,OpenFace: An open source facial behavior analysis toolkit,"OpenFace: an open source facial behavior analysis toolkit
Tadas Baltruˇsaitis
Peter Robinson
Louis-Philippe Morency"
2ffcd35d9b8867a42be23978079f5f24be8d3e35,Satellite based Image Processing using Data mining,"ISSN XXXX XXXX © 2018 IJESC
Research Article                                                                                                                            Volume 8 Issue No.6
Satellite based Image Processing using Data mining
E.Malleshwari1, S.Nirmal Kumar2, J.Dhinesh3
Professor1, Assistant Professor2, PG Scholar3
Department of Information Technology1, 2, Master of Computer Applications3
Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Avadi, Chennai, India"
2f7e9b45255c9029d2ae97bbb004d6072e70fa79,cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey,"Noname manuscript No.
(will be inserted by the editor)
vpaper.challenge in 2015
A review of CVPR2015 and DeepSurvey
Hirokatsu Kataoka · Yudai Miyashita · Tomoaki Yamabe · Soma
Shirakabe · Shin’ichi Sato · Hironori Hoshino · Ryo Kato · Kaori Abe ·
Takaaki Imanari · Naomichi Kobayashi · Shinichiro Morita · Akio
Nakamura
Received: date / Accepted: date"
2f489bd9bfb61a7d7165a2f05c03377a00072477,Structured Semi-supervised Forest for Facial Landmarks Localization with Face Mask Reasoning,"JIA, YANG: STRUCTURED SEMI-SUPERVISED FOREST
Structured Semi-supervised Forest for
Facial Landmarks Localization with Face
Mask Reasoning
Department of Computer Science
The Univ. of Hong Kong, HK
School of EECS
Queen Mary Univ. of London, UK
Xuhui Jia1
Heng Yang2
Angran Lin1
Kwok-Ping Chan1
Ioannis Patras2"
2f59f28a1ca3130d413e8e8b59fb30d50ac020e2,Children Gender Recognition Under Unconstrained Conditions Based on Contextual Information,"Children Gender Recognition Under Unconstrained
Conditions Based on Contextual Information
Riccardo Satta, Javier Galbally and Laurent Beslay
Joint Research Centre, European Commission, Ispra, Italy
Email:"
2f78e471d2ec66057b7b718fab8bfd8e5183d8f4,An Investigation of a New Social Networks Contact Suggestion Based on Face Recognition Algorithm,"SOFTWARE ENGINEERING
VOLUME: 14 | NUMBER: 5 | 2016 | DECEMBER
An Investigation of a New Social Networks
Contact Suggestion Based on Face Recognition
Algorithm
Ivan ZELINKA1,2, Petr SALOUN 2, Jakub STONAWSKI 2, Adam ONDREJKA2
Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics
Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman
Department of Computer Science, Faculty of Electrical Engineering and Computer Science,
VSB–Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
DOI: 10.15598/aeee.v14i5.1116"
2f88d3189723669f957d83ad542ac5c2341c37a5,Attribute-correlated local regions for deep relative attributes learning,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/13/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Attribute-correlatedlocalregionsfordeeprelativeattributeslearningFenZhangXiangweiKongZeJiaFenZhang,XiangweiKong,ZeJia,“Attribute-correlatedlocalregionsfordeeprelativeattributeslearning,”J.Electron.Imaging27(4),043021(2018),doi:10.1117/1.JEI.27.4.043021."
2fda164863a06a92d3a910b96eef927269aeb730,Names and faces in the news,"Names and Faces in the News
Tamara L. Berg, Alexander C. Berg, Jaety Edwards, Michael Maire,
Ryan White, Yee-Whye Teh, Erik Learned-Miller and D.A. Forsyth
Computer Science Division
U.C. Berkeley
Berkeley, CA 94720"
2f8ef26bfecaaa102a55b752860dbb92f1a11dc6,A Graph Based Approach to Speaker Retrieval in Talk Show Videos with Transcript-Based Supervision,"A Graph Based Approach to Speaker Retrieval in Talk
Show Videos with Transcript-Based Supervision
Yina Han  1, Guizhong Liu, Hichem Sahbi, Gérard Chollet"
2f17f6c460e02bd105dcbf14c9b73f34c5fb59bd,Robust Face Recognition Using the Deep C2D-CNN Model Based on Decision-Level Fusion,"Article
Robust Face Recognition Using the Deep C2D-CNN
Model Based on Decision-Level Fusion
Jing Li 1,2,†, Tao Qiu 3,†, Chang Wen 3,*, Kai Xie 1,2 and Fang-Qing Wen 1,2
School of Electronic and Information, Yangtze University, Jingzhou 434023, China;
(J.L.); (K.X.); (F-Q.W.)
National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University,
Jingzhou 434023, China
School of Computer Science, Yangtze University, Jingzhou 434023, China;
* Correspondence: Tel.: +86-136-9731-5482
These authors contributed equally to this work.
Received: 20 May 2018; Accepted: 25 June 2018; Published: 28 June 2018"
2f184c6e2c31d23ef083c881de36b9b9b6997ce9,Polichotomies on Imbalanced Domains by One-per-Class Compensated Reconstruction Rule,"Polichotomies on Imbalanced Domains
y One-per-Class Compensated Reconstruction Rule
Roberto D’Ambrosio and Paolo Soda
Integrated Research Centre, Universit´a Campus Bio-Medico of Rome, Rome, Italy"
2f13dd8c82f8efb25057de1517746373e05b04c4,Evaluation of state-of-the-art algorithms for remote face recognition,"EVALUATION OF STATE-OF-THE-ART ALGORITHMS FOR REMOTE FACE
RECOGNITION
Jie Ni and Rama Chellappa
Department of Electrical and Computer Engineering and Center for Automation Research, University
of Maryland, College Park, MD 20742, USA"
2fa1fc116731b2b5bb97f06d2ac494cb2b2fe475,A novel approach to personal photo album representation and management,"A novel approach to personal photo album representation
nd management
Edoardo Ardizzone, Marco La Cascia, and Filippo Vella
Universit`a di Palermo - Dipartimento di Ingegneria Informatica
Viale delle Scienze, 90128, Palermo, Italy"
2f882ceaaf110046e63123b495212d7d4e99f33d,High Frequency Component Compensation based Super-Resolution Algorithm for Face Video Enhancement,"High Frequency Component Compensation based Super-resolution
Algorithm for Face Video Enhancement
Junwen Wu, Mohan Trivedi, Bhaskar Rao
CVRR Lab, UC San Diego, La Jolla, CA 92093, USA"
2f95340b01cfa48b867f336185e89acfedfa4d92,Face expression recognition with a 2-channel Convolutional Neural Network,"Face Expression Recognition with a 2-Channel
Convolutional Neural Network
Dennis Hamester, Pablo Barros, Stefan Wermter
University of Hamburg — Department of Informatics
Vogt-K¨olln-Straße 30, 22527 Hamburg, Germany
http://www.informatik.uni-hamburg.de/WTM/"
2faa09413162b0a7629db93fbb27eda5aeac54ca,Quantifying how lighting and focus affect face recognition performance,"NISTIR 7674
Quantifying How Lighting and Focus
Affect Face Recognition Performance
Phillips, P. J.
Beveridge, J. R.
Draper, B.
Bolme, D.
Givens, G. H.
Lui, Y. M."
433bb1eaa3751519c2e5f17f47f8532322abbe6d,Face Recognition,
43bb20ccfda7b111850743a80a5929792cb031f0,Discrimination of Computer Generated versus Natural Human Faces,"PhD Dissertation
International Doctorate School in Information and
Communication Technologies
DISI - University of Trento
Discrimination of Computer Generated
versus Natural Human Faces
Duc-Tien Dang-Nguyen
Advisor:
Prof. Giulia Boato
Universit`a degli Studi di Trento
Co-Advisor:
Prof. Francesco G. B. De Natale
Universit`a degli Studi di Trento
February 2014"
439ac8edfa1e7cbc65474cab544a5b8c4c65d5db,Face authentication with undercontrolled pose and illumination,"SIViP (2011) 5:401–413
DOI 10.1007/s11760-011-0244-6
ORIGINAL PAPER
Face authentication with undercontrolled pose and illumination
Maria De Marsico · Michele Nappi · Daniel Riccio
Received: 15 September 2010 / Revised: 14 December 2010 / Accepted: 17 February 2011 / Published online: 7 August 2011
© Springer-Verlag London Limited 2011"
43f6953804964037ff91a4f45d5b5d2f8edfe4d5,Multi-feature fusion in advanced robotics applications,"Multi-Feature Fusion in Advanced Robotics Applications
Zahid Riaz, Christoph Mayer, Michael Beetz,
Bernd Radig
Institut für Informatik
Technische Universität München
D-85748 Garching, Germany"
439ec47725ae4a3660e509d32828599a495559bf,Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation and Evaluation,"Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation
nd Evaluation"
434bf475addfb580707208618f99c8be0c55cf95,DeXpression: Deep Convolutional Neural Network for Expression Recognition,"UNDER CONSIDERATION FOR PUBLICATION IN PATTERN RECOGNITION LETTERS
DeXpression: Deep Convolutional Neural
Network for Expression Recognition
Peter Burkert∗‡, Felix Trier∗‡, Muhammad Zeshan Afzal†‡,
Andreas Dengel†‡ and Marcus Liwicki‡
German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany"
43836d69f00275ba2f3d135f0ca9cf88d1209a87,Effective hyperparameter optimization using Nelder-Mead method in deep learning,"Ozaki et al. IPSJ Transactions on Computer Vision and
Applications  (2017) 9:20
DOI 10.1186/s41074-017-0030-7
IPSJ Transactions on Computer
Vision and Applications
RESEARCH PAPER
Open Access
Effective hyperparameter optimization
using Nelder-Mead method in deep learning
Yoshihiko Ozaki1,2, Masaki Yano1,2 and Masaki Onishi1,2*"
4362368dae29cc66a47114d5ffeaf0534bf0159c,"Performance Analysis of FDA Based Face Recognition Using Correlation, ANN and SVM","UACEE International Journal of Artificial Intelligence and Neural Networks ISSN:- 2250-3749 (online)
Performance Analysis of FDA Based Face
Recognition Using Correlation, ANN and SVM
Mahesh Goyani
Akash Dhorajiya
Ronak Paun
Department of Computer Engineering
Department of Computer Engineering
Department of Computer Engineering
GCET, Sardar Patel University
GCET, Sardar Patel University
GCET, Sardar Patel University
Anand, INDIA
Anand, INDIA
Anand, INDIA
e- mail :
e- mail :
e- mail :"
4350bb360797a4ade4faf616ed2ac8e27315968e,Edge Suppression by Gradient Field Transformation Using Cross-Projection Tensors,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Edge Suppression by Gradient Field
Transformation using Cross-Projection
Tensors
Amit Agrawal, Ramesh Raskar, Rama Chellappa
TR2006-058
June 2006"
43476cbf2a109f8381b398e7a1ddd794b29a9a16,A Practical Transfer Learning Algorithm for Face Verification,"A Practical Transfer Learning Algorithm for Face Verification
Xudong Cao
David Wipf
Fang Wen
Genquan Duan
Jian Sun"
4353d0dcaf450743e9eddd2aeedee4d01a1be78b,Learning Discriminative LBP-Histogram Bins for Facial Expression Recognition,"Learning Discriminative LBP-Histogram Bins
for Facial Expression Recognition
Caifeng Shan and Tommaso Gritti
Philips Research, High Tech Campus 36, Eindhoven 5656 AE, The Netherlands
{caifeng.shan,"
43b8b5eeb4869372ef896ca2d1e6010552cdc4d4,Large-scale Supervised Hierarchical Feature Learning for Face Recognition,"Large-scale Supervised Hierarchical Feature Learning for Face Recognition
Jianguo Li, Yurong Chen
Intel Labs China"
43ae4867d058453e9abce760ff0f9427789bab3a,Graph Embedded Nonparametric Mutual Information for Supervised Dimensionality Reduction,"Graph Embedded Nonparametric Mutual
Information For Supervised
Dimensionality Reduction
Dimitrios Bouzas, Nikolaos Arvanitopoulos, Student Member, IEEE, and Anastasios Tefas, Member, IEEE"
438b88fe40a6f9b5dcf08e64e27b2719940995e0,Building a classification cascade for visual identification from one example,"Building a Classi(cid:2)cation Cascade for Visual Identi(cid:2)cation from One Example
Andras Ferencz
Erik G. Learned-Miller
Computer Science, U.C. Berkeley
Computer Science, UMass Amherst
Jitendra Malik
Computer Science, U.C. Berkeley"
43fb9efa79178cb6f481387b7c6e9b0ca3761da8,Mixture of parts revisited: Expressive part interactions for Pose Estimation,"Mixture of Parts Revisited: Expressive Part Interactions for Pose Estimation
Anoop R Katti
IIT Madras
Chennai, India
Anurag Mittal
IIT Madras
Chennai, India"
43ed518e466ff13118385f4e5d039ae4d1c000fb,Classification of Occluded Objects Using Fast Recurrent Processing,"Classification of Occluded Objects using Fast Recurrent
Processing
Ozgur Yilmaza,∗
Turgut Ozal University, Department of Computer Engineering, Ankara Turkey"
43d7d0d0d0e2d6cf5355e60c4fe5b715f0a1101a,Playlist Generation using Facial Expression Analysis and Task Extraction,"Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/05/2018 16:53:32
U M CS"
88c6d4b73bd36e7b5a72f3c61536c8c93f8d2320,Image patch modeling in a light field,"Image patch modeling in a light field
Zeyu Li
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2014-81
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-81.html
May 15, 2014"
889bc64c7da8e2a85ae6af320ae10e05c4cd6ce7,Using Support Vector Machines to Enhance the Performance of Bayesian Face Recognition,"Using Support Vector Machines to Enhance the
Performance of Bayesian Face Recognition
Zhifeng Li, Member, IEEE, and Xiaoou Tang, Senior Member, IEEE"
88a898592b4c1dfd707f04f09ca58ec769a257de,MobileFace: 3D Face Reconstruction with Efficient CNN Regression,"MobileFace: 3D Face Reconstruction
with Ef‌f‌icient CNN Regression
Nikolai Chinaev1, Alexander Chigorin1, and Ivan Laptev1,2
VisionLabs, Amsterdam, The Netherlands
{n.chinaev,
Inria, WILLOW, Departement d’Informatique de l’Ecole Normale Superieure, PSL
Research University, ENS/INRIA/CNRS UMR 8548, Paris, France"
881066ec43bcf7476479a4146568414e419da804,From Traditional to Modern: Domain Adaptation for Action Classification in Short Social Video Clips,"From Traditional to Modern : Domain Adaptation for
Action Classification in Short Social Video Clips
Aditya Singh, Saurabh Saini, Rajvi Shah, and P J Narayanan
Center for Visual Information Technology, IIIT Hyderabad, India"
8813368c6c14552539137aba2b6f8c55f561b75f,Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition,"Trunk-Branch Ensemble Convolutional Neural
Networks for Video-based Face Recognition
Changxing Ding, Student Member, IEEE, Dacheng Tao, Fellow, IEEE"
883006c0f76cf348a5f8339bfcb649a3e46e2690,Weakly supervised pain localization using multiple instance learning,"Weakly Supervised Pain Localization using Multiple Instance Learning
Karan Sikka, Abhinav Dhall and Marian Bartlett"
88850b73449973a34fefe491f8836293fc208580,XBeats-An Emotion Based Music Player,"www.ijaret.org                                                                                                                                                     Vol. 2, Issue I, Jan. 2014
ISSN 2320-6802
INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN
ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..
XBeats-An Emotion Based Music Player
Sayali Chavan1, Ekta Malkan2, Dipali Bhatt3, Prakash H. Paranjape4
U.G. Student, Dept. of Computer Engineering,
D.J. Sanghvi College of Engineering,
Vile Parle (W), Mumbai-400056.
U.G. Student, Dept. of Computer Engineering,
D.J. Sanghvi College of Engineering,
Vile Parle (W), Mumbai-400056.
U.G. Student, Dept. of Computer Engineering,
D.J. Sanghvi College of Engineering,
Vile Parle (W), Mumbai-400056.
Assistant Professor, Dept. of Computer Engineering,
D.J. Sanghvi College of Engineering,
Vile Parle (W), Mumbai-400056."
88f2952535df5859c8f60026f08b71976f8e19ec,A neural network framework for face recognition by elastic bunch graph matching,"A neural network framework for face
recognition by elastic bunch graph matching
Francisco A. Pujol López, Higinio Mora Mora*, José A. Girona Selva"
887b7676a4efde616d13f38fcbfe322a791d1413,Deep Temporal Appearance-Geometry Network for Facial Expression Recognition,"Deep Temporal Appearance-Geometry Network
for Facial Expression Recognition
Injae Lee‡ Chunghyun Ahn‡
Junmo Kim†
Heechul Jung† Sihaeng Lee† Sunjeong Park†
Korea Advanced Institute of Science and Technology†
Electronics and Telecommunications Research Institute‡
{heechul, haeng, sunny0414, {ninja,"
8878871ec2763f912102eeaff4b5a2febfc22fbe,Human Action Recognition in Unconstrained Videos by Explicit Motion Modeling,"Human Action Recognition in Unconstrained
Videos by Explicit Motion Modeling
Yu-Gang Jiang, Qi Dai, Wei Liu, Xiangyang Xue, and Chong-Wah Ngo"
8855d6161d7e5b35f6c59e15b94db9fa5bbf2912,COGNITION IN PREGNANCY AND THE POSTPARTUM PERIOD COGNITIVE REORGANIZATION AND PROTECTIVE MECHANISMS IN PREGNANCY AND THE POSTPARTUM PERIOD By,COGNITION IN PREGNANCY AND THE POSTPARTUM PERIOD
88bee9733e96958444dc9e6bef191baba4fa6efa,Extending Face Identification to Open-Set Face Recognition,"Extending Face Identification to
Open-Set Face Recognition
Cassio E. dos Santos Jr., William Robson Schwartz
Department of Computer Science
Universidade Federal de Minas Gerais
Belo Horizonte, Brazil"
88fd4d1d0f4014f2b2e343c83d8c7e46d198cc79,Joint action recognition and summarization by sub-modular inference,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
9fa1be81d31fba07a1bde0275b9d35c528f4d0b8,Identifying Persons by Pictorial and Contextual Cues,"Identifying Persons by Pictorial and
Contextual Cues
Nicholas Leonard Pi¨el
Thesis submitted for the degree of Master of Science
Supervisor:
Prof. dr. Theo Gevers
April 2009"
9f094341bea610a10346f072bf865cb550a1f1c1,Recognition and volume estimation of food intake using a mobile device,"Recognition and Volume Estimation of Food Intake using a Mobile Device
Manika Puri Zhiwei Zhu Qian Yu Ajay Divakaran Harpreet Sawhney
Sarnoff Corporation
01 Washington Rd,
Princeton, NJ, 08540
{mpuri, zzhu, qyu, adivakaran,"
6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0,Facial Expression Recognition in the Wild Using Improved Dense Trajectories and Fisher Vector Encoding,"Facial expression recognition in the wild using improved dense trajectories and
Fisher vector encoding
Sadaf Afshar1
Albert Ali Salah2
Computational Science and Engineering Program, Bo˘gazic¸i University, Istanbul, Turkey
Department of Computer Engineering, Bo˘gazic¸i University, Istanbul, Turkey
{sadaf.afshar,"
6b089627a4ea24bff193611e68390d1a4c3b3644,Cross-Pollination of Normalization Techniques From Speaker to Face Authentication Using Gaussian Mixture Models,"CROSS-POLLINATION OF NORMALISATION
TECHNIQUES FROM SPEAKER TO FACE
AUTHENTICATION USING GAUSSIAN
MIXTURE MODELS
Roy Wallace        Mitchell McLaren        Chris McCool
Sébastien Marcel
Idiap-RR-03-2012
JANUARY 2012
Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12   www.idiap.ch"
6be0ab66c31023762e26d309a4a9d0096f72a7f0,Enhance Visual Recognition under Adverse Conditions via Deep Networks,"Enhance Visual Recognition under Adverse
Conditions via Deep Networks
Ding Liu, Student Member, IEEE, Bowen Cheng, Zhangyang Wang, Member, IEEE,
Haichao Zhang, Member, IEEE, and Thomas S. Huang, Life Fellow, IEEE"
6b18628cc8829c3bf851ea3ee3bcff8543391819,Face recognition based on subset selection via metric learning on manifold,"Hong Shao, Shuang Chen, Jie-yi Zhao, Wen-cheng Cui, Tian-shu Yu, 2015.
Face recognition based on subset selection via metric learning on manifold.
058.  [doi:10.1631/FITEE.1500085]
Face recognition based on subset
selection via metric learning on manifold
Key words: Face recognition, Sparse representation, Manifold structure,
Metric learning, Subset selection
Contact: Shuang Chen
E-mail:
ORCID: http://orcid.org/0000-0001-7441-4749
Front Inform Technol & Electron Eng"
6b6493551017819a3d1f12bbf922a8a8c8cc2a03,Pose Normalization for Local Appearance-Based Face Recognition,"Pose Normalization for Local Appearance-Based
Face Recognition
Hua Gao, Hazım Kemal Ekenel, and Rainer Stiefelhagen
Computer Science Department, Universit¨at Karlsruhe (TH)
Am Fasanengarten 5, Karlsruhe 76131, Germany
http://isl.ira.uka.de/cvhci"
6b6ff9d55e1df06f8b3e6f257e23557a73b2df96,Survey of Threats to the Biometric Authentication Systems and Solutions,"International Journal of Computer Applications (0975 – 8887)
Volume 61– No.17, January 2013
Survey of Threats to the Biometric Authentication
Systems and Solutions
Sarika Khandelwal
Research Scholor,Mewar
University,Chitorgarh. (INDIA)
P.C.Gupta
Kota University,Kota(INDIA)
Khushboo Mantri
M.tech.student, Arya College of
engineering ,Jaipur(INDIA)"
0728f788107122d76dfafa4fb0c45c20dcf523ca,The Best of BothWorlds: Combining Data-Independent and Data-Driven Approaches for Action Recognition,"The Best of Both Worlds: Combining Data-independent and Data-driven
Approaches for Action Recognition
Zhenzhong Lan, Dezhong Yao, Ming Lin, Shoou-I Yu, Alexander Hauptmann
{lanzhzh, minglin, iyu,"
07ea3dd22d1ecc013b6649c9846d67f2bf697008,Human-centric Video Understanding with Weak Supervision a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,"HUMAN-CENTRIC VIDEO UNDERSTANDING WITH WEAK
SUPERVISION
A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
Vignesh Ramanathan
June 2016"
071099a4c3eed464388c8d1bff7b0538c7322422,Facial expression recognition in the wild using rich deep features,"FACIAL EXPRESSION RECOGNITION IN THE WILD USING RICH DEEP FEATURES
Abubakrelsedik Karali, Ahmad Bassiouny and Motaz El-Saban
Microsoft Advanced Technology labs, Microsoft Technology and Research, Cairo, Egypt"
070ab604c3ced2c23cce2259043446c5ee342fd6,An Active Illumination and Appearance (AIA) Model for Face Alignment,"AnActiveIlluminationandAppearance(AIA)ModelforFaceAlignment
FatihKahraman,MuhittinGokmen
IstanbulTechnicalUniversity,
ComputerScienceDept.,Turkey
{fkahraman,
InformaticsandMathematicalModelling,Denmark
SuneDarkner,RasmusLarsen
TechnicalUniversityofDenmark"
071135dfb342bff884ddb9a4d8af0e70055c22a1,Temporal 3D ConvNets: New Architecture and Transfer Learning for Video Classification,"New Architecture and Transfer Learning for Video Classification
Temporal 3D ConvNets:
Ali Diba1,4,(cid:63), Mohsen Fayyaz2,(cid:63), Vivek Sharma3, Amir Hossein Karami4, Mohammad Mahdi Arzani4,
Rahman Yousefzadeh4, Luc Van Gool1,4
ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai"
0754e769eb613fd3968b6e267a301728f52358be,Towards a Watson that sees: Language-guided action recognition for robots,"Towards a Watson That Sees: Language-Guided Action Recognition for
Robots
Ching L. Teo, Yezhou Yang, Hal Daum´e III, Cornelia Ferm¨uller and Yiannis Aloimonos"
07c83f544d0604e6bab5d741b0bf9a3621d133da,Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition,"Learning Spatio-Temporal Features with 3D Residual Networks
for Action Recognition
Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Ibaraki, Japan
{kensho.hara, hirokatsu.kataoka,"
0717b47ab84b848de37dbefd81cf8bf512b544ac,Robust Face Recognition and Tagging in Visual Surveillance System,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
International Conference on Humming Bird ( 01st March 2014)
RESEARCH ARTICLE
OPEN ACCESS
Robust Face Recognition and Tagging in Visual Surveillance
Kavitha MS 1, Siva Pradeepa S2
System
Kavitha MS Author is currently pursuing M.E(CSE)in VINS Christian college of Engineering,Nagercoil.
Siva pradeepa,Assistant Lecturer in VINS Christian college of Engineering"
0750a816858b601c0dbf4cfb68066ae7e788f05d,CosFace: Large Margin Cosine Loss for Deep Face Recognition,"CosFace: Large Margin Cosine Loss for Deep Face Recognition
Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,
Zhifeng Li∗, and Wei Liu∗
Tencent AI Lab"
078d507703fc0ac4bf8ca758be101e75ea286c80,Large - Scale Content Based Face Image Retrieval using Attribute Enhanced,"ISSN: 2321-8169
International Journal on Recent and Innovation Trends in Computing and Communication
Volume: 3 Issue: 8
5287 - 5296
________________________________________________________________________________________________________________________________
Large- Scale Content Based Face Image Retrieval using Attribute Enhanced
Sparse Codewords.
Chaitra R,
Mtech Digital Coomunication Engineering
Acharya Institute Of Technology
Bangalore"
0716e1ad868f5f446b1c367721418ffadfcf0519,Interactively Guiding Semi-Supervised Clustering via Attribute-Based Explanations,"Interactively Guiding Semi-Supervised
Clustering via Attribute-Based Explanations
Shrenik Lad and Devi Parikh
Virginia Tech, Blacksburg, VA, USA"
0726a45eb129eed88915aa5a86df2af16a09bcc1,Introspective perception: Learning to predict failures in vision systems,"Introspective Perception: Learning to Predict Failures in Vision Systems
Shreyansh Daftry, Sam Zeng, J. Andrew Bagnell and Martial Hebert"
0742d051caebf8a5d452c03c5d55dfb02f84baab,Real-time geometric motion blur for a deforming polygonal mesh,"Real-Time Geometric Motion Blur for a Deforming Polygonal Mesh
Nathan Jones
Formerly: Texas A&M University
Currently: The Software Group"
38d56ddcea01ce99902dd75ad162213cbe4eaab7,Sense Beauty by Label Distribution Learning,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
389334e9a0d84bc54bcd5b94b4ce4c5d9d6a2f26,Facial parameter extraction system based on active contours,"FACIAL PARAMETER EXTRACTION SYSTEM BASED ON ACTIVE CONTOURS
Montse Pardàs, Marcos Losada
Universitat Politècnica de Catalunya, Barcelona, Spain"
38f7f3c72e582e116f6f079ec9ae738894785b96,A New Technique for Face Matching after Plastic Surgery in Forensics,"IJARCCE
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940
International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015
A New Technique for Face Matching after
Plastic Surgery in Forensics
Anju Joseph1, Nilu Tressa Thomas2, Neethu C. Sekhar3
Student, Dept. of CSE, Amal Jyothi College of Engineering, Kanjirappally, India 1,2
Asst. Professor, Dept. of CSE, Amal Jyothi College of Engineering, Kanjirappally, India 3
I.  INTRODUCTION
Facial  recognition  is  one  of  the  most  important    task  that
forensic  examiners  execute
their
investigation. This work focuses on analysing the effect of
plastic  surgery  in  face  recognition  algorithms.  It  is
imperative for the subsequent facial recognition systems to
e  capable  of  addressing  this  significant  issue  and
ccordingly  there  is  a  need  for  more  research  in  this
important area."
38679355d4cfea3a791005f211aa16e76b2eaa8d,Evolutionary Cross-Domain Discriminative Hessian Eigenmaps,"Title
Evolutionary cross-domain discriminative Hessian Eigenmaps
Author(s)
Si, S; Tao, D; Chan, KP
Citation
Issued Date
http://hdl.handle.net/10722/127357
Rights
This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.; ©2010
IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
opyrighted component of this work in other works must be
obtained from the IEEE."
38682c7b19831e5d4f58e9bce9716f9c2c29c4e7,Movie Character Identification Using Graph Matching Algorithm,"International Journal of Computer Trends and Technology (IJCTT) – Volume 18 Number 5 – Dec 2014
Movie Character Identification Using Graph Matching
Algorithm
Shaik. Kartheek.*1, A.Srinivasa Reddy*2
M.Tech Scholar, Dept of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India.
Associate Professor, Department of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India"
3803b91e784922a2dacd6a18f61b3100629df932,Temporal Multimodal Fusion for Video Emotion Classification in the Wild,"Temporal Multimodal Fusion
for Video Emotion Classification in the Wild
Valentin Vielzeuf∗
Orange Labs
Cesson-Sévigné, France
Stéphane Pateux
Orange Labs
Cesson-Sévigné, France
Frédéric Jurie
Normandie Univ., UNICAEN,
ENSICAEN, CNRS
Caen, France"
38eea307445a39ee7902c1ecf8cea7e3dcb7c0e7,Multi-distance Support Matrix Machines,"Noname manuscript No.
(will be inserted by the editor)
Multi-distance Support Matrix Machine
Yunfei Ye1
· Dong Han1
Received: date / Accepted: date"
384f972c81c52fe36849600728865ea50a0c4670,"Multi-Fold Gabor, PCA and ICA Filter Convolution Descriptor for Face Recognition","Multi-Fold Gabor, PCA and ICA Filter
Convolution Descriptor for Face Recognition
Cheng Yaw Low, Andrew Beng Jin Teoh, Senior Member, IEEE, Cong Jie Ng"
38f1fac3ed0fd054e009515e7bbc72cdd4cf801a,Finding Person Relations in Image Data of the Internet Archive,"Finding Person Relations in Image Data of the
Internet Archive
Eric M¨uller-Budack1,2[0000−0002−6802−1241],
Kader Pustu-Iren1[0000−0003−2891−9783], Sebastian Diering1, and
Ralph Ewerth1,2[0000−0003−0918−6297]
Leibniz Information Centre for Science and Technology (TIB), Hannover, Germany
L3S Research Center, Leibniz Universit¨at Hannover, Germany"
380d5138cadccc9b5b91c707ba0a9220b0f39271,Deep Imbalanced Learning for Face Recognition and Attribute Prediction,"Deep Imbalanced Learning for Face Recognition
nd Attribute Prediction
Chen Huang, Yining Li, Chen Change Loy, Senior Member, IEEE and Xiaoou Tang, Fellow, IEEE"
38215c283ce4bf2c8edd597ab21410f99dc9b094,The SEMAINE Database: Annotated Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent,"The SEMAINE Database: Annotated Multimodal Records of
Emotionally Colored Conversations between a Person and a Limited
Agent
McKeown, G., Valstar, M., Cowie, R., Pantic, M., & Schröder, M. (2012). The SEMAINE Database: Annotated
Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent. IEEE
Transactions on Affective Computing, 3(1), 5-17. DOI: 10.1109/T-AFFC.2011.20
Published in:
Document Version:
Peer reviewed version
Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal
General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.
Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact
Download date:05. Nov. 2018"
38183fe28add21693729ddeaf3c8a90a2d5caea3,Scale-Aware Face Detection,"Scale-Aware Face Detection
Zekun Hao1, Yu Liu1, Hongwei Qin2, Junjie Yan2, Xiu Li2, Xiaolin Hu2
SenseTime, 2Tsinghua University
{haozekun,"
3802da31c6d33d71b839e260f4022ec4fbd88e2d,Deep Attributes for One-Shot Face Recognition,"Deep Attributes for One-Shot Face Recognition
Aishwarya Jadhav1,3, Vinay P. Namboodiri2, and K. S. Venkatesh 3
Xerox Research Center India, 2Department of Computer Science,
Department of Electrical Engineering, IIT Kanpur"
00fb2836068042c19b5197d0999e8e93b920eb9c,Genetic Algorithm for Weight Optimization in Descriptor based Face Recognition Methods,
0077cd8f97cafd2b389783858a6e4ab7887b0b6b,Face Image Reconstruction from Deep Templates,"MAI et al.: ON THE RECONSTRUCTION OF DEEP FACE TEMPLATES
On the Reconstruction of Deep Face Templates
Guangcan Mai, Kai Cao, Pong C. Yuen, Senior Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
00214fe1319113e6649435cae386019235474789,Face Recognition using Distortion Models,"Bachelorarbeit im Fach Informatik
Face Recognition using
Distortion Models
Mathematik, Informatik und Naturwissenschaften der
RHEINISCH-WESTFÄLISCHEN TECHNISCHEN HOCHSCHULE AACHEN
Der Fakultät für
Lehrstuhl für Informatik VI
Prof. Dr.-Ing. H. Ney
vorgelegt von:
Harald Hanselmann
Matrikelnummer 252400
Gutachter:
Prof. Dr.-Ing. H. Ney
Prof. Dr. B. Leibe
Betreuer:
Dipl.-Inform. Philippe Dreuw
September 2009"
004e3292885463f97a70e1f511dc476289451ed5,Quadruplet-Wise Image Similarity Learning,"Quadruplet-wise Image Similarity Learning
Marc T. Law
Nicolas Thome
Matthieu Cord
LIP6, UPMC - Sorbonne University, Paris, France
{Marc.Law, Nicolas.Thome,"
00f0ed04defec19b4843b5b16557d8d0ccc5bb42,Modeling Spatial and Temporal Cues for Multi-label Facial Action Unit Detection,
0037bff7be6d463785d4e5b2671da664cd7ef746,Multiple Instance Metric Learning from Automatically Labeled Bags of Faces,"Author manuscript, published in ""European Conference on Computer Vision (ECCV '10) 6311 (2010) 634--647""
DOI : 10.1007/978-3-642-15549-9_46"
00d9d88bb1bdca35663946a76d807fff3dc1c15f,Subjects and Their Objects: Localizing Interactees for a Person-Centric View of Importance,"Subjects and Their Objects: Localizing Interactees for a
Person-Centric View of Importance
Chao-Yeh Chen · Kristen Grauman"
00a3cfe3ce35a7ffb8214f6db15366f4e79761e3,Using Kinect for real-time emotion recognition via facial expressions,"Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen, 2015. Using
Kinect for real-time emotion recognition via facial expressions. Frontiers of
Information Technology & Electronic Engineering, 16(4):272-282.
[doi:10.1631/FITEE.1400209]
Using Kinect for real-time emotion
recognition via facial expressions
Key words: Kinect, Emotion recognition, Facial expression, Real-time
lassification, Fusion algorithm, Support vector machine (SVM)
Contact: Qi-rong Mao
E-mail:
ORCID: http://orcid.org/0000-0002-5021-9057
Front Inform Technol & Electron Eng"
004a1bb1a2c93b4f379468cca6b6cfc6d8746cc4,Balanced k-Means and Min-Cut Clustering,"Balanced k-Means and Min-Cut Clustering
Xiaojun Chang, Feiping Nie, Zhigang Ma, and Yi Yang"
00d94b35ffd6cabfb70b9a1d220b6823ae9154ee,Discriminative Bayesian Dictionary Learning for Classification,"Discriminative Bayesian Dictionary Learning
for Classification
Naveed Akhtar, Faisal Shafait, and Ajmal Mian"
006f283a50d325840433f4cf6d15876d475bba77,Preserving Structure in Model-Free Tracking,"Preserving Structure in Model-Free Tracking
Lu Zhang and Laurens van der Maaten"
00d931eccab929be33caea207547989ae7c1ef39,The Natural Input Memory Model,"The Natural Input Memory Model
Joyca P.W. Lacroix
Department of Computer Science, IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands
Department of Psychology, Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands
Jaap M.J. Murre
Department of Computer Science, IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands
Eric O. Postma
H. Jaap van den Herik"
0052de4885916cf6949a6904d02336e59d98544c,Generalized Low Rank Approximations of Matrices,"005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.
DOI: 10.1007/s10994-005-3561-6
Generalized Low Rank Approximations of Matrices
JIEPING YE
Department of Computer Science & Engineering,University of Minnesota-Twin Cities, Minneapolis,
MN 55455, USA
Editor:
Peter Flach
Published online: 12 August 2005"
6e198f6cc4199e1c4173944e3df6f39a302cf787,MORPH-II: Inconsistencies and Cleaning Whitepaper,"MORPH-II: Inconsistencies and Cleaning Whitepaper
Participants: G. Bingham, B. Yip, M. Ferguson, and C. Nansalo
Mentors: C. Chen, Y. Wang, and T. Kling
NSF-REU Site at UNC Wilmington, Summer 2017"
6eba25166fe461dc388805cc2452d49f5d1cdadd,"ALBANIE, VEDALDI: LEARNING GRIMACES BY WATCHING TV 1 Learning Grimaces by Watching TV","Pages 122.1-122.12
DOI: https://dx.doi.org/10.5244/C.30.122"
6e8a81d452a91f5231443ac83e4c0a0db4579974,Illumination robust face representation based on intrinsic geometrical information,"Illumination robust face representation based on intrinsic geometrical
information
Soyel, H; Ozmen, B; McOwan, PW
This is a pre-copyedited, author-produced PDF of an article accepted for publication in IET
Conference on Image Processing (IPR 2012). The version of record is available
http://ieeexplore.ieee.org/document/6290632/?arnumber=6290632&tag=1
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/16147
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
6ed738ff03fd9042965abdfaa3ed8322de15c116,K-MEAP: Generating Specified K Clusters with Multiple Exemplars by Efficient Affinity Propagation,"This document is downloaded from DR-NTU, Nanyang Technological
University Library, Singapore.
Title
K-MEAP: Generating Specified K Clusters with Multiple
Exemplars by Efficient Affinity Propagation
Author(s) Wang, Yangtao; Chen, Lihui
Citation
Wang, Y & Chen, L. (2014). K-MEAP: Generating
Specified K Clusters with Multiple Exemplars by Efficient
Affinity Propagation. 2014 IEEE International Conference
on Data Mining (ICDM), 1091-1096.
http://hdl.handle.net/10220/39690
Rights
© 2014 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other
uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any
opyrighted component of this work in other works. The"
6ecd4025b7b5f4894c990614a9a65e3a1ac347b2,Automatic Naming of Character using Video Streaming for Face Recognition with Graph Matching,"International Journal on Recent and Innovation Trends in Computing and Communication
ISSN: 2321-8169
Volume: 2 Issue: 5
1275– 1281
_______________________________________________________________________________________________
Automatic Naming of Character using Video Streaming for Face
Recognition with Graph Matching
Nivedita.R.Pandey
Ranjan.P.Dahake
PG Student at MET’s IOE Bhujbal Knowledge City,
PG Student at MET’s IOE Bhujbal Knowledge City,
Nasik, Maharashtra, India,
Nasik, Maharashtra, India,"
6e9a8a34ab5b7cdc12ea52d94e3462225af2c32c,Fusing Aligned and Non-aligned Face Information for Automatic Affect Recognition in the Wild: A Deep Learning Approach,"Fusing Aligned and Non-Aligned Face Information
for Automatic Affect Recognition in the Wild: A Deep Learning Approach
Bo-Kyeong Kim, Suh-Yeon Dong, Jihyeon Roh, Geonmin Kim, Soo-Young Lee
Computational NeuroSystems Laboratory (CNSL)
Korea Advanced Institute of Science and Technology (KAIST)
{bokyeong1015, {rohleejh, gmkim90,"
6e3a181bf388dd503c83dc324561701b19d37df1,Finding a low-rank basis in a matrix subspace,"Finding a low-rank basis in a matrix subspace
Yuji Nakatsukasa · Tasuku Soma ·
Andr´e Uschmajew"
6ef1996563835b4dfb7fda1d14abe01c8bd24a05,Nonparametric Part Transfer for Fine-Grained Recognition,"Nonparametric Part Transfer for Fine-grained Recognition
Christoph G¨oring, Erik Rodner, Alexander Freytag, and Joachim Denzler∗
Computer Vision Group, Friedrich Schiller University Jena
www.inf-cv.uni-jena.de"
6e8c3b7d25e6530a631ea01fbbb93ac1e8b69d2f,"Deep Episodic Memory: Encoding, Recalling, and Predicting Episodic Experiences for Robot Action Execution","Deep Episodic Memory: Encoding, Recalling, and Predicting
Episodic Experiences for Robot Action Execution
Jonas Rothfuss∗†, Fabio Ferreira∗†, Eren Erdal Aksoy ‡, You Zhou† and Tamim Asfour†"
6e911227e893d0eecb363015754824bf4366bdb7,Wasserstein Divergence for GANs,"Wasserstein Divergence for GANs
Jiqing Wu1, Zhiwu Huang1, Janine Thoma1, Dinesh Acharya1, and
Luc Van Gool1,2
Computer Vision Lab, ETH Zurich, Switzerland
VISICS, KU Leuven, Belgium"
6ee8a94ccba10062172e5b31ee097c846821a822,How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis,"Submitted 3/13; Revised 10/13; Published 12/13
How to Solve Classification and Regression Problems on
High-Dimensional Data with a Supervised
Extension of Slow Feature Analysis
Alberto N. Escalante-B.
Laurenz Wiskott
Institut f¨ur Neuroinformatik
Ruhr-Universit¨at Bochum
Bochum D-44801, Germany
Editor: David Dunson"
6ee64c19efa89f955011531cde03822c2d1787b8,Table S1: Review of Existing Facial Expression Databases That Are Often Used in Social Psycholgy,"Table S1: Review of existing facial expression databases that are often used in social
psycholgy.
Author
database
Expressions1
Format
Short summary
GEMEP Corpus
Mind Reading: the
interactive
guide
to emotions
udio
video
record-
Videos
nger,
muse-
dmiration,
ment,"
6e379f2d34e14efd85ae51875a4fa7d7ae63a662,A New Multi-modal Biometric System Based on Fingerprint and Finger Vein Recognition,"A NEW MULTI-MODAL BIOMETRIC SYSTEM
BASED ON FINGERPRINT AND FINGER
VEIN RECOGNITION
Naveed AHMED
Master's Thesis
Department of Software Engineering
Advisor: Prof. Dr. Asaf VAROL
JULY-2014"
6e0a05d87b3cc7e16b4b2870ca24cf5e806c0a94,Random Graphs for Structure Discovery in High-dimensional Data,"RANDOM GRAPHS FOR STRUCTURE
DISCOVERY IN HIGH-DIMENSIONAL DATA
Jos¶e Ant¶onio O. Costa
A dissertation submitted in partial fulflllment
of the requirements for the degree of
Doctor of Philosophy
(Electrical Engineering: Systems)
in The University of Michigan
Doctoral Committee:
Professor Alfred O. Hero III, Chair
Professor Jefirey A. Fessler
Professor Susan A. Murphy
Professor David L. Neuhofi"
6e1802874ead801a7e1072aa870681aa2f555f35,Exploring Feature Descritors for Face Recognition,"­4244­0728­1/07/$20.00 ©2007 IEEE
I ­ 629
ICASSP 2007
*22+),)164,7+616DAIK??AIIB=B=?AHA?CEJE=CHEJDCHA=JOHAEAI.EIDAHB=?A -*/ 4A?AJO?=*E=HO2=JJAH*22+),)"
6ed22b934e382c6f72402747d51aa50994cfd97b,Customized expression recognition for performance-driven cutout character animation,"Customized Expression Recognition for Performance-Driven
Cutout Character Animation
Xiang Yu†
NEC Laboratories America
Jianchao Yang‡ Wilmot Li§
Snapchat"
6e93fd7400585f5df57b5343699cb7cda20cfcc2,Comparing a novel model based on the transferable belief model with humans during the recognition of partially occluded facial expressions.,"http://journalofvision.org/9/2/22/
Comparing a novel model based on the transferable
elief model with humans during the recognition of
partially occluded facial expressions
Zakia Hammal
Martin Arguin
Frédéric Gosselin
Département de Psychologie, Université de Montréal,
Canada
Département de Psychologie, Université de Montréal,
Canada
Département de Psychologie, Université de Montréal,
Canada
Humans recognize basic facial expressions effortlessly. Yet, despite a considerable amount of research, this task remains
elusive for computer vision systems. Here, we compared the behavior of one of the best computer models of facial
expression recognition (Z. Hammal, L. Couvreur, A. Caplier, & M. Rombaut, 2007) with the behavior of human observers
during the M. Smith, G. Cottrell, F. Gosselin, and P. G. Schyns (2005) facial expression recognition task performed on
stimuli randomly sampled using Gaussian apertures. The modelVwhich we had to significantly modify in order to give the
bility to deal with partially occluded stimuliVclassifies the six basic facial expressions (Happiness, Fear, Sadness,
Surprise, Anger, and Disgust) plus Neutral from static images based on the permanent facial feature deformations and the"
9ab463d117219ed51f602ff0ddbd3414217e3166,Weighted Transmedia Relevance Feedback for Image Retrieval and Auto-annotation,"Weighted Transmedia
Relevance Feedback for
Image Retrieval and
Auto-annotation
Thomas Mensink, Jakob Verbeek, Gabriela Csurka
TECHNICAL
REPORT
N° 0415
December 2011
Project-Teams LEAR - INRIA
nd TVPA - XRCE"
9ac82909d76b4c902e5dde5838130de6ce838c16,Recognizing Facial Expressions Automatically from Video,"Recognizing Facial Expressions Automatically
from Video
Caifeng Shan and Ralph Braspenning
Introduction
Facial expressions, resulting from movements of the facial muscles, are the face
hanges in response to a person’s internal emotional states, intentions, or social
ommunications. There is a considerable history associated with the study on fa-
ial expressions. Darwin (1872) was the first to describe in details the specific fa-
ial expressions associated with emotions in animals and humans, who argued that
ll mammals show emotions reliably in their faces. Since that, facial expression
nalysis has been a area of great research interest for behavioral scientists (Ekman,
Friesen, and Hager, 2002). Psychological studies (Mehrabian, 1968; Ambady and
Rosenthal, 1992) suggest that facial expressions, as the main mode for non-verbal
ommunication, play a vital role in human face-to-face communication. For illus-
tration, we show some examples of facial expressions in Fig. 1.
Computer recognition of facial expressions has many important applications in
intelligent human-computer interaction, computer animation, surveillance and se-
urity, medical diagnosis, law enforcement, and awareness systems (Shan, 2007).
Therefore, it has been an active research topic in multiple disciplines such as psy-
hology, cognitive science, human-computer interaction, and pattern recognition."
9ac15845defcd0d6b611ecd609c740d41f0c341d,Robust Color-based Vision for Mobile Robots,"Copyright
Juhyun Lee"
9af1cf562377b307580ca214ecd2c556e20df000,International Journal of Advanced Studies in Computer Science and Engineering,"Feb. 28
International Journal of Advanced Studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 2, 2015
Video-Based Facial Expression Recognition
Using Local Directional Binary Pattern
Sahar Hooshmand, Ali Jamali Avilaq, Amir Hossein Rezaie
Electrical Engineering Dept., AmirKabir Univarsity of Technology
Tehran, Iran"
9a23a0402ae68cc6ea2fe0092b6ec2d40f667adb,High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs,"High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
Ting-Chun Wang1 Ming-Yu Liu1
Jun-Yan Zhu2 Andrew Tao1
Jan Kautz1 Bryan Catanzaro1
NVIDIA Corporation
UC Berkeley
Figure 1: We propose a generative adversarial framework for synthesizing 2048 × 1024 images from semantic label maps
(lower left corner in (a)). Compared to previous work [5], our results express more natural textures and details. (b) We can
hange labels in the original label map to create new scenes, like replacing trees with buildings. (c) Our framework also
llows a user to edit the appearance of individual objects in the scene, e.g. changing the color of a car or the texture of a road.
Please visit our website for more side-by-side comparisons as well as interactive editing demos."
9a7858eda9b40b16002c6003b6db19828f94a6c6,Mooney face classification and prediction by learning across tone,"MOONEY FACE CLASSIFICATION AND PREDICTION BY LEARNING ACROSS TONE
Tsung-Wei Ke(cid:63)†
Stella X. Yu(cid:63)†
David Whitney(cid:63)
(cid:63) UC Berkeley / †ICSI"
9a276c72acdb83660557489114a494b86a39f6ff,Emotion Classification through Lower Facial Expressions using Adaptive Support Vector Machines,"Emotion Classification through Lower Facial Expressions using Adaptive
Support Vector Machines
Porawat Visutsak
Department of Information Technology, Faculty of Industrial Technology and Management,
King Mongkut’s University of Technology North Bangkok,"
9a1a9dd3c471bba17e5ce80a53e52fcaaad4373e,Automatic Recognition of Spontaneous Facial Actions,"Automatic Recognition of Spontaneous Facial
Actions
Marian Stewart Bartlett1, Gwen C. Littlewort1, Mark G. Frank2, Claudia Lainscsek1,
Ian R. Fasel1, Javier R. Movellan1
Institute for Neural Computation, University of California, San Diego.
Department of Communication, University at Buffalo, State University of New York."
9a42c519f0aaa68debbe9df00b090ca446d25bc4,Face Recognition via Centralized Coordinate Learning,"Face Recognition via Centralized Coordinate
Learning
Xianbiao Qi, Lei Zhang"
9aad8e52aff12bd822f0011e6ef85dfc22fe8466,Temporal-Spatial Mapping for Action Recognition,"Temporal-Spatial Mapping for Action Recognition
Xiaolin Song, Cuiling Lan, Wenjun Zeng, Junliang Xing, Jingyu Yang, and Xiaoyan Sun"
363ca0a3f908859b1b55c2ff77cc900957653748,Local Binary Patterns and Linear Programming using Facial Expression,"International Journal of Computer Trends and Technology (IJCTT) – volume 1 Issue 3 Number 4 – Aug 2011
Local Binary Patterns and Linear Programming using
Facial Expression
Ms.P.Jennifer
#MCA Department, Bharath Institute of Science and Technology
+B.Tech (C.S.E), Bharath University , Chennai – 73.
Dr. A. Muthu kumaravel
#MCA Department, Bharath Institute of Science and Technology
+B.Tech (C.S.E), Bharath University , Chennai – 73."
36939e6a365e9db904d81325212177c9e9e76c54,"Assessing the Accuracy of Four Popular Face Recognition Tools for Inferring Gender, Age, and Race","Assessing the Accuracy of Four Popular Face Recognition Tools for
Inferring Gender, Age, and Race
Soon-Gyo Jung, Jisun An, Haewoon Kwak, Joni Salminen, Bernard J. Jansen
Qatar Computing Research Institute, HBKU
HBKU Research Complex, Doha, P.O. Box 34110, Qatar"
3646b42511a6a0df5470408bc9a7a69bb3c5d742,Detection of Facial Parts based on ABLATA,"International Journal of Computer Applications (0975 – 8887)
Applications of Computers and Electronics for the Welfare of Rural Masses (ACEWRM) 2015
Detection of Facial Parts based on ABLATA
Siddhartha Choubey
Shri Shankaracharya
Technical Campus, Bhilai
Vikas Singh
Shri Shankaracharya
Technical Campus, Bhilai
Abha Choubey
Shri Shankaracharya
Technical Campus, Bhilai"
36fe39ed69a5c7ff9650fd5f4fe950b5880760b0,Tracking von Gesichtsmimik mit Hilfe von Gitterstrukturen zur Klassifikation von schmerzrelevanten Action Units,"Tracking von Gesichtsmimik
mit Hilfe von Gitterstrukturen
zur Klassifikation von schmerzrelevanten Action
Units
Christine Barthold1, Anton Papst1, Thomas Wittenberg1
Christian K¨ublbeck1, Stefan Lautenbacher2, Ute Schmid2, Sven Friedl1,3
Fraunhofer-Institut f¨ur Integrierte Schaltungen IIS, Erlangen,
Otto-Friedrich-Universit¨at Bamberg, 3Universit¨atsklinkum Erlangen
Kurzfassung. In der Schmerzforschung werden schmerzrelevante Mi-
mikbewegungen von Probanden mittels des Facial Action Coding System
klassifiziert. Die manuelle Klassifikation hierbei ist aufw¨andig und eine
utomatische (Vor-)klassifikation k¨onnte den diagnostischen Wert dieser
Analysen erh¨ohen sowie den klinischen Workflow unterst¨utzen. Der hier
vorgestellte regelbasierte Ansatz erm¨oglicht eine automatische Klassifika-
tion ohne große Trainingsmengen vorklassifizierter Daten. Das Verfahren
erkennt und verfolgt Mimikbewegungen, unterst¨utzt durch ein Gitter,
und ordnet diese Bewegungen bestimmten Gesichtsarealen zu. Mit die-
sem Wissen kann aus den Bewegungen auf die zugeh¨origen Action Units
geschlossen werden.
Einleitung"
36fc4120fc0638b97c23f97b53e2184107c52233,Introducing Celebrities in an Images using HAAR Cascade algorithm,"National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)
Proceedings published by International Journal of Computer Applications® (IJCA)
Introducing Celebrities in an Images using HAAR
Cascade algorithm
Jaya M. Jadhav
Deipali V. Gore
Asst. Professor
Rashmi R. Tundalwar
PES Modern College of Engg.
PES Modern College of Engg.
PES Modern College of Engg.
Shivaji Nagar, Pune
Shivaji Nagar, Pune
Shivaji Nagar, Pune"
36ce0b68a01b4c96af6ad8c26e55e5a30446f360,Facial expression recognition based on a mlp neural network using constructive training algorithm,"Multimed Tools Appl
DOI 10.1007/s11042-014-2322-6
Facial expression recognition based on a mlp neural
network using constructive training algorithm
Hayet Boughrara · Mohamed Chtourou ·
Chokri Ben Amar · Liming Chen
Received: 5 February 2014 / Revised: 22 August 2014 / Accepted: 13 October 2014
© Springer Science+Business Media New York 2014"
3674f3597bbca3ce05e4423611d871d09882043b,Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions,"ISSN 1796-2048
Volume 7, Number 4, August 2012
Contents
Special Issue: Multimedia Contents Security in Social Networks Applications
Guest Editors: Zhiyong Zhang and Muthucumaru Maheswaran
Guest Editorial
Zhiyong Zhang and Muthucumaru Maheswaran
SPECIAL ISSUE PAPERS
DRTEMBB: Dynamic Recommendation Trust Evaluation Model Based on Bidding
Gang Wang and Xiao-lin Gui
Block-Based Parallel Intra Prediction Scheme for HEVC
Jie Jiang, Baolong, Wei Mo, and Kefeng Fan
Optimized LSB Matching Steganography Based on Fisher Information
Yi-feng Sun, Dan-mei Niu, Guang-ming Tang, and Zhan-zhan Gao
A Novel Robust Zero-Watermarking Scheme Based on Discrete Wavelet Transform
Yu Yang, Min Lei, Huaqun Liu, Yajian Zhou, and Qun Luo
Stego Key Estimation in LSB Steganography
Jing Liu and Guangming Tang
REGULAR PAPERS
Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions"
362bfeb28adac5f45b6ef46c07c59744b4ed6a52,Incorporating Scalability in Unsupervised Spatio- Temporal Feature Learning,"INCORPORATING SCALABILITY IN UNSUPERVISED SPATIO-TEMPORAL FEATURE
LEARNING
Sujoy Paul, Sourya Roy and Amit K. Roy-Chowdhury
Dept. of Electrical and Computer Engineering, University of California, Riverside, CA 92521"
365866dc937529c3079a962408bffaa9b87c1f06,Facial Feature Expression Based Approach for Human Face Recognition: A Review,"IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 3, May 2014.
www.ijiset.com
ISSN 2348 – 7968
Facial Feature Expression Based Approach for Human Face
Recognition: A Review
Jageshvar K. Keche1, Mahendra P. Dhore2
Department of Computer Science, SSESA, Science College, Congress Nagar, Nagpur, (MS)-India,
Department of Electronics & Computer Science, RTM Nagpur University, Campus Nagpur, (MS)-India.
required
extraction  of"
362a70b6e7d55a777feb7b9fc8bc4d40a57cde8c,A partial least squares based ranker for fast and accurate age estimation,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
3630324c2af04fd90f8668f9ee9709604fe980fd,Image Classification With Tailored Fine-Grained Dictionaries,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2607345, IEEE
Transactions on Circuits and Systems for Video Technology
Image Classification with Tailored Fine-Grained
Dictionaries
Xiangbo Shu, Jinhui Tang, Guo-Jun Qi, Zechao Li, Yu-Gang Jiang and Shuicheng Yan"
36cf96fe11a2c1ea4d999a7f86ffef6eea7b5958,RGB-D Face Recognition With Texture and Attribute Features,"RGB-D Face Recognition with Texture and
Attribute Features
Gaurav Goswami, Student Member, IEEE, Mayank Vatsa, Senior Member, IEEE, and Richa Singh, Senior
Member, IEEE"
36018404263b9bb44d1fddaddd9ee9af9d46e560,Occluded Face Recognition by Using Gabor Features,"OCCLUDED FACE RECOGNITION BY USING GABOR
FEATURES
Burcu Kepenekci 1,2, F. Boray Tek 1,2, Gozde Bozdagi Akar 1
Department of Electrical And Electronics Engineering, METU, Ankara, Turkey
7h%ł7$.(cid:3)%ł/7(1(cid:15)(cid:3)$QNDUD(cid:15)(cid:3)7XUNH\"
366595171c9f4696ec5eef7c3686114fd3f116ad,Algorithms and Representations for Visual Recognition,"Algorithms and Representations for Visual
Recognition
Subhransu Maji
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2012-53
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-53.html
May 1, 2012"
5c6de2d9f93b90034f07860ae485a2accf529285,Compensating for pose and illumination in unconstrained periocular biometrics,"Int. J. Biometrics, Vol. X, No. Y, xxxx
Compensating for pose and illumination in
unconstrained periocular biometrics
Chandrashekhar N. Padole and
Hugo Proença*
Department of Computer Science,
IT – Instituto de Telecomunicações,
University of Beira Interior,
6200-Covilhã, Portugal
Fax: +351-275-319899
E-mail:
E-mail:
*Corresponding author"
5c2e264d6ac253693469bd190f323622c457ca05,Improving large-scale face image retrieval using multi-level features,"978-1-4799-2341-0/13/$31.00 ©2013 IEEE
ICIP 2013"
5c5e1f367e8768a9fb0f1b2f9dbfa060a22e75c0,Reference Face Graph for Face Recognition,"Reference Face Graph for Face Recognition
Mehran Kafai, Member, IEEE, Le An, Student Member, IEEE, and Bir Bhanu, Fellow, IEEE"
5c35ac04260e281141b3aaa7bbb147032c887f0c,Face Detection and Tracking Control with Omni Car,"Face Detection and Tracking Control with Omni Car
Jheng-Hao Chen, Tung-Yu Wu
CS 231A Final Report
June 31, 2016"
5c435c4bc9c9667f968f891e207d241c3e45757a,"""How old are you?"" : Age Estimation with Tensors of Binary Gaussian Receptive Maps","RUIZ-HERNANDEZ, CROWLEY, LUX: HOW OLD ARE YOU?
""How old are you?"" : Age Estimation with
Tensors of Binary Gaussian Receptive Maps
John A. Ruiz-Hernandez
James L. Crowley
Augustin Lux
INRIA Grenoble Rhones-Alpes
Research Center and Laboratoire
d’Informatique de Grenoble (LIG)
655 avenue de l’Europe
8 334 Saint Ismier Cedex, France"
5c02bd53c0a6eb361972e8a4df60cdb30c6e3930,Multimedia stimuli databases usage patterns: a survey report,"Multimedia stimuli databases usage patterns: a
survey report
M. Horvat1, S. Popović1 and K. Ćosić1
University of Zagreb, Faculty of Electrical Engineering and Computing
Department of Electric Machines, Drives and Automation
Zagreb, Croatia"
5c717afc5a9a8ccb1767d87b79851de8d3016294,A novel eye region based privacy protection scheme,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
096eb8b4b977aaf274c271058feff14c99d46af3,Multi-observation visual recognition via joint dynamic sparse representation,"REPORT DOCUMENTATION PAGE
Form Approved OMB NO. 0704-0188
including
for  reviewing
information,
this  collection  of
information
is  estimated
to  average  1 hour  per  response,
the  data  needed,  and  completing  and  reviewing
this  collection  of
instructions,
The  public  reporting  burden
Send  comments
searching  existing  data  sources,  gathering  and  maintaining
to  Washington
regarding
this  burden  estimate  or  any  other  aspect  of
Information  Operations  and  Reports,  1215 Jefferson  Davis  Highway,  Suite  1204,  Arlington  VA,  22202-4302.
Headquarters  Services,  Directorate"
09137e3c267a3414314d1e7e4b0e3a4cae801f45,Two Birds with One Stone: Transforming and Generating Facial Images with Iterative GAN,"Noname manuscript No.
(will be inserted by the editor)
Two Birds with One Stone: Transforming and Generating
Facial Images with Iterative GAN
Dan Ma · Bin Liu · Zhao Kang · Jiayu Zhou · Jianke Zhu · Zenglin Xu
Received: date / Accepted: date"
09926ed62511c340f4540b5bc53cf2480e8063f8,Tubelet Detector for Spatio-Temporal Action Localization,"Action Tubelet Detector for Spatio-Temporal Action Localization
Vicky Kalogeiton1,2
Philippe Weinzaepfel3
Vittorio Ferrari2
Cordelia Schmid1"
09718bf335b926907ded5cb4c94784fd20e5ccd8,"Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft k-NN ensemble","Recognizing Partially Occluded, Expression Variant
Faces From Single Training Image per Person
With SOM and Soft k-NN Ensemble
Xiaoyang Tan, Songcan Chen, Zhi-Hua Zhou, Member, IEEE, and Fuyan Zhang"
0903bb001c263e3c9a40f430116d1e629eaa616f,An Empirical Study of Context in Object Detection,"CVPR 2009 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
An Empirical Study of Context in Object Detection
Anonymous CVPR submission
Paper ID 987"
09df62fd17d3d833ea6b5a52a232fc052d4da3f5,Mejora de Contraste y Compensación en Cambios de la Iluminación,"ISSN: 1405-5546
Instituto Politécnico Nacional
México
Rivas Araiza, Edgar A.; Mendiola Santibañez, Jorge D.; Herrera Ruiz, Gilberto; González Gutiérrez,
Carlos A.; Trejo Perea, Mario; Ríos Moreno, G. J.
Mejora de Contraste y Compensación en Cambios de la Iluminación
Instituto Politécnico Nacional
Distrito Federal, México
Disponible en: http://www.redalyc.org/articulo.oa?id=61509703
Cómo citar el artículo
Número completo
Más información del artículo
Página de la revista en redalyc.org
Sistema de Información Científica
Red de Revistas Científicas de América Latina, el Caribe, España y Portugal
Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto"
09f853ce12f7361c4b50c494df7ce3b9fad1d221,Random Forests for Real Time 3D Face Analysis,"myjournal manuscript No.
(will be inserted by the editor)
Random forests for real time 3D face analysis
Gabriele Fanelli · Matthias Dantone · Juergen Gall · Andrea Fossati ·
Luc Van Gool
Received: date / Accepted: date"
09750c9bbb074bbc4eb66586b20822d1812cdb20,Estimation of the neutral face shape using Gaussian Mixture Models,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
097f674aa9e91135151c480734dda54af5bc4240,Face Recognition Based on Multiple Region Features,"Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney
Face Recognition Based on Multiple Region Features
Jiaming Li, Geoff  Poulton, Ying Guo,  Rong-Yu Qiao
CSIRO Telecommunications & Industrial Physics
Australia
Tel: 612 9372 4104, Fax: 612 9372 4411, Email:"
5da740682f080a70a30dc46b0fc66616884463ec,Real-Time Head Pose Estimation Using Multi-variate RVM on Faces in the Wild,"Real-Time Head Pose Estimation Using
Multi-Variate RVM on Faces in the Wild
Mohamed Selim, Alain Pagani, Didier Stricker
Augmented Vision Research Group,
German Research Center for Artificial Intelligence (DFKI),
Tripstaddterstr. 122, 67663 Kaiserslautern, Germany
Technical University of Kaiserslautern
http://www.av.dfki.de"
5da139fc43216c86d779938d1c219b950dd82a4c,A Generalized Multiple Instance Learning Algorithm for Iterative Distillation and Cross-Granular Propagation of Video Annotations,"-4244-1437-7/07/$20.00 ©2007 IEEE
II - 205
ICIP 2007"
5d185d82832acd430981ffed3de055db34e3c653,A Fuzzy Reasoning Model for Recognition of Facial Expressions,"A Fuzzy Reasoning Model for Recognition
of Facial Expressions
Oleg Starostenko1, Renan Contreras1, Vicente Alarcón Aquino1, Leticia Flores Pulido1,
Jorge Rodríguez Asomoza1, Oleg Sergiyenko2, and Vira Tyrsa3
Research Center CENTIA, Department of Computing, Electronics and Mechatronics,
Universidad de las Américas, 72820, Puebla, Mexico
{oleg.starostenko; renan.contrerasgz; vicente.alarcon; leticia.florespo;
Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juárez,
Insurgentes Este, 21280, Mexicali, Baja California, Mexico
Universidad Politécnica de Baja California, Mexicali, Baja California, Mexico"
5d233e6f23b1c306cf62af49ce66faac2078f967,Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions,"RESEARCH ARTICLE
Optimal Geometrical Set for Automated
Marker Placement to Virtualized Real-Time
Facial Emotions
Vasanthan Maruthapillai, Murugappan Murugappan*
School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600, Ulu Pauh, Arau, Perlis, West Malaysia"
5db075a308350c083c3fa6722af4c9765c4b8fef,The Novel Method of Moving Target Tracking Eyes Location based on SIFT Feature Matching and Gabor Wavelet Algorithm,"The Novel Method of Moving Target Tracking Eyes
Location based on SIFT Feature Matching and Gabor
Wavelet Algorithm
* Jing Zhang, Caixia Yang, Kecheng Liu
College of Computer and Information Engineering, Nanyang Institute of Technology,
Henan Nanyang, 473004, China
* Tel.: 0086+13838972861
* E-mail:
Sensors & Transducers, Vol. 154, Issue 7, July 2013, pp. 129-137
SSSeeennnsssooorrrsss   &&&   TTTrrraaannnsssddduuuccceeerrrsss
© 2013 by IFSA
http://www.sensorsportal.com
Received: 28 April 2013   /Accepted: 19 July 2013   /Published: 31 July 2013"
5d7f8eb73b6a84eb1d27d1138965eb7aef7ba5cf,Robust Registration of Dynamic Facial Sequences,"Robust Registration of Dynamic Facial Sequences
Evangelos Sariyanidi, Hatice Gunes, and Andrea Cavallaro"
5db4fe0ce9e9227042144758cf6c4c2de2042435,Recognition of Facial Expression Using Haar Wavelet Transform,"INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.3, JUNE 2010
Recognition of Facial Expression Using Haar
Wavelet Transform
M. Satiyan,  M.Hariharan,  R.Nagarajan
paper
features
investigates"
5d5cd6fa5c41eb9d3d2bab3359b3e5eb60ae194e,Face Recognition Algorithms,"Face Recognition Algorithms
Proyecto Fin de Carrera
June 16, 2010
Ion Marqu´es
Supervisor:
Manuel Gra˜na"
5d09d5257139b563bd3149cfd5e6f9eae3c34776,Pattern recognition with composite correlation filters designed with multi-objective combinatorial optimization,"Optics Communications 338 (2015) 77–89
Contents lists available at ScienceDirect
Optics Communications
journal homepage: www.elsevier.com/locate/optcom
Pattern recognition with composite correlation filters designed with
multi-objective combinatorial optimization
Victor H. Diaz-Ramirez a,n, Andres Cuevas a, Vitaly Kober b, Leonardo Trujillo c,
Abdul Awwal d
Instituto Politécnico Nacional – CITEDI, Ave. del Parque 1310, Mesade Otay, Tijuana B.C. 22510, México
Department of Computer Science, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada B.C. 22860, México
Instituto Tecnológico de Tijuana, Blvd. Industrial y Ave. ITR TijuanaS/N, Mesa de Otay, Tijuana B.C. 22500, México
d National Ignition Facility, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
r t i c l e i n f o
b s t r a c t
Article history:
Received 12 July 2014
Accepted 16 November 2014
Available online 23 October 2014
Keywords:
Object recognition"
5d197c8cd34473eb6cde6b65ced1be82a3a1ed14,A Face Image Database for Evaluating Out-of-Focus Blur,"0AFaceImageDatabaseforEvaluatingOut-of-FocusBlurQiHan,QiongLiandXiamuNiuHarbinInstituteofTechnologyChina1.IntroductionFacerecognitionisoneofthemostpopularresearchfieldsofcomputervisionandmachinelearning(Tores(2004);Zhaoetal.(2003)).Alongwithinvestigationoffacerecognitionalgorithmsandsystems,manyfaceimagedatabaseshavebeencollected(Gross(2005)).Facedatabasesareimportantfortheadvancementoftheresearchfield.Becauseofthenonrigidityandcomplex3Dstructureofface,manyfactorsinfluencetheperformanceoffacedetectionandrecognitionalgorithmssuchaspose,expression,age,brightness,contrast,noise,blurandetc.Someearlyfacedatabasesgatheredunderstrictlycontrolledenvironment(Belhumeuretal.(1997);Samaria&Harter(1994);Turk&Pentland(1991))onlyallowslightexpressionvariation.Toinvestigatetherelationshipsbetweenalgorithms’performanceandtheabovefactors,morefacedatabaseswithlargerscaleandvariouscharacterswerebuiltinthepastyears(Bailly-Bailliereetal.(2003);Flynnetal.(2003);Gaoetal.(2008);Georghiadesetal.(2001);Hallinan(1995);Phillipsetal.(2000);Simetal.(2003)).Forinstance,The""CAS-PEAL"",""FERET"",""CMUPIE"",and""YaleB""databasesincludevariousposes(Gaoetal.(2008);Georghiadesetal.(2001);Phillipsetal.(2000);Simetal.(2003));The""HarvardRL"",""CMUPIE""and""YaleB""databasesinvolvemorethan40differentconditionsinillumination(Georghiadesetal.(2001);Hallinan(1995);Simetal.(2003));Andthe""BANCA"",and""NDHID""databasescontainover10timesgathering(Bailly-Bailliereetal.(2003);Flynnetal.(2003)).Thesedatabaseshelpresearcherstoevaluateandimprovetheiralgorithmsaboutfacedetection,recognition,andotherpurposes.Blurisnotthemostimportantbutstillanotablefactoraffectingtheperformanceofabiometricsystem(Fronthaleretal.(2006);Zamanietal.(2007)).Themainreasonsleadingblurconsistinout-of-focusofcameraandmotionofobject,andtheout-of-focusblurismoresignificantintheapplicationenvironmentoffacerecognition(Eskicioglu&Fisher(1995);Kimetal.(1998);Tanakaetal.(2007);Yitzhaky&Kopeika(1996)).Toinvestigatetheinfluenceofbluronafacerecognitionsystem,afaceimagedatabasewithdifferentconditionsofclarityandefficientblurevaluatingalgorithmsareneeded.Thischapterintroducesanewfacedatabasebuiltforthepurposeofblurevaluation.Theapplicationenvironmentsoffacerecognitionareanalyzedfirstly,thenaimagegatheringschemeisdesigned.Twotypicalgatheringfacilitiesareusedandthefocusstatusaredividedinto11steps.Further,theblurassessmentalgorithmsaresummarizedandthecomparisonbetweenthemisraisedonthevarious-claritydatabase.The7www.intechopen.com"
5da2ae30e5ee22d00f87ebba8cd44a6d55c6855e,"When facial expressions do and do not signal minds: The role of face inversion, expression dynamism, and emotion type.","This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository: http://orca.cf.ac.uk/111659/
This is the author’s version of a work that was submitted to / accepted for publication.
Citation for final published version:
Krumhuber, Eva G, Lai, Yukun, Rosin, Paul and Hugenberg, Kurt 2018. When facial expressions
Publishers page:
Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page
numbers may not be reflected in this version. For the definitive version of this publication, please
refer to the published source. You are advised to consult the publisher’s version if you wish to cite
this paper.
This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications
made available in ORCA are retained by the copyright holders."
