summaryrefslogtreecommitdiff
path: root/megapixels/notebooks/datasets/face_tracer/face_tracer.ipynb
blob: 69ae0b3fada75d3b55a437adeda40493a1ef2907 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Face Tracer\n",
    "\n",
    "Create visualizations based on the FaceTracer dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "ename": "ModuleNotFoundError",
     "evalue": "No module named 'torch'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-7-4b67c82b9f59>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     17\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'/work/megapixels_dev/megapixels/'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     18\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mapp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msettings\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mapp_cfg\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mcfg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 19\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mapp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mim_utils\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfile_utils\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;32m/work/megapixels_dev/megapixels/app/utils/im_utils.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     12\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     13\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     15\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     16\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtorchvision\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mmodels\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'torch'"
     ]
    }
   ],
   "source": [
    "%reload_ext autoreload\n",
    "%autoreload 2\n",
    "\n",
    "import os\n",
    "from os.path import join\n",
    "from pathlib import Path\n",
    "import math\n",
    "\n",
    "import cv2 as cv\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from PIL import Image, ImageDraw\n",
    "%matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "import sys\n",
    "sys.path.append('/work/megapixels_dev/megapixels/')\n",
    "from app.settings import app_cfg as cfg\n",
    "from app.utils import im_utils, file_utils"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "dir_facetracer = join(cfg.DATA_STORE_NAS, 'datasets/people/face_tracer')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "face_tracer.ipynb  face_tracer.png\r\n"
     ]
    }
   ],
   "source": [
    "%ls $dir_facetracer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "cat: /facestats.txt: No such file or directory\r\n"
     ]
    }
   ],
   "source": [
    "%cat $dir_facetracer/'facestats.txt' | head -n5"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Help on function read_csv in module pandas.io.parsers:\n",
      "\n",
      "read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='\"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)\n",
      "    Read CSV (comma-separated) file into DataFrame\n",
      "    \n",
      "    Also supports optionally iterating or breaking of the file\n",
      "    into chunks.\n",
      "    \n",
      "    Additional help can be found in the `online docs for IO Tools\n",
      "    <http://pandas.pydata.org/pandas-docs/stable/io.html>`_.\n",
      "    \n",
      "    Parameters\n",
      "    ----------\n",
      "    filepath_or_buffer : str, pathlib.Path, py._path.local.LocalPath or any \\\n",
      "    object with a read() method (such as a file handle or StringIO)\n",
      "        The string could be a URL. Valid URL schemes include http, ftp, s3, and\n",
      "        file. For file URLs, a host is expected. For instance, a local file could\n",
      "        be file://localhost/path/to/table.csv\n",
      "    sep : str, default ','\n",
      "        Delimiter to use. If sep is None, the C engine cannot automatically detect\n",
      "        the separator, but the Python parsing engine can, meaning the latter will\n",
      "        be used and automatically detect the separator by Python's builtin sniffer\n",
      "        tool, ``csv.Sniffer``. In addition, separators longer than 1 character and\n",
      "        different from ``'\\s+'`` will be interpreted as regular expressions and\n",
      "        will also force the use of the Python parsing engine. Note that regex\n",
      "        delimiters are prone to ignoring quoted data. Regex example: ``'\\r\\t'``\n",
      "    delimiter : str, default ``None``\n",
      "        Alternative argument name for sep.\n",
      "    delim_whitespace : boolean, default False\n",
      "        Specifies whether or not whitespace (e.g. ``' '`` or ``'\\t'``) will be\n",
      "        used as the sep. Equivalent to setting ``sep='\\s+'``. If this option\n",
      "        is set to True, nothing should be passed in for the ``delimiter``\n",
      "        parameter.\n",
      "    \n",
      "        .. versionadded:: 0.18.1 support for the Python parser.\n",
      "    \n",
      "    header : int or list of ints, default 'infer'\n",
      "        Row number(s) to use as the column names, and the start of the\n",
      "        data.  Default behavior is to infer the column names: if no names\n",
      "        are passed the behavior is identical to ``header=0`` and column\n",
      "        names are inferred from the first line of the file, if column\n",
      "        names are passed explicitly then the behavior is identical to\n",
      "        ``header=None``. Explicitly pass ``header=0`` to be able to\n",
      "        replace existing names. The header can be a list of integers that\n",
      "        specify row locations for a multi-index on the columns\n",
      "        e.g. [0,1,3]. Intervening rows that are not specified will be\n",
      "        skipped (e.g. 2 in this example is skipped). Note that this\n",
