1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Identity Master List\n",
"\n",
"- [x] MS Celeb 1M\n",
"- UMD Faces\n",
"- FaceScrub\n",
"- LFW\n",
"- PubFig\n",
"- PubFig83\n",
"- VGG Face\n",
"- VGG Face2\n",
"- IJB-C\n",
"- CASIA Webface\n",
"- IMDB-Face\n",
"- IMDB-Wiki"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 156,
"metadata": {},
"outputs": [],
"source": [
"%reload_ext autoreload\n",
"%autoreload 2\n",
"\n",
"import os\n",
"from os.path import join\n",
"from glob import glob\n",
"from pathlib import Path\n",
"import requests\n",
"import json\n",
"from pprint import pprint\n",
"from multiprocessing.pool import ThreadPool\n",
"import threading\n",
"import urllib.request\n",
"import difflib\n",
"import unidecode\n",
"\n",
"import slugify\n",
"from tqdm import tqdm_notebook as tqdm\n",
"import pandas as pd\n",
"from scipy.io import loadmat\n",
"import numpy as np\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import sys\n",
"sys.path.append('/work/megapixels_dev/megapixels')\n",
"from app.utils import api_utils, identity_utils\n",
"from app.settings import app_cfg\n",
"from app.settings import types"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## MS Celeb Top 1M\n",
"\n",
"- add column for each spelling of name\n",
"- convert kg id to standard google format"
]
},
{
"cell_type": "code",
"execution_count": 157,
"metadata": {},
"outputs": [],
"source": [
"fp_master_identities = '/data_store_hdd/apps/megapixels/metadata/identities_master_02.csv'\n",
"dir_msceleb_dloads = '/data_store_hdd/datasets/people/msceleb/downloads/'\n",
"fp_msceleb_clean_txt = join(dir_msceleb_dloads,'MS-Celeb-1M_clean_list.txt')"
]
},
{
"cell_type": "code",
"execution_count": 158,
"metadata": {},
"outputs": [],
"source": [
"fp_msceleb_top1m = '/data_store_hdd/datasets/people/msceleb/downloads/Top1M_MidList.Name.tsv'\n",
"df_msceleb_top1m = pd.read_csv(fp_msceleb_top1m, delimiter='\\t', header=None, encoding='utf-8', names=['id_kg', 'name_lang'])\n",
"df_msceleb_top1m_groups = df_msceleb_top1m.groupby('id_kg')\n",
"n_groups = df_msceleb_top1m_groups.ngroups"
]
},
{
"cell_type": "code",
"execution_count": 200,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fbc706a8b9f34d958e478cdf584bf853",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, max=3481186), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# create alphabetically sorted dict\n",
"msceleb_top1m_az = {}\n",
"a2z = 'abcdefghijklmnopqrstuvwxyz'\n",
"for c in a2z:\n",
" msceleb_top1m_az[c] = []\n",
"for msceleb_row in tqdm(df_msceleb_top1m.itertuples(), total=len(df_msceleb_top1m)):\n",
" name = msceleb_row.name_lang\n",
" try:\n",
" msceleb_top1m_az[name[0].lower()].append({'name': name, 'id_kg': msceleb_row.id_kg})\n",
" except Exception as e:\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 159,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id_kg</th>\n",
" <th>name_lang</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>m.01008l47</td>\n",
" <td>Patrick Cummins@en</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>m.01008l47</td>\n",
" <td>Patrick Cummins@pt</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>m.01008l96</td>\n",
" <td>Mohamed Guessous@en</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>m.01008l96</td>\n",
" <td>Mohamed Guessous@fr</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>m.01008l96</td>\n",
" <td>محمد جسوس@ar</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id_kg name_lang\n",
"0 m.01008l47 Patrick Cummins@en\n",
"1 m.01008l47 Patrick Cummins@pt\n",
"2 m.01008l96 Mohamed Guessous@en\n",
"3 m.01008l96 Mohamed Guessous@fr\n",
"4 m.01008l96 محمد جسوس@ar"
]
},
"execution_count": 159,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_msceleb_top1m.head()"
]
},
{
"cell_type": "code",
"execution_count": 160,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are 3,481,186 total name variations\n",
"There are 1,000,000 unique identities\n"
]
}
],
"source": [
"print(f'There are {len(df_msceleb_top1m):,} total name variations')\n",
"print(f'There are {n_groups:,} unique identities')"
]
},
{
"cell_type": "code",
"execution_count": 161,
"metadata": {},
"outputs": [],
"source": [
"# convert DataFrame to dict\n",
"mseleb_top1m_records = df_msceleb_top1m.to_dict('records')"
]
},
{
"cell_type": "code",
"execution_count": 162,
"metadata": {},
"outputs": [],
"source": [
"# store all identity info here, until creating dataframe\n",
"msceleb_identities = {}"
]
},
{
"cell_type": "code",
"execution_count": 163,
"metadata": {},
"outputs": [],
"source": [
"# utility functions\n",
"def split_name_lang(name_lang):\n",
" '''Split name into name and language'''\n",
" if '@' in name_lang:\n",