31625522950e82ad4dffef7ed0df00fdd2401436,Motion Representation with Acceleration Images,"Motion Representation with Acceleration Images
Hirokatsu Kataoka, Yun He, Soma Shirakabe, Yutaka Satoh
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Ibaraki, Japan
{hirokatsu.kataoka, yun.he, shirakabe-s,"
318e7e6daa0a799c83a9fdf7dd6bc0b3e89ab24a,Sparsity in Dynamics of Spontaneous Subtle Emotions: Analysis and Application,"Sparsity in Dynamics of Spontaneous
Subtle Emotions: Analysis & Application
Anh Cat Le Ngo, Member, IEEE, John See, Member, IEEE, Raphael C.-W. Phan, Member, IEEE"
31c0968fb5f587918f1c49bf7fa51453b3e89cf7,Deep Transfer Learning for Person Re-identification,"Deep Transfer Learning for Person Re-identification
Mengyue Geng
Yaowei Wang
Tao Xiang
Yonghong Tian"
316e67550fbf0ba54f103b5924e6537712f06bee,Multimodal semi-supervised learning for image classification,"Multimodal semi-supervised learning
for image classification
Matthieu Guillaumin, Jakob Verbeek, Cordelia Schmid
LEAR team, INRIA Grenoble, France"
31ef5419e026ef57ff20de537d82fe3cfa9ee741,Facial Expression Analysis Based on High Dimensional Binary Features,"Facial Expression Analysis Based on
High Dimensional Binary Features
Samira Ebrahimi Kahou, Pierre Froumenty, and Christopher Pal
´Ecole Polytechique de Montr´eal, Universit´e de Montr´eal, Montr´eal, Canada
{samira.ebrahimi-kahou, pierre.froumenty,"
3176ee88d1bb137d0b561ee63edf10876f805cf0,Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation,"Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation
Sina Honari1, Jason Yosinski2, Pascal Vincent1,4, Christopher Pal3
University of Montreal, 2Cornell University, 3Ecole Polytechnique of Montreal, 4CIFAR
{honaris,"
31ace8c9d0e4550a233b904a0e2aabefcc90b0e3,Learning Deep Face Representation,"Learning Deep Face Representation
Haoqiang Fan
Megvii Inc.
Zhimin Cao
Megvii Inc.
Yuning Jiang
Megvii Inc.
Qi Yin
Megvii Inc.
Chinchilla Doudou
Megvii Inc."
31afdb6fa95ded37e5871587df38976fdb8c0d67,Quantized fuzzy LBP for face recognition,"QUANTIZED FUZZY LBP FOR FACE RECOGNITION
Jianfeng
Xudong Jiang,
Junsong
BeingThere
Centre
Institute
of Media Innovation
Nanyang
50 Nanyang
Technological
Singapore
Drive,
637553.
University
School of Electrical
& Electronics
Engineering
Nanyang
50 Nanyang"
91811203c2511e919b047ebc86edad87d985a4fa,Expression Subspace Projection for Face Recognition from Single Sample per Person,"Expression Subspace Projection for Face
Recognition from Single Sample per Person
Hoda Mohammadzade, Student Member, IEEE, and Dimitrios Hatzinakos, Senior Member, IEEE"
9117fd5695582961a456bd72b157d4386ca6a174,Recognition Using Dee Networks,"Facial Expression
n Recognition Using Dee
ep Neural
Networks
Junnan Li and Edmund Y. Lam
Departm
ment of Electrical and Electronic Engineering
he University of Hong Kong, Pokfulam,
Hong Kong"
91067f298e1ece33c47df65236853704f6700a0b,Local Binary Pattern and Local Linear Regression for Pose Invariant Face Recognition,"IJSTE - International Journal of Science Technology & Engineering | Volume 2 | Issue 11 | May 2016
ISSN (online): 2349-784X
Local Binary Pattern and Local Linear
Regression for Pose Invariant Face Recognition
Raju Dadasab Patil
M. Tech Student
Shreekumar T
Associate Professor
Department of Computer Science & Engineering
Department of Computer Science & Engineering
Mangalore Institute of Engineering & Technology, Badaga
Mangalore Institute of Engineering & Technology, Badaga
Mijar, Moodbidri, Mangalore
Mijar, Moodbidri, Mangalore
Karunakara K
Professor & Head of Dept.
Department of Information Science & Engineering
Sri SidarthaInstitute of Technology, Tumkur"
919d3067bce76009ce07b070a13728f549ebba49,Time Based Re-ranking for Web Image Search,"International Journal of Scientific and Research Publications, Volume 4, Issue 6, June 2014
ISSN 2250-3153
Time Based Re-ranking for Web Image Search
Ms. A.Udhayabharadhi *, Mr. R.Ramachandran **
* MCA Student, Sri Manakula Vinayagar Engineering College, Pondicherry-605106
** Assistant Professor dept of MCA, Sri Manakula Vinayagar Engineering College, Pondicherry-605106"
91e57667b6fad7a996b24367119f4b22b6892eca,Probabilistic Corner Detection for Facial Feature,"Probabilistic  Corner  Detection  for  Facial  Feature
Extraction
Article
Accepted version
E. Ardizzone, M. La Cascia, M. Morana
In Lecture Notes in Computer Science Volume 5716, 2009
It  is  advisable  to  refer  to  the  publisher's  version  if  you  intend  to  cite
from the work.
Publisher: Springer
http://link.springer.com/content/pdf/10.1007%2F978-3-
642-04146-4_50.pdf"
917bea27af1846b649e2bced624e8df1d9b79d6f,Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for Mobile and Embedded Applications,"Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for
Mobile and Embedded Applications
Baohua Sun,
Lin Yang,
Patrick Dong, Wenhan Zhang,
Gyrfalcon Technology Inc.
Jason Dong, Charles Young
900 McCarthy Blvd. Milpitas, CA 95035"
91b1a59b9e0e7f4db0828bf36654b84ba53b0557,Simultaneous Hallucination and Recognition of Low-Resolution Faces Based on Singular Value Decomposition,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <
Simultaneous Hallucination and Recognition of
Low-Resolution Faces Based on Singular Value
Decomposition
Muwei Jian,  Kin-Man Lam*, Senior Member, IEEE
(SVD)
for  performing  both"
911bef7465665d8b194b6b0370b2b2389dfda1a1,Learning Human Optical Flow,"RANJAN, ROMERO, BLACK: LEARNING HUMAN OPTICAL FLOW
Learning Human Optical Flow
MPI for Intelligent Systems
Tübingen, Germany
Amazon Inc.
Anurag Ranjan1
Javier Romero∗,2
Michael J. Black1"
91ead35d1d2ff2ea7cf35d15b14996471404f68d,Combining and Steganography of 3D Face Textures,"Combining and Steganography of 3D Face Textures
Mohsen Moradi and Mohammad-Reza Rafsanjani-Sadeghi"
91d513af1f667f64c9afc55ea1f45b0be7ba08d4,Automatic Face Image Quality Prediction,"Automatic Face Image Quality Prediction
Lacey Best-Rowden, Student Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
91e58c39608c6eb97b314b0c581ddaf7daac075e,Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks,"Pixel-wise Ear Detection with Convolutional
Encoder-Decoder Networks
ˇZiga Emerˇsiˇc 1, Luka Lan Gabriel 2, Vitomir ˇStruc 3 and Peter Peer 1"
9131c990fad219726eb38384976868b968ee9d9c,Deep Facial Expression Recognition: A Survey,"Deep Facial Expression Recognition: A Survey
Shan Li and Weihong Deng∗, Member, IEEE"
911505a4242da555c6828509d1b47ba7854abb7a,Improved Active Shape Model for Facial Feature Localization,"IMPROVED ACTIVE SHAPE MODEL FOR FACIAL FEATURE LOCALIZATION
Hui-Yu Huang and Shih-Hang Hsu
National Formosa University, Taiwan
Email:"
915d4a0fb523249ecbc88eb62cb150a60cf60fa0,Comparison of Feature Extraction Techniques in Automatic Face Recognition Systems for Security Applications,"Comparison of Feature Extraction Techniques in Automatic
Face Recognition Systems for Security Applications
S .  Cruz-Llanas, J. Ortega-Garcia, E. Martinez-Torrico, J. Gonzalez-Rodriguez
Dpto. Ingenieria Audiovisual y Comunicaciones, EUIT Telecomunicacion, Univ. PolitCcnica de Madrid, Spain
{cruzll, jortega, etorrico,
http://www.atvs.diac.upm.es"
65126e0b1161fc8212643b8ff39c1d71d262fbc1,Occlusion Coherence: Localizing Occluded Faces with a Hierarchical Deformable Part Model,"Occlusion Coherence: Localizing Occluded Faces with a
Hierarchical Deformable Part Model
Golnaz Ghiasi Charless C. Fowlkes
Dept. of Computer Science, University of California, Irvine"
6582f4ec2815d2106957215ca2fa298396dde274,Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations,"JUNE 2007
Discriminative Learning and Recognition
of Image Set Classes Using
Canonical Correlations
Tae-Kyun Kim, Josef Kittler, Member, IEEE, and Roberto Cipolla, Member, IEEE"
65b1209d38c259fe9ca17b537f3fb4d1857580ae,Information Constraints on Auto-Encoding Variational Bayes,"Information Constraints on Auto-Encoding Variational Bayes
Romain Lopez1, Jeffrey Regier1, Michael I. Jordan1,2, and Nir Yosef1,3,4
{romain_lopez, regier,
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
Department of Statistics, University of California, Berkeley
Ragon Institute of MGH, MIT and Harvard
Chan-Zuckerberg Biohub"
655d9ba828eeff47c600240e0327c3102b9aba7c,Kernel pooled local subspaces for classification,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005
Kernel Pooled Local Subspaces for Classification
Peng Zhang, Student Member, IEEE, Jing Peng, Member, IEEE, and Carlotta Domeniconi"
656a59954de3c9fcf82ffcef926af6ade2f3fdb5,Convolutional Network Representation for Visual Recognition,"Convolutional Network Representation
for Visual Recognition
ALI SHARIF RAZAVIAN
Doctoral Thesis
Stockholm, Sweden, 2017"
656aeb92e4f0e280576cbac57d4abbfe6f9439ea,Use of Image Enhancement Techniques for Improving Real Time Face Recognition Efficiency on Wearable Gadgets,"Journal of Engineering Science and Technology
Vol. 12, No. 1 (2017) 155 - 167
© School of Engineering, Taylor’s University
USE OF IMAGE ENHANCEMENT TECHNIQUES
FOR IMPROVING REAL TIME FACE RECOGNITION EFFICIENCY
ON WEARABLE GADGETS
MUHAMMAD EHSAN RANA1,*, AHMAD AFZAL ZADEH2,
AHMAD MOHAMMAD MAHMOOD ALQURNEH3
, 3Asia Pacific University of Technology & Innovation, Kuala Lumpur 57000, Malaysia
Staffordshire University, Beaconside Stafford ST18 0AB, United Kingdom
*Corresponding Author:"
656f05741c402ba43bb1b9a58bcc5f7ce2403d9a,Supervised Learning Approaches for Automatic Structuring of Videos. (Méthodes d'apprentissage supervisé pour la structuration automatique de vidéos),"THÈSEPour obtenir le grade deDOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPESSpécialité : Mathématiques et InformatiqueArrêté ministériel : 7 août 2006Présentée parDanila POTAPOVThèse dirigée par Cordelia SCHMID et codirigée par Zaid HARCHAOUIpréparée au sein de Inria Grenoble Rhône-Alpesdans l'École Doctorale Mathématiques, Sciences et technologies de l'information, InformatiqueSupervised Learning Approaches for Automatic Structuring of VideosThèse soutenue publiquement le « 22 Juillet 2015 »,devant le jury composé de : Prof. Cordelia SCHMID Inria Grenoble Rhône-Alpes, France, Directeur de thèseDr. Zaid HARCHAOUIInria Grenoble Rhône-Alpes, France, Co-encadrant de thèse Prof. Patrick PEREZTechnicolor Rennes, France, RapporteurProf. Ivan LAPTEVInria Paris Rocquencourt, France, Rapporteur, PrésidentDr. Florent PERRONNINFacebook AI Research, Paris, France, ExaminateurDr. Matthijs DOUZEInria Grenoble Rhône-Alpes, France, Examinateur"
65817963194702f059bae07eadbf6486f18f4a0a,WhittleSearch: Interactive Image Search with Relative Attribute Feedback,"http://dx.doi.org/10.1007/s11263-015-0814-0
WhittleSearch: Interactive Image Search with Relative Attribute
Feedback
Adriana Kovashka · Devi Parikh · Kristen Grauman
Received: date / Accepted: date"
6581c5b17db7006f4cc3575d04bfc6546854a785,Contextual Person Identification in Multimedia Data,"Contextual Person Identification
in Multimedia Data
zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)
genehmigte
Dissertation
Dipl.-Inform. Martin Bäuml
us Erlangen
Tag der mündlichen Prüfung:
8. November 2014
Hauptreferent:
Korreferent:
Prof. Dr. Rainer Stiefelhagen
Karlsruher Institut für Technologie
Prof. Dr. Gerhard Rigoll
Technische Universität München
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu"
653d19e64bd75648cdb149f755d59e583b8367e3,"Decoupling ""when to update"" from ""how to update""","Decoupling “when to update” from “how to
update”
Eran Malach and Shai Shalev-Shwartz
School of Computer Science, The Hebrew University, Israel"
65babb10e727382b31ca5479b452ee725917c739,Label Distribution Learning,"Label Distribution Learning
Xin Geng*, Member, IEEE"
62dccab9ab715f33761a5315746ed02e48eed2a0,A Short Note about Kinetics-600,"A Short Note about Kinetics-600
Jo˜ao Carreira
Eric Noland
Andras Banki-Horvath
Chloe Hillier
Andrew Zisserman"
62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4,Noise-resistant network: a deep-learning method for face recognition under noise,"Ding et al. EURASIP Journal on Image and Video Processing  (2017) 2017:43
DOI 10.1186/s13640-017-0188-z
EURASIP Journal on Image
nd Video Processing
R ES EAR CH
Noise-resistant network: a deep-learning
method for face recognition under noise
Yuanyuan Ding1,2, Yongbo Cheng1,2, Xiaoliu Cheng1, Baoqing Li1*, Xing You1 and Xiaobing Yuan1
Open Access"
62694828c716af44c300f9ec0c3236e98770d7cf,Identification of Action Units Related to Affective States in a Tutoring System for Mathematics,"Padrón-Rivera, G., Rebolledo-Mendez, G., Parra, P. P., & Huerta-Pacheco, N. S. (2016). Identification of Action Units Related to
Identification of  Action Units Related to Affective States in a Tutoring System
Gustavo Padrón-Rivera1, Genaro Rebolledo-Mendez1*, Pilar Pozos Parra2 and N. Sofia
Facultad de Estadística e Informática, Universidad Veracruzana, Mexico // 2Universidad Juárez Autónoma de
Tabasco, Mexico // // // //
for Mathematics
Huerta-Pacheco1
*Corresponding author"
62f0d8446adee6a5e8102053a63a61af07ac4098,Facial point detection using convolutional neural network transferred from a heterogeneous task,"FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK
TRANSFERRED FROM A HETEROGENEOUS TASK
Takayoshi Yamashita* Taro Watasue** Yuji Yamauchi* Hironobu Fujiyoshi*
**Tome R&D
*Chubu University,
200, Matsumoto-cho, Kasugai, AICHI"
62374b9e0e814e672db75c2c00f0023f58ef442c,Frontal face authentication using discriminating,"Frontalfaceauthenticationusingdiscriminatinggridswith
morphologicalfeaturevectors
A.Tefas
C.Kotropoulos
I.Pitas
DepartmentofInformatics,AristotleUniversityofThessaloniki
Box,Thessaloniki,GREECE
EDICSnumbers:-KNOWContentRecognitionandUnderstanding
-MODAMultimodalandMultimediaEnvironments
Anovelelasticgraphmatchingprocedurebasedonmultiscalemorphologicaloperations,thesocalled
morphologicaldynamiclinkarchitecture,isdevelopedforfrontalfaceauthentication.Fastalgorithms
forimplementingmathematicalmorphologyoperationsarepresented.Featureselectionbyemploying
linearprojectionalgorithmsisproposed.Discriminatorypowercoe(cid:14)cientsthatweighthematching
errorateachgridnodearederived.Theperformanceofmorphologicaldynamiclinkarchitecturein
frontalfaceauthenticationisevaluatedintermsofthereceiveroperatingcharacteristicontheMVTS
faceimagedatabase.Preliminaryresultsforfacerecognitionusingtheproposedtechniquearealso
presented.
Correspondingauthor:I.Pitas
DRAFT
September,"
626859fe8cafd25da13b19d44d8d9eb6f0918647,Activity Recognition Based on a Magnitude-Orientation Stream Network,"Activity Recognition based on a
Magnitude-Orientation Stream Network
Carlos Caetano, Victor H. C. de Melo, Jefersson A. dos Santos, William Robson Schwartz
Smart Surveillance Interest Group, Department of Computer Science
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil"
62007c30f148334fb4d8975f80afe76e5aef8c7f,Eye In-Painting with Exemplar Generative Adversarial Networks,"Eye In-Painting with Exemplar Generative Adversarial Networks
Brian Dolhansky, Cristian Canton Ferrer
Facebook Inc.
Hacker Way, Menlo Park (CA), USA
{bdol,"
62a30f1b149843860938de6dd6d1874954de24b7,Fast Algorithm for Updating the Discriminant Vectors of Dual-Space LDA,"Fast Algorithm for Updating the Discriminant Vectors
of Dual-Space LDA
Wenming Zheng, Member, IEEE, and Xiaoou Tang, Fellow, IEEE"
62e0380a86e92709fe2c64e6a71ed94d152c6643,Facial emotion recognition with expression energy,"Facial Emotion Recognition With Expression Energy
Albert Cruz
Center for Research in
Intelligent Systems
16 Winston Chung Hall
Bir Bhanu
Center for Research in
Intelligent Systems
16 Winston Chung Hall
Ninad Thakoor
Center for Research in
Intelligent Systems
16 Winston Chung Hall
Riverside, CA, 92521-0425,
Riverside, CA, 92521-0425,
Riverside, CA, 92521-0425,"
9626bcb3fc7c7df2c5a423ae8d0a046b2f69180c,A deep learning approach for action classification in American football video sequences,"UPTEC STS 17033
Examensarbete 30 hp
November 2017
A deep learning approach for
ction classification in American
football video sequences
Jacob Westerberg"
9696b172d66e402a2e9d0a8d2b3f204ad8b98cc4,Region-Based Facial Expression Recognition in Still Images,"J Inf Process Syst, Vol.9, No.1, March 2013
pISSN 1976-913X
eISSN 2092-805X
Region-Based Facial Expression Recognition in
Still Images
Gawed M. Nagi*, Rahmita Rahmat*, Fatimah Khalid* and Muhamad Taufik*"
96f4a1dd1146064d1586ebe86293d02e8480d181,Comparative Analysis of Reranking Techniques for Web Image Search,"COMPARATIVE ANALYSIS OF RERANKING
TECHNIQUES FOR WEB IMAGE SEARCH
Suvarna V. Jadhav1, A.M.Bagade2
,2Department of Information Technology, Pune Institute of Computer Technology, Pune,( India)"
9606b1c88b891d433927b1f841dce44b8d3af066,Principal Component Analysis with Tensor Train Subspace,"Principal Component Analysis with Tensor Train
Subspace
Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron"
96b1000031c53cd4c1c154013bb722ffd87fa7da,ContextVP: Fully Context-Aware Video Prediction,"ContextVP: Fully Context-Aware Video
Prediction
Wonmin Byeon1,2,3,4, Qin Wang2,
Rupesh Kumar Srivastava4, and Petros Koumoutsakos2
NVIDIA, Santa Clara, CA, USA
ETH Zurich, Zurich, Switzerland
The Swiss AI Lab IDSIA, Manno, Switzerland
NNAISENSE, Lugano, Switzerland"
968f472477a8afbadb5d92ff1b9c7fdc89f0c009,Firefly-based Facial Expression Recognition,Firefly-based Facial Expression Recognition
9686dcf40e6fdc4152f38bd12b929bcd4f3bbbcc,Emotion Based Music Player,"International Journal of Engineering Research and General Science Volume 3, Issue 1,  January-February, 2015
ISSN 2091-2730
Emotion Based Music Player
Hafeez Kabani1, Sharik Khan2, Omar Khan3, Shabana Tadvi4
Department of Computer Science and Engineering
Department of Computer Science and Engineering
Department of Computer Science and Engineering
Asst. Professor, Department of Computer Science and Engineering
M.H Saboo Siddik College of Engineering, University of Mumbai, India"
3a2fc58222870d8bed62442c00341e8c0a39ec87,Probabilistic Local Variation Segmentation,"Probabilistic Local Variation
Segmentation
Michael Baltaxe
Technion - Computer Science Department - M.Sc. Thesis  MSC-2014-02 - 2014"
3a804cbf004f6d4e0b041873290ac8e07082b61f,A Corpus-Guided Framework for Robotic Visual Perception,"Language-Action Tools for Cognitive Artificial Agents: Papers from the 2011 AAAI Workshop (WS-11-14)
A Corpus-Guided Framework for Robotic Visual Perception
Ching L. Teo, Yezhou Yang, Hal Daum´e III, Cornelia Ferm¨uller, Yiannis Aloimonos
University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742-3275
{cteo, yzyang, hal, fer,"
3abc833f4d689f37cc8a28f47fb42e32deaa4b17,Large Scale Retrieval and Generation of Image Descriptions,"Noname manuscript No.
(will be inserted by the editor)
Large Scale Retrieval and Generation of Image Descriptions
Vicente Ordonez · Xufeng Han · Polina Kuznetsova · Girish Kulkarni ·
Margaret Mitchell · Kota Yamaguchi · Karl Stratos · Amit Goyal ·
Jesse Dodge · Alyssa Mensch · Hal Daum´e III · Alexander C. Berg ·
Yejin Choi · Tamara L. Berg
Received: date / Accepted: date"
3acb6b3e3f09f528c88d5dd765fee6131de931ea,Novel representation for driver emotion recognition in motor vehicle videos,"(cid:49)(cid:50)(cid:57)(cid:40)(cid:47)(cid:3)(cid:53)(cid:40)(cid:51)(cid:53)(cid:40)(cid:54)(cid:40)(cid:49)(cid:55)(cid:36)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3)(cid:41)(cid:50)(cid:53)(cid:3)(cid:39)(cid:53)(cid:44)(cid:57)(cid:40)(cid:53)(cid:3)(cid:40)(cid:48)(cid:50)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3)(cid:53)(cid:40)(cid:38)(cid:50)(cid:42)(cid:49)(cid:44)(cid:55)(cid:44)(cid:50)(cid:49)(cid:3)(cid:3)
(cid:44)(cid:49)(cid:3)(cid:48)(cid:50)(cid:55)(cid:50)(cid:53)(cid:3)(cid:57)(cid:40)(cid:43)(cid:44)(cid:38)(cid:47)(cid:40)(cid:3)(cid:57)(cid:44)(cid:39)(cid:40)(cid:50)(cid:54)(cid:3)
(cid:53)(cid:68)(cid:77)(cid:78)(cid:88)(cid:80)(cid:68)(cid:85)(cid:3)(cid:55)(cid:75)(cid:72)(cid:68)(cid:74)(cid:68)(cid:85)(cid:68)(cid:77)(cid:68)(cid:81)(cid:13)(cid:15)(cid:3)(cid:37)(cid:76)(cid:85)(cid:3)(cid:37)(cid:75)(cid:68)(cid:81)(cid:88)(cid:13)(cid:15)(cid:3)(cid:36)(cid:79)(cid:69)(cid:72)(cid:85)(cid:87)(cid:3)(cid:38)(cid:85)(cid:88)(cid:93)(cid:130)(cid:15)(cid:3)(cid:37)(cid:72)(cid:79)(cid:76)(cid:81)(cid:71)(cid:68)(cid:3)(cid:47)(cid:72)(cid:13)(cid:15)(cid:3)(cid:36)(cid:86)(cid:82)(cid:81)(cid:74)(cid:88)(cid:3)(cid:55)(cid:68)(cid:80)(cid:69)(cid:82)(cid:13)(cid:3)
(cid:3)
*Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA
(cid:130) Computer Perception Lab, California State University, Bakersfield, CA 93311, USA
(cid:36)(cid:37)(cid:54)(cid:55)(cid:53)(cid:36)(cid:38)(cid:55)(cid:3)
the  background
(cid:3)
A  novel  feature  representation  of  human  facial  expressions
for  emotion  recognition  is  developed.  The  representation
leveraged
texture  removal  ability  of
Anisotropic  Inhibited  Gabor  Filtering  (AIGF)  with  the
ompact  representation  of  spatiotemporal
local  binary
patterns. The  emotion recognition  system incorporated face
detection  and registration  followed  by the proposed  feature
representation:  Local  Anisotropic  Inhibited  Binary  Patterns
in  Three  Orthogonal"
3a60678ad2b862fa7c27b11f04c93c010cc6c430,A Multimodal Database for Affect Recognition and Implicit Tagging,"JANUARY-MARCH 2012
A Multimodal Database for
Affect Recognition and Implicit Tagging
Mohammad Soleymani, Member, IEEE, Jeroen Lichtenauer,
Thierry Pun, Member, IEEE, and Maja Pantic, Fellow, IEEE"
3a591a9b5c6d4c62963d7374d58c1ae79e3a4039,Driver Cell Phone Usage Detection from HOV/HOT NIR Images,"Driver Cell Phone Usage Detection From HOV/HOT NIR Images
Yusuf Artan, Orhan Bulan, Robert P. Loce, and Peter Paul
Xerox Research Center Webster
800 Phillips Rd. Webster NY 14580"
3aa9c8c65ce63eb41580ba27d47babb1100df8a3,Differentiating Duchenne from non-Duchenne smiles using active appearance models,"Annals of the
University of North Carolina Wilmington
Master of Science in
Computer Science and Information Systems"
3a0a839012575ba455f2b84c2d043a35133285f9,Corpus-Guided Sentence Generation of Natural Images,"Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 444–454,
Edinburgh, Scotland, UK, July 27–31, 2011. c(cid:13)2011 Association for Computational Linguistics"
3a9681e2e07be7b40b59c32a49a6ff4c40c962a2,"Comparing treatment means : overlapping standard errors , overlapping confidence intervals , and tests of hypothesis","Biometrics & Biostatistics International Journal
Comparing treatment means: overlapping standard
errors, overlapping confidence intervals, and tests of
hypothesis"
3a846704ef4792dd329a5c7a2cb8b330ab6b8b4e,FACE-GRAB: Face recognition with General Region Assigned to Binary operator,"in  any  current  or
future  media,
for  all  other  uses,
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained
including
reprinting/republishing  this  material  for  advertising  or  promotional  purposes,  creating
new  collective  works,  for  resale  or  redistribution  to  servers  or  lists,  or  reuse  of  any
opyrighted component of this work in other works.
Pre-print of article that appeared at the IEEE Computer Society Workshop on Biometrics
010.
The published article can be accessed from:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5544597"
3a95eea0543cf05670e9ae28092a114e3dc3ab5c,Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering,"Constructing the L2-Graph for Robust Subspace
Learning and Subspace Clustering
Xi Peng, Zhiding Yu, Huajin Tang, Member, IEEE, and Zhang Yi, Senior Member, IEEE"
3a4f522fa9d2c37aeaed232b39fcbe1b64495134,Face Recognition and Retrieval Using Cross-Age Reference Coding With Cross-Age Celebrity Dataset,"ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526
INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
Vol. 4, Issue 5, May 2016
IJIREEICE
Face Recognition and Retrieval Using Cross
Age Reference Coding
Sricharan H S1, Srinidhi K S1, Rajath D N1, Tejas J N1, Chandrakala B M2
BE, DSCE, Bangalore1
Assistant Professor, DSCE, Bangalore2"
540b39ba1b8ef06293ed793f130e0483e777e278,Biologically Inspired Emotional Expressions for Artificial Agents,"ORIGINAL RESEARCH
published: 13 July 2018
doi: 10.3389/fpsyg.2018.01191
Biologically Inspired Emotional
Expressions for Artificial Agents
Beáta Korcsok 1*, Veronika Konok 2, György Persa 3, Tamás Faragó 2, Mihoko Niitsuma 4,
Ádám Miklósi 2,5, Péter Korondi 1, Péter Baranyi 6 and Márta Gácsi 2,5
Department of Mechatronics, Optics and Engineering Informatics, Budapest University of Technology and Economics,
Budapest, Hungary, 2 Department of Ethology, Eötvös Loránd University, Budapest, Hungary, 3 Institute for Computer Science
nd Control, Hungarian Academy of Sciences, Budapest, Hungary, 4 Department of Precision Mechanics, Chuo University,
Tokyo, Japan, 5 MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary, 6 Department of Telecommunications
nd Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
A special area of human-machine interaction,
the expression of emotions gains
importance with the continuous development of artificial agents such as social robots or"
543f21d81bbea89f901dfcc01f4e332a9af6682d,Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks,"Published as a conference paper at ICLR 2016
UNSUPERVISED AND SEMI-SUPERVISED LEARNING
WITH CATEGORICAL GENERATIVE ADVERSARIAL
NETWORKS
Jost Tobias Springenberg
University of Freiburg
79110 Freiburg, Germany"
54969bcd728b0f2d3285866c86ef0b4797c2a74d,Learning for Video Compression,"IEEE TRANSACTION SUBMISSION
Learning for Video Compression
Zhibo Chen, Senior Member, IEEE, Tianyu He, Xin Jin, Feng Wu, Fellow, IEEE"
5456166e3bfe78a353df988897ec0bd66cee937f,Improved Boosting Performance by Exclusion of Ambiguous Positive Examples,"Improved Boosting Performance by Exclusion
of Ambiguous Positive Examples
Miroslav Kobetski, Josephine Sullivan
Computer Vision and Active Perception, KTH, Stockholm 10800, Sweden
{kobetski,
Keywords:
Boosting, Image Classification, Algorithm Evaluation, Dataset Pruning, VOC2007."
54aacc196ffe49b3450059fccdf7cd3bb6f6f3c3,A joint learning framework for attribute models and object descriptions,"A Joint Learning Framework for Attribute Models and Object Descriptions
Dhruv Mahajan
Yahoo! Labs, Bangalore, India
Sundararajan Sellamanickam
Vinod Nair"
541bccf19086755f8b5f57fd15177dc49e77d675,A few days of a robot's life in the human's world: toward incremental individual recognition,"Computer Science and ArtificialIntelligence LaboratoryTechnical Reportmassachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.eduMIT-CSAIL-TR-2007-022April 3, 2007A Few Days of A Robot’s Life in the Human’s World: Toward Incremental Individual RecognitionLijin Aryananda"
54756f824befa3f0c2af404db0122f5b5bbf16e0,Computer Vision — Visual Recognition,"Research Statement
Computer Vision — Visual Recognition
Alexander C. Berg
Computational visual recognition concerns identifying what is in an image, video, or other visual data, enabling
pplications such as measuring location, pose, size, activity, and identity as well as indexing for search by content.
Recent progress in making economical sensors and improvements in network, storage, and computational power
make visual recognition practical and relevant in almost all experimental sciences and commercial applications
such as image search. My work in visual recognition brings together machine learning, insights from psychology
nd physiology, computer graphics, algorithms, and a great deal of computation.
While I am best known for my work on general object category detection – creating techniques and building
systems for some of the best performing approaches to categorizing and localizing objects in images, recognizing
ction in video, and searching large collections of video and images – my research extends widely across visual
recognition including:
• Creating low-level image descriptors – procedures for converting pixel values to features that can be used
to model appearance for recognition. These include widely used descriptors for category recognition in
images [4, 2], object detection in images and video [11, 10, 2], and optical flow based descriptors for action
recognition in video [8].
• Developing models for recognition – ranging from what is becoming seminal work in recognizing human
ctions in video [8], to formulating object localization as approximate subgraph isomorphism [2], to models
for parsing architectural images [3], to a novel approach for face recognition based on high level describable"
549c719c4429812dff4d02753d2db11dd490b2ae,YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video,"YouTube-BoundingBoxes: A Large High-Precision
Human-Annotated Data Set for Object Detection in Video
Esteban Real
Google Brain
Jonathon Shlens
Google Brain
Stefano Mazzocchi
Google Research
Xin Pan
Google Brain
Vincent Vanhoucke
Google Brain"
9853136dbd7d5f6a9c57dc66060cab44a86cd662,"Improving the Neural Network Training for Face Recognition using Adaptive Learning Rate , Resilient Back Propagation and Conjugate Gradient Algorithm","International Journal of Computer Applications (0975 – 8887)
Volume 34– No.2, November 2011
Improving the Neural Network Training for Face
Recognition using Adaptive Learning Rate, Resilient
Back Propagation and Conjugate Gradient Algorithm
Hamed Azami
M.Sc. Student
Department of Electrical
Engineering, Iran University
of Science and Technology,
Tehran, Iran
Saeid Sanei
Associate Professor
Department of Computing,
Faculty of Engineering and
Physical Sciences, University
of Surrey, UK
Karim Mohammadi
Professor
Department of Electrical"
988d1295ec32ce41d06e7cf928f14a3ee079a11e,Semantic Deep Learning,"Semantic Deep Learning
Hao Wang
September 29, 2015"
98c548a4be0d3b62971e75259d7514feab14f884,Deep generative-contrastive networks for facial expression recognition,"Deep generative-contrastive networks for facial expression recognition
Youngsung Kim†, ByungIn Yoo‡,†, Youngjun Kwak†, Changkyu Choi†, and Junmo Kim‡
Samsung Advanced Institute of Technology (SAIT), ‡KAIST
hangkyu"
981449cdd5b820268c0876477419cba50d5d1316,Learning Deep Features for One-Class Classification,"Learning Deep Features for One-Class
Classification
Pramuditha Perera, Student Member, IEEE, and Vishal M. Patel, Senior Member , IEEE"
9854145f2f64d52aac23c0301f4bb6657e32e562,An Improved Face Verification Approach Based on Speedup Robust Features and Pairwise Matching,"An Improved Face Verification Approach based on
Speedup Robust Features and Pairwise Matching
Eduardo Santiago Moura, Herman Martins Gomes and Jo˜ao Marques de Carvalho
Center for Electrical Engineering and Informatics (CEEI)
Federal University of Campina Grande (UFCG)
Campina Grande, Para´ıba, Brazil
Email:"
98127346920bdce9773aba6a2ffc8590b9558a4a,Efficient human action recognition using histograms of motion gradients and VLAD with descriptor shape information,"Noname manuscript No.
(will be inserted by the editor)
Ef‌f‌icient Human Action Recognition using
Histograms of Motion Gradients and
VLAD with Descriptor Shape Information
Ionut C. Duta · Jasper R.R. Uijlings ·
Bogdan Ionescu · Kiyoharu Aizawa ·
Alexander G. Hauptmann · Nicu Sebe
Received: date / Accepted: date"
98a660c15c821ea6d49a61c5061cd88e26c18c65,Face Databases for 2D and 3D Facial Recognition: A Survey,"IOSR Journal of Engineering (IOSRJEN)
e-ISSN: 2250-3021, p-ISSN: 2278-8719
Vol. 3, Issue 4 (April. 2013), ||V1 || PP 43-48
Face Databases for 2D and 3D Facial Recognition: A Survey
R.Senthilkumar1, Dr.R.K.Gnanamurthy2
Assistant Professor,  Department of Electronics and Communication Engineering, Institute of Road and
Professor and Dean , Department of Electronics and Communication Engineering, Odaiyappa College of
Transport Technology,Erode-638 316.
Engineering and Technology,Theni-625 531."
98519f3f615e7900578bc064a8fb4e5f429f3689,Dictionary-Based Domain Adaptation Methods for the Re-identification of Faces,"Dictionary-based Domain Adaptation Methods
for the Re-identification of Faces
Qiang Qiu, Jie Ni, and Rama Chellappa"
9825aa96f204c335ec23c2b872855ce0c98f9046,Face and Facial Expression Recognition in 3-d Using Masked Projection under Occlusion,"International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014)
FACE AND FACIAL EXPRESSION
RECOGNITION IN 3-D USING MASKED
PROJECTION UNDER OCCLUSION
Jyoti patil *
M.Tech (CSE)
GNDEC Bidar-585401
BIDAR, INDIA
Gouri Patil
M.Tech (CSE)
GNDEC Bidar- 585401
BIDAR, INDIA
Snehalata Patil
M.Tech (CSE)
VKIT, Bangalore- 560040
BANGALORE, INDIA"
53e081f5af505374c3b8491e9c4470fe77fe7934,Unconstrained realtime facial performance capture,"Unconstrained Realtime Facial Performance Capture
Pei-Lun Hsieh⇤
⇤ University of Southern California
Chongyang Ma⇤
Jihun Yu†
Hao Li⇤
Industrial Light & Magic
Figure 1: Calibration-free realtime facial performance capture on highly occluded subjects using an RGB-D sensor."
53c36186bf0ffbe2f39165a1824c965c6394fe0d,I Know How You Feel: Emotion Recognition with Facial Landmarks,"I Know How You Feel: Emotion Recognition with Facial Landmarks
Tooploox 2Polish-Japanese Academy of Information Technology 3Warsaw University of Technology
Ivona Tautkute1,2, Tomasz Trzcinski1,3 and Adam Bielski1"
5366573e96a1dadfcd4fd592f83017e378a0e185,"Server, server in the cloud. Who is the fairest in the crowd?","Böhlen, Chandola and Salunkhe
Server, server in the cloud.
Who is the fairest in the crowd?"
53a41c711b40e7fe3dc2b12e0790933d9c99a6e0,Recurrent Memory Addressing for Describing Videos,"Recurrent Memory Addressing for describing videos
Arnav Kumar Jain∗ Abhinav Agarwalla∗
Kumar Krishna Agrawal∗
Pabitra Mitra
{arnavkj95, abhinavagarawalla, kumarkrishna,
Indian Institute of Technology Kharagpur"
533bfb82c54f261e6a2b7ed7d31a2fd679c56d18,Unconstrained Face Recognition: Identifying a Person of Interest From a Media Collection,"Technical Report MSU-CSE-14-1
Unconstrained Face Recognition: Identifying a
Person of Interest from a Media Collection
Lacey Best-Rowden, Hu Han, Member, IEEE, Charles Otto, Brendan Klare, Member, IEEE, and
Anil K. Jain, Fellow, IEEE"
3fbd68d1268922ee50c92b28bd23ca6669ff87e5,A shape- and texture-based enhanced Fisher classifier for face recognition,"IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001
A Shape- and Texture-Based Enhanced Fisher
Classifier for Face Recognition
Chengjun Liu, Member, IEEE, and Harry Wechsler, Fellow, IEEE"
3f22a4383c55ceaafe7d3cfed1b9ef910559d639,Robust Kronecker Component Analysis,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Robust Kronecker Component Analysis
Mehdi Bahri, Student Member, IEEE, Yannis Panagakis, and Stefanos Zafeiriou, Member, IEEE"
3fdcc1e2ebcf236e8bb4a6ce7baf2db817f30001,A Top-Down Approach for a Synthetic Autobiographical Memory System,"A top-down approach for a synthetic
utobiographical memory system
Andreas Damianou1,2, Carl Henrik Ek3, Luke Boorman1, Neil D. Lawrence2,
nd Tony J. Prescott1
Shef‌f‌ield Centre for Robotics (SCentRo), Univ. of Shef‌f‌ield, Shef‌f‌ield, S10 2TN, UK
Dept. of Computer Science, Univ. of Shef‌f‌ield, Shef‌f‌ield, S1 4DP, UK
CVAP Lab, KTH, Stockholm, Sweden"
3f848d6424f3d666a1b6dd405a48a35a797dd147,Is 2D Information Enough For Viewpoint Estimation?,"GHODRATI et al.: IS 2D INFORMATION ENOUGH FOR VIEWPOINT ESTIMATION?
Is 2D Information Enough For Viewpoint
Estimation?
Amir Ghodrati
Marco Pedersoli
Tinne Tuytelaars
KU Leuven, ESAT - PSI, iMinds
Leuven, Belgium"
3fa738ab3c79eacdbfafa4c9950ef74f115a3d84,DaMN - Discriminative and Mutually Nearest: Exploiting Pairwise Category Proximity for Video Action Recognition,"DaMN – Discriminative and Mutually Nearest:
Exploiting Pairwise Category Proximity
for Video Action Recognition
Rui Hou1, Amir Roshan Zamir1, Rahul Sukthankar2, and Mubarak Shah1
Center for Research in Computer Vision at UCF, Orlando, USA
Google Research, Mountain View, USA
http://crcv.ucf.edu/projects/DaMN/"
3fb98e76ffd8ba79e1c22eda4d640da0c037e98a,Convolutional Neural Networks for Crop Yield Prediction using Satellite Images,"Convolutional Neural Networks for Crop Yield Prediction using Satellite Images
H. Russello"
3f14b504c2b37a0e8119fbda0eff52efb2eb2461,Joint Facial Action Unit Detection and Feature Fusion: A Multi-Conditional Learning Approach,"Joint Facial Action Unit Detection and Feature
Fusion: A Multi-Conditional Learning Approach
Stefanos Eleftheriadis, Ognjen Rudovic, Member, IEEE, and Maja Pantic, Fellow, IEEE"
3fac7c60136a67b320fc1c132fde45205cd2ac66,Remarks on Computational Facial Expression Recognition from HOG Features Using Quaternion Multi-layer Neural Network,"Remarks on Computational Facial Expression
Recognition from HOG Features Using
Quaternion Multi-layer Neural Network
Kazuhiko Takahashi1, Sae Takahashi1, Yunduan Cui2,
nd Masafumi Hashimoto3
Information Systems Design, Doshisha University, Kyoto, Japan
Graduate School of Doshisha University, Kyoto, Japan
Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan"
3f9a7d690db82cf5c3940fbb06b827ced59ec01e,VIP: Finding important people in images,"VIP: Finding Important People in Images
Clint Solomon Mathialagan
Virginia Tech
Andrew C. Gallagher
Google Inc.
Dhruv Batra
Virginia Tech
Project: https://computing.ece.vt.edu/~mclint/vip/
Demo: http://cloudcv.org/vip/"
3fd90098551bf88c7509521adf1c0ba9b5dfeb57,Attribute-Based Classification for Zero-Shot Visual Object Categorization,"Page 1 of 21
*****For Peer Review Only*****
Attribute-Based Classification for Zero-Shot
Visual Object Categorization
Christoph H. Lampert, Hannes Nickisch and Stefan Harmeling"
3f7723ab51417b85aa909e739fc4c43c64bf3e84,Improved Performance in Facial Expression Recognition Using 32 Geometric Features,"Improved Performance in Facial Expression
Recognition Using 32 Geometric Features
Giuseppe Palestra1(B), Adriana Pettinicchio2, Marco Del Coco2,
Pierluigi Carcagn`ı2, Marco Leo2, and Cosimo Distante2
Department of Computer Science, University of Bari, Bari, Italy
National Institute of Optics, National Research Council, Arnesano, LE, Italy"
3f63f9aaec8ba1fa801d131e3680900680f14139,Facial Expression recognition using Local Binary Patterns and Kullback Leibler divergence,"Facial Expression Recognition using Local Binary
Patterns and Kullback Leibler Divergence
AnushaVupputuri, SukadevMeher
divergence."
3f0e0739677eb53a9d16feafc2d9a881b9677b63,Efficient Two-Stream Motion and Appearance 3D CNNs for Video Classification,"Efficient Two-Stream Motion and Appearance 3D CNNs for
Video Classification
Ali Diba
ESAT-KU Leuven
Ali Pazandeh
Sharif UTech
Luc Van Gool
ESAT-KU Leuven, ETH Zurich"
30b15cdb72760f20f80e04157b57be9029d8a1ab,Face Aging with Identity-Preserved Conditional Generative Adversarial Networks,"Face Aging with Identity-Preserved
Conditional Generative Adversarial Networks
Zongwei Wang
Shanghaitech University
Xu Tang
Baidu
Weixin Luo, Shenghua Gao∗
Shanghaitech University
{luowx,"
30870ef75aa57e41f54310283c0057451c8c822b,Overcoming catastrophic forgetting with hard attention to the task,"Overcoming Catastrophic Forgetting with Hard Attention to the Task
Joan Serr`a 1 D´ıdac Sur´ıs 1 2 Marius Miron 1 3 Alexandros Karatzoglou 1"
305346d01298edeb5c6dc8b55679e8f60ba97efb,Fine-Grained Face Annotation Using Deep Multi-Task CNN,"Article
Fine-Grained Face Annotation Using Deep
Multi-Task CNN
Luigi Celona *
, Simone Bianco
nd Raimondo Schettini
Department of Informatics, Systems and Communication, University of Milano-Bicocca,
viale Sarca, 336 Milano, Italy; (S.B.); (R.S.)
* Correspondence:
Received: 3 July 2018; Accepted: 13 August 2018; Published: 14 August 2018"
309e17e6223e13b1f76b5b0eaa123b96ef22f51b,Face recognition based on a 3D morphable model,"Face Recognition based on a 3D Morphable Model
Volker Blanz
University of Siegen
H¤olderlinstr. 3
57068 Siegen, Germany"
3046baea53360a8c5653f09f0a31581da384202e,Deformable Face Alignment via Local Measurements and Global Constraints,"Deformable Face Alignment via Local
Measurements and Global Constraints
Jason M. Saragih"
3028690d00bd95f20842d4aec84dc96de1db6e59,Leveraging Union of Subspace Structure to Improve Constrained Clustering,"Leveraging Union of Subspace Structure to Improve Constrained Clustering
John Lipor 1 Laura Balzano 1"
30c96cc041bafa4f480b7b1eb5c45999701fe066,Discrete Cosine Transform Locality-Sensitive Hashes for Face Retrieval,"Discrete Cosine Transform Locality-Sensitive
Hashes for Face Retrieval
Mehran Kafai, Member, IEEE, Kave Eshghi, and Bir Bhanu, Fellow, IEEE"
306957285fea4ce11a14641c3497d01b46095989,Face Recognition Under Varying Lighting Based on Derivates of Log Image,"FACE RECOGNITION UNDER VARYING LIGHTING BASED ON
DERIVATES OF LOG IMAGE
Laiyun Qing1,2, Shiguang Shan2,  Wen Gao1,2
ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing 100080, China
Graduate School, CAS, Beijing, 100039, China"
307a810d1bf6f747b1bd697a8a642afbd649613d,An affordable contactless security system access for restricted area,"An affordable contactless security system access
for restricted area
Pierre Bonazza1, Johel Mitéran1, Barthélémy Heyrman1, Dominique Ginhac1,
Vincent Thivent2, Julien Dubois1
Laboratory Le2i
University Bourgogne Franche-Comté, France
Odalid compagny, France
Contact
Keywords – Smart Camera, Real-time Image Processing, Biometrics, Face Detection, Face Verifica-
tion, EigenFaces, Support Vector Machine,
We  present  in  this  paper  a  security  system  based  on
identity verification process and a low-cost smart cam-
era, intended to avoid unauthorized access to restricted
rea.  The  Le2i  laboratory  has  a  longstanding  experi-
ence in smart cameras implementation and design [1],
for  example in the  case of  real-time classical  face de-
tection [2] or human fall detection [3].
The principle of the system, fully thought and designed
in  our  laboratory,  is  as  follows:  the  allowed  user  pre-
sents a RFID card to the reader based on Odalid system"
302c9c105d49c1348b8f1d8cc47bead70e2acf08,Unconstrained Face Recognition Using A Set-to-Set Distance Measure,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2710120, IEEE
Transactions on Circuits and Systems for Video Technology
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
Unconstrained Face Recognition Using A Set-to-Set
Distance Measure
Jiaojiao Zhao, Jungong Han, and Ling Shao, Senior Member IEEE"
301b0da87027d6472b98361729faecf6e1d5e5f6,Head Pose Estimation in Face Recognition Across Pose Scenarios,"HEAD POSE ESTIMATION IN FACE RECOGNITION ACROSS
POSE SCENARIOS
M. Saquib Sarfraz and Olaf Hellwich
Computer vision and Remote Sensing, Berlin university of Technology
Sekr. FR-3-1, Franklinstr. 28/29, D-10587, Berlin, Germany.
Keywords:
Pose estimation, facial pose, face recognition, local energy models, shape description, local features, head
pose classification."
30b103d59f8460d80bb9eac0aa09aaa56c98494f,Enhancing Human Action Recognition with Region Proposals,"Enhancing Human Action Recognition with Region Proposals
Fahimeh Rezazadegan, Sareh Shirazi, Niko Sünderhauf, Michael Milford, Ben Upcroft
Australian Centre for Robotic Vision(ACRV), School of Electrical Engineering and Computer Science
Queensland University of Technology(QUT)"
5e6f546a50ed97658be9310d5e0a67891fe8a102,Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?,"Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Ibaraki, Japan
{kensho.hara, hirokatsu.kataoka,"
5e0eb34aeb2b58000726540336771053ecd335fc,Low-Quality Video Face Recognition with Deep Networks and Polygonal Chain Distance,"Low-Quality Video Face Recognition with Deep
Networks and Polygonal Chain Distance
Christian Herrmann∗†, Dieter Willersinn†, J¨urgen Beyerer†∗
Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
Fraunhofer IOSB, Karlsruhe, Germany"
5e28673a930131b1ee50d11f69573c17db8fff3e,Descriptor Based Methods in the Wild,"Author manuscript, published in ""Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France
(2008)"""
5ea9063b44b56d9c1942b8484572790dff82731e,Multiclass Support Vector Machines and Metric Multidimensional Scaling for Facial Expression Recognition,"MULTICLASS SUPPORT VECTOR MACHINES AND METRIC MULTIDIMENSIONAL
SCALING FOR FACIAL EXPRESSION RECOGNITION
Irene Kotsiay, Stefanos Zafeiriouy, Nikolaos Nikolaidisy and Ioannis Pitasy
yAristotle University of Thessaloniki, Department of Informatics
Thessaloniki, Greece
email: fekotsia, dralbert, nikolaid,"
5e6ba16cddd1797853d8898de52c1f1f44a73279,Face Identification with Second-Order Pooling,"Face Identification with Second-Order Pooling
Fumin Shen, Chunhua Shen and Heng Tao Shen"
5ec94adc9e0f282597f943ea9f4502a2a34ecfc2,Leveraging the Power of Gabor Phase for Face Identification: A Block Matching Approach,"Leveraging the Power of Gabor Phase for Face
Identification: A Block Matching Approach
Yang Zhong, Haibo Li
KTH, Royal Institute of Technology"
5bfc32d9457f43d2488583167af4f3175fdcdc03,Local Gray Code Pattern (LGCP): A Robust Feature Descriptor for Facial Expression Recognition,"International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064
Local Gray Code Pattern (LGCP): A Robust
Feature Descriptor for Facial Expression
Recognition
Mohammad Shahidul Islam
Atish Dipankar University of Science & Technology, School, Department of Computer Science and Engineering, Dhaka, Bangladesh."
5ba7882700718e996d576b58528f1838e5559225,Predicting Personalized Image Emotion Perceptions in Social Networks,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2016.2628787, IEEE
Transactions on Affective Computing
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X, OCTOBER 2016
Predicting Personalized Image Emotion
Perceptions in Social Networks
Sicheng Zhao, Hongxun Yao, Yue Gao, Senior Member, IEEE, Guiguang Ding and Tat-Seng Chua"
5b6f0a508c1f4097dd8dced751df46230450b01a,Finding lost children,"Finding Lost Children
Ashley Michelle Eden
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2010-174
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-174.html
December 20, 2010"
5bb684dfe64171b77df06ba68997fd1e8daffbe1,One-Sided Unsupervised Domain Mapping,
5bae9822d703c585a61575dced83fa2f4dea1c6d,MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking,"MOTChallenge 2015:
Towards a Benchmark for Multi-Target Tracking
Laura Leal-Taix´e∗, Anton Milan∗, Ian Reid, Stefan Roth, and Konrad Schindler"
5babbad3daac5c26503088782fd5b62067b94fa5,Are You Sure You Want To Do That? Classification with Verification,"Are You Sure You Want To Do That?
Classification with Verification
Harris Chan∗
Atef Chaudhury∗
Kevin Shen∗"
5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f,Targeting Ultimate Accuracy: Face Recognition via Deep Embedding,"Targeting Ultimate Accuracy: Face Recognition via Deep Embedding
Jingtuo Liu     Yafeng Deng     Tao Bai     Zhengping Wei     Chang Huang
Baidu Research – Institute of Deep Learning"
5b9d9f5a59c48bc8dd409a1bd5abf1d642463d65,An evolving spatio-temporal approach for gender and age group classification with Spiking Neural Networks,"Evolving Systems. manuscript No.
(will be inserted by the editor)
An evolving spatio-temporal approach for gender and age
group classification with Spiking Neural Networks
Fahad Bashir Alvi, Russel Pears, Nikola Kasabov
Received: date / Accepted: date"
5b01d4338734aefb16ee82c4c59763d3abc008e6,A Robust Face Recognition Algorithm Based on Kernel Regularized Relevance-Weighted Discriminant Analysis,"DI WU: A ROBUST FACE RECOGNITION ALGORITHM BASED ON KERNEL REGULARIZED RELEVANCE …
A Robust Face Recognition Algorithm Based on Kernel Regularized
Relevance-Weighted Discriminant Analysis
Di WU 1, 2
2 Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China.
College of Electrical and Information Engineering,
[e-mail:
I. INTRODUCTION
interface  and  security
recognition
their
this  paper,  we  propose  an  effective"
5b721f86f4a394f05350641e639a9d6cb2046c45,Detection under Privileged Information,"A short version of this paper is accepted to ACM Asia Conference on Computer and Communications Security (ASIACCS) 2018
Detection under Privileged Information (Full Paper)∗
Z. Berkay Celik
Pennsylvania State University
Patrick McDaniel
Pennsylvania State University
Rauf Izmailov
Vencore Labs
Nicolas Papernot,
Ryan Sheatsley, Raquel Alvarez
Pennsylvania State University
Ananthram Swami
Army Research Laboratory"
5be3cc1650c918da1c38690812f74573e66b1d32,Relative Parts: Distinctive Parts for Learning Relative Attributes,"Relative Parts: Distinctive Parts for Learning Relative Attributes
Ramachandruni N. Sandeep
Yashaswi Verma
C. V. Jawahar
Center for Visual Information Technology, IIIT Hyderabad, India - 500032"
5b6bed112e722c0629bcce778770d1b28e42fc96,Can Your Eyes Tell Me How You Think? A Gaze Directed Estimation of the Mental Activity,"FLOREA ET AL.:CANYOUREYESTELLMEHOWYOUTHINK?
Can Your Eyes Tell Me How You Think? A
Gaze Directed Estimation of the Mental
Activity
Laura Florea
http://alpha.imag.pub.ro/common/staff/lflorea
Corneliu Florea
http://alpha.imag.pub.ro/common/staff/cflorea
Ruxandra Vrânceanu
Constantin Vertan
http://alpha.imag.pub.ro/common/staff/vertan
Image Processing and Analysis
Laboratory, LAPI
University “Politehnica” of Bucharest
Bucharest, Romania"
37c8514df89337f34421dc27b86d0eb45b660a5e,Facial Landmark Tracking by Tree-Based Deformable Part Model Based Detector,"Facial Landmark Tracking by Tree-based Deformable Part Model
Based Detector
Michal Uˇriˇc´aˇr, Vojtˇech Franc, and V´aclav Hlav´aˇc
Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague
66 27 Prague 6, Technick´a 2, Czech Republic
{uricamic, xfrancv,"
374c7a2898180723f3f3980cbcb31c8e8eb5d7af,Facial Expression Recognition in Videos using a Novel Multi-Class Support Vector Machines Variant,"FACIAL EXPRESSION RECOGNITION IN VIDEOS USING A NOVEL MULTI-CLASS
SUPPORT VECTOR MACHINES VARIANT
Irene Kotsiay, Nikolaos Nikolaidisy and Ioannis Pitasy
yAristotle University of Thessaloniki
Department of Informatics
Box 451, 54124 Thessaloniki, Greece"
372fb32569ced35eaf3740a29890bec2be1869fa,Mu rhythm suppression is associated with the classification of emotion in faces.,"Running head: MU RHYTHM MODULATION BY CLASSIFICATION OF EMOTION  1
Mu rhythm suppression is associated with the classification of emotion in faces
Matthew R. Moore1, Elizabeth A. Franz1
Department of Psychology, University of Otago, Dunedin, New Zealand
Corresponding authors:
Matthew Moore & Liz Franz
Phone:  +64 (3) 479 5269; Fax:  +64 (3) 479 8335
Department of Psychology
University of Otago
PO Box 56
Dunedin, New Zealand"
37f2e03c7cbec9ffc35eac51578e7e8fdfee3d4e,Co-operative Pedestrians Group Tracking in Crowded Scenes Using an MST Approach,"WACV 2015 Submission #394. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
Co-operative Pedestrians Group Tracking in Crowded Scenes using an MST
Approach
Anonymous WACV submission
Paper ID 394"
3795974e24296185d9b64454cde6f796ca235387,Finding your Lookalike: Measuring Face Similarity Rather than Face Identity,"Finding your Lookalike:
Measuring Face Similarity Rather than Face Identity
Amir Sadovnik, Wassim Gharbi, Thanh Vu
Lafayette College
Easton, PA
Andrew Gallagher
Google Research
Mountain View, CA"
37278ffce3a0fe2c2bbf6232e805dd3f5267eba3,Can we still avoid automatic face detection?,"Can we still avoid automatic face detection?
Michael J. Wilber1,2
Vitaly Shmatikov1,2
Serge Belongie1,2
Department of Computer Science, Cornell University 2 Cornell Tech"
377a1be5113f38297716c4bb951ebef7a93f949a,Facial emotion recognition with anisotropic inhibited Gabor energy histograms,"Dear Faculty, IGERT Fellows, IGERT Associates and Students,
You are cordially invited to attend a Seminar presented by Albert Cruz. Please
plan to attend.
Albert Cruz
IGERT Fellow
Electrical Engineering
Date: Friday, October 11, 2013
Location: Bourns A265
Time: 11:00am
Facial  emotion  recognition  with  anisotropic
inhibited gabor energy histograms"
370e0d9b89518a6b317a9f54f18d5398895a7046,Cross-pollination of normalisation techniques from speaker to face authentication using Gaussian mixture models,"IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, XXXXXXX 20XX
Cross-pollination of normalisation techniques
from speaker to face authentication
using Gaussian mixture models
Roy Wallace, Member, IEEE, Mitchell McLaren, Member, IEEE, Christopher McCool, Member, IEEE,
nd S´ebastien Marcel, Member, IEEE"
3773e5d195f796b0b7df1fca6e0d1466ad84b5e7,UNIVERSITY OF CALIFORNIA RIVERSIDE Learning from Time Series in the Presence of Noise: Unsupervised and Semi-Supervised Approaches,"UNIVERSITY OF CALIFORNIA
RIVERSIDE
Learning from Time Series in the Presence of Noise: Unsupervised and Semi-Supervised
Approaches
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Computer Science
Dragomir Dimitrov Yankov
March 2008
Dissertation Committee:
Dr. Eamonn Keogh, Chairperson
Dr. Stefano Lonardi
Dr. Vassilis Tsotras"
37eb666b7eb225ffdafc6f318639bea7f0ba9a24,"Age, Gender and Race Estimation from Unconstrained Face Images","MSU Technical Report (2014): MSU-CSE-14-5
Age, Gender and Race Estimation from
Unconstrained Face Images
Hu Han, Member, IEEE and Anil K. Jain, Fellow, IEEE"
375435fb0da220a65ac9e82275a880e1b9f0a557,From Pixels to Response Maps: Discriminative Image Filtering for Face Alignment in the Wild,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
From Pixels to Response Maps: Discriminative Image
Filtering for Face Alignment in the Wild
Akshay Asthana, Stefanos Zafeiriou, Georgios Tzimiropou-
los, Shiyang Cheng and Maja Pantic"
37b6d6577541ed991435eaf899a2f82fdd72c790,Vision-based Human Gender Recognition: A Survey,"Vision-based Human Gender Recognition: A Survey
Choon Boon Ng, Yong Haur Tay, Bok Min Goi
Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia."
372a8bf0ef757c08551d41e40cb7a485527b6cd7,Unsupervised Video Hashing by Exploiting Spatio-Temporal Feature,"Unsupervised Video Hashing by Exploiting
Spatio-Temporal Feature
Chao Ma, Yun Gu, Wei Liu, and Jie Yang(cid:63)
Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong
University, Shanghai, China."
370b5757a5379b15e30d619e4d3fb9e8e13f3256,Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments,"Labeled Faces in the Wild: A Database for Studying
Face Recognition in Unconstrained Environments
Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller"
08d2f655361335bdd6c1c901642981e650dff5ec,Automatic Cast Listing in Feature-Length Films with Anisotropic Manifold Space,"This is the published version:
Arandjelovic,	Ognjen	and	Cipolla,	R.	2006,	Automatic	cast	listing	in	feature‐length	films	with
Anisotropic	Manifold	Space,	in	CVPR	2006	:	Proceedings	of	the	Computer	Vision	and	Pattern
Recognition	Conference	2006,	IEEE,	Piscataway,	New	Jersey,	pp.	1513‐1520.
http://hdl.handle.net/10536/DRO/DU:30058435
Reproduced	with	the	kind	permission	of	the	copyright	owner.
Copyright	:	2006,	IEEE
Available from Deakin Research Online:"
08fbe3187f31b828a38811cc8dc7ca17933b91e9,Statistical Computations on Grassmann and Stiefel Manifolds for Image and Video-Based Recognition,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Statistical Computations on Grassmann and
Stiefel Manifolds for Image and Video-Based
Recognition
Turaga, P.; Veeraraghavan, A.; Srivastava, A.; Chellappa, R.
TR2011-084 April 2011"
08ae100805d7406bf56226e9c3c218d3f9774d19,Predicting the Sixteen Personality Factors (16PF) of an individual by analyzing facial features,"Gavrilescu and Vizireanu EURASIP Journal on Image and Video Processing  (2017) 2017:59
DOI 10.1186/s13640-017-0211-4
EURASIP Journal on Image
nd Video Processing
R ES EAR CH
Predicting the Sixteen Personality Factors
(16PF) of an individual by analyzing facial
features
Mihai Gavrilescu* and Nicolae Vizireanu
Open Access"
08c18b2f57c8e6a3bfe462e599a6e1ce03005876,A Least-Squares Framework for Component Analysis,"A Least-Squares Framework
for Component Analysis
Fernando De la Torre Member, IEEE,"
08ff81f3f00f8f68b8abd910248b25a126a4dfa4,Symmetric Subspace Learning for Image Analysis,"Papachristou, K., Tefas, A., & Pitas, I. (2014). Symmetric Subspace Learning
5697. DOI: 10.1109/TIP.2014.2367321
Peer reviewed version
Link to published version (if available):
0.1109/TIP.2014.2367321
Link to publication record in Explore Bristol Research
PDF-document
This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Institute of Electrical and Electronic Engineers at http://dx.doi.org/10.1109/TIP.2014.2367321. Please refer to
ny applicable terms of use of the publisher.
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms"
0861f86fb65aa915fbfbe918b28aabf31ffba364,An Efficient Facial Annotation with Machine Learning Approach,"International Journal of Computer Trends and Technology (IJCTT) – volume 22 Number 3–April 2015
An Efficient Facial Annotation with Machine Learning Approach
A.Anusha,2R.Srinivas
Final M.Tech Student, 2Associate Professor
,2Dept of CSE ,Aditya Institute of Technology And Management, Tekkali, Srikakulam , Andhra Pradesh"
080c204edff49bf85b335d3d416c5e734a861151,CLAD: A Complex and Long Activities Dataset with Rich Crowdsourced Annotations,"CLAD: A Complex and Long Activities
Dataset with Rich Crowdsourced
Annotations
Jawad Tayyub1, Majd Hawasly2∗, David C. Hogg1 and Anthony G. Cohn1
Journal Title
XX(X):1–6
(cid:13)The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/"
08f4832507259ded9700de81f5fd462caf0d5be8,Geometric Approach for Human Emotion Recognition using Facial Expression,"International Journal of Computer Applications (0975 – 8887)
Volume 118 – No.14, May 2015
Geometric Approach for Human Emotion
Recognition using Facial Expression
S. S. Bavkar
Assistant Professor
VPCOE Baramati
J. S. Rangole
Assistant Professor
VPCOE Baramati
V. U. Deshmukh
Assistant Professor
VPCOE Baramati"
08d40ee6e1c0060d3b706b6b627e03d4b123377a,Towards Weakly-Supervised Action Localization,"Human Action Localization
with Sparse Spatial Supervision
Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid, Fellow, IEEE"
088aabe3da627432fdccf5077969e3f6402f0a80,Classifier-to-generator Attack: Estimation,"Under review as a conference paper at ICLR 2018
CLASSIFIER-TO-GENERATOR ATTACK: ESTIMATION
OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER
Anonymous authors
Paper under double-blind review"
08903bf161a1e8dec29250a752ce9e2a508a711c,Joint Dimensionality Reduction and Metric Learning: A Geometric Take,"Joint Dimensionality Reduction and Metric Learning: A Geometric Take
Mehrtash Harandi 1 2 Mathieu Salzmann 3 Richard Hartley 2 1"
08e24f9df3d55364290d626b23f3d42b4772efb6,Enhancing facial expression classification by information fusion,"ENHANCING FACIAL EXPRESSION CLASSIFICATION BY INFORMATION
FUSION
I. Buciu1, Z. Hammal 2, A. Caplier2, N. Nikolaidis 1, and I. Pitas 1
AUTH/Department of Informatics/ Aristotle University of Thessaloniki
phone: + 30(2310)99.6361, fax: + 30(2310)99.8453, email:
GR-54124, Thessaloniki, Box 451, Greece
Laboratoire des Images et des Signaux / Institut National Polytechnique de Grenoble
phone: + 33(0476)574363, fax: + 33(0476)57 47 90, email:
web: http://www.aiia.csd.auth.gr
8031 Grenoble, France
web: http://www.lis.inpg.fr"
0857281a3b6a5faba1405e2c11f4e17191d3824d,Face recognition via edge-based Gabor feature representation for plastic surgery-altered images,"Chude-Olisah et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:102
http://asp.eurasipjournals.com/content/2014/1/102
R ES EAR CH
Face recognition via edge-based Gabor feature
representation for plastic surgery-altered images
Chollette C Chude-Olisah1*, Ghazali Sulong1, Uche A K Chude-Okonkwo2 and Siti Z M Hashim1
Open Access"
08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7,Understanding Kin Relationships in a Photo,"Understanding Kin Relationships in a Photo
Siyu Xia, Ming Shao, Student Member, IEEE, Jiebo Luo, Fellow, IEEE, and Yun Fu, Senior Member, IEEE"
6dd052df6b0e89d394192f7f2af4a3e3b8f89875,A literature survey on Facial Expression Recognition using Global Features,"International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013
A literature survey on Facial Expression
Recognition using Global Features
Vaibhavkumar J. Mistry, Mahesh M. Goyani"
6dd5dbb6735846b214be72983e323726ef77c7a9,A Survey on Newer Prospective Biometric Authentication Modalities,"Josai Mathematical Monographs
vol. 7 (2014), pp. 25-40
A Survey on Newer Prospective
Biometric Authentication Modalities
Narishige Abe, Takashi Shinzaki"
6d10beb027fd7213dd4bccf2427e223662e20b7d,User Adaptive and Context-Aware Smart Home Using Pervasive and Semantic Technologies,"Publishing CorporationJournal of Electrical and Computer EngineeringVolume 2016, Article ID 4789803, 20 pageshttp://dx.doi.org/10.1155/2016/4789803"
6dddf1440617bf7acda40d4d75c7fb4bf9517dbb,"Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking","JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MM YY
Beyond Counting: Comparisons of Density Maps for Crowd
Analysis Tasks - Counting, Detection, and Tracking
Di Kang, Zheng Ma, Member, IEEE, Antoni B. Chan Senior Member, IEEE,"
6d4b5444c45880517213a2fdcdb6f17064b3fa91,Harvesting Image Databases from The Web,"Journal of Information Engineering and Applications
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol 2, No.3, 2012
www.iiste.org
Harvesting Image Databases from The Web
Snehal M. Gaikwad
G.H.Raisoni College of Engg. & Mgmt.,Pune,India
Snehal S. Pathare
G.H.Raisoni College of Engg. & Mgmt.,Pune,India
Trupti A. Jachak
G.H.Raisoni College of Engg. & Mgmt.,Pune,India"
6d8c9a1759e7204eacb4eeb06567ad0ef4229f93,"Face Alignment Robust to Pose, Expressions and Occlusions","Face Alignment Robust to Pose, Expressions and
Occlusions
Vishnu Naresh Boddeti†, Myung-Cheol Roh†, Jongju Shin, Takaharu Oguri, Takeo Kanade"
6d618657fa5a584d805b562302fe1090957194ba,Human Facial Expression Recognition based on Principal Component Analysis and Artificial Neural Network,"Full Paper
NNGT Int. J. of Artificial Intelligence , Vol. 1, July 2014
Human Facial Expression Recognition based
on Principal Component Analysis and
Artificial Neural Network
Laboratory of Automatic and Signals Annaba (LASA) , Department of electronics, Faculty of Engineering,
Zermi.Narima, Ramdani.M, Saaidia.M
Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria.
E-Mail :"
6d66c98009018ac1512047e6bdfb525c35683b16,Face Recognition Based on Fitting a 3D Morphable Model,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 9, SEPTEMBER 2003
Face Recognition Based on
Fitting a 3D Morphable Model
Volker Blanz and Thomas Vetter, Member, IEEE"
0172867f4c712b33168d9da79c6d3859b198ed4c,Expression and illumination invariant preprocessing technique for Face Recognition,"Technique for Face Recognition
Computer and System Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt
A. Abbas, M. I. Khalil, S. Abdel-Hay, H. M. Fahmy
Expression and Illumination Invariant Preprocessing"
0145dc4505041bf39efa70ea6d95cf392cfe7f19,Human action segmentation with hierarchical supervoxel consistency,"Human Action Segmentation with Hierarchical Supervoxel Consistency
Jiasen Lu1, Ran Xu1 Jason J. Corso2
Department of Computer Science and Engineering, SUNY at Buffalo. 2Department of EECS, University of Michigan.
Detailed analysis of human action, such as classification, detection and lo-
alization has received increasing attention from the community; datasets
like J-HMDB [1] have made it plausible to conduct studies analyzing the
impact that such deeper information has on the greater action understanding
problem. However, detailed automatic segmentation of human action has
omparatively been unexplored. In this paper, we introduce a hierarchical
MRF model to automatically segment human action boundaries in videos
“in-the-wild” (see Fig. 1).
We first propose a human motion saliency representation which incor-
porates two parts: foreground motion and human appearance information.
For foreground motion estimation, we propose a new motion saliency fea-
ture by using long-term trajectories to build a camera motion model, and
then measure the motion saliency via the deviation from the camera model.
For human appearance information, we use a DPM person detector trained
on PASCAL VOC 2007 and construct a saliency map by averaging the nor-
malized detection score of all the scale and all components.
Then, to segment the human action, we start by applying hierarchical"
01bef320b83ac4405b3fc5b1cff788c124109fb9,Translating Head Motion into Attention - Towards Processing of Student's Body-Language,"de Lausanne
RLC D1 740, CH-1015
Lausanne
de Lausanne
RLC D1 740, CH-1015
Lausanne
de Lausanne
RLC D1 740, CH-1015
Lausanne
Translating Head Motion into Attention - Towards
Processing of Student’s Body-Language
Mirko Raca
CHILI Laboratory
Łukasz Kidzi´nski
CHILI Laboratory
Pierre Dillenbourg
CHILI Laboratory
École polytechnique fédérale
École polytechnique fédérale
École polytechnique fédérale"
01c8d7a3460422412fba04e7ee14c4f6cdff9ad7,Rule Based System for Recognizing Emotions Using Multimodal Approach,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 7, 2013
Rule Based System for Recognizing Emotions Using
Multimodal Approach
Preeti Khanna
Information System
SBM, SVKM’s NMIMS
Mumbai, India"
0163d847307fae508d8f40ad193ee542c1e051b4,Classemes and Other Classifier-Based Features for Efficient Object Categorization,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007
Classemes and Other Classifier-based
Features for Efficient Object Categorization
- Supplementary material -
Alessandro Bergamo, and Lorenzo Torresani, Member, IEEE
LOW-LEVEL FEATURES
We extract the SIFT [1] features for our descriptor
ccording to the following pipeline. We first convert
each image to gray-scale, then we normalize the con-
trast by forcing the 0.01% of lightest and darkest pixels
to be mapped to white and black respectively, and
linearly rescaling the values in between. All images
exceeding 786,432 pixels of resolution are downsized
to this maximum value while keeping the aspect ratio.
The 128-dimensional SIFT descriptors are computed
from the interest points returned by a DoG detec-
tor [2]. We finally compute a Bag-Of-Word histogram
of these descriptors, using a K-means vocabulary of
500 words.
CLASSEMES"
01c4cf9c7c08f0ad3f386d88725da564f3c54679,Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV),"Interpretability Beyond Feature Attribution:
Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler
Fernanda Viegas Rory Sayres"
017ce398e1eb9f2eed82d0b22fb1c21d3bcf9637,Face Recognition with Harmonic De-lighting,"FACE RECOGNITION WITH HARMONIC DE-LIGHTING
Laiyun Qing1,2, Shiguang Shan2, Wen Gao1,2
ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080
Graduate School, CAS, Beijing, China, 100080
Emails: {lyqing, sgshan, wgao}jdl.ac.cn"
014e3d0fa5248e6f4634dc237e2398160294edce,What does 2D geometric information really tell us about 3D face shape?,"Int J Comput Vis manuscript No.
(will be inserted by the editor)
What does 2D geometric information really tell us about
D face shape?