      "        parameter ignores commented lines and empty lines if\n",
      "        ``skip_blank_lines=True``, so header=0 denotes the first line of\n",
      "        data rather than the first line of the file.\n",
      "    names : array-like, default None\n",
      "        List of column names to use. If file contains no header row, then you\n",
      "        should explicitly pass header=None. Duplicates in this list will cause\n",
      "        a ``UserWarning`` to be issued.\n",
      "    index_col : int or sequence or False, default None\n",
      "        Column to use as the row labels of the DataFrame. If a sequence is given, a\n",
      "        MultiIndex is used. If you have a malformed file with delimiters at the end\n",
      "        of each line, you might consider index_col=False to force pandas to _not_\n",
      "        use the first column as the index (row names)\n",
      "    usecols : list-like or callable, default None\n",
      "        Return a subset of the columns. If list-like, all elements must either\n",
      "        be positional (i.e. integer indices into the document columns) or strings\n",
      "        that correspond to column names provided either by the user in `names` or\n",
      "        inferred from the document header row(s). For example, a valid list-like\n",
      "        `usecols` parameter would be [0, 1, 2] or ['foo', 'bar', 'baz']. Element\n",
      "        order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``.\n",
      "        To instantiate a DataFrame from ``data`` with element order preserved use\n",
      "        ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns\n",
      "        in ``['foo', 'bar']`` order or\n",
      "        ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]``\n",
      "        for ``['bar', 'foo']`` order.\n",
      "    \n",
      "        If callable, the callable function will be evaluated against the column\n",
      "        names, returning names where the callable function evaluates to True. An\n",
      "        example of a valid callable argument would be ``lambda x: x.upper() in\n",
      "        ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster\n",
      "        parsing time and lower memory usage.\n",
      "    squeeze : boolean, default False\n",
      "        If the parsed data only contains one column then return a Series\n",
      "    prefix : str, default None\n",
      "        Prefix to add to column numbers when no header, e.g. 'X' for X0, X1, ...\n",
      "    mangle_dupe_cols : boolean, default True\n",
      "        Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than\n",
      "        'X'...'X'. Passing in False will cause data to be overwritten if there\n",
      "        are duplicate names in the columns.\n",
      "    dtype : Type name or dict of column -> type, default None\n",
      "        Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}\n",
      "        Use `str` or `object` together with suitable `na_values` settings\n",
      "        to preserve and not interpret dtype.\n",
      "        If converters are specified, they will be applied INSTEAD\n",
      "        of dtype conversion.\n",
      "    engine : {'c', 'python'}, optional\n",
      "        Parser engine to use. The C engine is faster while the python engine is\n",
      "        currently more feature-complete.\n",
      "    converters : dict, default None\n",
      "        Dict of functions for converting values in certain columns. Keys can either\n",
      "        be integers or column labels\n",
      "    true_values : list, default None\n",
      "        Values to consider as True\n",
      "    false_values : list, default None\n",
      "        Values to consider as False\n",
      "    skipinitialspace : boolean, default False\n",
      "        Skip spaces after delimiter.\n",
      "    skiprows : list-like or integer or callable, default None\n",
      "        Line numbers to skip (0-indexed) or number of lines to skip (int)\n",
      "        at the start of the file.\n",
      "    \n",
      "        If callable, the callable function will be evaluated against the row\n",
      "        indices, returning True if the row should be skipped and False otherwise.\n",
      "        An example of a valid callable argument would be ``lambda x: x in [0, 2]``.\n",
      "    skipfooter : int, default 0\n",
      "        Number of lines at bottom of file to skip (Unsupported with engine='c')\n",
      "    nrows : int, default None\n",
      "        Number of rows of file to read. Useful for reading pieces of large files\n",
      "    na_values : scalar, str, list-like, or dict, default None\n",
      "        Additional strings to recognize as NA/NaN. If dict passed, specific\n",
      "        per-column NA values.  By default the following values are interpreted as\n",
      "        NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',\n",
      "        '1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan',\n",
      "        'null'.\n",
      "    keep_default_na : bool, default True\n",
      "        Whether or not to include the default NaN values when parsing the data.\n",
      "        Depending on whether `na_values` is passed in, the behavior is as follows:\n",
      "    \n",
      "        * If `keep_default_na` is True, and `na_values` are specified, `na_values`\n",
      "          is appended to the default NaN values used for parsing.\n",
      "        * If `keep_default_na` is True, and `na_values` are not specified, only\n",
      "          the default NaN values are used for parsing.\n",
      "        * If `keep_default_na` is False, and `na_values` are specified, only\n",
      "          the NaN values specified `na_values` are used for parsing.\n",
      "        * If `keep_default_na` is False, and `na_values` are not specified, no\n",
      "          strings will be parsed as NaN.\n",