" indexes = [i for i,x in enumerate(name_lang) if x == '@']\n",
" idx_max = (max(indexes))\n",
" lang = name_lang[(idx_max + 1):]\n",
" name = name_lang[:(idx_max)]\n",
" else:\n",
" name = name_lang\n",
" lang = ''\n",
" return {'name': name, 'lang': lang}\n",
"\n",
"# temp save DataFrame to CSV\n",
"def save_identity_master(identities, fp_out=fp_master_identities):\n",
" df_identities_master = pd.DataFrame.from_dict(identities)\n",
" df_identities_master.index.name = 'id'\n",
" df_identities_master.to_csv(fp_master_identities)"
]
},
{
"cell_type": "code",
"execution_count": 164,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "884edc099a404dfcb53e353d2abf6819",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, max=3481186), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# convert to \"name@lang\" to dict format\n",
"msceleb_identities = {}\n",
"for mseleb_top1m_record in tqdm(mseleb_top1m_records):\n",
" id_kg = mseleb_top1m_record['id_kg'].replace('m.','/m/')\n",
" if not id_kg in msceleb_identities.keys():\n",
" msceleb_identities[id_kg] = {'names': {}}\n",
" name_lang = split_name_lang(mseleb_top1m_record['name_lang'])\n",
" name = name_lang['name']\n",
" lang = name_lang['lang']\n",
" if lang == 'en':\n",
" msceleb_identities[id_kg]['names']['canonical'] = name\n",
" msceleb_identities[id_kg]['names'][lang] = name"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Patch @en names"
]
},
{
"cell_type": "code",
"execution_count": 165,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1cd2915f485b4cd299a929e1fb2d5926",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, max=1000000), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"no english name for /m/017vbn\n",
"no english name for /m/026q0k_\n",
"no english name for /m/02k2kw\n",
"no english name for /m/0bwhrg1\n"
]
}
],
"source": [
"# check for missing english names\n",
"for id_kg, attrs in tqdm(msceleb_identities.items()):\n",
" lang_attrs = attrs['names']\n",
" name_en = lang_attrs.get('en', None)\n",
" if not name_en:\n",
" print(f'no english name for {id_kg}')"
]
},
{
"cell_type": "code",
"execution_count": 166,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"patched /m/017vbn de to en\n",
"patched /m/026q0k_ nl to en\n",
"patched /m/02k2kw de to en\n",
"patched /m/0bwhrg1 it to en\n"
]
}
],
"source": [
"# patch en name exception: 4 names missing english\n",
"en_exceptions = {\n",
" '/m/017vbn': 'de',\n",
" '/m/026q0k_': 'nl',\n",
" '/m/02k2kw': 'de',\n",
" '/m/0bwhrg1': 'it'\n",
"}\n",
"for id_kg, lang in en_exceptions.items():\n",
" msceleb_identities[id_kg]['names']['en'] = msceleb_identities[id_kg]['names'][lang]\n",
" msceleb_identities[id_kg]['names']['canonical'] = msceleb_identities[id_kg]['names']['en']\n",
" print(f'patched {id_kg} {lang} to en')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Remove duplicate names"
]
},
{
"cell_type": "code",
"execution_count": 167,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "33ffa229c16d4a9088087c21210d421e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, max=1000000), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"removed 1,485,336 duplicate names\n"
]
}
],
"source": [
"# de-duplicate names that use same spelling for multiple languages\n",
"items_removed = []\n",
"msceleb_identities_copy = msceleb_identities.copy()\n",
"\n",
"for id_kg, attrs in tqdm(msceleb_identities_copy.items()):\n",
" lang_attrs = attrs['names']\n",
" name_main = lang_attrs.get('canonical', None)\n",
" if not name_en:\n",
" print('error. all names need \"en\"')\n",
" break\n",
" lang_attrs_copy = attrs['names'].copy()\n",
" for lang, name in lang_attrs_copy.items():\n",
" if name == name_main and lang != 'en' and lang != 'canonical':\n",
" # remove it\n",
" items_removed.append(msceleb_identities[id_kg]['names'].pop(lang))\n",
" del lang_attrs_copy\n",
"\n",
"del msceleb_identities_copy\n",
"print(f'removed {len(items_removed):,} duplicate names')\n",
"del items_removed"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Count images per person for ms celeb"
]
},
{
"cell_type": "code",
"execution_count": 168,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6e3a3f659fa6414b80d678d5b991ed0a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, max=5049824), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# calculate total images per id\n",
"msceleb_files = {}\n",
"# load text file\n",
"with open(fp_msceleb_clean_txt,'r') as fp:\n",
" msceleb_lines = fp.readlines()\n",
" \n",
"# iterate lines and append all files\n",
"for filepath in tqdm(msceleb_lines):\n",
" id_kg, fname = filepath.split('/')\n",
" id_kg = id_kg.replace('m.', '/m/')\n",
" if not id_kg in msceleb_files.keys():\n",
" msceleb_files[id_kg] = []\n",
