summaryrefslogtreecommitdiff
path: root/megapixels/notebooks/visualize/pose_mpi_clean_data.ipynb
blob: d8d7b77d03700b41a5e01192d18315efa9652b63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Clean Human Pose MPI Dataset\n",
    "\n",
    "Fix data\n",
    "\n",
    "Data structure:\n",
    "- `data[2]` = 2 x 7 x 100 array\n",
    "- `data[2][0]` = x locations\n",
    "- `data[2][0]` = y locations\n",
    "- ordering is `0 Head, 1 Right wrist, 2 Left wrist, 3 Right elbow, 4 Left elbow, 5 Right shoulder and 6 Left shoulder`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 175,
   "metadata": {},
   "outputs": [],
   "source": [
    "%reload_ext autoreload\n",
    "%autoreload 2\n",
    "\n",
    "import os\n",
    "from os.path import join\n",
    "import math\n",
    "from glob import glob\n",
    "from random import randint\n",
    "\n",
    "import cv2 as cv\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from PIL import Image, ImageDraw\n",
    "%matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "import scipy.io\n",
    "from pathlib import Path\n",
    "from sklearn import preprocessing\n",
    "\n",
    "import sys\n",
    "sys.path.append('/work/megapixels_dev/megapixels/')\n",
    "from app.settings import app_cfg as cfg\n",
    "from app.utils import file_utils"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 176,
   "metadata": {},
   "outputs": [],
   "source": [
    "DATA_STORE = '/data_store_nas/'\n",
    "fp_dataset = join(DATA_STORE, 'datasets/people/youtube_poses')\n",
    "dir_fp_frames = join(fp_dataset, 'YouTube_Pose_dataset_1.0/GT_frames')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 177,
   "metadata": {},
   "outputs": [],
   "source": [
    "dirs_frames = glob(join(dir_fp_frames, '*'))\n",
    "fps_frames = {}\n",
    "for dir_frames in dirs_frames:\n",
    "  fps_frames[dir_frames] = join(dir_frames, '*')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 178,
   "metadata": {},
   "outputs": [],
   "source": [
    "fp_pose_data = join(fp_dataset, 'YouTube_Pose_dataset_1.0/YouTube_Pose_dataset.mat')\n",
    "fp_out = join(fp_dataset, 'poses.csv')\n",
    "pose_data = scipy.io.loadmat(fp_pose_data)['data'][0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 182,
   "metadata": {},
   "outputs": [],
   "source": [
    "# convert data to pandas DF for sanity\n",
    "poses = []\n",
    "for i, pose in enumerate(pose_data):\n",
    "\n",
    "  video_id = pose[1][0]\n",
    "  pose_pts = pose[2]\n",
    "  crop_x1 = int(pose[6][0][0])\n",
    "  crop_y1 = int(pose[6][0][1])\n",
    "  crop_x2 = int(pose[6][0][2])\n",
    "  crop_y2 = int(pose[6][0][3])\n",
    "  w = pose[7][0][0]\n",
    "  h = pose[7][0][1]\n",
    "  scale = pose[5][0][0]\n",
    "  \n",
    "  for j in range(pose_pts.shape[2]): # 100 frames\n",
    "    x = [pose_pts[0][i][j] for i in range(7)]\n",
    "    y = [pose_pts[1][i][j] for i in range(7)]\n",
    "    poses.append({\n",
    "      'video_id': video_id, \n",
    "      'scale': scale,\n",
    "      'crop_x1': crop_x1,\n",
    "      'crop_y1': crop_y1,\n",
    "      'crop_x2': crop_x2,\n",
    "      'crop_y2': crop_y2,\n",
    "      'width': w, \n",
    "      'height': h,\n",
    "      'head_x': x[0],\n",
    "      'head_y': y[0],\n",
    "      'wrist_right_x': x[1],\n",
    "      'wrist_right_y': y[1],\n",
    "      'wrist_left_x': x[2], \n",
    "      'wrist_left_y': y[2],\n",
    "      'elbow_right_x': x[3],\n",
    "      'elbow_right_y': y[3],\n",
    "      'elbow_left_x': x[4], \n",
    "      'elbow_left_y': y[4],\n",
    "      'shoulder_right_x': x[5],\n",
    "      'shoulder_right_y': y[5],\n",
    "      'shoulder_left_x': x[6], \n",
    "      'shoulder_left_y':  y[6],\n",
    "      })\n",