      "    \n",
      "        Note that if `na_filter` is passed in as False, the `keep_default_na` and\n",
      "        `na_values` parameters will be ignored.\n",
      "    na_filter : boolean, default True\n",
      "        Detect missing value markers (empty strings and the value of na_values). In\n",
      "        data without any NAs, passing na_filter=False can improve the performance\n",
      "        of reading a large file\n",
      "    verbose : boolean, default False\n",
      "        Indicate number of NA values placed in non-numeric columns\n",
      "    skip_blank_lines : boolean, default True\n",
      "        If True, skip over blank lines rather than interpreting as NaN values\n",
      "    parse_dates : boolean or list of ints or names or list of lists or dict, default False\n",
      "    \n",
      "        * boolean. If True -> try parsing the index.\n",
      "        * list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3\n",
      "          each as a separate date column.\n",
      "        * list of lists. e.g.  If [[1, 3]] -> combine columns 1 and 3 and parse as\n",
      "          a single date column.\n",
      "        * dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result\n",
      "          'foo'\n",
      "    \n",
      "        If a column or index contains an unparseable date, the entire column or\n",
      "        index will be returned unaltered as an object data type. For non-standard\n",
      "        datetime parsing, use ``pd.to_datetime`` after ``pd.read_csv``\n",
      "    \n",
      "        Note: A fast-path exists for iso8601-formatted dates.\n",
      "    infer_datetime_format : boolean, default False\n",
      "        If True and `parse_dates` is enabled, pandas will attempt to infer the\n",
      "        format of the datetime strings in the columns, and if it can be inferred,\n",
      "        switch to a faster method of parsing them. In some cases this can increase\n",
      "        the parsing speed by 5-10x.\n",
      "    keep_date_col : boolean, default False\n",
      "        If True and `parse_dates` specifies combining multiple columns then\n",
      "        keep the original columns.\n",
      "    date_parser : function, default None\n",
      "        Function to use for converting a sequence of string columns to an array of\n",
      "        datetime instances. The default uses ``dateutil.parser.parser`` to do the\n",
      "        conversion. Pandas will try to call `date_parser` in three different ways,\n",
      "        advancing to the next if an exception occurs: 1) Pass one or more arrays\n",
      "        (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the\n",
      "        string values from the columns defined by `parse_dates` into a single array\n",
      "        and pass that; and 3) call `date_parser` once for each row using one or\n",
      "        more strings (corresponding to the columns defined by `parse_dates`) as\n",
      "        arguments.\n",
      "    dayfirst : boolean, default False\n",
      "        DD/MM format dates, international and European format\n",
      "    iterator : boolean, default False\n",
      "        Return TextFileReader object for iteration or getting chunks with\n",
      "        ``get_chunk()``.\n",
      "    chunksize : int, default None\n",
      "        Return TextFileReader object for iteration.\n",
      "        See the `IO Tools docs\n",
      "        <http://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_\n",
      "        for more information on ``iterator`` and ``chunksize``.\n",
      "    compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'\n",
      "        For on-the-fly decompression of on-disk data. If 'infer' and\n",
      "        `filepath_or_buffer` is path-like, then detect compression from the\n",
      "        following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no\n",
      "        decompression). If using 'zip', the ZIP file must contain only one data\n",
      "        file to be read in. Set to None for no decompression.\n",
      "    \n",
      "        .. versionadded:: 0.18.1 support for 'zip' and 'xz' compression.\n",
      "    \n",
      "    thousands : str, default None\n",
      "        Thousands separator\n",
      "    decimal : str, default '.'\n",
      "        Character to recognize as decimal point (e.g. use ',' for European data).\n",
      "    float_precision : string, default None\n",
      "        Specifies which converter the C engine should use for floating-point\n",
      "        values. The options are `None` for the ordinary converter,\n",
      "        `high` for the high-precision converter, and `round_trip` for the\n",
      "        round-trip converter.\n",
      "    lineterminator : str (length 1), default None\n",
      "        Character to break file into lines. Only valid with C parser.\n",
      "    quotechar : str (length 1), optional\n",
      "        The character used to denote the start and end of a quoted item. Quoted\n",
      "        items can include the delimiter and it will be ignored.\n",
      "    quoting : int or csv.QUOTE_* instance, default 0\n",
      "        Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of\n",
      "        QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).\n",
      "    doublequote : boolean, default ``True``\n",
      "       When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate\n",
      "       whether or not to interpret two consecutive quotechar elements INSIDE a\n",
      "       field as a single ``quotechar`` element.\n",
      "    escapechar : str (length 1), default None\n",
      "        One-character string used to escape delimiter when quoting is QUOTE_NONE.\n",
      "    comment : str, default None\n",
      "        Indicates remainder of line should not be parsed. If found at the beginning\n",