Anil Bas1 · William A. P. Smith1
Received: date / Accepted: date"
011e6146995d5d63c852bd776f782cc6f6e11b7b,Fast Training of Triplet-Based Deep Binary Embedding Networks,"Fast Training of Triplet-based Deep Binary Embedding Networks
Bohan Zhuang, Guosheng Lin, Chunhua Shen∗, Ian Reid
The University of Adelaide; and Australian Centre for Robotic Vision"
0181fec8e42d82bfb03dc8b82381bb329de00631,Discriminative Subspace Clustering,"Discriminative Subspace Clustering
Vasileios Zografos∗1, Liam Ellis†1, and Rudolf Mester‡1 2
CVL, Dept. of Electrical Engineering, Link¨oping University, Link¨oping, Sweden
VSI Lab, Computer Science Department, Goethe University, Frankfurt, Germany"
0113b302a49de15a1d41ca4750191979ad756d2f,Matching Faces with Textual Cues in Soccer Videos,"­4244­0367­7/06/$20.00 ©2006 IEEE
ICME 2006"
0601416ade6707c689b44a5bb67dab58d5c27814,Feature Selection in Face Recognition: A Sparse Representation Perspective,"Feature Selection in Face Recognition: A Sparse
Representation Perspective
Allan Y. Yang
John Wright
Yi Ma
S. Shankar Sastry
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2007-99
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-99.html
August 14, 2007"
064b797aa1da2000640e437cacb97256444dee82,Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression,"Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression
Zhiao Huang
Megvii Inc.
Erjin Zhou
Megvii Inc.
Zhimin Cao
Megvii Inc."
06f146dfcde10915d6284981b6b84b85da75acd4,Scalable Face Image Retrieval Using Attribute-Enhanced Sparse Codewords,"Scalable Face Image Retrieval using
Attribute-Enhanced Sparse Codewords
Bor-Chun Chen, Yan-Ying Chen, Yin-Hsi Kuo, Winston H. Hsu"
0697bd81844d54064d992d3229162fe8afcd82cb,User-driven mobile robot storyboarding: Learning image interest and saliency from pairwise image comparisons,"User-driven mobile robot storyboarding: Learning image interest and
saliency from pairwise image comparisons
Michael Burke1"
06262d6beeccf2784e4e36a995d5ee2ff73c8d11,Recognize Actions by Disentangling Components of Dynamics,"Recognize Actions by Disentangling Components of Dynamics
Yue Zhao1, Yuanjun Xiong1,2, and Dahua Lin1
CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong 2Amazon Rekognition"
06d93a40365da90f30a624f15bf22a90d9cfe6bb,Learning from Candidate Labeling Sets,"Learning from Candidate Labeling Sets
Idiap Research Institute and EPF Lausanne
Luo Jie
Francesco Orabona
DSI, Universit`a degli Studi di Milano"
06e7e99c1fdb1da60bc3ec0e2a5563d05b63fe32,WhittleSearch: Image search with relative attribute feedback,"WhittleSearch: Image Search with Relative Attribute Feedback
Adriana Kovashka, Devi Parikh and Kristen Grauman
(Supplementary Material)
Comparative Qualitative Search Results
We present three qualitative search results for human-generated feedback, in addition to those
shown in the paper. Each example shows one search iteration, where the 20 reference images are
randomly selected (rather than ones that match a keyword search, as the image examples in the
main paper illustrate). For each result, the first figure shows our method and the second figure
shows the binary feedback result for the corresponding target image. Note that for our method,
“more/less X” (where X is an attribute) means that the target image is more/less X than the
reference image which is shown.
Figures 1 and 2 show results for human-generated relative attribute and binary feedback, re-
spectively, when both methods are used to target the same “mental image” of a shoe shown in the
top left bubble. The top right grid of 20 images are the reference images displayed to the user, and
those outlined and annotated with constraints are the ones chosen by the user to give feedback.
The bottom row of images in either figure shows the top-ranked images after integrating the user’s
feedback into the scoring function, revealing the two methods’ respective performance. We see that
while both methods retrieve high-heeled shoes, only our method retrieves images that are as “open”
s the target image. This is because using the proposed approach, the user was able to comment
explicitly on the desired openness property."
066d71fcd997033dce4ca58df924397dfe0b5fd1,Iranian Face Database and Evaluation with a New Detection Algorithm,"(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:4)(cid:6)(cid:7)(cid:3)(cid:8)(cid:9)(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9)
(cid:3)(cid:4)(cid:14)(cid:6)(cid:15)(cid:16)(cid:3)(cid:17)(cid:18)(cid:3)(cid:11)(cid:5)(cid:19)(cid:4) (cid:20)(cid:5)(cid:11)(cid:21)(cid:6)(cid:3)(cid:6)(cid:22)(cid:9)(cid:20)(cid:6)(cid:10)(cid:9)(cid:11)(cid:9)(cid:8)(cid:11)(cid:5)(cid:19)(cid:4)(cid:6)(cid:23)(cid:17)(cid:24)(cid:19)(cid:2)(cid:5)(cid:11)(cid:21)(cid:25)
(cid:26)(cid:11)(cid:5)(cid:8)(cid:17)(cid:6)(cid:27)(cid:1)(cid:9)(cid:22)(cid:8)(cid:18)(cid:1)(cid:28)(cid:12)(cid:6)(cid:29)(cid:4)(cid:20)(cid:11)(cid:6)(cid:24)(cid:30)(cid:1)(cid:15)(cid:25)(cid:1)(cid:31)(cid:8)(cid:20)(cid:8) (cid:14)(cid:1)!(cid:8) (cid:8)(cid:6)(cid:4)(cid:1)""(cid:16)(cid:8)(cid:16)(cid:20)(cid:14)(cid:1)(cid:3)(cid:15)(cid:8)(cid:22)(cid:4)(cid:12)(cid:1)(cid:23)(cid:5)(cid:29)(cid:18)(cid:14)(cid:1)(cid:31)(cid:8)(cid:20)(cid:8) (cid:14)(cid:1)(cid:26)!(cid:9)(cid:13)(cid:14)(cid:1)#(cid:17)(cid:8)(cid:6)(cid:5)$(cid:1)(cid:17)(cid:4)(cid:5)%(cid:8)(cid:10)(cid:8)(cid:11)(cid:6)(cid:8)(cid:12)&(cid:30)(cid:8)(cid:16)(cid:15)(cid:15)(cid:21)(cid:27)(cid:15)(cid:17)
(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1)(cid:9)(cid:10)(cid:10)(cid:8)(cid:11)(cid:6)(cid:8)(cid:12)(cid:1)(cid:13)(cid:6)(cid:7)(cid:14) (cid:3)(cid:15)(cid:16)(cid:8)(cid:17)(cid:17)(cid:8)(cid:18)(cid:1)(cid:3)(cid:8)(cid:16)(cid:18)(cid:6)(cid:1)(cid:19)(cid:4)(cid:16)(cid:11)(cid:16)(cid:6)(cid:10)(cid:6)(cid:14)(cid:1)(cid:19)(cid:20)(cid:21)(cid:1)(cid:9)(cid:22)(cid:8)(cid:17)(cid:1)(cid:23)(cid:8)(cid:11)(cid:24)(cid:8)(cid:12)(cid:25)(cid:8)(cid:20)(cid:18)
(cid:23)(cid:12)(cid:13)(cid:11)(cid:2)(cid:3)(cid:8)(cid:11)$(cid:1)’(cid:16)(cid:6)(cid:11) ((cid:8)((cid:4)(cid:20)(cid:1)(cid:6)(cid:12)(cid:24)(cid:20)(cid:15)(cid:18))(cid:27)(cid:4)(cid:11)(cid:1)(cid:8)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:15)(cid:25)(cid:1)(cid:15)(cid:29)(cid:4)(cid:20)(cid:1)*(cid:14)+,,(cid:1)(cid:27)(cid:15)(cid:5)(cid:15)(cid:20)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1).(cid:4)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:4)(cid:18)(cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)+(cid:2)+(cid:1)(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:16))(cid:17)(cid:8)(cid:12)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:11) (cid:6)(cid:12)(cid:1)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:10)(cid:4)(cid:24).(cid:4)(cid:4)(cid:12)(cid:1)/
(cid:8)(cid:12)(cid:18) 01(cid:21)(cid:1)2(cid:4)(cid:1)(cid:12)(cid:8)(cid:17)(cid:4)(cid:18)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)4(cid:26)3(cid:19)(cid:23)5(cid:21)(cid:1)’(cid:15)(cid:1)(cid:4)(cid:29)(cid:8)(cid:5))(cid:8)(cid:24)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:4)6((cid:4)(cid:20)(cid:6)(cid:17)(cid:4)(cid:12)(cid:24)(cid:8)(cid:5)(cid:1)(cid:20)(cid:4)(cid:11))(cid:5)(cid:24)(cid:1)(cid:15)(cid:25)(cid:1)(cid:8)(cid:1)(cid:12)(cid:4).(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)
(cid:25)(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1)(cid:18)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:8)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:1)(cid:6)(cid:11)(cid:1)(cid:20)(cid:4)((cid:15)(cid:20)(cid:24)(cid:4)(cid:18)(cid:21)
(cid:26)(cid:9)(cid:27) (cid:28)(cid:19)(cid:2)(cid:14)(cid:13)$(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:26)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:14)(cid:1)3(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)3(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1)(cid:19)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:9)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:11)(cid:14)(cid:1)(cid:9)-(cid:4)(cid:1)7(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:21)
(cid:29) (cid:1)(cid:4)(cid:11)(cid:2)(cid:19)(cid:14)(cid:18)(cid:8)(cid:11)(cid:5)(cid:19)(cid:4)
8)(cid:17)(cid:8)(cid:12)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:6)(cid:11)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:17)(cid:15)(cid:11)(cid:24)(cid:1) (cid:27)(cid:15)(cid:17)(cid:17)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) )(cid:11)(cid:4)(cid:25))(cid:5)(cid:1) (cid:7)(cid:4)(cid:30)(cid:1) (cid:24)(cid:15)(cid:1) (cid:8)(cid:1)
((cid:4)(cid:20)(cid:11)(cid:15)(cid:12)9(cid:11)(cid:1) (cid:6)(cid:18)(cid:4)(cid:12)(cid:24)(cid:6)(cid:24)(cid:30)(cid:21)(cid:1) (cid:9)(cid:11)(cid:1) (cid:16))(cid:17)(cid:8)(cid:12)(cid:11)(cid:14)(cid:1) .(cid:4)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:8)(cid:10)(cid:5)(cid:4)(cid:1) (cid:24)(cid:15)(cid:1) (cid:27)(cid:8)(cid:24)(cid:4)-(cid:15)(cid:20)(cid:6)(cid:22)(cid:4)(cid:1) (cid:8)(cid:1)
((cid:4)(cid:20)(cid:11)(cid:15)(cid:12):(cid:11)(cid:1)(cid:8)-(cid:4)(cid:1)-(cid:20)(cid:15))((cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)(cid:8)(cid:1)((cid:4)(cid:20)(cid:11)(cid:15)(cid:12):(cid:11)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:8)(cid:20)(cid:4)(cid:1)(cid:15)(cid:25)(cid:24)(cid:4)(cid:12)(cid:1)
(cid:8)(cid:10)(cid:5)(cid:4)(cid:1)(cid:24)(cid:15)(cid:1)(cid:10)(cid:4)(cid:1);)(cid:6)(cid:24)(cid:4)(cid:1)((cid:20)(cid:4)(cid:27)(cid:6)(cid:11)(cid:4)(cid:1)(cid:6)(cid:12)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:4)(cid:11)(cid:24)(cid:6)(cid:17)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)<(cid:2)=(cid:21)(cid:1)(cid:26)(cid:12)(cid:1)(cid:20)(cid:4)(cid:27)(cid:4)(cid:12)(cid:24)(cid:1)(cid:30)(cid:4)(cid:8)(cid:20)(cid:11)(cid:14)(cid:1)
(cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:20)(cid:4)(cid:5)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1) .(cid:15)(cid:20)(cid:7)(cid:11)(cid:1) (cid:16)(cid:8)(cid:29)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:4)(cid:6)(cid:29)(cid:4)(cid:18)(cid:1) (cid:11))(cid:10)(cid:11)(cid:24)(cid:8)(cid:12)(cid:24)(cid:6)(cid:8)(cid:5)(cid:1)
(cid:8)(cid:24)(cid:24)(cid:4)(cid:12)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:25)(cid:20)(cid:15)(cid:17)(cid:1) (cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1) (cid:6)(cid:12)(cid:1) (cid:10)(cid:6)(cid:15)(cid:17)(cid:4)(cid:24)(cid:20)(cid:6)(cid:27)(cid:11)(cid:14)(cid:1) ((cid:8)(cid:24)(cid:24)(cid:4)(cid:20)(cid:12)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1)
(cid:8)(cid:12)(cid:18)(cid:1) (cid:27)(cid:15)(cid:17)()(cid:24)(cid:4)(cid:20) (cid:29)(cid:6)(cid:11)(cid:6)(cid:15)(cid:12)(cid:1) (cid:27)(cid:15)(cid:17)(cid:17))(cid:12)(cid:6)(cid:24)(cid:6)(cid:4)(cid:11)(cid:1) </(cid:14)(cid:1) *(cid:14)(cid:1) > (cid:8)(cid:12)(cid:18) 1=(cid:21)(cid:1) ’(cid:16)(cid:4)(cid:11)(cid:4)(cid:1)
(cid:27)(cid:15)(cid:17)(cid:17)(cid:15)(cid:12)(cid:1)(cid:6)(cid:12)(cid:24)(cid:4)(cid:20)(cid:4)(cid:11)(cid:24)(cid:11)(cid:1)(cid:8)(cid:17)(cid:15)(cid:12)-(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1)(cid:17)(cid:15)(cid:24)(cid:6)(cid:29)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1))(cid:11)(cid:1)(cid:24)(cid:15)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:1)(cid:8)(cid:1)
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) (cid:15)(cid:25)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) (cid:25)(cid:20)(cid:15)(cid:17)(cid:1) ((cid:4)(cid:15)((cid:5)(cid:4)(cid:1) (cid:6)(cid:12)(cid:1) (cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1) (cid:8)-(cid:4)(cid:11)(cid:21) ’(cid:16)(cid:4)(cid:1)
(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:6)(cid:11)(cid:1)(cid:6)(cid:12)(cid:24)(cid:4)(cid:12)(cid:18)(cid:4)(cid:18)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)(cid:18)(cid:6)(cid:11)(cid:24)(cid:20)(cid:6)(cid:10))(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:24)(cid:15)(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:21)
’(cid:16)(cid:4)(cid:20)(cid:4)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:17)(cid:8)(cid:12)(cid:30)(cid:1) ()(cid:10)(cid:5)(cid:6)(cid:27)(cid:8)(cid:5)(cid:5)(cid:30)(cid:1) (cid:8)(cid:29)(cid:8)(cid:6)(cid:5)(cid:8)(cid:10)(cid:5)(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1) (cid:25)(cid:15)(cid:20)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1)"
06560d5721ecc487a4d70905a485e22c9542a522,Deep Facial Attribute Detection in the Wild: From General to Specific,"SUN, YU: DEEP FACIAL ATTRIBUTE DETECTION IN THE WILD
Deep Facial Attribute Detection in the Wild:
From General to Specific
Yuechuan Sun
Jun Yu
Department of Automation
University of Science and Technology
of China
Hefei, China"
06fe63b34fcc8ff68b72b5835c4245d3f9b8a016,Learning semantic representations of objects and their parts,"Mach Learn
DOI 10.1007/s10994-013-5336-9
Learning semantic representations of objects
nd their parts
Grégoire Mesnil · Antoine Bordes · Jason Weston ·
Gal Chechik · Yoshua Bengio
Received: 24 May 2012 / Accepted: 26 February 2013
© The Author(s) 2013"
06aab105d55c88bd2baa058dc51fa54580746424,Image Set-Based Collaborative Representation for Face Recognition,"Image Set based Collaborative Representation for
Face Recognition
Pengfei Zhu, Student Member, IEEE, Wangmeng Zuo, Member, IEEE, Lei Zhang, Member, IEEE, Simon C.K. Shiu,
Member, IEEE, David Zhang, Fellow, IEEE"
06262d14323f9e499b7c6e2a3dec76ad9877ba04,Real-Time Pose Estimation Piggybacked on Object Detection,"Real-Time Pose Estimation Piggybacked on Object Detection
Roman Jur´anek, Adam Herout, Mark´eta Dubsk´a, Pavel Zemˇc´ık
Brno University of Technology
Brno, Czech Republic"
062c41dad67bb68fefd9ff0c5c4d296e796004dc,Temporal Generative Adversarial Nets with Singular Value Clipping,"Temporal Generative Adversarial Nets with Singular Value Clipping
Masaki Saito∗
Eiichi Matsumoto∗
Preferred Networks inc., Japan
{msaito, matsumoto,
Shunta Saito"
0694b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0,Exploiting Local Class Information in Extreme Learning Machine,"Iosifidis, A., Tefas, A., & Pitas, I. (2014). Exploiting Local Class Information
in Extreme Learning Machine. Paper presented at International Joint
Conference on Computational Intelligence (IJCCI), Rome, Italy.
Peer reviewed version
Link to publication record in Explore Bristol Research
PDF-document
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms"
060820f110a72cbf02c14a6d1085bd6e1d994f6a,Fine-grained classification of pedestrians in video: Benchmark and state of the art,"Fine-Grained Classification of Pedestrians in Video: Benchmark and State of the Art
David Hall and Pietro Perona
California Institute of Technology.
The dataset was labelled with bounding boxes, tracks, pose and fine-
grained labels. To achieve this, crowdsourcing, using workers from Ama-
zon’s Mechanical Turk (MTURK) was used. A summary of the dataset’s
statistics can be found in Table 1.
Number of Frames Sent to MTURK
Number of Frames with at least 1 Pedestrian
Number of Bounding Box Labels
Number of Pose Labels
Number of Tracks
8,708
0,994
2,457
7,454
,222
Table 1: Dataset Statistics
A state-of-the-art algorithm for fine-grained classification was tested us-
ing the dataset. The results are reported as a useful performance baseline."
063a3be18cc27ba825bdfb821772f9f59038c207,The development of spontaneous facial responses to others’ emotions in infancy: An EMG study,"This is a repository copy of The development of spontaneous facial responses to others’
emotions in infancy. An EMG study.
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/125231/
Version: Published Version
Article:
Kaiser, Jakob, Crespo-Llado, Maria Magdalena, Turati, Chiara et al. (1 more author)
(2017) The development of spontaneous facial responses to others’ emotions in infancy.
An EMG study. Scientific Reports. ISSN 2045-2322
https://doi.org/10.1038/s41598-017-17556-y
Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
llows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
uthors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/
Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing including the URL of the record and the reason for the withdrawal request.
https://eprints.whiterose.ac.uk/"
06ad99f19cf9cb4a40741a789e4acbf4433c19ae,SenTion: A framework for Sensing Facial Expressions,"SenTion: A framework for Sensing Facial
Expressions
Rahul Islam∗, Karan Ahuja∗, Sandip Karmakar∗, Ferdous Barbhuiya∗ ∗IIIT Guwahati
{rahul.islam, karan.ahuja, sandip,"
6c27eccf8c4b22510395baf9f0d0acc3ee547862,Using CMU PIE Human Face Database to a Convolutional Neural Network - Neocognitron,"Using CMU PIE Human Face Database to a
Convolutional Neural Network - Neocognitron
José Hiroki Saito1, Tiago Vieira de Carvalho1, Marcelo Hirakuri1, André Saunite1,
Alessandro Noriaki Ide2 and Sandra Abib1
- Federal University of São Carlos - Computer Science Department - GAPIS
Rodovia Washington Luis, Km 235, São Carlos – SP - Brazil
- University of Genoa - Department of Informatics, Systems and Telematics - Neurolab
Via Opera Pia, 13 – I-16145 – Genoa - Italy"
6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365,Privacy-Preserving Deep Inference for Rich User Data on The Cloud,"Privacy-Preserving Deep Inference for Rich User
Data on The Cloud
Seyed Ali Osia ♯, Ali Shahin Shamsabadi ♯, Ali Taheri ♯, Kleomenis Katevas ⋆,
Hamid R. Rabiee ♯, Nicholas D. Lane †, Hamed Haddadi ⋆
♯ Sharif University of Technology
⋆ Queen Mary University of London
Nokia Bell Labs & University of Oxford"
6c304f3b9c3a711a0cca5c62ce221fb098dccff0,Attentive Semantic Video Generation Using Captions,"Attentive Semantic Video Generation using Captions
Tanya Marwah∗
IIT Hyderabad
Gaurav Mittal∗
Vineeth N. Balasubramanian
IIT Hyderabad"
6cb7648465ba7757ecc9c222ac1ab6402933d983,Visual Forecasting by Imitating Dynamics in Natural Sequences,"Visual Forecasting by Imitating Dynamics in Natural Sequences
Kuo-Hao Zeng†‡ William B. Shen† De-An Huang† Min Sun‡ Juan Carlos Niebles†
{khzeng, bshen88, dahuang,
Stanford University ‡National Tsing Hua University"
6c2b392b32b2fd0fe364b20c496fcf869eac0a98,Fully automatic face recognition framework based on local and global features,"DOI 10.1007/s00138-012-0423-7
ORIGINAL PAPER
Fully automatic face recognition framework based
on local and global features
Cong Geng · Xudong Jiang
Received: 30 May 2011 / Revised: 21 February 2012 / Accepted: 29 February 2012 / Published online: 22 March 2012
© Springer-Verlag 2012"
6cddc7e24c0581c50adef92d01bb3c73d8b80b41,Face Verification Using the LARK Representation,"Face Verification Using the LARK
Representation
Hae Jong Seo, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE,"
6cfc337069868568148f65732c52cbcef963f79d,Audio-Visual Speaker Localization via Weighted Clustering Israel -,"Audio-Visual Speaker Localization via Weighted
Clustering
Israel-Dejene Gebru, Xavier Alameda-Pineda, Radu Horaud, Florence Forbes
To cite this version:
Israel-Dejene Gebru, Xavier Alameda-Pineda, Radu Horaud, Florence Forbes. Audio-Visual Speaker
Localization via Weighted Clustering. IEEE Workshop on Machine Learning for Signal Processing,
Sep 2014, Reims, France. pp.1-6, 2014, <10.1109/MLSP.2014.6958874>. <hal-01053732>
HAL Id: hal-01053732
https://hal.archives-ouvertes.fr/hal-01053732
Submitted on 11 Aug 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
6cd96f2b63c6b6f33f15c0ea366e6003f512a951,A New Approach in Solving Illumination and Facial Expression Problems for Face Recognition,"A New Approach in Solving Illumination and Facial Expression Problems
for Face Recognition
Yee Wan Wong, Kah Phooi Seng, Li-Minn Ang
The University of Nottingham Malaysia Campus
Tel : 03-89248358, Fax : 03-89248017
E-mail :
Jalan Broga
3500 Semenyih, Selangor"
6c8c7065d1041146a3604cbe15c6207f486021ba,Attention Modeling for Face Recognition via Deep Learning,"Attention Modeling for Face Recognition via Deep Learning
Sheng-hua Zhong
Department of Computing, Hung Hom, Kowloon
Hong Kong, 999077 CHINA
Yan Liu
Department of Computing, Hung Hom, Kowloon
Hong Kong, 99907 CHINA
Yao Zhang
Department of Computing, Hung Hom, Kowloon
Hong Kong, 99907 CHINA
Fu-lai Chung
Department of Computing, Hung Hom, Kowloon
Hong Kong, 99907 CHINA"
390f3d7cdf1ce127ecca65afa2e24c563e9db93b,Learning Deep Representation for Face Alignment with Auxiliary Attributes,"Learning Deep Representation for Face
Alignment with Auxiliary Attributes
Zhanpeng Zhang, Ping Luo, Chen Change Loy, Member, IEEE and Xiaoou Tang, Fellow, IEEE"
39ed31ced75e6151dde41944a47b4bdf324f922b,Pose-Guided Photorealistic Face Rotation,"Pose-Guided Photorealistic Face Rotation
Yibo Hu1,2, Xiang Wu1, Bing Yu3, Ran He1,2 ∗, Zhenan Sun1,2
CRIPAC & NLPR & CEBSIT, CASIA 2University of Chinese Academy of Sciences
Noah’s Ark Laboratory, Huawei Technologies Co., Ltd.
{yibo.hu, {rhe,"
3918b425bb9259ddff9eca33e5d47bde46bd40aa,Learning Language from Ambiguous Perceptual Context,"Copyright
David Lieh-Chiang Chen"
3998c5aa6be58cce8cb65a64cb168864093a9a3e,Understanding head and hand activities and coordination in naturalistic driving videos,Intelligent Vehicles Symposium 2014
39dc2ce4cce737e78010642048b6ed1b71e8ac2f,Recognition of six basic facial expressions by feature-points tracking using RBF neural network and fuzzy inference system,"Recognition of Six Basic Facial Expressions by Feature-Points Tracking using
RBF Neural Network and Fuzzy Inference System
Hadi Seyedarabi*, Ali Aghagolzadeh **, Sohrab Khanmohammadi **
*Islamic Azad University of AHAR
**Elect. Eng. Faculty, Tabriz University, Tabriz, Iran"
397085122a5cade71ef6c19f657c609f0a4f7473,Using Segmentation to Predict the Absence of Occluded Parts,"GHIASI, FOWLKES: USING SEGMENTATION TO DETECT OCCLUSION
Using Segmentation to Predict the Absence
of Occluded Parts
Golnaz Ghiasi
Charless C. Fowlkes
Dept. of Computer Science
University of California
Irvine, CA"
39c8b34c1b678235b60b648d0b11d241a34c8e32,Learning to Deblur Images with Exemplars,"Learning to Deblur Images with Exemplars
Jinshan Pan∗, Wenqi Ren∗, Zhe Hu∗, and Ming-Hsuan Yang"
3986161c20c08fb4b9b791b57198b012519ea58b,An Efficient Method for Face Recognition based on Fusion of Global and Local Feature Extraction,"International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-4 Issue-4, September 2014
An Efficient Method for Face Recognition based on
Fusion of Global and Local Feature Extraction
E. Gomathi, K. Baskaran"
392c3cabe516c0108b478152902a9eee94f4c81e,Tiny images,"Computer Science and Artificial Intelligence Laboratory
Technical Report
MIT-CSAIL-TR-2007-024
April 23, 2007
Tiny images
Antonio Torralba, Rob Fergus, and William T. Freeman
m a s s a c h u s e t t s   i n s t i t u t e   o f   t e c h n o l o g y,   c a m b r i d g e ,   m a   0 213 9   u s a   —   w w w. c s a i l . m i t . e d u"
3933e323653ff27e68c3458d245b47e3e37f52fd,Evaluation of a 3 D-aided Pose Invariant 2 D Face Recognition System,"Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System
Xiang Xu, Ha A. Le, Pengfei Dou, Yuhang Wu, Ioannis A. Kakadiaris
{xxu18, hale4, pdou, ywu35,
Computational Biomedicine Lab
800 Calhoun Rd. Houston, TX, USA"
3958db5769c927cfc2a9e4d1ee33ecfba86fe054,Describable Visual Attributes for Face Verification and Image Search,"Describable Visual Attributes for
Face Verification and Image Search
Neeraj Kumar, Student Member, IEEE, Alexander C. Berg, Member, IEEE,
Peter N. Belhumeur, and Shree K. Nayar, Member, IEEE"
99ced8f36d66dce20d121f3a29f52d8b27a1da6c,Organizing Multimedia Data in Video Surveillance Systems Based on Face Verification with Convolutional Neural Networks,"Organizing Multimedia Data in Video
Surveillance Systems Based on Face Verification
with Convolutional Neural Networks
Anastasiia D. Sokolova, Angelina S. Kharchevnikova, Andrey V. Savchenko
National Research University Higher School of Economics, Nizhny Novgorod, Russian
Federation"
994f7c469219ccce59c89badf93c0661aae34264,Model Based Face Recognition Across Facial Expressions,"Model Based Face Recognition Across Facial
Expressions
Zahid Riaz, Christoph Mayer, Matthias Wimmer, and Bernd Radig, Senior Member, IEEE
screens,  embedded  into  mobiles  and  installed  into  everyday
living  and  working  environments  they  become  valuable  tools
for human system interaction. A particular important aspect of
this  interaction  is  detection  and  recognition  of  faces  and
interpretation  of  facial  expressions.  These  capabilities  are
deeply  rooted  in  the  human  visual  system  and  a  crucial
uilding  block  for  social  interaction.  Consequently,  these
apabilities  are  an  important  step  towards  the  acceptance  of
many technical systems.
trees  as  a  classifier
lies  not  only"
9949ac42f39aeb7534b3478a21a31bc37fe2ffe3,Parametric Stereo for Multi-pose Face Recognition and 3D-Face Modeling,"Parametric Stereo for Multi-Pose Face Recognition and
D-Face Modeling
Rik Fransens, Christoph Strecha, Luc Van Gool
PSI ESAT-KUL
Leuven, Belgium"
9958942a0b7832e0774708a832d8b7d1a5d287ae,The Sparse Matrix Transform for Covariance Estimation and Analysis of High Dimensional Signals,"The Sparse Matrix Transform for Covariance
Estimation and Analysis of High Dimensional
Signals
Guangzhi Cao*, Member, IEEE, Leonardo R. Bachega, and Charles A. Bouman, Fellow, IEEE"
99726ad232cef837f37914b63de70d8c5101f4e2,Facial Expression Recognition Using PCA & Distance Classifier,"International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014                                                                                                      570
ISSN 2229-5518
Facial Expression Recognition Using PCA & Distance Classifier
AlpeshKumar Dauda*
Dept. of Electronics & Telecomm. Engg.
Ph.D Scholar,VSSUT
BURLA, ODISHA, INDIA
Nilamani Bhoi
Reader in Dept. of Electronics & Telecomm. Engg.
VEER SURENDRA SAI UNIVERSITY OF
TECHNOLOGY
BURLA, ODISHA, INDIA"
9993f1a7cfb5b0078f339b9a6bfa341da76a3168,"A Simple, Fast and Highly-Accurate Algorithm to Recover 3D Shape from 2D Landmarks on a Single Image","JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
A Simple, Fast and Highly-Accurate Algorithm to
Recover 3D Shape from 2D Landmarks on a Single
Image
Ruiqi Zhao, Yan Wang, Aleix M. Martinez"
992ebd81eb448d1eef846bfc416fc929beb7d28b,Exemplar-Based Face Parsing Supplementary Material,"Exemplar-Based Face Parsing
Supplementary Material
Brandon M. Smith Li Zhang
Jonathan Brandt Zhe Lin Jianchao Yang
University of Wisconsin–Madison
Adobe Research
http://www.cs.wisc.edu/~lizhang/projects/face-parsing/
. Additional Selected Results
Figures 1 and 2 supplement Figure 4 in our paper. In all cases, the input images come from our Helen [1] test set. We note
that our algorithm generally produces accurate results, as shown in Figures 1. However, our algorithm is not perfect and makes
mistakes on especially challenging input images, as shown in Figure 2.
In our view, the mouth is the most challenging region of the face to segment: the shape and appearance of the lips vary
widely from subject to subject, mouths deform significantly, and the overall appearance of the mouth region changes depending
on whether the inside of the mouth is visible or not. Unusual mouth expressions, like those shown in Figure 2, are not repre-
sented well in the exemplar images, which results in poor label transfer from the top exemplars to the test image. Despite these
hallenges, our algorithm generally performs well on the mouth, with large segmentation errors occurring infrequently.
. Comparisons with Liu et al. [2]
The scene parsing approach by Liu et al. [2] shares sevaral similarities with our work. Like our approach, they propose a
nonparametric system that transfers labels from exemplars in a database to annotate a test image. This begs the question, Why
not simply apply the approach from Liu et al. to face images?"
99c20eb5433ed27e70881d026d1dbe378a12b342,Semi-Supervised and Unsupervised Data Extraction Targeting Speakers: From Speaker Roles to Fame?,"ISCA Archive
http://www.isca-speech.org/archive
First Workshop on Speech, Language
nd Audio in Multimedia
Marseille, France
August 22-23, 2013
Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013."
9990e0b05f34b586ffccdc89de2f8b0e5d427067,Auto - Optimized Multimodal Expression Recognition Framework Using 3 D Kinect Data for ASD Therapeutic Aid,"International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013
Auto-Optimized Multimodal Expression Recognition
Framework Using 3D Kinect Data for ASD Therapeutic
Amira E. Youssef, Sherin F. Aly, Ahmed S. Ibrahim, and A. Lynn Abbott
regarding
emotion
recognize"
99d7678039ad96ee29ab520ff114bb8021222a91,Political image analysis with deep neural networks,"Political image analysis with deep neural
networks
L. Jason Anastasopoulos∗
Shiry Ginosar§.
Dhruvil Badani†
Jake Ryland Williams¶
Crystal Lee‡
November 28, 2017"
52012b4ecb78f6b4b9ea496be98bcfe0944353cd,Using Support Vector Machine and Local Binary Pattern for Facial Expression Recognition,"JOURNAL OF COMPUTATION IN BIOSCIENCES AND ENGINEERING
Journal homepage: http://scienceq.org/Journals/JCLS.php
Research Article
Using  Support  Vector  Machine  and  Local  Binary  Pattern  for  Facial  Expression
Recognition
Open Access
Ayeni Olaniyi Abiodun 1, Alese Boniface Kayode1, Dada Olabisi Matemilayo2
1. Department of Computer Science, Federal University Technology Akure, PMB 704, Akure, Nigeria.
. Department of computer science, Kwara state polytechnic Ilorin, Kwara-State, Nigeria.
. *Corresponding author:  Ayeni Olaniyi Abiodun  Mail Id:
Received:    September 22, 2015, Accepted: December 14, 2015, Published: December 14, 2015."
529e2ce6fb362bfce02d6d9a9e5de635bde81191,Normalization of Face Illumination Based on Large-and Small-Scale Features,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
> TIP-05732-2009<
Normalization of Face Illumination Based
on Large- and Small- Scale Features
Xiaohua Xie, Wei-Shi Zheng, Member, IEEE, Jianhuang Lai*, Member, IEEE
Pong C. Yuen, Member, IEEE, Ching Y. Suen, IEEE Fellow"
52887969107956d59e1218abb84a1f834a314578,Travel Recommendation by Mining People Attributes and Travel Group Types From Community-Contributed Photos,"Travel Recommendation by Mining People
Attributes and Travel Group Types From
Community-Contributed Photos
Yan-Ying Chen, An-Jung Cheng, and Winston H. Hsu, Senior Member, IEEE"
52258ec5ec73ce30ca8bc215539c017d279517cf,Recognizing Faces with Expressions: Within-class Space and Between-class Space,"Recognizing Faces with Expressions: Within-class Space and Between-class Space
Department of Computer Science and Engineering, Zhejang University, Hangzhou 310027,P.R.China
Email:
Yu  Bing      Chen  Ping      Jin  Lianfu"
529baf1a79cca813f8c9966ceaa9b3e42748c058,Triangle wise Mapping Technique to Transform one Face Image into Another Face Image,"Triangle Wise Mapping Technique to Transform one Face Image into Another Face Image
{tag}                                                                           {/tag}
International Journal of Computer Applications
© 2014 by IJCA Journal
Volume 87 - Number 6
Year of Publication: 2014
Authors:
Rustam Ali Ahmed
Bhogeswar Borah
10.5120/15209-3714
{bibtex}pxc3893714.bib{/bibtex}"
5239001571bc64de3e61be0be8985860f08d7e7e,Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling,"SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2016
Deep Appearance Models: A Deep Boltzmann
Machine Approach for Face Modeling
Chi Nhan Duong, Student, IEEE, Khoa Luu, Member, IEEE,
Kha Gia Quach, Student, IEEE, Tien D. Bui, Senior Member, IEEE"
55ea0c775b25d9d04b5886e322db852e86a556cd,DOCK: Detecting Objects by transferring Common-sense Knowledge,"DOCK: Detecting Objects
y transferring Common-sense Knowledge
Santosh Divvala2,3[0000−0003−4042−5874], Ali Farhadi2,3[0000−0001−7249−2380], and
Krishna Kumar Singh1,3[0000−0002−8066−6835],
Yong Jae Lee1[0000−0001−9863−1270]
University of California, Davis 2University of Washington 3Allen Institute for AI
https://dock-project.github.io"
554b9478fd285f2317214396e0ccd81309963efd,Spatio-Temporal Action Localization For Human Action Recognition in Large Dataset,"Spatio-Temporal Action Localization For Human Action
Recognition in Large Dataset
Sameh MEGRHI1, Marwa JMAL 2, Azeddine BEGHDADI1 and Wided Mseddi1,2
L2TI, Institut Galil´ee, Universit´e Paris 13, France;
SERCOM, Ecole Polytechnique de Tunisie"
55c68c1237166679d2cb65f266f496d1ecd4bec6,Learning to score the figure skating sports videos,"Learning to Score Figure Skating Sport Videos
Chengming Xu, Yanwei Fu, Zitian Chen,Bing Zhang, Yu-Gang Jiang, Xiangyang Xue"
5502dfe47ac26e60e0fb25fc0f810cae6f5173c0,Affordance Prediction via Learned Object Attributes,"Affordance Prediction via Learned Object Attributes
Tucker Hermans
James M. Rehg
Aaron Bobick"
55a158f4e7c38fe281d06ae45eb456e05516af50,Simile Classifiers for Face Classification,"The 22nd International Conference on Computer Graphics and Vision
GraphiCon’2012"
5550a6df1b118a80c00a2459bae216a7e8e3966c,A perusal on Facial Emotion Recognition System ( FERS ),"ISSN: 0974-2115
www.jchps.com                                                                       Journal of Chemical and Pharmaceutical Sciences
A perusal on Facial Emotion Recognition System (FERS)
School of Information Technology and Engineering, VIT University, Vellore, 632014, India
Krithika L.B
*Corresponding author: E-Mail:"
55079a93b7d1eb789193d7fcdcf614e6829fad0f,Efficient and Robust Inverse Lighting of a Single Face Image Using Compressive Sensing,"Efficient and Robust Inverse Lighting of a Single Face Image using Compressive
Sensing
Miguel Heredia Conde†, Davoud Shahlaei#, Volker Blanz# and Otmar Loffeld†
Center for Sensor Systems† (ZESS) and Institute for Vision and Graphics#, University of Siegen
57076 Siegen, Germany"
551fa37e8d6d03b89d195a5c00c74cc52ff1c67a,GeThR-Net: A Generalized Temporally Hybrid Recurrent Neural Network for Multimodal Information Fusion,"GeThR-Net: A Generalized Temporally Hybrid
Recurrent Neural Network for Multimodal
Information Fusion
Ankit Gandhi1 ∗, Arjun Sharma1 ∗ , Arijit Biswas2, and Om Deshmukh1
Xerox Research Centre India; 2 Amazon Development Center India
(*-equal contribution)"
55c40cbcf49a0225e72d911d762c27bb1c2d14aa,Indian Face Age Database : A Database for Face Recognition with Age Variation,"Indian Face Age Database: A Database for Face Recognition with Age Variation
{tag}                                                                  {/tag}
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 126
Number 5
Year of Publication: 2015
Authors:
Reecha Sharma, M.S. Patterh
10.5120/ijca2015906055
{bibtex}2015906055.bib{/bibtex}"
973e3d9bc0879210c9fad145a902afca07370b86,From Emotion Recognition to Website Customizations,"(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 7, 2016
From Emotion Recognition to Website
Customizations
O.B.  Efremides
School  of  Web  Media
Bahrain  Polytechnic
Isa  Town,  Kingdom  of  Bahrain"
97b8249914e6b4f8757d22da51e8347995a40637,"Large-Scale Vehicle Detection, Indexing, and Search in Urban Surveillance Videos","Large-Scale Vehicle Detection, Indexing,
nd Search in Urban Surveillance Videos
Rogerio Schmidt Feris, Associate Member, IEEE, Behjat Siddiquie, James Petterson,
Yun Zhai, Associate Member, IEEE, Ankur Datta, Lisa M. Brown, Senior Member, IEEE, and
Sharath Pankanti, Fellow, IEEE"
972ef9ddd9059079bdec17abc8b33039ed25c99c,A Novel on understanding How IRIS Recognition works,"International Journal of Innovations in Engineering and Technology (IJIET)
A Novel on understanding How IRIS
Recognition works
Vijay Shinde
Dept. of Comp. Science
M.P.M. College, Bhopal, India
Prof. Prakash Tanwar
Asst. Professor CSE
M.P.M. College, Bhopal, India"
97032b13f1371c8a813802ade7558e816d25c73f,Total Recall Final Report,"Total Recall Final Report
Peter Collingbourne, Nakul Durve, Khilan Gudka, Steve Lovegrove, Jiefei Ma, Sadegh Shahrbaf
Supervisor: Professor Duncan Gillies
January 11, 2006"
97f9c3bdb4668f3e140ded2da33fe704fc81f3ea,An Experimental Comparison of Appearance and Geometric Model Based Recognition,"AnExperimentalComparisonofAppearance
ndGeometricModelBasedRecognition
J.Mundy,A.Liu,N.Pillow,A.Zisserman,S.Abdallah,S.Utcke,
S.NayarandC.Rothwell
GeneralElectricCorporateResearchandDevelopment,Schenectady,NY,USA
RoboticsResearchGroup,UniversityofOxford,Oxford,UK
Dept.ofComputerScience,ColumbiaUniversity,NY,USA
INRIA,SophiaAntipolis,France"
97cf04eaf1fc0ac4de0f5ad4a510d57ce12544f5,"Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge, Deep Architectures, and Beyond","manuscript No.
(will be inserted by the editor)
Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge,
Deep Architectures, and Beyond
Dimitrios Kollias (cid:63) · Panagiotis Tzirakis † · Mihalis A. Nicolaou ∗ · Athanasios
Papaioannou(cid:107) · Guoying Zhao1 · Bj¨orn Schuller2 · Irene Kotsia3 · Stefanos
Zafeiriou4"
97d1d561362a8b6beb0fdbee28f3862fb48f1380,Age Synthesis and Estimation via Faces: A Survey,"Age Synthesis and Estimation via Faces:
A Survey
Yun Fu, Member, IEEE, Guodong Guo, Senior Member, IEEE, and
Thomas S. Huang, Fellow, IEEE"
97865d31b5e771cf4162bc9eae7de6991ceb8bbf,Face and Gender Classification in Crowd Video,"Face and Gender Classification in Crowd Video
Priyanka Verma
IIIT-D-MTech-CS-GEN-13-100
July 16, 2015
Indraprastha Institute of Information Technology
New Delhi
Thesis Advisors
Dr. Richa Singh
Dr. Mayank Vatsa
Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science
(cid:13) Verma, 2015
Keywords : Face Recognition, Gender Classification, Crowd database"
9755554b13103df634f9b1ef50a147dd02eab02f,How Transferable Are CNN-Based Features for Age and Gender Classification?,"How Transferable are CNN-based Features for
Age and Gender Classification?
Gökhan Özbulak1, Yusuf Aytar2 and Hazım Kemal Ekenel1"
63cf5fc2ee05eb9c6613043f585dba48c5561192,Prototype Selection for Classification in Standard and Generalized Dissimilarity Spaces Prototype Selection for Classification in Standard and Generalized Dissimilarity Spaces,"Prototype Selection for
Classification in Standard
nd Generalized
Dissimilarity Spaces"
63c109946ffd401ee1195ed28f2fb87c2159e63d,Robust Facial Feature Localization Using Improved Active Shape Model and Gabor Filter,"MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN
Robust Facial Feature Localization using Improved Active Shape
Model and Gabor Filter
Hui-Yu Huang
Engineering, National Formosa University,
Taiwan
E-mail:"
631483c15641c3652377f66c8380ff684f3e365c,Sync-DRAW: Automatic GIF Generation using Deep Recurrent Attentive Architectures,"Sync-DRAW: Automatic Video Generation using Deep Recurrent
A(cid:130)entive Architectures
Gaurav Mi(cid:138)al∗
Tanya Marwah∗
IIT Hyderabad
Vineeth N Balasubramanian
IIT Hyderabad"
632fa986bed53862d83918c2b71ab953fd70d6cc,What Face and Body Shapes Can Tell About Height,"GÜNEL ET AL.: WHAT FACE AND BODY SHAPES CAN TELL ABOUT HEIGHT
What Face and Body Shapes Can Tell
About Height
Semih Günel
Helge Rhodin
Pascal Fua
CVLab
EPFL,
Lausanne, Switzerland"
63340c00896d76f4b728dbef85674d7ea8d5ab26,Discriminant Subspace Analysis: A Fukunaga-Koontz Approach,"Discriminant Subspace Analysis:
A Fukunaga-Koontz Approach
Sheng Zhang, Member, IEEE, and Terence Sim, Member, IEEE"
634541661d976c4b82d590ef6d1f3457d2857b19,Advanced Techniques for Face Recognition under Challenging Environments,"AAllmmaa  MMaatteerr  SSttuuddiioorruumm  ––  UUnniivveerrssiittàà  ddii  BBoollooggnnaa
in cotutela con Università di Sassari
DOTTORATO DI RICERCA IN
INGEGNERIA ELETTRONICA, INFORMATICA E DELLE
TELECOMUNICAZIONI
Ciclo XXVI
Settore Concorsuale di afferenza: 09/H1
Settore Scientifico disciplinare: ING-INF/05
ADVANCED TECHNIQUES FOR FACE RECOGNITION
UNDER CHALLENGING ENVIRONMENTS
TITOLO TESI
YUNLIAN SUN
Presentata da:
Coordinatore Dottorato
ALESSANDRO VANELLI-CORALLI
Relatore
DAVIDE MALTONI
Relatore
MASSIMO TISTARELLI
Esame finale anno 2014"
6332a99e1680db72ae1145d65fa0cccb37256828,MASTER IN COMPUTER VISION AND ARTIFICIAL INTELLIGENCE REPORT OF THE RESEARCH PROJECT OPTION: COMPUTER VISION Pose and Face Recovery via Spatio-temporal GrabCut Human Segmentation,"MASTER IN COMPUTER VISION AND ARTIFICIAL INTELLIGENCE
REPORT OF THE RESEARCH PROJECT
OPTION: COMPUTER VISION
Pose and Face Recovery via
Spatio-temporal GrabCut Human
Segmentation
Author: Antonio Hernández Vela
Date: 13/07/2010
Advisor: Sergio Escalera Guerrero"
63488398f397b55552f484409b86d812dacde99a,Learning Universal Multi-view Age Estimator by Video Contexts,"Learning Universal Multi-view Age Estimator by Video Contexts
Zheng Song1, Bingbing Ni3, Dong Guo4, Terence Sim2, Shuicheng Yan1
Department of Electrical and Computer Engineering, 2 School of Computing, National University of Singapore;
{zheng.s,
Advanced Digital Sciences Center, Singapore; 4 Facebook"
63c022198cf9f084fe4a94aa6b240687f21d8b41,Consensus Message Passing for Layered Graphical Models,
0f65c91d0ed218eaa7137a0f6ad2f2d731cf8dab,Multi-Directional Multi-Level Dual-Cross Patterns for Robust Face Recognition,"Multi-Directional Multi-Level Dual-Cross
Patterns for Robust Face Recognition
Changxing Ding, Jonghyun Choi, Dacheng Tao, Senior Member, IEEE, and Larry S. Davis, Fellow, IEEE"
0f112e49240f67a2bd5aaf46f74a924129f03912,Age-Invariant Face Recognition,"Age-Invariant Face Recognition
Unsang Park, Member, IEEE,
Yiying Tong, Member, IEEE, and
Anil K. Jain, Fellow, IEEE"
0f4cfcaca8d61b1f895aa8c508d34ad89456948e,Local appearance based face recognition using discrete cosine transform,"LOCAL APPEARANCE BASED FACE RECOGNITION USING
DISCRETE COSINE TRANSFORM  (WedPmPO4)
Author(s) :"
0fdcfb4197136ced766d538b9f505729a15f0daf,Multiple pattern classification by sparse subspace decomposition,"Multiple Pattern Classification by Sparse Subspace Decomposition
Institute of Media and Information Technology, Chiba University
Tomoya Sakai
-33 Yayoi, Inage, Chiba, Japan"
0fad544edfc2cd2a127436a2126bab7ad31ec333,Decorrelating Semantic Visual Attributes by Resisting the Urge to Share,"Decorrelating Semantic Visual Attributes by Resisting the Urge to Share
Dinesh Jayaraman
UT Austin
Fei Sha
Kristen Grauman
UT Austin"
0fd1715da386d454b3d6571cf6d06477479f54fc,A Survey of Autonomous Human Affect Detection Methods for Social Robots Engaged in Natural HRI,"J Intell Robot Syst (2016) 82:101–133
DOI 10.1007/s10846-015-0259-2
A Survey of Autonomous Human Affect Detection Methods
for Social Robots Engaged in Natural HRI
Derek McColl · Alexander Hong ·
Naoaki Hatakeyama · Goldie Nejat ·
Beno Benhabib
Received: 10 December 2014 / Accepted: 11 August 2015 / Published online: 23 August 2015
© Springer Science+Business Media Dordrecht 2015"
0f92e9121e9c0addc35eedbbd25d0a1faf3ab529,MORPH-II: A Proposed Subsetting Scheme,"MORPH-II: A Proposed Subsetting Scheme
Participants: K. Kempfert, J. Fabish, K. Park, and R. Towner
Mentors: Y. Wang, C. Chen, and T. Kling
NSF-REU Site at UNC Wilmington, Summer 2017"
0ff23392e1cb62a600d10bb462d7a1f171f579d0,Toward Sparse Coding on Cosine Distance,"Toward	Sparse	Coding	on	Cosine
Distance
Jonghyun	Choi,	Hyunjong	Cho,	Jungsuk	Kwak#,
Larry	S.	Davis
UMIACS	|	University	of	Maryland,	College	Park
#Stanford	University"
0f395a49ff6cbc7e796656040dbf446a40e300aa,The Change of Expression Configuration Affects Identity-Dependent Expression Aftereffect but Not Identity-Independent Expression Aftereffect,"ORIGINAL RESEARCH
published: 22 December 2015
doi: 10.3389/fpsyg.2015.01937
The Change of Expression
Configuration Affects
Identity-Dependent Expression
Aftereffect but Not
Identity-Independent Expression
Aftereffect
Miao Song 1, 2*, Keizo Shinomori 2, Qian Qian 3, Jun Yin 1 and Weiming Zeng 1
College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University
of Technology, Kochi, Japan, 3 Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science
nd Technology, Kunming, China
The present study examined the influence of expression configuration on cross-identity
expression aftereffect. The expression configuration refers to the spatial arrangement
of facial features in a face for conveying an emotion, e.g., an open-mouth smile vs.
closed-mouth smile. In the first of two experiments, the expression aftereffect is
measured using a cross-identity/cross-expression configuration factorial design. The
facial
identities of test faces were the same or different from the adaptor, while"
0fd1bffb171699a968c700f206665b2f8837d953,Weakly Supervised Object Localization with Multi-Fold Multiple Instance Learning,"Weakly Supervised Object Localization with
Multi-fold Multiple Instance Learning
Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid, Fellow, IEEE"
0a6d344112b5af7d1abbd712f83c0d70105211d0,Constrained Local Neural Fields for Robust Facial Landmark Detection in the Wild,"Constrained Local Neural Fields for robust facial landmark detection in the wild
Tadas Baltruˇsaitis
Peter Robinson
University of Cambridge Computer Laboratory
USC Institute for Creative Technologies
5 JJ Thomson Avenue
Louis-Philippe Morency
2015 Waterfront Drive"
0a3863a0915256082aee613ba6dab6ede962cdcd,Early and Reliable Event Detection Using Proximity Space Representation,"Early and Reliable Event Detection Using Proximity Space Representation
Maxime Sangnier
LTCI, CNRS, T´el´ecom ParisTech, Universit´e Paris-Saclay, 75013, Paris, France
J´erˆome Gauthier
LADIS, CEA, LIST, 91191, Gif-sur-Yvette, France
Alain Rakotomamonjy
Normandie Universit´e, UR, LITIS EA 4108, Avenue de l’universit´e, 76801, Saint-Etienne-du-Rouvray, France"
0a60d9d62620e4f9bb3596ab7bb37afef0a90a4f,Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates,"Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates. GCPR 2016
(cid:13) Copyright by Springer. The final publication will be available at link.springer.com
A. Freytag, E. Rodner, M. Simon, A. Loos, H. K¨uhl and J. Denzler
Chimpanzee Faces in the Wild:
Log-Euclidean CNNs for Predicting Identities
nd Attributes of Primates
Alexander Freytag1,2, Erik Rodner1,2, Marcel Simon1, Alexander Loos3,
Hjalmar S. K¨uhl4,5, and Joachim Denzler1,2,5
Computer Vision Group, Friedrich Schiller University Jena, Germany
Michael Stifel Center Jena, Germany
Fraunhofer Institute for Digital Media Technology, Germany
Max Planck Institute for Evolutionary Anthropology, Germany
5German Centre for Integrative Biodiversity Research (iDiv), Germany"
0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7,Timing is everything : a spatio-temporal approach to the analysis of facial actions,"Imperial College of Science, Technology and Medicine
Department of Computing
Timing is everything
A spatio-temporal approach to the analysis of facial
ctions
Michel Fran¸cois Valstar
Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College, February 2008"
0a87d781fe2ae2e700237ddd00314dbc10b1429c,Multi-scale HOG Prescreening Algorithm for Detection of Buried Explosive Hazards in FL-IR and FL-GPR Data,"Distribution Statement A:  Approved for public release; distribution unlimited.
Multi-scale HOG Prescreening Algorithm for Detection of Buried
Explosive Hazards in FL-IR and FL-GPR Data
*University of Missouri, Electrical and Computer Engineering Department, Columbia, MO
K. Stone*, J. M. Keller*, D. Shaw*"
0af48a45e723f99b712a8ce97d7826002fe4d5a5,Toward Wide-Angle Microvision Sensors,"Toward Wide-Angle Microvision Sensors
Sanjeev J. Koppal, Member, IEEE, Ioannis Gkioulekas, Student Member, IEEE,
Travis Young, Member, IEEE, Hyunsung Park, Student Member, IEEE,
Kenneth B. Crozier, Member, IEEE, Geoffrey L. Barrows, Member, IEEE, and
Todd Zickler, Member, IEEE"
0aa8a0203e5f406feb1815f9b3dd49907f5fd05b,Mixture Subclass Discriminant Analysis,"Mixture subclass discriminant analysis
Nikolaos Gkalelis, Vasileios Mezaris, Ioannis Kompatsiaris"
0a7309147d777c2f20f780a696efe743520aa2db,Stories for Images-in-Sequence by using Visual and Narrative Components,"Stories for Images-in-Sequence by using Visual
nd Narrative Components (cid:63)
Marko Smilevski1,2, Ilija Lalkovski2, and Gjorgji Madjarov1,3
Ss. Cyril and Methodius University, Skopje, Macedonia
Pendulibrium, Skopje, Macedonia
Elevate Global, Skopje, Macedonia"
0a1138276c52c734b67b30de0bf3f76b0351f097,Discriminant Incoherent Component Analysis,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at
http://dx.doi.org/10.1109/TIP.2016.2539502
Discriminant Incoherent Component Analysis
Christos Georgakis, Student Member, IEEE, Yannis Panagakis, Member, IEEE, and Maja Pantic, Fellow, IEEE"
0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a,Neural Networks Regularization Through Representation Learning,"THÈSEPour obtenir le diplôme de doctorat Spécialité Informatique Préparée au sein de « l'INSA Rouen Normandie » Présentée et soutenue parSoufiane BELHARBIThèse dirigée par Sébastien ADAM, laboratoire LITIS Neural Networks Regularization Through Representation LearningThèse soutenue publiquement le 06 Juillet 2018 devant le jury composé deSébastien ADAMProfesseur à l'Université de Rouen NormandieDirecteur de thèseClément CHATELAINMaître de conférence à l'INSA  Rouen NormandieEncadrant de thèseRomain HÉRAULTMaître de conférence à l'INSA  Rouen NormandieEncadrant de thèseElisa FROMONTProfesseur à l'Université de Rennes 1Rapporteur de thèseThierry ARTIÈRESProfesseur à l'École Centrale MarseilleRapporteur de thèseJohn LEEProfesseur à l'Université Catholique de LouvainExaminateur de thèseDavid PICARDMaître de conférences à l'École Nationale Supérieure de l'Électronique et de ses ApplicationsExaminateur de thèseFrédéric JURIEProfesseur à l' Université de Caen NormandieInvité"
0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7,"Multi-task, multi-label and multi-domain learning with residual convolutional networks for emotion recognition","Noname manuscript No.
(will be inserted by the editor)
Multi-task, multi-label and multi-domain learning with
residual convolutional networks for emotion recognition
Gerard Pons · David Masip
Received: date / Accepted: date"
0acf23485ded5cb9cd249d1e4972119239227ddb,Dual coordinate solvers for large-scale structural SVMs,"Dual coordinate solvers for large-scale structural SVMs
Deva Ramanan
UC Irvine
This manuscript describes a method for training linear SVMs (including binary SVMs, SVM regression,
nd structural SVMs) from large, out-of-core training datasets. Current strategies for large-scale learning fall
into one of two camps; batch algorithms which solve the learning problem given a finite datasets, and online
lgorithms which can process out-of-core datasets. The former typically requires datasets small enough to fit
in memory. The latter is often phrased as a stochastic optimization problem [4, 15]; such algorithms enjoy
strong theoretical properties but often require manual tuned annealing schedules, and may converge slowly
for problems with large output spaces (e.g., structural SVMs). We discuss an algorithm for an “intermediate”
regime in which the data is too large to fit in memory, but the active constraints (support vectors) are small
enough to remain in memory.
In this case, one can design rather ef‌f‌icient learning algorithms that are
s stable as batch algorithms, but capable of processing out-of-core datasets. We have developed such a
MATLAB-based solver and used it to train a series of recognition systems [19, 7, 21, 12] for articulated pose
estimation, facial analysis, 3D object recognition, and action classification, all with publicly-available code.
This writeup describes the solver in detail.
Approach: Our approach is closely based on data-subsampling algorithms for collecting hard exam-
ples [9, 10, 6], combined with the dual coordinate quadratic programming (QP) solver described in liblinear
[8]. The latter appears to be current fastest method for learning linear SVMs. We make two extensions (1)"
6412d8bbcc01f595a2982d6141e4b93e7e982d0f,"Deep Convolutional Neural Network Using Triplets of Faces, Deep Ensemble, and Score-Level Fusion for Face Recognition","Deep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, and
Score-level Fusion for Face Recognition
Bong-Nam Kang, Student Member, IEEE1, Yonghyun Kim, Student Member, IEEE2, and
Daijin Kim, Member, IEEE2
Department of Creative IT Engineering, POSTECH, Korea
Department of Computer Science and Engineering, POSTECH, Korea
{bnkang, gkyh0805,"
641f0989b87bf7db67a64900dcc9568767b7b50f,Reconstructing faces from their signatures using RBF regression,"Reconstructing Faces from their Signatures using RBF
Regression
Alexis Mignon, Fr´ed´eric Jurie
To cite this version:
Alexis Mignon, Fr´ed´eric Jurie. Reconstructing Faces from their Signatures using RBF Regres-
sion. British Machine Vision Conference 2013, Sep 2013, Bristol, United Kingdom. pp.103.1–
03.12, 2013, <10.5244/C.27.103>. <hal-00943426>
HAL Id: hal-00943426
https://hal.archives-ouvertes.fr/hal-00943426
Submitted on 13 Feb 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
64153df77fe137b7c6f820a58f0bdb4b3b1a879b,Shape Invariant Recognition of Segmented Human Faces using Eigenfaces,"Shape Invariant Recognition of Segmented Human
Faces using Eigenfaces
Zahid Riaz, Michael Beetz, Bernd Radig
Department of Informatics
Technical University of Munich, Germany"
649eb674fc963ce25e4e8ce53ac7ee20500fb0e3,Toward correlating and solving abstract tasks using convolutional neural networks,
645de797f936cb19c1b8dba3b862543645510544,Deep Temporal Linear Encoding Networks,"Deep Temporal Linear Encoding Networks
Ali Diba1,(cid:63), Vivek Sharma1,(cid:63), and Luc Van Gool1,2
ESAT-PSI, KU Leuven, 2CVL, ETH Z¨urich"
90d735cffd84e8f2ae4d0c9493590f3a7d99daf1,Recognition of Faces using Efficient Multiscale Local Binary Pattern and Kernel Discriminant Analysis in Varying Environment,"Original Research Paper
American Journal of Engineering and Applied Sciences
Recognition of Faces using Efficient Multiscale Local Binary
Pattern and Kernel Discriminant Analysis in Varying
Environment
Sujata G. Bhele and
V.H. Mankar
Department of Electronics Engg, Priyadarshini College of Engg, Nagpur, India
Department of Electronics Engg, Government Polytechnic, Nagpur, India
Article history
Received: 20-06-2017
Revised: 18-07-2017
Accepted: 21-08-2017
Corresponding Author:
Sujata G. Bhele
Department of Electronics
Engg, Priyadarshini College of
Engg, Nagpur, India
Email:"
90fb58eeb32f15f795030c112f5a9b1655ba3624,Face and Iris Recognition in a Video Sequence Using Dbpnn and Adaptive Hamming Distance,"INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS
www.ijrcar.com
Vol.4 Issue 6, Pg.: 12-27
June 2016
INTERNATIONAL JOURNAL OF
RESEARCH IN COMPUTER
APPLICATIONS AND ROBOTICS
ISSN 2320-7345
FACE AND IRIS RECOGNITION IN A
VIDEO SEQUENCE USING DBPNN AND
ADAPTIVE HAMMING DISTANCE
S. Revathy, 2Mr. L. Ramasethu
PG Scholar, Hindusthan College of Engineering and Technology, Coimbatore, India.
Assistant Professor, Hindusthan College of Engineering and Technology, Coimbatore, India.
Email id:"
902114feaf33deac209225c210bbdecbd9ef33b1,Side-Information based Linear Discriminant Analysis for Face Recognition,"KAN et al.: SIDE-INFORMATION BASED LDA FOR FACE RECOGNITION
Side-Information based Linear
Discriminant Analysis for Face
Recognition
Meina Kan1,2,3
Shiguang Shan1,2
Dong Xu3
Xilin Chen1,2
Digital Media Research Center,
Institute of Computing
Technology, CAS, Beijing, China
Key Laboratory of Intelligent
Information Processing, Chinese
Academy of Sciences, Beijing,
China
School of Computer Engineering,
Nanyang Technological
University, Singapore"
90cb074a19c5e7d92a1c0d328a1ade1295f4f311,Fully Automatic Upper Facial Action Recognition,"MIT. Media Laboratory Affective Computing Technical Report #571
Appears in IEEE International Workshop on Analysis and Modeling of Faces and Gestures , Oct 2003
Fully Automatic Upper Facial Action Recognition
Ashish Kapoor Yuan Qi Rosalind W. Picard
MIT Media Laboratory
Cambridge, MA 02139"
907475a4febf3f1d4089a3e775ea018fbec895fe,Statistical modeling for facial expression analysis and synthesis,"STATISTICAL MODELING FOR FACIAL EXPRESSION ANALYSIS AND SYNTHESIS
Bouchra Abboud, Franck Davoine, Mˆo Dang
Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne.
BP 20529, 60205 COMPIEGNE Cedex, FRANCE.
E-mail:"
9028fbbd1727215010a5e09bc5758492211dec19,Solving the Uncalibrated Photometric Stereo Problem Using Total Variation,"Solving the Uncalibrated Photometric Stereo
Problem using Total Variation
Yvain Qu´eau1, Fran¸cois Lauze2, and Jean-Denis Durou1
IRIT, UMR CNRS 5505, Toulouse, France
Dept. of Computer Science, Univ. of Copenhagen, Denmark"
bff77a3b80f40cefe79550bf9e220fb82a74c084,Facial Expression Recognition Based on Local Binary Patterns and Local Fisher Discriminant Analysis,"Facial Expression Recognition Based on Local Binary Patterns and
Local Fisher Discriminant Analysis
SHIQING ZHANG 1, XIAOMING ZHAO 2, BICHENG LEI 1
School of Physics and Electronic Engineering
Taizhou University
Taizhou 318000
CHINA
2Department of Computer Science
Taizhou University
Taizhou 318000
CHINA"
bf1e0279a13903e1d43f8562aaf41444afca4fdc,Different Viewpoints of Recognizing Fleeting Facial Expressions with DWT,"International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056
Volume: 04 Issue: 10 | Oct -2017                     www.irjet.net                                                                 p-ISSN: 2395-0072
Different Viewpoints of Recognizing Fleeting Facial Expressions with
VAIBHAV SHUBHAM1, MR. SANJEEV SHRIVASTAVA2, DR. MOHIT GANGWAR3
information
to  get  desired
information
Introduction
---------------------------------------------------------------------***---------------------------------------------------------------------"
bf4825474673246ae855979034c8ffdb12c80a98,"UNIVERSITY OF CALIFORNIA RIVERSIDE Active Learning in Multi-Camera Networks, With Applications in Person Re-Identification A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering","UNIVERSITY OF CALIFORNIA
RIVERSIDE
Active Learning in Multi-Camera Networks, With Applications in Person
Re-Identification
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Electrical Engineering
Abir Das
December 2015
Dissertation Committee:
Professor Amit K. Roy-Chowdhury, Chairperson
Professor Anastasios Mourikis
Professor Walid Najjar"
bf5940d57f97ed20c50278a81e901ae4656f0f2c,Query-Free Clothing Retrieval via Implicit Relevance Feedback,"Query-free Clothing Retrieval via Implicit
Relevance Feedback
Zhuoxiang Chen, Zhe Xu, Ya Zhang, Member, IEEE, and Xiao Gu"
bfb98423941e51e3cd067cb085ebfa3087f3bfbe,Sparseness helps: Sparsity Augmented Collaborative Representation for Classification,"Sparseness helps: Sparsity Augmented
Collaborative Representation for Classification
Naveed Akhtar, Faisal Shafait, and Ajmal Mian"
d3b73e06d19da6b457924269bb208878160059da,Implementation of an Automated Smart Home Control for Detecting Human Emotions via Facial Detection,"Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015
1-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my )
Paper No.
IMPLEMENTATION OF AN AUTOMATED SMART HOME
CONTROL FOR DETECTING HUMAN EMOTIONS VIA FACIAL
DETECTION
Lim Teck Boon1, Mohd Heikal Husin2, Zarul Fitri Zaaba3 and Mohd Azam
Osman4
Universiti Sains Malaysia, Malaysia,
Universiti Sains Malaysia, Malaysia,
Universiti Sains Malaysia, Malaysia,
Universiti Sains Malaysia, Malaysia,"
d3d71a110f26872c69cf25df70043f7615edcf92,Learning Compact Feature Descriptor and Adaptive Matching Framework for Face Recognition,"Learning Compact Feature Descriptor and Adaptive
Matching Framework for Face Recognition
Zhifeng Li, Senior Member, IEEE, Dihong Gong, Xuelong Li, Fellow, IEEE, and Dacheng Tao, Fellow, IEEE
improvements"
d3b18ba0d9b247bfa2fb95543d172ef888dfff95,Learning and Using the Arrow of Time,"Learning and Using the Arrow of Time
Donglai Wei1, Joseph Lim2, Andrew Zisserman3 and William T. Freeman4,5
Harvard University 2University of Southern California
University of Oxford 4Massachusetts Institute of Technology 5Google Research
Figure 1: Seeing these ordered frames from videos, can you tell whether each video is playing forward or backward? (answer
elow1). Depending on the video, solving the task may require (a) low-level understanding (e.g. physics), (b) high-level
reasoning (e.g. semantics), or (c) familiarity with very subtle effects or with (d) camera conventions. In this work, we learn
nd exploit several types of knowledge to predict the arrow of time automatically with neural network models trained on
large-scale video datasets."
d309e414f0d6e56e7ba45736d28ee58ae2bad478,Efficient Two-Stream Motion and Appearance 3 D CNNs for Video Classification,"Efficient Two-Stream Motion and Appearance 3D CNNs for
Video Classification
Ali Diba
ESAT-KU Leuven
Ali Pazandeh
Sharif UTech
Luc Van Gool
ESAT-KU Leuven, ETH Zurich"
d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9,STAIR Actions: A Video Dataset of Everyday Home Actions,
d3c004125c71942846a9b32ae565c5216c068d1e,Recognizing Age-Separated Face Images: Humans and Machines,"RESEARCH ARTICLE
Recognizing Age-Separated Face Images:
Humans and Machines
Daksha Yadav1, Richa Singh2, Mayank Vatsa2*, Afzel Noore1
. West Virginia University, Morgantown, West Virginia, United States of America, 2. IIIT Delhi, New Delhi,
Delhi, India"
d350a9390f0818703f886138da27bf8967fe8f51,Lighting design for portraits with a virtual light stage,"LIGHTING DESIGN FOR PORTRAITS WITH A VIRTUAL LIGHT STAGE
Davoud Shahlaei, Marcel Piotraschke, Volker Blanz
Institute for Vision and Graphics, University of Siegen, Germany"
d33fcdaf2c0bd0100ec94b2c437dccdacec66476,Neurons With Paraboloid Decision Boundaries for Improved Neural Network Classification Performance.,"Neurons with Paraboloid Decision Boundaries for
Improved Neural Network Classification
Performance
Nikolaos Tsapanos, Anastasios Tefas, Member, IEEE, Nikolaos Nikolaidis, Member, IEEE, and
Ioannis Pitas, Fellow, IEEE"
d46b790d22cb59df87f9486da28386b0f99339d3,Learning Face Deblurring Fast and Wide,"Learning Face Deblurring Fast and Wide
Meiguang Jin
University of Bern
Switzerland
Michael Hirsch†
Amazon Research
Germany
Paolo Favaro
University of Bern
Switzerland"
d41c11ebcb06c82b7055e2964914b9af417abfb2,CDI-Type I: Unsupervised and Weakly-Supervised Discovery of Facial Events,"CDI-Type I: Unsupervised and Weakly-Supervised
Introduction
Discovery of Facial Events
The face is one of the most powerful channels of nonverbal communication. Facial expression has been a
focus of emotion research for over a hundred years [12]. It is central to several leading theories of emotion
[18, 31, 54] and has been the focus of at times heated debate about issues in emotion science [19, 24, 50].
Facial expression figures prominently in research on almost every aspect of emotion, including psychophys-
iology [40], neural correlates [20], development [11], perception [4], addiction [26], social processes [30],
depression [49] and other emotion disorders [55], to name a few. In general, facial expression provides cues
bout emotional response, regulates interpersonal behavior, and communicates aspects of psychopathology.
Because of its importance to behavioral science and the emerging fields of computational behavior
science, perceptual computing, and human-robot interaction, significant efforts have been applied toward
developing algorithms that automatically detect facial expression. With few exceptions, previous work on
facial expression relies on supervised approaches to learning (i.e. event categories are defined in advance
in labeled training data). While supervised learning has important advantages, two critical limitations may
e noted. One, because labeling facial expression is highly labor intensive, progress in automated facial
expression recognition and analysis is slowed. For the most detailed and comprehensive labeling or coding
systems, such as Facial Action Coding System (FACS), three to four months is typically required to train
coder (’coding’ refers to the labeling of video using behavioral descriptors). Once trained, each minute
of video may require 1 hour or more to code [9]. No wonder relatively few databases are yet available,"
d444368421f456baf8c3cb089244e017f8d32c41,CNN for IMU assisted odometry estimation using velodyne LiDAR,"CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR
Martin Velas, Michal Spanel, Michal Hradis, and Adam Herout"
d4885ca24189b4414031ca048a8b7eb2c9ac646c,"Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN","Ef‌f‌icient Facial Representations for Age, Gender
nd Identity Recognition in Organizing Photo
Albums using Multi-output CNN
Andrey V. Savchenko
Samsung-PDMI Joint AI Center, St. Petersburg Department of Steklov Institute of
Mathematics
National Research University Higher School of Economics
Nizhny Novgorod, Russia"
d4001826cc6171c821281e2771af3a36dd01ffc0,Modélisation de contextes pour l'annotation sémantique de vidéos. (Context based modeling for video semantic annotation),"Modélisation de contextes pour l’annotation sémantique
de vidéos
Nicolas Ballas
To cite this version:
Nicolas Ballas. Modélisation de contextes pour l’annotation sémantique de vidéos. Autre [cs.OH].
Ecole Nationale Supérieure des Mines de Paris, 2013. Français. <NNT : 2013ENMP0051>. <pastel-
00958135>
HAL Id: pastel-00958135
https://pastel.archives-ouvertes.fr/pastel-00958135
Submitted on 11 Mar 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
d458c49a5e34263c95b3393386b5d76ba770e497,A Comparative Analysis of Gender Classification Techniques,"Middle-East Journal of Scientific Research 20 (1): 01-13, 2014
ISSN 1990-9233
© IDOSI Publications, 2014
DOI: 10.5829/idosi.mejsr.2014.20.01.11434
A Comparative Analysis of Gender Classification Techniques
Sajid Ali Khan, Maqsood Ahmad, Muhammad Nazir and Naveed Riaz
Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan"
d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4e,A Lightened CNN for Deep Face Representation,"A Lightened CNN for Deep Face Representation
Xiang Wu
School of Computer and Communication Engineering
University of Science and Technology Beijing, Beijing, China
Ran He, Zhenan Sun
National Laboratory of Pattern Recognition
Institute of Automation Chinese Academy of Sciences, Beijing, China
{rhe,"
d4b88be6ce77164f5eea1ed2b16b985c0670463a,A Survey of Different 3D Face Reconstruction Methods,"TECHNICAL REPORT JAN.15.2016
A Survey of Different 3D Face Reconstruction
Methods
Amin Jourabloo
Department of Computer Science and Engineering"
d44ca9e7690b88e813021e67b855d871cdb5022f,"Selecting, Optimizing and Fusing 'Salient' Gabor Features for Facial Expression Recognition","QUT Digital Repository:
http://eprints.qut.edu.au/
Zhang, Ligang and Tjondronegoro, Dian W. (2009) Selecting, optimizing and
fusing ‘salient’ Gabor features for facial expression recognition. In: Neural
Information Processing (Lecture Notes in Computer Science), 1-5 December
009, Hotel Windsor Suites Bangkok, Bangkok.