    "df_poses = pd.DataFrame.from_dict(poses)\n",
    "df_poses.to_csv(fp_out)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 183,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>crop_x1</th>\n",
       "      <th>crop_x2</th>\n",
       "      <th>crop_y1</th>\n",
       "      <th>crop_y2</th>\n",
       "      <th>elbow_left_x</th>\n",
       "      <th>elbow_left_y</th>\n",
       "      <th>elbow_right_x</th>\n",
       "      <th>elbow_right_y</th>\n",
       "      <th>head_x</th>\n",
       "      <th>head_y</th>\n",
       "      <th>...</th>\n",
       "      <th>shoulder_left_x</th>\n",
       "      <th>shoulder_left_y</th>\n",
       "      <th>shoulder_right_x</th>\n",
       "      <th>shoulder_right_y</th>\n",
       "      <th>video_id</th>\n",
       "      <th>width</th>\n",
       "      <th>wrist_left_x</th>\n",
       "      <th>wrist_left_y</th>\n",
       "      <th>wrist_right_x</th>\n",
       "      <th>wrist_right_y</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1</td>\n",
       "      <td>1920</td>\n",
       "      <td>1</td>\n",
       "      <td>1080</td>\n",
       "      <td>277.721438</td>\n",
       "      <td>192.416331</td>\n",
       "      <td>147.628696</td>\n",
       "      <td>169.326277</td>\n",
       "      <td>195.498320</td>\n",
       "      <td>81.471438</td>\n",
       "      <td>...</td>\n",
       "      <td>254.631384</td>\n",
       "      <td>127.088374</td>\n",
       "      <td>178.603159</td>\n",
       "      <td>134.691196</td>\n",
       "      <td>-osma2n86oA</td>\n",
       "      <td>720</td>\n",
       "      <td>278.566196</td>\n",
       "      <td>235.498992</td>\n",
       "      <td>158.047379</td>\n",
       "      <td>122.301411</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>1920</td>\n",
       "      <td>1</td>\n",
       "      <td>1080</td>\n",
       "      <td>273.497648</td>\n",
       "      <td>187.629368</td>\n",
       "      <td>152.134073</td>\n",
       "      <td>129.341062</td>\n",
       "      <td>207.324933</td>\n",
       "      <td>72.742272</td>\n",
       "      <td>...</td>\n",
       "      <td>254.349798</td>\n",
       "      <td>131.593750</td>\n",
       "      <td>181.137433</td>\n",
       "      <td>123.990927</td>\n",
       "      <td>-osma2n86oA</td>\n",
       "      <td>720</td>\n",
       "      <td>274.342406</td>\n",
       "      <td>235.498992</td>\n",
       "      <td>135.238911</td>\n",
       "      <td>91.608535</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1</td>\n",
       "      <td>1920</td>\n",
       "      <td>1</td>\n",
       "      <td>1080</td>\n",
       "      <td>258.010417</td>\n",
       "      <td>159.752352</td>\n",
       "      <td>160.581653</td>\n",
       "      <td>143.138777</td>\n",
       "      <td>229.007056</td>\n",
       "      <td>76.966062</td>\n",
       "      <td>...</td>\n",
       "      <td>250.407594</td>\n",
       "      <td>125.117272</td>\n",
       "      <td>190.992944</td>\n",
       "      <td>117.232863</td>\n",
       "      <td>-osma2n86oA</td>\n",
       "      <td>720</td>\n",
       "      <td>213.801411</td>\n",
       "      <td>108.785282</td>\n",
       "      <td>181.982191</td>\n",
       "      <td>89.074261</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1</td>\n",
       "      <td>1920</td>\n",
       "      <td>1</td>\n",
       "      <td>1080</td>\n",
       "      <td>274.342406</td>\n",
       "      <td>188.192540</td>\n",
       "      <td>142.841734</td>\n",
       "      <td>110.193212</td>\n",
       "      <td>203.101142</td>\n",
       "      <td>76.402890</td>\n",
       "      <td>...</td>\n",
       "      <td>253.786626</td>\n",
       "      <td>128.777890</td>\n",
       "      <td>185.361223</td>\n",