      "        of a line, the line will be ignored altogether. This parameter must be a\n",
      "        single character. Like empty lines (as long as ``skip_blank_lines=True``),\n",
      "        fully commented lines are ignored by the parameter `header` but not by\n",
      "        `skiprows`. For example, if ``comment='#'``, parsing\n",
      "        ``#empty\\na,b,c\\n1,2,3`` with ``header=0`` will result in 'a,b,c' being\n",
      "        treated as the header.\n",
      "    encoding : str, default None\n",
      "        Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python\n",
      "        standard encodings\n",
      "        <https://docs.python.org/3/library/codecs.html#standard-encodings>`_\n",
      "    dialect : str or csv.Dialect instance, default None\n",
      "        If provided, this parameter will override values (default or not) for the\n",
      "        following parameters: `delimiter`, `doublequote`, `escapechar`,\n",
      "        `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to\n",
      "        override values, a ParserWarning will be issued. See csv.Dialect\n",
      "        documentation for more details.\n",
      "    tupleize_cols : boolean, default False\n",
      "        .. deprecated:: 0.21.0\n",
      "           This argument will be removed and will always convert to MultiIndex\n",
      "    \n",
      "        Leave a list of tuples on columns as is (default is to convert to\n",
      "        a MultiIndex on the columns)\n",
      "    error_bad_lines : boolean, default True\n",
      "        Lines with too many fields (e.g. a csv line with too many commas) will by\n",
      "        default cause an exception to be raised, and no DataFrame will be returned.\n",
      "        If False, then these \"bad lines\" will dropped from the DataFrame that is\n",
      "        returned.\n",
      "    warn_bad_lines : boolean, default True\n",
      "        If error_bad_lines is False, and warn_bad_lines is True, a warning for each\n",
      "        \"bad line\" will be output.\n",
      "    low_memory : boolean, default True\n",
      "        Internally process the file in chunks, resulting in lower memory use\n",
      "        while parsing, but possibly mixed type inference.  To ensure no mixed\n",
      "        types either set False, or specify the type with the `dtype` parameter.\n",
      "        Note that the entire file is read into a single DataFrame regardless,\n",
      "        use the `chunksize` or `iterator` parameter to return the data in chunks.\n",
      "        (Only valid with C parser)\n",
      "    memory_map : boolean, default False\n",
      "        If a filepath is provided for `filepath_or_buffer`, map the file object\n",
      "        directly onto memory and access the data directly from there. Using this\n",
      "        option can improve performance because there is no longer any I/O overhead.\n",
      "    \n",
      "    Returns\n",
      "    -------\n",
      "    result : DataFrame or TextParser\n",
      "\n"
     ]
    }
   ],
   "source": [
    "help(pd.read_csv)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 124,
   "metadata": {},
   "outputs": [],
   "source": [
    "fp_stats = join(dir_facetracer, 'facestats.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 135,
   "metadata": {},
   "outputs": [],
   "source": [
    "class FaceData:\n",
    "  \n",
    "  def __init__(self, d):\n",
    "    # convert defaulta data to normalized square\n",
    "    self.dots = []\n",
    "    x, y = d['crop_x0'], d['crop_y0']\n",
    "    w, h = d['crop_w'], d['crop_h']\n",
    "    # left eye, left\n",
    "    self.dots.append( [d['left_eye_left_x'], d['left_eye_left_y']] )\n",
    "    # left eye, right\n",
    "    self.dots.append( [d['left_eye_right_x'], d['left_eye_right_y']] )\n",
    "    # right eye, left\n",
    "    self.dots.append( [d['right_eye_left_x'], d['right_eye_left_y']] )\n",
    "    # right eye, right\n",
    "    self.dots.append( [d['right_eye_right_x'], d['right_eye_right_y']] ) \n",
    "    # mouth left\n",
    "    self.dots.append( [d['mouth_left_x'], d['mouth_left_y']] )\n",
    "    # mouth right\n",
    "    self.dots.append( [d['mouth_right_x'], d['mouth_right_y']] )\n",
    "    \n",
    "    # normalize points\n",
    "    self.dots_norm = self.dots.copy()\n",
    "    for dot in self.dots_norm:\n",
    "      dot[0] /= w\n",
    "      dot[1] /= h\n",
    "      \n",
    "      \n",
    "  def to_dim(self, wh):\n",
    "    scaled  = []\n",
    "    for d in self.dots:\n",
    "      scaled.append( (int(d[0] * wh[0]), int(d[1] * wh[1])) )\n",
    "    return scaled"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 143,
   "metadata": {},
   "outputs": [],
   "source": [
    "df_stats = pd.read_csv(fp_stats, delimiter='\\t')\n",
    "#df_stats = df_stats[0:20]\n",
    "\n",
    "faces = []\n",
    "for i, row in df_stats.iterrows():\n",
    "  faces.append(FaceData(row))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 144,
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib as mpl\n",
    "import matplotlib.cm as mplcm\n",
    "import matplotlib.pyplot as plt\n",
    "from matplotlib import cm\n",
    "\n",
    "def get_color_map(cmap='prism', ncolors=20, as_hex=False, reverse=False, bgr=True):\n",
    "  norm  = mpl.colors.Normalize(vmin=0, vmax=ncolors-1)\n",
    "  scalars = mplcm.ScalarMappable(norm=norm, cmap=cmap)\n",
    "  colors = [scalars.to_rgba(i) for i in range(ncolors)]\n",
    "  colors = [(int(255*c[0]),int(255*c[1]),int(255*c[2])) for c in colors]  \n",
    "  if reverse:\n",
    "    colors = colors[::-1]\n",
    "  if bgr:\n",
    "    colors = [c[::-1] for c in colors]\n",
    "  if as_hex:\n",
    "    colors = ['#{:02x}{:02x}{:02x}'.format(c[0],c[1],c[2]) for c in colors]\n",
    "  return colors\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 173,
   "metadata": {},