©  Copyright 2009 Springer-Verlag GmbH Berlin Heidelberg"
bafb8812817db7445fe0e1362410a372578ec1fc,Image-Quality-Based Adaptive Face Recognition,"Image-Quality-Based Adaptive Face Recognition
Harin Sellahewa and Sabah A. Jassim"
ba99c37a9220e08e1186f21cab11956d3f4fccc2,A Fast Factorization-Based Approach to Robust PCA,"A Fast Factorization-based Approach to Robust PCA
Department of Computer Science, Southern Illinois University,Carbondale, IL 62901 USA
Chong Peng, Zhao Kang, and Qiang Cheng
Email:"
ba816806adad2030e1939450226c8647105e101c,MindLAB at the THUMOS Challenge,"MindLAB at the THUMOS Challenge
Fabi´an P´aez
Jorge A. Vanegas
Fabio A. Gonz´alez
MindLAB Research Group
MindLAB Research Group
MindLAB Research Group
Bogot´a, Colombia
Bogot´a, Colombia
Bogot´a, Colombia"
badcd992266c6813063c153c41b87babc0ba36a3,Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks,"Recent Advances in Object Detection in the Age
of Deep Convolutional Neural Networks
Shivang Agarwal(∗
,1), Jean Ogier du Terrail(∗
,1,2), Fr´ed´eric Jurie(1)
(∗) equal contribution
(1)Normandie Univ, UNICAEN, ENSICAEN, CNRS
(2)Safran Electronics and Defense
September 11, 2018"
ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906,Uporaba emotivno pogojenega računalništva v priporočilnih sistemih,"ELEKTROTEHNI ˇSKI VESTNIK 78(1-2): 12–17, 2011
EXISTING SEPARATE ENGLISH EDITION
Uporaba emotivno pogojenega raˇcunalniˇstva v
priporoˇcilnih sistemih
Marko Tkalˇciˇc, Andrej Koˇsir, Jurij Tasiˇc
Univerza v Ljubljani, Fakulteta za elektrotehniko, Trˇzaˇska 25, 1000 Ljubljana, Slovenija
Univerza v Ljubljani, Fakulteta za raˇcunalniˇstvo in informatiko, Trˇzaˇska 25, 1000 Ljubljana, Slovenija
E-poˇsta:
Povzetek. V ˇclanku predstavljamo rezultate treh raziskav, vezanih na izboljˇsanje delovanja multimedijskih
priporoˇcilnih sistemov s pomoˇcjo metod emotivno pogojenega raˇcunalniˇstva (ang. affective computing).
Vsebinski priporoˇcilni sistem smo izboljˇsali s pomoˇcjo metapodatkov, ki opisujejo emotivne odzive uporabnikov.
Pri skupinskem priporoˇcilnem sistemu smo dosegli znaˇcilno izboljˇsanje v obmoˇcju hladnega zagona z uvedbo
nove mere podobnosti, ki temelji na osebnostnem modelu velikih pet (ang. five factor model). Razvili smo tudi
sistem za neinvazivno oznaˇcevanje vsebin z emotivnimi parametri, ki pa ˇse ni zrel za uporabo v priporoˇcilnih
sistemih.
Kljuˇcne besede: priporoˇcilni sistemi, emotivno pogojeno raˇcunalniˇstvo, strojno uˇcenje, uporabniˇski profil,
emocije
Uporaba emotivnega raˇcunalniˇstva v priporoˇcilnih
sistemih
In this paper we present the results of three investigations of"
badd371a49d2c4126df95120902a34f4bee01b00,Parallel Separable 3D Convolution for Video and Volumetric Data Understanding,"GONDA, WEI, PARAG, PFISTER: PARALLEL SEPARABLE 3D CONVOLUTION
Parallel Separable 3D Convolution for Video
nd Volumetric Data Understanding
Harvard John A. Paulson School of
Engineering and Applied Sciences
Camabridge MA, USA
Felix Gonda
Donglai Wei
Toufiq Parag
Hanspeter Pfister"
a0f94e9400938cbd05c4b60b06d9ed58c3458303,Value-Directed Human Behavior Analysis from Video Using Partially Observable Markov Decision Processes,"Value-Directed Human Behavior Analysis
from Video Using Partially Observable
Markov Decision Processes
Jesse Hoey and James J. Little, Member, IEEE"
a022eff5470c3446aca683eae9c18319fd2406d5,Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description sémantique des traits visuels humains),"017-ENST-0071
EDITE - ED 130
Doctorat ParisTech
T H È S E
pour obtenir le grade de docteur délivré par
TÉLÉCOM ParisTech
Spécialité « SIGNAL et IMAGES »
présentée et soutenue publiquement par
Grigory ANTIPOV
le 15 décembre 2017
Apprentissage Profond pour la Description Sémantique des Traits
Visuels Humains
Directeur de thèse : Jean-Luc DUGELAY
Co-encadrement de la thèse : Moez BACCOUCHE
Mme Bernadette DORIZZI, PRU, Télécom SudParis
Mme Jenny BENOIS-PINEAU, PRU, Université de Bordeaux
M. Christian WOLF, MC/HDR, INSA de Lyon
M. Patrick PEREZ, Chercheur/HDR, Technicolor Rennes
M. Moez BACCOUCHE, Chercheur/Docteur, Orange Labs Rennes
M. Jean-Luc DUGELAY, PRU, Eurecom Sophia Antipolis"
a0c37f07710184597befaa7e6cf2f0893ff440e9,Fast Retinomorphic Event Stream for Video Recognition and Reinforcement Learning,
a0fd85b3400c7b3e11122f44dc5870ae2de9009a,Learning Deep Representation for Face Alignment with Auxiliary Attributes,"Learning Deep Representation for Face
Alignment with Auxiliary Attributes
Zhanpeng Zhang, Ping Luo, Chen Change Loy, Member, IEEE and Xiaoou Tang, Fellow, IEEE"
a0dfb8aae58bd757b801e2dcb717a094013bc178,Reconocimiento de expresiones faciales con base en la dinámica de puntos de referencia faciales,"Reconocimiento de expresiones faciales con base
en la din´amica de puntos de referencia faciales
E. Morales-Vargas, C.A. Reyes-Garcia, Hayde Peregrina-Barreto
Instituto Nacional de Astrof´ısica ´Optica y Electr´onica,
Divisi´on de Ciencias Computacionales, Tonantzintla, Puebla,
M´exico
Resumen. Las expresiones faciales permiten a las personas comunicar
emociones, y es pr´acticamente lo primero que observamos al interactuar
on alguien. En el ´area de computaci´on, el reconocimiento de expresiones
faciales es importante debido a que su an´alisis tiene aplicaci´on directa en
´areas como psicolog´ıa, medicina, educaci´on, entre otras. En este articulo
se presenta el proceso de dise˜no de un sistema para el reconocimiento de
expresiones faciales utilizando la din´amica de puntos de referencia ubi-
ados en el rostro, su implementaci´on, experimentos realizados y algunos
de los resultados obtenidos hasta el momento.
Palabras clave: Expresiones faciales, clasificaci´on, m´aquinas de soporte
vectorial,modelos activos de apariencia.
Facial Expressions Recognition Based on Facial
Landmarks Dynamics"
a03cfd5c0059825c87d51f5dbf12f8a76fe9ff60,Simultaneous Learning and Alignment: Multi-Instance and Multi-Pose Learning,"Simultaneous Learning and Alignment:
Multi-Instance and Multi-Pose Learning?
Boris Babenko1 Piotr Doll´ar1,2
Zhuowen Tu3
Serge Belongie1,2
Comp. Science & Eng.
Univ. of CA, San Diego
Electrical Engineering
California Inst. of Tech.
Lab of Neuro Imaging
Univ. of CA, Los Angeles"
a090d61bfb2c3f380c01c0774ea17929998e0c96,On the dimensionality of video bricks under varying illumination,"On the Dimensionality of Video Bricks under Varying Illumination
Beijing Lab of Intelligent Information Technology, School of Computer Science,
Youdong Zhao, Xi Song, Yunde Jia
Beijing Institute of Technology, Beijing 100081, PR China
{zyd458, songxi,"
a000149e83b09d17e18ed9184155be140ae1266e,Action Recognition in Realistic Sports Videos,"Chapter 9
Action Recognition in Realistic
Sports Videos
Khurram Soomro and Amir R. Zamir"
a01f9461bc8cf8fe40c26d223ab1abea5d8e2812,Facial Age Estimation Through the Fusion of Texture and Local Appearance Descriptors,"Facial Age Estimation Through the Fusion of Texture
nd local appearance Descriptors
Ivan Huerta1, Carles Fern´andez2, and Andrea Prati1
DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy
Herta Security, Pau Claris 165 4-B, 08037 Barcelona, Spain"
a702fc36f0644a958c08de169b763b9927c175eb,Facial expression recognition using Hough forest,"FACIAL EXPRESSION RECOGNITION USING HOUGH FOREST
Chi-Ting Hsu1, Shih-Chung Hsu1, and Chung-Lin Huang1,2
.  Department of Electrical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan
Email:
.  Department of Applied Informatics and Multimedia, Asia University, Taichung, Taiwan"
a7267bc781a4e3e79213bb9c4925dd551ea1f5c4,Proceedings of eNTERFACE 2015 Workshop on Intelligent Interfaces,"Proceedings of eNTERFACE’15
The 11th Summer Workshop
on Multimodal Interfaces
August 10th - September 4th, 2015
Numediart Institute, University of Mons
Mons, Belgium"
a784a0d1cea26f18626682ab108ce2c9221d1e53,Anchored Regression Networks Applied to Age Estimation and Super Resolution,"Anchored Regression Networks applied to Age Estimation and Super Resolution
Eirikur Agustsson
D-ITET, ETH Zurich
Switzerland
Radu Timofte
D-ITET, ETH Zurich
Merantix GmbH
Luc Van Gool
D-ITET, ETH Zurich
ESAT, KU Leuven"
a77e9f0bd205a7733431a6d1028f09f57f9f73b0,Multimodal feature fusion for CNN-based gait recognition: an empirical comparison,"Multimodal feature fusion for CNN-based gait recognition: an
empirical comparison
F.M. Castroa,, M.J. Mar´ın-Jim´enezb, N. Guila, N. P´erez de la Blancac
Department of Computer Architecture, University of Malaga, Spain, 29071
Department of Computing and Numerical Analysis, University of Cordoba, Spain, 14071
Department of Computer Science and Artificial Intelligence, University of Granada, Spain, 18071"
a7d23c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51,A Summary of literature review : Face Recognition,"Postgraduate Annual Research Seminar 2007 (3-4 July 2007)
A Summary of literature review : Face Recognition
Kittikhun Meethongjan & Dzulkifli Mohamad
Faculty of Computer Science & Information System,
University Technology of Malaysia, 81310 Skudai, Johor, Malaysia."
a7664247a37a89c74d0e1a1606a99119cffc41d4,Modal Consistency based Pre-Trained Multi-Model Reuse,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
a7a6eb53bee5e2224f2ecd56a14e3a5a717e55b9,Face Recognition Using Multi-viewpoint Patterns for Robot Vision,"1th International Symposium of Robotics Research (ISRR2003), pp.192-201, 2003
Face Recognition Using Multi-viewpoint Patterns for
Robot Vision
Kazuhiro Fukui and Osamu Yamaguchi
Corporate Research and Development Center, TOSHIBA Corporation
, KomukaiToshiba-cho, Saiwai-ku, Kawasaki 212-8582 Japan"
a758b744a6d6962f1ddce6f0d04292a0b5cf8e07,"Study on Human Face Recognition under Invariant Pose, Illumination and Expression using LBP, LoG and SVM","ISSN XXXX XXXX © 2017 IJESC
Research Article                                                                                                                              Volume 7 Issue No.4
Study on Human Face Recognition under Invariant Pose, Illumination
nd Expression using LBP, LoG and SVM
Amrutha
Depart ment of Co mputer Science & Engineering
Mangalore Institute of Technology & Engineering , Moodabidri, Mangalore, India
INTRODUCTION
RELATED WORK
Abstrac t:
Face  recognition  system  uses  human  face  for  the  identification  of  the   user.  Face  recognition  is  a  difficu lt  task  there  is  no  unique
method  that  provide  accurate  an  accurate  and  effic ient  solution  in  all  the  situations  like  the  face  image  with  differen t  pose ,
illu mination  and  exp ression.  Local  Binary  Pattern  (LBP)  and  Laplac ian  of  Gaussian  (Lo G)  operators.  Support  Vector  Machine
lassifier  is  used  to  recognize  the  human  face.  The  Lo G  algorith m  is  used  to preprocess the  image  to  detect  the  edges of  the  face
image to get the image information. The  LBP operator divides the face  image into several blocks to generate the features informat ion
on  pixe l  level  by  creating  LBP  labels  for  all  the  blocks  of  image  is  obtained  by  concatenating  all  the  individual  local  histo grams.
Support Vector Machine classifier  (SVM )  is used to classify t he image. The a lgorith m performances is verified under the constraints
like illu mination, e xp ression and pose variation
Ke ywor ds:  Face  Recognition,  Local  Binary  Pattern,  Laplac ian  of  Gaussian,  histogram,  illu mination,  pose  angle,  exp ression
variations, SVM ."
a75ee7f4c4130ef36d21582d5758f953dba03a01,Human face attributes prediction with Deep Learning,"DD2427 Final Project Report
Mohamed Abdulaziz Ali Haseeb
DD2427 Final Project Report
Human face attributes prediction with Deep
Learning
Mohamed Abdulaziz Ali Haseeb"
a775da3e6e6ea64bffab7f9baf665528644c7ed3,Human Face Pose Estimation based on Feature Extraction Points,"International Journal of Computer Applications (0975 – 8887)
Volume 142 – No.9, May 2016
Human Face Pose Estimation based on Feature
Extraction Points
Guneet Bhullar
Research scholar,
Department of ECE
SBSSTC, Moga Road,
Ferozepur, Punjab, India"
a703d51c200724517f099ee10885286ddbd8b587,Fuzzy neural networks(FNN)-based approach for personalized facial expression recognition with novel feature selection method,"Fuzzy Neural Networks(FNN)-based Approach for
Personalized Facial Expression Recognition with
Novel Feature Selection Method
Dae-Jin Kim and Zeungnam Bien
Div. of EE, Dept. of EECS, KAIST
73-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
Kwang-Hyun Park
Human-friendly Welfare Robotic System Engineering Research Center, KAIST
73-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea"
b871d1b8495025ff8a6255514ed39f7765415935,Application of Completed Local Binary Pattern for Facial Expression Recognition on Gabor Filtered Facial Images,"Application of Completed Local Binary Pattern for Facial Expression
Recognition on Gabor Filtered Facial Images
Tanveer Ahsan, 2Rifat Shahriar, *3Uipil Chong
Dept. of Electrical and Computer Engineering, University of Ulsan, Ulsan, Republic of Korea"
b8dba0504d6b4b557d51a6cf4de5507141db60cf,Comparing Performances of Big Data Stream Processing Platforms with RAM3S,"Comparing Performances of Big Data Stream
Processing Platforms with RAM3S"
b89862f38fff416d2fcda389f5c59daba56241db,A Web Survey for Facial Expressions Evaluation,"A Web Survey for Facial Expressions Evaluation
Matteo Sorci
Gianluca Antonini
Jean-Philippe Thiran
Ecole Polytechnique Federale de Lausanne
Signal Processing Institute
Ecublens, 1015 Lausanne, Switzerland
Ecole Polytechnique Federale de Lausanne, Operation Research Group
Michel Bierlaire
Ecublens, 1015 Lausanne, Switzerland
June 9, 2008"
b8f3f6d8f188f65ca8ea2725b248397c7d1e662d,Selfie Detection by Synergy-Constraint Based Convolutional Neural Network,"Selfie Detection by Synergy-Constriant Based
Convolutional Neural Network
Yashas Annadani, Vijaykrishna Naganoor, Akshay Kumar Jagadish and Krishnan Chemmangat
Electrical and Electronics Engineering, NITK-Surathkal, India."
b85580ff2d8d8be0a2c40863f04269df4cd766d9,HCMUS team at the Multimodal Person Discovery in Broadcast TV Task of MediaEval 2016,"HCMUS team at the Multimodal Person Discovery in
Broadcast TV Task of MediaEval 2016
Vinh-Tiep Nguyen, Manh-Tien H. Nguyen, Quoc-Huu Che, Van-Tu Ninh,
Tu-Khiem Le, Thanh-An Nguyen, Minh-Triet Tran
Faculty of Information Technology
University of Science, Vietnam National University-Ho Chi Minh city
{nhmtien, cqhuu, nvtu,"
b8a829b30381106b806066d40dd372045d49178d,A Probabilistic Framework for Joint Pedestrian Head and Body Orientation Estimation,"A Probabilistic Framework for Joint Pedestrian Head
nd Body Orientation Estimation
Fabian Flohr, Madalin Dumitru-Guzu, Julian F. P. Kooij, and Dariu M. Gavrila"
b1d89015f9b16515735d4140c84b0bacbbef19ac,Too Far to See? Not Really!—Pedestrian Detection With Scale-Aware Localization Policy,"Too Far to See? Not Really!
— Pedestrian Detection with Scale-aware
Localization Policy
Xiaowei Zhang, Li Cheng, Bo Li, and Hai-Miao Hu"
b14b672e09b5b2d984295dfafb05604492bfaec5,Apprentissage de Modèles pour la Classification et la Recherche d ’ Images Learning Image Classification and Retrieval Models,LearningImageClassificationandRetrievalModelsThomasMensink
b1a3b19700b8738b4510eecf78a35ff38406df22,Automatic Analysis of Facial Actions: A Survey,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2731763, IEEE
Transactions on Affective Computing
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014
Automatic Analysis of Facial Actions: A Survey
Brais Martinez, Member, IEEE, Michel F. Valstar, Senior Member, IEEE, Bihan Jiang,
nd Maja Pantic, Fellow, IEEE"
b166ce267ddb705e6ed855c6b679ec699d62e9cb,Sample group and misplaced atom dictionary learning for face recognition,"Turk J Elec Eng & Comp Sci
(2017) 25: 4421 { 4430
⃝ T (cid:127)UB_ITAK
doi:10.3906/elk-1702-49
Sample group and misplaced atom dictionary learning for face recognition
Meng WANG1;2, Zhengping HU1;(cid:3)
, Zhe Sun1, Mei ZHU2, Mei SUN2
Department of Information Science & Engineering, Faculty of Electronics & Communication, Yanshan University,
Department of Physics & Electronics Engineering, Faculty of Electronics & Communication, Taishan University,
Qinhuangdao, P.R. China
Tai’an, P.R. China
Received: 04.02.2017
(cid:15)
Accepted/Published Online: 01.06.2017
(cid:15)
Final Version: 05.10.2017"
b15a06d701f0a7f508e3355a09d0016de3d92a6d,Facial contrast is a cue for perceiving health from the face.,"Running head:  FACIAL CONTRAST LOOKS HEALTHY
Facial contrast is a cue for perceiving health from the face
Richard Russell1, Aurélie Porcheron2,3, Jennifer R. Sweda1, Alex L. Jones1, Emmanuelle
Mauger2, Frederique Morizot2
Gettysburg College, Gettysburg, PA, USA
CHANEL Recherche et Technologie, Chanel PB
Université Grenoble Alpes
Author Note
Richard Russell, Jennifer R. Sweda, and Alex L. Jones, Department of Psychology,
Gettysburg College.  Aurélie Porcheron, Emmanuelle Mauger, and Frederique Morizot,
CHANEL Recherche et Technologie, Chanel PB.  Aurélie Porcheron, Laboratoire de
Psychologie et NeuroCognition, Université Grenoble Alpes.
Corresponding author:  Richard Russell, Department of Psychology, Box 407, Gettysburg
College, Gettysburg, PA 17325, USA.  Email:
This is a prepublication copy.  This article may not exactly replicate the authoritative document
published in the APA journal. It is not the copy of record.  The authoritative document can be
found through this DOI: http://psycnet.apa.org/doi/10.1037/xhp0000219"
b1444b3bf15eec84f6d9a2ade7989bb980ea7bd1,Local Directional Relation Pattern for Unconstrained and Robust Face Retrieval,"LOCAL DIRECTIONAL RELATION PATTERN
Local Directional Relation Pattern for
Unconstrained and Robust Face Retrieval
Shiv Ram Dubey, Member, IEEE"
b1451721864e836069fa299a64595d1655793757,Criteria Sliders: Learning Continuous Database Criteria via Interactive Ranking,"Criteria Sliders: Learning Continuous
Database Criteria via Interactive Ranking
James Tompkin,1∗ Kwang In Kim,2∗ Hanspeter Pfister,3 and Christian Theobalt4
Brown University 2University of Bath
Harvard University 4Max Planck Institute for Informatics"
b19e83eda4a602abc5a8ef57467c5f47f493848d,Heat Kernel Based Local Binary Pattern for Face Representation,"JOURNAL OF LATEX CLASS FILES
Heat Kernel Based Local Binary Pattern for
Face Representation
Xi Li†, Weiming Hu†, Zhongfei Zhang‡, Hanzi Wang§"
dde5125baefa1141f1ed50479a3fd67c528a965f,Synthesizing Normalized Faces from Facial Identity Features,"Synthesizing Normalized Faces from Facial Identity Features
Forrester Cole1 David Belanger1,2 Dilip Krishnan1 Aaron Sarna1 Inbar Mosseri1 William T. Freeman1,3
Google, Inc. 2University of Massachusetts Amherst 3MIT CSAIL
{fcole, dbelanger, dilipkay, sarna, inbarm,"
dd8084b2878ca95d8f14bae73e1072922f0cc5da,"Model Distillation with Knowledge Transfer in Face Classification, Alignment and Verification","Model Distillation with Knowledge Transfer from
Face Classification to Alignment and Verification
Chong Wang∗, Xipeng Lan and Yangang Zhang
Beijing Orion Star Technology Co., Ltd. Beijing, China
{chongwang.nlpr, xipeng.lan,"
ddf55fc9cf57dabf4eccbf9daab52108df5b69aa,Methodology and Performance Analysis of 3-D Facial Expression Recognition Using Statistical Shape Representation,"International Journal of Grid and Distributed Computing
Vol. 4, No. 3, September, 2011
Methodology and Performance Analysis of 3-D Facial Expression
Recognition Using Statistical Shape Representation
Wei Quan, Bogdan J. Matuszewski, Lik-Kwan Shark
ADSIP Research Centre, University of Central Lancashire
{WQuan, BMatuszewski1,
Charlie Frowd
School of Psychology, University of Central Lancashire"
ddea3c352f5041fb34433b635399711a90fde0e8,Facial Expression Classification using Visual Cues and Language,"Facial Expression Classification using Visual Cues and Language
Abhishek Kar
Advisor: Dr. Amitabha Mukerjee
Department of Computer Science and Engineering, IIT Kanpur"
ddbd24a73ba3d74028596f393bb07a6b87a469c0,Multi-region Two-Stream R-CNN for Action Detection,"Multi-region two-stream R-CNN
for action detection
Xiaojiang Peng, Cordelia Schmid
Inria(cid:63)"
ddf099f0e0631da4a6396a17829160301796151c,Learning Face Image Quality from Human Assessments,"IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
Learning Face Image Quality from
Human Assessments
Lacey Best-Rowden, Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
dd0a334b767e0065c730873a95312a89ef7d1c03,Eigenexpressions: Emotion Recognition Using Multiple Eigenspaces,"Eigenexpressions: Emotion Recognition using Multiple
Eigenspaces
Luis Marco-Gim´enez1, Miguel Arevalillo-Herr´aez1, and Cristina Cuhna-P´erez2
University of Valencia. Computing Department,
Burjassot. Valencia 46100, Spain,
Universidad Cat´olica San Vicente M´artir de Valencia (UCV),
Burjassot. Valencia. Spain"
dd8d53e67668067fd290eb500d7dfab5b6f730dd,A Parameter-Free Framework for General Supervised Subspace Learning,"A Parameter-Free Framework for General
Supervised Subspace Learning
Shuicheng Yan, Member, IEEE, Jianzhuang Liu, Senior Member, IEEE, Xiaoou Tang, Senior Member, IEEE,
nd Thomas S. Huang, Life Fellow, IEEE"
ddbb6e0913ac127004be73e2d4097513a8f02d37,Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis,"IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 3, SEPTEMBER 1999
Face Detection Using Quantized Skin Color
Regions Merging and Wavelet Packet Analysis
Christophe Garcia and Georgios Tziritas, Member, IEEE"
dc550f361ae82ec6e1a0cf67edf6a0138163382e,Emotion Based Music Player,"ISSN XXXX XXXX © 2018 IJESC
Research Article                                                                                                                           Volume 8 Issue No.3
Vijay Chakole1, Aniket Choudhary2, Kalyani Trivedi3, Kshitija Bhoyar4, Ruchita Bodele5, Sayali Karmore6
Emotion Based Music Player
Professor1, UG Student2, 3, 4, 5, 6
Department of Electronics Engineering
K.D.K. College of Engineering Nagpur, India"
dcb44fc19c1949b1eda9abe998935d567498467d,Ordinal Zero-Shot Learning,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
labelunseen labelFigure1:Supervisionintensityfordifferentlabels.Greenrepre-sentsseenlabelsandredrepresentsunseenlabels.Thegroundtruthlabelofthisinstanceis“Good”,soithasthestrongestsupervisionintensity.Although“Common”isanunseenlabel,itstillhascertainsupervisioninformationbecauseitiscloselyrelatedto“Good”.classifier;[ZhangandSaligrama,2016]learnsajointlatentspaceusingstructuredlearning.Thedifficultyinobtainingthesideinformationorusingothertechniquestoprocessthesideinformationarethemostseriousissuesformanyexistingzero-shotlearningmethods.Fortheattribute-basedmethods,humanexpertsareneededtolabelattributesandthisisverytime-consumingandnoteasytoobtainthediscriminativecategory-levelattributes.Somemethodsdiscoverattributesinteractively[ParikhandGrau-man,2011][Bransonetal.,2010],butthisalsorequiresla-borioushumanparticipation.Althoughmanyalgorithmscandiscoverattribute-relatedconceptsontheWeb[Rohrbachetal.,2010][Bergetal.,2010],theycanalsobebiasedorlackinformationthatiscriticaltoaparticulartask[ParikhandGrauman,2011].Forthetextcorpora-basedmethods,theyfirstrequirealargelanguagecorpora,suchasWikipedia,andthenneedtolearnwordrepresentation[Socheretal.,2013]orusestandardNaturalLanguageProcessing(NLP)techniquestoproduceclassdescriptions[Elhoseinyetal.,2013].Itishardtoguaranteethecorrectnessofsuchclassdescriptionsforzero-shotlearning.Conclusively,althoughsideinforma-tionishelpfulforzero-shotlearning,ithasmanydisadvan-tages.Generatingthesesideinformationisverytediousandsometimeswecannotknowwhichsideinformationistrulywanted.IfwedependonhumanlabororNLPtechniques,noisysideinformationwillbecomealmostinevitableandin-fluencethefinalperformance.Toavoidtheseproblems,itisimportanttosolvezero-shotlearninginwhateverpossiblecasesthathavesomepropertieswecanutilizetoavoidusingsideinformation."
dc2e805d0038f9d1b3d1bc79192f1d90f6091ecb,Face Recognition and Facial Attribute Analysis from Unconstrained Visual Data,
dc974c31201b6da32f48ef81ae5a9042512705fe,Am I Done? Predicting Action Progress in Videos,"Am I done? Predicting Action Progress in Video
Federico Becattini1, Tiberio Uricchio1, Lorenzo Seidenari1,
Alberto Del Bimbo1, and Lamberto Ballan2
Media Integration and Communication Center, Univ. of Florence, Italy
Department of Mathematics “Tullio Levi-Civita”, Univ. of Padova, Italy"
b613b30a7cbe76700855479a8d25164fa7b6b9f1,Identifying User-Specific Facial Affects from Spontaneous Expressions with Minimal Annotation,"Identifying User-Specific Facial Affects from
Spontaneous Expressions with Minimal Annotation
Michael Xuelin Huang, Grace Ngai, Kien A. Hua, Fellow, IEEE, Stephen C.F. Chan, Member, IEEE
nd Hong Va Leong, Member, IEEE Computer Society"
b6f682648418422e992e3ef78a6965773550d36b,"CBMM Memo No . 061 February 8 , 2017 Full interpretation of minimal images","February 8, 2017"
a9791544baa14520379d47afd02e2e7353df87e5,The Need for Careful Data Collection for Pattern Recognition in Digital Pathology,"Technical Note
The Need for Careful Data Collection for Pattern Recognition in
Digital Pathology
Raphaël Marée1
Department of Electrical Engineering and Computer Science, Montefiore Institute, University of Liège, 4000 Liège, Belgium
Received: 08 December 2016
Accepted: 15 March 2017
Published: 10 April 2017"
a9eb6e436cfcbded5a9f4b82f6b914c7f390adbd,A Model for Facial Emotion Inference Based on Planar Dynamic Emotional Surfaces,"(IJARAI) International Journal of Advanced Research in Artificial Intelligence,
Vol. 5, No.6, 2016
A Model for Facial Emotion Inference Based on
Planar Dynamic Emotional Surfaces
Ruivo,  J.  P.  P.
Escola  Polit´ecnica
Negreiros,  T.
Escola  Polit´ecnica
Barretto,  M.  R.  P.
Escola  Polit´ecnica
Tinen,  B.
Escola  Polit´ecnica
Universidade de S˜ao Paulo
Universidade de S˜ao Paulo
Universidade de S˜ao Paulo
Universidade de S˜ao Paulo
S˜ao Paulo, Brazil
S˜ao Paulo, Brazil
S˜ao Paulo, Brazil
S˜ao Paulo, Brazil"
a955033ca6716bf9957b362b77092592461664b4,Video Based Face Recognition Using Artificial Neural Network,"ISSN(Online): 2320-9801
ISSN (Print):  2320-9798
International Journal of Innovative Research in Computer
nd Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Video Based Face Recognition Using Artificial
Vol. 3, Issue 6, June 2015
Neural Network
Santhy Mol T, Neethu Susan Jacob
Pursuing M.Tech, Dept. of CSE, Caarmel Engineering College, MG University, Kerala, India
Assistant Professor, Dept of CSE, Caarmel Engineering College, MG University, Kerala, India"
a956ff50ca958a3619b476d16525c6c3d17ca264,A novel bidirectional neural network for face recognition,"A Novel Bidirectional Neural Network for Face Recognition
JalilMazloum, Ali Jalali and Javad Amiryan
Electrical and Computer Engineering Department
ShahidBeheshti University
Tehran, Iran"
a98316980b126f90514f33214dde51813693fe0d,Collaborations on YouTube: From Unsupervised Detection to the Impact on Video and Channel Popularity,"Collaborations on YouTube: From Unsupervised Detection to the
Impact on Video and Channel Popularity
Christian Koch, Moritz Lode, Denny Stohr, Amr Rizk, Ralf Steinmetz
Multimedia Communications Lab (KOM), Technische Universität Darmstadt, Germany
E-Mail: {Christian.Koch | Denny.Stohr | Amr.Rizk |"
a93781e6db8c03668f277676d901905ef44ae49f,Recent Data Sets on Object Manipulation: A Survey.,"Recent Datasets on Object Manipulation: A Survey
Yongqiang Huang, Matteo Bianchi, Minas Liarokapis and Yu Sun"
a9adb6dcccab2d45828e11a6f152530ba8066de6,Aydınlanma Alt-uzaylarına dayalı Gürbüz Yüz Tanıma Illumination Subspaces based Robust Face Recognition,"Aydınlanma Alt-uzaylarına dayalı Gürbüz Yüz Tanıma
Illumination Subspaces based Robust Face Recognition
D. Kern, H.K. Ekenel, R. Stiefelhagen
Interactive Systems Labs, Universität Karlsruhe (TH)
76131 Karlsruhe, Almanya
web: http://isl.ira.uka.de/face_recognition
Özetçe
yönlerine
ydınlanma
kaynaklanan
sonra,  yüz  uzayı
Bu çalışmada aydınlanma alt-uzaylarına dayalı bir yüz tanıma
sistemi  sunulmuştur.  Bu  sistemde,
ilk  olarak,  baskın
ydınlanma yönleri, bir topaklandırma algoritması kullanılarak
öğrenilmiştir.  Topaklandırma  algoritması  sonucu  önden,  sağ
ve  sol  yanlardan  olmak  üzere  üç  baskın  aydınlanma  yönü
gözlemlenmiştir.  Baskın
karar
-yüzün  görünümündeki"
a95dc0c4a9d882a903ce8c70e80399f38d2dcc89,Review and Implementation of High-Dimensional Local Binary Patterns and Its Application to Face Recognition,"TR-IIS-14-003
Review and Implementation of
High-Dimensional Local Binary
Patterns and Its Application to
Face Recognition
Bor-Chun Chen, Chu-Song Chen, Winston Hsu
July. 24,    2014    ||    Technical Report No. TR-IIS-14-003
http://www.iis.sinica.edu.tw/page/library/TechReport/tr2014/tr14.html"
a9286519e12675302b1d7d2fe0ca3cc4dc7d17f6,Learning to Succeed while Teaching to Fail: Privacy in Closed Machine Learning Systems,"Learning to Succeed while Teaching to Fail:
Privacy in Closed Machine Learning Systems
Jure Sokoli´c, Qiang Qiu, Miguel R. D. Rodrigues, and Guillermo Sapiro"
a949b8700ca6ba96ee40f75dfee1410c5bbdb3db,Instance-Weighted Transfer Learning of Active Appearance Models,"Instance-weighted Transfer Learning of Active Appearance Models
Daniel Haase, Erik Rodner, and Joachim Denzler
Computer Vision Group, Friedrich Schiller University of Jena, Germany
Ernst-Abbe-Platz 2-4, 07743 Jena, Germany"
a92b5234b8b73e06709dd48ec5f0ec357c1aabed,Disjoint Multi-task Learning Between Heterogeneous Human-Centric Tasks,
d50c6d22449cc9170ab868b42f8c72f8d31f9b6c,Dynamic Multi-Task Learning with Convolutional Neural Network,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
d522c162bd03e935b1417f2e564d1357e98826d2,Weakly supervised object extraction with iterative contour prior for remote sensing images,"He et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:19
http://asp.eurasipjournals.com/content/2013/1/19
RESEARCH
Open Access
Weakly supervised object extraction with
iterative contour prior for remote sensing
images
Chu He1,2*, Yu Zhang1, Bo Shi1, Xin Su3, Xin Xu1 and Mingsheng Liao2"
d59f18fcb07648381aa5232842eabba1db52383e,Robust Facial Expression Recognition Using Spatially Localized Geometric Model,"International Conference on Systemics, Cybernetics and Informatics, February 12–15, 2004
ROBUST FACIAL EXPRESSION RECOGNITION USING SPATIALLY
LOCALIZED GEOMETRIC MODEL
Department of Electrical Engineering
Dept. of Computer Sc. and Engg.
Ashutosh Saxena
IIT Kanpur
Kanpur 208016, India
Kanpur 208016, India
Ankit Anand
IIT Kanpur
Prof. Amitabha Mukerjee
Dept. of Computer Sc. and Engg.
IIT Kanpur
Kanpur 208016, India
While  approaches  based  on  3D  deformable  facial  model  have
chieved expression recognition rates of as high as 98% [2], they
re  computationally  inefficient  and  require  considerable  apriori
training  based  on  3D  information,  which  is  often  unavailable.
Recognition  from  2D  images  remains  a  difficult  yet  important"
d588dd4f305cdea37add2e9bb3d769df98efe880,Audio - Visual Authentication System over the Internet Protocol,"Audio-Visual Authentication System over the
Internet Protocol
Yee Wan Wong, Kah Phooi Seng, and Li-Minn Ang
bandoned.
illumination  based
is  developed  with  the  objective  to"
d5444f9475253bbcfef85c351ea9dab56793b9ea,BoxCars: Improving Fine-Grained Recognition of Vehicles using 3-D Bounding Boxes in Traffic Surveillance,"IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
BoxCars: Improving Fine-Grained Recognition
of Vehicles using 3D Bounding Boxes
in Traffic Surveillance
Jakub Sochor, Jakub ˇSpaˇnhel, Adam Herout
in contrast"
d5ab6aa15dad26a6ace5ab83ce62b7467a18a88e,Optimized Structure for Facial Action Unit Relationship Using Bayesian Network,"World Journal of Computer Application and Technology 2(7): 133-138, 2014
DOI: 10.13189/wjcat.2014.020701
http://www.hrpub.org
Optimized Structure for Facial Action Unit Relationship
Using Bayesian Network
Yee Koon Loh*, Shahrel A. Suandi
Intelligent Biometric Group, School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Pulau
*Corresponding Author:
Pinang, Malaysia
Copyright © 2014 Horizon Research Publishing All rights reserved."
d56fe69cbfd08525f20679ffc50707b738b88031,Training of multiple classifier systems utilizing partially labeled sequential data sets,"Training of multiple classifier systems utilizing
partially labelled sequences
Martin Schels, Patrick Schillinger, and Friedhelm Schwenker
Ulm University - Department of Neural Information Processing
89069 Ulm - Germany"
d5de42d37ee84c86b8f9a054f90ddb4566990ec0,Asynchronous Temporal Fields for Action Recognition,"Asynchronous Temporal Fields for Action Recognition
Gunnar A. Sigurdsson1∗ Santosh Divvala2,3 Ali Farhadi2,3 Abhinav Gupta1,3
Carnegie Mellon University 2University of Washington 3Allen Institute for Artificial Intelligence
github.com/gsig/temporal-fields/"
d50a40f2d24363809a9ac57cf7fbb630644af0e5,End-to-end Trained CNN Encode-Decoder Networks for Image Steganography,"END-TO-END TRAINED CNN ENCODER-DECODER NETWORKS FOR IMAGE
STEGANOGRAPHY
Atique ur Rehman, Rafia Rahim, Shahroz Nadeem, Sibt ul Hussain
National University of Computer & Emerging Sciences (NUCES-FAST), Islamabad, Pakistan.
Reveal.ai (Recognition, Vision & Learning) Lab"
d5b5c63c5611d7b911bc1f7e161a0863a34d44ea,Extracting Scene-Dependent Discriminant Features for Enhancing Face Recognition under Severe Conditions,"Extracting Scene-dependent Discriminant
Features for Enhancing Face Recognition
under Severe Conditions
Rui Ishiyama and Nobuyuki Yasukawa
Information and Media Processing Research Laboratories, NEC Corporation
753, Shimonumabe, Nakahara-Ku, Kawasaki 211-8666 Japan"
d59404354f84ad98fa809fd1295608bf3d658bdc,Face Synthesis from Visual Attributes via Sketch using Conditional VAEs and GANs,"International Journal of Computer Vision manuscript No.
(will be inserted by the editor)
Face Synthesis from Visual Attributes via Sketch using
Conditional VAEs and GANs
Xing Di · Vishal M. Patel
Received: date / Accepted: date"
d231a81b38fde73bdbf13cfec57d6652f8546c3c,SUPERRESOLUTION TECHNIQUES FOR FACE RECOGNITION FROM VIDEO by Osman,"SUPERRESOLUTION TECHNIQUES
FOR FACE RECOGNITION FROM VIDEO
Osman Gökhan Sezer
B.S., E.E., Boğaziçi University, 2003
Submitted to the Graduate School of Engineering
and Natural Sciences in partially fulfillment of
the requirement for the degree of
Master of Science
Graduate Program in Electronics Engineering and Computer Science
Sabancı University
Spring 2005"
d22785eae6b7503cb16402514fd5bd9571511654,Evaluating Facial Expressions with Different Occlusion around Image Sequence,"Evaluating Facial Expressions with Different
Occlusion around Image Sequence
Ankita Vyas, Ramchand Hablani
Department of Computer Science
Sanghvi Institute of Management & Science
Indore (MP), India
local
INTRODUCTION"
d2eb1079552fb736e3ba5e494543e67620832c52,DeSTNet: Densely Fused Spatial Transformer Networks,"ANNUNZIATA, SAGONAS, CALÌ: DENSELY FUSED SPATIAL TRANSFORMER NETWORKS1
DeSTNet: Densely Fused Spatial
Transformer Networks1
Roberto Annunziata
Christos Sagonas
Jacques Calì
Onfido Research
Finsbury Avenue
London, UK"
d24dafe10ec43ac8fb98715b0e0bd8e479985260,"Effects of Social Anxiety on Emotional Mimicry and Contagion: Feeling Negative, but Smiling Politely","J Nonverbal Behav (2018) 42:81–99
https://doi.org/10.1007/s10919-017-0266-z
O R I G I N A L P A P E R
Effects of Social Anxiety on Emotional Mimicry
nd Contagion: Feeling Negative, but Smiling Politely
Corine Dijk1
Charlotte van Eeuwijk4
• Gerben A. van Kleef2
• Agneta H. Fischer2
• Nexhmedin Morina3
Published online: 25 September 2017
Ó The Author(s) 2017. This article is an open access publication"
d278e020be85a1ccd90aa366b70c43884dd3f798,Learning From Less Data: Diversified Subset Selection and Active Learning in Image Classification Tasks,"Learning From Less Data: Diversified Subset Selection and
Active Learning in Image Classification Tasks
Vishal Kaushal
IIT Bombay
Mumbai, Maharashtra, India
Khoshrav Doctor
AITOE Labs
Mumbai, Maharashtra, India
Suyash Shetty
AITOE Labs
Mumbai, Maharashtra, India
Rishabh Iyer
AITOE Labs
Seattle, Washington, USA
Anurag Sahoo
AITOE Labs
Seattle, Washington, USA
Narsimha Raju
IIT Bombay
Mumbai, Maharashtra, India"
aae742779e8b754da7973949992d258d6ca26216,Robust facial expression classification using shape and appearance features,"Robust Facial Expression Classification Using Shape
nd Appearance Features
S L Happy and Aurobinda Routray
Department of Electrical Engineering,
Indian Institute of Technology Kharagpur, India"
aa52910c8f95e91e9fc96a1aefd406ffa66d797d,Face Recognition System Based on 2dfld and Pca,"FACE RECOGNITION SYSTEM BASED
ON 2DFLD AND PCA
Dr. Sachin D. Ruikar
E&TC Department
Sinhgad Academy of Engineering
Pune, India
Mr. Hulle Rohit Rajiv
ME E&TC [Digital System]
Sinhgad Academy of Engineering
Pune, India"
aafb8dc8fda3b13a64ec3f1ca7911df01707c453,Excitation Backprop for RNNs,"Excitation Backprop for RNNs
Sarah Adel Bargal∗1, Andrea Zunino∗ 2, Donghyun Kim1, Jianming Zhang3,
Vittorio Murino2,4, Stan Sclaroff1
Department of Computer Science, Boston University 2Pattern Analysis & Computer Vision (PAVIS),
Istituto Italiano di Tecnologia 3Adobe Research 4Computer Science Department, Universit`a di Verona
Figure 1: Our proposed framework spatiotemporally highlights/grounds the evidence that an RNN model used in producing a class label
or caption for a given input video. In this example, by using our proposed back-propagation method, the evidence for the activity class
CliffDiving is highlighted in a video that contains CliffDiving and HorseRiding. Our model employs a single backward pass to produce
saliency maps that highlight the evidence that a given RNN used in generating its outputs."
aadfcaf601630bdc2af11c00eb34220da59b7559,Multi-view Hybrid Embedding: A Divide-and-Conquer Approach,"Multi-view Hybrid Embedding:
A Divide-and-Conquer Approach
Jiamiao Xu∗, Shujian Yu∗, Xinge You†, Senior Member, IEEE, Mengjun Leng,
Xiao-Yuan Jing, and C. L. Philip Chen, Fellow, IEEE"
aaa4c625f5f9b65c7f3df5c7bfe8a6595d0195a5,Biometrics in ambient intelligence,"Biometrics in Ambient Intelligence
Massimo Tistarelli§ and Ben Schouten§§"
aae0e417bbfba701a1183d3d92cc7ad550ee59c3,A Statistical Method for 2-D Facial Landmarking,"A Statistical Method for 2-D Facial Landmarking
Hamdi Dibeklio˘glu, Student Member, IEEE, Albert Ali Salah, Member, IEEE, and Theo Gevers, Member, IEEE"
aa577652ce4dad3ca3dde44f881972ae6e1acce7,Deep Attribute Networks,"Deep Attribute Networks
Junyoung Chung
Department of EE, KAIST
Daejeon, South Korea
Donghoon Lee
Department of EE, KAIST
Daejeon, South Korea
Youngjoo Seo
Department of EE, KAIST
Daejeon, South Korea
Chang D. Yoo
Department of EE, KAIST
Daejeon, South Korea"
aa94f214bb3e14842e4056fdef834a51aecef39c,Reconhecimento de padrões faciais: Um estudo,"Reconhecimento de padrões faciais: Um estudo
Alex Lima Silva, Marcos Evandro Cintra
Universidade Federal
Rural do Semi-Árido
Departamento de Ciências Naturais
Mossoró, RN - 59625-900
Email:
Resumo—O reconhecimento facial tem sido utilizado em di-
versas áreas para identificação e autenticação de usuários. Um
dos principais mercados está relacionado a segurança, porém há
uma grande variedade de aplicações relacionadas ao uso pessoal,
onveniência, aumento de produtividade, etc. O rosto humano
possui um conjunto de padrões complexos e mutáveis. Para
reconhecer esses padrões, são necessárias técnicas avançadas de
reconhecimento de padrões capazes, não apenas de reconhecer,
mas de se adaptar às mudanças constantes das faces das pessoas.
Este documento apresenta um método de reconhecimento facial
proposto a partir da análise comparativa de trabalhos encontra-
dos na literatura.
iométrica é o uso da biometria para reconhecimento, identi-"
aac101dd321e6d2199d8c0b48c543b541c181b66,Using Context to Enhance the Understanding of Face Images,"USING CONTEXT TO ENHANCE THE
UNDERSTANDING OF FACE IMAGES
A Dissertation Presented
VIDIT JAIN
Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of
DOCTOR OF PHILOSOPHY
September 2010
Department of Computer Science"
af6e351d58dba0962d6eb1baf4c9a776eb73533f,How to Train Your Deep Neural Network with Dictionary Learning,"How to Train Your Deep Neural Network with
Dictionary Learning
Vanika Singhal*, Shikha Singh+ and Angshul Majumdar#
*IIIT Delhi
Okhla Phase 3
Delhi, 110020, India
+IIIT Delhi
Okhla Phase 3
#IIIT Delhi
Okhla Phase 3
Delhi, 110020, India
Delhi, 110020, India"
af62621816fbbe7582a7d237ebae1a4d68fcf97d,Active Shape Model Based Recognition Of Facial Expression,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
International Conference on Humming Bird ( 01st March 2014)
RESEARCH ARTICLE
OPEN ACCESS
Active Shape Model Based Recognition Of Facial Expression
AncyRija V  , Gayathri. S2
AncyRijaV,Author is currently pursuing M.E (Software Engineering) in Vins Christian College of
Engineering,
e-mail:
Gayathri.S, M.E., Asst.Prof.,Department of Information Technology , Vins Christian college of Engineering."
afa57e50570a6599508ee2d50a7b8ca6be04834a,Motion in action : optical flow estimation and action localization in videos. (Le mouvement en action : estimation du flot optique et localisation d'actions dans les vidéos),"Motion in action : optical flow estimation and action
localization in videos
Philippe Weinzaepfel
To cite this version:
Philippe Weinzaepfel. Motion in action : optical flow estimation and action localization in videos.
Computer Vision and Pattern Recognition [cs.CV]. Université Grenoble Alpes, 2016. English. <NNT :
016GREAM013>. <tel-01407258>
HAL Id: tel-01407258
https://tel.archives-ouvertes.fr/tel-01407258
Submitted on 1 Dec 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de"
afc7092987f0d05f5685e9332d83c4b27612f964,Person-independent facial expression detection using Constrained Local Models,"Person-Independent Facial Expression Detection using Constrained
Local Models
Sien. W. Chew, Patrick Lucey, Simon Lucey, Jason Saragih, Jeffrey F. Cohn and Sridha Sridharan"
b730908bc1f80b711c031f3ea459e4de09a3d324,Active Orientation Models for Face Alignment In-the-Wild,"Active Orientation Models for Face
Alignment In-the-Wild
Georgios Tzimiropoulos, Joan Alabort-i-Medina, Student Member, IEEE,
Stefanos P. Zafeiriou, Member, IEEE, and Maja Pantic, Fellow, IEEE"
b7cf7bb574b2369f4d7ebc3866b461634147041a,From NLDA to LDA/GSVD: a modified NLDA algorithm,"Neural Comput & Applic (2012) 21:1575–1583
DOI 10.1007/s00521-011-0728-x
O R I G I N A L A R T I C L E
From NLDA to LDA/GSVD: a modified NLDA algorithm
Jun Yin • Zhong Jin
Received: 2 August 2010 / Accepted: 3 August 2011 / Published online: 19 August 2011
Ó Springer-Verlag London Limited 2011"
b7894c1f805ffd90ab4ab06002c70de68d6982ab,A comprehensive age estimation on face images using hybrid filter based feature extraction,"Biomedical Research 2017; Special Issue: S610-S618
ISSN 0970-938X
www.biomedres.info
A comprehensive age estimation on face images using hybrid filter based
feature extraction.
Karthikeyan D1*, Balakrishnan G2
Department of ECE, Srinivasan Engineering College, Perambalur, India
Department of Computer Science and Engineering, Indra Ganesan College of Engineering, Trichy, India"
b7eead8586ffe069edd190956bd338d82c69f880,A Video Database for Facial Behavior Understanding,"A VIDEO DATABASE FOR FACIAL
BEHAVIOR UNDERSTANDING
D. Freire-Obreg´on and M. Castrill´on-Santana.
SIANI, Universidad de Las Palmas de Gran Canaria, Spain"
b7774c096dc18bb0be2acef07ff5887a22c2a848,Distance metric learning for image and webpage comparison. (Apprentissage de distance pour la comparaison d'images et de pages Web),"Distance metric learning for image and webpage
omparison
Marc Teva Law
To cite this version:
Marc Teva Law. Distance metric learning for image and webpage comparison. Image Processing. Uni-
versité Pierre et Marie Curie - Paris VI, 2015. English. <NNT : 2015PA066019>. <tel-01135698v2>
HAL Id: tel-01135698
https://tel.archives-ouvertes.fr/tel-01135698v2
Submitted on 18 Mar 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires"
b7f05d0771da64192f73bdb2535925b0e238d233,Robust Active Shape Model using AdaBoosted Histogram Classifiers,"MVA2005  IAPR  Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan
Robust Active Shape Model using AdaBoosted Histogram Classifiers
Yuanzhong Li
W ataru Ito
Imaging Software Technology Center
Imaging Software Technology Center
FUJI PHOTO FILM  CO., LTD.
fujifilm.co.jp
FUJI PHOTO FILM  CO., LTD.
fujifilm.co.jp"
b755505bdd5af078e06427d34b6ac2530ba69b12,NFRAD: Near-Infrared Face Recognition at a Distance,"To appear in the International Joint Conf. Biometrics, Washington D.C., October, 2011
NFRAD: Near-Infrared Face Recognition at a Distance
Hyunju Maenga, Hyun-Cheol Choia, Unsang Parkb, Seong-Whan Leea and Anil K. Jaina,b
Dept. of Brain and Cognitive Eng. Korea Univ., Seoul, Korea
Dept. of Comp. Sci. & Eng. Michigan State Univ., E. Lansing, MI, USA 48824
{hjmaeng, ,"
b7b461f82c911f2596b310e2b18dd0da1d5d4491,K-mappings and Regression trees,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
K-MAPPINGS AND REGRESSION TREES
SAMSI and Duke University
. INTRODUCTION
rgminM1,...,MK
P1,...PK
Arthur Szlam†
.1. Partitioning Y
K(cid:2)
(cid:2)
(cid:3)
(cid:4)"
b73fdae232270404f96754329a1a18768974d3f6,Local Relation Map : A Novel Illumination Invariant Face Recognition Approach Regular Paper,
b76af8fcf9a3ebc421b075b689defb6dc4282670,Face Mask Extraction in Video Sequence,"Face Mask Extraction in Video Sequence
Yujiang Wang 1 · Bingnan Luo 1 · Jie Shen 1 · Maja Pantic 1"
b7f7a4df251ff26aca83d66d6b479f1dc6cd1085,Handling missing weak classifiers in boosted cascade: application to multiview and occluded face detection,"Bouges et al. EURASIP Journal on Image and Video Processing 2013, 2013:55
http://jivp.eurasipjournals.com/content/2013/1/55
RESEARCH
Open Access
Handling missing weak classifiers in boosted
ascade: application to multiview and
occluded face detection
Pierre Bouges1*, Thierry Chateau1*, Christophe Blanc1 and Gaëlle Loosli2"
db227f72bb13a5acca549fab0dc76bce1fb3b948,Characteristic Based Image Search Using Re-Ranking Method,"International Refereed Journal of Engineering and Science (IRJES)
ISSN (Online) 2319-183X, (Print) 2319-1821
Volume 4, Issue 6 (June 2015), PP.169-169-174
Characteristic Based Image Search using Re-Ranking method
Chitti Babu, 2Yasmeen Jaweed, 3G.Vijay Kumar
,2,3Computer Science Engineering Dept, Sree Dattha Institute of Engineering & Science"
dbaf89ca98dda2c99157c46abd136ace5bdc33b3,Nonlinear Cross-View Sample Enrichment for Action Recognition,"Nonlinear Cross-View Sample Enrichment for
Action Recognition
Ling Wang, Hichem Sahbi
Institut Mines-T´el´ecom; T´el´ecom ParisTech; CNRS LTCI"
dbe255d3d2a5d960daaaba71cb0da292e0af36a7,Evolutionary Cost-Sensitive Extreme Learning Machine,"Evolutionary Cost-sensitive Extreme Learning
Machine
Lei Zhang, Member, IEEE, and David Zhang, Fellow, IEEE"
dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8,Machine Learning Techniques for Face Analysis,"Chapter 7
Machine Learning Techniques
for Face Analysis
Roberto Valenti, Nicu Sebe, Theo Gevers, and Ira Cohen"
dbb7f37fb9b41d1aa862aaf2d2e721a470fd2c57,Face image analysis with convolutional neural networks,"Face Image Analysis With
Convolutional Neural Networks
Dissertation
Zur Erlangung des Doktorgrades
der Fakult¨at f¨ur Angewandte Wissenschaften
n der Albert-Ludwigs-Universit¨at Freiburg im Breisgau
Stefan Duffner"
dbd5e9691cab2c515b50dda3d0832bea6eef79f2,Image - based Face Recognition : Issues and Methods 1,"Image-basedFaceRecognition:IssuesandMethods
WenYiZhao
RamaChellappa
Sarno(cid:11)Corporation
CenterforAutomationResearch
WashingtonRoad
UniversityofMaryland
Princeton,NJ
CollegePark,MD-"
db67edbaeb78e1dd734784cfaaa720ba86ceb6d2,SPECFACE — A dataset of human faces wearing spectacles,"SPECFACE - A Dataset of Human Faces Wearing Spectacles
Anirban Dasgupta, Shubhobrata Bhattacharya and Aurobinda Routray
Indian Institute of Technology Kharagpur
India"
a83fc450c124b7e640adc762e95e3bb6b423b310,Deep Face Feature for Face Alignment and Reconstruction,"Deep Face Feature for Face Alignment
Boyi Jiang, Juyong Zhang, Bailin Deng, Yudong Guo and Ligang Liu"
a85e9e11db5665c89b057a124547377d3e1c27ef,Dynamics of Driver's Gaze: Explorations in Behavior Modeling and Maneuver Prediction,"Dynamics of Driver’s Gaze: Explorations in
Behavior Modeling & Maneuver Prediction
Sujitha Martin, Member, IEEE, Sourabh Vora, Kevan Yuen, and Mohan M. Trivedi, Fellow, IEEE"
a8117a4733cce9148c35fb6888962f665ae65b1e,A Good Practice Towards Top Performance of Face Recognition: Transferred Deep Feature Fusion,"IEEE TRANSACTIONS ON XXXX, VOL. XX, NO. XX, XX 201X
A Good Practice Towards Top Performance of Face
Recognition: Transferred Deep Feature Fusion
Lin Xiong1∗†, Jayashree Karlekar1∗, Jian Zhao2∗†, Jiashi Feng2, Member, IEEE, Sugiri Pranata1, and
Shengmei Shen1"
a87ab836771164adb95d6744027e62e05f47fd96,Understanding human-human interactions: a survey,"Understanding human-human interactions: a survey
Alexandros Stergiou
Department of Information and Computing Sciences, Utrecht University,Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands
Department of Information and Computing Sciences, Utrecht University,Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands
Ronald Poppe1"
a88640045d13fc0207ac816b0bb532e42bcccf36,Simultaneously Learning Neighborship and Projection Matrix for Supervised Dimensionality Reduction,"ARXIV VERSION
Simultaneously Learning Neighborship and
Projection Matrix for Supervised
Dimensionality Reduction
Yanwei Pang, Senior Member, IEEE, Bo Zhou, and Feiping Nie, Senior Member, IEEE"
a8a30a8c50d9c4bb8e6d2dd84bc5b8b7f2c84dd8,This is a repository copy of Modelling of Orthogonal Craniofacial Profiles,"This is a repository copy of Modelling of Orthogonal Craniofacial Profiles.
White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/131767/
Version: Published Version
Article:
Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634 and Duncan, Christian
(2017) Modelling of Orthogonal Craniofacial Profiles. Journal of Imaging. ISSN 2313-433X
https://doi.org/10.3390/jimaging3040055
Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
llows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
uthors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/
Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing including the URL of the record and the reason for the withdrawal request.
https://eprints.whiterose.ac.uk/"
a8638a07465fe388ae5da0e8a68e62a4ee322d68,How to predict the global instantaneous feeling induced by a facial picture?,"How to predict the global instantaneous feeling induced
y a facial picture?
Arnaud Lienhard, Patricia Ladret, Alice Caplier
To cite this version:
Arnaud Lienhard, Patricia Ladret, Alice Caplier. How to predict the global instantaneous
feeling induced by a facial picture?. Signal Processing: Image Communication, Elsevier, 2015,
pp.1-30. .
HAL Id: hal-01198718
https://hal.archives-ouvertes.fr/hal-01198718
Submitted on 14 Sep 2015
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
a8e75978a5335fd3deb04572bb6ca43dbfad4738,Sparse Graphical Representation based Discriminant Analysis for Heterogeneous Face Recognition,"Sparse Graphical Representation based Discriminant
Analysis for Heterogeneous Face Recognition
Chunlei Peng, Xinbo Gao, Senior Member, IEEE, Nannan Wang, Member, IEEE, and Jie Li"
ded968b97bd59465d5ccda4f1e441f24bac7ede5,Large scale 3 D Morphable Models,"Noname manuscript No.
(will be inserted by the editor)
Large scale 3D Morphable Models
James Booth · Anastasios Roussos · Allan Ponniah · David Dunaway · Stefanos
Zafeiriou
Received: date / Accepted: date"
de0eb358b890d92e8f67592c6e23f0e3b2ba3f66,Inference-Based Similarity Search in Randomized Montgomery Domains for Privacy-Preserving Biometric Identification,"ACCEPTED BY IEEE TRANS. PATTERN ANAL. AND MACH. INTELL.
Inference-Based Similarity Search in
Randomized Montgomery Domains for
Privacy-Preserving Biometric Identification
Yi Wang, Jianwu Wan, Jun Guo, Yiu-Ming Cheung, and Pong C Yuen"
dee406a7aaa0f4c9d64b7550e633d81bc66ff451,Content-Adaptive Sketch Portrait Generation by Decompositional Representation Learning,"Content-Adaptive Sketch Portrait Generation by
Decompositional Representation Learning
Dongyu Zhang, Liang Lin, Tianshui Chen, Xian Wu, Wenwei Tan, and Ebroul Izquierdo"
dedabf9afe2ae4a1ace1279150e5f1d495e565da,Robust Face Recognition With Structurally Incoherent Low-Rank Matrix Decomposition,"Robust Face Recognition With Structurally
Incoherent Low-Rank Matrix Decomposition
Chia-Po Wei, Chih-Fan Chen, and Yu-Chiang Frank Wang"
de398bd8b7b57a3362c0c677ba8bf9f1d8ade583,Hierarchical Bayesian Theme Models for Multipose Facial Expression Recognition,"Hierarchical Bayesian Theme Models for
Multi-pose Facial Expression Recognition
Qirong Mao, Member, IEEE, Qiyu Rao, Yongbin Yu, and Ming Dong*, Member, IEEE"
defa8774d3c6ad46d4db4959d8510b44751361d8,FEBEI - Face Expression Based Emoticon Identification CS - B657 Computer Vision,"FEBEI - Face Expression Based Emoticon Identification
CS - B657 Computer Vision
Nethra Chandrasekaran Sashikar - necsashi
Prashanth Kumar Murali - prmurali
Robert J Henderson - rojahend"
b08203fca1af7b95fda8aa3d29dcacd182375385,Object and Text-guided Semantics for CNN-based Activity Recognition,"OBJECT AND TEXT-GUIDED SEMANTICS FOR CNN-BASED ACTIVITY RECOGNITION
(cid:63)Sungmin Eum †§, (cid:63)Christopher Reale †, Heesung Kwon†, Claire Bonial †, Clare Voss†
U.S. Army Research Laboratory, Adelphi, MD, USA
§Booz Allen Hamilton Inc., McLean, VA, USA"
b09b693708f412823053508578df289b8403100a,Two-Stream SR-CNNs for Action Recognition in Videos,"WANG et al.: TWO-STREAM SR-CNNS FOR ACTION RECOGNITION IN VIDEOS
Two-Stream SR-CNNs for Action
Recognition in Videos
Yifan Wang1
Jie Song1
Limin Wang2
Luc Van Gool2
Otmar Hilliges1
Advanced Interactive Technologies Lab
ETH Zurich
Zurich, Switzerland
Computer Vision Lab
ETH Zurich
Zurich, Switzerland"
b07582d1a59a9c6f029d0d8328414c7bef64dca0,Employing Fusion of Learned and Handcrafted Features for Unconstrained Ear Recognition,"Employing Fusion of Learned and Handcrafted
Features for Unconstrained Ear Recognition
Maur´ıcio Pamplona Segundo∗†
Earnest E. Hansley∗
Sudeep Sarkar∗‡
October 24, 2017"
b0c1615ebcad516b5a26d45be58068673e2ff217,How Image Degradations Affect Deep CNN-Based Face Recognition?,"How Image Degradations Affect Deep CNN-based Face
Recognition?
S¸amil Karahan1 Merve Kılınc¸ Yıldırım1 Kadir Kırtac¸1 Ferhat S¸ ¨ukr¨u Rende1
G¨ultekin B¨ut¨un1Hazım Kemal Ekenel2"
b0de0892d2092c8c70aa22500fed31aa7eb4dd3f,A Robust and Efficient Video Representation for Action Recognition,"(will be inserted by the editor)
A robust and efficient video representation for action recognition
Heng Wang · Dan Oneata · Jakob Verbeek · Cordelia Schmid
Received: date / Accepted: date"
b073313325b6482e22032e259d7311fb9615356c,Robust and accurate cancer classification with gene expression profiling,"Robust and Accurate Cancer Classification with Gene Expression Profiling
Haifeng Li
Keshu Zhang
Tao Jiang
Dept. of Computer Science
Human Interaction Research Lab
Dept. of Computer Science
University of California
Riverside, CA 92521
Motorola, Inc.
Tempe, AZ 85282
University of California
Riverside, CA 92521"
a66d89357ada66d98d242c124e1e8d96ac9b37a0,Failure Detection for Facial Landmark Detectors,"Failure Detection for Facial Landmark Detectors
Andreas Steger, Radu Timofte, and Luc Van Gool
Computer Vision Lab, D-ITET, ETH Zurich, Switzerland
{radu.timofte,"
a608c5f8fd42af6e9bd332ab516c8c2af7063c61,Age Estimation via Grouping and Decision Fusion,"Age Estimation via Grouping and Decision Fusion
Kuan-Hsien Liu, Member, IEEE, Shuicheng Yan, Senior Member, IEEE,
nd C.-C. Jay Kuo, Fellow, IEEE"
a6eb6ad9142130406fb4ffd4d60e8348c2442c29,"Video Description: A Survey of Methods, Datasets and Evaluation Metrics","Video Description: A Survey of Methods,
Datasets and Evaluation Metrics
Nayyer Aafaq, Syed Zulqarnain Gilani, Wei Liu, and Ajmal Mian"
a6590c49e44aa4975b2b0152ee21ac8af3097d80,3D Interpreter Networks for Viewer-Centered Wireframe Modeling,"https://doi.org/10.1007/s11263-018-1074-6
D Interpreter Networks for Viewer-Centered Wireframe Modeling
Jiajun Wu1 · Tianfan Xue2 · Joseph J. Lim3 · Yuandong Tian4 ·
Joshua B. Tenenbaum1 · Antonio Torralba1 · William T. Freeman1,5
Received: date / Accepted: date"
a694180a683f7f4361042c61648aa97d222602db,Face recognition using scattering wavelet under Illicit Drug Abuse variations,"Face Recognition using Scattering Wavelet under Illicit Drug Abuse Variations
Prateekshit Pandey, Richa Singh, Mayank Vatsa
fprateekshit12078, rsingh,
IIIT-Delhi India"
a6ce2f0795839d9c2543d64a08e043695887e0eb,Driver Gaze Region Estimation Without Using Eye Movement,"Driver Gaze Region Estimation
Without Using Eye Movement
Lex Fridman, Philipp Langhans, Joonbum Lee, and Bryan Reimer
Massachusetts Institute of Technology (MIT)"
a6ebe013b639f0f79def4c219f585b8a012be04f,Facial Expression Recognition Based on Hybrid Approach,"Facial Expression Recognition Based on Hybrid
Approach
Md. Abdul Mannan, Antony Lam, Yoshinori Kobayashi, and Yoshinori Kuno
Graduate School of Science and Engineering, Saitama University,
55 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
E-mail"
b97f694c2a111b5b1724eefd63c8d64c8e19f6c9,Group Affect Prediction Using Multimodal Distributions,"Group Affect Prediction Using Multimodal Distributions
Saqib Nizam Shamsi
Aspiring Minds
Bhanu Pratap Singh
Univeristy of Massachusetts, Amherst
Manya Wadhwa
Johns Hopkins University"
b9d0774b0321a5cfc75471b62c8c5ef6c15527f5,Fishy Faces: Crafting Adversarial Images to Poison Face Authentication,"Fishy Faces: Crafting Adversarial Images to Poison Face Authentication
Giuseppe Garofalo
Vera Rimmer
Tim Van hamme
imec-DistriNet, KU Leuven
imec-DistriNet, KU Leuven
imec-DistriNet, KU Leuven
Davy Preuveneers
Wouter Joosen
imec-DistriNet, KU Leuven
imec-DistriNet, KU Leuven"
b9cad920a00fc0e997fc24396872e03f13c0bb9c,Face liveness detection under bad illumination conditions,"FACE LIVENESS DETECTION UNDER BAD ILLUMINATION CONDITIONS
Bruno Peixoto, Carolina Michelassi, and Anderson Rocha
University of Campinas (Unicamp)
Campinas, SP, Brazil"
b908edadad58c604a1e4b431f69ac8ded350589a,Deep Face Feature for Face Alignment,"Deep Face Feature for Face Alignment
Boyi Jiang, Juyong Zhang, Bailin Deng, Yudong Guo and Ligang Liu"
b9f2a755940353549e55690437eb7e13ea226bbf,Unsupervised Feature Learning from Videos for Discovering and Recognizing Actions,"Unsupervised Feature Learning from Videos for Discovering and Recognizing Actions
Carolina Redondo-Cabrera
Roberto J. López-Sastre"
b9cedd1960d5c025be55ade0a0aa81b75a6efa61,Inexact Krylov Subspace Algorithms for Large Matrix Exponential Eigenproblem from Dimensionality Reduction,"INEXACT KRYLOV SUBSPACE ALGORITHMS FOR LARGE
MATRIX EXPONENTIAL EIGENPROBLEM FROM
DIMENSIONALITY REDUCTION
GANG WU∗, TING-TING FENG† , LI-JIA ZHANG‡ , AND MENG YANG§"
b971266b29fcecf1d5efe1c4dcdc2355cb188ab0,On the Reconstruction of Face Images from Deep Face Templates.,"MAI et al.: ON THE RECONSTRUCTION OF FACE IMAGES FROM DEEP FACE TEMPLATES
On the Reconstruction of Face Images from
Deep Face Templates
Guangcan Mai, Kai Cao, Pong C. Yuen∗, Senior Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
a158c1e2993ac90a90326881dd5cb0996c20d4f3,Symmetry as an Intrinsically Dynamic Feature,"OPEN ACCESS
ISSN 2073-8994
Article
Vito Di Gesu 1,2,†, Marco E. Tabacchi 1,3,* and Bertrand Zavidovique 4
DMA, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Italy
CITC, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Itlay
Istituto Nazionale di Ricerche Demopolis, via Col. Romey 7, 91100 Trapani, Italy
IEF, Université Paris IX–Orsay, Paris, France; E-Mail: (B.Z.)
Deceased on 15 March 2009.
* Author to whom correspondence should be addressed; E-Mail:
Received: 4 March 2010; in revised form: 23 March 2010 / Accepted: 29 March 2010 /
Published: 1 April 2010"
a15d9d2ed035f21e13b688a78412cb7b5a04c469,Object Detection Using Strongly-Supervised Deformable Part Models,"Object Detection Using
Strongly-Supervised Deformable Part Models
Hossein Azizpour1 and Ivan Laptev2
Computer Vision and Active Perception Laboratory (CVAP), KTH, Sweden
INRIA, WILLOW, Laboratoire d’Informatique de l’Ecole Normale Superieure"
a1b1442198f29072e907ed8cb02a064493737158,Crowdsourcing Facial Responses to Online Videos,"Crowdsourcing Facial Responses
to Online Videos
Daniel McDuff, Student Member, IEEE, Rana El Kaliouby, Member, IEEE, and
Rosalind W. Picard, Fellow, IEEE"
a15c728d008801f5ffc7898568097bbeac8270a4,ForgetIT Deliverable Template,"www.forgetit-project.eu
ForgetIT
Concise Preservation by Combining Managed Forgetting
nd Contextualized Remembering
Grant Agreement No. 600826
Deliverable D4.4
Work-package
Deliverable
Deliverable Leader
Quality Assessor
Dissemination level
Delivery date in Annex I
Actual delivery date
Revisions
Status
Keywords
Information Consolidation and Con-
entration
D4.4:
Information analysis, consolidation"
a1132e2638a8abd08bdf7fc4884804dd6654fa63,Real-Time Video Face Recognition for Embedded Devices,"Real-Time Video Face Recognition
for Embedded Devices
Gabriel Costache, Sathish Mangapuram, Alexandru
Drimbarean, Petronel Bigioi and Peter Corcoran
Tessera, Galway,
Ireland
. Introduction
This  chapter  will  address  the  challenges  of  real-time  video  face  recognition  systems
implemented  in  embedded  devices.  Topics  to  be  covered  include:  the  importance  and
hallenges of video face recognition in real life scenarios, describing a general architecture of
generic  video  face  recognition  system  and  a  working  solution  suitable  for  recognizing
faces  in  real-time  using  low  complexity  devices.  Each  component  of  the  system  will  be
described  together  with  the  system’s  performance  on  a  database  of  video  samples  that
resembles real life conditions.
. Video face recognition
Face recognition remains a very active topic in computer vision and receives attention from
large  community  of  researchers  in  that  discipline.  Many  reasons  feed  this  interest;  the
main being  the wide range of commercial, law enforcement and security applications that
require  authentication.  The  progress  made  in  recent  years  on  the  methods  and  algorithms
for data processing as well as the availability of new technologies makes it easier to study"
a14ae81609d09fed217aa12a4df9466553db4859,Face Identification Using Large Feature Sets,"REVISED VERSION, JUNE 2011
Face Identification Using Large Feature Sets
William Robson Schwartz, Huimin Guo, Jonghyun Choi, and Larry S. Davis, Fellow, IEEE"
a1f1120653bb1bd8bd4bc9616f85fdc97f8ce892,Latent Embeddings for Zero-Shot Classification,"Latent Embeddings for Zero-shot Classification
Yongqin Xian1, Zeynep Akata1, Gaurav Sharma1,2,∗, Quynh Nguyen3, Matthias Hein3 and Bernt Schiele1
MPI for Informatics
IIT Kanpur
Saarland University"
a1e97c4043d5cc9896dc60ae7ca135782d89e5fc,"Re-identification of Humans in Crowds using Personal, Social and Environmental Constraints","IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Re-identification of Humans in Crowds using
Personal, Social and Environmental Constraints
Shayan Modiri Assari, Member, IEEE, Haroon Idrees, Member, IEEE, and Mubarak Shah, Fellow, IEEE"
ef940b76e40e18f329c43a3f545dc41080f68748,A Face Recognition and Spoofing Detection Adapted to Visually- Impaired People,"Research Article                                                                                                                              Volume 7 Issue No.3
ISSN XXXX XXXX © 2017 IJESC
A Face Recognition and Spoofing Detection Adapted to Visually-
Impaired People
Rutuja R. Dengale1, Bhagyashri S. Deshmukh 2, Anuja R. Mahangade3, Shivani V. Ujja inkar4
K.K Wagh Institute of Engineering and Education Research, Nashik, India
Depart ment of Co mputer Engineering
Abstrac t:
According to estimates by the world Health organization, about 285 million people suffer fro m so me kind of v isual disabilit ies of
which 39 million are  blind, resulting in  0.7 of the word population. As many v isual impaired peoples in  the word they are  unable
to recognize the people who is standing in front of them and some peoples who have problem to re me mbe r na me of the person.