" msceleb_files[id_kg].append(fname)"
]
},
{
"cell_type": "code",
"execution_count": 171,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bd0530f0e4634a8dbae0308964cd6e2b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, max=1000000), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# add count to \n",
"for id_kg, attrs in tqdm(msceleb_identities.items()):\n",
" if id_kg in msceleb_files.keys():\n",
" count = len(msceleb_files[id_kg])\n",
" else:\n",
" count = 0\n",
" msceleb_identities[id_kg]['count_msceleb'] = count"
]
},
{
"cell_type": "code",
"execution_count": 172,
"metadata": {},
"outputs": [],
"source": [
"im_counts_idxs = [attrs['count_msceleb'] for id_kg, attrs in msceleb_identities.items()]\n",
"im_counts_id_kg = [id_kg for id_kg, _ in msceleb_identities.items()]"
]
},
{
"cell_type": "code",
"execution_count": 173,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Most images 130 for Leelee Sobieski\n",
"88,244 more than 10\n",
"78,027 more than 20\n",
"49,042 more than 50\n",
"5,025 more than 100\n"
]
}
],
"source": [
"# print stats\n",
"idx_max = np.argmax(im_counts_idxs)\n",
"id_kg_max = im_counts_id_kg[idx_max]\n",
"count_max = im_counts_idxs[idx_max]\n",
"name_max = msceleb_identities[id_kg_max]['names']['canonical']\n",
"print(f'Most images {count_max:,} for {name_max}')\n",
"# distribution\n",
"im_counts_idxs = np.array(im_counts_idxs)\n",
"print(f'{len(im_counts_idxs[im_counts_idxs > 10]):,} more than 10')\n",
"print(f'{len(im_counts_idxs[im_counts_idxs > 20]):,} more than 20')\n",
"print(f'{len(im_counts_idxs[im_counts_idxs > 50]):,} more than 50')\n",
"print(f'{len(im_counts_idxs[im_counts_idxs > 100]):,} more than 100')"
]
},
{
"cell_type": "code",
"execution_count": 174,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "420bc435f447454faa2dba73d7dff982",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, max=1000000), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# awkward conversion of msceleb_identities to a list of dicts\n",
"identities_flat = []\n",
"for id_kg, attrs in tqdm(msceleb_identities.items()):\n",
" obj = {'id_kg': id_kg}\n",
" for lang, name in attrs['names'].items():\n",
" if lang != 'canonical':\n",
" col_name = f'name_msceleb_{lang}'\n",
" elif lang == 'canonical':\n",
" col_name = 'name_msceleb'\n",
" obj[col_name] = name\n",
" obj['count_msceleb'] = attrs['count_msceleb']\n",
" identities_flat.append(obj)"
]
},
{
"cell_type": "code",
"execution_count": 175,
"metadata": {},
"outputs": [],
"source": [
"# convert to dataframe\n",
"df_identities = pd.DataFrame.from_dict(identities_flat)"
]
},
{
"cell_type": "code",
"execution_count": 176,
"metadata": {},
"outputs": [],
"source": [
"# save checkpoint CSV\n",
"save_identity_master(identities_flat) # encoding='utf-16' ??"
]
},
{
"cell_type": "code",
"execution_count": 177,
"metadata": {},
"outputs": [],
"source": [
"# copy to master and delete ref to msceleb\n",
"identities = msceleb_identities.copy()\n",
"del msceleb_identities"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## LFW"
]
},
{
"cell_type": "code",
"execution_count": 193,
"metadata": {},
"outputs": [],
"source": [
"# add LFW data\n",
"fp_lfw = '/data_store_hdd/datasets/people/lfw/downloads/lfw-names.txt'\n",
"with open(fp_lfw,'r') as fp:\n",
" lfw_lines = fp.readlines()\n",
"lfw_lines = [x.strip() for x in lfw_lines]\n",
"\n",
"lfw_meta = []\n",
"for lfw_line in lfw_lines:\n",
" name_orig, count = lfw_line.split('\\t')\n",
" name_clean = name_orig.replace('_',' ')\n",
" obj = {'name_orig': name_orig, 'name': name_clean, 'count':count}\n",
" lfw_meta.append(obj)"
]
},
{
"cell_type": "code",
"execution_count": 179,
"metadata": {},
"outputs": [],
"source": [
"identities_tmp = identities.copy()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# make exact name matches\n",
"lfw_name_matches_tmp = {}\n",
"for lfw_item in tqdm(lfw_meta):\n",
" lfw_name = lfw_item['name'] # name is transformed original name\n",
" lfwnl = lfw_name.lower()\n",
" splits = lfw_name.split(' ')\n",
" matches_tmp = {}\n",
" for word in splits:\n",
" # for each word in names, check if exact word is in master name list\n",
" c = word[0].lower()\n",
" matches_tmp = []\n",
" for name_id_kg in msceleb_top1m_az[c]:\n",
" name = name_id_kg['name']\n",
" id_kg = name_id_kg['id_kg']\n",
" if lfwnl in name.lower():\n",
" lfw_name_matches_tmp[lfw_name] = id_kg\n",
" break\n",
"print(f'found {len(lfw_name_matches_exact)} of {len(lfw_meta)} names using exact matches')"
]
},
{
"cell_type": "code",