   "outputs": [],
   "source": [
    "w, h = (1600, 2000)\n",
    "r = 1\n",
    "im = np.ones((h, w, 3)).astype(np.uint8) * 0\n",
    "\n",
    "colors = get_color_map(cmap='jet', ncolors=len(faces))\n",
    "\n",
    "for i, face in enumerate(faces):\n",
    "  dots = face.to_dim((w, h))\n",
    "  for dot in dots:\n",
    "    cv.circle(im, dot, r, colors[i], -1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 174,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7f2b33beaa58>"
      ]
     },
     "execution_count": 174,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAI1CAYAAABSRWqwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsvX1oVuf2NrhiT986VLA4VaRj6cd78mIhQ52O2JY6pISD1DOWVtpKHfJSQV9bp/6o4CHUYhuLaYmDgYi+QdJKhBTJZLSYsdXT8HMMRGiwkSpVLOHUsdXStOjQQKSS6XjNH+v+3Pve+9nP95NkXXCR52M/z7733k/utde617pWHQASCAQCgUDgY061ByAQCAQCQS1CDKRAIBAIBAGIgRQIBAKBIAAxkAKBQCAQBCAGUiAQCASCAMRACgQCgUAQgBhIgUAgEAgCEAMpEAgEAkEAYiAFAoFAIAhADKRAIBAIBAH8JZ+N6+rqRJdOIBAIBNMdNwEszLWReJACgUAgmG34MctGYiAFAoFAIAhADKRAIBAIBAGIgRQIBAKBIAAxkAKBQCAQBCAGUiAQCASCAMRACgQCgUAQgBhIgUAgEAgCEAMpEAgEAkEAYiAFAoFAIAhADKRAIBAIBAGIgRQIBAKBIAAxkAKBQCAQBCAGUiAQCASCAMRACgQCgUAQgBhIgUAgEAgCEAMpEAgEAkEAYiAFAoFAIAhADKRAIBAIBAGIgRQIBAKBIAAxkAKBQCAQBCAGUiAQCASCAMRACgQCgUAQgBhIgUAgEAgCEAMpEAgEAkEAYiAFAoFAIAhADKRAIBAIBAGIgRQIBAKBIAAxkAKBQCAQBCAGUiAQCASCAMRACgQCgUAQgBhIgUAgEAgCEAMpEAgEAkEAYiAFAoFAIAhADKRAIBAIBAGIgRQIBAKBIAAxkAKBQCAQBCAGUiAQCASCAMRACgQCgUAQgBhIgUAgEAgCEAMpEAgEAkEAYiAFAoFAIAhADKRAIBAIBAGIgRQIBAKBIAAxkAKBQCAQBCAGUiAQCASCAMRACgQCgUAQgBhIgUAgEAgCEAMpEAgEAkEAYiAFAoFAIAhADKRAIBAIBAGIgRQIBAKBIAAxkAKBQCAQBCAGUiAQCASCAMRACgQCgUAQgBhIgUAgEAgCEAMpEAgEAkEAYiAFAoFAIAhADKRAIBAIBAGIgRQIBAKBIAAxkAKBQCAQBCAGUiAQCASCAMRACgQCgUAQgBhIgUAgEAgCEAMpEAgEAkEAYiAFAoFAIAhADKRAIBAIBAGIgRQIBAKBIAAxkAKBQCAQBCAGUiAQCASCAMRACgQCgUAQgBhIgSAXVqLaI8iEw1hX7SEIBDMKdUD2f/66urrpMVMIBAKBQJCM8wCW59pIPEiBQJAZeLvaIxAIKgcxkAKBIDPq/mu1RyAQVA5iIAUCgUAgCEAMpEAgEAgEAYiBFAhmMDqxudpDEAimLcRACgQzGNvququ6//3YWNX9CwTFQAykQEBEH2NbtYdQMVTyWP+t7lDF9iUQlBpSBykQCGoSV4no8WoPQjBTIXWQghmAZrknqyxaqz0AAzGOgmpDPEhB9fEZiJrrqj0KgUAweyAepKBG8E/QZnQmv18DxjF1fIKc6MUr1R6CQFByiAcpyI1PQbSpskasGd30WZ2UKAgEgrJgunmQU9UewIxGB7YU/uFCjOMzxd1LiXEUCATVhniQAoFAIJhtmG4epEAgqDSuVnsAAkENQwykQDCLIaUUAkEyxEAKZi/+KSsGAoEgGWIgBTWPe29OFPX5RMHuF6pfXiJIRhfeqPYQBLMckqQjENQA8Pbsaka8EfvpUN2/VXsYgtmLTEk6YiAFgmLQDKLPxBMVCKYZJItVICg7xDgKBDMWYiCnMfqqPYACEFoPTDuOOeOT5RuMQCAQpEAM5DTG69UeQAEINfDVx7EFHbH37i6eV+YR1SYKSkySrFyBoKSQNUiBIIBzaKAVdZeqPQyBQFAeyBqkQFAoKmkcp2OoXCCYDRADKSgrNmJ/tYdQ8yh1qLy3xN8nEMxWiIEUlBWH6v6NaOU0icxPl3GmAKuI/nO1ByEQzBCIgRSUH2drrxQi6NnW4DjzRd1gtUcgEMwciIEUzArsx0Yium2ei4qLQCDIBTGQgvLiaG2ELf+t7hAR3V/tYZQP39vzPKPWfVeCiFqrPQrBLIWUeQhmJbCJqO7Tao9idqIB5+i7/7JCzn8Z8cck0X8zO0uIs0LKPASCKPapvzI5Vw+X6oo3jjPKSy4DxDiWBuJBVgBzf79Fdx74b6s9jJoFmojq/q9qj2ImYoqI/kO1ByEQ1CLEg6wV+MaxuN6G0wlZ6/HEOBaK294ztETf/w+ETeUew8WU926nvCcQ1D7EgxQIBHlgnIgWV3sQAkGxEA9SML0Q94AEtYfSGMffIItkgtqHGEiBh7m/36ravuv+t6rtWlBhLKrjNmaHsa7KIykBjktgbaZCDKTAQz7JRPh75PmqEg8mE6aqsdNpA32N6nGhugNJwIb//L/bJ9PV0Lw8/RWYBGHIGqQgjGtTRI9WIQNyGYguxCccvE1U918rPxyBQDAjkWkNUgykQCAoGlhOVDda7VEIBJkhSTqCmYC0MoIIXq/G/dtsv2fk489uHCPXc3S2nz9BLUM8SEHF4Qon4Euiuv+5ygMSCASzDeJBCmoTbiJQLuO4GD+UeTQCgQPxaAUOxEAKyodnip9sxuv+YwkGwohm3TrvlGwftY1IV4yz0eOuzfOATyq4s+WSkSqwEAMpKB9GamuyqTuZ+E4lh1F5rNSG78PI69HjrsZ56CIi7vBhx+mj7r9UcjwCgYWsQQoEAoFgtkHWIAW1CTRXewQCF2iq9ggEgtqEGEhBSZFlvajus/KPI4RdJRB7rT292GxBnbT+idOhmwq+rfYIBLMREmIV5IEJIppfwu+7SUQPOs9bKbZOJkjHGhB9McPXUAWC0kNCrIJSo3DjGPa8How8r5xxnFYi2ddS9GaVcZSwtUBQeoiBFJQc+CD+Wq116thQ1x8cZ00igyZutcLWlcI4hX9XAkE5ISFWgaAceB1EfTUS+hwF4du6GVcugZ+J6v67yIuvguhojZx3QS1DxMoFNYitIDogE1jJ8T2Illb+vA4T0f9U8b0KBEVD1iCnM/BdtUdQJhyoo3tvTpinXXiD8FpowwE6hcaKDSsL8GXCG8tq4L6x3Mbxxh/Bl0thHIewogTfUptozb2JoIYhHqSg5oDHiOr+72qPYuZjnIgWV3kMx7CaXqk7lbzBgyC6KREHQckhHqRgmuL/THh9efr9WQPOlX4sRHQeT5TleyuJUB2hNY5dhX3p3Nz3y260IIRU40gkxlFQVYiBFNQc6v77hDdG0yfLS3XhUF3u+8R0/I91V4r7ghpA3f+Q9u7/WtiX3sltvP7fB53SoM+sQV2CMfWoLfi5qVKW2xaNgWoPQFAliIEUlBGlWYHJ5YXkQloz3z3YWtR31x7yaDBdaTRbg3qj7j+pRzuDm/6H4i55ACOB165m/OxLpRyIYBpB1iAFFcRdIppDzeimz+o2V3swNQ7QjOoyohR/lmDMMY6Mq0T0eHVGJZi9kDVIQa2Bf24VNY6vVvaeLk3zND+UwDi2Ocf+QpXvbZXiT9Q4EiUYx+PlGu9wmb5XMCMBIDOJb2uFNc62GhiDJt6r/hhqhjf+qMJ+91X/uCPEh9Ufg+YSjFV9DMKqcDSTzRMDKcyXWF7M5werPv7ZxZuV3V8bUt7fFxzPCgwFP/csThc2hqNpYxAKCSQGstZY4YmqhrgQP4KIgP5c27Zl/s6N2J//WEZn38TZgS0VOR+3MLfqxyoU5sFMBlKSdAQVQTkTMTBEVPd8mb58RmCAhvARPV9n60RxhKjufyn9nn7DPFpUN1n6LxYISgtJ0hHUDrRxxM+l/+5CjSPeK+kwahgvecaRKKtxzL/+L4txLJegg0BQaoiBFBQFnM2wkZORGOu+YHAz0/4KrYkMjbPu4yyf3EdERHPG9cRf8gK9yuF1vg6JmrIx5F//dxrP5twmKuiAtXnvRiCoDGQNUlgQ39LrV9nXDatNbMq2nV4zzcYyHv9cu0aYupZYDh5F3seWZYxzf78Vvy5LE7avStZv7XHO+GTVxzADKUk6wmrzckGfewNdpdn/pixJKGXOqv2ifIlBq3Es9tq9Nydir6El/lk8Vpox3Lwn8trfCj/eUo1JKMxAMZDC0nELOsr6/bVUGxcc38+B1yPlBKfQWPVxpvNu7m2W2WMq6fG8nmY4W9Ga6zwuK9+NhnBWUrJYZw66KB9B6QV/3qD/5y9LyjccQY1jkIhWVXsQFcVi/EDjdf8xx1agasr34bsUIX5BpSFZrDMH+XVbqGXj2Bt6UTccnlfa+6+7Cwr73H5sTHzPJuvUMtg4duGNor/Jdt0IIdyJg4iI3opfSwQvPhH9625eYwohp3F8MG4cL2f98gdK87sU4zgNISHWmcn8Ek3Kw2NYzY/n6fDY9fC23wMYqpGx5uRw1c/rCTRl3hZrnedbyxOmrIXfmlCYJ2UNciZwCCvy/9xIcRPh13iyYseXZBgzHXeex1nr65z58Xb6NfvXXeC7Is5tBZn993a16mMVzhiKgRSWk/FsyXIylJ1ZDurJWhuRx3GpBs51On/DvKqPoRCiN/3983jCPj8MEF3OUfKgbxrEkApzUgyksFK8aB4vxg/+e8sTvLzj2by/rdhT0WMJd3fIVq6CPSUYw4OFef8rMOS/FsgaxZsZrku+Nz7fR79ntLDjThU5T2C7/UxIQL8Uvx2cLcE1FdYixUAKq0ttLPEBBWvxiHKLjk/HdkRFjfmBypQzxG5kNC9VvpziSXyd+N5G7McVPFLYd69xjiVmyGuMr9b4+GYexUAKhUSUWKyfpPxiQ39diK711R5zCR3UXj9Ipk7Y6q6BsQhnIcVACqtP10NEk319MzozfH4g8b35d36x35vgnXp8K2wkE+nInEUTiWoq2Ucf1zNg4QL1PJMXm09YM5ABq5OAGnAuw3dY2TqM6Nd6E7fHQP6/rxivTVX/+ghrlWIghdOHP2BxYZ9dWlxoyutRmbguVz5mMu5JnGfHG9QzLXA901J7zxed13w1Hvw99LnWip/HIF+QsKUwkWIgheXjJTxuHqeLVCclbZzJtrakkk3W41CZj2lf8rrcNOEhrPfO+yGsxxG8FNg22XMzdNbEylmjGjrnSeUp3jZlHJNwVlAM5HRnrdWrFcIk4fFhIuBK+DNPIVsxfixzUzGxcP2zuEcx8ee9GI68ZkOAGb4zgVmPoZTUIez92Ji4Td6ZnWUUW7cGncsyVoLXU0/j2eC1EgpLSDGQhrIWUXWarg+RLMmQMcqLzYVMpPl1C+F1rptVP4ceMxguDNnQda5s4XyY/Zp1xTJUYxmrn5bREGbJyC3o91Po+RDWEMVACsvMf+XuDpG1lx0+Cry2t4RjDbRhylo+gL1kywQSJl03aajWiE71d