They  can  easily  recognize   the  person  using  this  system.  A   co mputer  vision  technique  and  image  ana lysis  can  help  v isually
the home using face identification and spoofing detection system. This system also provide feature to add newly  known people
nd keep records of all peoples visiting their ho me.
Ke ywor ds: face-recognition, spoofing detection, visually-impaired, system architecture.
INTRODUCTION
The  facia l  ana lysis  can  be  used  to  e xtract  very  useful  and
relevant  information  in   order  to  help  people  with  visual
impairment in several of  its tasks daily providing them with a
greater  degree  of  autonomy  and  security.  Facia l  recognition"
efd308393b573e5410455960fe551160e1525f49,Tracking Persons-of-Interest via Unsupervised Representation Adaptation,"Tracking Persons-of-Interest via
Unsupervised Representation Adaptation
Shun Zhang, Jia-Bin Huang, Jongwoo Lim, Yihong Gong, Jinjun Wang,
Narendra Ahuja, and Ming-Hsuan Yang"
ef230e3df720abf2983ba6b347c9d46283e4b690,QUIS-CAMPI: an annotated multi-biometrics data feed from surveillance scenarios,"Page 1 of 20
QUIS-CAMPI: An Annotated Multi-biometrics Data Feed From
Surveillance Scenarios
João Neves1,*, Juan Moreno2, Hugo Proença3
IT - Instituto de Telecomunicações, University of Beira Interior
Department of Computer Science, University of Beira Interior
IT - Instituto de Telecomunicações, University of Beira Interior"
ef4ecb76413a05c96eac4c743d2c2a3886f2ae07,Modeling the importance of faces in natural images,"Modeling the Importance of Faces in Natural Images
Jin B.a, Yildirim G.a, Lau C.a, Shaji A.a, Ortiz Segovia M.b and S¨usstrunk S.a
EPFL, Lausanne, Switzerland;
Oc´e, Paris, France"
ef032afa4bdb18b328ffcc60e2dc5229cc1939bc,Attribute-enhanced metric learning for face retrieval,"Fang and Yuan EURASIP Journal on Image and Video
Processing  (2018) 2018:44
https://doi.org/10.1186/s13640-018-0282-x
EURASIP Journal on Image
nd Video Processing
RESEARCH
Open Access
Attribute-enhanced metric learning for
face retrieval
Yuchun Fang*
nd Qiulong Yuan"
ef5531711a69ed687637c48930261769465457f0,Studio2Shop: from studio photo shoots to fashion articles,"Studio2Shop: from studio photo shoots to fashion articles
Julia Lasserre1, Katharina Rasch1 and Roland Vollgraf
Zalando Research, Muehlenstr. 25, 10243 Berlin, Germany
Keywords:
omputer vision, deep learning, fashion, item recognition, street-to-shop"
ef559d5f02e43534168fbec86707915a70cd73a0,DeepInsight: Multi-Task Multi-Scale Deep Learning for Mental Disorder Diagnosis,"DING, HUO, HU, LU: DEEPINSIGHT
DeepInsight: Multi-Task Multi-Scale Deep
Learning for Mental Disorder Diagnosis
Mingyu Ding1
Yuqi Huo2
Jun Hu2
Zhiwu Lu1
School of Information
Renmin University of China
Beijing, 100872, China
Beijing Key Laboratory
of Big Data Management
nd Analysis Methods
Beijing, 100872, China"
efa08283656714911acff2d5022f26904e451113,Active Object Localization in Visual Situations,"Active Object Localization in Visual Situations
Max H. Quinn, Anthony D. Rhodes, and Melanie Mitchell"
ef999ab2f7b37f46445a3457bf6c0f5fd7b5689d,Improving face verification in photo albums by combining facial recognition and metadata with cross-matching,"Calhoun: The NPS Institutional Archive
DSpace Repository
Theses and Dissertations
. Thesis and Dissertation Collection, all items
017-12
Improving face verification in photo albums by
ombining facial recognition and metadata
with cross-matching
Bouthour, Khoubeib
Monterey, California: Naval Postgraduate School
http://hdl.handle.net/10945/56868
Downloaded from NPS Archive: Calhoun"
c32fb755856c21a238857b77d7548f18e05f482d,Multimodal Emotion Recognition for Human-Computer Interaction: A Survey,"Multimodal Emotion Recognition for Human-
Computer Interaction: A Survey
School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China.
Michele Mukeshimana, Xiaojuan Ban, Nelson Karani, Ruoyi Liu"
c3beae515f38daf4bd8053a7d72f6d2ed3b05d88,ACL 2014 52nd Annual Meeting of the Association for Computational Linguistics TACL Papers,"ACL201452ndAnnualMeetingoftheAssociationforComputationalLinguisticsTACLPapersJune23-25,2014Baltimore,Maryland,USA"
c3dc4f414f5233df96a9661609557e341b71670d,Utterance independent bimodal emotion recognition in spontaneous communication,"Tao et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:4
http://asp.eurasipjournals.com/content/2011/1/4
RESEARCH
Utterance independent bimodal emotion
recognition in spontaneous communication
Jianhua Tao*, Shifeng Pan, Minghao Yang, Ya Li, Kaihui Mu and Jianfeng Che
Open Access"
c3b3636080b9931ac802e2dd28b7b684d6cf4f8b,Face Recognition via Local Directional Pattern,"International Journal of Security and Its Applications
Vol. 7, No. 2, March, 2013
Face Recognition via Local Directional Pattern
Dong-Ju Kim*, Sang-Heon Lee and Myoung-Kyu Sohn
Division of IT Convergence, Daegu Gyeongbuk Institute of Science & Technology
50-1, Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu, Korea."
c398684270543e97e3194674d9cce20acaef3db3,Comparative Face Soft Biometrics for Human Identification,"Chapter 2
Comparative Face Soft Biometrics for
Human Identification
Nawaf Yousef Almudhahka, Mark S. Nixon and Jonathon S. Hare"
c3285a1d6ec6972156fea9e6dc9a8d88cd001617,Extreme 3D Face Reconstruction: Seeing Through Occlusions,
c3bcc4ee9e81ce9c5c0845f34e9992872a8defc0,A New Scheme for Image Recognition Using Higher-Order Local Autocorrelation and Factor Analysis,"MVA2005  IAPR  Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan
A New Scheme for Image Recognition Using Higher-Order Local
Autocorrelation and Factor Analysis
Naoyuki Nomotoy, Yusuke Shinoharay, Takayoshi Shirakiy, Takumi Kobayashiy, Nobuyuki Otsuy yyy
yThe University of Tokyo
Tokyo, Japan
yyyAIST
Tukuba, Japan
f shiraki, takumi, otsug"
c32383330df27625592134edd72d69bb6b5cff5c,Intrinsic Illumination Subspace for Lighting Insensitive Face Recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 2, APRIL 2012
Intrinsic Illumination Subspace for Lighting
Insensitive Face Recognition
Chia-Ping Chen and Chu-Song Chen, Member, IEEE"
c32f04ccde4f11f8717189f056209eb091075254,Analysis and Synthesis of Behavioural Specific Facial Motion,"Analysis and Synthesis of Behavioural Specific
Facial Motion
Lisa Nanette Gralewski
A dissertation submitted to the University of Bristol in accordance with the requirements
for the degree of Doctor of Philosophy in the Faculty of Engineering, Department of
Computer Science.
February 2007
71657 words"
c317181fa1de2260e956f05cd655642607520a4f,Objective Classes for Micro-Facial Expression Recognition,"Research Article
Research
Article for submission to journal
Subject Areas:
omputer vision, pattern recognition,
feature descriptor
Keywords:
micro-facial expression, expression
recognition, action unit
Moi Hoon Yap
e-mail:
Objective Classes for
Micro-Facial Expression
Recognition
Adrian K. Davison1, Walied Merghani2 and
Moi Hoon Yap3
Centre for Imaging Sciences, University of
Manchester, Manchester, United Kingdom
Sudan University of Science and Technology,
Khartoum, Sudan"
c30e4e4994b76605dcb2071954eaaea471307d80,Feature Selection for Emotion Recognition based on Random Forest,
c37a971f7a57f7345fdc479fa329d9b425ee02be,A Novice Guide towards Human Motion Analysis and Understanding,"A Novice Guide towards Human Motion Analysis and Understanding
Dr. Ahmed Nabil Mohamed"
c3fb2399eb4bcec22723715556e31c44d086e054,Face recognition based on SIGMA sets of image features,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
. INTRODUCTION"
c37de914c6e9b743d90e2566723d0062bedc9e6a,Joint and Discriminative Dictionary Learning for Facial Expression Recognition,"©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-455
Joint  and  Discriminative  Dictionary  Learning
Expression Recognition
for  Facial
Sriram Kumar, Behnaz Ghoraani, Andreas Savakis"
c4f1fcd0a5cdaad8b920ee8188a8557b6086c1a4,The Ignorant Led by the Blind: A Hybrid Human–Machine Vision System for Fine-Grained Categorization,"Int J Comput Vis (2014) 108:3–29
DOI 10.1007/s11263-014-0698-4
The Ignorant Led by the Blind: A Hybrid Human–Machine Vision
System for Fine-Grained Categorization
Steve Branson · Grant Van Horn · Catherine Wah ·
Pietro Perona · Serge Belongie
Received: 7 March 2013 / Accepted: 8 January 2014 / Published online: 20 February 2014
© Springer Science+Business Media New York 2014"
c43862db5eb7e43e3ef45b5eac4ab30e318f2002,Provable Self-Representation Based Outlier Detection in a Union of Subspaces,"Provable Self-Representation Based Outlier Detection in a Union of Subspaces
Chong You, Daniel P. Robinson, Ren´e Vidal
Johns Hopkins University, Baltimore, MD, 21218, USA"
c4dcf41506c23aa45c33a0a5e51b5b9f8990e8ad,Understanding Activity: Learning the Language of Action,"Understanding Activity: Learning the Language of Action
Randal Nelson and Yiannis Aloimonos
Univ. of Rochester and Maryland
.1 Overview
Understanding observed activity is an important
problem, both from the standpoint of practical applications,
nd as a central issue in attempting to describe the
phenomenon of intelligence. On the practical side, there are a
large number of applications that would benefit from
improved machine ability to analyze activity. The most
prominent are various surveillance scenarios. The current
emphasis on homeland security has brought this issue to the
forefront, and resulted in considerable work on mostly low-
level detection schemes. There are also applications in
medical diagnosis and household assistants that, in the long
run, may be even more important. In addition, there are
numerous scientific projects, ranging from monitoring of
weather conditions to observation of animal behavior that
would be facilitated by automatic understanding of activity.
From a scientific standpoint, understanding activity"
c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f,Towards Unconstrained Face Recognition Using 3D Face Model,"Towards Unconstrained Face Recognition
Using 3D Face Model
Zahid Riaz1, M. Saquib Sarfraz2 and Michael Beetz1
Intelligent Autonomous Systems (IAS), Technical University of Munich, Garching
Computer Vision Research Group, COMSATS Institute of Information
Technology, Lahore
Germany
Pakistan
. Introduction
Over the last couple of decades, many commercial systems are available to identify human
faces. However, face recognition is still an outstanding challenge against different kinds of
real world variations especially facial poses, non-uniform lightings and facial expressions.
Meanwhile the face recognition technology has extended its role from biometrics and security
pplications to human robot interaction (HRI). Person identity is one of the key tasks while
interacting with intelligent machines/robots, exploiting the non intrusive system security
nd authentication of the human interacting with the system. This capability further helps
machines to learn person dependent traits and interaction behavior to utilize this knowledge
for tasks manipulation. In such scenarios acquired face images contain large variations which
demands an unconstrained face recognition system.
Fig. 1. Biometric analysis of past few years has been shown in figure showing the"
eac6aee477446a67d491ef7c95abb21867cf71fc,A Survey of Sparse Representation: Algorithms and Applications,"JOURNAL
A survey of sparse representation: algorithms and
pplications
Zheng Zhang, Student Member, IEEE, Yong Xu, Senior Member, IEEE,
Jian Yang, Member, IEEE, Xuelong Li, Fellow, IEEE, and David Zhang, Fellow, IEEE"
ea079334121a0ba89452036e5d7f8e18f6851519,Unsupervised incremental learning of deep descriptors from video streams,"UNSUPERVISED INCREMENTAL LEARNING OF DEEP DESCRIPTORS
FROM VIDEO STREAMS
Federico Pernici and Alberto Del Bimbo
MICC – University of Florence"
eac1b644492c10546a50f3e125a1f790ec46365f,"Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for Action Classification and Detection","Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for
Action Classification and Detection
Mohammadreza Zolfaghari , Gabriel L. Oliveira, Nima Sedaghat, and Thomas Brox
University of Freiburg
Freiburg im Breisgau, Germany"
ea482bf1e2b5b44c520fc77eab288caf8b3f367a,Flexible Orthogonal Neighborhood Preserving Embedding,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
ea6f5c8e12513dbaca6bbdff495ef2975b8001bd,Applying a Set of Gabor Filter to 2D-Retinal Fundus Image to Detect the Optic Nerve Head (ONH),"Applying a Set of Gabor Filter to 2D-Retinal Fundus Image
to Detect the Optic Nerve Head (ONH)
Rached Belgacem1,2*, Hédi Trabelsi2, Ines Malek3, Imed Jabri1
Higher National School of engineering of Tunis, ENSIT, Laboratory LATICE (Information Technology and Communication and
Electrical Engineering LR11ESO4), University of Tunis EL Manar. Adress: ENSIT 5, Avenue Taha Hussein, B. P. : 56, Bab
Menara, 1008 Tunis; 2University of Tunis El-Manar, Tunis with expertise in Mechanic, Optics, Biophysics, Conference Master
ISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis
ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouheïr Safi – 1006; 3Faculty of Medicine of Tunis; Address: 15
Rue Djebel Lakhdhar. La Rabta. 1007, Tunis - Tunisia
Corresponding author:
Rached Belgacem,
High Institute of Medical Technologies
of Tunis, ISTMT, and High National
School Engineering of Tunis,
Information Technology and
Communication Technology and
Electrical Engineering, University of
Tunis El-Manar, ENSIT 5, Avenue Taha
Hussein, B. P.: 56, Bab Menara, 1008
Tunis, Tunisia,"
eafda8a94e410f1ad53b3e193ec124e80d57d095,Observer-Based Measurement of Facial Expression With the Facial Action Coding System,"Jeffrey F. Cohn
Zara Ambadar
Paul Ekman
Observer-Based Measurement of Facial Expression
With the Facial Action Coding System
Facial expression has been a focus of emotion research for over
hundred years (Darwin, 1872/1998). It is central to several
leading theories of emotion (Ekman, 1992; Izard, 1977;
Tomkins, 1962) and has been the focus of at times heated
debate about issues in emotion science (Ekman, 1973, 1993;
Fridlund, 1992; Russell, 1994). Facial expression figures
prominently in research on almost every aspect of emotion,
including psychophysiology (Levenson, Ekman, & Friesen,
990), neural bases (Calder et al., 1996; Davidson, Ekman,
Saron, Senulis, & Friesen, 1990), development (Malatesta,
Culver, Tesman, & Shephard, 1989; Matias & Cohn, 1993),
perception (Ambadar, Schooler, & Cohn, 2005), social pro-
esses (Hatfield, Cacioppo, & Rapson, 1992; Hess & Kirouac,
000), and emotion disorder (Kaiser, 2002; Sloan, Straussa,
Quirka, & Sajatovic, 1997), to name a few."
ea85378a6549bb9eb9bcc13e31aa6a61b655a9af,Template Protection for PCA - LDA - based 3 D Face Recognition System,"Diplomarbeit
Template Protection for PCA-LDA-based 3D
Face Recognition System
Daniel Hartung
Technische Universität Darmstadt
Fachbereich Informatik
Fachgebiet Graphisch-Interaktive Systeme
Fraunhoferstraße 5
64283 Darmstadt
Betreuer: Dipl.-Ing. Xuebing Zhou
Prüfer: Prof. Dr. techn. Dieter W. Fellner"
ea2ee5c53747878f30f6d9c576fd09d388ab0e2b,Viola-Jones Based Detectors: How Much Affects the Training Set?,"Viola-Jones based Detectors: How much affects
the Training Set?
Modesto Castrill´on-Santana, Daniel Hern´andez-Sosa, Javier Lorenzo-Navarro
SIANI
Edif. Central del Parque Cient´ıfico Tecnol´ogico
Universidad de Las Palmas de Gran Canaria
5017 - Spain"
e1f790bbedcba3134277f545e56946bc6ffce48d,Image Retrieval Using Attribute Enhanced Sparse Code Words,"International Journal of Innovative Research in Science,
Engineering and Technology
(An ISO 3297: 2007 Certified Organization)
Vol. 3, Issue 5, May 2014
Sparse Code Words
ISSN: 2319-8753
Image Retrieval Using Attribute Enhanced
M.Balaganesh1, N.Arthi2
Associate Professor, Department of Computer Science and Engineering, SRV Engineering College, sembodai, india1
P.G. Student, Department of Computer Science and Engineering, SRV Engineering College, sembodai, India 2"
e19ebad4739d59f999d192bac7d596b20b887f78,Learning Gating ConvNet for Two-Stream based Methods in Action Recognition,"Learning Gating ConvNet for Two-Stream based Methods in Action
Recognition
Jiagang Zhu1,2, Wei Zou1, Zheng Zhu1,2"
e1d726d812554f2b2b92cac3a4d2bec678969368,Human Action Recognition Bases on Local Action Attributes,"J Electr Eng Technol.2015; 10(?): 30-40
http://dx.doi.org/10.5370/JEET.2015.10.2.030
ISSN(Print)
975-0102
ISSN(Online)  2093-7423
Human Action Recognition Bases on Local Action Attributes
Jing  Zhang*, Hong Liu*, Weizhi Nie† Lekha Chaisorn**, Yongkang Wong**
nd Mohan S Kankanhalli**"
e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2,Ranking with Adaptive Neighbors,"TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214
0?/?? pp???–???
DOI: 10.26599/TST.2018.9010000
Volume 1, Number 1, Septembelr 2018
Ranking with Adaptive Neighbors
Muge Li, Liangyue Li, and Feiping Nie∗"
cd9666858f6c211e13aa80589d75373fd06f6246,A Novel Time Series Kernel for Sequences Generated by LTI Systems,"A Novel Time Series Kernel for
Sequences Generated by LTI Systems
Liliana Lo Presti, Marco La Cascia
V.le delle Scienze Ed.6, DIID, Universit´a degli studi di Palermo, Italy"
cd444ee7f165032b97ee76b21b9ff58c10750570,Table of Contents.,"UNIVERSITY OF CALIFORNIA,
IRVINE
Relational Models for Human-Object Interactions and Object Affordances
DISSERTATION
submitted in partial satisfaction of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
in Computer Science
Chaitanya Desai
Dissertation Committee:
Professor Deva Ramanan, Chair
Professor Charless Fowlkes
Professor Padhraic Smyth
Professor Serge Belongie"
cd596a2682d74bdfa7b7160dd070b598975e89d9,Mood Detection: Implementing a facial expression recognition system,"Mood Detection: Implementing a facial
expression recognition system
Neeraj Agrawal, Rob Cosgriff and Ritvik Mudur
. Introduction
Facial  expressions  play  a  significant  role  in  human  dialogue.  As  a  result,  there  has  been
onsiderable work done on the recognition of emotional expressions and the  application of this
research  will  be  beneficial  in  improving  human-machine  dialogue.  One  can  imagine  the
improvements  to  computer  interfaces,  automated  clinical  (psychological)  research  or  even
interactions between humans and autonomous robots.
Unfortunately,  a  lot  of  the  literature  does  not  focus  on  trying  to  achieve  high  recognition  rates
cross  multiple  databases.  In  this  project  we  develop  our  own  mood  detection  system  that
ddresses  this  challenge.  The  system  involves  pre-processing  image  data  by  normalizing  and
pplying a simple mask, extracting certain (facial) features using PCA and Gabor filters and then
using SVMs for classification and recognition of expressions. Eigenfaces for each class are used
to  determine  class-specific  masks  which  are  then  applied  to  the  image  data  and  used  to  train
multiple,  one  against  the  rest,  SVMs.  We  find  that  simply  using  normalized  pixel  intensities
works well with such an approach.
Figure 1 – Overview of our system design
. Image pre-processing
We performed pre-processing on the images used to train and test our algorithms as follows:"
cda4fb9df653b5721ad4fe8b4a88468a410e55ec,Gabor wavelet transform and its application,"Gabor wavelet transform and its application
Wei-lun Chao R98942073"
cd3005753012409361aba17f3f766e33e3a7320d,Multilinear Biased Discriminant Analysis: A Novel Method for Facial Action Unit Representation,"Multilinear Biased Discriminant Analysis: A Novel Method for Facial
Action Unit Representation
Mahmoud Khademi†, Mehran Safayani†and Mohammad T. Manzuri-Shalmani†
: Sharif University of Tech., DSP Lab,"
cd687ddbd89a832f51d5510c478942800a3e6854,A game to crowdsource data for affective computing,"A Game to Crowdsource Data for Affective Computing
Chek Tien Tan
Hemanta Sapkota
Daniel Rosser
Yusuf Pisan
Games Studio, Faculty of Engineering and IT, University of Technology, Sydney"
cd7a7be3804fd217e9f10682e0c0bfd9583a08db,Women also Snowboard: Overcoming Bias in Captioning Models,"Women also Snowboard:
Overcoming Bias in Captioning Models
Lisa Anne Hendricks * 1 Kaylee Burns * 1 Kate Saenko 2 Trevor Darrell 1 Anna Rohrbach 1"
ccfcbf0eda6df876f0170bdb4d7b4ab4e7676f18,A Dynamic Appearance Descriptor Approach to Facial Actions Temporal Modeling,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JUNE 2011
A Dynamic Appearance Descriptor Approach to
Facial Actions Temporal Modelling
Bihan Jiang, Student Member, IEEE, Michel Valstar, Member, IEEE, Brais Martinez, Member, IEEE, and
Maja Pantic, Fellow, IEEE"
cc3c273bb213240515147e8be68c50f7ea22777c,Gaining Insight Into Films Via Topic Modeling & Visualization,"Gaining Insight Into Films
Via Topic Modeling & Visualization
MISHA RABINOVICH, MFA
YOGESH GIRDHAR, PHD
KEYWORDS Collaboration, computer vision, cultural
nalytics, economy of abundance, interactive data
visualization
We moved beyond misuse when the software actually
ecame useful for film analysis with the addition of audio
nalysis, subtitle analysis, facial recognition, and topic
modeling. Using multiple types of visualizations and
back-and-fourth workflow between people and AI
we arrived at an approach for cultural analytics that
an be used to review and develop film criticism. Finally,
we present ways to apply these techniques to Database
Cinema and other aspects of film and video creation.
PROJECT DATE 2014
URL http://misharabinovich.com/soyummy.html"
cc8e378fd05152a81c2810f682a78c5057c8a735,Expression Invariant Face Recognition System based on Topographic Independent Component Analysis and Inner Product Classifier,"International Journal of Computer Sciences and Engineering    Open Access
Research Paper                                          Volume-5, Issue-12                                          E-ISSN: 2347-2693
Expression Invariant Face Recognition System based on Topographic
Independent Component Analysis and Inner Product Classifier
Aruna Bhat
Department of Electrical Engineering, IIT Delhi, New Delhi, India
*Corresponding Author:
Available online at: www.ijcseonline.org
Received: 07/Nov/2017, Revised: 22/Nov/2017, Accepted: 14/Dec/2017, Published: 31/Dec/2017"
ccf43c62e4bf76b6a48ff588ef7ed51e87ddf50b,Nutraceuticals and Cosmeceuticals for Human Beings–An Overview,"American Journal of Food Science and Health
Vol. 2, No. 2, 2016, pp. 7-17
http://www.aiscience.org/journal/ajfsh
ISSN: 2381-7216 (Print); ISSN: 2381-7224 (Online)
Nutraceuticals and Cosmeceuticals for Human
Beings–An Overview
R. Ramasubramania Raja*
Department of Pharmacognosy, Narayana Pharmacy College, Nellore, India"
cc31db984282bb70946f6881bab741aa841d3a7c,Learning Grimaces by Watching TV,"ALBANIE, VEDALDI: LEARNING GRIMACES BY WATCHING TV
Learning Grimaces by Watching TV
Samuel Albanie
http://www.robots.ox.ac.uk/~albanie
Andrea Vedaldi
http://www.robots.ox.ac.uk/~vedaldi
Engineering Science Department
Univeristy of Oxford
Oxford, UK"
cc91001f9d299ad70deb6453d55b2c0b967f8c0d,Performance Enhancement of Face Recognition in Smart TV Using Symmetrical Fuzzy-Based Quality Assessment,"OPEN ACCESS
ISSN 2073-8994
Article
Performance Enhancement of Face Recognition in Smart TV
Using Symmetrical Fuzzy-Based Quality Assessment
Yeong Gon Kim, Won Oh Lee, Ki Wan Kim, Hyung Gil Hong and Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu,
Seoul 100-715, Korea; E-Mails: (Y.G.K.); (W.O.L.);
(K.W.K.); (H.G.H.)
*  Author to whom correspondence should be addressed; E-Mail:
Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735.
Academic Editor: Christopher Tyler
Received: 31 March 2015 / Accepted: 21 August 2015 / Published: 25 August 2015"
cc96eab1e55e771e417b758119ce5d7ef1722b43,An Empirical Study of Recent Face Alignment Methods,"An Empirical Study of Recent
Face Alignment Methods
Heng Yang, Xuhui Jia, Chen Change Loy and Peter Robinson"
e64b683e32525643a9ddb6b6af8b0472ef5b6a37,Face Recognition and Retrieval in Video,"Face Recognition and Retrieval in Video
Caifeng Shan"
e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227,Pairwise Relational Networks for Face Recognition,"Pairwise Relational Networks for Face
Recognition
Bong-Nam Kang1[0000−0002−6818−7532], Yonghyun Kim2[0000−0003−0038−7850],
nd Daijin Kim1,2[0000−0002−8046−8521]
Department of Creative IT Engineering, POSTECH, Korea
Department of Computer Science and Engineering, POSTECH, Korea"
e6865b000cf4d4e84c3fe895b7ddfc65a9c4aaec,"Tobias Siebenlist , Kathrin Knautz Chapter 15 . The critical role of the cold - start problem and incentive systems in emotional Web 2 . 0 services","Tobias Siebenlist, Kathrin Knautz
Chapter 15. The critical role of the
old-start problem and incentive systems
in emotional Web 2.0 services"
e6d689054e87ad3b8fbbb70714d48712ad84dc1c,Robust Facial Feature Tracking,"Robust Facial Feature Tracking
Fabrice Bourel, Claude C. Chibelushi, Adrian A. Low
School of Computing, Staffordshire University
Stafford ST18 0DG"
e6dc1200a31defda100b2e5ddb27fb7ecbbd4acd,Flexible Manifold Embedding: A Framework for Semi-Supervised and Unsupervised Dimension Reduction,"Flexible Manifold Embedding: A Framework
for Semi-Supervised and Unsupervised
Dimension Reduction
Feiping Nie, Dong Xu, Member, IEEE, Ivor Wai-Hung Tsang, and Changshui Zhang, Member, IEEE
, the linear regression function ("
e6e5a6090016810fb902b51d5baa2469ae28b8a1,Energy-Efficient Deep In-memory Architecture for NAND Flash Memories,"Title
Energy-Efficient Deep In-memory Architecture for NAND
Flash Memories
Archived version
Accepted manuscript: the content is same as the published
paper but without the final typesetting by the publisher
Published version
Published paper
Authors (contact)
0.1109/ISCAS.2018.8351458"
e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5,Improving Facial Landmark Detection via a Super-Resolution Inception Network,"Improving Facial Landmark Detection via a
Super-Resolution Inception Network
Martin Knoche, Daniel Merget, Gerhard Rigoll
Institute for Human-Machine Communication
Technical University of Munich, Germany"
f9784db8ff805439f0a6b6e15aeaf892dba47ca0,"Comparing the performance of Emotion-Recognition Implementations in OpenCV, Cognitive Services, and Google Vision APIs","Comparing the performance of Emotion-Recognition Implementations
in OpenCV, Cognitive Services, and Google Vision APIs
LUIS ANTONIO BELTRÁN PRIETO, ZUZANA KOMÍNKOVÁ OPLATKOVÁ
Department of Informatics and Artificial Intelligence
Tomas Bata University in Zlín
Nad Stráněmi 4511, 76005, Zlín
CZECH REPUBLIC"
f935225e7811858fe9ef6b5fd3fdd59aec9abd1a,Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces.,"www.elsevier.com/locate/ynimg
Spatiotemporal dynamics and connectivity pattern differences
etween centrally and peripherally presented faces
Lichan Liu and Andreas A. Ioannides*
Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan
Received 4 May 2005; revised 26 January 2006; accepted 6 February 2006
Available online 24 March 2006
Most neuroimaging studies on face processing used centrally presented
images with a relatively large visual field. Images presented in this way
ctivate widespread striate and extrastriate areas and make it difficult
to study spatiotemporal dynamics and connectivity pattern differences
from various parts of the visual field. Here we studied magneto-
encephalographic responses in humans to centrally and peripherally
presented faces for testing the hypothesis that processing of visual
stimuli with facial expressions of emotions depends on where the
stimuli are presented in the visual field. Using our tomographic and
statistical parametric mapping analyses, we identified occipitotemporal
reas activated by face stimuli more than by control conditions. V1/V2
ctivity was significantly stronger for lower than central and upper
visual field presentation. Fusiform activity, however, was significantly"
f93606d362fcbe62550d0bf1b3edeb7be684b000,Nearest Neighbor Classifier Based on Nearest Feature Decisions,"The Computer Journal Advance Access published February 1, 2012
© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email:
doi:10.1093/comjnl/bxs001
Nearest Neighbor Classifier Based
on Nearest Feature Decisions
Alex Pappachen James1,∗ and Sima Dimitrijev2
Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and
Queensland Micro- and Nanotechnology Centre and Griffith School of Engineering, Griffith University,
Management, Kerala, India
Nathan, Australia
Corresponding author:
High feature dimensionality of realistic datasets adversely affects the recognition accuracy of nearest
neighbor (NN) classifiers. To address this issue, we introduce a nearest feature classifier that shifts
the NN concept from the global-decision level to the level of individual features. Performance
omparisons with 12 instance-based classifiers on 13 benchmark University of California Irvine
lassification datasets show average improvements of 6 and 3.5% in recognition accuracy and
rea under curve performance measures, respectively. The statistical significance of the observed
performance improvements is verified by the Friedman test and by the post hoc Bonferroni–Dunn
test. In addition, the application of the classifier is demonstrated on face recognition databases, a"
f997a71f1e54d044184240b38d9dc680b3bbbbc0,Deep Cross Modal Learning for Caricature Verification and Identification(CaVINet),"Deep Cross Modal Learning for Caricature Verification and
Identification(CaVINet)
https://lsaiml.github.io/CaVINet/
Jatin Garg∗
Indian Institute of Technology Ropar
Himanshu Tolani∗
Indian Institute of Technology Ropar
Skand Vishwanath Peri∗
Indian Institute of Technology Ropar
Narayanan C Krishnan
Indian Institute of Technology Ropar"
f9d1f12070e5267afc60828002137af949ff1544,Maximum Entropy Binary Encoding for Face Template Protection,"Maximum Entropy Binary Encoding for Face Template Protection
Rohit Kumar Pandey
Yingbo Zhou
Bhargava Urala Kota
Venu Govindaraju
University at Buffalo, SUNY
{rpandey, yingbozh, buralako,"
f0cee87e9ecedeb927664b8da44b8649050e1c86,Image Ordinal Classification and Understanding: Grid Dropout with Masking Label,"label:(1, 0, 1, 0, 1, 1, 1, 1, 1)Masking label:(0, 1, 1, 1, 0, 1, 1, 1, 1)Entire imageInput imageNeuron dropout’s gradCAMGrid dropout’s gradCAMFig.1.Above:imageordinalclassificationwithrandomlyblackoutpatches.Itiseasyforhumantorecognizetheageregardlessofthemissingpatches.Themaskinglabelisalsousefultoimageclassification.Bottom:griddropout’sgrad-CAMisbetterthanthatofneurondropout.Thatistosay,griddropoutcanhelplearningfeaturerepresentation.problem[1].Withtheproliferationofconvolutionalneuralnetwork(CNN),workshavebeencarriedoutonordinalclas-sificationwithCNN[1][2][3].Thoughgoodperformanceshavebeenloggedwithmoderndeeplearningapproaches,therearetwoproblemsinimageordinalclassification.Ononehand,theamountofordinaltrainingdataisverylim-itedwhichprohibitstrainingcomplexmodelsproperly,andtomakemattersworse,collectinglargetrainingdatasetwithordinallabelisdifficult,evenharderthanlabellinggenericdataset.Therefore,insufficienttrainingdataincreasestheriskofoverfitting.Ontheotherhand,lessstudiesareconductedtounderstandwhatdeepmodelshavelearnedonordinaldata978-1-5386-1737-3/18/$31.00c(cid:13)2018IEEE"
f0f4f16d5b5f9efe304369120651fa688a03d495,Temporal Generative Adversarial Nets,"Temporal Generative Adversarial Nets
Masaki Saito∗
Eiichi Matsumoto∗
Preferred Networks inc., Japan
{msaito,"
f0ae807627f81acb63eb5837c75a1e895a92c376,Facial Landmark Detection using Ensemble of Cascaded Regressions,"International Journal of Emerging Engineering Research and Technology
Volume 3, Issue 12, December 2015, PP 128-133
ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online)
Facial  Landmark  Detection  using  Ensemble  of  Cascaded
Regressions
Martin Penev1*, Ognian Boumbarov2
Faculty of Telecommunications, Technical University, Sofia, Bulgaria
Faculty of Telecommunications, Technical University, Sofia, Bulgaria"
f0a3f12469fa55ad0d40c21212d18c02be0d1264,Sparsity Sharing Embedding for Face Verification,"Sparsity Sharing Embedding for Face
Verification
Donghoon Lee, Hyunsin Park, Junyoung Chung,
Youngook Song, and Chang D. Yoo
Department of Electrical Engineering, KAIST, Daejeon, Korea"
f740bac1484f2f2c70777db6d2a11cf4280081d6,Soft Locality Preserving Map (SLPM) for Facial Expression Recognition,"Soft Locality Preserving Map (SLPM) for Facial Expression
Recognition
Cigdem Turana,*, Kin-Man Lama, Xiangjian Heb
Centre for Signal Processing, Department of Electronic and Information Engineering, The Hong
Kong Polytechnic University, Kowloon, Hong Kong
Computer Science, School of Electrical and Data Engineering, University of Technology, Sydney,
Australia
E-mail addresses: (C. Turan), (K.-M. Lam),
(X. He)"
f79c97e7c3f9a98cf6f4a5d2431f149ffacae48f,Title On color texture normalization for active appearance models,"Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published
version when available.
Title
On color texture normalization for active appearance models
Author(s)
Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile
Publication
009-05-12
Publication
Information
Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color
Texture Normalization for Active Appearance Models. Image
Processing, IEEE Transactions on, 18(6), 1372-1378.
Publisher
Link to
publisher's
version
http://dx.doi.org/10.1109/TIP.2009.2017163
Item record
http://hdl.handle.net/10379/1350"
f7dcadc5288653ec6764600c7c1e2b49c305dfaa,Interactive Image Search with Attributes by,"Copyright
Adriana Ivanova Kovashka"
f7de943aa75406fe5568fdbb08133ce0f9a765d4,Biometric Identification and Surveillance1,"Project 1.5: Human Identification at a Distance - Hornak, Adjeroh, Cukic, Gautum, & Ross
Project 1.5
Biometric Identification and Surveillance1
Don Adjeroh, Bojan Cukic, Arun Ross – West Virginia University
Year 5 Deliverable
Technical Report:
Research Challenges in Biometrics
Indexed biography of relevant biometric research literature
Donald Adjeroh, Bojan Cukic, Arun Ross
April, 2014
""This research was supported by the United States Department of Homeland Security through the National Center for Border Security
nd Immigration (BORDERS) under grant number 2008-ST-061-BS0002. However, any opinions, findings, and conclusions or
recommendations in this document are those of the authors and do not necessarily reflect views of the United States Department of
Homeland Security."""
f75852386e563ca580a48b18420e446be45fcf8d,Illumination Invariant Face Recognition,"ILLUMINATION INVARIANT FACE RECOGNITION
Raghuraman Gopalan
ENEE 631: Digital Image and Video Processing
Instructor: Dr. K. J. Ray Liu
Term Project - Spring 2006
INTRODUCTION
The  performance  of  the  Face  Recognition  algorithms  is  severely  affected  by  two
important  factors:  the  change  in  Pose  and  Illumination  conditions  of  the  subjects.  The
hanges in Illumination conditions of the subjects can be so drastic that, the variation in
lighting will be of the similar order as that of the variation due to the change in subjects
[1] and this can result in misclassification.
For example, in the acquisition of the face of a person from a real time video, the
mbient  conditions  will  cause  different  lighting  variations  on  the  tracked  face.  Some
examples  of  images  with  different  illumination  conditions  are  shown  in  Fig.  1.  In  this
project, we study some algorithms that are capable of performing Illumination Invariant
Face Recognition. The performances of these algorithms were compared on the CMU-
Illumination dataset [13], by using the entire face as the input to the algorithms. Then, a
model  of  dividing  the  face  into  four  regions  is  proposed  and  the  performance  of  the
lgorithms on these new features is analyzed."
f77c9bf5beec7c975584e8087aae8d679664a1eb,Local Deep Neural Networks for Age and Gender Classification,"Local Deep Neural Networks for Age and Gender Classification
Zukang Liao, Stavros Petridis, Maja Pantic
March 27, 2017"
f7ba77d23a0eea5a3034a1833b2d2552cb42fb7a,LOTS about attacking deep features,"This is a pre-print of the original paper accepted at the International Joint Conference on Biometrics (IJCB) 2017.
LOTS about Attacking Deep Features
Andras Rozsa, Manuel G¨unther, and Terrance E. Boult
Vision and Security Technology (VAST) Lab
University of Colorado, Colorado Springs, USA"
e8686663aec64f4414eba6a0f821ab9eb9f93e38,Improving shape-based face recognition by means of a supervised discriminant Hausdorff distance,"IMPROVING SHAPE-BASED FACE RECOGNITION BY MEANS OF A SUPERVISED
DISCRIMINANT HAUSDORFF DISTANCE
J.L. Alba
, A. Pujol
, A. L´opez
nd J.J. Villanueva
Signal Theory and Communications Department, University of Vigo, Spain
Centre de Visio per Computador, Universitat Autonoma de Barcelona, Spain
Digital Pointer MVT"
e8fdacbd708feb60fd6e7843b048bf3c4387c6db,Deep Learning,"Deep Learning
Andreas Eilschou
Hinnerup Net A/S
www.hinnerup.net
July 4, 2014
Introduction
Deep learning is a topic in the field of artificial intelligence (AI) and is a relatively
new research area although based on the popular artificial neural networks (supposedly
mirroring brain function). With the development of the perceptron in the 1950s and
960s by Frank RosenBlatt, research began on artificial neural networks. To further
mimic the architectural depth of the brain, researchers wanted to train a deep multi-
layer neural network – this, however, did not happen until Geoffrey Hinton in 2006
introduced Deep Belief Networks [1].
Recently, the topic of deep learning has gained public interest. Large web companies such
s Google and Facebook have a focused research on AI and an ever increasing amount
of compute power, which has led to researchers finally being able to produce results
that are of interest to the general public. In July 2012 Google trained a deep learning
network on YouTube videos with the remarkable result that the network learned to
recognize humans as well as cats [6], and in January this year Google successfully used
deep learning on Street View images to automatically recognize house numbers with"
e8b2a98f87b7b2593b4a046464c1ec63bfd13b51,CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection,"CMS-RCNN: Contextual Multi-Scale
Region-based CNN for Unconstrained Face
Detection
Chenchen Zhu*, Student, IEEE, Yutong Zheng*, Student, IEEE,
Khoa Luu, Member, IEEE, Marios Savvides, Senior Member, IEEE"
e8d1b134d48eb0928bc999923a4e092537e106f6,Weighted Multi-region Convolutional Neural Network for Action Recognition with Low-latency Online Prediction,"WEIGHTED MULTI-REGION CONVOLUTIONAL NEURAL NETWORK FOR ACTION
RECOGNITION WITH LOW-LATENCY ONLINE PREDICTION
Yunfeng Wang(cid:63), Wengang Zhou(cid:63), Qilin Zhang†, Xiaotian Zhu(cid:63), Houqiang Li(cid:63)
(cid:63)University of Science and Technology of China, Hefei, Anhui, China
HERE Technologies, Chicago, Illinois, USA"
e8c6c3fc9b52dffb15fe115702c6f159d955d308,Linear Subspace Learning for Facial Expression Analysis,"Linear Subspace Learning for
Facial Expression Analysis
Caifeng Shan
Philips Research
The Netherlands
. Introduction
Facial  expression,  resulting  from  movements  of  the  facial  muscles,  is  one  of  the  most
powerful, natural, and immediate means for human beings to communicate their emotions
nd intentions. Some examples of facial expressions are shown in Fig. 1. Darwin (1872) was
the  first  to  describe  in  detail  the  specific  facial  expressions  associated  with  emotions  in
nimals  and  humans;  he  argued  that  all  mammals  show  emotions  reliably  in  their  faces.
Psychological  studies  (Mehrabian,  1968;  Ambady  &  Rosenthal,  1992)  indicate  that  facial
expressions, with other non-verbal cues, play a major and fundamental role in face-to-face
ommunication.
Fig. 1. Facial expressions of George W. Bush.
Machine  analysis  of  facial  expressions,  enabling  computers  to  analyze  and  interpret  facial
expressions  as  humans  do,  has  many  important  applications  including  intelligent  human-
omputer  interaction,  computer  animation,  surveillance  and  security,  medical  diagnosis,
law  enforcement,  and  awareness  system  (Shan,  2007).  Driven  by  its  potential  applications
nd  theoretical  interests  of  cognitive  and  psychological  scientists,  automatic  facial"
fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6,Draft: Evaluation Guidelines for Gender Classification and Age Estimation,"Draft: Evaluation Guidelines for Gender
Classification and Age Estimation
Tobias Gehrig, Matthias Steiner, Hazım Kemal Ekenel
{tobias.gehrig,
July 1, 2011
Introduction
In previous research on gender classification and age estimation did not use a
standardised evaluation procedure. This makes comparison the different ap-
proaches dif‌f‌icult.
Thus we propose here a benchmarking and evaluation protocol for gender
lassification as well as age estimation to set a common ground for future re-
search in these two areas.
The evaluations are designed such that there is one scenario under controlled
labratory conditions and one under uncontrolled real life conditions.
The datasets were selected with the criteria of being publicly available for
research purposes.
File lists for the folds corresponding to the individual benchmarking proto-
ols will be provided over our website at http://face.cs.kit.edu/befit. We
will provide two kinds of folds for each of the tasks and conditions: one set of
folds using the whole dataset and one set of folds using a reduced dataset, which"
fa08a4da5f2fa39632d90ce3a2e1688d147ece61,Supplementary material for “ Unsupervised Creation of Parameterized Avatars ” 1 Summary of Notations,"Supplementary material for
“Unsupervised Creation of Parameterized Avatars”
Summary of Notations
Tab. 1 itemizes the symbols used in the submission. Fig. 2,3,4 of the main text illustrate many of these
symbols.
DANN results
Fig. 1 shows side by side samples of the original image and the emoji generated by the method of [1].
As can be seen, these results do not preserve the identity very well, despite considerable effort invested in
finding suitable architectures.
Multiple Images Per Person
Following [4], we evaluate the visual quality that is obtained per person and not just per image, by testing
TOS on the Facescrub dataset [3]. For each person p, we considered the set of their images Xp, and selected
the emoji that was most similar to their source image, i.e., the one for which:
||f (x) − f (e(c(G(x))))||.
rgmin
Fig. 2 depicts the results obtained by this selection method on sample images form the Facescrub dataset
(it is an extension of Fig. 7 of the main text). The figure also shows, for comparison, the DTN [4] result for
the same image.
Detailed Architecture of the Various Networks
In this section we describe the architectures of the networks used in for the emoji and avatar experiments."
fa24bf887d3b3f6f58f8305dcd076f0ccc30272a,Interval Insensitive Loss for Ordinal Classification,"JMLR: Workshop and Conference Proceedings 39:189–204, 2014
ACML 2014
Interval Insensitive Loss for Ordinal Classification
Kostiantyn Antoniuk
Vojtˇech Franc
V´aclav Hlav´aˇc
Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech
Technical University in Prague, Technick´a 2, 166 27 Prague 6 Czech Republic
Editor: Dinh Phung and Hang Li"
fafe69a00565895c7d57ad09ef44ce9ddd5a6caa,Gaussian Mixture Models for Human Face Recognition under Illumination Variations,"Applied Mathematics, 2012, 3, 2071-2079
http://dx.doi.org/10.4236/am.2012.312A286 Published Online December 2012 (http://www.SciRP.org/journal/am)
Gaussian Mixture Models for Human Face Recognition
under Illumination Variations
Information Systems and Decision Sciences Department, Mihaylo College of Business and Economics,
California State University, Fullerton, USA
Email:
Sinjini Mitra
Received August 18, 2012; revised September 18, 2012; accepted September 25, 2012"
faca1c97ac2df9d972c0766a296efcf101aaf969,Sympathy for the Details: Dense Trajectories and Hybrid Classification Architectures for Action Recognition,"Sympathy for the Details: Dense Trajectories and Hybrid
Classification Architectures for Action Recognition
C´esar Roberto de Souza1,2, Adrien Gaidon1, Eleonora Vig3, Antonio Manuel L´opez2
Computer Vision Group, Xerox Research Center Europe, Meylan, France
Centre de Visi´o per Computador, Universitat Aut`onoma de Barcelona, Bellaterra, Spain
German Aerospace Center, Wessling, Germany
{cesar.desouza,"
fab60b3db164327be8588bce6ce5e45d5b882db6,Maximum A Posteriori Estimation of Distances Between Deep Features in Still-to-Video Face Recognition,"Maximum A Posteriori Estimation of Distances
Between Deep Features in Still-to-Video Face
Recognition
Andrey V. Savchenko
National Research University Higher School of Economics
Laboratory of Algorithms and Technologies for Network Analysis,
6 Rodionova St., Nizhny Novgorod, Russia
Natalya S. Belova
National Research University Higher School of Economics
0 Myasnitskaya St., Moscow, Russia
September 2, 2018"
fad895771260048f58d12158a4d4d6d0623f4158,Audio-visual emotion recognition for natural human-robot interaction,"Audio-Visual Emotion
Recognition For Natural
Human-Robot Interaction
Dissertation zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
vorgelegt von
Ahmad Rabie
n der Technischen Fakultät der Universität Bielefeld
5. März 2010"
ff8315c1a0587563510195356c9153729b533c5b,Zapping Index:Using Smile to Measure Advertisement Zapping Likelihood,"Zapping Index:Using Smile to Measure
Advertisement Zapping Likelihood
Songfan Yang, Member, IEEE, Mehran Kafai, Member, IEEE,
Le An, Student Member, IEEE, and Bir Bhanu, Fellow, IEEE"
ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a,Towards Video Captioning with Naming: A Novel Dataset and a Multi-modal Approach,"Towards Video Captioning with Naming: a
Novel Dataset and a Multi-Modal Approach
Stefano Pini, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
Dipartimento di Ingegneria “Enzo Ferrari”
Universit`a degli Studi di Modena e Reggio Emilia"
fffefc1fb840da63e17428fd5de6e79feb726894,Fine-Grained Age Estimation in the wild with Attention LSTM Networks,"Fine-Grained Age Estimation in the wild with
Attention LSTM Networks
Ke Zhang, Member, IEEE, Na Liu, Xingfang Yuan, Student Member, IEEE, Xinyao Guo, Ce Gao,
nd Zhenbing Zhao Member, IEEE,"
ff398e7b6584d9a692e70c2170b4eecaddd78357,Title of dissertation : FACE RECOGNITION AND VERIFICATION IN UNCONSTRAINED ENVIRIONMENTS,
ffd81d784549ee51a9b0b7b8aaf20d5581031b74,Performance Analysis of Retina and DoG Filtering Applied to Face Images for Training Correlation Filters,"Performance Analysis of Retina and DoG
Filtering Applied to Face Images for Training
Correlation Filters
Everardo Santiago Ram(cid:19)(cid:16)rez1, Jos(cid:19)e (cid:19)Angel Gonz(cid:19)alez Fraga1, Omar (cid:19)Alvarez
Xochihua1, Everardo Gutierrez L(cid:19)opez1, and Sergio Omar Infante Prieto2
Facultad de Ciencias, Universidad Aut(cid:19)onoma de Baja California,
Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia Playitas,
Ensenada, Baja California, C.P. 22860
{everardo.santiagoramirez,angel_fraga,
Facultad de Ingenier(cid:19)(cid:16)a, Arquitectura y Dise~no, Universidad Aut(cid:19)onoma de Baja
California, Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia
Playitas, Ensenada, Baja California, C.P. 22860"
ff01bc3f49130d436fca24b987b7e3beedfa404d,Fuzzy System-Based Face Detection Robust to In-Plane Rotation Based on Symmetrical Characteristics of a Face,"Article
Fuzzy System-Based Face Detection Robust to
In-Plane Rotation Based on Symmetrical
Characteristics of a Face
Hyung Gil Hong, Won Oh Lee, Yeong Gon Kim, Ki Wan Kim, Dat Tien Nguyen and
Kang Ryoung Park *
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; (H.G.H.); (W.O.L.); (Y.G.K.);
(K.W.K.); (D.T.N.)
* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735
Academic Editor: Angel Garrido
Received: 15 June 2016; Accepted: 29 July 2016; Published: 3 August 2016"
ffc9d6a5f353e5aec3116a10cf685294979c63d9,Eigenphase-based face recognition: a comparison of phase- information extraction methods,"Eigenphase-based face recognition: a comparison of phase-
information extraction methods
Slobodan Ribarić, Marijo Maračić
Faculty of Electrical Engineering and Computing,
University of Zagreb, Unska 3, 10 000 Zagreb
E-mail:"
ff8ef43168b9c8dd467208a0b1b02e223b731254,BreakingNews: Article Annotation by Image and Text Processing,"BreakingNews: Article Annotation by
Image and Text Processing
Arnau Ramisa*, Fei Yan*, Francesc Moreno-Noguer,
nd Krystian Mikolajczyk"
ff9195f99a1a28ced431362f5363c9a5da47a37b,Serial dependence in the perception of attractiveness,"Journal of Vision (2016) 16(15):28, 1–8
Serial dependence in the perception of attractiveness
Ye Xia
Department of Psychology, University of California,
Berkeley, CA, USA
Allison Yamanashi Leib
Department of Psychology, University of California,
Berkeley, CA, USA
David Whitney
Department of Psychology, University of California,
Berkeley, CA, USA
Helen Wills Neuroscience Institute, University of
California, Berkeley, CA, USA
Vision Science Group, University of California,
Berkeley, CA, USA
The perception of attractiveness is essential for choices
of food, object, and mate preference. Like perception of
other visual features, perception of attractiveness is
stable despite constant changes of image properties due
to factors like occlusion, visual noise, and eye"
ffcbedb92e76fbab083bb2c57d846a2a96b5ae30,Sparse Dictionary Learning and Domain Adaptation for Face and Action Recognition,
ff7bc7a6d493e01ec8fa2b889bcaf6349101676e,Facial expression recognition with spatiotemporal local descriptors_v3.rtf,"Facial expression recognition with spatiotemporal local
descriptors
Guoying Zhao, Matti Pietikäinen
Machine  Vision  Group,  Infotech  Oulu  and  Department  of  Electrical  and
Information Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland
{gyzhao,"
ff46c41e9ea139d499dd349e78d7cc8be19f936c,A Novel Method for Movie Character Identification and its Facial Expression Recognition,"International Journal of Modern Engineering Research (IJMER)
www.ijmer.com              Vol.3, Issue.3, May-June. 2013 pp-1339-1342             ISSN: 2249-6645
A Novel Method for Movie Character Identification and its
Facial Expression Recognition
M. Dharmateja Purna, 1 N. Praveen2
M.Tech, Sri Sunflower College of Engineering & Technology, Lankapalli
Asst. Professor, Dept. of ECE, Sri Sunflower College of Engineering & Technology, Lankapalli"
ff5dd6f96e108d8233220cc262bc282229c1a582,Robust Facial Marks Detection Method Using AAM And SURF,"Ziaul Haque Choudhury, K.M. Mehata / International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622   www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.708-715
Robust Facial Marks Detection Method Using AAM And SURF
Ziaul Haque Choudhury, K.M. Mehata
Dept. of Information Technology, B.S. Abdur Rahman University, Chennai-48, India
Dept. of Computer Science & Engineering, B.S. Abdur Rahman University, Chennai-48, India"
c588c89a72f89eed29d42f34bfa5d4cffa530732,Attributes2Classname: A Discriminative Model for Attribute-Based Unsupervised Zero-Shot Learning,"Attributes2Classname: A discriminative model for attribute-based
unsupervised zero-shot learning
Berkan Demirel1,3, Ramazan Gokberk Cinbis2, Nazli Ikizler-Cinbis3
HAVELSAN Inc., 2Bilkent University, 3Hacettepe University"
c574c72b5ef1759b7fd41cf19a9dcd67e5473739,"COGNIMUSE: a multimodal video database annotated with saliency, events, semantics and emotion with application to summarization","Zlatintsi et al. EURASIP Journal on Image and Video Processing  (2017) 2017:54
DOI 10.1186/s13640-017-0194-1
EURASIP Journal on Image
nd Video Processing
RESEARCH
Open Access
COGNIMUSE: a multimodal video
database annotated with saliency, events,
semantics and emotion with application to
summarization
Athanasia Zlatintsi1*
Niki Efthymiou1, Katerina Pastra4, Alexandros Potamianos1 and Petros Maragos1
, Petros Koutras1, Georgios Evangelopoulos2, Nikolaos Malandrakis3,"
c5a561c662fc2b195ff80d2655cc5a13a44ffd2d,Using Language to Learn Structured Appearance Models for Image Annotation,"Using Language to Learn Structured Appearance
Models for Image Annotation
Michael Jamieson, Student Member, IEEE, Afsaneh Fazly, Suzanne Stevenson, Sven Dickinson, Member, IEEE,
Sven Wachsmuth, Member, IEEE"
c5c379a807e02cab2e57de45699ababe8d13fb6d,Facial Expression Recognition Using Sparse Representation,"Facial Expression Recognition Using Sparse Representation
SHIQING ZHANG 1, XIAOMING ZHAO 2, BICHENG LEI 1
School of Physics and Electronic Engineering
Taizhou University
Taizhou 318000
CHINA
2Department of Computer Science
Taizhou University
Taizhou 318000
CHINA"
c5ea084531212284ce3f1ca86a6209f0001de9d1,Audio-visual speech processing for multimedia localisation,"Audio-Visual Speech Processing for
Multimedia Localisation
Matthew Aaron Benatan
Submitted in accordance with the requirements
for the degree of Doctor of Philosophy
The University of Leeds
School of Computing
September 2016"
c5844de3fdf5e0069d08e235514863c8ef900eb7,A Study on Similarity Computations in Template Matching Technique for Identity Verification,"Lam S K et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2659-2665
A Study on Similarity Computations in Template
Matching Technique for Identity Verification
Lam, S. K., Yeong, C. Y., Yew, C. T., Chai, W. S., Suandi, S. A.
Intelligent Biometric Group, School of Electrical and Electronic Engineering
Engineering Campus, Universiti Sains Malaysia
4300 Nibong Tebal, Pulau Pinang, MALAYSIA
Email:"
c590c6c171392e9f66aab1bce337470c43b48f39,Emotion Recognition by Machine Learning Algorithms using Psychophysiological Signals,"Emotion Recognition by Machine Learning Algorithms using
Psychophysiological Signals
Eun-Hye Jang, 2Byoung-Jun Park, 3Sang-Hyeob Kim, 4Jin-Hun Sohn
, 2, 3 BT Convergence Technology Research Department, Electronics and Telecommunications
Research Institute, 138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Republic of Korea,
*4Department of Psychology/Brain Research Institute, Chungnam National University 220,
Gung-dong, Yuseong-gu, Daejeon, 305-765, Republic of Korea,"
c2c3ff1778ed9c33c6e613417832505d33513c55,"Multimodal Biometric Person Authentication Using Fingerprint, Face Features","Multimodal Biometric Person Authentication
Using Fingerprint, Face Features
Tran Binh Long1, Le Hoang Thai2, and Tran Hanh1
Department of Computer Science, University of Lac Hong 10 Huynh Van Nghe,
DongNai 71000, Viet Nam
Department of Computer Science, Ho Chi Minh City University of Science
27 Nguyen Van Cu, HoChiMinh 70000, Viet Nam"
c27f64eaf48e88758f650e38fa4e043c16580d26,Title of the proposed research project: Subspace analysis using Locality Preserving Projection and its applications for image recognition,"Title of the proposed research project: Subspace analysis using Locality Preserving
Projection and its applications for image recognition
Research area: Data manifold learning for pattern recognition
Contact Details:
Name: Gitam C Shikkenawis
Email Address:
University:  Dhirubhai  Ambani  Institute  of  Information  and  Communication  Technology
(DA-IICT), Gandhinagar."
c220f457ad0b28886f8b3ef41f012dd0236cd91a,Crystal Loss and Quality Pooling for Unconstrained Face Verification and Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Crystal Loss and Quality Pooling for
Unconstrained Face Verification and Recognition
Rajeev Ranjan, Member, IEEE, Ankan Bansal, Hongyu Xu, Member, IEEE,
Swami Sankaranarayanan, Member, IEEE, Jun-Cheng Chen, Member, IEEE,
Carlos D Castillo, Member, IEEE, and Rama Chellappa, Fellow, IEEE"
c254b4c0f6d5a5a45680eb3742907ec93c3a222b,A Fusion-based Gender Recognition Method Using Facial Images,"A Fusion-based Gender Recognition Method
Using Facial Images
Benyamin Ghojogh, Saeed Bagheri Shouraki, Hoda Mohammadzade*, Ensieh Iranmehr"
c2e6daebb95c9dfc741af67464c98f1039127627,Efficient Measuring of Facial Action Unit Activation Intensities using Active Appearance Models,"MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN
Ef‌f‌icient Measuring of Facial Action Unit Activation Intensities
using Active Appearance Models
Daniel Haase1, Michael Kemmler1, Orlando Guntinas-Lichius2, Joachim Denzler1
Computer Vision Group, Friedrich Schiller University of Jena, Germany
Department of Otolaryngology, University Hospital Jena, Germany"
f6f06be05981689b94809130e251f9e4bf932660,An Approach to Illumination and Expression Invariant Multiple Classifier Face Recognition,"An Approach to Illumination and Expression Invariant
International Journal of Computer Applications (0975 – 8887)
Volume 91 – No.15, April 2014
Multiple Classifier Face Recognition
Dalton Meitei Thounaojam
National Institute of Technology
Silchar
Assam: 788010
India
Hidangmayum Saxena Devi
National Institute of Technology
Silchar
Assam: 788010
India
Romesh Laishram
Manipur Institute of Technology
Imphal West: 795001
India"
f6742010372210d06e531e7df7df9c01a185e241,Dimensional Affect and Expression in Natural and Mediated Interaction,"Dimensional Affect and Expression in
Natural and Mediated Interaction
Michael J. Lyons
Ritsumeikan, University
Kyoto, Japan
October, 2007"
f6ca29516cce3fa346673a2aec550d8e671929a6,Algorithm for Face Matching Using Normalized Cross - Correlation,"International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013
Algorithm for Face Matching Using Normalized
Cross-Correlation
C. Saravanan, M. Surender"
f67a73c9dd1e05bfc51219e70536dbb49158f7bc,A Gaussian Mixture Model for Classifying the Human Age using DWT and Sammon Map,"Journal of Computer Science 10 (11): 2292-2298, 2014
ISSN: 1549-3636
© 2014 Nithyashri and Kulanthaivel, This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
A GAUSSIAN MIXTURE MODEL FOR CLASSIFYING THE
HUMAN AGE USING DWT AND SAMMON MAP
J. Nithyashri and 2G. Kulanthaivel
Department of Computer Science and Engineering, Sathyabama University, Chennai, India
Department of Electronics Engineering, NITTTR, Chennai, India
Received 2014-05-08; Revised 2014-05-23; Accepted 2014-11-28"
f6c70635241968a6d5fd5e03cde6907022091d64,Measuring Deformations and Illumination Changes in Images with Applications to Face Recognition,
f6ce34d6e4e445cc2c8a9b8ba624e971dd4144ca,Cross-Label Suppression: A Discriminative and Fast Dictionary Learning With Group Regularization,"Cross-label Suppression: A Discriminative and Fast
Dictionary Learning with Group Regularization
Xiudong Wang and Yuantao Gu∗
April 24, 2017"
f6fa97fbfa07691bc9ff28caf93d0998a767a5c1,K2-means for Fast and Accurate Large Scale Clustering,"k2-means for fast and accurate large scale clustering
Eirikur Agustsson
Computer Vision Lab
D-ITET
ETH Zurich
Radu Timofte
Computer Vision Lab
D-ITET
ETH Zurich
Luc Van Gool
ESAT, KU Leuven
D-ITET, ETH Zurich"
f6cf2108ec9d0f59124454d88045173aa328bd2e,Robust User Identification Based on Facial Action Units Unaffected by Users' Emotions,"Robust user identification based on facial action units
unaffected by users’ emotions
Ricardo Buettner
Aalen University, Germany"
f68f20868a6c46c2150ca70f412dc4b53e6a03c2,Differential Evolution to Optimize Hidden Markov Models Training: Application to Facial Expression Recognition,"Differential Evolution to Optimize
Hidden Markov Models Training:
Application to Facial Expression
Recognition
Khadoudja Ghanem, Amer Draa, Elvis Vyumvuhore and
Ars`ene Simbabawe
MISC Laboratory, Constantine 2 University, Constantine, Algeria
The base system in this paper uses Hidden Markov
Models (HMMs) to model dynamic relationships among
facial features in facial behavior interpretation and un-
derstanding field. The input of HMMs is a new set
of derived features from geometrical distances obtained
from detected and automatically tracked facial points.
Numerical data representation which is in the form of
multi-time series is transformed to a symbolic repre-
sentation in order to reduce dimensionality, extract the
most pertinent information and give a meaningful repre-
sentation to humans. The main problem of the use of
HMMs is that the training is generally trapped in local
minima, so we used the Differential Evolution (DE)"
e9ed17fd8bf1f3d343198e206a4a7e0561ad7e66,Cognitive Learning for Social Robot through Facial Expression from Video Input,"International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 1, January-2014, pp: (362-365), Impact Factor: 1.252, Available online at: www.erpublications.com
Cognitive Learning for Social Robot through
Facial Expression from Video Input
Neeraj Rai1, Deepak Rai2
Department of Automation & Robotics, 2Department of Computer Science & Engg.
,2Ajay Kumar Garg Engineering College, Ghaziabad, UP, India"
e988be047b28ba3b2f1e4cdba3e8c94026139fcf,Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition,"Multi-Task Convolutional Neural Network for
Pose-Invariant Face Recognition
Xi Yin and Xiaoming Liu Member, IEEE,"
e9d43231a403b4409633594fa6ccc518f035a135,Deformable Part Models with CNN Features,"Deformable Part Models with CNN Features
Pierre-Andr´e Savalle1, Stavros Tsogkas1,2, George Papandreou3, Iasonas
Kokkinos1,2
Ecole Centrale Paris,2 INRIA, 3TTI-Chicago (cid:63)"
e9fcd15bcb0f65565138dda292e0c71ef25ea8bb,Analysing Facial Regions for Face Recognition Using Forensic Protocols,"Repositorio Institucional de la Universidad Autónoma de Madrid
https://repositorio.uam.es
Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:
Highlights on Practical Applications of Agents and Multi-Agent Systems:
International Workshops of PAAMS. Communications in Computer and
Information Science, Volumen 365. Springer, 2013. 223-230
DOI:    http://dx.doi.org/10.1007/978-3-642-38061-7_22
Copyright:  © 2013 Springer-Verlag
El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription"
e9363f4368b04aeaa6d6617db0a574844fc59338,BenchIP: Benchmarking Intelligence Processors,"BENCHIP: Benchmarking Intelligence
Processors
Jinhua Tao1, Zidong Du1,2, Qi Guo1,2, Huiying Lan1, Lei Zhang1
Shengyuan Zhou1, Lingjie Xu3, Cong Liu4, Haifeng Liu5, Shan Tang6
Allen Rush7,Willian Chen7, Shaoli Liu1,2, Yunji Chen1, Tianshi Chen1,2
ICT CAS,2Cambricon,3Alibaba Infrastructure Service, Alibaba Group
IFLYTEK,5JD,6RDA Microelectronics,7AMD"
f16a605abb5857c39a10709bd9f9d14cdaa7918f,Fast greyscale road sign model matching and recognition,"Fast greyscale road sign model matching
nd recognition
Sergio Escalera and Petia Radeva
Centre de Visió per Computador
Edifici O – Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain"
f1aa120fb720f6cfaab13aea4b8379275e6d40a2,InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image,"InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image
Hyeongwoo Kim1
Justus Thies2
Max-Planck-Institute for Informatics
Michael Zollhöfer1
Christian Richardt3
University of Erlangen-Nuremberg 3 University of Bath
Christian Theobalt1
Ayush Tewari1
Figure 1. Our single-shot deep inverse face renderer InverseFaceNet obtains a high-quality geometry, reflectance and illumination estimate
from just a single input image. We jointly recover the face pose, shape, expression, reflectance and incident scene illumination. From left to
right: input photo, our estimated face model, its geometry, and the pointwise Euclidean error compared to Garrido et al. [14]."
f1ba2fe3491c715ded9677862fea966b32ca81f0,Face Tracking and Recognition in Videos : HMM Vs KNN,"ISSN: 2321-7782 (Online)
Volume 1, Issue 7, December 2013
International Journal of Advance Research in
Computer Science and Management Studies
Research Paper
Available online at: www.ijarcsms.com
Face Tracking and Recognition in Videos:
HMM Vs KNN
Madhumita R. Baviskar
Assistant Professor
Department of Computer Engineering
MIT College of Engineering (Pune University)
Pune - India"
f1d090fcea63d9f9e835c49352a3cd576ec899c1,Single-hidden Layer Feedforward Neual network training using class geometric information,"Iosifidis, A., Tefas, A., & Pitas, I. (2015). Single-Hidden Layer Feedforward
Neual Network Training Using Class Geometric Information. In . J. J.
Merelo, A. Rosa, J. M. Cadenas, A. Dourado, K. Madani, & J. Filipe (Eds.),
Computational Intelligence: International Joint Conference, IJCCI 2014
Rome, Italy, October 22-24, 2014 Revised Selected Papers. (Vol. III, pp.
51-364). (Studies in Computational Intelligence; Vol. 620). Springer. DOI:
0.1007/978-3-319-26393-9_21
Peer reviewed version
Link to published version (if available):
0.1007/978-3-319-26393-9_21
Link to publication record in Explore Bristol Research
PDF-document
University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html"
f113aed343bcac1021dc3e57ba6cc0647a8f5ce1,A Survey on Mining of Weakly Labeled Web Facial Images and Annotation,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611
A Survey on Mining of Weakly Labeled Web Facial
Images and Annotation
Tarang Boharupi1, Pranjali Joshi2
Pune Institute of Computer Technology, Pune, India
Professor, Pune Institute of Computer Technology, Pune, India
the  proposed  system  which"
f19777e37321f79e34462fc4c416bd56772031bf,Literature Review of Image Compression Algorithm,"International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012                                                                                         1
ISSN 2229-5518
Literature Review of Image Compression Algorithm
Dr. B. Chandrasekhar
Padmaja.V.K
email:                                                           email::
Jawaharlal Technological University, Anantapur"
f19ab817dd1ef64ee94e94689b0daae0f686e849,Blickrichtungsunabhängige Erkennung von Personen in Bild- und Tiefendaten,"TECHNISCHE UNIVERSIT¨AT M ¨UNCHEN
Lehrstuhl f¨ur Mensch-Maschine-Kommunikation
Blickrichtungsunabh¨angige Erkennung von
Personen in Bild- und Tiefendaten
Andre St¨ormer
Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik
der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigten Dissertation.
Vorsitzender:
Univ.-Prof. Dr.-Ing. Thomas Eibert
Pr¨ufer der Dissertation:
. Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll
. Univ.-Prof. Dr.-Ing. Horst-Michael Groß,
Technische Universit¨at Ilmenau
Die Dissertation wurde am 16.06.2009 bei der Technischen Universit¨at M¨unchen einge-
reicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 30.10.2009
ngenommen."
e76798bddd0f12ae03de26b7c7743c008d505215,Joint Max Margin and Semantic Features for Continuous Event Detection in Complex Scenes,
e7cac91da51b78eb4a28e194d3f599f95742e2a2,"Positive Feeling, Negative Meaning: Visualizing the Mental Representations of In-Group and Out-Group Smiles","RESEARCH ARTICLE
Positive Feeling, Negative Meaning:
Visualizing the Mental Representations of In-
Group and Out-Group Smiles
Andrea Paulus1☯*, Michaela Rohr1☯, Ron Dotsch2,3, Dirk Wentura1
Saarland University, Saarbrücken, Germany, 2 Utrecht University, Utrecht, the Netherlands,
Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
☯ These authors contributed equally to this work."
e78394213ae07b682ce40dc600352f674aa4cb05,Expression-invariant three-dimensional face recognition,"Expression-invariant three-dimensional face recognition
Alexander M. Bronstein
Email:
Michael M. Bronstein
Ron Kimmel
Computer Science Department,
Technion – Israel Institute of Technology,
Haifa 32000, Israel
One of the hardest problems in face recognition is dealing with facial expressions. Finding an
expression-invariant representation of the face could be a remedy for this problem. We suggest
treating faces as deformable surfaces in the context of Riemannian geometry, and propose to ap-
proximate facial expressions as isometries of the facial surface. This way, we can define geometric
invariants of a given face under different expressions. One such invariant is constructed by iso-
metrically embedding the facial surface structure into a low-dimensional flat space. Based on this
pproach, we built an accurate three-dimensional face recognition system that is able to distinguish
etween identical twins under various facial expressions. In this chapter we show how under the
near-isometric model assumption, the dif‌f‌icult problem of face recognition in the presence of facial
expressions can be solved in a relatively simple way.