"execution_count": 212,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8c0f2dbf032145fea3ad5759a97abc44",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, max=5749), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-212-13b8b31f417d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlfw_name\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mlfwnl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlfw_name\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mname_id_kg\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmsceleb_top1m_az\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0mname\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname_id_kg\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'name'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mid_kg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname_id_kg\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'id_kg'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"# make exact name matches\n",
"lfw_name_matches_exact = {}\n",
"for lfw_item in tqdm(lfw_meta):\n",
" lfw_name = lfw_item['name'] # name is transformed original name\n",
" # quickly check if it's in the alphabetized list\n",
" c = lfw_name[0].lower()\n",
" lfwnl = lfw_name.lower()\n",
" for name_id_kg in msceleb_top1m_az[c]:\n",
" name = name_id_kg['name']\n",
" id_kg = name_id_kg['id_kg']\n",
" if lfwnl in name.lower():\n",
" lfw_name_matches_exact[lfw_name] = id_kg\n",
" break\n",
"print(f'found {len(lfw_name_matches_exact)} of {len(lfw_meta)} names using exact matches')"
]
},
{
"cell_type": "code",
"execution_count": 217,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1949065d12b349ce8bbf28ebd09f1e29",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, max=5749), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"matched AJ Cook to A. J. Cook in canonical. Add to matched ids\n",
"matched AJ Lamas to A.J. Lamas in canonical. Add to matched ids\n",
"could not find: Aaron Patterson\n",
"matched Aaron Pena to Aaron Peña in canonical. Add to matched ids\n",
"could not find: Abdel Aziz Al-Hakim\n",
"could not find: Abdel Madi Shabneh\n",
"could not find: Abdel Nasser Assidi\n",
"could not find: Abdul Majeed Shobokshi\n",
"matched Abdulaziz Kamilov to Abdulaziz Komilov in canonical. Add to matched ids\n",
"could not find: Abdullah Nasseef\n",
"could not find: Abdullah al-Attiyah\n",
"could not find: Abdullatif Sener\n",
"could not find: Abner Martinez\n",
"could not find: Aby Har-Even\n",
"could not find: Adam Kennedy\n",
"could not find: Adelina Avila\n",
"could not find: Adisai Bodharamik\n",
"could not find: Adolfo Aguilar Zinser\n",
"could not find: Adoor Gopalakarishnan\n",
"could not find: Adrian Annus\n",
"matched Adrian Fernandez to Adriana Fernández in canonical. Add to matched ids\n",
"could not find: Adrian Nastase\n",
"could not find: Adriana Perez Navarro\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-217-f9d734a428b9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mlang\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0midentity\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'names'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;31m# for each name's language variation, look for match\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0mstrict_match\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0midentity_utils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnames_match_strict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlfw_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstrict_match\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mmatched_id_kg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mid_kg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/work/megapixels_dev/megapixels/app/utils/identity_utils.py\u001b[0m in \u001b[0;36mnames_match_strict\u001b[0;34m(a, b)\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mnames_match_strict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0mclean_a\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mletter_strip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 28\u001b[0;31m \u001b[0mclean_b\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mletter_strip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 29\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclean_a\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclean_b\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mletter_match\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclean_a\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclean_b\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mletter_match\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclean_b\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclean_a\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/work/megapixels_dev/megapixels/app/utils/identity_utils.py\u001b[0m in \u001b[0;36mletter_strip\u001b[0;34m(a, b)\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mletter_strip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maZ9\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0;31m# strip every letter from a that is not in b\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 20\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m''\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 21\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mletter_match\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/work/megapixels_dev/megapixels/app/utils/identity_utils.