6iM5zeBE3/ea59/BoxhSXjbNWU0lJq1XuohrCTFQE57lsPzzVOPs5SeR4he8XrSNu+Vfr97sDV5fx/w35ABLbhXZcbznmX9LY2XE14fwopEIQP3OG9hblmvd5h9sddWYKjsvz3hrKYYyOnAR3BFPY52by9jp/ogA/vL20BHvuMZZRQuRIxDgetLp/FsQZ9LKkNIMiZBqn6EbtapvXalJz6JPD+Qsr06n36STvXoeqbxch51HnOVcUj/R2F5KQaynJy8M6fqY6hFpt/1q4zWf/cnv3Cmpe/NDGIliHR9n18cn09CjFkLVdyN7ZFkoTxuTPKtrawQm3Aiti7Wi1f48WGgO+uxFFAmsRvbixq7eI7CClEMZLkoxtFnqieV0Ek+mKb/PDKFXKvC5aho+LHNfb7LnkO9npiVvd5z5b05IuFZvM4Ff95Ir9fsSzak+jr3Yw2ICM/idIpIOUB0OxwpKFOrrlxcjWNV2a+w7BQDORuo18tqlz389zOYRAx86Yw/odSDiGKeps8iJ8yESX0j9odVfhxlneA12JV1PNnHfXdBHscz5BjRft8I+p1QzmQYwziICD0FnduRvD+Dr/zfRJQFa7EqVmddVVjjFAMpZE7emZO8fpexq0YhfALng6/PGZ8Mh/lKyGdxOvn9f92NhfFCyTdNOAGiSogUFMY92OqFNL3zbcKj8etrjr3ga5+fPi1Ox18LeWa3MNfc8KXVchJRDnHvpHZX9vVS31imrhELa5FiIIXVpDU4ucJU+7ERg+pxSSeuPuAEmsp/rBWUNEvyuLEo92cHi96/Os6U8p6sfTtdJaZt+Dj2fr5CC/jVf95ToeshnLYUAymcRjxb2TWmnGtvTqbtKTRWbmw7k89DPmo+w2TX/bRCTU6PsaCyovTvxBWKla5cdMeJp0DEjanD5/l6AWMSCnNSDKRQM7+SkWLWbIqt45u4r4THvS158n4JR4o+D9m6WKSxI/bax9iW13douT193rzCfLIenTvWLHJztzDXiLejOeFaF+jt42rK+2Xph6m+M4sYQUrCkXBGcXobyLm/36r2CZy1/A3zYq8l6Z4SUVAFxzJ5wjmBJs5qVJ0osIe8LvFBmg4W7cnbpH4Hr58lZ1JaJhnIVThesnPttgALMWntWGeHXkA9iCISbvNgDU0WSbq0RKksDBkVc50uF/XdpdQj7sIbJfsu4bTn9DaQwuowNbklQhyJv2bq7QLvFz0RU+nDne54g8d4NjRunvzddTSi3JN5KTQ7w+2lmK73OPHnvUCTe2PjRBFSPOtsVJ//i/6eAa/1VnodYziasRH7A+OynWDwc+muuVBIYiBnFvPuwlAlJjfqjYcTaQNPiGZNaiusgsxe5F3zV8w48SsnukRDxPgunDCSFHZMY7mjIqGQrz6ejdjvZLz2gTbFjWQ00SVfhs7TEowlZHg6GaVv++/FWmC9Gx+rVkE6jWdrq4G1cLpQDOT0Zm4h8OnDq/Z4/hKf7JKpNDpfdj6zSz8ujxSfNspuA2cMUUrXifKtWbkGD99Exvl0yjGEZNwyds1wvb+sQvOh704KZw7jKVAnMPHnvfFSDkcIPmr00rzSqCxf5ZhVl3c8PuZpXRYyI+YmMZDC3CzWayCKeA2fwZvMgqpDakLVk+BRdzz5egMq89Ksg74cn6y1t5glC1RnfuIDwrzJ30BEFSgV2Zdzm11oybnNk/gaIzm26cRm8zhtLbUbzZnHfxyrUt8PSQnq7FUiAm2AGYvrhebzWzhZ1usjnIEUA5nGndhR9TEEmStJpYbJobHRzNsbsfCAMHWutcZotmbJmTPj8WLlx5Q32cO5hblqvZSvjbc2rBJsMnthqQX6jqGPCtSHGClp0QlJxddrVoAp5TgeAzdswpqgGEhhbiYJhZeKSV5AKMSks0aPY5WXPNOCXbEavkaccp5nb0FVyDog+v2wZXbPZjDvfQWZ4aZpDEuMV4ZedS5HnZDlWnfcZ0BkPWtt2NHofmeSGk2EoYSfA85r0ZB6yrHoa3oLc/MMxdc6K92ZR5iBYiCFlWc02xCbKJ4F+jIwhBXZ21cFEkryGpMbRt6Q/F0Y0JmoF/01vpTPhDmQ/v4zyd+XTyeL+E2G79UOYQWoM2lfgaSpEjPqUdvxttrfxgF/PDoTOKkMB5/7vzOcLc1YD2Nd7LXMa7BR7p1Jxn3GUgzkdGbZ60CP5v4nzlcwIKpnil8J9biAhfjRa3qM78hLyCDyay/PoSGv/SYlPOSqezuE9cbr0mtfvAbJx1FYWYoKWaaIbyfyb1kn1vy0UG1WaHE1iTmvw1DCdXAen0ATXkGveR76nX+NJ81jb61SUS+PhIxaofR+K8vFwM0CioEUloLhUJsbZnQ9NN8D4hAeeilWPnECTU4doS76zx6SPI8n/NcCpQCGej0x0JEDBwjYE/DcnoFaIx2tuW4QqZ6Nkshz1Wq0px7NGvWOK+LVxs5vEv+CVI8JQ6EEo27QNnDonAgmWzny+8F3kbrcFM9bKMyTYiCF5aNrFHMVcWsvwGZYAnuwFUSE60SRVlFnChvPUO5tot5IWjLIJTxuDIteD01cTx1If+4y1korksSR9tlUmnW/cB2q6w0bbVZF7T0Xn9Ec2ec77nOY48We0PZjoAbEzgHWU/rNj8u/ouTHEDyumEBGvIxDWPMUAynMwp7Ya8FJZmXuSWoVjhvZOCKbiboFCetd7QBRDxb8eSP2Xj0u8Fgcvc+YEXwBIOrNOa60kBk28V9XBWc/NgLLrEFMLXlI7VlpmatMI9QSymWW7hYNOGfOWzT5ypUD9NYGmwHrwSdN9FHDlcEgPADQWwjWa7JX6P/uMETJJTomsWfcy7Z1f6f6uIXCjBQDmS9LIQU20xj0zK5NBbMM0zpkeDWIKrsSB9XzlXC8u7jBLimdcesJdhhPgZby67vQgj8m078jq9xdpZtZ67VbvMNGPlbK9DJSW3N5eq4FMWTE4zWe/tpu/DNRucNc7dKSmOs6loWSoDNdKAZSWBhXYCgvTVaXbiPkLILg5eb1pPeWAL3B93JPcK6XXD2OBF4LlxPkm2x0OY9to9GBdThsHkeFCPCtfpzcwqq7gPFmGZdQGKEYSGFxjGWHhkKVD6h1H1VOENVP9Uo5gp0l1JrZPP89HCRgeYYxKi8wl/fjr7v5hgRXQutlNnEEPxNeQS8nlSyHk2ULGwr2slYL6auY4ziPRMenXk9plGxuci4Bb6DLGXfIQPWZY3Vfz6ul1/fZvKep3/196hZfPL74GnRSRvAvmD9tNIpz8fb91R/DLKMYyLz4uoRGSk27rheZ9F5HRBpsLBiOvIJHQBSWesOqyPYZ1ki9zzsi3vya/fx1osKaB1+q/G9o0Bu7m3Hc4x3DJTxu1+xUVq+pOUwRPuAwZViIwYqfx/kkvvaaTse4FLHM5nbK0Q80a7KO8zur9PUI82YNjEEYoRhIYXm4HbszbTeIlVzi0Umg55MmqwnrZeoJ/XDuie0YVoffi/YmVJ6pEfuO1H9qvVVNrsdkQ5MWIk6qU23CCW+/FeEleLWGRGQL6g8Qr4tpzdrX0r8rWoMa6g3q0xdFuHvLGcNa9bjN8XhTs3RTEpF2Ah3R1xJFENIZvebCWUkxkEICZVhTS2RAIzWJMQWdRgrWHVpe9DpUbMPHufeToI8aLhuIcK797CBWYid24A10Yf6dX7zxc61gH4//ZQBj2Y4/KMpeakauh1nTawe24WPPaD+B8yrxSa/F9Zkbkei1ihXcL0667kfTxzcELyPZ8wZdibnDQPI6JKsBhXqN1gT/WhteKfqrP4ZpzhlkIB+ojR+lMMzERJgDWa/blMk4xHP57982BfY5hiXpn1VenptM4hbP6+xJX6NUs1z6mgEvSnlgtnRjyimyt+xzHuM0Cwpsx25ggNcjk4r/sd5/fg0LI9vY63iGHM+QyGqxxsKZVrWHS0xcT9MPX18lf735MNaBrtnfRLAfpyMxF20FVgxdgYWSM0NkRFgxziADKSwPj8f/YV1jYWrL3Lv/ZnieoTs5nUMDuslKzsVq03Qiz+eqLlCVXHRgi7NdqNfcTcTqHTcUNtn42p0ArvAx85potw0x/gVAi/O59XnuqznD+IJh5/B6FX7KsM9IyBHfEhfPv8dGSivw8NqhPc/aAHnXK6m+8yjPGnpdOOZ96t9GkmxexAPDh5G1zAYAvdojv+lktPaFvy8zz2TarvytzdrL/P3CjBQDmc5i/+FmH3P1GtTkrgyX0Yxumz0aqb9zC/M1O7HZ1EtmClkW0BoMX5IxzPiWQMthwrtPYRj4gCdJt2+i8dyiIePX4TVWzpdxT60wpia2GI7FtHJDvID62Guh9d7Q9SO6HZPs24H3QeR7tx5fAIiO+iUhbQjXEyYkTgWvQVqCUK7fSA5lKOGMoBjIkjNxbaYGubW4sWZJ74/JpjlZnGNYAvwa7+jA3wszqev1w8X4IVK7NhVfA33Qea5KRrA3Pq58wmT4XI+7h19bCeBXAgZUOcJnwBZ0mIxaw2tTkePP5qGYZJkcyjkhGgMXujFoR2rtavDmZiVAj8IpzXHCohE1JZwmlWk8Ed6H0/YKB8lmqKqwIt5W771Jnli5lpd7AudjakM4qOUB48cbFLSfW8RvPprc5dF9T+orZwjFQM5U6gzFLExr4uuGEPNnwoSiG+Xusuo4sbZHXxLouNVjRb/N/tT1iJmLxR+Av7ajwpY5vd1OGIOu17o8L8aEn3vwx2QJO0fkWY6iGS2pMB6cowx0HKvMmiO/ZiXh9GsY4NKWdqKIlxYfV9JvJ3azEPislvAjItNc+CTZ82gzhC8qw9vhG07KGFYuOUvUw1NY6xQDWdvM3uS3KGaoBTuMdaCzGSbuf8a30SE1M/G9yMfmFXerZJ0hrOBw5aNAKxH2YKvZDt+R4yEmh789lRflSWEPexS2DCAub6b3T8SF6VrxB6cJj+MSDmMdsIeFDTqx2d6ELIVtv+T0pUz1porm9ci6LFOHrr3X1TnDY7yeN4QV6CMy2aR/TKpQ8gEENW+JCOgkT+OUiMx6ZlGKNCsBWgxgmb8vfnzTXIMxIhPSHsIKdGAL8G241VWMI8B6HCrTdQizoFZm04FZ1s1nDsVAChPoruUUsI5nvCnlvbgTWVrRuSuYjV853EafAkSXvUmnH2uCRffGowkkFyUzvQdiM7r5sfLs8BHFSgxW45hXO3cDC0AUbx+VD5/AeX4cDds/ANx7Mz/Dy1m2+qZgQF2fu7hInHjDoVl1nM9zyHje5G9+yNrjRSS1OQvxFuYmapA+gfMmy3ncef1JfG2zhE+TysrVmcGOjJ5Tt9qLVzLJFxbcESUPetrCKSxc3/ZkycesIzZCAomBnN4suJt5OZmhoa+//neVjfFb6nNDAOr5PT91fxx9ROY97b29hCMgIlurGOgeH5oMT5KvCZqLOoFEq/ngGwK9BWvEiEAHwCLlzl22V/5Rxl6FccUav5tGUjhaF+3vQgtWYMg7nliG8VsJ40963WFM7i3VE7HevVe/6iTVRMXJ7TrzRfvaWK6C/2JbULVm3K5CkSBhqSkGUhhnWoZe6oQTyAocxMrwOpFKlpj7+y0OnT4ATM0naK+kC2+A5sKs+V1APdCf1LJIrUtvuou8AAAgAElEQVTlMEChTMZQmFInkwxiJYisEaYDAA4ob1hpivL5GIi1juJkkt5kQ5Ca8FFiqvXX7dgN9FijODVfha2pF/iJjegwnkq8xu7rrqefK/Q+ED3e43Dag7XHfjcYsN5XA87xb4HI80Btt5TLwEf2eVTnN416nVQyUoUJFAMprAzxJXmhL6Pxucfxyr4iEI3yNoEM21ARez5dJTQPY535fts9gtdKkxR3XA8oXjIx5oXTPONR6Pk6QMki4wlqQTn5KH+OSzImPKH5brLed6ioPt/Q2xKEmzITUYLHGa3tDG0zah9fm1I3Hz3At3Z8lQidauobKOGMpRjIGc+cIc/