0.1 Introduction
It is well-known that some characteristics or behavior patterns of the human body are strictly"
e7b6887cd06d0c1aa4902335f7893d7640aef823,Modelling of Facial Aging and Kinship: A Survey,"Modelling of Facial Aging and Kinship: A Survey
Markos Georgopoulos, Yannis Panagakis, and Maja Pantic,"
cbca355c5467f501d37b919d8b2a17dcb39d3ef9,Super-resolution of Very Low Resolution Faces from Videos,"CANSIZOGLU, JONES: SUPER-RESOLUTION OF VERY LR FACES FROM VIDEOS
Super-resolution of Very Low-Resolution
Faces from Videos
Esra Ataer-Cansizoglu
Michael Jones
Mitsubishi Electric Research Labs
(MERL)
Cambridge, MA, USA"
cbcf5da9f09b12f53d656446fd43bc6df4b2fa48,Face Recognition using Gray level Co-occurrence Matrix and Snap Shot Method of the Eigen Face,"ISSN: 2277-3754
ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)
Volume 2, Issue 6, December 2012
Face Recognition using Gray level Co-occurrence
Matrix and Snap Shot Method of the Eigen Face
Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kanchipuram, India
M. Madhu, R. Amutha
SSN College of Engineering, Chennai, India"
cb004e9706f12d1de83b88c209ac948b137caae0,Face Aging Effect Simulation Using Hidden Factor Analysis Joint Sparse Representation,"Face Aging Effect Simulation using Hidden Factor
Analysis Joint Sparse Representation
Hongyu Yang, Student Member, IEEE, Di Huang, Member, IEEE, Yunhong Wang, Member, IEEE, Heng Wang,
nd Yuanyan Tang, Fellow, IEEE"
cb08f679f2cb29c7aa972d66fe9e9996c8dfae00,Action Understanding with Multiple Classes of Actors,"JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014
Action Understanding
with Multiple Classes of Actors
Chenliang Xu, Member, IEEE, Caiming Xiong, and Jason J. Corso, Senior Member, IEEE"
cb84229e005645e8623a866d3d7956c197f85e11,Disambiguating Visual Verbs,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MONTH 201X
Disambiguating Visual Verbs
Spandana Gella, Frank Keller, and Mirella Lapata"
cbe859d151466315a050a6925d54a8d3dbad591f,Gaze shifts as dynamical random sampling,"GAZE SHIFTS AS DYNAMICAL RANDOM SAMPLING
Giuseppe Boccignone
Mario Ferraro
Dipartimento di Scienze dell’Informazione
Universit´a di Milano
Via Comelico 39/41
0135 Milano, Italy"
f842b13bd494be1bbc1161dc6df244340b28a47f,An Improved Face Recognition Technique Based on Modular Multi-directional Two-dimensional Principle Component Analysis Approach,"An Improved Face Recognition Technique Based
on Modular Multi-directional Two-dimensional
Principle Component Analysis Approach
Department of    Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, 521041, China
Xiaoqing Dong
Department of    Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, 521041, China
Email:
Hongcai Chen
Email:"
f8c94afd478821681a1565d463fc305337b02779,Design and Implementation of Robust Face Recognition System for Uncontrolled Pose and Illumination Changes,"www.semargroup.org,
www.ijsetr.com
ISSN 2319-8885
Vol.03,Issue.25
September-2014,
Pages:5079-5085
Design and Implementation of Robust Face Recognition System for
Uncontrolled Pose and Illumination Changes
VIJAYA BHASKAR TALARI
, VENKATESWARLU PRATTI
PG Scholar, Dept of ECE, LITAM, JNTUK, Andhrapradesh, India, Email:
Assistant Professor, Dept of ECE, LITAM, JNTUK, Andhrapradesh, India, Email:"
f8ec92f6d009b588ddfbb47a518dd5e73855547d,Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition,"J Inf Process Syst, Vol.10, No.3, pp.443~458, September 2014
ISSN 1976-913X (Print)
ISSN 2092-805X (Electronic)
Extreme Learning Machine Ensemble Using
Bagging for Facial Expression Recognition
Deepak Ghimire* and Joonwhoan Lee*"
f8ed5f2c71e1a647a82677df24e70cc46d2f12a8,Artificial Neural Network Design and Parameter Optimization for Facial Expressions Recognition,"International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011                                                                                         1
ISSN 2229-5518
Artificial Neural Network Design and Parameter
Optimization for Facial Expressions Recognition
Ammar A. Alzaydi"
f8f872044be2918de442ba26a30336d80d200c42,Facial Emotion Recognition Techniques : A Survey,"IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 03, 2015 | ISSN (online): 2321-0613
Facial Emotion Recognition Techniques: A Survey
Namita Rathore1 Rohit Miri2
,2Department of Computer Science and Engineering
,2Dr C V Raman Institute of Science and Technology
defense
systems,
surveillance"
f8a5bc2bd26790d474a1f6cc246b2ba0bcde9464,"KDEF-PT: Valence, Emotional Intensity, Familiarity and Attractiveness Ratings of Angry, Neutral, and Happy Faces","ORIGINAL RESEARCH
published: 19 December 2017
doi: 10.3389/fpsyg.2017.02181
KDEF-PT: Valence, Emotional
Intensity, Familiarity and
Attractiveness Ratings of Angry,
Neutral, and Happy Faces
Margarida V. Garrido* and Marília Prada
Instituto Universitário de Lisboa (ISCTE-IUL), CIS – IUL, Lisboa, Portugal
The Karolinska Directed Emotional Faces (KDEF)
is one of the most widely used
human facial expressions database. Almost a decade after the original validation study
(Goeleven et al., 2008), we present subjective rating norms for a sub-set of 210 pictures
which depict 70 models (half female) each displaying an angry, happy and neutral facial
expressions. Our main goals were to provide an additional and updated validation
to this database, using a sample from a different nationality (N = 155 Portuguese
students, M = 23.73 years old, SD = 7.24) and to extend the number of subjective
dimensions used to evaluate each image. Specifically, participants reported emotional
labeling (forced-choice task) and evaluated the emotional intensity and valence of the
expression, as well as the attractiveness and familiarity of the model (7-points rating"
ce85d953086294d989c09ae5c41af795d098d5b2,Bilinear Analysis for Kernel Selection and Nonlinear Feature Extraction,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Bilinear Analysis for Kernel Selection and
Nonlinear Feature Extraction
Shu Yang, Shuicheng Yan, Member, IEEE, Chao Zhang, and Xiaoou Tang, Senior Member, IEEE"
ceaa5eb51f761b5f84bd88b58c8f484fcd2a22d6,UC San Diego UC San Diego Electronic Theses and Dissertations Title Interactive learning and prediction algorithms for computer vision applications,"UC San Diego
UC San Diego Electronic Theses and Dissertations
Title
Inhibitions of ascorbate fatty acid derivatives on three rabbit muscle glycolytic enzymes
Permalink
https://escholarship.org/uc/item/8x33n1gj
Author
Pham, Duyen-Anh
Publication Date
011-01-01
Peer reviewed|Thesis/dissertation
eScholarship.org
Powered by the California Digital Library
University of California"
ce9a61bcba6decba72f91497085807bface02daf,Eigen-harmonics faces: face recognition under generic lighting,"Eigen-Harmonics Faces: Face Recognition under Generic Lighting
Laiyun Qing1,2, Shiguang Shan2, Wen Gao1,2
Graduate School, CAS, Beijing, China, 100080
ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080
Emails: {lyqing, sgshan, wgao}jdl.ac.cn"
cef6cffd7ad15e7fa5632269ef154d32eaf057af,Emotion Detection Through Facial Feature Recognition,"Emotion Detection Through Facial Feature
Recognition
James Pao
through  consistent"
cebfafea92ed51b74a8d27c730efdacd65572c40,Matching 2.5D face scans to 3D models,"JANUARY 2006
Matching 2.5D Face Scans to 3D Models
Xiaoguang Lu, Student Member, IEEE, Anil K. Jain, Fellow, IEEE, and
Dirk Colbry, Student Member, IEEE"
ce54e891e956d5b502a834ad131616786897dc91,Face Recognition Using LTP Algorithm,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611
Face Recognition Using LTP Algorithm
Richa Sharma1, Rohit Arora2
ECE & KUK
Assistant Professor (ECE)
Volume 4 Issue 12, December 2015
Licensed Under Creative Commons Attribution CC BY
www.ijsr.net
  Variation  in  luminance:  Third  main  challenge  that
ppears in face recognition process is the luminance. Due
to variation in the luminance the representation get varied
from  the  original  image.  The  person  with  same  poses
expression and seen from same viewpoint can be appear
very different due to variation in lightening."
ce6f459462ea9419ca5adcc549d1d10e616c0213,A Survey on Face Identification Methodologies in Videos,"A Survey on Face Identification Methodologies in
Videos
Student, M.Tech  CSE ,Department of Computer Science
& Engineering ,G.H.Raisoni College of Engineering &
Technology for Women, Nagpur, Maharashtra, India.
Deepti Yadav"
ce933821661a0139a329e6c8243e335bfa1022b1,Temporal Modeling Approaches for Large-scale Youtube-8M Video Understanding,"Temporal Modeling Approaches for Large-scale
Youtube-8M Video Understanding
Fu Li, Chuang Gan, Xiao Liu, Yunlong Bian, Xiang Long, Yandong Li, Zhichao Li, Jie Zhou, Shilei Wen
Baidu IDL & Tsinghua University"
e0dedb6fc4d370f4399bf7d67e234dc44deb4333,Supplementary Material: Multi-Task Video Captioning with Video and Entailment Generation,"Supplementary Material: Multi-Task Video Captioning with Video and
Entailment Generation
Ramakanth Pasunuru and Mohit Bansal
UNC Chapel Hill
{ram,
Experimental Setup
.1 Datasets
.1.1 Video Captioning Datasets
YouTube2Text or MSVD The Microsoft Re-
search Video Description Corpus (MSVD) or
YouTube2Text (Chen and Dolan, 2011) is used
for our primary video captioning experiments. It
has 1970 YouTube videos in the wild with many
diverse captions in multiple languages for each
video. Caption annotations to these videos are
ollected using Amazon Mechanical Turk (AMT).
All our experiments use only English captions. On
verage, each video has 40 captions, and the over-
ll dataset has about 80, 000 unique video-caption
pairs. The average clip duration is roughly 10 sec-"
e096b11b3988441c0995c13742ad188a80f2b461,DeepProposals: Hunting Objects and Actions by Cascading Deep Convolutional Layers,"Noname manuscript No.
(will be inserted by the editor)
DeepProposals: Hunting Objects and Actions by Cascading
Deep Convolutional Layers
Amir Ghodrati · Ali Diba · Marco Pedersoli · Tinne Tuytelaars · Luc
Van Gool
Received: date / Accepted: date"
e0939b4518a5ad649ba04194f74f3413c793f28e,Mind-reading machines : automated inference of complex mental states Rana,"Technical Report
UCAM-CL-TR-636
ISSN 1476-2986
Number 636
Computer Laboratory
Mind-reading machines:
utomated inference
of complex mental states
Rana Ayman el Kaliouby
July 2005
5 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500
http://www.cl.cam.ac.uk/"
e0ed0e2d189ff73701ec72e167d44df4eb6e864d,Recognition of static and dynamic facial expressions: a study review,"Recognition of static and dynamic facial expressions: a study review
Estudos de Psicologia, 18(1), janeiro-março/2013, 125-130
Nelson Torro Alves
Federal University of Paraíba"
e065a2cb4534492ccf46d0afc81b9ad8b420c5ec,SFace: An Efficient Network for Face Detection in Large Scale Variations,"SFace: An Ef‌f‌icient Network for Face Detection
in Large Scale Variations
Jianfeng Wang12∗, Ye Yuan 1†, Boxun Li†, Gang Yu† and Sun Jian†
College of Software, Beihang University∗
Megvii Inc. (Face++)†"
e013c650c7c6b480a1b692bedb663947cd9d260f,Robust Image Analysis With Sparse Representation on Quantized Visual Features,"Robust Image Analysis With Sparse Representation
on Quantized Visual Features
Bing-Kun Bao, Guangyu Zhu, Jialie Shen, and Shuicheng Yan, Senior Member, IEEE"
46a4551a6d53a3cd10474ef3945f546f45ef76ee,Robust and continuous estimation of driver gaze zone by dynamic analysis of multiple face videos,"014 IEEE Intelligent Vehicles Symposium (IV)
June 8-11, 2014. Dearborn, Michigan, USA
978-1-4799-3637-3/14/$31.00 ©2014 IEEE"
4686bdcee01520ed6a769943f112b2471e436208,Fast search based on generalized similarity measure,"Utsumi et al. IPSJ Transactions on Computer Vision and
Applications  (2017) 9:11
DOI 10.1186/s41074-017-0024-5
IPSJ Transactions on Computer
Vision and Applications
EXPRESS PAPER
Open Access
Fast search based on generalized
similarity measure
Yuzuko Utsumi*†, Tomoya Mizuno†, Masakazu Iwamura and Koichi Kise"
4688787d064e59023a304f7c9af950d192ddd33e,Investigating the Discriminative Power of Keystroke Sound,"Investigating the Discriminative Power of Keystroke
Sound
Joseph Roth Student Member, IEEE,, Xiaoming Liu, Member, IEEE, Arun Ross, Senior Member, IEEE,
nd Dimitris Metaxas, Member, IEEE"
46f2611dc4a9302e0ac00a79456fa162461a8c80,Spatio-Temporal Channel Correlation Networks for Action Classification,"for Action Classification
Ali Diba1,4,(cid:63), Mohsen Fayyaz3,(cid:63), Vivek Sharma2, M.Mahdi Arzani4, Rahman
Yousefzadeh4, Juergen Gall3, Luc Van Gool1,4
ESAT-PSI, KU Leuven, 2CV:HCI, KIT, Karlsruhe, 3University of Bonn, 4Sensifai"
466a5add15bb5f91e0cfd29a55f5fb159a7980e5,Video Repeat Recognition and Mining by Visual Features,"Video Repeat Recognition and Mining by Visual
Features
Xianfeng Yang1and Qi Tian"
46f3b113838e4680caa5fc8bda6e9ae0d35a038c,Automated Dermoscopy Image Analysis of Pigmented Skin Lesions,"Cancers 2010, 2, 262-273; doi:10.3390/cancers2020262
OPEN ACCESS
ancers
ISSN 2072-6694
www.mdpi.com/journal/cancers
Review
Automated Dermoscopy Image Analysis of Pigmented Skin
Lesions
Alfonso Baldi 1,2,*, Marco Quartulli 3, Raffaele Murace 2, Emanuele Dragonetti 2,
Mario Manganaro 3, Oscar Guerra 3 and Stefano Bizzi 3
Department of Biochemistry, Section of Pathology, Second University of Naples, Via L. Armanni
5, 80138 Naples, Italy
Futura-onlus, Via Pordenone 2, 00182 Rome, Italy; E-Mail:
ACS, Advanced Computer Systems, Via della Bufalotta 378, 00139 Rome, Italy
*  Author to whom correspondence should be addressed; E-Mail:
Fax: +390815569693.
Received: 23 February 2010; in revised form: 15 March 2010 / Accepted: 25 March 2010 /
Published: 26 March 2010"
46538b0d841654a0934e4c75ccd659f6c5309b72,A Novel Approach to Generate Face Biometric Template Using Binary Discriminating Analysis,"Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.1, February 2014
A NOVEL APPROACH TO GENERATE FACE
BIOMETRIC TEMPLATE USING BINARY
DISCRIMINATING ANALYSIS
Shraddha S. Shinde1 and Prof. Anagha P. Khedkar2
P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India.
Associate Professor, Department of Computer Engineering,
MCERC, Nashik (M.S.), India"
469ee1b00f7bbfe17c698ccded6f48be398f2a44,SURVEy: Techniques for Aging Problems in Face Recognition,"MIT International Journal of Computer Science and Information Technology, Vol. 4, No. 2, August 2014, pp. 82-88
ISSN 2230-7621©MIT Publications
SURVEy: Techniques for
Aging Problems in Face Recognition
Aashmi
Sakshi Sahni
Sakshi Saxena
Scholar, Computer Science Engg. Dept.
Moradabad Institute of Technology
Scholar, Computer Science Engg. Dept.
Moradabad Institute of Technology
Scholar, Computer Science Engg. Dept.
Moradabad Institute of Technology
Moradabad, U.P., INDIA
Moradabad, U.P., INDIA
Moradabad, U.P., INDIA
E-mail:
E-mail:
E-mail:"
4682fee7dc045aea7177d7f3bfe344aabf153bd5,Tabula rasa: Model transfer for object category detection,"Tabula Rasa: Model Transfer for
Object Category Detection
Yusuf Aytar & Andrew Zisserman,
Department of Engineering Science
Oxford
(Presented by Elad Liebman)"
2c8743089d9c7df04883405a31b5fbe494f175b4,Real-time full-body human gender recognition in (RGB)-D data,"Washington State Convention Center
Seattle, Washington, May 26-30, 2015
978-1-4799-6922-7/15/$31.00 ©2015 IEEE"
2c93c8da5dfe5c50119949881f90ac5a0a4f39fe,Advanced local motion patterns for macro and micro facial expression recognition,"Advanced local motion patterns for macro and micro facial
expression recognition
B. Allaerta,∗, IM. Bilascoa, C. Djerabaa
Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL -
Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France"
2c34bf897bad780e124d5539099405c28f3279ac,Robust Face Recognition via Block Sparse Bayesian Learning,"Robust Face Recognition via Block Sparse Bayesian Learning
Taiyong Li1,2, Zhilin Zhang3,4,∗
School of Financial Information Engineering, Southwestern University of Finance and Economics, Chengdu 610074,
China
Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093-0407,
Samsung R&D Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA"
2cc4ae2e864321cdab13c90144d4810464b24275,Face Recognition Using Optimized 3D Information from Stereo Images,"Face Recognition Using Optimized 3D
Information from Stereo Images
Changhan Park1 and Joonki Paik2
Advanced Technology R&D Center, Samsung Thales Co., Ltd., 2Graduate School of
Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul
Korea
. Introduction
Human  biometric  characteristics  are  unique,  so  it  can  not  be  easily  duplicated  [1].  Such
information
includes;  facial,  hands,  torso,  fingerprints,  etc.  Potential  applications,
economical  efficiency,  and  user  convenience  make  the  face  detection  and  recognition
technique an important commodity compared to other biometric features [2], [3]. It can also
use a low-cost personal computer (PC) camera instead of expensive equipments, and require
minimal user interface. Recently, extensive research using 3D face data has been carried out
in  order  to  overcome  the  limits  of  2D  face  detection  and  feature  extraction  [2],  which
includes  PCA  [3],  neural  networks  (NN)  [4],  support  vector  machines  (SVM)  [5],  hidden
markov models (HMM) [6], and linear discriminant analysis (LDA) [7]. Among them, PCA
nd  LDA  methods  with  self-learning  method  are  most  widely  used  [3].  The  frontal  face
image  database  provides  fairly  high  recognition  rate.  However,  if  the  view  data  of  facial
rotation,  illumination  and  pose  change  is  not  acquired,  the  correct  recognition  rate"
2cac8ab4088e2bdd32dcb276b86459427355085c,A Face-to-Face Neural Conversation Model,"A Face-to-Face Neural Conversation Model
Hang Chu1
Daiqing Li1 Sanja Fidler1
University of Toronto 2Vector Institute
{chuhang1122, daiqing,"
2c2786ea6386f2d611fc9dbf209362699b104f83,1)local Feature Representations for Facial Expression Recognition Based on Differences of Gray Color Values of Neighboring Pixels,1)LOCAL FEATURE REPRESENTATIONS FOR FACIAL EXPRESSION RECOGNITION BASED ON DIFFERENCES OF GRAY COLOR VALUES OF NEIGHBORING PIXELS        Mohammad Shahidul Islam          A Dissertation Submitted in Partial  Fulfillment of the Requirement for the Degree of  Doctor of Philosophy (Computer Science and Information Systems) School of Applied Statistics National Institute of Development Administration 2013
2c92839418a64728438c351a42f6dc5ad0c6e686,Pose-Aware Face Recognition in the Wild,"Pose-Aware Face Recognition in the Wild
Iacopo Masi1
Prem Natarajan2
USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA
G´erard Medioni1
Stephen Rawls2
USC Information Sciences Institute (ISI), Marina Del Rey, CA"
2c848cc514293414d916c0e5931baf1e8583eabc,An automatic facial expression recognition system evaluated by different classifiers,"An automatic facial expression recognition system
evaluated by different classifiers
Caroline Silva∗, Andrews Sobral∗ and Raissa Tavares Vieira†
Programa de P´os-Graduac¸˜ao em Mecatrˆonica
Universidade Federal da Bahia,
Email:
Email:
Department of Electrical Engineering - EESC/USP
Email:"
2c883977e4292806739041cf8409b2f6df171aee,Are Haar-Like Rectangular Features for Biometric Recognition Reducible?,"Aalborg Universitet
Are Haar-like Rectangular Features for Biometric Recognition Reducible?
Nasrollahi, Kamal; Moeslund, Thomas B.
Published in:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
DOI (link to publication from Publisher):
0.1007/978-3-642-41827-3_42
Publication date:
Document Version
Early version, also known as pre-print
Link to publication from Aalborg University
Citation for published version (APA):
Nasrollahi, K., & Moeslund, T. B. (2013). Are Haar-like Rectangular Features for Biometric Recognition
Reducible? In J. Ruiz-Shulcloper, & G. Sanniti di Baja (Eds.), Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications (Vol. 8259, pp. 334-341). Springer Berlin Heidelberg: Springer Publishing
Company.  Lecture Notes in Computer Science, DOI: 10.1007/978-3-642-41827-3_42
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research."
2cdd9e445e7259117b995516025fcfc02fa7eebb,Temporal Exemplar-Based Bayesian Networks for Facial Expression Recognition,"Title
Temporal Exemplar-based Bayesian Networks for facial
expression recognition
Author(s)
Shang, L; Chan, KP
Citation
Proceedings - 7Th International Conference On Machine
Learning And Applications, Icmla 2008, 2008, p. 16-22
Issued Date
http://hdl.handle.net/10722/61208
Rights
This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.;
International Conference on Machine Learning and Applications
Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of
this material is permitted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
omponent of this work in other works must be obtained from"
2c5d1e0719f3ad7f66e1763685ae536806f0c23b,AENet: Learning Deep Audio Features for Video Analysis,"AENet: Learning Deep Audio Features for Video
Analysis
Naoya Takahashi, Member, IEEE, Michael Gygli, Member, IEEE, and Luc Van Gool, Member, IEEE"
2c8f24f859bbbc4193d4d83645ef467bcf25adc2,Classification in the Presence of Label Noise: A Survey,"Classification in the Presence of
Label Noise: a Survey
Benoît Frénay and Michel Verleysen, Member, IEEE"
2cdd5b50a67e4615cb0892beaac12664ec53b81f,Mirror mirror: crowdsourcing better portraits,"To appear in ACM TOG 33(6).
Mirror Mirror: Crowdsourcing Better Portraits
Jun-Yan Zhu1
Aseem Agarwala2
Alexei A. Efros1
Eli Shechtman2
Jue Wang2
University of California, Berkeley1 Adobe2
Figure 1: We collect thousands of portraits by capturing video of a subject while they watch movie clips designed to elicit a range of positive
emotions. We use crowdsourcing and machine learning to train models that can predict attractiveness scores of different expressions. These
models can be used to select a subject’s best expressions across a range of emotions, from more serious professional portraits to big smiles."
2cdde47c27a8ecd391cbb6b2dea64b73282c7491,Order-aware Convolutional Pooling for Video Based Action Recognition,"ORDER-AWARE CONVOLUTIONAL POOLING FOR VIDEO BASED ACTION RECOGNITION
Order-aware Convolutional Pooling for Video Based
Action Recognition
Peng Wang, Lingqiao Liu, Chunhua Shen, and Heng Tao Shen"
2cf5f2091f9c2d9ab97086756c47cd11522a6ef3,MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation,"MPIIGaze: Real-World Dataset and Deep
Appearance-Based Gaze Estimation
Xucong Zhang, Yusuke Sugano∗, Mario Fritz, Andreas Bulling"
2c4b96f6c1a520e75eb37c6ee8b844332bc0435c,Automatic Emotion Recognition in Robot-Children Interaction for ASD Treatment,"Automatic Emotion Recognition in Robot-Children Interaction for ASD
Treatment
Marco Leo, Marco Del Coco, Pierluigi Carcagn`ı, Cosimo Distante
ISASI UOS Lecce
Campus Universitario via Monteroni sn, 73100 Lecce Italy
Massimo Bernava, Giovanni Pioggia
ISASI UOS Messina
Giuseppe Palestra
Univerisita’ di Bari
Marine Institute, via Torre Bianca, 98164 Messina Italy
Via Orabona 4, 70126 Bari, Italy"
790aa543151312aef3f7102d64ea699a1d15cb29,Confidence-Weighted Local Expression Predictions for Occlusion Handling in Expression Recognition and Action Unit Detection,"Confidence-Weighted Local Expression Predictions for
Occlusion Handling in Expression Recognition and Action
Unit detection
Arnaud Dapogny1
Kevin Bailly1
Séverine Dubuisson1
Sorbonne Universités, UPMC Univ Paris 06, CNRS, ISIR UMR 7222
place Jussieu 75005 Paris"
79f6a8f777a11fd626185ab549079236629431ac,Pradeep RavikumarDiscriminative Object Categorization with External Semantic Knowledge,"Copyright
Sung Ju Hwang"
79b669abf65c2ca323098cf3f19fa7bdd837ff31,Efficient tensor based face recognition,"Deakin Research Online
This is the published version:
Rana, Santu, Liu, Wanquan, Lazarescu, Mihai and Venkatesh, Svetha 2008, Efficient tensor
ased face recognition, in ICPR 2008 : Proceedings of the 19th International Conference on
Pattern Recognition, IEEE, Washington, D. C., pp. 1-4.
Available from Deakin Research Online:
http://hdl.handle.net/10536/DRO/DU:30044585
Reproduced with the kind permissions of the copyright owner.
Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.
Copyright : 2008, IEEE"
79dd787b2877cf9ce08762d702589543bda373be,Face detection using SURF cascade,"Face Detection Using SURF Cascade
Jianguo Li, Tao Wang, Yimin Zhang
Intel Labs China"
2d294c58b2afb529b26c49d3c92293431f5f98d0,Maximum Margin Projection Subspace Learning for Visual Data Analysis,"Maximum Margin Projection Subspace Learning
for Visual Data Analysis
Symeon Nikitidis, Anastasios Tefas, Member, IEEE, and Ioannis Pitas, Fellow, IEEE"
2d88e7922d9f046ace0234f9f96f570ee848a5b5,Detection under Privileged Information,"Building Better Detection with Privileged Information
Z. Berkay Celik
Department of CSE
The Pennsylvania State
University
Patrick McDaniel
Department of CSE
The Pennsylvania State
University
Rauf Izmailov
Applied Communication
Sciences
Basking Ridge, NJ, US
Nicolas Papernot
Department of CSE
The Pennsylvania State
University
Ananthram Swami
Army Research
Laboratory"
2d05e768c64628c034db858b7154c6cbd580b2d5,FACIAL EXPRESSION RECOGNITION : Machine Learning using C #,"Neda Firoz et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.8, August- 2015, pg. 431-446
Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
IJCSMC, Vol. 4, Issue. 8, August 2015, pg.431 – 446
RESEARCH ARTICLE
ISSN 2320–088X
FACIAL EXPRESSION RECOGNITION:
Machine Learning using C#
Author: Neda Firoz
Advisor: Dr. Prashant Ankur Jain"
2d072cd43de8d17ce3198fae4469c498f97c6277,Random Cascaded-Regression Copse for Robust Facial Landmark Detection,"Random Cascaded-Regression Copse for Robust
Facial Landmark Detection
Zhen-Hua Feng, Student Member, IEEE, Patrik Huber, Josef Kittler, Life Member, IEEE, William Christmas,
nd Xiao-Jun Wu"
2d71e0464a55ef2f424017ce91a6bcc6fd83f6c3,A Survey on:Image Process using Two-Stage Crawler,"International Journal of Computer Applications (0975 – 8887)
National Conference on Advancements in Computer & Information Technology (NCACIT-2016)
A Survey on: Image Process using Two- Stage Crawler
Nilesh Wani
Assistant Professor
SPPU, Pune
Department of Computer Engg
Department of Computer Engg
Department of Computer Engg
Dipak Bodade
BE Student
SPPU, Pune
Savita Gunjal
BE Student
SPPU, Pune
Varsha Mahadik
BE Student
Department of Computer Engg
SPPU, Pune
dditional"
2d84c0d96332bb4fbd8acced98e726aabbf15591,UNIVERSITY OF CALIFORNIA RIVERSIDE Investigating the Role of Saliency for Face Recognition A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering,"UNIVERSITY OF CALIFORNIA
RIVERSIDE
Investigating the Role of Saliency for Face Recognition
A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
Electrical Engineering
Ramya Malur Srinivasan
March 2015
Dissertation Committee:
Professor Amit K Roy-Chowdhury, Chairperson
Professor Ertem Tuncel
Professor Conrad Rudolph
Professor Tamar Shinar"
2d8d089d368f2982748fde93a959cf5944873673,Visually Guided Spatial Relation Extraction from Text,"Proceedings of NAACL-HLT 2018, pages 788–794
New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics"
2df4d05119fe3fbf1f8112b3ad901c33728b498a,Multi-task Learning for Structured Output Prediction,"Facial landmark detection using structured output deep
neural networks
Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien
Adam∗2
LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France
LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France.
September 24, 2015"
4188bd3ef976ea0dec24a2512b44d7673fd4ad26,Nonlinear Non-Negative Component Analysis Algorithms,"Nonlinear Non-Negative Component
Analysis Algorithms
Stefanos Zafeiriou, Member, IEEE, and Maria Petrou, Senior Member, IEEE"
41000c3a3344676513ef4bfcd392d14c7a9a7599,A Novel Approach For Generating Face Template Using Bda,"A NOVEL APPROACH FOR GENERATING FACE
TEMPLATE USING BDA
Shraddha S. Shinde1 and Prof. Anagha P. Khedkar2
P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India.
Associate Professor, Department of Computer Engineering, MCERC, Nashik (M.S.),
India"
414715421e01e8c8b5743c5330e6d2553a08c16d,PoTion : Pose MoTion Representation for Action Recognition,"PoTion: Pose MoTion Representation for Action Recognition
Philippe Weinzaepfel2
Inria∗
NAVER LABS Europe
J´erˆome Revaud2 Cordelia Schmid1
Vasileios Choutas1,2"
41ab4939db641fa4d327071ae9bb0df4a612dc89,Interpreting Face Images by Fitting a Fast Illumination-Based 3D Active Appearance Model,"Interpreting Face Images by Fitting a Fast
Illumination-Based 3D Active Appearance
Model
Salvador E. Ayala-Raggi, Leopoldo Altamirano-Robles, Janeth Cruz-Enriquez
Instituto Nacional de Astrof´ısica, ´Optica y Electr´onica,
Luis Enrique Erro #1, 72840 Sta Ma. Tonantzintla. Pue., M´exico
Coordinaci´on de Ciencias Computacionales
{saraggi, robles,"
41a6196f88beced105d8bc48dd54d5494cc156fb,Using facial images for the diagnosis of genetic syndromes: A survey,"015 International Conference on
Communications, Signal
Processing, and their Applications
(ICCSPA 2015)
Sharjah, United Arab Emirates
7-19 February 2015
IEEE Catalog Number:
ISBN:
CFP1574T-POD
978-1-4799-6533-5"
41de109bca9343691f1d5720df864cdbeeecd9d0,Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality,"Article
Facial Emotion Recognition: A Survey and
Real-World User Experiences in Mixed Reality
Dhwani Mehta, Mohammad Faridul Haque Siddiqui and Ahmad Y. Javaid * ID
EECS Department, The University of Toledo, Toledo, OH 43606, USA; (D.M.);
(M.F.H.S.)
* Correspondence: Tel.: +1-419-530-8260
Received: 10 December 2017; Accepted: 26 January 2018; Published: 1 Febuary 2018"
41d9a240b711ff76c5448d4bf4df840cc5dad5fc,Image Similarity Using Sparse Representation and Compression Distance,"JOURNAL DRAFT, VOL. X, NO. X, APR 2013
Image Similarity Using Sparse Representation
nd Compression Distance
Tanaya Guha, Student Member, IEEE, and Rabab K Ward, Fellow, IEEE"
419a6fca4c8d73a1e43003edc3f6b610174c41d2,A component based approach improves classification of discrete facial expressions over a holistic approach,"A Component Based Approach Improves Classification of Discrete
Facial Expressions Over a Holistic Approach
Kenny Hong, and Stephan K. Chalup, Senior Member, IEEE and Robert A.R. King"
4180978dbcd09162d166f7449136cb0b320adf1f,Real-time head pose classification in uncontrolled environments with Spatio-Temporal Active Appearance Models,"Real-time head pose classification in uncontrolled environments
with Spatio-Temporal Active Appearance Models
Miguel Reyes∗ and Sergio Escalera+ and Petia Radeva +
Matematica Aplicada i Analisi ,Universitat de Barcelona, Barcelona, Spain
+ Matematica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain
+ Matematica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain"
413a184b584dc2b669fbe731ace1e48b22945443,Human Pose Co-Estimation and Applications,"Human Pose Co-Estimation and Applications
Marcin Eichner and Vittorio Ferrari"
83b7578e2d9fa60d33d9336be334f6f2cc4f218f,The S-HOCK dataset: Analyzing crowds at the stadium,"The S-HOCK Dataset: Analyzing Crowds at the Stadium
Davide Conigliaro1,3, Paolo Rota2, Francesco Setti3, Chiara Bassetti3, Nicola Conci4, Nicu Sebe4, Marco Cristani1,
University of Verona. 2Vienna Institute of Technology. 3ISTC–CNR (Trento). 4University of Trento.
The topic of crowd modeling in computer vision usually assumes a sin-
gle generic typology of crowd, which is very simplistic. In this paper we
dopt a taxonomy that is widely accepted in sociology, focusing on a partic-
ular category, the spectator crowd, which is formed by people “interested in
watching something specific that they came to see” [1]. This can be found
t the stadiums, amphitheaters, cinema, etc.
In particular, we propose a
novel dataset, the Spectators Hockey (S-HOCK), which deals with 4 hockey
matches during an international tournament.
The dataset is unique in the crowd literature, and in general in the
surveillance realm. The dataset analyzes the crowd at different levels of
detail. At the highest level, it models the network of social connections
mong the public (who knows whom in the neighborhood), what is the sup-
ported team and what has been the best action in the match; all of this has
een obtained by interviews at the stadium. At a medium level, spectators
re localized, and information regarding the pose of their heads and body is
given. Finally, at a lowest level, a fine grained specification of all the actions"
83ca4cca9b28ae58f461b5a192e08dffdc1c76f3,Detecting emotional stress from facial expressions for driving safety,"DETECTING EMOTIONAL STRESS FROM FACIAL EXPRESSIONS FOR DRIVING SAFETY
Hua Gao, Anil Y¨uce, Jean-Philippe Thiran
Signal Processing Laboratory (LTS5),
´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland"
831fbef657cc5e1bbf298ce6aad6b62f00a5b5d9,Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning,
832e1d128059dd5ed5fa5a0b0f021a025903f9d5,Pairwise Conditional Random Forests for Facial Expression Recognition,"Pairwise Conditional Random Forests for Facial Expression Recognition
Arnaud Dapogny1
Kevin Bailly1
S´everine Dubuisson1
Sorbonne Universit´es, UPMC Univ Paris 06, CNRS, ISIR UMR 7222, 4 place Jussieu 75005 Paris"
83e093a07efcf795db5e3aa3576531d61557dd0d,Facial Landmark Localization Using Robust Relationship Priors and Approximative Gibbs Sampling,"Facial Landmark Localization using Robust
Relationship Priors and Approximative Gibbs
Sampling
Karsten Vogt, Oliver M¨uller and J¨orn Ostermann
Institut f¨ur Informationsverarbeitung (tnt)
Leibniz Universit¨at Hannover, Germany
{vogt, omueller,"
83b4899d2899dd6a8d956eda3c4b89f27f1cd308,A Robust Approach for Eye Localization Under Variable Illuminations,"-4244-1437-7/07/$20.00 ©2007 IEEE
I - 377
ICIP 2007"
8323af714efe9a3cadb31b309fcc2c36c8acba8f,Automatic Real-Time Facial Expression Recognition for Signed Language Translation,"Automatic Real-Time
Facial Expression Recognition
for Signed Language Translation
Jacob Richard Whitehill
A thesis submitted in partial fulfillment of the requirements for the de-
gree of Magister Scientiae in the Department of Computer Science,
University of the Western Cape.
May 2006"
83fd5c23204147844a0528c21e645b757edd7af9,USDOT number localization and recognition from vehicle side-view NIR images,"USDOT Number Localization and Recognition From Vehicle Side-View NIR
Images
Orhan Bulan, Safwan Wshah, Ramesh Palghat, Vladimir Kozitsky and Aaron Burry
Palo Alto Research Center (PARC)
800 Phillips Rd. Webster NY 14580"
8395cf3535a6628c3bdc9b8d0171568d551f5ff0,Entropy Non-increasing Games for the Improvement of Dataflow Programming,"Entropy Non-increasing Games for the
Improvement of Dataflow Programming
Norbert B´atfai, Ren´at´o Besenczi, Gerg˝o Bogacsovics,
Fanny Monori∗
February 16, 2017"
834f5ab0cb374b13a6e19198d550e7a32901a4b2,Face Translation between Images and Videos using Identity-aware CycleGAN,"Face Translation between Images and Videos using Identity-aware CycleGAN
Zhiwu Huang†, Bernhard Kratzwald†, Danda Pani Paudel†, Jiqing Wu†, Luc Van Gool†‡
Computer Vision Lab, ETH Zurich, Switzerland
VISICS, KU Leuven, Belgium
{zhiwu.huang, paudel, jwu,"
8320dbdd3e4712cca813451cd94a909527652d63,Ear Biometrics,"EAR BIOMETRICS
Mark Burge
nd Wilhelm Burger
Johannes Kepler University(cid:1) Institute of Systems Science(cid:1) A(cid:2) Linz(cid:1) Austria(cid:1)
urge(cid:1)cast(cid:2)uni(cid:3)linz(cid:2)ac(cid:2)at"
837e99301e00c2244023a8a48ff98d7b521c93ac,Local Feature Evaluation for a Constrained Local Model Framework,"Local Feature Evaluation for a Constrained
Local Model Framework
Maiya Hori(B), Shogo Kawai, Hiroki Yoshimura, and Yoshio Iwai
Graduate School of Engineering, Tottori University,
01 Minami 4-chome, Koyama-cho, Tottori 680-8550, Japan"
834b15762f97b4da11a2d851840123dbeee51d33,Landmark-free smile intensity estimation,"Landmark-free smile intensity estimation
J´ulio C´esar Batista, Olga R. P. Bellon and Luciano Silva
IMAGO Research Group - Universidade Federal do Paran´a
Fig. 1. Overview of our method for smile intensity estimation"
833f6ab858f26b848f0d747de502127406f06417,Learning weighted similarity measurements for unconstrained face recognition,"978-1-4244-5654-3/09/$26.00 ©2009 IEEE
ICIP 2009"
8309e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ff,Generic versus Salient Region-Based Partitioning for Local Appearance Face Recognition,"Generic versus Salient Region-based Partitioning
for Local Appearance Face Recognition
Hazım Kemal Ekenel and Rainer Stiefelhagen
Computer Science Depatment, Universit¨at Karlsruhe (TH)
Am Fasanengarten 5, Karlsruhe 76131, Germany
http://isl.ira.uka.de/cvhci"
1b02b9413b730b96b91d16dcd61b2420aef97414,Détection de marqueurs affectifs et attentionnels de personnes âgées en interaction avec un robot. (Audio-visual detection of emotional (laugh and smile) and attentional markers for elderly people in social interaction with a robot),"Détection de marqueurs affectifs et attentionnels de
personnes âgées en interaction avec un robot
Fan Yang
To cite this version:
Fan Yang. Détection de marqueurs affectifs et attentionnels de personnes âgées en interaction
vec un robot.
Intelligence artificielle [cs.AI]. Université Paris-Saclay, 2015. Français. <NNT :
015SACLS081>. <tel-01280505>
HAL Id: tel-01280505
https://tel.archives-ouvertes.fr/tel-01280505
Submitted on 29 Feb 2016
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,"
1b55c4e804d1298cbbb9c507497177014a923d22,Incremental Class Representation Learning for Face Recognition,"Incremental Class Representation
Learning for Face Recognition
Degree’s Thesis
Audiovisual Systems Engineering
Author:
Advisors: Elisa Sayrol, Josep Ramon Morros
Eric Presas Valga
Universitat Politècnica de Catalunya (UPC)
016 - 2017"
1b6394178dbc31d0867f0b44686d224a19d61cf4,EPML: Expanded Parts Based Metric Learning for Occlusion Robust Face Verification,"EPML: Expanded Parts based Metric Learning for
Occlusion Robust Face Verification
Gaurav Sharma, Fr´ed´eric Jurie, Patrick P´erez
To cite this version:
Gaurav Sharma, Fr´ed´eric Jurie, Patrick P´erez. EPML: Expanded Parts based Metric Learning
for Occlusion Robust Face Verification. Asian Conference on Computer Vision, Nov 2014, -,
Singapore. pp.1-15, 2014. <hal-01070657>
HAL Id: hal-01070657
https://hal.archives-ouvertes.fr/hal-01070657
Submitted on 2 Oct 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
1bdef21f093c41df2682a07f05f3548717c7a3d1,Towards Automated Classification of Emotional Facial Expressions,"Towards Automated Classification of Emotional Facial Expressions
Lewis J. Baker Vanessa LoBue
Elizabeth Bonawitz & Patrick Shafto
Department of Mathematics and Computer Science, 2Department of Psychology
Rutgers University – Newark, 101 Warren St., Newark, NJ, 07102 USA"
1b150248d856f95da8316da868532a4286b9d58e,Analyzing 3D Objects in Cluttered Images,"Analyzing 3D Objects in Cluttered Images
Mohsen Hejrati
UC Irvine
Deva Ramanan
UC Irvine"
1be498d4bbc30c3bfd0029114c784bc2114d67c0,Age and Gender Estimation of Unfiltered Faces,"Age and Gender Estimation of Unfiltered Faces
Eran Eidinger, Roee Enbar, Tal Hassner*"
1bbec7190ac3ba34ca91d28f145e356a11418b67,Explorer Action Recognition with Dynamic Image Networks,"Action Recognition with Dynamic Image Networks
Citation for published version:
Bilen, H, Fernando, B, Gravves, E & Vedaldi, A 2017, 'Action Recognition with Dynamic Image Networks'
IEEE Transactions on Pattern Analysis and Machine Intelligence. DOI: 10.1109/TPAMI.2017.2769085
Digital Object Identifier (DOI):
0.1109/TPAMI.2017.2769085
Link:
Link to publication record in Edinburgh Research Explorer
Document Version:
Peer reviewed version
Published In:
IEEE Transactions on Pattern Analysis and Machine Intelligence
General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
nd / or other copyright owners and it is a condition of accessing these publications that users recognise and
bide by the legal requirements associated with these rights.
Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
ontent complies with UK legislation. If you believe that the public display of this file breaches copyright please
ontact providing details, and we will remove access to the work immediately and"
1b3587363d37dd197b6adbcfa79d49b5486f27d8,Multimodal Grounding for Language Processing,"Multimodal Grounding for Language Processing
Lisa Beinborn◦∗3
Teresa Botschen∗(cid:52)
Iryna Gurevych (cid:52)
Language Technology Lab, University of Duisburg-Essen
(cid:52) Ubiquitous Knowledge Processing Lab (UKP) and Research Training Group AIPHES
Department of Computer Science, Technische Universit¨at Darmstadt
www.ukp.tu-darmstadt.de"
1b300a7858ab7870d36622a51b0549b1936572d4,Dynamic Facial Expression Recognition With Atlas Construction and Sparse Representation,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2537215, IEEE
Transactions on Image Processing
Dynamic Facial Expression Recognition with Atlas
Construction and Sparse Representation
Yimo Guo, Guoying Zhao, Senior Member, IEEE, and Matti Pietik¨ainen, Fellow, IEEE"
1b90507f02967ff143fce993a5abbfba173b1ed0,Gradient-DCT (G-DCT) descriptors,"Image Processing Theory, Tools and Applications
Gradient-DCT (G-DCT) Descriptors
Radovan Fusek, Eduard Sojka
Technical University of Ostrava, FEECS, Department of Computer Science,
7. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
e-mail:"
1b1173a3fb33f9dfaf8d8cc36eb0bf35e364913d,Registration Invariant Representations for Expression Detection,"DICTA
DICTA 2010 Submission #147. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
Registration Invariant Representations for Expression Detection
Anonymous DICTA submission
Paper ID 147"
1b0a071450c419138432c033f722027ec88846ea,Looking at faces in a vehicle: A deep CNN based approach and evaluation,"Windsor Oceanico Hotel, Rio de Janeiro, Brazil, November 1-4, 2016
978-1-5090-1889-5/16/$31.00 ©2016 IEEE"
1b3b01513f99d13973e631c87ffa43904cd8a821,HMM recognition of expressions in unrestrained video intervals,"HMM RECOGNITION OF EXPRESSIONS IN UNRESTRAINED VIDEO INTERVALS
José Luis Landabaso, Montse Pardàs, Antonio Bonafonte
Universitat Politècnica de Catalunya, Barcelona, Spain"
1be18a701d5af2d8088db3e6aaa5b9b1d54b6fd3,Enhancement of Fast Face Detection Algorithm Based on a Cascade of Decision Trees,"ENHANCEMENT OF FAST FACE DETECTION ALGORITHM BASED ON A CASCADE OF
DECISION TREES
V. V. Khryashchev a, *, A. A. Lebedev a, A. L. Priorov a
YSU, Yaroslavl, Russia - (vhr,
Commission II, WG II/5
KEY WORDS: Face Detection, Cascade Algorithm, Decision Trees."
1b70bbf7cdfc692873ce98dd3c0e191580a1b041,Enhancing Performance of Face Recognition System Using Independent Component Analysis,"International Research Journal of Engineering and Technology (IRJET)        e-ISSN: 2395 -0056
Volume: 03 Issue: 10 | Oct -2016                      www.irjet.net                                                                 p-ISSN: 2395-0072
Enhancing Performance of Face Recognition
System Using Independent Component Analysis
Dipti Rane1, Prof. Uday Bhave2, and Asst Prof. Manimala Mahato3
Student, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India 1
Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India 2
Co-Guide, Assistant Prof., Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India 3
---------------------------------------------------------------------***---------------------------------------------------------------------
ards, tokens and keys. Biometric based methods examine"
1b71d3f30238cb6621021a95543cce3aab96a21b,Fine-grained Video Classification and Captioning,"Fine-grained Video Classification and Captioning
Farzaneh Mahdisoltani1,2, Guillaume Berger2, Waseem Gharbieh2
David Fleet1, Roland Memisevic2
{farzaneh,
University of Toronto1, Twenty Billion Neurons2"
1b4f6f73c70353869026e5eec1dd903f9e26d43f,Robust Subjective Visual Property Prediction from Crowdsourced Pairwise Labels,"Robust Subjective Visual Property Prediction
from Crowdsourced Pairwise Labels
Yanwei Fu, Timothy M. Hospedales, Tao Xiang, Jiechao Xiong,
Shaogang Gong, Yizhou Wang, and Yuan Yao"
1bc23c771688109bed9fd295ce82d7e702726327,Sparse Modeling of High - Dimensional Data for Learning and Vision,(cid:13) 2011 Jianchao Yang
1b4bc7447f500af2601c5233879afc057a5876d8,Facial Action Unit Classification with Hidden Knowledge under Incomplete Annotation,"Facial Action Unit Classification with Hidden Knowledge
under Incomplete Annotation
Jun Wang
University of Science and
Technology of China
Hefei, Anhui
Shangfei Wang
University of Science and
Technology of China
Hefei, Anhui
Rensselaer Polytechnic
Qiang Ji
Institute
Troy, NY
P.R.China, 230027
P.R.China, 230027
USA, 12180"
7711a7404f1f1ac3a0107203936e6332f50ac30c,Action Classification and Highlighting in Videos,"Action Classification and Highlighting in Videos
Atousa Torabi
Disney Research Pittsburgh
Leonid Sigal
Disney Research Pittsburgh"
778c9f88839eb26129427e1b8633caa4bd4d275e,Pose pooling kernels for sub-category recognition,"Pose Pooling Kernels for Sub-category Recognition
Ning Zhang
ICSI & UC Berkeley
Ryan Farrell
ICSI & UC Berkeley
Trever Darrell
ICSI & UC Berkeley"
7789a5d87884f8bafec8a82085292e87d4e2866f,A Unified Tensor-based Active Appearance Face Model,"A Unified Tensor-based Active Appearance Face
Model
Zhen-Hua Feng, Member, IEEE, Josef Kittler, Life Member, IEEE, William Christmas, and Xiao-Jun Wu,
Member, IEEE"
778bff335ae1b77fd7ec67404f71a1446624331b,Hough Forest-Based Facial Expression Recognition from Video Sequences,"Hough Forest-based Facial Expression Recognition from
Video Sequences
Gabriele Fanelli, Angela Yao, Pierre-Luc Noel, Juergen Gall, and Luc Van Gool
BIWI, ETH Zurich http://www.vision.ee.ethz.ch
VISICS, K.U. Leuven http://www.esat.kuleuven.be/psi/visics"
7726a6ab26a1654d34ec04c0b7b3dd80c5f84e0d,Content-aware compression using saliency-driven image retargeting,"CONTENT-AWARE COMPRESSION USING SALIENCY-DRIVEN IMAGE RETARGETING
Fabio Z¨und*†, Yael Pritch*, Alexander Sorkine-Hornung*, Stefan Mangold*, Thomas Gross†
*Disney Research Zurich
ETH Zurich"
7754b708d6258fb8279aa5667ce805e9f925dfd0,Facial Action Unit Recognition by Exploiting Their Dynamic and Semantic Relationships,"Facial Action Unit Recognition by Exploiting
Their Dynamic and Semantic Relationships
Yan Tong, Student Member, IEEE, Wenhui Liao, Member, IEEE, and Qiang Ji, Senior Member, IEEE"
77db171a523fc3d08c91cea94c9562f3edce56e1,Gauss-Laguerre wavelet textural feature fusion with geometrical information for facial expression identification,"Poursaberi et al. EURASIP Journal on Image and Video Processing 2012, 2012:17
http://jivp.eurasipjournals.com/content/2012/1/17
R ES EAR CH
Open Access
Gauss–Laguerre wavelet textural feature fusion
with geometrical information for facial expression
identification
Ahmad Poursaberi1*, Hossein Ahmadi Noubari2, Marina Gavrilova1 and Svetlana N Yanushkevich1"
77037a22c9b8169930d74d2ce6f50f1a999c1221,Robust Face Recognition With Kernelized Locality-Sensitive Group Sparsity Representation,"Robust Face Recognition With Kernelized
Locality-Sensitive Group Sparsity  Representation
Shoubiao Tan, Xi Sun, Wentao Chan, Lei Qu, and Ling    Shao"
779ad364cae60ca57af593c83851360c0f52c7bf,Steerable Pyramids Feature Based Classification Using Fisher Linear Discriminant for Face Recognition,"Steerable Pyramids Feature Based Classification Using Fisher
Linear Discriminant for Face Recognition
EL AROUSSI MOHAMED1
EL HASSOUNI MOHAMMED12
GHOUZALI SANAA1
RZIZA MOHAMMED1
ABOUTAJDINE DRISS1
GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco
DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco
PO.Box 1014, Rabat, Morocco"
77d31d2ec25df44781d999d6ff980183093fb3de,The Multiverse Loss for Robust Transfer Learning,"The Multiverse Loss for Robust Transfer Learning
Supplementary
. Omitted proofs
for which the joint loss:
m(cid:88)
L(F r, br, D, y)
J(F 1, b1...F m, bm, D, y) =
is bounded by:
mL∗(D, y) ≤ J(F 1, b1...F m, bm, D, y)
m−1(cid:88)
≤ mL∗(D, y) +
Alλd−j+1
where [A1 . . . Am−1] are bounded parameters.
We provide proofs that were omitted from the paper for
lack of space. We follow the same theorem numbering as in
the paper.
Lemma 1. The minimizers F ∗, b∗ of L are not unique, and
it holds that for any vector v ∈ Rc and scalar s, the solu-
tions F ∗ + v1(cid:62)
Proof. denoting V = v1(cid:62)"
48186494fc7c0cc664edec16ce582b3fcb5249c0,P-CNN: Pose-Based CNN Features for Action Recognition,"P-CNN: Pose-based CNN Features for Action Recognition
Guilhem Ch´eron∗ †
Ivan Laptev∗
INRIA
Cordelia Schmid†"
48499deeaa1e31ac22c901d115b8b9867f89f952,Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition,"Interim Report of Final Year Project
HKU-Face: A Large Scale Dataset for
Deep Face Recognition
Haicheng Wang
035140108
Haoyu Li
035141841
COMP4801 Final Year Project
Project Code: 17007"
486a82f50835ea888fbc5c6babf3cf8e8b9807bc,Face Search at Scale: 80 Million Gallery,"MSU TECHNICAL REPORT MSU-CSE-15-11, JULY 24, 2015
Face Search at Scale: 80 Million Gallery
Dayong Wang, Member, IEEE, Charles Otto, Student Member, IEEE, Anil K. Jain, Fellow, IEEE"
4850af6b54391fc33c8028a0b7fafe05855a96ff,Discovering useful parts for pose estimation in sparsely annotated datasets,"Discovering Useful Parts for Pose Estimation in Sparsely Annotated Datasets
Mikhail Breslav1, Tyson L. Hedrick2, Stan Sclaroff1, and Margrit Betke1
Department of Computer Science and 2Department of Biology
Boston University and 2University of North Carolina"
48a5b6ee60475b18411a910c6084b3a32147b8cd,Pedestrian Attribute Recognition with Part-based CNN and Combined Feature Representations,"Pedestrian attribute recognition with part-based CNN
nd combined feature representations
Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla
Baskurt
To cite this version:
Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla Baskurt. Pedestrian attribute
recognition with part-based CNN and combined feature representations. VISAPP2018, Jan 2018,
Funchal, Portugal. <hal-01625470>
HAL Id: hal-01625470
https://hal.archives-ouvertes.fr/hal-01625470
Submitted on 21 Jun 2018
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,"
488e475eeb3bb39a145f23ede197cd3620f1d98a,Pedestrian Attribute Classification in Surveillance: Database and Evaluation,"Pedestrian Attribute Classification in Surveillance: Database and Evaluation
Jianqing Zhu, Shengcai Liao, Zhen Lei, Dong Yi, Stan Z. Li∗
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences (CASIA)
95 Zhongguancun East Road, 100190, Beijing, China
{jqzhu, scliao, zlei, dyi,"
487df616e981557c8e1201829a1d0ec1ecb7d275,Acoustic Echo Cancellation Using a Vector-Space-Based Adaptive Filtering Algorithm,"Acoustic Echo Cancellation Using a Vector-Space-Based
Adaptive Filtering Algorithm
Yu Tsao, Member IEEE, Shih-Hau Fang*, Senior Member IEEE, and Yao Shiao"
48319e611f0daaa758ed5dcf5a6496b4c6ef45f2,Non Binary Local Gradient Contours for Face Recognition,"Non Binary Local Gradient Contours for Face Recognition
Abdullah Gubbia, Mohammad Fazle Azeemb, M Sharmila Kumaric
Department of Electronics and Communication, P.A. College of Engnineering, Mangalore,
Nadupadavu, Mangalore, India, Contact:
Senior IEEE Member, Department of Electrical and Electronics Engineering, Aligarh Muslim
University, India, Contact:
Department of Computer Science and Engineering, P A College of Engineering, Nadupadavu,
Mangalore, India. Contact:
As the features from the traditional Local Binary patterns (LBP) and Local Directional Patterns (LDP) are
found to be ineffective for face recognition, we have proposed a new approach derived on the basis of Information
sets whereby the loss of information that occurs during the binarization is eliminated. The information sets
s a product. Since face is having smooth texture in a limited area, the extracted features must be highly
discernible. To limit the number of features, we consider only the non overlapping windows. By the application
of the information set theory we can reduce the number of feature of an image. The derived features are shown
to work fairly well over eigenface, fisherface and LBP methods.
Keywords: Local Binary Pattern, Local Directional Pattern, Information Sets, Gradient Contour, Support
Vector Machine, KNN, Face Recognition.
. INTRODUCTION
In face recognition, the major issue to be ad-
dressed is the extraction of features which are"
48cfc5789c246c6ad88ff841701204fc9d6577ed,Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis,"J Inf Process Syst, Vol.12, No.3, pp.392~409, September 2016
ISSN 1976-913X (Print)
ISSN 2092-805X (Electronic)
Age Invariant Face Recognition Based on DCT
Feature Extraction and Kernel Fisher Analysis
Leila Boussaad*, Mohamed Benmohammed**, and Redha Benzid***"
70f189798c8b9f2b31c8b5566a5cf3107050b349,The challenge of face recognition from digital point-and-shoot cameras,"The Challenge of Face Recognition from Digital Point-and-Shoot Cameras
J. Ross Beveridge∗
Geof H. Givens§
W. Todd Scruggs¶
P. Jonathon Phillips†
Yui Man Lui∗
Kevin W. Bowyer(cid:107)
David Bolme‡
Mohammad Nayeem Teli∗
Patrick J. Flynn(cid:107)
Bruce A. Draper∗,
Hao Zhang∗
Su Cheng†"
70109c670471db2e0ede3842cbb58ba6be804561,Zero-Shot Visual Recognition via Bidirectional Latent Embedding,"Noname manuscript No.
(will be inserted by the editor)
Zero-Shot Visual Recognition via Bidirectional Latent Embedding
Qian Wang · Ke Chen
Received: date / Accepted: date"
706236308e1c8d8b8ba7749869c6b9c25fa9f957,Crowdsourced data collection of facial responses,"Crowdsourced Data Collection of Facial Responses
Daniel McDuff
MIT Media Lab
Cambridge
02139, USA
Rosalind Picard
MIT Media Lab
Cambridge
02139, USA
Rana el Kaliouby
MIT Media Lab
Cambridge
02139, USA"
706b9767a444de4fe153b2f3bff29df7674c3161,Fast Metric Learning For Deep Neural Networks,"Fast Metric Learning For Deep Neural Networks
Henry Gouk1, Bernhard Pfahringer1, and Michael Cree2
Department of Computer Science, University of Waikato, Hamilton, New Zealand
School of Engineering, University of Waikato, Hamilton, New Zealand"
70c58700eb89368e66a8f0d3fc54f32f69d423e1,In Unsupervised Spatio-temporal Feature Learning,"INCORPORATING SCALABILITY IN UNSUPERVISED SPATIO-TEMPORAL FEATURE
LEARNING
Sujoy Paul, Sourya Roy and Amit K. Roy-Chowdhury
Dept. of Electrical and Computer Engineering, University of California, Riverside, CA 92521"
70e79d7b64f5540d309465620b0dab19d9520df1,Facial Expression Recognition System Using Extreme Learning Machine,"International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017
ISSN 2229-5518
Facial Expression Recognition System
Using Extreme Learning Machine
Firoz Mahmud, Dr. Md. Al Mamun"
7003d903d5e88351d649b90d378f3fc5f211282b,Facial Expression Recognition using Gabor Wavelet,"International Journal of Computer Applications (0975 – 8887)
Volume 68– No.23, April 2013
Facial Expression Recognition using Gabor Wavelet
Mahesh Kumbhar
ENTC SVERI’S COE (Poly),
Pandharpur,
Solapur, India
Manasi Patil
ENTC SVERI’S COE,
Pandharpur,
Solapur, India
Ashish Jadhav
ENTC SVERI’S COE (Poly),
Pandharpur,
Solapur, India"
70bf1769d2d5737fc82de72c24adbb7882d2effd,Face Detection in Intelligent Ambiences with Colored Illumination,"Face detection in intelligent ambiences with colored illumination
Christina Katsimerou, Judith A. Redi, Ingrid Heynderickx
Department of Intelligent Systems
TU Delft
Delft, The Netherlands"
1e058b3af90d475bf53b3f977bab6f4d9269e6e8,Manifold Relevance Determination,"Manifold Relevance Determination
Andreas C. Damianou
Dept. of Computer Science & Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
Carl Henrik Ek
KTH – Royal Institute of Technology, CVAP Lab, Stockholm, Sweden
Michalis K. Titsias
Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
Neil D. Lawrence
Dept. of Computer Science & Sheffield Institute for Translational Neuroscience, University of Sheffield, UK"
1e799047e294267087ec1e2c385fac67074ee5c8,Automatic Classification of Single Facial Images,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 12, DECEMBER 1999
Short Papers___________________________________________________________________________________________________
Automatic Classification of
Single Facial Images
Michael J. Lyons, Julien Budynek, and
Shigeru Akamatsu"
1eb4ea011a3122dc7ef3447e10c1dad5b69b0642,Contextual Visual Recognition from Images and Videos,"Contextual Visual Recognition from Images and Videos
Georgia Gkioxari
Jitendra Malik
Electrical Engineering and Computer Sciences
University of California at Berkeley
Technical Report No. UCB/EECS-2016-132
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-132.html
July 19, 2016"
1e7ae86a78a9b4860aa720fb0fd0bdc199b092c3,A Brief Review of Facial Emotion Recognition Based on Visual Information,"Article
A Brief Review of Facial Emotion Recognition Based
on Visual Information
Byoung Chul Ko ID
Department of Computer Engineering, Keimyung University, Daegu 42601, Korea;
Tel.: +82-10-3559-4564
Received: 6 December 2017; Accepted: 25 January 2018; Published: 30 January 2018"
1e8eee51fd3bf7a9570d6ee6aa9a09454254689d,Face Search at Scale,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2582166, IEEE
Transactions on Pattern Analysis and Machine Intelligence
Face Search at Scale
Dayong Wang, Member, IEEE, Charles Otto, Student Member, IEEE, Anil K. Jain, Fellow, IEEE"
1eec03527703114d15e98ef9e55bee5d6eeba736,Automatic identification of persons in TV series,"UNIVERSITÄT KARLSRUHE (TH)
FAKULTÄT FÜR INFORMATIK
INTERACTIVE SYSTEMS LABS
Prof. Dr. A. Waibel
DIPLOMA THESIS
Automatic identification
of persons in TV series
SUBMITTED BY
Mika Fischer
MAY 2008
ADVISORS
M.Sc. Hazım Kemal Ekenel
Dr.-Ing. Rainer Stiefelhagen"
1ef1f33c48bc159881c5c8536cbbd533d31b0e9a,Identity-based Adversarial Training of Deep CNNs for Facial Action Unit Recognition,"Z. ZHANG ET AL.: ADVERSARIAL TRAINING FOR ACTION UNIT RECOGNITION
Identity-based Adversarial Training of Deep
CNNs for Facial Action Unit Recognition
Zheng Zhang
Shuangfei Zhai
Lijun Yin
Department of Computer Science
State University of New York at
Binghamton
NY, USA."
1e8394cc9fe7c2392aa36fb4878faf7e78bbf2de,Zero-Shot Object Recognition System Based on Topic Model,"TO APPEAR IN IEEE THMS
Zero-Shot Object Recognition System
ased on Topic Model
Wai Lam Hoo and Chee Seng Chan"
1ecb56e7c06a380b3ce582af3a629f6ef0104457,"A New Way of Discovery of Belief, Desire and Intention in the BDI Agent-Based Software Modeling","List of Contents Vol.8
Contents of
Journal of Advanced Computational
Intelligence and Intelligent Informatics
Volume 8
Vol.8 No.1, January 2004
Editorial:
o Special Issue on Selected Papers from Humanoid,
Papers:
o Dynamic Color Object Recognition Using Fuzzy
Nano-technology, Information Technology,
Communication and Control, Environment, and
Management (HNICEM’03).
Elmer P. Dadios
Papers:
o A New Way of Discovery of Belief, Desire and
Intention  in the BDI Agent-Based Software
Modeling .
Chang-Hyun Jo
o Integration of Distributed Robotic Systems"
1e64b2d2f0a8a608d0d9d913c4baee6973995952,Dominant and Complementary Multi-Emotional Facial Expression Recognition Using C-Support Vector Classification,"DOMINANT AND
COMPLEMENTARY MULTI-
EMOTIONAL FACIAL
EXPRESSION RECOGNITION
USING C-SUPPORT VECTOR
CLASSIFICATION
Christer Loob, Pejman Rasti, Iiris Lusi, Julio C. S. Jacques
Junior, Xavier Baro, Sergio Escalera, Tomasz Sapinski,
Dorota Kaminska and Gholamreza Anbarjafari"
1e21b925b65303ef0299af65e018ec1e1b9b8d60,Unsupervised Cross-Domain Image Generation,"Under review as a conference paper at ICLR 2017
UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION
Yaniv Taigman, Adam Polyak & Lior Wolf
Facebook AI Research
Tel-Aviv, Israel"
1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9,9 Entropy Regularization,"Entropy Regularization
Yves Grandvalet
Yoshua Bengio
The problem of semi-supervised induction consists in learning a decision rule from
labeled and unlabeled data. This task can be undertaken by discriminative methods,
provided that learning criteria are adapted consequently. In this chapter, we moti-
vate the use of entropy regularization as a means to bene(cid:12)t from unlabeled data in
the framework of maximum a posteriori estimation. The learning criterion is derived
from clearly stated assumptions and can be applied to any smoothly parametrized
model of posterior probabilities. The regularization scheme favors low density sep-
ration, without any modeling of the density of input features. The contribution
of unlabeled data to the learning criterion induces local optima, but this problem
an be alleviated by deterministic annealing. For well-behaved models of posterior
probabilities, deterministic annealing EM provides a decomposition of the learning
problem in a series of concave subproblems. Other approaches to the semi-supervised
problem are shown to be close relatives or limiting cases of entropy regularization.
A series of experiments illustrates the good behavior of the algorithm in terms of
performance and robustness with respect to the violation of the postulated low den-
sity separation assumption. The minimum entropy solution bene(cid:12)ts from unlabeled
data and is able to challenge mixture models and manifold learning in a number of"
1ee3b4ba04e54bfbacba94d54bf8d05fd202931d,Celebrity Face Recognition using Deep Learning,"Indonesian Journal of Electrical Engineering and Computer Science
Vol. 12, No. 2, November 2018, pp. 476~481
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i2.pp476-481
      476
Celebrity Face Recognition using Deep Learning
Nur Ateqah Binti Mat Kasim1, Nur Hidayah Binti Abd Rahman2, Zaidah Ibrahim3,
Nur Nabilah Abu Mangshor4
,2,3Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM),
Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM),
Shah Alam, Selangor, Malaysia
Campus Jasin, Melaka, Malaysia
Article Info
Article history:
Received May 29, 2018
Revised Jul 30, 2018
Accepted Aug 3, 2018
Keywords:
AlexNet
Convolutional neural network
Deep learning"
1e41a3fdaac9f306c0ef0a978ae050d884d77d2a,Robust Object Recognition with Cortex-Like Mechanisms,"Robust Object Recognition with
Cortex-Like Mechanisms
Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and
Tomaso Poggio, Member, IEEE"
1e1e66783f51a206509b0a427e68b3f6e40a27c8,Semi-supervised Estimation of Perceived Age from Face Images,"SEMI-SUPERVISED ESTIMATION OF PERCEIVED AGE
FROM FACE IMAGES
VALWAY Technology Center, NEC Soft, Ltd., Tokyo, Japan
Kazuya Ueki
Masashi Sugiyama
Keywords:"
1efaa128378f988965841eb3f49d1319a102dc36,Hierarchical binary CNNs for landmark localization with limited resources,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
Hierarchical binary CNNs for landmark
localization with limited resources
Adrian Bulat and Georgios Tzimiropoulos"
8451bf3dd6bcd946be14b1a75af8bbb65a42d4b2,Consensual and Privacy-Preserving Sharing of Multi-Subject and Interdependent Data,"Consensual and Privacy-Preserving Sharing of
Multi-Subject and Interdependent Data
Alexandra-Mihaela Olteanu
EPFL, UNIL–HEC Lausanne
K´evin Huguenin
UNIL–HEC Lausanne
Italo Dacosta
Jean-Pierre Hubaux"
84e4b7469f9c4b6c9e73733fa28788730fd30379,Projective complex matrix factorization for facial expression recognition,"Duong et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:10
DOI 10.1186/s13634-017-0521-9
EURASIP Journal on Advances
in Signal Processing
R ES EAR CH
Projective complex matrix factorization for
facial expression recognition
Viet-Hang Duong1, Yuan-Shan Lee1, Jian-Jiun Ding2, Bach-Tung Pham1, Manh-Quan Bui1, Pham The Bao2
nd Jia-Ching Wang1,3*
Open Access"
84fa126cb19d569d2f0147bf6f9e26b54c9ad4f1,Improved Boosting Performance by Explicit Handling of Ambiguous Positive Examples,"Improved Boosting Performance by Explicit
Handling of Ambiguous Positive Examples
Miroslav Kobetski and Josephine Sullivan"
84508e846af3ac509f7e1d74b37709107ba48bde,Use of the Septum as a Reference Point in a Neurophysiologic Approach to Facial Expression Recognition,"Use of the Septum as a Reference Point in a Neurophysiologic Approach to
Facial Expression Recognition
Igor Stankovic and Montri Karnjanadecha
Department of Computer Engineering, Faculty of Engineering,
Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
Telephone: (66)080-7045015, (66)074-287-357
E-mail:"
841a5de1d71a0b51957d9be9d9bebed33fb5d9fa,PCANet: A Simple Deep Learning Baseline for Image Classification?,"PCANet: A Simple Deep Learning Baseline for
Image Classification?
Tsung-Han Chan, Member, IEEE, Kui Jia, Shenghua Gao, Jiwen Lu, Senior Member, IEEE,
Zinan Zeng, and Yi Ma, Fellow, IEEE"
8411fe1142935a86b819f065cd1f879f16e77401,Facial Recognition using Modified Local Binary Pattern and Random Forest,"International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 6, November 2013
Facial Recognition using Modified Local Binary
Pattern and Random Forest
Brian O’Connor and Kaushik Roy
Department of Computer Science,
North Carolina A&T State University,
Greensboro, NC 27411"
849f891973ad2b6c6f70d7d43d9ac5805f1a1a5b,ResNet Backbone Proposals Classification Loss Regression Loss Classification Loss Regression Loss RPN Classification Branch Box Regression Branch Conv Conv,"Detecting Faces Using Region-based Fully
Convolutional Networks
Yitong Wang Xing Ji Zheng Zhou Hao Wang Zhifeng Li∗
Tencent AI Lab, China"
4adca62f888226d3a16654ca499bf2a7d3d11b71,Models of Semantic Representation with Visual Attributes,"Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 572–582,
Sofia, Bulgaria, August 4-9 2013. c(cid:13)2013 Association for Computational Linguistics"
4a2d54ea1da851151d43b38652b7ea30cdb6dfb2,Direct recognition of motion-blurred faces,"Direct Recognition of Motion Blurred Faces
Kaushik Mitra, Priyanka Vageeswaran and Rama Chellappa"
4ab84f203b0e752be83f7f213d7495b04b1c4c79,Concave Losses for Robust Dictionary Learning,"CONCAVE LOSSES FOR ROBUST DICTIONARY LEARNING
Rafael Will M. de Araujo, R. Hirata Jr ∗
Alain Rakotomamonjy †
University of S˜ao Paulo
Institute of Mathematics and Statistics
Rua do Mat˜ao, 1010 – 05508-090 – S˜ao Paulo-SP, Brazil
Universit´e de Rouen Normandie
LITIS EA 4108
76800 Saint- ´Etienne-du-Rouvray, France"
4a3758f283b7c484d3f164528d73bc8667eb1591,Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial Networks,"Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial
Networks
Yunfan Liu, Qi Li, and Zhenan Sun∗
Center for Research on Intelligent Perception and Computing, CASIA
National Laboratory of Pattern Recognition, CASIA
{qli,"
4a4da3d1bbf10f15b448577e75112bac4861620a,"Face , Expression , and Iris Recognition","FACE, EXPRESSION, AND IRIS RECOGNITION
USING LEARNING-BASED APPROACHES
Guodong Guo
A dissertation submitted in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy
(Computer Sciences)
t the
UNIVERSITY OF WISCONSIN–MADISON"
4abd49538d04ea5c7e6d31701b57ea17bc349412,Recognizing Fine-Grained and Composite Activities Using Hand-Centric Features and Script Data,"Recognizing Fine-Grained and Composite Activities
using Hand-Centric Features and Script Data
Marcus Rohrbach · Anna Rohrbach · Michaela Regneri ·
Sikandar Amin · Mykhaylo Andriluka · Manfred Pinkal · Bernt Schiele"
4a0f98d7dbc31497106d4f652968c708f7da6692,Real-time eye gaze direction classification using convolutional neural network,"Real-time Eye Gaze Direction Classification Using
Convolutional Neural Network
Anjith George, Member, IEEE, and Aurobinda Routray, Member, IEEE"
4a5592ae1f5e9fa83d9fa17451c8ab49608421e4,Multi-modal social signal analysis for predicting agreement in conversation settings,"Multi-modal Social Signal Analysis for Predicting
Agreement in Conversation Settings
Víctor Ponce-López
IN3, Open University of
Catalonia, Roc Boronat, 117,
08018 Barcelona, Spain.
Dept. MAiA, University of
Barcelona, Gran Via, 585,
08007 Barcelona, Spain.
Computer Vision Center, UAB,
08193 Barcelona, Spain.
Sergio Escalera
Dept. MAiA, University of
Barcelona, Gran Via, 585,
08007 Barcelona, Spain.
Computer Vision Center, UAB,
08193 Barcelona, Spain.
Xavier Baró
EIMT, Open University of
Catalonia, Rbla. Poblenou,"
4a1a5316e85528f4ff7a5f76699dfa8c70f6cc5c,Face Recognition using Local Features based on Two-layer Block Model,"MVA2005  IAPR  Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan
Face Recognition using Local Features based on Two-layer Block M odel
W onjun Hwang1          Ji-Yeun Kim        Seokcheol Kee
Computing Lab.,
Samsung Advanced Institute of Technology
ombined  by  Yang  and  etc  [7].  The  sparsification  of  LFA
helps the reduction of dimension of image in LDA scheme
nd  local  topological  property  is  more  useful  than  holistic
property of PCA in recognition, but there is still structural
problem  because  the  method  to  select  the  features  is
designed  for  minimization  of  reconstruction  error,  not  for
increasing discriminability in face model.