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mletter_strip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maZ9\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0;31m# strip every letter from a that is not in b\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 20\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m''\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 21\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mletter_match\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"# make strict name-letter matches\n",
"lfw_name_matches_strict = {}\n",
"for lfw_item in tqdm(lfw_meta):\n",
" lfw_name = lfw_item['name'] # name is transformed original name\n",
" if lfw_name in lfw_name_matches_exact.keys():\n",
" continue\n",
" \n",
" matched_id_kg = None\n",
" for id_kg, identity in identities_tmp.items():\n",
" # for each msceleb identity, look for match\n",
" for lang, name in identity['names'].items():\n",
" # for each name's language variation, look for match\n",
" strict_match = identity_utils.names_match_strict(lfw_name, name)\n",
" if strict_match:\n",
" matched_id_kg = id_kg\n",
" matched_lang = lang\n",
" matched_name = name\n",
" break\n",
" if matched_id_kg:\n",
" print(f'matched {lfw_name} to {matched_name} in {matched_lang}. Add to matched ids')\n",
" lfw_name_matches_strict[lfw_name] = matched_id_kg\n",
" break\n",
" if not matched_id_kg:\n",
" print(f'could not find: {lfw_name}')\n",
"print(f'found {len(lfw_name_matches_strict)} of {len(lfw_meta)} names using exact matches')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# make fuzzy name matches\n"
]
},
{
"cell_type": "code",
"execution_count": 141,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d822a21cc63e4c5c9fe9bb637f5455dd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, description='1st loop', max=5749, style=ProgressStyle(description_width='i…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found: Aaron Eckhart@ca\n",
"Found: Aaron Guiel@en\n",
"Found: Aaron Peirsol@ca\n",
"Found: Aaron Sorkin@ca\n",
"Found: Aaron Tippin@de\n",
"Found: Abba Eban@cs\n",
"Found: Abbas Kiarostami@ca\n",
"Found: Abdoulaye Wade@ca\n",
"Found: Abdul Rahman Lestaluhu@id\n",
"Found: Abdullah Cabir@tr\n",
"Found: Abdullah Ahmad Badawi@da\n",
"Found: Abdullah Gulam Rasoul@en\n",
"Found: Abel Aguilar@cs\n",
"Found: Abel Pacheco de la Espriella@es\n",
"Found: Abid Hamid Mahmud al-Tikriti@nl\n",
"Found: Abraham Foxman@cs\n",
"Found: Adam Ant@cs\n",
"Found: Adam Freier@en\n",
"Found: Adam Herbert@en\n",
"Found: Adam Mair@de\n",
"Found: Adam Richards@en\n",
"Found: Adam Sandler@ca\n",
"Found: George Adam Scott@en\n",
"Found: Adel Al-Jubeir@fr\n",
"Found: Adolfo Rodriguez Saa@id\n",
"Found: Adrian McPherson@en\n",
"Found: Adrian Murrell@en\n",
"Found: Adriana Lima@ca\n",
"Found: Adrien Brody@ca\n",
"Found: Afton Smith@cs\n",
"Found: Agbani Darego@de\n",
"Found: Agnelo Queiroz@en\n",
"Found: Agnes Bruckner@de\n",
"Found: Ahmed Ahmedou@de\n",
"Found: Ahmed Chalabi@en\n",
"Found: Mahmood Ahmed Ghazi@en\n",
"Found: Ahmet Necdet Sezer@ca\n",
"Found: Ai Sugiyama@da\n",
"Found: Aidan Quinn@ca\n",
"Found: Aileen Riggin Soule@fr\n",
"Found: Aishwarya Rai Bachchan@en\n",
"Found: Ajit Agarkar@en\n",
"Found: Akbar Al Baker@en\n",
"Found: Akbar Hashemi Rafsanjani@da\n",
"Found: Akhmed Zakayev@en\n",
"Found: Akiko Morigami@da\n",
"Found: Al Cardenas@en\n",
"Found: Vidal Davis@en\n",
"Found: Al Gore III@en\n",
"Found: Al Leiter@de\n",
"Found: Al Pacino@ca\n",
"Found: Al Sharpton@de\n",
"Found: Alain Cervantes@en\n",
"Found: Alain Ducasse@de\n",
"Found: Alan Ball jr.@nl\n",
"Found: Alan Dershowitz@da\n",
"Found: Alan Greenspan@de\n",
"Found: Alan Mulally@de\n",
"Found: Alan Trammell@de\n",
"Found: Alan Zemaitis@en\n",
"Found: Alanis Morissette@ca\n",
"Found: Alanna Ubach@de\n",
"Found: Alastair Campbell@de\n",
"Found: Alastair Johnston@en\n",
"Found: Albert Costa Balboa@es\n",
"Found: Albert Pujols@da\n",
"Found: Alberto Acosta@ca\n",
"Found: Alberto Fujimori@ca\n",
"Found: Alberto Sordi@ca\n",
"Found: Aldo Paredes@en\n",
"Found: Alec Baldwin@ca\n",
"Found: Alejandro Atchugarry@de\n",