       "      <td>120.611895</td>\n",
       "      <td>-osma2n86oA</td>\n",
       "      <td>720</td>\n",
       "      <td>276.595094</td>\n",
       "      <td>231.556788</td>\n",
       "      <td>156.921035</td>\n",
       "      <td>55.847110</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1</td>\n",
       "      <td>1920</td>\n",
       "      <td>1</td>\n",
       "      <td>1080</td>\n",
       "      <td>272.371304</td>\n",
       "      <td>194.387433</td>\n",
       "      <td>225.628024</td>\n",
       "      <td>164.820901</td>\n",
       "      <td>245.902218</td>\n",
       "      <td>93.016465</td>\n",
       "      <td>...</td>\n",
       "      <td>255.476142</td>\n",
       "      <td>139.478159</td>\n",
       "      <td>183.390121</td>\n",
       "      <td>126.806788</td>\n",
       "      <td>-osma2n86oA</td>\n",
       "      <td>720</td>\n",
       "      <td>305.316868</td>\n",
       "      <td>172.423723</td>\n",
       "      <td>278.284610</td>\n",
       "      <td>165.102487</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 22 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "   crop_x1  crop_x2  crop_y1  crop_y2  elbow_left_x  elbow_left_y  \\\n",
       "0        1     1920        1     1080    277.721438    192.416331   \n",
       "1        1     1920        1     1080    273.497648    187.629368   \n",
       "2        1     1920        1     1080    258.010417    159.752352   \n",
       "3        1     1920        1     1080    274.342406    188.192540   \n",
       "4        1     1920        1     1080    272.371304    194.387433   \n",
       "\n",
       "   elbow_right_x  elbow_right_y      head_x     head_y      ...        \\\n",
       "0     147.628696     169.326277  195.498320  81.471438      ...         \n",
       "1     152.134073     129.341062  207.324933  72.742272      ...         \n",
       "2     160.581653     143.138777  229.007056  76.966062      ...         \n",
       "3     142.841734     110.193212  203.101142  76.402890      ...         \n",
       "4     225.628024     164.820901  245.902218  93.016465      ...         \n",
       "\n",
       "   shoulder_left_x  shoulder_left_y  shoulder_right_x  shoulder_right_y  \\\n",
       "0       254.631384       127.088374        178.603159        134.691196   \n",
       "1       254.349798       131.593750        181.137433        123.990927   \n",
       "2       250.407594       125.117272        190.992944        117.232863   \n",
       "3       253.786626       128.777890        185.361223        120.611895   \n",
       "4       255.476142       139.478159        183.390121        126.806788   \n",
       "\n",
       "      video_id  width wrist_left_x  wrist_left_y  wrist_right_x  wrist_right_y  \n",
       "0  -osma2n86oA    720   278.566196    235.498992     158.047379     122.301411  \n",
       "1  -osma2n86oA    720   274.342406    235.498992     135.238911      91.608535  \n",
       "2  -osma2n86oA    720   213.801411    108.785282     181.982191      89.074261  \n",
       "3  -osma2n86oA    720   276.595094    231.556788     156.921035      55.847110  \n",
       "4  -osma2n86oA    720   305.316868    172.423723     278.284610     165.102487  \n",
       "\n",
       "[5 rows x 22 columns]"
      ]
     },
     "execution_count": 183,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df_poses.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 172,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "22"
      ]
     },
     "execution_count": 172,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(df_poses.keys())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "megapixels",
   "language": "python",
   "name": "megapixels"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}