In  this  paper,  we  proposed  the  novel  recognition
lgorithm  to  merge LFA  and LDA  method. We do  not use
the existing sparsification method for selecting features but
dopt  the  two-layer  block  model  to  make  several  groups
with  topographic  local  features  in  similar  position.  Each
local  block,  flocked  local  features,  can  represent  its  own
local  property  and  at
time  holistic  face"
4a2062ba576ca9e9a73b6aa6e8aac07f4d9344b9,Fusing Deep Convolutional Networks for Large Scale Visual Concept Classification,"Fusing Deep Convolutional Networks for Large
Scale Visual Concept Classification
Hilal Ergun and Mustafa SertB
Department of Computer Engineering
Bas¸kent University
06810 Ankara, TURKEY"
4ac3cd8b6c50f7a26f27eefc64855134932b39be,Robust Facial Landmark Detection via a Fully-Convolutional Local-Global Context Network,"Robust Facial Landmark Detection
via a Fully-Convolutional Local-Global Context Network
Daniel Merget
Matthias Rock
Gerhard Rigoll
Technical University of Munich"
4abaebe5137d40c9fcb72711cdefdf13d9fc3e62,Dimension Reduction for Regression with Bottleneck Neural Networks,"Dimension Reduction for Regression
with Bottleneck Neural Networks
Elina Parviainen
BECS, Aalto University School of Science and Technology, Finland"
4aeb87c11fb3a8ad603311c4650040fd3c088832,Self-paced Mixture of Regressions,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
SamplesSelected SamplesOutliersMoRSPMoR (ours)6361242024Figure1:Inter-componentimbalanceandintra-componentoutliersinMixtureofRegression(MoR)approaches.StandardMoRcannotlearnaccurateregressors(denotedbythedashedlines).Byintroduc-inganovelself-pacedscheme,ourSPMoRapproach(denotedbythesolidlines)selectsbalancedandconfidenttrainingsamplesfromeachcomponent,whilepreventlearningfromtheoutliersthroughoutthetrainingprocedure.theywillbeinevitablybiasedbydatadistribution:lowre-gressionerrorindenselysampledspacewhilehigherrorineverywhereelse.Foraddressingtheissuesofthedatadiscontinuityandheterogeneity,thedivide-and-conquerapproacheswerepro-posedlately.Thecoreideaistolearntocombinemultiplelocalregressors.Forinstance,thehierarchical-based[Hanetal.,2015]andtree-basedregression[HaraandChellappa,2014]makehardpartitionsrecursively,andthesubsetsofsam-plesmaynotbehomogeneousforlearninglocalregressors.WhileMixtureofRegressions(MoR)[Jacobsetal.,1991;JordanandXu,1995]distributesregressionerroramonglocalregressorsbymaximizinglikelihoodinthejointinput-outputspace.Theseapproachesreduceoverallerrorbyfittingre-gressionlocallyandreliefsthebiasbydiscontinuousdatadistribution.Unfortunately,theaforementionedapproachesstillcannotachievesatisfactoryperformancewhenapplyinginsomereal-worldapplications.Themainreasonisthattheseapproachestendtobesensitivetotheintra-componentoutliers(i.e.,thenoisytrainingdataresidingincertaincomponents)andtheinter-componentimbalance(i.e.,thedifferentamountsoftrain-"
4a3d96b2a53114da4be3880f652a6eef3f3cc035,A Dictionary Learning-Based 3D Morphable Shape Model,"A Dictionary Learning-Based
D Morphable Shape Model
Claudio Ferrari
, Giuseppe Lisanti, Stefano Berretti
, Senior Member, IEEE, and Alberto Del Bimbo"
4a6fcf714f663618657effc341ae5961784504c7,Scaling Up Class-Specific Kernel Discriminant Analysis for Large-Scale Face Verification,"Scaling up Class-Specific Kernel Discriminant
Analysis for large-scale Face Verification
Alexandros Iosifidis, Senior Member, IEEE, and Moncef Gabbouj, Fellow, IEEE"
24115d209e0733e319e39badc5411bbfd82c5133,Long-Term Recurrent Convolutional Networks for Visual Recognition and Description,"Long-term Recurrent Convolutional Networks for
Visual Recognition and Description
Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan, Sergio Guadarrama,
Kate Saenko, Trevor Darrell"
24c442ac3f6802296d71b1a1914b5d44e48b4f29,Pose and Expression-Coherent Face Recovery in the Wild,"Pose and expression-coherent face recovery in the wild
Xavier P. Burgos-Artizzu
Joaquin Zepeda
Technicolor, Cesson-S´evign´e, France
Franc¸ois Le Clerc
Patrick P´erez"
245f8ec4373e0a6c1cae36cd6fed5a2babed1386,Lucas Kanade Optical Flow Computation from Superpixel based Intensity Region for Facial Expression Feature Extraction,"J. Appl. Environ. Biol. Sci., 7(3S)1-10, 2017
© 2017, TextRoad Publication
ISSN: 2090-4274
Journal of Applied Environmental
nd Biological Sciences
www.textroad.com
Lucas Kanade Optical Flow Computation from Superpixel based Intensity
Region for Facial Expression Feature Extraction
Halina Hassan1,2, Abduljalil Radman1, Shahrel Azmin Suandi1, Sazali Yaacob2
Intelligent Biometric Group, School of Electrical and Electronics Engineering, Universiti Sains Malaysia,
Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute, 09000
Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Kulim Hi-Tech Park, Kedah, Malaysia
Received: February 21, 2017
Accepted: May 14, 2017"
24e099e77ae7bae3df2bebdc0ee4e00acca71250,Robust Face Alignment Under Occlusion via Regional Predictive Power Estimation,"Robust face alignment under occlusion via regional predictive power
estimation.
Heng Yang; Xuming He; Xuhui Jia; Patras, I
© 2015 IEEE
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/22467
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
2450c618cca4cbd9b8cdbdb05bb57d67e63069b1,A connexionist approach for robust and precise facial feature detection in complex scenes,"A Connexionist Approach for Robust and Precise Facial Feature Detection in
Complex Scenes
Stefan Duffner and Christophe Garcia
France Telecom Research & Development
, rue du Clos Courtel
5512 Cesson-S´evign´e, France
fstefan.duffner,"
244b57cc4a00076efd5f913cc2833138087e1258,Warped Convolutions: Efficient Invariance to Spatial Transformations,"Warped Convolutions: Efficient Invariance to Spatial Transformations
Jo˜ao F. Henriques 1 Andrea Vedaldi 1"
24869258fef8f47623b5ef43bd978a525f0af60e,Données multimodales pour l ’ analyse d ’ image,"UNIVERSITÉDEGRENOBLENoattribuéparlabibliothèqueTHÈSEpourobtenirlegradedeDOCTEURDEL’UNIVERSITÉDEGRENOBLESpécialité:MathématiquesetInformatiquepréparéeauLaboratoireJeanKuntzmanndanslecadredel’ÉcoleDoctoraleMathématiques,SciencesetTechnologiesdel’Information,InformatiqueprésentéeetsoutenuepubliquementparMatthieuGuillauminle27septembre2010ExploitingMultimodalDataforImageUnderstandingDonnéesmultimodalespourl’analysed’imageDirecteursdethèse:CordeliaSchmidetJakobVerbeekJURYM.ÉricGaussierUniversitéJosephFourierPrésidentM.AntonioTorralbaMassachusettsInstituteofTechnologyRapporteurMmeTinneTuytelaarsKatholiekeUniversiteitLeuvenRapporteurM.MarkEveringhamUniversityofLeedsExaminateurMmeCordeliaSchmidINRIAGrenobleExaminatriceM.JakobVerbeekINRIAGrenobleExaminateur"
2465fc22e03faf030e5a319479a95ef1dfc46e14,Influence of different feature selection approaches on the performance of emotion recognition methods based on SVM,"______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION
Influence of Different Feature Selection Approaches
on the Performance of Emotion Recognition
Methods Based on SVM
Daniil Belkov, Konstantin Purtov, Vladimir Kublanov
Ural Federal University (UrFU)
Yekaterinburg, Russia
d.d.belkov,"
24ff832171cb774087a614152c21f54589bf7523,Beat-Event Detection in Action Movie Franchises,"Beat-Event Detection in Action Movie Franchises
Danila Potapov
Matthijs Douze
Jerome Revaud
Zaid Harchaoui
Cordelia Schmid"
247a6b0e97b9447850780fe8dbc4f94252251133,Facial action unit detection: 3D versus 2D modality,"Facial Action Unit Detection: 3D versus 2D Modality
Arman Savran
Electrical and Electronics Engineering
Bo˘gazic¸i University, Istanbul, Turkey
B¨ulent Sankur
Electrical and Electronics Engineering
Bo˘gazic¸i University, Istanbul, Turkey
M. Taha Bilge
Department of Psychology
Bo˘gazic¸i University, Istanbul, Turkey"
230527d37421c28b7387c54e203deda64564e1b7,Person Re-identification: System Design and Evaluation Overview,"Person Re-identification: System Design and
Evaluation Overview
Xiaogang Wang and Rui Zhao"
23172f9a397f13ae1ecb5793efd81b6aba9b4537,Defining Visually Descriptive Language,"Proceedings of the 2015 Workshop on Vision and Language (VL’15), pages 10–17,
Lisbon, Portugal, 18 September 2015. c(cid:13)2015 Association for Computational Linguistics."
236a4f38f79a4dcc2183e99b568f472cf45d27f4,Randomized Clustering Forests for Image Classification,"Randomized Clustering Forests
for Image Classification
Frank Moosmann, Student Member, IEEE, Eric Nowak, Student Member, IEEE, and
Frederic Jurie, Member, IEEE Computer Society"
230c4a30f439700355b268e5f57d15851bcbf41f,EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis,"EM Algorithms for Weighted-Data Clustering
with Application to Audio-Visual Scene Analysis
Israel D. Gebru, Xavier Alameda-Pineda, Florence Forbes and Radu Horaud"
237fa91c8e8098a0d44f32ce259ff0487aec02cf,Bidirectional PCA with assembled matrix distance metric for image recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006
Bidirectional PCA With Assembled Matrix
Distance Metric for Image Recognition
Wangmeng Zuo, David Zhang, Senior Member, IEEE, and Kuanquan Wang, Member, IEEE"
2331df8ca9f29320dd3a33ce68a539953fa87ff5,Extended Isomap for Pattern Classification,"Extended Isomap for Pattern Classification
Ming-Hsuan Yang
Honda Fundamental Research Labs
Mountain View, CA 94041"
23ba9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3,Determining Mood from Facial Expressions,"CS 229 Project, Fall 2014
Matthew Wang
Spencer Yee
Determining Mood from Facial Expressions
Introduction
Facial expressions play an extremely important role in human communication. As
society continues to make greater use of human-machine interactions, it is important for
machines to be able to interpret facial expressions in order to improve their
uthenticity. If machines can be trained to determine mood to a better extent than
humans can, especially for more subtle moods, then this could be useful in fields such as
ounseling. This could also be useful for gauging reactions of large audiences in various
ontexts, such as political talks.
The results of this project could also be applied to recognizing other features of facial
expressions, such as determining when people are purposefully suppressing emotions or
lying. The ability to recognize different facial expressions could also improve technology
that recognizes to whom specific faces belong. This could in turn be used to search a
large number of pictures for a specific photo, which is becoming increasingly difficult, as
storing photos digitally has been extremely common in the past decade. The possibilities
re endless.
II  Data and Features"
238fc68b2e0ef9f5ec043d081451902573992a03,Enhanced Local Gradient Order Features and Discriminant Analysis for Face Recognition,"Enhanced Local Gradient Order Features and
Discriminant Analysis for Face Recognition
Chuan-Xian Ren, Zhen Lei, Member, IEEE, Dao-Qing Dai, Member, IEEE, and Stan Z. Li, Fellow, IEEE
role in robust face recognition [5]. Many algorithms have
een proposed to deal with the effectiveness of feature design
nd extraction [6], [7]; however, the performance of many
existing methods is still highly sensitive to variations of
imaging conditions, such as outdoor illumination, exaggerated
expression, and continuous occlusion. These complex varia-
tions are significantly affecting the recognition accuracy in
recent years [8]–[10].
Appearance-based subspace learning is one of the sim-
plest approach for feature extraction, and many methods
re usually based on linear correlation of pixel intensities.
For example, Eigenface [11] uses eigen system of pixel
intensities to estimate the lower rank linear subspace of
set of training face images by minimizing the (cid:2)2 dis-
tance metric. The solution enjoys optimality properties when
noise is independent
identically distributed Gaussian only."
2322ec2f3571e0ddc593c4e2237a6a794c61251d,Four not six: Revealing culturally common facial expressions of emotion.,"Jack, R. E. , Sun, W., Delis, I., Garrod, O. G. B. and Schyns, P. G. (2016)
Four not six: revealing culturally common facial expressions of
emotion.Journal of Experimental Psychology: General, 145(6), pp. 708-
730.  (doi:10.1037/xge0000162)
This is the author’s final accepted version.
There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
http://eprints.gla.ac.uk/116592/
Deposited on: 20 April 2016
Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk"
23120f9b39e59bbac4438bf4a8a7889431ae8adb,Improved RGB-D-T based face recognition,"Aalborg Universitet
Improved RGB-D-T based Face Recognition
Oliu Simon, Marc;   Corneanu, Ciprian; Nasrollahi, Kamal; Guerrero, Sergio Escalera;
Nikisins, Olegs; Sun, Yunlian; Li, Haiqing; Sun, Zhenan; Moeslund, Thomas B.; Greitans,
Modris
Published in:
DOI (link to publication from Publisher):
0.1049/iet-bmt.2015.0057
Publication date:
Document Version
Accepted manuscript, peer reviewed version
Link to publication from Aalborg University
Citation for published version (APA):
Oliu Simon, M.,   Corneanu, C., Nasrollahi, K., Guerrero, S. E., Nikisins, O., Sun, Y., ... Greitans, M. (2016).
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?"
23d55061f7baf2ffa1c847d356d8f76d78ebc8c1,Generic and attribute-specific deep representations for maritime vessels,"Solmaz et al. IPSJ Transactions on Computer Vision and
Applications  (2017) 9:22
DOI 10.1186/s41074-017-0033-4
IPSJ Transactions on Computer
Vision and Applications
RESEARCH PAPER
Open Access
Generic and attribute-specific deep
representations for maritime vessels
Berkan Solmaz*†
, Erhan Gundogdu†, Veysel Yucesoy and Aykut Koc"
23a8d02389805854cf41c9e5fa56c66ee4160ce3,Influence of low resolution of images on reliability of face detection and recognition,"Multimed Tools Appl
DOI 10.1007/s11042-013-1568-8
Influence of low resolution of images on reliability
of face detection and recognition
Tomasz Marciniak· Agata Chmielewska·
Radoslaw Weychan· Marianna Parzych·
Adam Dabrowski
© The Author(s) 2013. This article is published with open access at SpringerLink.com"
23b37c2f803a2d4b701e2f39c5f623b2f3e14d8e,Modified Approaches on Face Recognition By using Multisensory Image,"Available Online at www.ijcsmc.com
International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology
ISSN 2320–088X
IJCSMC, Vol. 2, Issue. 4, April 2013, pg.646 – 649
RESEARCH ARTICLE
Modified Approaches on Face Recognition
By using Multisensory Image
S. Dhanarajan1, G. Michael2
Computer Science Department, Bharath University, India
Computer Science Department, Bharath University, India"
4f051022de100241e5a4ba8a7514db9167eabf6e,Face Parsing via a Fully-Convolutional Continuous CRF Neural Network,"Face Parsing via a Fully-Convolutional Continuous
CRF Neural Network
Lei Zhou, Zhi Liu, Senior Member, IEEE, Xiangjian He, Senior Member, IEEE"
4faded442b506ad0f200a608a69c039e92eaff11,İstanbul Technical University Institute of Science and Technology Face Recognition under Varying Illumination,"İSTANBUL TECHNICAL UNIVERSITY  INSTITUTE OF SCIENCE AND TECHNOLOGY
FACE RECOGNITION UNDER VARYING
ILLUMINATION
Master Thesis by
Erald VUÇINI, B.Sc.
Department :  Computer Engineering
Programme:  Computer Engineering
Supervisor: Prof. Dr. Muhittin GÖKMEN
JUNE 2006"
4fc936102e2b5247473ea2dd94c514e320375abb,Guess Where? Actor-Supervision for Spatiotemporal Action Localization,"Guess Where? Actor-Supervision for Spatiotemporal Action Localization
Victor Escorcia1∗
Cuong D. Dao1
Mihir Jain3
KAUST1, University of Amsterdam2, Qualcomm Technologies, Inc.3
Bernard Ghanem1
Cees Snoek2∗"
4f6adc53798d9da26369bea5a0d91ed5e1314df2,Online Nonnegative Matrix Factorization with General Divergences,"IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. , NO. , 2016
Online Nonnegative Matrix Factorization with
General Divergences
Renbo Zhao, Member, IEEE, Vincent Y. F. Tan, Senior Member, IEEE, Huan Xu"
4f591e243a8f38ee3152300bbf42899ac5aae0a5,Understanding Higher-Order Shape via 3D Shape Attributes,"SUBMITTED TO TPAMI
Understanding Higher-Order Shape
via 3D Shape Attributes
David F. Fouhey, Abhinav Gupta, Andrew Zisserman"
4f4f920eb43399d8d05b42808e45b56bdd36a929,A Novel Method for 3 D Image Segmentation with Fusion of Two Images using Color K-means Algorithm,"International Journal of Computer Applications (0975 – 8887)
Volume 123 – No.4, August 2015
A Novel Method for 3D Image Segmentation with Fusion
of Two Images using Color K-means Algorithm
Neelam Kushwah
Dept. of CSE
ITM Universe
Gwalior
Priusha Narwariya
Dept. of CSE
ITM Universe
Gwalior"
4f77a37753c03886ca9c9349723ec3bbfe4ee967,"Localizing Facial Keypoints with Global Descriptor Search, Neighbour Alignment and Locally Linear Models","Localizing Facial Keypoints with Global Descriptor Search,
Neighbour Alignment and Locally Linear Models
Md. Kamrul Hasan1, Christopher Pal1 and Sharon Moalem2
´Ecole Polytechnique de Montr´eal, Universit´e de Montr´eal
University of Toronto and Recognyz Systems Technologies
lso focused on emotion recognition in the wild [9]."
8de06a584955f04f399c10f09f2eed77722f6b1c,Facial Landmarks Localization Estimation by Cascaded Boosted Regression,"Author manuscript, published in ""International Conference on Computer Vision Theory and Applications (VISAPP 2013) (2013)"""
8d4f0517eae232913bf27f516101a75da3249d15,Event-based Dynamic Face Detection and Tracking Based on Activity,"ARXIV SUBMISSION, MARCH 2018
Event-based Dynamic Face Detection and
Tracking Based on Activity
Gregor Lenz, Sio-Hoi Ieng and Ryad Benosman"
8de2dbe2b03be8a99628ffa000ac78f8b66a1028,Action Recognition in Videos,"´Ecole Nationale Sup´erieure dInformatique et de Math´ematiques Appliqu´ees de Grenoble
INP Grenoble – ENSIMAG
UFR Informatique et Math´ematiques Appliqu´ees de Grenoble
Rapport de stage de Master 2 et de projet de fin d’´etudes
Effectu´e au sein de l’´equipe LEAR, I.N.R.I.A., Grenoble
Action Recognition in Videos
Gaidon Adrien
e ann´ee ENSIMAG – Option I.I.I.
M2R Informatique – sp´ecialit´e I.A.
04 f´evrier 2008 – 04 juillet 2008
LEAR,
I.N.R.I.A., Grenoble
655 avenue de l’Europe
8 334 Montbonnot
France
Responsable de stage
Mme. Cordelia Schmid
Tuteur ´ecole
M. Augustin Lux
M. Roger Mohr"
8d3fbdb9783716c1832a0b7ab1da6390c2869c14,Discriminant Subspace Analysis for Uncertain Situation in Facial Recognition,"Discriminant Subspace Analysis for Uncertain
Situation in Facial Recognition
Pohsiang Tsai, Tich Phuoc Tran, Tom Hintz and Tony Jan
School of Computing and Communications – University of Technology, Sydney
Australia
. Introduction
Facial    analysis  and  recognition  have  received  substential  attention  from  researchers  in
iometrics,  pattern  recognition,  and  computer  vision  communities.  They  have  a  large
number  of  applications,  such  as  security,  communication,  and  entertainment.  Although  a
great deal of efforts has been devoted to automated face recognition systems, it still remains
challenging uncertainty problem. This is because human facial appearance has potentially
of very large intra-subject variations of head pose, illumination, facial expression, occlusion
due to other objects or accessories, facial hair and aging. These misleading variations may
ause classifiers to degrade generalization performance.
It is important for face recognition systems to employ an effective feature extraction scheme
to  enhance  separability  between  pattern  classes  which  should  maintain  and  enhance
features of the input data that make distinct pattern classes separable (Jan, 2004). In general,
there  exist  a  number  of  different  feature  extraction  methods.  The  most  common  feature
extraction  methods  are  subspace  analysis  methods  such  as  principle  component  analysis
(PCA)  (Kirby  &  Sirovich,  1990)  (Jolliffe,  1986)  (Turk  &  Pentland,  1991b),  kernel  principle"
8d42a24d570ad8f1e869a665da855628fcb1378f,An Empirical Study of Context in Object Detection,"CVPR 2009 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
An Empirical Study of Context in Object Detection
Anonymous CVPR submission
Paper ID 987"
8d8461ed57b81e05cc46be8e83260cd68a2ebb4d,Age identification of Facial Images using Neural Network,"Age identification of Facial Images using Neural
Network
Sneha Thakur, Ligendra Verma
CSE Department,CSVTU
RIT, Raipur, Chhattisgarh , INDIA"
8d384e8c45a429f5c5f6628e8ba0d73c60a51a89,Temporal Dynamic Graph LSTM for Action-Driven Video Object Detection,"Temporal Dynamic Graph LSTM for Action-driven Video Object Detection
Yuan Yuan1 Xiaodan Liang2 Xiaolong Wang2 Dit-Yan Yeung1 Abhinav Gupta2
The Hong Kong University of Science and Technology 2 Carneige Mellon University"
8d1adf0ac74e901a94f05eca2f684528129a630a,Facial Expression Recognition Using Facial Movement Features,"Facial Expression Recognition Using Facial
Movement Features"
8d646ac6e5473398d668c1e35e3daa964d9eb0f6,Memory-Efficient Global Refinement of Decision-Tree Ensembles and its Application to Face Alignment,"MEMORY-EFFICIENT GLOBAL REFINEMENT OF DECISION-TREE ENSEMBLES AND
ITS APPLICATION TO FACE ALIGNMENT
Nenad Markuˇs†
Ivan Gogi´c†
Igor S. Pandˇzi´c†
J¨orgen Ahlberg‡
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
Computer Vision Laboratory, Dept. of Electrical Engineering, Link¨oping University, SE-581 83 Link¨oping, Sweden"
8dffbb6d75877d7d9b4dcde7665888b5675deee1,Emotion Recognition with Deep-Belief Networks,"Emotion Recognition with Deep-Belief
Networks
Tom McLaughlin, Mai Le, Naran Bayanbat
Introduction
For  our  CS229  project,  we  studied  the  problem  of
reliable  computerized  emotion  recognition  in  images  of
human
faces.  First,  we  performed  a  preliminary
exploration using SVM classifiers, and then developed an
pproach based on Deep Belief Nets. Deep Belief Nets, or
DBNs,  are  probabilistic  generative  models  composed  of
multiple  layers  of  stochastic  latent  variables,  where  each
“building block” layer is a Restricted Boltzmann Machine
(RBM).  DBNs  have  a  greedy  layer-wise  unsupervised
learning algorithm as well as a discriminative fine-tuning
procedure  for  optimizing  performance  on  classification
tasks. [1].
We  trained  our  classifier  on  three  databases:  the
Cohn-Kanade Extended Database (CK+) [2], the Japanese
Female  Facial Expression  Database (JAFFE) [3], and the"
8d5998cd984e7cce307da7d46f155f9db99c6590,ChaLearn looking at people: A review of events and resources,"ChaLearn Looking at People:
A Review of Events and Resources
Sergio Escalera1,2, Xavier Bar´o2,3, Hugo Jair Escalante4,5, Isabelle Guyon4,6,
Dept. Mathematics and Computer Science, UB, Spain,
Computer Vision Center, UAB, Barcelona, Spain,
EIMT, Open University of Catalonia, Barcelona, Spain,
ChaLearn, California, USA, 5 INAOE, Puebla, Mexico,
6 Universit´e Paris-Saclay, Paris, France,
http://chalearnlap.cvc.uab.es"
8dce38840e6cf5ab3e0d1b26e401f8143d2a6bff,Towards large scale multimedia indexing: A case study on person discovery in broadcast news,"Towards large scale multimedia indexing:
A case study on person discovery in broadcast news
Nam Le1, Hervé Bredin2, Gabriel Sargent3, Miquel India5, Paula Lopez-Otero6,
Claude Barras2, Camille Guinaudeau2, Guillaume Gravier3, Gabriel Barbosa da Fonseca4,
Izabela Lyon Freire4, Zenilton Patrocínio Jr4, Silvio Jamil F. Guimarães4, Gerard Martí5,
Josep Ramon Morros5, Javier Hernando5, Laura Docio-Fernandez6, Carmen Garcia-Mateo6,
Sylvain Meignier7, Jean-Marc Odobez1
Idiap Research Institute & EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay,
CNRS, Irisa & Inria Rennes, 4 PUC de Minas Gerais, Belo Horizonte,
5 Universitat Politècnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine"
153f5ad54dd101f7f9c2ae17e96c69fe84aa9de4,Overview of algorithms for face detection and tracking,"Overview of algorithms for face detection and
tracking
Nenad Markuˇs"
15cd05baa849ab058b99a966c54d2f0bf82e7885,Structured Sparse Subspace Clustering: A unified optimization framework,"Structured Sparse Subspace Clustering: A Unified Optimization Framework
Chun-Guang Li1, René Vidal2
SICE, Beijing University of Posts and Telecommunications. 2Center for Imaging Science, Johns Hopkins University.
In many real-world applications, we need to deal with high-dimensional
datasets, such as images, videos, text, and more. In practice, such high-
dimensional datasets can be well approximated by multiple low-dimensional
subspaces corresponding to multiple classes or categories. For example, the
feature point trajectories associated with a rigidly moving object in a video
lie in an affine subspace (of dimension up to 4), and face images of a subject
under varying illumination lie in a linear subspace (of dimension up to 9).
Therefore, the task, known in the literature as subspace clustering [6], is
to segment the data into the corresponding subspaces and finds multiple
pplications in computer vision.
State of the art approaches [1, 2, 3, 4, 5, 7] for solving this problem fol-
low a two-stage approach: a) Construct an affinity matrix between points by
exploiting the ‘self-expressiveness’ property of the data, which allows any
data point to be represented as a linear (or affine) combination of the other
data points; b) Apply spectral clustering on the affinity matrix to recover
the data segmentation. Dividing the problem in two steps is, on the one
hand, appealing because the first step can be solved using convex optimiza-"
15136c2f94fd29fc1cb6bedc8c1831b7002930a6,Deep Learning Architectures for Face Recognition in Video Surveillance,"Deep Learning Architectures for Face
Recognition in Video Surveillance
Saman Bashbaghi, Eric Granger, Robert Sabourin and Mostafa Parchami"
153e5cddb79ac31154737b3e025b4fb639b3c9e7,Active Dictionary Learning in Sparse Representation Based Classification,"PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
Active Dictionary Learning in Sparse
Representation Based Classification
Jin Xu, Haibo He, Senior Member, IEEE, and Hong Man, Senior Member, IEEE"
157eb982da8fe1da4c9e07b4d89f2e806ae4ceb6,Connecting the dots in multi-class classification: From nearest subspace to collaborative representation,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com
Connecting the Dots in Multi-Class Classification: From
Nearest Subspace to Collaborative Representation
Chi, Y.; Porikli, F.
TR2012-043
June 2012"
15e0b9ba3389a7394c6a1d267b6e06f8758ab82b,The OU-ISIR Gait Database comprising the Large Population Dataset with Age and performance evaluation of age estimation,"Xu et al. IPSJ Transactions on Computer Vision and
Applications  (2017) 9:24
DOI 10.1186/s41074-017-0035-2
IPSJ Transactions on Computer
Vision and Applications
TECHNICAL NOTE
Open Access
The OU-ISIR Gait Database comprising the
Large Population Dataset with Age and
performance evaluation of age estimation
Chi Xu1,2, Yasushi Makihara2*, Gakuto Ogi2, Xiang Li1,2, Yasushi Yagi2 and Jianfeng Lu1"
15aa6c457678e25f6bc0e818e5fc39e42dd8e533,Conditional Image Generation for Learning the Structure of Visual Objects,
15cf1f17aeba62cd834116b770f173b0aa614bf4,Facial Expression Recognition using Neural Network with Regularized Backpropagation Algorithm,"International Journal of Computer Applications (0975 – 8887)
Volume 77 – No.5, September 2013
Facial Expression Recognition using Neural Network with
Regularized Back-propagation Algorithm
Ashish Kumar Dogra
Research Scholar
Department of ECE,
Lovely Professional University,
Phagwara, India
Nikesh Bajaj
Assistant Professor
Department of ECE,
Lovely Professional University,
Phagwara, India
Harish Kumar Dogra
Research Scholar
Department of ECE,
Gyan Ganga Institute of
Technology & Sciences,
Jabalpur, India"
15f3d47b48a7bcbe877f596cb2cfa76e798c6452,Automatic face analysis tools for interactive digital games,"Automatic face analysis tools for interactive digital games
Anonymised for blind review
Anonymous
Anonymous
Anonymous"
15728d6fd5c9fc20b40364b733228caf63558c31,Expanding the Breadth and Detail of Object Recognition By,(cid:13) 2013 Ian N. Endres
153c8715f491272b06dc93add038fae62846f498,On Clustering Images of Objects,"(cid:13) Copyright by Jongwoo Lim, 2005"
122ee00cc25c0137cab2c510494cee98bd504e9f,The Application of Active Appearance Models to Comprehensive Face Analysis Technical Report,"The Application of
Active Appearance Models to
Comprehensive Face Analysis
Technical Report
Simon Kriegel
TU M¨unchen
April 5, 2007"
12cb3bf6abf63d190f849880b1703ccc183692fe,Guess Who?: A game to crowdsource the labeling of affective facial expressions is comparable to expert ratings,"Guess Who?: A game to crowdsource the labeling of affective facial
expressions is comparable to expert ratings.
Barry Borsboom
Graduation research project, june 2012
Supervised by: Dr. Joost Broekens
Leiden University Media Technology Department,"
12cd96a419b1bd14cc40942b94d9c4dffe5094d2,Leveraging Captions in the Wild to Improve Object Detection,"Proceedings of the 5th Workshop on Vision and Language, pages 29–38,
Berlin, Germany, August 12 2016. c(cid:13)2016 Association for Computational Linguistics"
1275852f2e78ed9afd189e8b845fdb5393413614,A Transfer Learning based Feature-Weak-Relevant Method for Image Clustering,"A Transfer Learning based Feature-Weak-Relevant Method for
Image Clustering
Bo Dong, Xinnian Wang
Dalian Maritime University
Dalian, China"
12055b8f82d5411f9ad196b60698d76fbd07ac1e,Multiview Facial Landmark Localization in RGB-D Images via Hierarchical Regression With Binary Patterns,"Multiview Facial Landmark Localization in RGB-D
Images via Hierarchical Regression
With Binary Patterns
Zhanpeng Zhang, Student Member, IEEE, Wei Zhang, Member, IEEE, Jianzhuang Liu, Senior Member, IEEE,
nd Xiaoou Tang, Fellow, IEEE"
120785f9b4952734818245cc305148676563a99b,Diagnostic automatique de l'état dépressif(Classification of depressive moods),"Diagnostic automatique de l’état dépressif
S. Cholet
H. Paugam-Moisy
Laboratoire de Mathématiques Informatique et Applications (LAMIA - EA 4540)
Université des Antilles, Campus de Fouillole - Guadeloupe
Résumé
Les troubles psychosociaux sont un problème de santé pu-
lique majeur, pouvant avoir des conséquences graves sur
le court ou le long terme, tant sur le plan professionnel que
personnel ou familial. Le diagnostic de ces troubles doit
être établi par un professionnel. Toutefois, l’IA (l’Intelli-
gence Artificielle) peut apporter une contribution en four-
nissant au praticien une aide au diagnostic, et au patient
un suivi permanent rapide et peu coûteux. Nous proposons
une approche vers une méthode de diagnostic automatique
de l’état dépressif à partir d’observations du visage en
temps réel, au moyen d’une simple webcam. A partir de
vidéos du challenge AVEC’2014, nous avons entraîné un
lassifieur neuronal à extraire des prototypes de visages
selon différentes valeurs du score de dépression de Beck"
12ebeb2176a5043ad57bc5f3218e48a96254e3e9,Traffic Road Sign Detection and Recognition for Automotive Vehicles,"International Journal of Computer Applications (0975 – 8887)
Volume 120 – No.24, June 2015
Traffic Road Sign Detection and Recognition for
Automotive Vehicles
Md. Safaet Hossain
Zakir Hyder
Department of Electrical Engineering and
Department of Electrical Engineering and
Computer Science North South University, Dhaka
Computer Science North South University, Dhaka
Bangladesh
Bangladesh"
12150d8b51a2158e574e006d4fbdd3f3d01edc93,Deep End2End Voxel2Voxel Prediction,"Deep End2End Voxel2Voxel Prediction
Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo
Torresani, Manohar Paluri
Presented by: Ahmed Osman
Ahmed Osman"
12d8730da5aab242795bdff17b30b6e0bac82998,Persistent Evidence of Local Image Properties in Generic ConvNets,"Persistent Evidence of Local Image Properties in Generic ConvNets
Ali Sharif Razavian, Hossein Azizpour,
Atsuto Maki, Josephine Sullivan, Carl Henrik Ek, and Stefan Carlsson
CVAP, KTH (Royal Institute of Technology), Stockholm, SE-10044"
8c13f2900264b5cf65591e65f11e3f4a35408b48,A Generic Face Representation Approach for Local Appearance Based Face Verification,"A GENERIC FACE REPRESENTATION APPROACH FOR
LOCAL APPEARANCE BASED FACE VERIFICATION
Hazim Kemal Ekenel, Rainer Stiefelhagen
Interactive Systems Labs, Universität Karlsruhe (TH)
76131 Karlsruhe, Germany
{ekenel,
web: http://isl.ira.uka.de/face_recognition/"
8c955f3827a27e92b6858497284a9559d2d0623a,Facial Expression Recognition under Noisy Environment Using Gabor Filters,"Buletinul Ştiinţific al Universităţii ""Politehnica"" din Timişoara
Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS
Tom 53(67), Fascicola 1-2, 2008
Facial Expression Recognition under Noisy Environment
Using Gabor Filters
Ioan Buciu1, I. Nafornita2, I. Pitas3"
8c7f4c11b0c9e8edf62a0f5e6cf0dd9d2da431fa,Dataset Augmentation for Pose and Lighting Invariant Face Recognition,"Dataset Augmentation for Pose and Lighting
Invariant Face Recognition
Daniel Crispell∗, Octavian Biris∗, Nate Crosswhite†, Jeffrey Byrne†, Joseph L. Mundy∗
Vision Systems, Inc.
Systems and Technology Research"
8ce9b7b52d05701d5ef4a573095db66ce60a7e1c,Structured Sparse Subspace Clustering: A Joint Affinity Learning and Subspace Clustering Framework,"Structured Sparse Subspace Clustering: A Joint
Affinity Learning and Subspace Clustering
Framework
Chun-Guang Li, Chong You, and Ren´e Vidal"
8cb6daba2cb1e208e809633133adfee0183b8dd2,Know Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models,"Know Before You Do: Anticipating Maneuvers
via Learning Temporal Driving Models
Ashesh Jain, Hema S Koppula, Bharad Raghavan, Shane Soh, Ashutosh Saxena
Cornell University and Stanford University"
8c6c0783d90e4591a407a239bf6684960b72f34e,SESSION KNOWLEDGE ENGINEERING AND MANAGEMENT + KNOWLEDGE ACQUISITION Chair(s),"SESSION
KNOWLEDGE ENGINEERING AND
MANAGEMENT + KNOWLEDGE ACQUISITION
Chair(s)
Int'l Conf. Information and Knowledge Engineering | IKE'13 |1"
8cc07ae9510854ec6e79190cc150f9f1fe98a238,Using Deep Learning to Challenge Safety Standard for Highly Autonomous Machines in Agriculture,"Article
Using Deep Learning to Challenge Safety Standard
for Highly Autonomous Machines in Agriculture
Kim Arild Steen *,†, Peter Christiansen †, Henrik Karstoft and Rasmus Nyholm Jørgensen
Department of Engineering, Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark;
(P.C.); (H.K.); (R.N.J.)
* Correspondence: Tel.: +45-3116-8628
These authors contributed equally to this work.
Academic Editors: Francisco Rovira-Más and Gonzalo Pajares Martinsanz
Received: 18 December 2015; Accepted: 2 February 2016; Published: 15 February 2016"
8509abbde2f4b42dc26a45cafddcccb2d370712f,A way to improve precision of face recognition in SIPP without retrain of the deep neural network model,"Improving precision and recall of face recognition in SIPP with combination of
modified mean search and LSH
Xihua.Li"
858ddff549ae0a3094c747fb1f26aa72821374ec,"Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-Related Applications","Survey on RGB, 3D, Thermal, and Multimodal
Approaches for Facial Expression Recognition:
History, Trends, and Affect-related Applications
Ciprian A. Corneanu, Marc Oliu, Jeffrey F. Cohn, and Sergio Escalera"
85fd2bda5eb3afe68a5a78c30297064aec1361f6,"Are You Smiling, or Have I Seen You Before? Familiarity Makes Faces Look Happier.","702003 PSSXXX10.1177/0956797617702003Carr et al.Are You Smiling, or Have I Seen You Before?
research-article2017
Research Article
Are You Smiling, or Have I Seen You
Before? Familiarity Makes Faces Look
Happier
017, Vol. 28(8) 1087 –1102
© The Author(s) 2017
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0956797617702003
https://doi.org/10.1177/0956797617702003
www.psychologicalscience.org/PS
Evan W. Carr1, Timothy F. Brady2, and Piotr Winkielman2,3,4
Columbia Business School, Columbia University; 2Psychology Department, University of California, San Diego;
Behavioural Science Group, Warwick Business School, University of Warwick; and 4Faculty of Psychology,
SWPS University of Social Sciences and Humanities"
858901405086056361f8f1839c2f3d65fc86a748,On Tensor Tucker Decomposition: the Case for an Adjustable Core Size,"ON TENSOR TUCKER DECOMPOSITION: THE CASE FOR AN
ADJUSTABLE CORE SIZE
BILIAN CHEN ∗, ZHENING LI † , AND SHUZHONG ZHANG ‡"
85188c77f3b2de3a45f7d4f709b6ea79e36bd0d9,"Combined model for detecting, localizing, interpreting and recognizing faces","Author manuscript, published in ""Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille :
France (2008)"""
858b51a8a8aa082732e9c7fbbd1ea9df9c76b013,Can Computer Vision Problems Benefit from Structured Hierarchical Classification?,"Can Computer Vision Problems Benefit from
Structured Hierarchical Classification?
Thomas Hoyoux1, Antonio J. Rodr´ıguez-S´anchez2, Justus H. Piater2, and
Sandor Szedmak2
INTELSIG, Montefiore Institute, University of Li`ege, Belgium
Intelligent and Interactive Systems, Institute of Computer Science, University of
Innsbruck, Austria"
8518b501425f2975ea6dcbf1e693d41e73d0b0af,Relative Hidden Markov Models for Evaluating Motion Skill,"Relative Hidden Markov Models for Evaluating Motion Skills
Qiang Zhang and Baoxin Li
Computer Science and Engineering
Arizona State Univerisity, Tempe, AZ 85281"
853bd61bc48a431b9b1c7cab10c603830c488e39,Learning Face Representation from Scratch,"Learning Face Representation from Scratch
Dong Yi, Zhen Lei, Shengcai Liao and Stan Z. Li
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences (CASIA)
dong.yi, zlei, scliao,"
854dbb4a0048007a49df84e3f56124d387588d99,Spatial-Temporal Recurrent Neural Network for Emotion Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014
Spatial-Temporal Recurrent Neural Network for
Emotion Recognition
Tong Zhang, Wenming Zheng*, Member, IEEE, Zhen Cui*, Yuan Zong and Yang Li"
1d7ecdcb63b20efb68bcc6fd99b1c24aa6508de9,The Hidden Sides of Names&#x2014;Face Modeling with First Name Attributes,"The Hidden Sides of Names—Face Modeling
with First Name Attributes
Huizhong Chen, Student Member, IEEE, Andrew C. Gallagher, Senior Member, IEEE, and
Bernd Girod, Fellow, IEEE"
1d0dd20b9220d5c2e697888e23a8d9163c7c814b,Boosted Metric Learning for Efficient Identity-Based Face Retrieval,"NEGREL ET AL.: BOOSTED METRIC LEARNING FOR FACE RETRIEVAL
Boosted Metric Learning for Efficient
Identity-Based Face Retrieval
Romain Negrel
Alexis Lechervy
Frederic Jurie
GREYC, CNRS UMR 6072, ENSICAEN
Université de Caen Basse-Normandie
France"
1d776bfe627f1a051099997114ba04678c45f0f5,Deployment of Customized Deep Learning based Video Analytics On Surveillance Cameras,"Deployment of Customized Deep Learning based
Video Analytics On Surveillance Cameras
Pratik Dubal(cid:63), Rohan Mahadev(cid:63), Suraj Kothawade(cid:63),
Kunal Dargan, and Rishabh Iyer
AitoeLabs (www.aitoelabs.com)"
1dff919e51c262c22630955972968f38ba385d8a,Toward an Affect-Sensitive Multimodal Human–Computer Interaction,"Toward an Affect-Sensitive Multimodal
Human–Computer Interaction
MAJA PANTIC, MEMBER, IEEE, AND LEON J. M. ROTHKRANTZ
Invited Paper
The ability to recognize affective states of a person we are com-
municating with is the core of emotional intelligence. Emotional
intelligenceisa facet of human intelligence thathas been argued to be
indispensable and perhaps the most important for successful inter-
personal social interaction. This paper argues that next-generation
human–computer interaction (HCI) designs need to include the
essence of emotional intelligence—the ability to recognize a user’s
ffective states—in order to become more human-like, more effec-
tive, and more efficient. Affective arousal modulates all nonverbal
ommunicative cues (facial expressions, body movements, and vocal
nd physiological reactions). In a face-to-face interaction, humans
detect and interpret those interactive signals of their communicator
with little or no effort. Yet design and development of an automated
system that accomplishes these tasks is rather difficult. This paper
surveys the past work in solving these problems by a computer
nd provides a set of recommendations for developing the first"
1de8f38c35f14a27831130060810cf9471a62b45,A Branch-and-Bound Framework for Unsupervised Common Event Discovery,"Int J Comput Vis
DOI 10.1007/s11263-017-0989-7
A Branch-and-Bound Framework for Unsupervised Common
Event Discovery
Wen-Sheng Chu1
Jeffrey F. Cohn1,2 · Daniel S. Messinger3
· Fernando De la Torre1 ·
Received: 3 June 2016 / Accepted: 12 January 2017
© Springer Science+Business Media New York 2017"
1da83903c8d476c64c14d6851c85060411830129,Iterated Support Vector Machines for Distance Metric Learning,"Iterated Support Vector Machines for Distance
Metric Learning
Wangmeng Zuo, Member, IEEE, Faqiang Wang, David Zhang, Fellow, IEEE, Liang Lin, Member, IEEE,
Yuchi Huang, Member, IEEE, Deyu Meng, and Lei Zhang, Senior Member, IEEE"
1d58d83ee4f57351b6f3624ac7e727c944c0eb8d,Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions,"Enhanced Local Texture
Feature Sets for Face
Recognition under Difficult
Lighting Conditions
Xiaoyang Tan and Bill Triggs
INRIA & Laboratoire Jean
Kuntzmann,
655 avenue de l'Europe, Montbonnot 38330, France"
1d729693a888a460ee855040f62bdde39ae273af,Photorealistic Face De-Identification by Aggregating Donors' Face Components,"Photorealistic Face de-Identification by Aggregating
Donors’ Face Components
Saleh Mosaddegh, Lo¨ıc Simon, Fr´ed´eric Jurie
To cite this version:
Saleh Mosaddegh, Lo¨ıc Simon, Fr´ed´eric Jurie. Photorealistic Face de-Identification by Aggre-
gating Donors’ Face Components. Asian Conference on Computer Vision, Nov 2014, Singapore.
pp.1-16, 2014. <hal-01070658>
HAL Id: hal-01070658
https://hal.archives-ouvertes.fr/hal-01070658
Submitted on 2 Oct 2014
HAL is a multi-disciplinary open access
rchive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
broad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de"
1d4c25f9f8f08f5a756d6f472778ab54a7e6129d,An Innovative Mean Approach for Plastic Surgery Face Recognition,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2014): 6.14 | Impact Factor (2014): 4.438
An Innovative Mean Approach for Plastic Surgery
Face Recognition
Mahendra P. Randive1, Umesh W. Hore2
Student of M.E., Department of Electronics & Telecommunication Engineering,
P. R. Patil College of Engineering, Amravati Maharashtra – India
Assistant Professor, Department of Electronics & Telecommunication Engineering,
P. R. Patil College of Engineering, Amravati Maharashtra – India"
71b376dbfa43a62d19ae614c87dd0b5f1312c966,The temporal connection between smiles and blinks,"The Temporal Connection Between Smiles and Blinks
Laura C. Trutoiu, Jessica K. Hodgins, and Jeffrey F. Cohn"
71fd29c2ae9cc9e4f959268674b6b563c06d9480,End-to-end 3D shape inverse rendering of different classes of objects from a single input image,"End-to-end 3D shape inverse rendering of different classes
of objects from a single input image
Shima Kamyab1 and S. Zohreh Azimifar1
Computer Science and Engineering and Information Technology, Shiraz
university, Shiraz, Iran
November 17, 2017"
714d487571ca0d676bad75c8fa622d6f50df953b,eBear: An expressive Bear-Like robot,"eBear: An Expressive Bear-Like Robot
Xiao Zhang, Ali Mollahosseini, Amir H. Kargar B., Evan Boucher,
Richard M. Voyles, Rodney Nielsen and Mohammd H. Mahoor"
710011644006c18291ad512456b7580095d628a2,Learning Residual Images for Face Attribute Manipulation,"Learning Residual Images for Face Attribute Manipulation
Wei Shen
Rujie Liu
Fujitsu Research & Development Center, Beijing, China.
{shenwei,"
711bb5f63139ee7a9b9aef21533f959671a7d80e,Objects extraction and recognition for camera-based interaction : heuristic and statistical approaches,"Helsinki University of Technology Laboratory of Computational Engineering Publications
Teknillisen korkeakoulun Laskennallisen tekniikan laboratorion julkaisuja
Espoo 2007
REPORT B68
OBJECTS EXTRACTION AND RECOGNITION FOR
CAMERA-BASED INTERACTION: HEURISTIC AND
STATISTICAL APPROACHES
Hao Wang
TEKNILLINEN KORKEAKOULU
TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D'HELSINKI
UNIVERSITE DE TECHNOLOGIE D'HELSINKI"
76fd801981fd69ff1b18319c450cb80c4bc78959,Alignment of Eye Movements and Spoken Language for Semantic Image Understanding,"Proceedings of the 11th International Conference on Computational Semantics, pages 76–81,
London, UK, April 15-17 2015. c(cid:13)2015 Association for Computational Linguistics"
76dc11b2f141314343d1601635f721fdeef86fdb,Weighted Decoding ECOC for Facial Action Unit Classification,"Weighted Decoding ECOC for Facial
Action Unit Classification
Terry Windeatt"
76673de6d81bedd6b6be68953858c5f1aa467e61,Discovering a Lexicon of Parts and Attributes,"Discovering a Lexicon of Parts and Attributes
Subhransu Maji
Toyota Technological Institute at Chicago,
Chicago, IL 60637, USA"
76cd5e43df44e389483f23cb578a9015d1483d70,Face Verification from Depth using Privileged Information,"BORGHI ET AL.: FACE VERIFICATION FROM DEPTH
Face Verification from Depth using
Privileged Information
Department of Engineering
""Enzo Ferrari""
University of Modena and Reggio
Emilia
Modena, Italy
Guido Borghi
Stefano Pini
Filippo Grazioli
Roberto Vezzani
Rita Cucchiara"
76b11c281ac47fe6d95e124673a408ee9eb568e3,Real-time Multi View Face Detection and Pose Estimation Aishwarya,"International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 03 || March 2017 || PP. 59-71
REAL-TIME MULTI VIEW FACE DETECTION AND POSE
ESTIMATION
AISHWARYA.S1 , RATHNAPRIYA.K1, SUKANYA SARGUNAR.V2
U. G STUDENTS, DEPT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI,
ASST PROF.DEPARTMENT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI"
76d9f5623d3a478677d3f519c6e061813e58e833,Fast Algorithms for the Generalized Foley-Sammon Discriminant Analysis,"FAST ALGORITHMS FOR THE GENERALIZED FOLEY-SAMMON
DISCRIMINANT ANALYSIS
LEI-HONG ZHANG∗, LI-ZHI LIAO† , AND MICHAEL K. NG‡"
76e2d7621019bd45a5851740bd2742afdcf62837,Real-Time Detection and Measurement of Eye Features from Color Images,"Article
Real-Time Detection and Measurement of Eye
Features from Color Images
Diana Borza 1, Adrian Sergiu Darabant 2 and Radu Danescu 1,*
Computer Science Department, Technical University of Cluj Napoca, 28 Memorandumului Street,
Cluj Napoca 400114, Romania;
Computer Science Department, Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca 400591,
Romania;
* Correspondence: Tel.: +40-740-502-223
Academic Editors: Changzhi Li, Roberto Gómez-García and José-María Muñoz-Ferreras
Received: 28 April 2016; Accepted: 14 July 2016; Published: 16 July 2016"
765b2cb322646c52e20417c3b44b81f89860ff71,PoseShop: Human Image Database Construction and Personalized Content Synthesis,"PoseShop: Human Image Database
Construction and Personalized
Content Synthesis
Tao Chen, Ping Tan, Member, IEEE, Li-Qian Ma, Ming-Ming Cheng, Member, IEEE,
Ariel Shamir, and Shi-Min Hu, Member, IEEE"
763158cef9d1e4041f24fce4cf9d6a3b7a7f08ff,Hierarchical Modeling and Applications to Recognition Tasks,"Hierarchical Modeling and
Applications to Recognition Tasks
Thesis submitted for the degree of
”Doctor of Philosophy”
Alon Zweig
Submitted to the Senate of the Hebrew University
August / 2013"
760ba44792a383acd9ca8bef45765d11c55b48d4,Class-specific classifier: avoiding the curse of dimensionality,"INTRODUCTION AND BACKGROUND
The purpose of this article is to introduce the
reader to the basic principles of  classification with
lass-specific features. It is written both for readers
interested in only the basic concepts as well as those
interested in getting started in applying the method.
For in-depth coverage, the reader is referred to a more
detailed article [l].
Class-Specific Classifier:
Avoiding the Curse of
Dimensionality
PAUL M. BAGGENSTOSS, Member. lEEE
US. Naval Undersea Warfare Center
This article describes a new probabilistic method called the
“class-specific method” (CSM). CSM has the potential to avoid
the “curse of dimensionality” which plagues most clmiiiers
which attempt to determine the decision boundaries in a
highdimensional featue space. In contrast, in CSM, it is possible
to build classifiers without a ” n o n   feature space. Separate
Law-dimensional features seta may be de6ned for each class, while"
766728bac030b169fcbc2fbafe24c6e22a58ef3c,A survey of deep facial landmark detection,"A survey of deep facial landmark detection
Yongzhe Yan1,2
Xavier Naturel2
Christophe Garcia3
Thierry Chateau1
Christophe Blanc1
Stefan Duffner3
Université Clermont Auvergne, France
Wisimage, France
Université de Lyon, CNRS, INSA Lyon, LIRIS, UMR5205, Lyon, France
Résumé
La détection de landmarks joue un rôle crucial dans de
nombreuses applications d’analyse du visage comme la
reconnaissance de l’identité, des expressions, l’animation
d’avatar, la reconstruction 3D du visage, ainsi que pour
les applications de réalité augmentée comme la pose de
masque ou de maquillage virtuel. L’avènement de l’ap-
prentissage profond a permis des progrès très importants
dans ce domaine, y compris sur les corpus non contraints
(in-the-wild). Nous présentons ici un état de l’art cen-"
7697295ee6fc817296bed816ac5cae97644c2d5b,Detecting and Recognizing Human-Object Interactions,"Detecting and Recognizing Human-Object Interactions
Georgia Gkioxari Ross Girshick
Piotr Doll´ar Kaiming He
Facebook AI Research (FAIR)"
7636f94ddce79f3dea375c56fbdaaa0f4d9854aa,Robust Facial Expression Recognition Using a Smartphone Working against Illumination Variation,"Appl. Math. Inf. Sci. 6 No. 2S pp. 403S-408S (2012)
An International Journal
© 2012 NSP
Applied Mathematics & Information Sciences
Robust Facial Expression Recognition Using
Smartphone Working against Illumination Variation
2012 NSP
Natural Sciences Publishing Cor.
Kyoung-Sic Cho1, In-Ho Choi1 and Yong-Guk Kim1
Department of Computer Engineering, Sejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul, Korea
Corresponding author: Email:
Received June 22, 2010; Revised March 21, 2011; Accepted 11 June 2011
Published online: 1 January 2012"
1c80bc91c74d4984e6422e7b0856cf3cf28df1fb,Hierarchical Adaptive Structural SVM for Domain Adaptation,"Noname manuscript No.
(will be inserted by the editor)
Hierarchical Adaptive Structural SVM for Domain Adaptation
Jiaolong Xu · Sebastian Ramos · David V´azquez · Antonio M. L´opez
Received: date / Accepted: date"
1ce3a91214c94ed05f15343490981ec7cc810016,Exploring photobios,"Exploring Photobios
Ira Kemelmacher-Shlizerman1
Eli Shechtman2
Rahul Garg1,3
Steven M. Seitz1,3
University of Washington∗
Adobe Systems†
Google Inc."
1cfe3533759bf95be1fce8ce1d1aa2aeb5bfb4cc,Recognition of Facial Gestures Based on Support Vector Machines,"Recognition of Facial Gestures based on Support
Vector Machines
Attila Fazekas and Istv(cid:19)an S(cid:19)anta
Faculty of Informatics, University of Debrecen, Hungary
H-4010 Debrecen P.O.Box 12."
1ce4587e27e2cf8ba5947d3be7a37b4d1317fbee,Deep fusion of visual signatures for client-server facial analysis,"Deep fusion of visual signatures
for client-server facial analysis
Binod Bhattarai
Normandie Univ, UNICAEN,
ENSICAEN, CNRS, GREYC
Gaurav Sharma
Computer Sc. & Engg.
IIT Kanpur, India
Frederic Jurie
Normandie Univ, UNICAEN,
ENSICAEN, CNRS, GREYC
Facial analysis is a key technology for enabling human-
machine interaction.
In this context, we present a client-
server framework, where a client transmits the signature of
face to be analyzed to the server, and, in return, the server
sends back various information describing the face e.g. is the
person male or female, is she/he bald, does he have a mus-
tache, etc. We assume that a client can compute one (or a
ombination) of visual features; from very simple and ef‌f‌i-"
1c30bb689a40a895bd089e55e0cad746e343d1e2,Learning Spatiotemporal Features with 3D Convolutional Networks,"Learning Spatiotemporal Features with 3D Convolutional Networks
Du Tran1
, Lubomir Bourdev1, Rob Fergus1, Lorenzo Torresani2, Manohar Paluri1
Facebook AI Research, 2Dartmouth College"
1c3073b57000f9b6dbf1c5681c52d17c55d60fd7,Direction de thèse:,"THÈSEprésentéepourl’obtentiondutitredeDOCTEURDEL’ÉCOLENATIONALEDESPONTSETCHAUSSÉESSpécialité:InformatiqueparCharlotteGHYSAnalyse,Reconstruction3D,&AnimationduVisageAnalysis,3DReconstruction,&AnimationofFacesSoutenancele19mai2010devantlejurycomposéde:Rapporteurs:MajaPANTICDimitrisSAMARASExaminateurs:MichelBARLAUDRenaudKERIVENDirectiondethèse:NikosPARAGIOSBénédicteBASCLE"
1c93b48abdd3ef1021599095a1a5ab5e0e020dd5,A Compositional and Dynamic Model for Face Aging,"JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, JANUARY 2009
A Compositional and Dynamic Model for Face Aging
Jinli Suo , Song-Chun Zhu , Shiguang Shan and Xilin Chen"
1c6e22516ceb5c97c3caf07a9bd5df357988ceda,Copycat CNN: Stealing Knowledge by Persuading Confession with Random Non-Labeled Data,"NetworkCNNimageslabelsFakeDatasetimages24132labelsTarget NetworkCNNimageslabelsOriginalDatasetFakeDatasetFig.1:Ontheleft,thetargetnetworkistrainedwithanoriginal(confidential)datasetandisservedpubliclyasanAPI,receivingimagesasinputandprovidingclasslabelsasoutput.Ontheright,itispresentedtheprocesstogetstolenlabelsandtocreateafakedataset:randomnaturalimagesaresenttotheAPIandthelabelsareobtained.Afterthat,thecopycatnetworkistrainedusingthisfakedataset.cloud-basedservicestocustomersallowingthemtooffertheirownmodelsasanAPI.Becauseoftheresourcesandmoneyinvestedincreatingthesemodels,itisinthebestinterestofthesecompaniestoprotectthem,i.e.,toavoidthatsomeoneelsecopythem.Someworkshavealreadyinvestigatedthepossibilityofcopyingmodelsbyqueryingthemasablack-box.In[1],forexample,theauthorsshowedhowtoperformmodelextractionattackstocopyanequivalentornear-equivalentmachinelearningmodel(decisiontree,logisticregression,SVM,andmultilayerperceptron),i.e.,onethatachievescloseto100%agreementonaninputspaceofinterest.In[2],theauthorsevaluatedtheprocessofcopyingaNaiveBayesandSVMclassifierinthecontextoftextclassification.Bothworksfocusedongeneralclassifiersandnotondeepneuralnetworksthatrequirelargeamountsofdatatobetrainedleavingthequestionofwhetherdeepmodelscanbeeasilycopied.Althoughthesecondusesdeeplearningtostealtheclassifiers,itdoesnottrytouseDNNstostealfromdeepmodels.Additionally,theseworksfocusoncopyingbyqueryingwithproblemdomaindata.Inrecentyears,researchershavebeenexploringsomeintriguingpropertiesofdeepneuralnetworks[3],[4].More©2018IEEE.Personaluseofthismaterialispermitted.PermissionfromIEEEmustbeobtainedforallotheruses,inanycurrentorfuturemedia,includingreprinting/republishingthismaterialforadvertisingorpromotionalpurposes,creatingnewcollectiveworks,forresaleorredistributiontoserversorlists,orreuseofanycopyrightedcomponentofthisworkinotherworks."
825f56ff489cdd3bcc41e76426d0070754eab1a8,Making Convolutional Networks Recurrent for Visual Sequence Learning,"Making Convolutional Networks Recurrent for Visual Sequence Learning
Xiaodong Yang Pavlo Molchanov Jan Kautz
NVIDIA"
82d2af2ffa106160a183371946e466021876870d,A Novel Space-Time Representation on the Positive Semidefinite Con for Facial Expression Recognition,"A Novel Space-Time Representation on the Positive Semidefinite Cone
for Facial Expression Recognition
Anis Kacem1, Mohamed Daoudi1, Boulbaba Ben Amor1, and Juan Carlos Alvarez-Paiva2
IMT Lille Douai, Univ. Lille, CNRS, UMR 9189 – CRIStAL –
Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France
Univ. Lille, CNRS, UMR 8524, Laboratoire Paul Painlev´e, F-59000 Lille, France."
82eff71af91df2ca18aebb7f1153a7aed16ae7cc,MSU-AVIS dataset : Fusing Face and Voice Modalities for Biometric Recognition in Indoor Surveillance Videos,"MSU-AVIS dataset:
Fusing Face and Voice Modalities for Biometric
Recognition in Indoor Surveillance Videos
Anurag Chowdhury*, Yousef Atoum+, Luan Tran*, Xiaoming Liu*, Arun Ross*
*Michigan State University, USA
+Yarmouk University, Jordan"
82c303cf4852ad18116a2eea31e2291325bc19c3,Fusion Based FastICA Method: Facial Expression Recognition,"Journal of Image and Graphics, Volume 2, No.1, June, 2014
Fusion Based FastICA Method: Facial Expression
Recognition
Humayra B. Ali and David M W Powers
Computer Science, Engineering and Mathematics School, Flinders University, Australia
Email: {ali0041,"
8210fd10ef1de44265632589f8fc28bc439a57e6,Single Sample Face Recognition via Learning Deep Supervised Autoencoders,"Single Sample Face Recognition via Learning Deep
Supervised Auto-Encoders
Shenghua  Gao,  Yuting  Zhang,  Kui  Jia,  Jiwen  Lu,  Yingying  Zhang"
82a4a35b2bae3e5c51f4d24ea5908c52973bd5be,Real-time emotion recognition for gaming using deep convolutional network features,"Real-time emotion recognition for gaming using
deep convolutional network features
S´ebastien Ouellet"
82a610a59c210ff77cfdde7fd10c98067bd142da,Human attention and intent analysis using robust visual cues in a Bayesian framework,"UC San Diego
UC San Diego Electronic Theses and Dissertations
Title
Human attention and intent analysis using robust visual cues in a Bayesian framework
Permalink
https://escholarship.org/uc/item/1cb8d7vw
Author
McCall, Joel Curtis
Publication Date
006-01-01
Peer reviewed|Thesis/dissertation
eScholarship.org
Powered by the California Digital Library
University of California"
829f390b3f8ad5856e7ba5ae8568f10cee0c7e6a,A Robust Rotation Invariant Multiview Face Detection in Erratic Illumination Condition,"International Journal of Computer Applications (0975 – 8887)
Volume 57– No.20, November 2012
A Robust Rotation Invariant Multiview Face Detection in
Erratic Illumination Condition
G.Nirmala Priya
Associate Professor, Department of ECE
Sona College of Technology
Salem"
82f4e8f053d20be64d9318529af9fadd2e3547ef,Technical Report: Multibiometric Cryptosystems,"Technical Report:
Multibiometric Cryptosystems
Abhishek Nagar, Student Member, IEEE, Karthik Nandakumar, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
82d781b7b6b7c8c992e0cb13f7ec3989c8eafb3d,Robust Facial Expression Recognition Using a State-based Model of Spatially-localized Facial,"REFERENCES
Adler  A.,  Youmaran  R.  and  Loyka  S.,  “Towards  a  Measure  of
Biometric  Information”,  Canadian  Conference  on  Electrical  and
Computer Engineering, pp. 210-213, 2006.
Ahmed A.A.E. and Traore I., “Anomaly  Intrusion Detection Based on
Biometrics”, IEEE Workshop on Information Assurance, United States
Military Academy, West Point, New York, pp. 452-458, 2005.
Ahmed  A.A.E.  and  Traore  I.,  “Detecting  Computer  Intrusions  using
Behavioural  Biometrics”,  Third  Annual  Conference  on  Privacy,
Security  and  Trust,  St.  Andrews,  New  Brunswick,  Canada,  pp.  1-8,
005.
Al-Zubi  S.,  Bromme  A.  and  Tonnies  K.,  “Using  an  Active  Shape
Structural  Model  for  Biometric  Sketch  Recognition”,  Proceedings  of
DAGM, Magdeburg, Germany, Vol. 2781, pp. 187-195, 2003.
Angle S., Bhagtani R. and Chheda H., “Biometrics: a Further Echelon
of  Security”,  The  First  UAE  International  Conference  on  Biological
nd Medical Physics, pp. 1-4, 2005.
Avraam  Kasapis.,  “MLPs  and  Pose,  Expression  Classification”,
Proceedings of UNiS Report, pp. 1-87, 2003.
Banikazemi  M.,  Poff  D.  and  Abali  B.,  “Storage-based  Intrusion"
82417d8ec8ac6406f2d55774a35af2a1b3f4b66e,Some Faces are More Equal than Others: Hierarchical Organization for Accurate and Efficient Large-Scale Identity-Based Face Retrieval,"Some faces are more equal than others:
Hierarchical organization for accurate and
ef‌f‌icient large-scale identity-based face retrieval
Binod Bhattarai1, Gaurav Sharma2, Fr´ed´eric Jurie1, Patrick P´erez2
GREYC, CNRS UMR 6072, Universit´e de Caen Basse-Normandie, France1
Technicolor, Rennes, France2"
826c66bd182b54fea3617192a242de1e4f16d020,Action-vectors: Unsupervised movement modeling for action recognition,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
4919663c62174a9bc0cc7f60da8f96974b397ad2,Human age estimation using enhanced bio-inspired features (EBIF),"HUMAN AGE ESTIMATION USING ENHANCED BIO-INSPIRED FEATURES (EBIF)
Mohamed Y.El Dib and Motaz El-Saban
Faculty of Computers and Information, Cairo University, Cairo, Egypt"
4967b0acc50995aa4b28e576c404dc85fefb0601,An Automatic Face Detection and Gender Classification from Color Images using Support Vector Machine,"Vol. 4, No. 1 Jan 2013                                                                                                 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences
©2009-2013 CIS Journal. All rights reserved.
An Automatic Face Detection and Gender Classification from
http://www.cisjournal.org
Color Images using Support Vector Machine
Md. Hafizur Rahman, 2 Suman Chowdhury, 3 Md. Abul Bashar
, 2, 3 Department of Electrical & Electronic Engineering, International
University of Business Agriculture and Technology, Dhaka-1230, Bangladesh"
4972aadcce369a8c0029e6dc2f288dfd0241e144,Multi-target Unsupervised Domain Adaptation without Exactly Shared Categories,"Multi-target Unsupervised Domain Adaptation
without Exactly Shared Categories
Huanhuan Yu, Menglei Hu and Songcan Chen"
49e85869fa2cbb31e2fd761951d0cdfa741d95f3,Adaptive Manifold Learning,"Adaptive Manifold Learning
Zhenyue Zhang, Jing Wang, and Hongyuan Zha"
490a217a4e9a30563f3a4442a7d04f0ea34442c8,An SOM-based Automatic Facial Expression Recognition System,"International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.2, No.4, August 2013
An SOM-based Automatic Facial Expression
Recognition System
Mu-Chun Su1, Chun-Kai Yang1, Shih-Chieh Lin1,De-Yuan Huang1, Yi-Zeng
Hsieh1, andPa-Chun Wang2
Department of Computer Science &InformationEngineering,National Central
University,Taiwan, R.O.C.
Cathay General Hospital, Taiwan, R.O.C.
E-mail:"
49a7949fabcdf01bbae1c2eb38946ee99f491857,A concatenating framework of shortcut convolutional neural networks,"A CONCATENATING FRAMEWORK OF SHORTCUT
CONVOLUTIONAL NEURAL NETWORKS
Yujian Li Ting Zhang, Zhaoying Liu, Haihe Hu"
499343a2fd9421dca608d206e25e53be84489f44,Face Recognition with Name Using Local Weber‟s Law Descriptor,"Anil Kumar.C, et.al, International Journal of Technology and Engineering Science [IJTES]TM
Volume 1[9], pp: 1371-1375, December 2013
Face Recognition with Name Using Local Weber‟s
Law Descriptor
C.Anil kumar,2A.Rajani,3I.Suneetha
M.Tech Student,2Assistant Professor,3Associate Professor
Department of ECE, Annamacharya Institute of Technology and Sciences, Tirupati, India-517520
on  FERET"
498fd231d7983433dac37f3c97fb1eafcf065268,Linear Disentangled Representation Learning for Facial Actions,"LINEAR DISENTANGLED REPRESENTATION LEARNING FOR FACIAL ACTIONS
Xiang Xiang1 and Trac D. Tran2
Dept. of Computer Science
Dept. of Electrical & Computer Engineering
Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
Fig. 1. The separability of the neutral face yn and expression
omponent ye. We find yn is better for identity recognition
than y and ye is better for expression recognition than y."
49e1aa3ecda55465641b2c2acc6583b32f3f1fc6,Support Vector Machine for age classification,"International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5, May 2012)
Support Vector Machine for age classification
Sangeeta Agrawal1, Rohit Raja2, Sonu Agrawal3
Assistant Professor, CSE, RSR RCET, Kohka Bhilai
,3 Sr. Assistant Professor, CSE, SSCET, Junwani Bhilai"
49df381ea2a1e7f4059346311f1f9f45dd997164,Client-Specific Anomaly Detection for Face Presentation Attack Detection,"On the Use of Client-Specific Information for Face
Presentation Attack Detection Based on Anomaly
Detection
Shervin Rahimzadeh Arashloo and Josef Kittler,"
496074fcbeefd88664b7bd945012ca22615d812e,Driver Distraction Using Visual-Based Sensors and Algorithms,"Review
Driver Distraction Using Visual-Based Sensors
nd Algorithms
Alberto Fernández 1,*, Rubén Usamentiaga 2, Juan Luis Carús 1 and Rubén Casado 2
Grupo TSK, Technological Scientific Park of Gijón, 33203 Gijón, Asturias, Spain;
Department of Computer Science and Engineering, University of Oviedo, Campus de Viesques, 33204 Gijón,
Asturias, Spain; (R.U.); (R.C.)
* Corrospondence: Tel.: +34-984-29-12-12; Fax: +34-984-39-06-12
Academic Editor: Gonzalo Pajares Martinsanz
Received: 14 July 2016; Accepted: 24 October 2016; Published: 28 October 2016"
40205181ed1406a6f101c5e38c5b4b9b583d06bc,Using Context to Recognize People in Consumer Images,"Using Context to Recognize People in Consumer Images
Andrew C. Gallagher and Tsuhan Chen"
40dab43abef32deaf875c2652133ea1e2c089223,Facial Communicative Signals: valence recognition in task-oriented human-robot Interaction,"Noname manuscript No.
(will be inserted by the editor)
Facial Communicative Signals
Valence Recognition in Task-Oriented Human-Robot Interaction
Christian Lang · Sven Wachsmuth · Marc Hanheide · Heiko Wersing
Received: date / Accepted: date"
40b0fced8bc45f548ca7f79922e62478d2043220,Do Convnets Learn Correspondence?,"Do Convnets Learn Correspondence?
Trevor Darrell
Jonathan Long
{jonlong, nzhang,
University of California – Berkeley
Ning Zhang"
405b43f4a52f70336ac1db36d5fa654600e9e643,What can we learn about CNNs from a large scale controlled object dataset?,"What can we learn about CNNs from a large scale controlled object dataset?
Ali Borji
Saeed Izadi
Laurent Itti"
40b86ce698be51e36884edcc8937998979cd02ec,Finding Faces in News Photos Using Both Face and Name Information,"Yüz ve İsim İlişkisi kullanarak Haberlerdeki Kişilerin Bulunması
Finding Faces in News Photos Using Both Face and Name Information
Derya Ozkan, Pınar Duygulu
Bilgisayar Mühendisliği Bölümü, Bilkent Üniversitesi, 06800, Ankara
Özetçe
Bu  çalışmada,  haber  fotoğraflarından  oluşan  geniş  veri
kümelerinde  kişilerin  sorgulanmasını  sağlayan  bir  yöntem
sunulmuştur.  Yöntem  isim  ve  yüzlerin  ilişkilendirilmesine
dayanmaktadır.  Haber  başlığında  kişinin  ismi  geçiyor  ise
fotoğrafta da o kişinin yüzünün bulunacağı  varsayımıyla, ilk
olarak  sorgulanan  isim  ile  ilişkilendirilmiş,  fotoğraflardaki
tüm yüzler seçilir. Bu yüzler arasında sorgu kişisine ait farklı
koşul,  poz  ve  zamanlarda  çekilmiş  pek  çok  resmin  yanında,
haberde ismi geçen başka kişilere ait yüzler ya da kullanılan
yüz  bulma  yönteminin  hatasından  kaynaklanan  yüz  olmayan
resimler de bulunabilir. Yine de, çoğu  zaman, sorgu kişisine
it resimler daha çok olup, bu resimler birbirine diğerlerine
olduğundan  daha  çok  benzeyeceklerdir.  Bu  nedenle,  yüzler
rasındaki  benzerlikler  çizgesel  olarak  betimlendiğinde  ,
irbirine en çok benzeyen yüzler bu çizgede en yoğun bileşen"
402f6db00251a15d1d92507887b17e1c50feebca,3D Facial Action Units Recognition for Emotional Expression,"D Facial Action Units Recognition for Emotional
Expression
Norhaida Hussain1, Hamimah Ujir, Irwandi Hipiny and Jacey-Lynn Minoi2
Department of Information Technology and Communication, Politeknik Kuching, Sarawak, Malaysia
Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
The  muscular  activities  caused  the  activation  of  certain  AUs  for  every  facial  expression  at  the  certain  duration  of  time
throughout the facial expression. This paper presents the methods to recognise facial Action Unit (AU) using facial distance
of the facial features which activates the muscles. The seven facial action units involved are AU1, AU4, AU6, AU12, AU15,
AU17 and AU25 that characterises happy and sad expression. The recognition is performed on each AU according to rules
defined based on the distance of each facial points. The facial distances chosen are extracted from twelve facial features.
Then the facial distances are trained using Support Vector Machine (SVM) and Neural Network (NN). Classification result
using SVM is presented with several different SVM kernels while result using NN is presented for each training, validation
nd testing phase.
Keywords: Facial action units recognition, 3D AU recognition, facial expression"
40fb4e8932fb6a8fef0dddfdda57a3e142c3e823,A mixed generative-discriminative framework for pedestrian classification,"A Mixed Generative-Discriminative Framework for Pedestrian Classification
Markus Enzweiler1
Dariu M. Gavrila2,3
Image & Pattern Analysis Group, Dept. of Math. and Comp. Sc., Univ. of Heidelberg, Germany
Environment Perception, Group Research, Daimler AG, Ulm, Germany
Intelligent Systems Lab, Faculty of Science, Univ. of Amsterdam, The Netherlands"
40dd2b9aace337467c6e1e269d0cb813442313d7,Localizing spatially and temporally objects and actions in videos. (Localiser spatio-temporallement des objets et des actions dans des vidéos),"This thesis has been submitted in fulfilment of the requirements for a postgraduate degree
(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
terms and conditions of use:
This work is protected by copyright and other intellectual property rights, which are
retained by the thesis author, unless otherwise stated.