"Found: Alejandro Fernandez Almendras@sl\n",
"Found: Alejandro Lembo@de\n",
"Found: Alejandro Lerner@en\n",
"Found: Alejandro Toledo@en\n",
"Found: Alek Wek@de\n",
"Found: Alessandro Nesta@ca\n",
"Found: Alex Barros@de\n",
"Found: Alex Cabrera@en\n",
"Found: Alex Ferguson@en\n",
"Found: Alex Holmes@en\n",
"Found: Alex Kingston@cs\n",
"Found: Alex Penelas@en\n",
"Found: Alex Popovici@es\n",
"Found: Alex Sink@en\n",
"Found: Alex Wallau@en\n",
"Found: Alex Zanardi@ca\n",
"Found: Alexa Vega@da\n",
"Found: Alexander Downer@de\n",
"Found: Alexander Losyukov@en\n",
"Found: Alexander Lukashenko@en\n",
"Found: Alexander Payne@cs\n",
"Found: Alexandra Pelosi@en\n",
"Found: Alexandra Stevenson@de\n",
"Found: Alexandre Daigle@cs\n",
"Found: Alexandre Despatie@ca\n",
"Found: Alexandre Herchcovitch@en\n",
"Found: Alexandre Vinokourov@fr\n",
"Found: Alexis Bledel@ca\n",
"Found: Alfonso Portillo@en\n",
"Found: Alfonso Soriano@en\n",
"Found: James Alfred Ford@en\n",
"Found: Alfred Santell@en\n",
"Found: Alfredo Moreno@en\n",
"Found: Ali Abbas Al-Hilfi@en\n",
"Found: Ali Abdullah Saleh@da\n",
"Found: Ali Ahmeti@de\n",
"Found: Prince Ali bin Hussein@en\n",
"Found: Ali Fallahian@de\n",
"Found: Ali Hammoud@en\n",
"Found: Ali Khamenei@ca\n",
"Found: Alicia Hollowell@en\n",
"Found: Alicia Keys@ca\n",
"Found: Alicia Molik@de\n",
"Found: Alicia Silverstone@ca\n",
"Found: Alicia Witt@ca\n",
"Found: Alimzhan Tokhtakhounov@pt\n",
"Found: Alina Kabaeva@en\n",
"Found: Alison Krauss@ca\n",
"Found: Alison Lohman@de\n",
"Found: Alistair Macdonald@en\n",
"Found: Allan Houston@ca\n",
"Found: Allan Kemakeza@de\n",
"Found: Allan Wagner Tizón@de\n",
"Found: Allen Iverson@ca\n",
"Found: Allison Janney@da\n",
"Found: Ally Sheedy@ca\n",
"Found: Allyson Felix@ca\n",
"Found: Alma Powell@de\n",
"Found: Alonzo Mourning@ca\n",
"Found: Aly Wagner@de\n",
"Found: Alyson Hannigan@ca\n",
"Found: Amanda Beard@de\n",
"Found: Amanda Bynes@ca\n",
"Found: Amanda Coetzer@de\n",
"Found: Amanda Marshall@de\n",
"Found: Amber Frey@en\n",
"Found: Amber Tamblyn@de\n",
"Found: Ambrose Lee@en\n",
"Found: Amelia Vega@en\n",
"Found: Amelie Mauresmo@ms\n",
"Found: Amr Moussa@ca\n",
"Found: Amram Mitzna@de\n",
"Found: Amy Brenneman@da\n",
"Found: Amy Cotton@en\n",
"Found: Amy Pascal@de\n",
"Found: Amy Redford@de\n",
"Found: Amy Smart@da\n",
"Found: Amy Yasbeck@de\n",
"Found: Ana Guevara@de\n",
"Found: Ananías Maidana Palacios@es\n",
"Found: Anastasia Kelesidou@de\n",
"Found: Anastasia Myskina@en\n",
"Found: Anatoliy Kinakh@en\n",
"Found: Anders Fogh Rasmussen@ca\n",
"Found: Andre Agassi@ca\n",
"Found: Andre Lange@et\n",
"Found: J. Andre Smith@en\n",
"Found: Andrea Bocelli@ca\n",
"Found: Andrea De Cruz@en\n",
"Found: Andrea Yates@en\n",
"Found: Andreas Vinciguerra@de\n",
"Found: Andrei Konchalovsky@en\n",
"Found: Andrei Mikhnevich@en\n",
"Found: Andrei Nikolishin@en\n",
"Found: Andrew Bernard@en\n",
"Found: Andrew Caldecott@en\n",
"Found: Andrew Cuomo@ca\n",
"Found: Andrew Fastow@de\n",
"Found: Andrew Firestone@en\n",
"Found: Andrew Gilligan@en\n",
"Found: Andrew Jarecki@de\n",
"Found: Andrew Luster@de\n",
"Found: Andrew Niccol@cs\n",
"Found: Andy Benes@en\n",
"Found: Andy Dickens@en\n",
"Found: DJ Andy Garcia@en\n",
"Found: Andy Griffith@ca\n",
"Found: Andy Griggs@en\n",
"Found: Andy Lau@cs\n",
"Found: Andy Northey@en\n",
"Found: Sandy Perez Aguila@en\n",
"Found: Andy Roddick@ca\n",
"Found: Andy Rooney@da\n",
"Found: Andy Warhol@ca\n",
"Found: Angela Bassett@ca\n",
"Found: Angela Lansbury@ca\n",
"Found: Angela Merkel@ca\n",
"Found: Angelina Jolie@ca\n",
"Found: Angie Martinez@en\n",
"Found: Anita DeFrantz@de\n",
"Found: Ann Landers@da\n",
"Found: Ann Morgan Guilbert@en\n",
"Found: Ann Veneman@de\n",
"Found: Anna Chicherova@en\n",
"Found: Anna Faris@ca\n",
"Found: Susanna Jones@en\n",
"Found: Anna Kournikova@da\n",
"Found: Anna Nicole Smith@ca\n",
"Found: Anne Donovan@de\n",
"Found: Anne Heche@ca\n",
"Found: Anne Krueger@fr\n",
"Found: Anne McLellan@en\n",
"Found: Annette Bening@ca\n",
"Found: Annette Lu@de\n",
"Found: Annie Machon@de\n",
"Found: Antanas Valionis@de\n",
"Found: Anthony Fauci@de\n",
"Found: Anthony Garotinho@en\n",
"Found: Anthony Hopkins@ca\n",
"Found: Anthony LaPaglia@da\n",
"Found: Anthony Principi@de\n",
"Found: Antje Buschschulte@de\n",
"Found: Anton Balasingham@en\n",
"Found: Antonio Banderas@ca\n",
"Found: Antonio Cassano@ca\n",
"Found: Antonio Catania@de\n",
"Found: Antonio Palocci@de\n",
"Found: Antonio Trillanes IV@fil\n",
"Found: Antony Leung@en\n",
"Found: Antwun Echols@en\n",
"Found: Anwar Ibrahim@da\n",
"Found: Aretha Franklin@ca\n",
"Found: Ari Bousbib@en\n",
"Found: Ari Fleischer@de\n",
"Found: Arianna Huffington@ca\n",
"Found: Arie Haan@de\n",
"Found: Ariel Sharon@ca\n",
"Found: Arif Mardin@de\n",
"Found: Arlen Specter@ca\n",
"Found: Armando Carrillo@en\n",
"Found: Arminio Fraga@en\n",
"Found: Arnold Palmer@da\n",
"Found: Arnold Schwarzenegger@ca\n",
"Found: Rolfe Arnold Scott-James@en\n",
"Found: Aron Ralston@cs\n",
"Found: Stuart Cooper@en\n",
"Found: Stuart Howe@en\n",
"Found: Arthur Johnson@it\n",
"Found: John Arthur Martinez@en\n",
"Found: Arturo Gatti@ca\n",
"Found: Asa Hutchinson@de\n",
"Found: Ashanti Douglas@nl\n",
"Found: Ashley Judd@ca\n",
"Found: Ashley Olsen@ca\n",
"Found: Ashley Postell@en\n",
"Found: Ashraf Ghani Ahmadzai@es\n",
"Found: Ashton Kutcher@ca\n",
"Found: Asif Ali Zardari@ca\n",
"Found: Askar Akayev@en\n",
"Found: Astou Ndiaye-Diatta@en\n",
"Found: Premiership of Atal Bihari Vajpayee@en\n",
"Found: Atom Egoyan@da\n",
"Found: Atsushi Satou@id\n",
"Found: Audrey Lacroix@en\n",
"Found: Audrey Sauret@en\n",
"Found: Augusto Pinochet Ugarte@ca\n",
"Found: Augusto Roa Bastos@de\n",
"Found: Aung San Suu Kyi@ca\n",
"Found: Austin Kearns@en\n",
"Found: Avril Lavigne@ca\n",
"Found: Azmi Bishara@ca\n",
"Found: Azra Akin@id\n",
"Found: Babe Ruth@ca\n",
"Found: Barbara Bach@cs\n",
"Found: Barbara Becker-Cantarino@en\n",
"Found: Barbara Bodine@en\n",
"Found: Barbara Boxer@cs\n",
"Found: Barbara Brezigar@cs\n",
"Found: Barbara Robertson@en\n",
"Found: Barbara Walters@de\n",
"Found: Barbra Streisand@ca\n",
"Found: Barry Alvarez@en\n",
"Found: Barry Bonds@da\n",
"Found: Barry Collier@en\n",
"Found: Barry Diller@de\n",
"Found: Barry Forde@ca\n",
"Found: Barry Hinson@en\n",
"Found: Barry Switzer@de\n",
"Found: Barry Williamson@en\n",
"Found: Barry Zito@de\n",
"Found: Bart Freundlich@de\n",
"Found: Bart Hendricks@en\n",
"Found: Bartosz Kizierowski@de\n",
"Found: Barzan Al-Tikriti@fr\n",
"Found: Basdeo Panday@de\n",
"Found: Baz Luhrmann@ca\n",
"Found: Beatriz Merino Lucero@pl\n",
"Found: Bela Karolyi@ms\n",
"Found: Ben Affleck@ca\n",
"Found: Torben Betts@en\n",
"Found: Ben Braun@en\n",
"Found: Ben Broussard@en\n",
"Found: Ben Cahoon@en\n",
"Found: Reuben Davis@en\n",
"Found: Ben Kingsley@ca\n",
"Found: Ben Lee Tyler@en\n",
"Found: Ben Steinbauer@en\n",
"Found: Benazir Bhutto@ca\n",
"Found: Benedita da Silva@en\n",
"Found: Benicio Del Toro@fi\n",
"Found: Benito Santiago@en\n",
"Found: Benjamin Bratt@cs\n",
"Found: Benjamin Franklin Bailey@en\n",
"Found: Benjamin McKenzie@ca\n",
"Found: Benjamin Netanyahu@da\n",
"Found: Bernadette Peters@ca\n",
"Found: Bernard Ebbers@de\n",
"Found: Bernard Giraudeau@de\n",
"Found: Bernard Kerik@en\n",
"Found: Bernard Landry@de\n",
"Found: Bernard Law@fr\n",
"Found: Bernard Lord@en\n",
"Found: Bernardo Segura@de\n",
"Found: Bertie Ahern@ca\n",
"Found: Bertrand Bonello@de\n",
"Found: A. Elizabeth Jones@en\n",
"Found: Bettina Rheims@cs\n",
"Found: Betty Williams@en\n",
"Found: Bianca Jagger@da\n",
"Found: Bijan Namdar Zangeneh@de\n",
"Found: Bill Belichick@da\n",
"Found: Bill Butler@ca\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found: Bill Callahan@en\n",
"Found: Bill Cartwright@en\n",
"Found: Bill Clancy@en\n",
"Found: Bill Clinton@ca\n",
"Found: Bill Curry@en\n",
"Found: Bill Doba@en\n",
"Found: Bill Elliott@pt\n",
"Found: Bill Fennelly@en\n",
"Found: Bill Frist@de\n",
"Found: Bill Gates@ca\n",
"Found: Bill Grahame@en\n",
"Found: Bill Guerin@de\n",
"Found: Bill Herrion@en\n",
"Found: Bill Hughes@en\n",
"Found: Bill Kollar@en\n",
"Found: Bill Kong@es\n",
"Found: Bill Mauldin@de\n",
"Found: Bill McBride@en\n",
"Found: Bill Nelson@da\n",
"Found: Bill Parcells@de\n",
"Found: Bill Parsons@en\n",
"Found: Bill Paxton@ca\n",
"Found: Bill Self@de\n",
"Found: Bill Sizemore@en\n",
"Found: Bill Stapleton@en\n",
"Found: Bill Steinke@en\n",
"Found: Bill Walton@de\n",
"Found: Billy Andrade@da\n",
"Found: Billy Beane@de\n",
"Found: Billy Bob Thornton@ca\n",
"Found: Billy Boyd@en\n",
"Found: Billy Crawford@de\n",
"Found: Billy Crystal@ca\n",
"Found: Billy Donovan@en\n",
"Found: Billy Gilman@en\n",
"Found: Billy Joel@ca\n",
"Found: Bing Crosby@ca\n",
"Found: Binyamin Ben-Eliezer@en\n",
"Found: Bison Dele@de\n",
"Found: Bixente Lizarazu@ca\n",
"Found: Blas Ople@de\n",
"Found: Blythe Danner@ca\n",
"Found: Blythe Hartley@de\n",
"Found: Bo Pelini@en\n",
"Found: Bo Ryan@en\n",
"Found: Bob Alper@en\n",
"Found: Bob Beauprez@de\n",
"Found: Bob Bowlsby@en\n",
"Found: Bob Dole@ca\n",
"Found: Bob Ferguson@da\n",
"Found: Bob Geldof@ca\n",
"Found: Bob Graham@en\n",
"Found: Bob Guccione@cs\n",
"Found: Bob Hayes@cs\n",
"Found: Bob Holden@de\n",
"Found: Bob Hope@ca\n",
"Found: Bob Huggins@en\n",
"Found: Bob Iger@en\n",
"Found: Bob Krueger@en\n",
"Found: Bob Menendez@da\n",
"Found: Bob Newhart@de\n",
"Found: Bob Stoops@en\n",
"Found: Bob Taft@de\n",
"Found: Bobby Bowden@de\n",