A copy can be downloaded for personal non-commercial research or study, without
prior permission or charge.
This thesis cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author.
The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author.
When referring to this work, full bibliographic details including the author, title,
warding institution and date of the thesis must be given."
40a34d4eea5e32dfbcef420ffe2ce7c1ee0f23cd,Bridging Heterogeneous Domains With Parallel Transport For Vision and Multimedia Applications,"Bridging Heterogeneous Domains With Parallel Transport For Vision and
Multimedia Applications
Raghuraman Gopalan
Dept. of Video and Multimedia Technologies Research
AT&T Labs-Research
San Francisco, CA 94108"
40389b941a6901c190fb74e95dc170166fd7639d,Automatic Facial Expression Recognition,"Automatic Facial Expression Recognition
Jacob Whitehill, Marian Stewart Bartlett, and Javier R. Movellan
Emotient
http://emotient.com
February 12, 2014
Imago animi vultus est, indices oculi. (Cicero)
Introduction
The face is innervated by two different brain systems that compete for control of its muscles:
cortical brain system related to voluntary and controllable behavior, and a sub-cortical
system responsible for involuntary expressions. The interplay between these two systems
generates a wealth of information that humans constantly use to read the emotions, inten-
tions, and interests [25] of others.
Given the critical role that facial expressions play in our daily life, technologies that can
interpret and respond to facial expressions automatically are likely to find a wide range of
pplications. For example, in pharmacology, the effect of new anti-depression drugs could
e assessed more accurately based on daily records of the patients’ facial expressions than
sking the patients to fill out a questionnaire, as it is currently done [7]. Facial expression
recognition may enable a new generation of teaching systems to adapt to the expression
of their students in the way good teachers do [61]. Expression recognition could be used
to assess the fatigue of drivers and air-pilots [58, 59]. Daily-life robots with automatic"
40273657e6919455373455bd9a5355bb46a7d614,Anonymizing k Facial Attributes via Adversarial Perturbations,"Anonymizing k-Facial Attributes via Adversarial Perturbations
Saheb Chhabra1, Richa Singh1, Mayank Vatsa1 and Gaurav Gupta2
IIIT Delhi, New Delhi, India
Ministry of Electronics and Information Technology, New Delhi, India
{sahebc, rsingh,"
40b10e330a5511a6a45f42c8b86da222504c717f,Implementing the Viola-Jones Face Detection Algorithm,"Implementing the Viola-Jones
Face Detection Algorithm
Ole Helvig Jensen
Kongens Lyngby 2008
IMM-M.Sc.-2008-93"
40ca925befa1f7e039f0cd40d57dbef6007b4416,Sampling Matters in Deep Embedding Learning,"Sampling Matters in Deep Embedding Learning
Chao-Yuan Wu∗
UT Austin
R. Manmatha
A9/Amazon
Alexander J. Smola
Amazon
Philipp Kr¨ahenb¨uhl
UT Austin"
4026dc62475d2ff2876557fc2b0445be898cd380,An Affective User Interface Based on Facial Expression Recognition and Eye-Gaze Tracking,"An Affective User Interface Based on Facial Expression
Recognition and Eye-Gaze Tracking
Soo-Mi Choi and Yong-Guk Kim
School of Computer Engineering, Sejong University, Seoul, Korea"
40f127fa4459a69a9a21884ee93d286e99b54c5f,Optimizing Apparent Display Resolution Enhancement for Arbitrary Videos,"Optimizing Apparent Display Resolution
Enhancement for Arbitrary Videos
Michael Stengel*, Member, IEEE, Martin Eisemann, Stephan Wenger,
Benjamin Hell, Marcus Magnor, Member, IEEE"
401e6b9ada571603b67377b336786801f5b54eee,Active Image Clustering: Seeking Constraints from Humans to Complement Algorithms,"Active Image Clustering: Seeking Constraints from
Humans to Complement Algorithms
November 22, 2011"
2e8e6b835e5a8f55f3b0bdd7a1ff765a0b7e1b87,Pointly-Supervised Action Localization,"International Journal of Computer Vision manuscript No.
(will be inserted by the editor)
Pointly-Supervised Action Localization
Pascal Mettes · Cees G. M. Snoek
Received: date / Accepted: date"
2eb37a3f362cffdcf5882a94a20a1212dfed25d9,Local Feature Based Face Recognition,"Local Feature Based Face Recognition
Sanjay A. Pardeshi and Sanjay N. Talbar
R.I.T., Rajaramnagar and S.G.G.S. COE &T, Nanded
India
. Introduction
A  reliable  automatic  face  recognition  (AFR)  system  is  a  need  of  time  because  in  today's
networked  world,  maintaining  the  security  of  private  information  or  physical  property  is
ecoming increasingly important and difficult as well. Most of the time criminals have been
taking  the  advantage  of  fundamental  flaws  in  the  conventional  access  control  systems  i.e.
the systems operating on credit card, ATM etc. do not grant access by ""who we are"", but by
""what  we  have”.  The  biometric  based  access  control systems  have  a  potential  to  overcome
most  of  the  deficiencies  of  conventional  access  control  systems  and  has  been  gaining  the
importance  in  recent  years.  These  systems  can  be  designed  with  biometric  traits  such  as
fingerprint,  face,  iris,  signature,  hand  geometry  etc.  But  comparison  of  different  biometric
traits shows that face is very attractive biometric because of its non-intrusiveness and social
cceptability.  It  provides  automated  methods  of  verifying  or  recognizing  the  identity  of  a
living person based on its facial characteristics.
In last decade, major advances occurred in face recognition, with many systems capable of
chieving  recognition  rates  greater  than  90%.  However  real-world  scenarios  remain  a
hallenge, because face acquisition process can undergo to a wide range of variations. Hence"
2e5cfa97f3ecc10ae8f54c1862433285281e6a7c,Generative Adversarial Networks for Improving Face Classification,"Generative Adversarial Networks for Improving Face Classification  JONAS NATTEN SUPERVISOR Morten Goodwin, PhD University of Agder, 2017 Faculty of Engineering and Science Department of ICT"
2e091b311ac48c18aaedbb5117e94213f1dbb529,Collaborative Facial Landmark Localization for Transferring Annotations Across Datasets,"Collaborative Facial Landmark Localization
for Transferring Annotations Across Datasets
Brandon M. Smith and Li Zhang
University of Wisconsin – Madison
http://www.cs.wisc.edu/~lizhang/projects/collab-face-landmarks/"
2e1415a814ae9abace5550e4893e13bd988c7ba1,Dictionary Based Face Recognition in Video Using Fuzzy Clustering and Fusion,"International Journal of Engineering Trends and Technology (IJETT) – Volume 21 Number 3 – March 2015
Dictionary Based Face Recognition in Video Using
Fuzzy Clustering and Fusion
Neeraja K.C.#1, RameshMarivendan E.#2,
#1IInd year M.E. Student, #2Assistant Professor
#1#2ECE Department, Dhanalakshmi Srinivasan College of Engineering,
Coimbatore,Tamilnadu,India.
Anna University."
2e68190ebda2db8fb690e378fa213319ca915cf8,Generating Videos with Scene Dynamics,"Generating Videos with Scene Dynamics
Carl Vondrick
Hamed Pirsiavash
Antonio Torralba"
2e0d56794379c436b2d1be63e71a215dd67eb2ca,Improving precision and recall of face recognition in SIPP with combination of modified mean search and LSH,"Improving precision and recall of face recognition in SIPP with combination of
modified mean search and LSH
Xihua.Li"
2e475f1d496456831599ce86d8bbbdada8ee57ed,Groupsourcing: Team Competition Designs for Crowdsourcing,"Groupsourcing: Team Competition Designs for
Crowdsourcing
Markus Rokicki, Sergej Zerr, Stefan Siersdorfer
L3S Research Center, Hannover, Germany"
2ef51b57c4a3743ac33e47e0dc6a40b0afcdd522,Leveraging Billions of Faces to Overcome Performance Barriers in Unconstrained Face Recognition,"Leveraging Billions of Faces to Overcome
Performance Barriers in Unconstrained Face
Recognition
Yaniv Taigman and Lior Wolf
face.com
{yaniv,"
2ed4973984b254be5cba3129371506275fe8a8eb,Victoria Ovsyannikova THE EFFECTS OF MOOD ON EMOTION RECOGNITION AND ITS RELATIONSHIP WITH THE GLOBAL VS LOCAL INFORMATION PROCESSING,"Victoria Ovsyannikova
THE EFFECTS OF MOOD ON
EMOTION RECOGNITION AND
ITS RELATIONSHIP WITH THE
GLOBAL VS LOCAL
INFORMATION PROCESSING
STYLES
BASIC RESEARCH PROGRAM
WORKING PAPERS
SERIES: PSYCHOLOGY
WP BRP 60/PSY/2016
This Working Paper is an output of a research project implemented at the National Research
University Higher School of Economics (HSE). Any opinions or claims contained in this
Working Paper do not necessarily reflect the views of HSE"
2e9c780ee8145f29bd1a000585dd99b14d1f5894,Simultaneous Adversarial Training - Learn from Others Mistakes,"Simultaneous Adversarial Training - Learn from
Others’ Mistakes
Zukang Liao
Lite-On Singapore Pte. Ltd, 2Imperial College London"
2ebc35d196cd975e1ccbc8e98694f20d7f52faf3,Towards Wide-angle Micro Vision Sensors,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Towards Wide-angle Micro Vision Sensors
Sanjeev J. Koppal*
Ioannis Gkioulekas* Travis Young+ Hyunsung Park*
Kenneth B. Crozier* Geoffrey L. Barrows+ Todd Zickler*"
2ea78e128bec30fb1a623c55ad5d55bb99190bd2,Residual vs. Inception vs. Classical Networks for Low-Resolution Face Recognition,"Residual vs. Inception vs. Classical Networks for
Low-Resolution Face Recognition
Christian Herrmann1,2, Dieter Willersinn2, and J¨urgen Beyerer1,2
Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
Fraunhofer IOSB, Karlsruhe, Germany
{christian.herrmann,dieter.willersinn,"
2e0f5e72ad893b049f971bc99b67ebf254e194f7,Apparel Classification with Style,"Apparel Classification with Style
Lukas Bossard1, Matthias Dantone1, Christian Leistner1,2,
Christian Wengert1,3, Till Quack3, Luc Van Gool1,4
ETH Z¨urich, Switzerland 2Microsoft, Austria 3Kooaba AG, Switzerland
KU Leuven, Belgium"
2ec7d6a04c8c72cc194d7eab7456f73dfa501c8c,A R Eview on T Exture B Ased E Motion R Ecognition from F Acial E Xpression,"International Journal of Scientific Research and Management Studies (IJSRMS)
ISSN: 2349-3771
Volume 3 Issue 4, pg: 164-169
A REVIEW ON TEXTURE BASED EMOTION RECOGNITION
FROM FACIAL EXPRESSION
Rishabh Bhardwaj, 2Amit Kumar Chanchal, 3 Shubham Kashyap,
3 Pankaj Pandey, 3Prashant Kumar
U.G. Scholars, 2Assistant Professor,
Dept. of E & C Engg., MIT Moradabad, Ram Ganga Vihar, Phase II, Moradabad, India."
2eb9f1dbea71bdc57821dedbb587ff04f3a25f07,Face for Ambient Interface,"Face for Ambient Interface
Maja Pantic
Imperial College, Computing Department, 180 Queens Gate,
London SW7 2AZ, U.K."
2e832d5657bf9e5678fd45b118fc74db07dac9da,"Recognition of Facial Expressions of Emotion: The Effects of Anxiety, Depression, and Fear of Negative Evaluation","Running head: RECOGNITION OF FACIAL EXPRESSIONS OF EMOTION
Recognition of Facial Expressions of Emotion: The Effects of Anxiety, Depression, and Fear of Negative
Evaluation
Rachel Merchak
Wittenberg University
Rachel Merchak, Psychology Department, Wittenberg University.
Author Note
This research was conducted in collaboration with Dr. Stephanie Little, Psychology Department,
Wittenberg University, and Dr. Michael Anes, Psychology Department, Wittenberg University.
Correspondence concerning this article should be addressed to Rachel Merchak, 10063 Fox
Chase Drive, Loveland, OH 45140.
E‐mail:"
2b4d092d70efc13790d0c737c916b89952d4d8c7,Robust Facial Expression Recognition using Local Haar Mean Binary Pattern,"JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 32, XXXX-XXXX (2016)
Robust Facial Expression Recognition using Local Haar
Mean Binary Pattern
MAHESH GOYANI1, NARENDRA PATEL2
,2 Department of Computer Engineering
Charotar University of Science and Technology, Changa, India
Gujarat Technological University, V.V.Nagar, India
E-mail:
In this paper, we propose a hybrid statistical feature extractor, Local Haar Mean Bina-
ry Pattern (LHMBP). It extracts level-1 haar approximation coefficients and computes Local
Mean  Binary  Pattern  (LMBP)  of  it.  LMBP  code  of  pixel  is  obtained  by  weighting  the
thresholded neighbor value of 3  3 patch on its mean. LHMBP produces highly discrimina-
tive code compared to other state of the art methods. To localize appearance features, ap-
proximation subband is divided into M  N regions. LHMBP feature descriptor is derived
y  concatenating  LMBP  distribution  of  each  region.  We  also  propose  a  novel  template
matching strategy called Histogram Normalized Absolute Difference (HNAD) for histogram
ased  feature  comparison.  Experiments  prove  the  superiority  of  HNAD  over  well-known
template  matching  techniques  such  as  L2  norm  and  Chi-Square.  We  also  investigated
LHMBP for expression recognition in low resolution. The performance of the proposed ap-
proach is tested on well-known CK, JAFFE, and SFEW facial expression datasets in diverse"
2b0ff4b82bac85c4f980c40b3dc4fde05d3cc23f,An Effective Approach for Facial Expression Recognition with Local Binary Pattern and Support Vector Machine,"An Effective Approach for Facial Expression Recognition with Local Binary
Pattern and Support Vector Machine
Cao Thi Nhan, 2Ton That Hoa An, 3Hyung Il Choi
*1School of Media, Soongsil University,
School of Media, Soongsil University,
School of Media, Soongsil University,"
2b1327a51412646fcf96aa16329f6f74b42aba89,Improving performance of recurrent neural network with relu nonlinearity,"Under review as a conference paper at ICLR 2016
IMPROVING PERFORMANCE OF RECURRENT NEURAL
NETWORK WITH RELU NONLINEARITY
Sachin S. Talathi & Aniket Vartak
Qualcomm Research
San Diego, CA 92121, USA"
2b632f090c09435d089ff76220fd31fd314838ae,Early Adaptation of Deep Priors in Age Prediction from Face Images,"Early Adaptation of Deep Priors in Age Prediction from Face Images
Mahdi Hajibabaei
Computer Vision Lab
D-ITET, ETH Zurich
Anna Volokitin
Computer Vision Lab
D-ITET, ETH Zurich
Radu Timofte
CVL, D-ITET, ETH Zurich
Merantix GmbH"
2b507f659b341ed0f23106446de8e4322f4a3f7e,Deep Identity-aware Transfer of Facial Attributes,"Deep Identity-aware Transfer of Facial Attributes
Mu Li1, Wangmeng Zuo2, David Zhang1
The Hong Kong Polytechnic University 2Harbin Institute of Technology"
2b8dfbd7cae8f412c6c943ab48c795514d53c4a7,Polynomial based texture representation for facial expression recognition,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)
978-1-4799-2893-4/14/$31.00 ©2014 IEEE
e-mail:
e-mail:
RECOGNITION
. INTRODUCTION
(d1,d2)∈[0;d]2
d1+d2≤d"
2bae810500388dd595f4ebe992c36e1443b048d2,Analysis of Facial Expression Recognition by Event-related Potentials,"International Journal of Bioelectromagnetism
Vol. 18, No. 1, pp. 13 - 18, 2016
www.ijbem.org
Analysis of Facial Expression Recognition
y Event-related Potentials
Taichi Hayasaka and Ayumi Miyachi
Department of Information and Computer Engineering,
National Institute of Technology, Toyota College, Japan
Correspondence: Taichi Hayasaka, Department of Information and Computer Engineering, National Institute of Technology,
Toyota College, 2-1 Eisei, Toyota-shi, Aichi, 471-8525 Japan,
E-mail: phone +81 565 36 5861, fax +81 565 36 5926"
2bbbbe1873ad2800954058c749a00f30fe61ab17,Face Verification across Ages Using Self Organizing Map,"ISSN(Online): 2320-9801
ISSN (Print):  2320-9798
International Journal of Innovative Research in Computer and Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol.2, Special Issue 1, March 2014
Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14)
Organized by
Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014
Face Verification across Ages Using Self
Organizing Map
B.Mahalakshmi1, K.Duraiswamy2, P.Gnanasuganya3, P.Aruldhevi4, R.Sundarapandiyan5
Associate Professor, Department of CSE, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India1
Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India2
B.E, Department of CSE, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India3, 4, 5"
477236563c6a6c6db922045453b74d3f9535bfa1,Attribute Based Image Search Re-Ranking Snehal,"International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611
Attribute Based Image Search Re-Ranking
Snehal S Patil1, Ajay Dani2
Master of Computer Engg, Savitribai Phule Pune University, G. H. Raisoni Collage of Engg and Technology, Wagholi, Pune
2Professor, Computer and Science Dept, Savitribai Phule Pune University, G. H .Raisoni Collage of Engg and Technology, Wagholi, Pune
integrating
images  by"
470dbd3238b857f349ebf0efab0d2d6e9779073a,Unsupervised Simultaneous Orthogonal basis Clustering Feature Selection,"Unsupervised Simultaneous Orthogonal Basis Clustering Feature Selection
Dongyoon Han and Junmo Kim
School of Electrical Engineering, KAIST, South Korea
In this paper, we propose a novel unsupervised feature selection method: Si-
multaneous Orthogonal basis Clustering Feature Selection (SOCFS). To per-
form feature selection on unlabeled data effectively, a regularized regression-
ased formulation with a new type of target matrix is designed. The target
matrix captures latent cluster centers of the projected data points by per-
forming the orthogonal basis clustering, and then guides the projection ma-
trix to select discriminative features. Unlike the recent unsupervised feature
selection methods, SOCFS does not explicitly use the pre-computed local
structure information for data points represented as additional terms of their
objective functions, but directly computes latent cluster information by the
target matrix conducting orthogonal basis clustering in a single unified term
of the proposed objective function.
Since the target matrix is put in a single unified term for regression of
the proposed objective function, feature selection and clustering are simul-
taneously performed. In this way, the projection matrix for feature selection
is more properly computed by the estimated latent cluster centers of the
projected data points. To the best of our knowledge, this is the first valid"
47541d04ec24662c0be438531527323d983e958e,British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2008xxxxxx,Affective Information Processing
474b461cd12c6d1a2fbd67184362631681defa9e,Multi-resolution fusion of DTCWT and DCT for shift invariant face recognition,"014 IEEE International
Conference on Systems, Man
nd Cybernetics
(SMC 2014)
San Diego, California, USA
5-8 October 2014
Pages 1-789
IEEE Catalog Number:
ISBN:
CFP14SMC-POD
978-1-4799-3841-4"
47ca2df3d657d7938d7253bed673505a6a819661,"Fields of Study Major Field: Computer Vision Minor Field: Pattern Recognition, Image Procession, Statistical Learning Ix Abstract Facial Expression Analysis on Manifolds","UNIVERSITY OF CALIFORNIA
Santa Barbara
Facial Expression Analysis on Manifolds
A Dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy
in Computer Science
Ya Chang
Committee in charge:
Professor Matthew Turk, Chair
Professor Yuan-Fang Wang
Professor B.S. Manjunath
Professor Andy Beall
September 2006"
47d4838087a7ac2b995f3c5eba02ecdd2c28ba14,Automatic Recognition of Deceptive Facial Expressions of Emotion,"JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017
Automatic Recognition of Facial Displays of
Unfelt Emotions
Kaustubh Kulkarni*, Ciprian Adrian Corneanu*, Ikechukwu Ofodile*, Student Member, IEEE, Sergio
Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik,
nd Gholamreza Anbarjafari, Senior Member, IEEE"
47a2727bd60e43f3253247b6d6f63faf2b67c54b,Semi-supervised Vocabulary-Informed Learning,"Semi-supervised Vocabulary-informed Learning
Yanwei Fu and Leonid Sigal
Disney Research"
47d3b923730746bfaabaab29a35634c5f72c3f04,Real-Time Facial Expression Recognition App Development on Smart Phones,"Humaid Alshamsi.et.al. Int. Journal of Engineering Research and Application              www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 7, ( Part -3) July 2017, pp.30-38
RESEARCH ARTICLE
OPEN ACCESS
Real-Time Facial Expression Recognition App Development on
Smart Phones
Humaid Alshamsi, Veton Kupuska
Electrical And Computer Engineering Department, Florida Institute Of Technology, Melbourne Fl,"
47e3029a3d4cf0a9b0e96252c3dc1f646e750b14,Facial expression recognition in still pictures and videos using active appearance models: a comparison approach,"International Conference on Computer Systems and Technologies - CompSysTech’07
Facial Expression Recognition in still pictures and videos using Active
Appearance Models. A comparison approach.
Drago(cid:1) Datcu
Léon Rothkrantz"
475e16577be1bfc0dd1f74f67bb651abd6d63524,DAiSEE: Towards User Engagement Recognition in the Wild,"DAiSEE: Towards User Engagement Recognition in the Wild
Abhay Gupta
Microsoft
Vineeth N Balasubramanian
Indian Institution of Technology Hyderabad"
471befc1b5167fcfbf5280aa7f908eff0489c72b,Class-Specific Kernel-Discriminant Analysis for Face Verification,"Class-Specific Kernel-Discriminant
Analysis for Face Verification
Georgios Goudelis, Stefanos Zafeiriou, Anastasios Tefas, Member, IEEE, and Ioannis Pitas, Fellow, IEEE
lass problems ("
47e8db3d9adb79a87c8c02b88f432f911eb45dc5,MAGMA: Multilevel Accelerated Gradient Mirror Descent Algorithm for Large-Scale Convex Composite Minimization,"MAGMA: Multi-level accelerated gradient mirror descent algorithm for
large-scale convex composite minimization
Vahan Hovhannisyan
Panos Parpas
Stefanos Zafeiriou
July 15, 2016"
47f5f740e225281c02c8a2ae809be201458a854f,Simultaneous Unsupervised Learning of Disparate Clusterings,"Simultaneous Unsupervised Learning of Disparate Clusterings
Prateek Jain*, Raghu Meka and Inderjit S. Dhillon
Department of Computer Sciences, University of Texas, Austin, TX 78712-1188, USA
Received 14 April 2008; accepted 05 May 2008
DOI:10.1002/sam.10007
Published online 3 November 2008 in Wiley InterScience (www.interscience.wiley.com)."
47bf7a8779c68009ea56a7c20e455ccdf0e3a8fa,Automatic Face Recognition System using Pattern Recognition Techniques: A Survey,"International Journal of Computer Applications (0975 – 8887)
Volume 83 – No 5, December 2013
Automatic Face Recognition System using Pattern
Recognition Techniques: A Survey
Ningthoujam Sunita Devi                                                                              Prof.K.Hemachandran
Department of Computer Science                                                                Department of Computer Science
Assam University, Silchar-788011                                                               Assam University, Silchar-788011"
47b508abdaa5661fe14c13e8eb21935b8940126b,An Efficient Method for Feature Extraction of Face Recognition Using PCA,"Volume 4, Issue 12, December 2014                                  ISSN: 2277 128X
International Journal of Advanced Research in
Computer Science and Software Engineering
Research Paper
Available online at: www.ijarcsse.com
An Efficient Method for Feature Extraction of Face
Recognition Using PCA
Tara Prasad Singh
(M.Tech. Student)
Computer Science & Engineering
Iftm University,Moradabad-244001 U.P."
782188821963304fb78791e01665590f0cd869e8,Automatic Spatially-Aware Fashion Concept Discovery,"sleevelengthincreasing dress length+ mini =(b) Structured product browsing(c) Attribute-feedback product retrieval(a) Concept discoveryminimidimaxisleevelessshort-sleevelong-sleeveblueblackredyellowFigure1.(a)Weproposeaconceptdiscoveryapproachtoauto-maticallyclusterspatially-awareattributesintomeaningfulcon-cepts.Thediscoveredspatially-awareconceptsarefurtherutilizedfor(b)structuredproductbrowsing(visualizingimagesaccordingtoselectedconcepts)and(c)attribute-feedbackproductretrieval(refiningsearchresultsbyprovidingadesiredattribute).variousfeedback,includingtherelevanceofdisplayedim-ages[20,4],ortuningparameterslikecolorandtexture,andthenresultsareupdatedcorrespondingly.However,rel-evancefeedbackislimitedduetoitsslowconvergencetomeetthecustomerrequirements.Inadditiontocolorandtexture,customersoftenwishtoexploithigher-levelfea-tures,suchasneckline,sleevelength,dresslength,etc.Semanticattributes[13],whichhavebeenappliedef-fectivelytoobjectcategorization[15,27]andfine-grainedrecognition[12]couldpotentiallyaddresssuchchallenges.Theyaremid-levelrepresentationsthatdescribesemanticproperties.Recently,researchershaveannotatedclotheswithsemanticattributes[9,2,8,16,11](e.g.,material,pat-tern)asintermediaterepresentationsorsupervisorysignalstobridgethesemanticgap.However,annotatingsemanticattributesiscostly.Further,attributesconditionedonob-jectpartshaveachievedgoodperformanceinfine-grainedrecognition[3,33],confirmingthatspatialinformationiscriticalforattributes.Thisalsoholdsforclothingimages.Forexample,thenecklineattributeusuallycorrespondstothetoppartinimageswhilethesleeveattributeordinarily1"
783f3fccde99931bb900dce91357a6268afecc52,Adapted Active Appearance Models,"Hindawi Publishing Corporation
EURASIP Journal on Image and Video Processing
Volume 2009, Article ID 945717, 14 pages
doi:10.1155/2009/945717
Research Article
Adapted Active Appearance Models
Renaud S´eguier,1 Sylvain Le Gallou,2 Gaspard Breton,2 and Christophe Garcia2
SUP ´ELEC/IETR, Avenue de la Boulaie, 35511 Cesson-S´evign´e, France
Orange Labs—TECH/IRIS, 4 rue du clos courtel, 35 512 Cesson S´evign´e, France
Correspondence should be addressed to Renaud S´eguier,
Received 5 January 2009; Revised 2 September 2009; Accepted 20 October 2009
Recommended by Kenneth M. Lam
Active Appearance Models (AAMs) are able to align ef‌f‌iciently known faces under duress, when face pose and illumination are
ontrolled. We propose Adapted Active Appearance Models to align unknown faces in unknown poses and illuminations. Our
proposal is based on the one hand on a specific transformation of the active model texture in an oriented map, which changes the
AAM normalization process; on the other hand on the research made in a set of different precomputed models related to the most
dapted AAM for an unknown face. Tests on public and private databases show the interest of our approach. It becomes possible
to align unknown faces in real-time situations, in which light and pose are not controlled.
Copyright © 2009 Renaud S´eguier et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly"
78f438ed17f08bfe71dfb205ac447ce0561250c6,Bridging the Semantic Gap : Image and video Understanding by Exploiting Attributes,
781c2553c4ed2a3147bbf78ad57ef9d0aeb6c7ed,Tubelets: Unsupervised Action Proposals from Spatiotemporal Super-Voxels,"Int J Comput Vis
DOI 10.1007/s11263-017-1023-9
Tubelets: Unsupervised Action Proposals from Spatiotemporal
Super-Voxels
Mihir Jain1
Cees G. M. Snoek1
· Jan van Gemert2 · Hervé Jégou3 · Patrick Bouthemy3 ·
Received: 25 June 2016 / Accepted: 18 May 2017
© The Author(s) 2017. This article is an open access publication"
78df7d3fdd5c32f037fb5cc2a7c104ac1743d74e,Temporal Pyramid Pooling-Based Convolutional Neural Network for Action Recognition,"TEMPORAL PYRAMID POOLING CNN FOR ACTION RECOGNITION
Temporal Pyramid Pooling Based Convolutional
Neural Network for Action Recognition
Peng Wang, Yuanzhouhan Cao, Chunhua Shen, Lingqiao Liu, and Heng Tao Shen"
78fdf2b98cf6380623b0e20b0005a452e736181e,Dense Wide-Baseline Stereo with Varying Illumination and its Application to Face Recognition,
787c1bb6d1f2341c5909a0d6d7314bced96f4681,"Face Detection and Verification in Unconstrained Videos: Challenges, Detection, and Benchmark Evaluation","Face Detection and Verification in Unconstrained
Videos: Challenges, Detection, and Benchmark
Evaluation
Mahek Shah
IIIT-D-MTech-CS-GEN-13-106
July 16, 2015
Indraprastha Institute of Information Technology, Delhi
Thesis Advisors
Dr. Mayank Vatsa
Dr. Richa Singh
Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science
(cid:13) Shah, 2015
Keywords: face recognition, face detection, face verification"
7808937b46acad36e43c30ae4e9f3fd57462853d,Describing people: A poselet-based approach to attribute classification,"Describing People: A Poselet-Based Approach to Attribute Classification ∗
Lubomir Bourdev1,2, Subhransu Maji1 and Jitendra Malik1
EECS, U.C. Berkeley, Berkeley, CA 94720
Adobe Systems, Inc., 345 Park Ave, San Jose, CA 95110"
8b2c090d9007e147b8c660f9282f357336358061,Emotion Classification based on Expressions and Body Language using Convolutional Neural Networks,"Lake Forest College
Lake Forest College Publications
Senior Theses
-23-2018
Student Publications
Emotion Classification based on Expressions and
Body Language using Convolutional Neural
Networks
Aasimah S. Tanveer
Lake Forest College,
Follow this and additional works at: https://publications.lakeforest.edu/seniortheses
Part of the Neuroscience and Neurobiology Commons
Recommended Citation
Tanveer, Aasimah S., ""Emotion Classification based on Expressions and Body Language using Convolutional Neural Networks""
(2018). Senior Theses.
This Thesis is brought to you for free and open access by the Student Publications at Lake Forest College Publications. It has been accepted for
inclusion in Senior Theses by an authorized administrator of Lake Forest College Publications. For more information, please contact"
8b547b87fd95c8ff6a74f89a2b072b60ec0a3351,Initial perceptions of a casual game to crowdsource facial expressions in the wild,"Initial Perceptions of a Casual Game to Crowdsource
Facial Expressions in the Wild
Chek Tien Tan
Hemanta Sapkota
Daniel Rosser
Yusuf Pisan
Games Studio, Faculty of Engineering and IT, University of Technology, Sydney"
8bf57dc0dd45ed969ad9690033d44af24fd18e05,Subject-Independent Emotion Recognition from Facial Expressions using a Gabor Feature RBF Neural Classifier Trained with Virtual Samples Generated by Concurrent Self-Organizing Maps,"Subject-Independent Emotion Recognition from Facial Expressions
using a Gabor Feature RBF Neural Classifier Trained with Virtual
Samples Generated by Concurrent Self-Organizing Maps
VICTOR-EMIL NEAGOE, ADRIAN-DUMITRU CIOTEC
Depart. Electronics, Telecommunications & Information Technology
Polytechnic University of Bucharest
Splaiul Independentei No. 313, Sector 6, Bucharest,
ROMANIA"
8b744786137cf6be766778344d9f13abf4ec0683,And Summarization by Sub-modular Inference,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE
ICASSP 2016"
8bf647fed40bdc9e35560021636dfb892a46720e,Learning to hash-tag videos with Tag2Vec,"Learning to Hash-tag Videos with Tag2Vec
Aditya Singh
Saurabh Saini
Rajvi Shah
CVIT, KCIS, IIIT Hyderabad, India
P J Narayanan
http://cvit.iiit.ac.in/research/projects/tag2vec
Figure 1. Learning a direct mapping from videos to hash-tags : sample frames from short video clips with user-given hash-tags
(left); a sample frame from a query video and hash-tags suggested by our system for this query (right)."
8bb21b1f8d6952d77cae95b4e0b8964c9e0201b0,Multimodal Interaction on a Social Robotic Platform,"Methoden
t 11/2013
(cid:2)(cid:2)(cid:2)
Multimodale Interaktion
uf einer sozialen Roboterplattform
Multimodal Interaction on a Social Robotic Platform
Jürgen Blume
Korrespondenzautor:
, Tobias Rehrl, Gerhard Rigoll, Technische Universität München
Zusammenfassung Dieser Beitrag beschreibt die multimo-
dalen Interaktionsmöglichkeiten mit der Forschungsroboter-
plattform ELIAS. Zunächst wird ein Überblick über die Ro-
oterplattform sowie die entwickelten Verarbeitungskompo-
nenten gegeben, die Einteilung dieser Komponenten erfolgt
nach dem Konzept von wahrnehmenden und agierenden Mo-
dalitäten. Anschließend wird das Zusammenspiel der Kom-
ponenten in einem multimodalen Spieleszenario näher be-
trachtet. (cid:2)(cid:2)(cid:2) Summary
This paper presents the mul-
timodal"
8b1db0894a23c4d6535b5adf28692f795559be90,How Reliable are Your Visual Attributes?,"Biometric and Surveillance Technology for Human and Activity Identification X, edited by Ioannis Kakadiaris,
Walter J. Scheirer, Laurence G. Hassebrook, Proc. of SPIE Vol. 8712, 87120Q · © 2013 SPIE
CCC code: 0277-786X/13/$18 · doi: 10.1117/12.2018974
Proc. of SPIE Vol. 8712  87120Q-1
From: http://proceedings.spiedigitallibrary.org/ on 06/07/2013 Terms of Use: http://spiedl.org/terms"
134db6ca13f808a848321d3998e4fe4cdc52fbc2,Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 2, APRIL 2006
Dynamics of Facial Expression: Recognition of
Facial Actions and Their Temporal Segments
From Face Profile Image Sequences
Maja Pantic, Member, IEEE, and Ioannis Patras, Member, IEEE"
133dd0f23e52c4e7bf254e8849ac6f8b17fcd22d,Active Clustering with Model-Based Uncertainty Reduction,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
Active Clustering with Model-Based
Uncertainty Reduction
Caiming Xiong, David M. Johnson, and Jason J. Corso Senior Member, IEEE"
1369e9f174760ea592a94177dbcab9ed29be1649,Geometrical facial modeling for emotion recognition,"Geometrical Facial Modeling for Emotion Recognition
Giampaolo L. Libralon and Roseli A. F. Romero"
133900a0e7450979c9491951a5f1c2a403a180f0,Social Grouping for Multi-Target Tracking and Head Pose Estimation in Video,"JOURNAL OF LATEX CLASS FILES
Social Grouping for Multi-target Tracking and
Head Pose Estimation in Video
Zhen Qin and Christian R. Shelton"
13db9466d2ddf3c30b0fd66db8bfe6289e880802,Transfer Subspace Learning Model for Face Recognition at a Distance,"I.J. Image, Graphics and Signal Processing, 2017, 1, 27-32
Published Online January 2017 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijigsp.2017.01.04
Transfer Subspace Learning Model for Face
Recognition at a Distance
Alwin Anuse
MIT, Pune ,India
Email:
Nilima Deshmukh
AISSM’S IOT,India
Email:
Vibha Vyas
College of Engineering Pune,India
Email:
learning  algorithms  work"
13141284f1a7e1fe255f5c2b22c09e32f0a4d465,Object Tracking by Oversampling Local Features,"Object Tracking by
Oversampling Local Features
Federico Pernici and Alberto Del Bimbo"
1394ca71fc52db972366602a6643dc3e65ee8726,EmoReact: a multimodal approach and dataset for recognizing emotional responses in children,"See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/308407783
EmoReact:	A	Multimodal	Approach	and	Dataset
for	Recognizing	Emotional	Responses	in	Children
Conference	Paper	·	November	2016
DOI:	10.1145/2993148.2993168
CITATIONS
READS
authors,	including:
Behnaz	Nojavanasghari
University	of	Central	Florida
PUBLICATIONS			20	CITATIONS
Tadas	Baltrusaitis
Carnegie	Mellon	University
0	PUBLICATIONS			247	CITATIONS
SEE	PROFILE
SEE	PROFILE
Charles	E.	Hughes
University	of	Central	Florida
85	PUBLICATIONS			1,248	CITATIONS
SEE	PROFILE"
133da0d8c7719a219537f4a11c915bf74c320da7,A Novel Method for 3D Image Segmentation with Fusion of Two Images using Color K-means Algorithm,"International Journal of Computer Applications (0975 – 8887)
Volume 123 – No.4, August 2015
A Novel Method for 3D Image Segmentation with Fusion
of Two Images using Color K-means Algorithm
Neelam Kushwah
Dept. of CSE
ITM Universe
Gwalior
Priusha Narwariya
Dept. of CSE
ITM Universe
Gwalior"
133f01aec1534604d184d56de866a4bd531dac87,Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics,"Effective Unconstrained Face Recognition by
Combining Multiple Descriptors and Learned
Background Statistics
Lior Wolf, Member, IEEE, Tal Hassner, and Yaniv Taigman"
13841d54c55bd74964d877b4b517fa94650d9b65,Generalised ambient reflection models for Lambertian and Phong surfaces,"Generalised Ambient Reflection Models for Lambertian and
Phong Surfaces
Author
Zhang, Paul, Gao, Yongsheng
Published
Conference Title
Proceedings of the 2009 IEEE International Conference on Image Processing (ICIP 2009)
https://doi.org/10.1109/ICIP.2009.5413812
Copyright Statement
© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/
republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.
Downloaded from
http://hdl.handle.net/10072/30001
Griffith Research Online
https://research-repository.griffith.edu.au"
132f88626f6760d769c95984212ed0915790b625,Exploring Entity Resolution for Multimedia Person Identification,"UC Irvine
UC Irvine Electronic Theses and Dissertations
Title
Exploring Entity Resolution for Multimedia Person Identification
Permalink
https://escholarship.org/uc/item/9t59f756
Author
Zhang, Liyan
Publication Date
014-01-01
Peer reviewed|Thesis/dissertation
eScholarship.org
Powered by the California Digital Library
University of California"
13f6ab2f245b4a871720b95045c41a4204626814,Cortex commands the performance of skilled movement,"RESEARCH ARTICLE
Cortex commands the performance of
skilled movement
Jian-Zhong Guo, Austin R Graves, Wendy W Guo, Jihong Zheng, Allen Lee,
Juan Rodrı´guez-Gonza´ lez, Nuo Li, John J Macklin, James W Phillips,
Brett D Mensh, Kristin Branson, Adam W Hantman*
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United
States"
13afc4f8d08f766479577db2083f9632544c7ea6,Multiple kernel learning for emotion recognition in the wild,"Multiple Kernel Learning for
Emotion Recognition in the Wild
Karan Sikka, Karmen Dykstra, Suchitra Sathyanarayana,
Gwen Littlewort and Marian S. Bartlett
Machine Perception Laboratory
EmotiW Challenge, ICMI, 2013"
13188a88bbf83a18dd4964e3f89d0bc0a4d3a0bd,Image Normalization Robust using Histogram Equalization and Logarithm Transform Frequency DCT Coefficients for Illumination in Facial Images,"Dr. V. S. Manjula
HOD, Department of Computer Science, St. Joseph College of Information Technology, Songea, Tanzania"
13d9da779138af990d761ef84556e3e5c1e0eb94,Learning to Locate Informative Features for Visual Identification,"Int J Comput Vis (2008) 77: 3–24
DOI 10.1007/s11263-007-0093-5
Learning to Locate Informative Features for Visual Identification
Andras Ferencz · Erik G. Learned-Miller ·
Jitendra Malik
Received: 18 August 2005 / Accepted: 11 September 2007 / Published online: 9 November 2007
© Springer Science+Business Media, LLC 2007"
7f511a6a2b38a26f077a5aec4baf5dffc981d881,Low-Latency Human Action Recognition with Weighted Multi-Region Convolutional Neural Network,"LOW-LATENCY HUMAN ACTION RECOGNITION WITH WEIGHTED MULTI-REGION
CONVOLUTIONAL NEURAL NETWORK
Yunfeng Wang(cid:63), Wengang Zhou(cid:63), Qilin Zhang†, Xiaotian Zhu(cid:63), Houqiang Li(cid:63)
(cid:63)University of Science and Technology of China, Hefei, Anhui, China
HERE Technologies, Chicago, Illinois, USA"
7ff42ee09c9b1a508080837a3dc2ea780a1a839b,Data Fusion for Real-time Multimodal Emotion Recognition through Webcams and Microphones in E-Learning,"Data Fusion for Real-time Multimodal Emotion Recognition through Webcams
nd Microphones in E-Learning
Kiavash Bahreini*, Rob Nadolski*, Wim Westera*
*Welten Institute, Research Centre for Learning, Teaching and Technology, Faculty of
Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg
77, 6419 AT Heerlen, The Netherlands
{kiavash.bahreini, rob.nadolski,"
7f533bd8f32525e2934a66a5b57d9143d7a89ee1,Audio-Visual Identity Grounding for Enabling Cross Media Search,"Audio-Visual Identity Grounding for Enabling Cross Media Search
Kevin Brady, MIT Lincoln Laboratory
Paper ID 22"
7f44f8a5fd48b2d70cc2f344b4d1e7095f4f1fe5,Sparse Output Coding for Scalable Visual Recognition,"Int J Comput Vis (2016) 119:60–75
DOI 10.1007/s11263-015-0839-4
Sparse Output Coding for Scalable Visual Recognition
Bin Zhao1 · Eric P. Xing1
Received: 15 May 2013 / Accepted: 16 June 2015 / Published online: 26 June 2015
© Springer Science+Business Media New York 2015"
7f4bc8883c3b9872408cc391bcd294017848d0cf,The Multimodal Focused Attribute Model : A Nonparametric Bayesian Approach to Simultaneous Object Classification and Attribute Discovery,"Computer
Sciences
Department
The Multimodal Focused Attribute Model:  A Nonparametric
Bayesian Approach to Simultaneous Object Classification and
Attribute Discovery
Jake Rosin
Charles R. Dyer
Xiaojin Zhu
Technical Report #1697
January 2012"
7f6061c83dc36633911e4d726a497cdc1f31e58a,YouTube-8M: A Large-Scale Video Classification Benchmark,"YouTube-8M: A Large-Scale Video Classification
Benchmark
Sami Abu-El-Haija
George Toderici
Nisarg Kothari
Joonseok Lee
Paul Natsev
Balakrishnan Varadarajan
Sudheendra Vijayanarasimhan
Google Research"
7f36dd9ead29649ed389306790faf3b390dc0aa2,Movement Differences between Deliberate and Spontaneous Facial Expressions: Zygomaticus Major Action in Smiling.,"MOVEMENT DIFFERENCES BETWEEN DELIBERATE
AND SPONTANEOUS FACIAL EXPRESSIONS:
ZYGOMATICUS MAJOR ACTION IN SMILING
Karen L. Schmidt, Zara Ambadar, Jeffrey F. Cohn, and L. Ian Reed"
7f6cd03e3b7b63fca7170e317b3bb072ec9889e0,A Face Recognition Signature Combining Patch-based Features with Soft Facial Attributes,"A Face Recognition Signature Combining Patch-based
Features with Soft Facial Attributes
L. Zhang, P. Dou, I.A. Kakadiaris
Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204"
7f97a36a5a634c30de5a8e8b2d1c812ca9f971ae,Incremental Classifier Learning with Generative Adversarial Networks,"Incremental Classifier Learning with Generative Adversarial Networks
Yue Wu1 Yinpeng Chen2 Lijuan Wang2 Yuancheng Ye3
Zicheng Liu2 Yandong Guo2 Zhengyou Zhang2 Yun Fu1
Northeastern University 2Microsoft Research 3City University of New York"
7f268f29d2c8f58cea4946536f5e2325777fa8fa,Facial Emotion Recognition in Curvelet Domain,"Facial Emotion Recognition in Curvelet Domain
Gyanendra K Verma and Bhupesh Kumar Singh
Indian Institute of Informaiton Technology, Allahabad, India
Allahabad, India - 211012"
7f3a73babe733520112c0199ff8d26ddfc7038a0,Robust Face Identification with Small Sample Sizes using Bag of Words and Histogram of Oriented Gradients,
7af38f6dcfbe1cd89f2307776bcaa09c54c30a8b,Learning in Computer Vision and Beyond: Development,"eaig i C	e Vii ad Beyd:
Devee
h . Weg
Deae f C	e Sciece
ichiga Sae Uiveiy
Ea aig  48824
Abac
Thi chae id	ce wha i caed he deveea aach  c	e vii i
aic	a ad ai(cid:12)cia ieigece i geea.  dic	e he c	e baic aadig f de
veig a ye ad i f	daea iiai. The deveea aach i ivaed
y h	a cgiive devee f ifacy  ad	hd. A deveea eaig ag
ih i deeied befe he \bih"" f he ye. Afe he \bih"" i eabe he ye
 ea ew ak wih	 a eed f egaig. The aj ga f he deveea
ach i  eaize a	ai f geea		e eaig ha eabe achie  ef
deveea eaig ve a g eid. S	ch eaig i cd	ced i a de iia  he
way aia ad h	a ea. The achie 	 ea diecy f ci		 ey i
	 ea whie ieacig wih he evie ic	dig h	a eache.  hi eaig
de deveig ieige ga f vai	 ak i eaized h	gh ea	ie ieac"
7a81967598c2c0b3b3771c1af943efb1defd4482,Do We Need More Training Data?,"Do We Need More Training Data?
Xiangxin Zhu · Carl Vondrick · Charless C. Fowlkes · Deva Ramanan"
7ae0212d6bf8a067b468f2a78054c64ea6a577ce,Human Face Processing Techniques With Application To Large Scale Video Indexing,"Human Face Processing Techniques
With Application To
Large Scale Video Indexing
LE DINH DUY
DOCTOR OF
PHILOSOPHY
Department of Informatics,
School of Multidisciplinary Sciences,
The Graduate University for Advanced Studies (SOKENDAI)
006 (School Year)
September 2006"
7a0fb972e524cb9115cae655e24f2ae0cfe448e0,Facial Expression Classification Using RBF AND Back-Propagation Neural Networks,"Facial Expression Classification Using RBF AND Back-Propagation Neural Networks
R.Q.Feitosa1,2,
M.M.B.Vellasco1,2,
D.T.Oliveira1,
D.V.Andrade1,
S.A.R.S.Maffra1
– Catholic University of Rio de Janeiro, Brazil
Department of Electric Engineering
– State University of Rio de Janeiro, Brazil
Department of Computer Engineering
e-mail: [raul, -rio.br, [diogo,"
7ad77b6e727795a12fdacd1f328f4f904471233f,Supervised Local Descriptor Learning for Human Action Recognition,"Supervised Local Descriptor Learning
for Human Action Recognition
Xiantong Zhen, Feng Zheng, Ling Shao, Senior Member, IEEE, Xianbin Cao, Senior Member, IEEE, and Dan Xu"
7a97de9460d679efa5a5b4c6f0b0a5ef68b56b3b,Constrained Joint Cascade Regression Framework for Simultaneous Facial Action Unit Recognition and Facial Landmark Detection,"nd Face shape relationship2)AU relationship3)Face shape patternUpdate facial landmark locationsUpdate AU activation probabilitiesAU activation probabilitiesCurrent landmark locationsFigure1.Constrainedjointcascaderegressionframeworkforsi-multaneousfacialactionunitrecognitionandlandmarkdetection.wouldenablethemachineunderstandingofhumanfacialbehavior,intent,emotionetc.Facialactionunitrecognitionandfaciallandmarkdetec-tionarerelatedtasks,buttheyareseldomlyexploitedjointlyintheliteratures.Forexample,thefaceshapedefinedbythelandmarklocationsareconsideredaseffectivefeaturesforAUrecognition.But,thelandmarklocationinforma-tionisusuallyextractedbeforehandwithfaciallandmarkdetectionalgorithms.Ontheotherhand,theActionUnitinformationisrarelyutilizedintheliteraturetohelpfaciallandmarkdetection,eventhoughthefacialmusclemove-mentsandtheactivationofspecificfacialactionunitcancausetheappearanceandshapechangesofthefacewhichsignificantlyaffectfaciallandmarkdetection.Themutualinformationandintertwinedrelationshipamongfacialac-tionunitrecognitionandfaciallandmarkdetectionshouldbeutilizedtoboosttheperformancesofbothtasks.Cascaderegressionframeworkhasbeenshowntobeaneffectivemethodforfacealignmentrecently[19][13].Itstartsfromaninitialfaceshape(e.g.meanface)anditit-erativelyupdatesthefaciallandmarklocationsbasedonthelocalappearancefeaturesuntilconvergence.Severalregres-sionmodelshavebeenappliedtolearnthemappingfromthelocalappearancefeaturestothefaceshapeupdate.Toleveragethesuccessofthecascaderegressionframe-workandtoachievethegoalofjointfacialactionunit13400"
7aa4c16a8e1481629f16167dea313fe9256abb42,Multi-task learning for face identification and attribute estimation,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE
ICASSP 2017"
7ad7897740e701eae455457ea74ac10f8b307bed,Random Subspace Two-dimensional LDA for Face Recognition,"Random Subspace Two-dimensional LDA for Face Recognition*
Garrett Bingham1"
7a7b1352d97913ba7b5d9318d4c3d0d53d6fb697,Attend and Rectify: a Gated Attention Mechanism for Fine-Grained Recovery,"Attend and Rectify: a Gated Attention
Mechanism for Fine-Grained Recovery
Pau Rodr´ıguez†, Josep M. Gonfaus‡, Guillem Cucurull†,
F. Xavier Roca†, Jordi Gonz`alez†
Computer Vision Center and Universitat Aut`onoma de Barcelona (UAB),
Campus UAB, 08193 Bellaterra, Catalonia Spain
Visual Tagging Services, Parc de Recerca, Campus UAB"
7aa062c6c90dba866273f5edd413075b90077b51,Minimizing Separability : A Comparative Analysis of Illumination Compensation Techniques in Face Recognition,"I.J. Information Technology and Computer Science, 2017, 5, 40-51
Published Online May 2017 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijitcs.2017.05.06
Minimizing Separability: A Comparative Analysis
of Illumination Compensation Techniques in Face
Recognition
Chollette C. Olisah
Department of Computer Science and IT, Baze University, Abuja, Nigeria
E-mail:"
1451e7b11e66c86104f9391b80d9fb422fb11c01,Image privacy protection with secure JPEG transmorphing,"IET Signal Processing
Research Article
Image privacy protection with secure JPEG
transmorphing
ISSN 1751-9675
Received on 30th December 2016
Revised 13th July 2017
Accepted on 11th August 2017
doi: 10.1049/iet-spr.2016.0756
www.ietdl.org
Lin Yuan1  , Touradj Ebrahimi1
Multimedia Signal Processing Group, Electrical Engineering Department, EPFL, Station 11, Lausanne, Switzerland
E-mail:"
14761b89152aa1fc280a33ea4d77b723df4e3864,Zero-Shot Learning via Visual Abstraction,
14fdec563788af3202ce71c021dd8b300ae33051,Social Influence Analysis based on Facial Emotions,"Social Influence Analysis based on Facial Emotions
Pankaj Mishra, Rafik Hadfi, and Takayuki Ito
Department of Computer Science and Engineering
Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan
{pankaj.mishra,"
1459d4d16088379c3748322ab0835f50300d9a38,Cross-Domain Visual Matching via Generalized Similarity Measure and Feature Learning,"Cross-Domain Visual Matching via Generalized
Similarity Measure and Feature Learning
Liang Lin, Guangrun Wang, Wangmeng Zuo, Xiangchu Feng, and Lei Zhang"
1450296fb936d666f2f11454cc8f0108e2306741,Learning to Discover Cross-Domain Relations with Generative Adversarial Networks,"Learning to Discover Cross-Domain Relations
with Generative Adversarial Networks
Taeksoo Kim 1 Moonsu Cha 1 Hyunsoo Kim 1 Jung Kwon Lee 1 Jiwon Kim 1"
1442319de86d171ce9595b20866ec865003e66fc,Vision-Based Fall Detection with Convolutional Neural Networks,"Vision-Based Fall Detection with Convolutional
Neural Networks
Adri´an Nu˜nez-Marcos1, Gorka Azkune1, Ignacio Arganda-Carreras234
DeustoTech - University of Deusto
Avenida de las Universidades, 24 - 48007, Bilbao, Spain
Dept. of Computer Science and Artificial Intelligence, Basque
Country University, San Sebastian, Spain
P. Manuel Lardizabal, 1 - 20018, San Sebastian, Spain
Ikerbasque, Basque Foundation for Science, Bilbao, Spain
Maria Diaz de Haro, 3 - 48013 Bilbao, Spain
Donostia International Physics Center (DIPC), San Sebastian, Spain
P. Manuel Lardizabal, 4 - 20018, San Sebastian, Spain"
1462bc73834e070201acd6e3eaddd23ce3c1a114,Face Authentication /recognition System for Forensic Application Using Sketch Based on the Sift Features Approach,"International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 4, April 2014
FACE AUTHENTICATION /RECOGNITION
SYSTEM FOR FORENSIC APPLICATION
USING SKETCH BASED ON THE SIFT
FEATURES APPROACH
Poonam A. Katre
Department of Electronics Engineering KITS,
RTMNU Nagpur University, India"
140c95e53c619eac594d70f6369f518adfea12ef,Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A,"Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A
Brendan F. Klare, Emma Taborsky , Austin Blanton , Jordan Cheney , Kristen Allen , Patrick Grother , Alan Mah , Anil K. Jain
The development of accurate and scalable unconstrained face recogni-
tion algorithms is a long term goal of the biometrics and computer vision
ommunities. The term “unconstrained” implies a system can perform suc-
essful identifications regardless of face image capture presentation (illumi-
nation, sensor, compression) or subject conditions (facial pose, expression,
occlusion). While automatic, as well as human, face identification in certain
scenarios may forever be elusive, such as when a face is heavily occluded or
aptured at very low resolutions, there still remains a large gap between au-
tomated systems and human performance on familiar faces. In order to close
this gap, large annotated sets of imagery are needed that are representative
of the end goals of unconstrained face recognition. This will help continue
to push the frontiers of unconstrained face detection and recognition, which
re the primary goals of the IARPA Janus program.
The current state of the art in unconstrained face recognition is high
ccuracy (roughly 99% true accept rate at a false accept rate of 1.0%) on
faces that can be detected with a commodity face detectors, but unknown
ccuracy on other faces. Despite the fact that face detection and recognition
research generally has advanced somewhat independently, the frontal face"
1467c4ab821c3b340abe05a1b13a19318ebbce98,Multitask and transfer learning for multi-aspect data,"Multitask and Transfer Learning for
Multi-Aspect Data
Bernardino Romera Paredes
A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy of University College London."
142dcfc3c62b1f30a13f1f49c608be3e62033042,Adaptive region pooling for object detection,"Adaptive Region Pooling for Object Detection
Yi-Hsuan Tsai
UC Merced
Onur C. Hamsici
Qualcomm Research, San Diego
Ming-Hsuan Yang
UC Merced"
14e428f2ff3dc5cf96e5742eedb156c1ea12ece1,Facial Expression Recognition Using Neural Network Trained with Zernike Moments,"Facial Expression Recognition Using Neural Network Trained with Zernike
Moments
Mohammed Saaidia
Dept. Génie-Electrique
Université M.C.M Souk-Ahras
Souk-Ahras, Algeria"
14a5feadd4209d21fa308e7a942967ea7c13b7b6,Content-based vehicle retrieval using 3D model and part information,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE
ICASSP 2012"
14fee990a372bcc4cb6dc024ab7fc4ecf09dba2b,Modeling Spatio-Temporal Human Track Structure for Action Localization,"Modeling Spatio-Temporal Human Track Structure for Action
Localization
Guilhem Ch´eron · Anton Osokin · Ivan Laptev · Cordelia Schmid"
14ee4948be56caeb30aa3b94968ce663e7496ce4,SmileNet: Registration-Free Smiling Face Detection,"SmileNet: Registration-Free Smiling Face Detection In The Wild.
Jang, Y; Gunes, H; Patras, I
© Copyright 2018 IEEE
For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/36405
Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact"
8ee62f7d59aa949b4a943453824e03f4ce19e500,Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions,"Robust Head-Pose Estimation Based on
Partially-Latent Mixture of Linear Regression
Vincent Drouard∗, Radu Horaud∗, Antoine Deleforge†, Sil`eye Ba∗ and Georgios Evangelidis∗
INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France
INRIA Rennes Bretagne Atlantique, Rennes, France"
8e33183a0ed7141aa4fa9d87ef3be334727c76c0,Robustness of Face Recognition to Image Manipulations,"– COS429 Written Report, Fall 2017 –
Robustness of Face Recognition to Image Manipulations
Cathy Chen (cc27), Zachary Liu (zsliu), and Lindy Zeng (lindy)
. Motivation
We can often recognize pictures of people we know even if the image has low resolution or obscures
part of the face, if the camera angle resulted in a distorted image of the subject’s face, or if the
subject has aged or put on makeup since we last saw them. Although this is a simple recognition task
for a human, when we think about how we accomplish this task, it seems non-trivial for computer
lgorithms to recognize faces despite visual changes.
Computer facial recognition is relied upon for many application where accuracy is important.
Facial recognition systems have applications ranging from airport security and suspect identification
to personal device authentication and face tagging [7]. In these real-world applications, the system
must continue to recognize images of a person who looks slightly different due to the passage of
time, a change in environment, or a difference in clothing.
Therefore, we are interested in investigating face recognition algorithms and their robustness to
image changes resulting from realistically plausible manipulations. Furthermore, we are curious
bout whether the impact of image manipulations on computer algorithms’ face recognition ability
mirrors related insights from neuroscience about humans’ face recognition abilities.
. Goal
In this project, we implement both face recognition algorithms and image manipulations. We then"
8e3d0b401dec8818cd0245c540c6bc032f169a1d,McGan: Mean and Covariance Feature Matching GAN,"McGan: Mean and Covariance Feature Matching GAN
Youssef Mroueh * 1 2 Tom Sercu * 1 2 Vaibhava Goel 2"
8e94ed0d7606408a0833e69c3185d6dcbe22bbbe,For your eyes only,"© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE
must  be  obtained  for  all  other  uses,  in  any  current  or  future  media,  including
reprinting/republishing  this  material  for  advertising  or  promotional  purposes,
reating  new  collective  works,  for  resale  or  redistribution  to  servers  or  lists,  or
reuse of any copyrighted component of this work in other works.
Pre-print of article that will appear at WACV 2012."
8e461978359b056d1b4770508e7a567dbed49776,LOMo: Latent Ordinal Model for Facial Analysis in Videos,"LOMo: Latent Ordinal Model for Facial Analysis in Videos
Karan Sikka1,∗
Gaurav Sharma2,3,†
Marian Bartlett1,∗,‡
UCSD, USA
MPI for Informatics, Germany
IIT Kanpur, India"
8ea30ade85880b94b74b56a9bac013585cb4c34b,From turbo hidden Markov models to turbo state-space models [face recognition applications],"FROM TURBO HIDDEN MARKOV MODELS TO TURBO STATE-SPACE MODELS
Florent Perronnin and Jean-Luc Dugelay
Institut Eur´ecom
Multimedia Communications Department
BP 193, 06904 Sophia Antipolis Cedex, France
fflorent.perronnin,"
8e8e3f2e66494b9b6782fb9e3f52aeb8e1b0d125,"Detecting and classifying scars, marks, and tattoos found in the wild","in  any  current  or
future  media,
for  all  other  uses,
 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained
including
reprinting/republishing  this  material  for  advertising  or  promotional  purposes,  creating
new  collective  works,  for  resale  or  redistribution  to  servers  or  lists,  or  reuse  of  any
opyrighted component of this work in other works.
Pre-print of article that will appear at BTAS 2012.!!"
8e378ef01171b33c59c17ff5798f30293fe30686,A system for automatic face analysis based on statistical shape and texture models,"Lehrstuhl f¨ur Mensch-Maschine-Kommunikation
der Technischen Universit¨at M¨unchen
A System for Automatic Face Analysis
Based on
Statistical Shape and Texture Models
Ronald M¨uller
Vollst¨andiger Abdruck der von der Fakult¨at
f¨ur Elektrotechnik und Informationstechnik
der Technischen Universit¨at M¨unchen
zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs
genehmigten Dissertation
Vorsitzender: Prof. Dr. rer. nat. Bernhard Wolf
Pr¨ufer der Dissertation:
. Prof. Dr.-Ing. habil. Gerhard Rigoll
. Prof. Dr.-Ing. habil. Alexander W. Koch
Die Dissertation wurde am 28.02.2008 bei der Technischen Universit¨at M¨unchen
eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik
m 18.09.2008 angenommen."
8ed051be31309a71b75e584bc812b71a0344a019,Class-Based Feature Matching Across Unrestricted Transformations,"Class-based feature matching across unrestricted
transformations
Evgeniy Bart and Shimon Ullman"
8e36100cb144685c26e46ad034c524b830b8b2f2,Modeling Facial Geometry using Compositional VAEs,"Modeling Facial Geometry using Compositional VAEs
Timur Bagautdinov∗1, Chenglei Wu2, Jason Saragih2, Pascal Fua1, Yaser Sheikh2
´Ecole Polytechnique F´ed´erale de Lausanne
Facebook Reality Labs, Pittsburgh"
8e0becfc5fe3ecdd2ac93fabe34634827b21ef2b,Learning from Longitudinal Face Demonstration - Where Tractable Deep Modeling Meets Inverse Reinforcement Learning,"International Journal of Computer Vision manuscript No.
(will be inserted by the editor)
Learning from Longitudinal Face Demonstration -
Where Tractable Deep Modeling Meets Inverse Reinforcement Learning
Chi Nhan Duong · Kha Gia Quach · Khoa Luu · T. Hoang Ngan Le · Marios
Savvides · Tien D. Bui
Received: date / Accepted: date"
22043cbd2b70cb8195d8d0500460ddc00ddb1a62,Separability-Oriented Subclass Discriminant Analysis,"Separability-Oriented Subclass Discriminant
Analysis
Huan Wan, Hui Wang, Gongde Guo, Xin Wei"
22137ce9c01a8fdebf92ef35407a5a5d18730dde,Recognition of Faces from single and Multi-View Videos,
22264e60f1dfbc7d0b52549d1de560993dd96e46,UnitBox: An Advanced Object Detection Network,"UnitBox: An Advanced Object Detection Network
Jiahui Yu1,2
Yuning Jiang2
Zhangyang Wang1
Zhimin Cao2
Thomas Huang1
University of Illinois at Urbana−Champaign
Megvii Inc
{jyu79, zwang119, {jyn,"
223ec77652c268b98c298327d42aacea8f3ce23f,Acted Facial Expressions In The Wild Database,"TR-CS-11-02
Acted Facial Expressions In The Wild
Database
Abhinav Dhall, Roland Goecke, Simon
Lucey, Tom Gedeon
September 2011
ANU Computer Science Technical Report Series"
228558a2a38a6937e3c7b1775144fea290d65d6c,Nonparametric Context Modeling of Local Appearance for Pose- and Expression-Robust Facial Landmark Localization,"Nonparametric Context Modeling of Local Appearance
for Pose- and Expression-Robust Facial Landmark Localization
Brandon M. Smith1
Jonathan Brandt2
University of Wisconsin–Madison
Zhe Lin2
Adobe Research
Li Zhang1
http://www.cs.wisc.edu/~lizhang/projects/face-landmark-localization/"
22fdd8d65463f520f054bf4f6d2d216b54fc5677,Efficient Small and Capital Handwritten Character Recognition with Noise Reduction,"International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 8, August 2013)
Efficient Small and Capital Handwritten Character
Recognition with Noise Reduction
Beerendra Kumar Pal, Prof. Shailendra Tiwari, Prof. Sandeep Kumar
Department of Computer Science Engg., IES College of Technology, Bhopal"
2251a88fbccb0228d6d846b60ac3eeabe468e0f1,Matrix-Based Kernel Subspace Methods,"Matrix-Based Kernel Subspace Methods
S. Kevin Zhou
Integrated Data Systems Department
Siemens Corporate Research
755 College Road East, Princeton, NJ 08540
Email:"
227b18fab568472bf14f9665cedfb95ed33e5fce,Compositional Dictionaries for Domain Adaptive Face Recognition,"Compositional Dictionaries for Domain Adaptive
Face Recognition
Qiang Qiu, and Rama Chellappa, Fellow, IEEE."
227b1a09b942eaf130d1d84cdcabf98921780a22,Multi-feature shape regression for face alignment,"Yang et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:51
https://doi.org/10.1186/s13634-018-0572-6
EURASIP Journal on Advances
in Signal Processing
R ES EAR CH
Multi-feature shape regression for face
lignment
Wei-Jong Yang, Yi-Chen Chen, Pau-Choo Chung and Jar-Ferr Yang*
Open Access"
22dabd4f092e7f3bdaf352edd925ecc59821e168,Exploiting side information in locality preserving projection,"Deakin Research Online
This is the published version:
An, Senjian, Liu, Wanquan and Venkatesh, Svetha 2008, Exploiting side information in
locality preserving projection, in CVPR 2008 : Proceedings of the 26th IEEE Conference on
Computer Vision and Pattern Recognition, IEEE, Washington, D. C., pp. 1-8.
Available from Deakin Research Online:
http://hdl.handle.net/10536/DRO/DU:30044576
Reproduced with the kind permissions of the copyright owner.
Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.
Copyright : 2008, IEEE"
22e189a813529a8f43ad76b318207d9a4b6de71a,What will Happen Next? Forecasting Player Moves in Sports Videos,"What will Happen Next?
Forecasting Player Moves in Sports Videos
Panna Felsen
UC Berkeley, STATS
Pulkit Agrawal
UC Berkeley
Jitendra Malik
UC Berkeley"
25c19d8c85462b3b0926820ee5a92fc55b81c35a,Pose-Invariant Facial Expression Recognition Using Variable-Intensity Templates,"Noname manuscript No.
(will be inserted by the editor)
Pose-Invariant Facial Expression Recognition
Using Variable-Intensity Templates
Shiro Kumano · Kazuhiro Otsuka · Junji Yamato ·
Eisaku Maeda · Yoichi Sato
Received: date / Accepted: date"
258a8c6710a9b0c2dc3818333ec035730062b1a5,Benelearn 2005 Annual Machine Learning Conference of Belgium and the Netherlands CTIT P ROCEEDINGS OF THE FOURTEENTH,"Benelearn 2005
Annual Machine Learning Conference of
Belgium and the Netherlands
CTIT PROCEEDINGS OF THE FOURTEENTH
ANNUAL MACHINE LEARNING CONFERENCE
OF BELGIUM AND THE NETHERLANDS
Martijn van Otterlo, Mannes Poel and Anton Nijholt (eds.)"
25695abfe51209798f3b68fb42cfad7a96356f1f,An Investigation into Combining Both Facial Detection and Landmark Localisation into a Unified Procedure Using Gpu Computing,"AN INVESTIGATION INTO COMBINING
BOTH FACIAL DETECTION AND
LANDMARK LOCALISATION INTO A
UNIFIED PROCEDURE USING GPU
COMPUTING
J M McDonagh
MSc by Research"
250ebcd1a8da31f0071d07954eea4426bb80644c,DenseBox: Unifying Landmark Localization with End to End Object Detection,"DenseBox: Unifying Landmark Localization with
End to End Object Detection
Lichao Huang1
Yi Yang2
Yafeng Deng2
Institute of Deep Learning
Baidu Research
Yinan Yu3"
25337690fed69033ef1ce6944e5b78c4f06ffb81,Strategic Engagement Regulation: an Integration of Self-enhancement and Engagement,"STRATEGIC ENGAGEMENT REGULATION:
AN INTEGRATION OF SELF-ENHANCEMENT AND ENGAGEMENT
Jordan B. Leitner
A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Psychology
Spring 2014
© 2014 Jordan B. Leitner
All Rights Reserved"
25d3e122fec578a14226dc7c007fb1f05ddf97f7,The first facial expression recognition and analysis challenge,"The First Facial Expression Recognition and Analysis Challenge
Michel F. Valstar, Bihan Jiang, Marc Mehu, Maja Pantic, and Klaus Scherer"
2597b0dccdf3d89eaffd32e202570b1fbbedd1d6,Towards Predicting the Likeability of Fashion Images,"Towards predicting the likeability of fashion images
Jinghua Wang, Abrar Abdul Nabi, Gang Wang, Member, IEEE, Chengde Wan, Tian-Tsong Ng, Member, IEEE,"
25982e2bef817ebde7be5bb80b22a9864b979fb0,Facial Feature Tracking Under Varying Facial Expressions and Face Poses Based on Restricted Boltzmann Machines,"(a)26facialfeaturepointsthatwetrack(b)oneexamplesequenceFigure1.Facialfeaturepointtrackingunderexpressionvariationandocclusion.Inrecentyears,thesemodelshavebeenusedexplicitlytohandletheshapevariations[17][5].Thenonlinearityem-beddedinRBManditsvariantsmakesthemmoreeffectiveandefficienttorepresentthenonrigiddeformationsofob-jectscomparedtothelinearmethods.Theirlargenumberofhiddennodesanddeeparchitecturesalsocanimposesuffi-cientconstraintsaswellasenoughdegreesoffreedomsintotherepresentationsofthetargetobjects.Inthispaper,wepresentaworkthatcaneffectivelytrackfacialfeaturepointsusingfaceshapepriormodelsthatareconstructedbasedonRBM.Thefacialfeaturetrackercantrack26facialfeaturepoints(Fig.1(a))eveniffaceshavedifferentfacialexpressions,varyingposes,orocclu-sion(Fig.1(b)).Unlikethepreviousworksthattrackfacialfeaturepointsindependentlyorbuildashapemodeltocap-turethevariationsoffaceshapeorappearanceregardlessofthefacialexpressionsandfaceposes,theproposedmodelcouldcapturethedistinctionsaswellasthevariationsoffaceshapesduetofacialexpressionandposechangeinaunifiedframework.Specifically,wefirstconstructamodel1"
25c108a56e4cb757b62911639a40e9caf07f1b4f,Recurrent Scale Approximation for Object Detection in CNN,"Recurrent Scale Approximation for Object Detection in CNN
Yu Liu1,2, Hongyang Li2, Junjie Yan1, Fangyin Wei1, Xiaogang Wang2, Xiaoou Tang2
Multimedia Laboratory at The Chinese University of Hong Kong
SenseTime Group Limited"
25e05a1ea19d5baf5e642c2a43cca19c5cbb60f8,Label Distribution Learning,"Label Distribution Learning
Xin Geng*, Member, IEEE"
2559b15f8d4a57694a0a33bdc4ac95c479a3c79a,Contextual Object Localization With Multiple Kernel Nearest Neighbor,"Contextual Object Localization With Multiple
Kernel Nearest Neighbor
Brian McFee, Student Member, IEEE, Carolina Galleguillos, Student Member, IEEE, and
Gert Lanckriet, Member, IEEE"
25f1f195c0efd84c221b62d1256a8625cb4b450c,Experiments with Facial Expression Recognition using Spatiotemporal Local Binary Patterns,"-4244-1017-7/07/$25.00 ©2007 IEEE
ICME 2007"
25885e9292957feb89dcb4a30e77218ffe7b9868,Analyzing the Affect of a Group of People Using Multi-modal Framework,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2016
Analyzing the Affect of a Group of People Using
Multi-modal Framework
Xiaohua Huang, Abhinav Dhall, Xin Liu, Guoying Zhao, Jingang Shi, Roland Goecke and Matti Pietik¨ainen"
259706f1fd85e2e900e757d2656ca289363e74aa,Improving People Search Using Query Expansions: How Friends Help To Find People,"Improving People Search Using Query Expansions
How Friends Help To Find People
Thomas Mensink and Jakob Verbeek
LEAR - INRIA Rhˆone Alpes - Grenoble, France"
258a2dad71cb47c71f408fa0611a4864532f5eba,Discriminative Optimization of Local Features for Face Recognition,"Discriminative Optimization
of Local Features for Face Recognition
H O S S E I N   A Z I Z P O U R
Master of Science Thesis
Stockholm, Sweden 2011"
25127c2d9f14d36f03d200a65de8446f6a0e3bd6,Evaluating the Performance of Deep Supervised Auto Encoder in Single Sample Face Recognition Problem Using Kullback-leibler Divergence Sparsity Regularizer,"Journal of Theoretical and Applied Information Technology
20th May 2016. Vol.87. No.2
© 2005 - 2016 JATIT & LLS. All rights reserved.
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195
EVALUATING THE PERFORMANCE OF DEEP SUPERVISED
AUTO ENCODER IN SINGLE SAMPLE FACE RECOGNITION
PROBLEM USING KULLBACK-LEIBLER DIVERGENCE
SPARSITY REGULARIZER
OTNIEL Y. VIKTORISA, 2ITO WASITO, 2ARIDA F. SYAFIANDINI
Faculty of Computer  of Computer Science, Universitas Indonesia, Kampus UI Depok, Indonesia
E-mail:  ,"