"Found: Bobby Kielty@en\n",
"Found: Bobby Robson@ca\n",
"Found: Bode Miller@ca\n",
"Found: Bonnie Fuller@en\n",
"Found: Bonnie Hunt@ca\n",
"Found: Nella Maria Bonora@de\n",
"Found: Boris Berezovsky@en\n",
"Found: Boris Henry@cs\n",
"Found: Boris Jordan@en\n",
"Found: Boris Trajkovski@ca\n",
"Found: Boris Yeltsin@en\n",
"Found: Brad Banks@en\n",
"Found: Brad Brownell@en\n",
"Found: Brad Garrett@da\n",
"Found: Brad Gushue@de\n",
"Found: Brad Miller@en\n",
"Found: Brad Pitt@ca\n",
"Found: Brad Wilk@cs\n",
"Found: Brajesh Mishra@en\n",
"Found: Brandon Boyd@da\n",
"Found: Brandon Hammond@en\n",
"Found: Brandon Inge@de\n",
"Found: Brandon Jones@en\n",
"Found: Brandon Knight@de\n",
"Found: Brandon Larson@en\n",
"Found: Brandon Lloyd@en\n",
"Found: Brandon Webb@pl\n",
"Found: Branko Crvenkovski@ca\n",
"Found: Brendan Fraser@ca\n",
"Found: Brendan Gaughan@en\n",
"Found: Brendan Hansen@en\n",
"Found: H. Brent Coles@en\n",
"Found: Brett Hawke@en\n",
"Found: Brett Hull@cs\n",
"Found: Brian Billick@de\n",
"Found: Brian Campbell Vickery@de\n",
"Found: Brian Cashman@en\n",
"Found: Brian Clemens@de\n",
"Found: Brian Cook@en\n",
"Found: Brian Cowen@ca\n",
"Found: Brian De Palma@ca\n",
"Found: Brian Gregory@en\n",
"Found: Brian Griese@en\n",
"Found: Brian Heidik@en\n",
"Found: Brian Henson@en\n",
"Found: Brian Kerr@de\n",
"Found: Brian Lara@de\n",
"Found: Brian Mulroney@ca\n",
"Found: Brian Olson@en\n",
"Found: Brian Scalabrine@ca\n",
"Found: Brian Schneider@en\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-141-5351e70c6afa>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;31m# first, grep all rows of the original TSV file\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mlfw_name_clean\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlfw_name\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mmsceleb_row\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdf_msceleb_top1m\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitertuples\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlfw_name_clean\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmsceleb_row\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname_lang\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'Found: {msceleb_row.name_lang}'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"# compare this this to master identity\n",
"for lfw_item in tqdm(lfw_meta, desc='1st loop'):\n",
" \n",
" # for each LFW name, look for match\n",
" lfw_name = lfw_item['name']\n",
" matched_id = None\n",
" \n",
" for id_kg, identity in identities_tmp.items():\n",
" # for each msceleb identity, look for match\n",
" for lang, name in identity['names'].items():\n",
" # for each name's language variation, look for match\n",
" if not len(name) > 0:\n",
" print('no name')\n",
" continue\n",
" strict_match = identity_utils.names_match_strict(lfw_name, name)\n",
" if strict_match:\n",
" #print(f'Strict matched \"{lfw_name}\" to \"{name}\"')\n",
" matched_id = id_kg\n",
" matched_lang = lang\n",
" matched_name = name\n",
" break\n",
" if matched_id:\n",
" matched_lang = lang\n",
" matched_name = name\n",
" print(f'OK. Found match: {lfw_name} == {matched_name} in lang: {matched_lang}')\n",
" pbar_ids.clear()\n",
" pbar_ids.close()\n",
" break\n",
" if not matched_id:\n",
" print(f'ERROR: could not find {lfw_name}')\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 103,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"identity_utils.names_match_strict('AJ Cook', 'A.J. Cook')"
]
},
{
"cell_type": "code",
"execution_count": 105,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.0"
]
},
"execution_count": 105,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"names_match('A.J. Cook', 'cook Aj', as_float=True, compound_score=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PubFig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# add pubfig data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Face Scrub"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# add facescrub"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## UMD Faces"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# add umd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## CASIA Webface"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# add CASIA Webface"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# IMDB Wiki"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# add imdb-wiki"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## IMDB-Face"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# add imdb face"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "megapixels",
"language": "python",
"name": "megapixels"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|