09bei+TJ4Inmex8F3+jYM5gkKeMLUFxM8kxHQNgQNmZtEchyrii5jIaJY0spLOGKSU4bxlCfnFdckjSQSpXiNMWH1Angm8jyaPHMcq3hfZv20A0TDfLPSCaDfhir5ZqbDhIhzKg6lSgYSaFfKtQhepyljZHU5kS7b0CL26CFVAnIxfd9Zua3434twRlEMZE0zw3pebfKMedyqX3PaWFnZtxHVgDpqpFXItAEgum1f/xRGvWXyzhzfa3soXnN5DKvzmvTQS6bmjohMGBVfkq35ixqCF8AZlcobM62tDubYl2cQ87xJiXlgviFM2vdhrMOc8Umgk73gcSKjNoSD2pMfN8YMj/mf1zqusRZnMXIija7jxCpCmzu+t0O6uvYc6FrHNeiPffdLOBK7rjigIxIjsTKQkCf7CK6Yx0nr0BXRzRXWOsVAlppRlZDKs/SZbWnMqxeg4rM47WR39nidHIjYa4sau05sBlqcQvi5yBziCiXuhNnD239I2IkdeBanbfh3OcHN2ryFuZ5SDPZQRPtUH1NfLAw87D0PNTXOzsX4wX/NOZfa49Len+kiQmykdFawvmGZmq/XZJObFRM5HpwTAuYbCDfpJX5crobtb5gHPMyPN6NThX1Vh5SfeNtfMB9oIazHIeBz9nxDQgfRaMIQVvBrz8BEFQZK9HuP0u1MIpxxFAM5E5mpcwVRyQTeozVfNgHDYVJrp8+AQ1gPIpWi38+eSy9eAdFltS5p7/rdpJqTBY/5boK4eMLxPUboJT0mHvMJNAEDNvFn8s4cX/lmJ1Qo1vF0ejLsb1OR10QlBenSgW40G2/rBhbYWtQRNaav+Piwh4UTXCEEfMjHXcrfXDO6nbKhUYwSAS+Sl8jVgS24gHrjde7G9qCqkCfaEIwUWC1Z4zU+XxtRmZrtRFKjrFLGvhjIctP7JzbsKek+bPf1EPusco1mW/okkaQdGk2tj9FbY7OdLHTixG5s99bJbP3XRQ5ddtrJfep3DpsSAfW4YDMODxLQwmG1hfjRS/zZgffj9YGvAkRdoH9CZStOWUOXgTpz061VwwEVOtai2g8A2M5jNduEFIi+iJ73YdA/nM9EPd1/IJjw43piROSFhaPZtBN/3quyg3m8GCBnn8pTfBR8Tr8iEJ1hY68m8CGsAHrI6aRx296YLAXoM9aa9X+DY2Bv0IpuB8/Hp36YVD/2NFxXAufQgG34GGjkZBxbK3kRtMyqMUU7emBv/Hy4ClN6P0044ZfrKIZeI6KcSVix/8d/pP+/efy+Ngy4kEBiIIWlpKvNGez9qB+f5tAghpzXdLJLdDJREmReAo+zBodPKO4NFuUZq89+BjPRYYSUASTQC7DF6/0EXLE3AK6ggp7w2xL3M+hrmWaoJQwXlNvMTjTb16d+dydyW1fYi1dMxqcRQNCfH9JG8iqIxj1DZQTKlfBD1PBoBstmEnkb2MNGrx9r7DgO8s2UVb/p8RKOeonDsjrcjn691t0HaoP3XTEt4EL5ghiuWUgxkMIAM4ahTH1ghKfQiI+xTT0PeMsNNgtVG7792MheovJ2D2E9bmABtqADp/Esl1lcm7LJE6+yN7TgzxupGZZ2HOn8GNuwCy1GcCC6bnhR/W3BLtAG4DJxEhC+JBY++AyewU/nhBcezp304jNt3St6vG+gi6Xc+gkrMchrf+rc67DV7fvJnPOXcASD5IRMleE+jydMKLwRp5xEl1DrrYvQiVrDakyhqIT25hbjh5hXdgqNoAaYJC+M8Xj7sYbP+1UyQvVb0OH1+3SN90s4Er/5GEWsmbBdFy6XNKBP08FGWMsUAyksjqFOGV0ZPqc9Ai3JRkRAr5KQoylcw0JcwuOgEZ7cevGKMoR3zXP0kmfM23PuN66/mpZktA0fx6Ti8BWv1e3A+yyCoNYVUU/+Wqwr1fdpthuOGB9V3nMBXT0sw/vuRjOOYTXWoN94ivuxEei1/Q4HsZJF2s34/QSwqL6pq5BUjwt5SagZMQDF6E3AEFaAmn3vUCcCLcYPHF5V8oL7sRH1uAA8Xf3/D+G0phhIYZkYqPlzMxCH8ZQTYhz21hI7sEWtVR7FMLFHcBjrzPplakJI1trHyPh0MhCTJ17tieAn6+XhSy6XQD+vq9mxdHkZzFEPhSih88XyAo1nhpAskVu/qMKRCSUg+MTK9dEQQJtUItI3BKLeonpaaka924vuOdFr0Luc4xoCiI6ac6xDwhjh63EY6xyhh+GgwEGt0Cr/5LpOwhqiGMhpzTzlytw0f+ZocLtoz70gH0SksN+nW2tGpEoJjgMcfpsARtR4PgW2Yg9PlJFMRLcxL87yJKPHhkW2BZWh0yYKSwPjejlyvl5AJLN0X6TYvscawMPAvMnfgE4uUejCG473eZfDktr4/APxcx0VHE+qz+wsbq3L1WTFh6wAxN1TCOjhc9iIU+jHGr5JUdJsHdiCe29OmBsVbGevDnuc5Czze0vupLIdu0F03YRvz4S2ex7QCTxYRBwpIL7Z4NpHgNoBjKnyHmUEF+JHjGGJ11bsj0lba6s9X3P835DpErMEY8G6YjT4z7OuoZZCLUlY8xQDWV6GDVC5GG1gSxTqy5fxu0Kalk726wk0BbpyRCfOu16ShFsyoCcYXFVtjHbCJLRgPXszaCbgPfXaHg7nmlDcpwDNQ2A9rs9MlPqu3A1RnsnnHHxEps2TDgXjihpLixIFGAWvQ6rzpSXpojWa+rlfmB6WY8tHRH2AuBVX8P232KjTPM4E7ccaYBOPv42sQcceAr5j8QCjtvMOmRCvZlgHN+F35iS14E3+a1qCEbHh2guvzZVe912BIc6iPQj8gvk8bpUFO4QV5hyfQBN2YofjFfuCCWys+XFMX9Y7tmSDXwij56IcPSuLC7sLM1IM5Gxitoy+7B5MUtjNTEYH7HfpSQ1XKNDVfR+IpmxizHIAf+fH63AY+FwbGCsKXo8LqvdhtrFqj3Yr9rDweWTt1F0/c7M73forNh5trJyj1x73stHl0ov48QbppPJ7HuynQLYWUsOR53a80RIQo1izDOYGyg337cQOdGALJ+/08E1MK8VrTPU6pXvO3X3Fyile47/BLN5XAZxVRvpppXj0aiTk/ROfG11qgYdUrelrBFNCdBjG672BBaaRtvmOXyPGKRKWtmHwnsy/I+GsohjIWmRSa6LpRq3kElcX4jt9M/l9SCCa8ryuY1jNk65u9vshWY+ICNewEESRJBsnhBbydswaG5EKD18HrUEw0ciSE3t24H0OK+/hSf2PSQLW2nFE15h24P34ulLsxiCNWfRFW+1jJ3w89/dbGCNrANbjEGcHvw4Q3eYw7lb2vs8Q2WSgAwT6AsZb055pPS6AHgSuYWG2HoePcng053Yvw6khZT6CK6ya00jAcwSiqzhK7DGdQiN24H2uzfzcnns32qFvaPARJ4K5dY/5nmc3OnEODRxRUOucub83X0pLrBqkGMjsLE4SrNbphoWinpmnrpLDeFsxgUivPbcVlVsc30lWzk2FylqJ0KHe10YWRzis6WYmjmFJpAayx5uYL6DeTHI4S1alRnkrnkftrOfqxBGMkFqT24drWMiJPMrIoYXXq3QImGsm3RIBICmEqplLKi9JmCFNzjDazWIN+mMCBVjExgUtxF7rJqAZ3WjBLmtsHoA593qNMMqo4II2WIlcA5NExdGHEUzcx/Wd2EPAV36nFKy3YzmMdaz+s8s5lud5jOhX2qlr7LWJ7rseF2Li7cHzF0oAy6hu5K6NFsUSKVwJi6YYyBnFV0v3j2U9sPT1GZ1AEVN3GbVjcWvU9KTfjG4uk/iOTOq+nRwvohGncPt+Al5k49OCXaCz4LZMR9ioWjHraC3eVTa2ToiXjmtPMX6OJu7jc7cCQ56B6cca4Gc2SENYwYX0L5ISTB/lEJ7ybPBd3Is8gpdi68JpEmNPYdjzcrPwqPM4yZAF1w6PA7cwFxhS41deGxHfFLjjHsMSs+ZlEqfOcparMZIBKUH3WAfIL8NpxCnQAfA5OkLmBkrvF3v5XN+8h49x6nf+zeiQaR8RsJ1D4+jV8obXgQ3OGB4El98cINulZK+6foV0ehkC6G9wFI/Sb4Bc1mRzc2Euzk4DmbYWVzLljTxZ+pBN+RjPcg0UPT+A1IQYHRo1mYc7eTLj7h0ABjjExYLYYNHpXUAHcTLHOTTgY2wDTqsJ8HMCtSFR4SXrtW0jt21VuzHC+MBJEFoDk8yyGsdAnwJjWIKPsQ2tpD0pG3EwY7rkT8rauy13ij+2qxAxcaJMA84By3n98QSaQO8CV/CIJ9Wmw61arWZA/UazCi8YPuoc80F+/BvmYR0OYzM60YEtGNT7VOLnndjM0nLLCPQ3HlsXcVkIDvjZzQ045/cJjcgd4m1/PPW4kPt3kKPxtsud2JH8ftQTzOQZivdYQ5ydBnK6MioKnoXxtkI+EzMgM/Bi5LmbKaiLxBfjB0zc5+prdpj31uEw0K80NF+HCZ/p0N4wkW3i20Mg6mZllEd52/l3fvF6QLqarURkMim1IXInVleztQHngpq5+MSO+xwaWFi7X61HHVGerCp1wc/xkOlmdDrNjXvMmuA6HC5Zs934b8Jq4NK/7gY/swstoH9nw9OAc8C3ykvcS6y6E+2r6Z6vB/0JPBpWxFky2qha9YjPrbqJmmdDt4/jEuhVVstxVYiGib36fqwxkQZaCg7FHlHGei+B5gIL/ryBJpzAZnRiI/Z7ywNJYvZ+zSsFReTDCWDZlln0/5z7e8vNSKQm2AtVWGGKgZypTJQ9GyrDP57yDGgJ/43WQHr8FFwWsZ0nqmE8pTpQOMLWR3jC/gGLgX5O2Ll7S01ae2GzD7Xx+Sdiqi5EnJRzAk1GP9Q7P5ucx1cIRO227KGHYgX16NWttgaAn9nb6SYC0VEQsRE+hUZcJ+UduxOcCTdfzb1Ol8ALqM9zwlXsg6mt3IxOzhTexeHk/djIyU/LAaIJvi5Dkd/PJgCNTonGXPaWuT0Vb2PKUlQdaqwFl8tO/r430GVv3g7CrDkTEa4Th9R1iBabyKm5VWpIXwDbsZsjB+pcT96Z443TF2bQSTA9CCkq5c2EEG0+JTrRWkp9Y5EXk7rkCEtBMZCVZ2W0Hl12YnPF9xkr4neovdat2AMMEPAthyp1zz/aBtABoBObuQj8QbDBujbFz5cBY0QgGmQvbjsbpbsL4vuKdnhwiRbyPCK3SBzfEK/JtXPY1kqcdfGYD6qygw/ZI8MnkSJzI1zOXgeWU2wy82o4Y50+knsyahECU46yM/rZqdhnsIw94lU4rkK6faB/B/ARr/F1YAsm78zxs3LftettrkF0y1SiDYpDY4iuu7YTh1k7sAX4Va0nOgX7GCDcXcDeKI5w0tRVIqCTjcg4ccgYbxIGibN2OTzP4W03GSdUL4gWsp1YIizISFWDUeEJYTkoBrISLGWhcOUaMp8xj3U5RgPOmYxTc2w/E1gfNUNZwkGVKDMK/kwfuGXV5zxpcUjsMibu46SfduL1RnzEIT78rOrqlD7rCgxxvdwGUun3bX7I2BgO5T28zs/1ZOpSJ42YhszPA+twmI14kz4Ht73ic5zlsG4vXrHlJjutNxM7fqcObws6UhNF+rHGK39wmdSuq43IfKeW9dNtqq7gEdx7c4LP9wHi5JZFHA7ciR2cqNOjQ6bDrHV7hGLGN3pcT2E4eD6jfBanbUbyQRv+vO6OnUjd+KiQr1qX78RmHMJ6jBKHfHtIKeNcAC6gHvfenGDP7VOOLuBLvsb4hkx9q+kuE7lJ0evpcZWpAEdhW4slrVNKBupMohhIoWZ0vepMxs/dDr4+b/I34IAqJ/iI2LB+DwxhhQnBrcYx4Fs2juhnj+0JnFeqNT3AB+xBzL/zCybu47ZI6OWQWyNOAS+yN2IntzHM/f2WGYNZa3o0MGlFZOe0l+2VCHzKyULXsBA4y+ti2iNBD0/CuhMGenWHBgAt5HgxJ4Pnh4iS5eb0+JPqM6PHY7KX7fqj9pw55OdsP6LCqd/w8ezGdvbgFrHn1qe2ayfifpxtUMfSCiIbal2CpAxOfl2vTU79zuLuPQnHqIXttUG/SGwE24g9XvSrte5tADaQ6gW5D93EpSJf40n0klNT+61z/r5iI9mJzZ7Wr3n/G7VOfG3KjDtJ6i8mLOGVg4TXeqvFmVJHXQMUAynMyPbkyTyaKXgB9V5mphviPYVGtBJhaj5PwHiNvZhrWMjrgosB2gVOiHmOOLy6l0B9AB4jkJrscYCAX3V6vxrHN3aCx8MEWgqTSNQbGXMDzgHfkVF8cceuyyW0R7YNHwNv83tHiRN3bt6jQocruW/k1O967W2EJ3dHrNxojaa1tRoFMEampVSMKuFozvik9SA744aRiD3b687x3HtzwhgsrVY0SgS6NgW8xtm5X+NJHMNq7oLxswp//8qGAZ0qCvIgjEeKFlLlLoHfQwt5zZ/xq7q5cHpkXiWVvPM3AN+xESXi69eFN4CzHPrdho85Gesg/2YGiYA3+Vo/i9P4Gk8CIyrhS5emPM/jOo1nbenLCGyHFR3OTkhiKgtVKL9UIVyvqXSR+r3CRM5cAxnNVJvNdNsOJa8ZlYZafk6HIvE5eyZ6Mj2BJtBB4CkM449J9gjc8bUSgbaBvZqH1bXcQMBj/NkncB5txIYEb9tsw3No4Ek2Kkiufw9GQMBphHwgQQptF4AmAu3ktU5cVR7RZ+zFoIVDc0/iaw453vgDrcThx1uYC/TY2kNT7K55IG0yuxxMcIqWJURbcCXdvPyAxTa5RW9zEMDflWfZzELxe7AV3WhmnVm1XthBrhc8ALqAWK1rJlWdyDGwOg7B6BQvccd+GURs1NHLBlInJh3Cer7p+FSJBjTxcsM5NHC97CoC9cGrRcVBXqed+PNek3R0C3NZBlAnTt34IzxmT5auw6m5rRTbKrw/YYAz10DOaBbaIqmk5GQjt4zELQRvJ7LrNaQyQA/AhNoW4kfQJU4SwbdsRHGETEbi1Hy7btVOKsw2AgwTy6OdxxMxxRQ8xtmPHGYdsWUnQwifN69kYdysUWrqybkZ3ThKal3wIwI+Yg+rG82qQ0k7e1cP6c+OAY8pj6k5w7VKMOqJ1Nm7o6HP2WxgVzD8N8xDD6mEGNXdYzt228zdATXenUA3ms16IX3BNwvXSdV8OgZlNY4llgmdQwNnkerfwKPWq6O/wdQ83r1Faq2V39+I/SbkewyrsQ6HTRi7F6+ADnAW7Uki4zEOYmVMh1Xv02TUqqSW0PqtrhFNL4m6XPx1K4CpdZYFsFp13tOUYiCJKLVtk2HSnWYJOFru40vwpg9jHQb0Nonte5KzKRP39xGB+rg7xzCRX1qi7syxV3WSf1h5mV9ab24PtnKIdROH1NqIjeI4EVDP5RXt6n1eE+QxemsvqvMI1uYYryre/xjbWKxAhwMXsQdrzs8ma/T7sQa4qsJ9nxPodVVS8ACUpzoarFndgg4W6lZC7FHBBVdxKIl6MjdUCUtXI9tN/c5hUSwj0Aa+Fvicj22M2LPdhRbTWxGLeJ0Qn6hze0QdXw+vCZokpIPwEl1c9R58TqCVUF6zlRo02boXAKKT5kYKBwhosGHfi0TAOxwOv7uAvU1sIKCXf0dj6jMDxGuX59AAHGTvcR0Ogw6Af+tt4M//zL8XrGXDuBH7M51jc61K8L/nMqY2VQCvF/l5YV4UA1nLPFMDYyiUeg1OZ6nqpJEn8TXwnZrsmlQXhoeUQbqiOjzU80TZTqSMyQRwkL3GYTyF68ThN/QQ62R+AQyQSqbppKCe5k7swLzJ38wkFV171PVrT2EY63EIj+MS9hGB9gKXyYbmWom9rX6sQQ9xWHWAlFzbGLHO7DJ4SSHRDFciMu/rrh/Duc7pCwBG2IikNt9VIdzt2G28ux14H9eJjV4HtpgSnKvqNVoKE7LGhyrhZQnfCFwkvsE6jyeUMRw0mazGa3sXJnt2DEuATez9dUXGNqyuJxoJ9CjYC1zFJUFGiu4FPt8XicO8bYrbsZvH8hAbdxoF8Br/Vh7BFZP9SkSmvVY9LvBN2OcEGgH2YCu/n+WGWCgUAzm9GAy3LM0vzKNr9eJ9FPNntNmsy8X4gdfxdI++d1meDb28zshexhiwTBnLD9lD3IUWtBNPlq3E5QBHiZM40EDAEGeOthJhH7HniYeU9zNk9z9G2Twyw2tTnDjUSMDTZJJRpuYTaATAe2zUjuAlrMNhLMEYsJY9HD2Ja88Q7xF7sLugWljp/XTHQnyuEg2LF1wHlmlvQyWR6NKBXcorHrNqQ/p79U0B+tX5VcYLzylPe5m6Jr3sXV7DQnST4yE/zLx5DwG/Wq3cHiJnO6673Io9bEx73WNQergXeIw6LEpk12PPoYEN9dO8PnrzHvW9h2F0ePE0e4etxDeI7cQ3QhP3sWeJvcRe44t8zm/ew+PAUh7HdSJTqnOSlAbqtSnnOnCodMGfN4K/A933010eIFJawNHt2/L73ysXo0pAxahjCT2KgaxFJtW5lYbdeX8mTRkFV+PF+JfwOA5jHRucfvYML5JKwFEZhPiJJ+JxYi8Gy9ibuHkPT4x3F/AaoAm3rVXbbbDHgIfItB/qwhuqzIKfN+BcTE0omv7u6YquZIN2CY9z6O9tNTl38sR7d4Ea4172Pm/eo0oUVPIRFpGp2xsjq9uKfjIi6VrjNU28gCiSoZhDENuIex9RNwnPEUvFHQRwmkOFphH1Iv25o+giHi8OEOgSWFWnk9fhsEpJzK0E0MmGSGcB64Qeon2m9EEnPRER6J+c+OMacCxS2bmLee0Rm9jodqlr20pssLUXicc4lIil/P5JYkM6rn5DbcQ3WPuxEV/jSeMd43ObMb2PlBqPzhxu5/D5fmw0KkqhMppy6+LGrt/Tae8fzf4900jLeRpRDGQ1aMWwS8tgq54Sp4A34pRZr3wC5039ms+bXMPmdMbQayfP4jS6iTtxYITvftuIJ7QTaEIrcY1dO3FCSS/xZKoN1t0FbIDxkU4KaucJ87Qa29u2ps5Vp9FZrFroYBda2EirUDA+Uf0DP1IemFqb61Pv9ZF6XYkVXCY2khN/3sueTS8ZFSCc5u1Y6ow9aBxRBnqZfz2iRfZpSRRaDzWWkKLWdVdi0IY1/wZOglLexVVir+4o8fh7iNgj/4i4bEIZ1htYwGt7j/G5uq6O++4CNp6XSUvsdWALOjhsakpaeC3YtgEb5WunQp66lAOr2CM8htXAWl6Dn/jzXlxX+2lT+9De5j4isx7Zp859N6k10l7epkNtcwyrjVdsznGnXed0z7EJgx9AYieUrPRUlIQzhWIgK0krV5YfY0k2WbJYlyVtc9dKlAXoTtDxO2y3bizdE2X1IC6TuH2/muw+Z29Aew8niYAP2cPoIuLEludVQslz/P55PGE8hnEiYDtP2MPExnMhfuQ1y595G9oFoJnHYLNqW5UX3B7v2dfOYtlEvJbFdYjjwK9sVHSZx+37bWi3lVT2ZQs/HlXHpr1gDLCRdiMBc8YnrWatLnEwHPCfXwJiLbw22Oupa+l0cXw3EegtAEvJeNm6VdTNe3jfI8TG5ag6l/iEx36R+PxfJPbSBrES2GtDxrfvJ9A/YMt1qIf/3viDvcEmvkZ/TKobACezE0+zh4tmAi1hDw6riMO56ru1QR9QYztDNqQ7rq7xAPF+dNhdJ3+1ERtJvbaLX6PeN3PyzhxsRmdQrCD2vzUKEyY222hN2NTG2sUw2q7N5Zky7VOYgWIgs1JPurXIw1jnNZotGWP6oM75GLKPO2Lvj8HLfu3j8gx9Zz9I7CmMk/JkVpFJ3GklAv2VxatPEhvKXlIT+1I7oes+iGYCfYwNh3udsIm8Ugc0kFHaaSc2FEed8evMRT1pT9zHY+0gGwrEMp6YL5LKuv2Ck0pW4xiGsALDpEQQHlP7bCQQDbCAgVPzN2/yN6dMI1ybOoQVJokn9bf5k70Ou9ACagMbtnYAf1eeVieBCKZZ8i+Yj1Fi72xQncNWfS6X8Tlwr9n8O7+Y+sFhigg0aMOhSlq0GlKrfn8Pf143l+5xrh2pfdy+X12TF3kcI8TJO1jO74+q1wbV9enVv48rZCIaGCAuIVG/gan5jtKRbgQ9N70lWrXortkKa4ZiIGcyQy2ccjG64J9vA18iXgc6Q5x5eJS058Hrgz2kDM3DBKLbOI1n2UB1AuNk15kuk0rMeZgn/lFij6SX2PCdITas2pjdXUAm0USLb+vxGBmykfB41+OQMbj4kID3+DuuEoGOci2dTg7C0/x3kNi49BIbkmNYzce6wU78eNiOY+7vtzjsSU5pRKTA3+v0cdi+p0PKOc+98nxMOPkbPg5zbG+yYW8n9tJ6iG/82smGuc3493JiEg0BqHdugtyw9Seqc8tQtjA+trNHuwdbnePrBtGIyULtUddZ93+8eQ/fOF1U4+tQ57yViNelO8l6zr+GMnwHbM9Rcgylfu6oQD2OS+YmKVZOk5GeqDvZhJno65n/H1vy/4ywZBQDmQ+j/1y1woJDtzmOR4tla/Udq4JiGa3LWogfMTWfjeQSjCkPqIeVTog9qh7iSbADW3CSeNLrIxs2w3JV9jACowmqw3F4mj2Hy8RGUkvJnUMD0GT/J2AAACAASURBVMheQyNOmYkpOr5VOG6yW/Ewmc4cOgRMxJMSHuJszRHiCblHja1L/e1T48YnbGxGiY1Ll9qWNoBbO3USG65lcNZrx2LXLNR1IsYG/o67twK9DtsA2grgG5XZ2cyeIJ5mthPfcJwhW1Jh1iIP8HttpLyyL9kodRMpr08lCj2q1jUPEIimMIiVXhhZX1siq9nqSs4R2fXhu7f4HOp10R5ij75VjaEFu4AX2SheJbsWPUgE1Nu11C7iaz5v8jfQJY48dKt9nUATTqAJ7WRvEnR/SyIywhDGo1xpDb3f6zQgEhD9X3EMrVaACrMErbaElaIYyCRytmQF9jNWmf0k7j+hJsxtGJvkeXnsBE+G3/MkrSebXzCfv+OImrSV/ukZ4knvOvEkeIbYyOgQH60E17l1qsmziYC/27UpfKe6eZzla7USg1zOMKKybpdBGR1ObNGyaGjiMel1pcX4wZZENLKxHFTbTf3OhmQfkSkrGCWe1DvIjmVYbfM1nsRl4sl4gAg0D5xc8g2BqCewLgwQTfDY1Tm+THzjEMscdrxNY3TmAehnwfHr6pxgk7opWALQpyyrN6bOdZc+v8vt+UYLH482QLqs5qi6Nlhr6xHxkT6PylP9ij22yTtzjOHBCHuI0e4YLGTA4gG6PKiD2Hh3YjPmjE9iar5a860nYBHvf1CN47ravl1ffyUi0aq2uaqv00cEGmIN3mFi44+lBPonzBhNPaRK0pkzPonJO3NiOqlzxif5ceJ6vv19CWckxUBOV+7G9sru8y1/ktDeVi9e8e68Na8Se1fUDmDIru+NEU9+baS8m3fYKGG7CkctAa/hnbZhvS5S61MHrHgCGnQXD5XZuYFft3JhfbiCR/jxBcQmPzcE+wiucF3jJzyZYpEK4T3HYxgmft5DPO4OdXztamx4066LERFoLmybpcf0PpVR2cTHO0Zkx6e4B1tBryPe0sxM0Lyuu48oJhBvrovSftXh9TNkw9FtxJ7xPnKycpfza6fQiC6yNwddZD2xhfjR/N661fkkolgbN5Pg9QB7s7p28BIeB70FdJFai+wkEE0Bz/E4Ju7jvwv+vIEONd4usgk7F1DPx7xK/V6Wsne/DR/z641sNHm8t03U4GNswxvowiBWZswcj6jn/BXQHp/2lHVZTUyWTssWZpCfiy5jEDn1lxnYk3E7YdEUA1kuDhbxWSzjv4UX/HK2aWvW7XdlW0MKU2t/Xve+C485ng7dNLV4etLVqf86tHr7fn6vg9jYdROvK+5TfweJw166VOAyqe9fyQYF79gJ+zyegM0MHQfRUTMWV2xB18gNExvcHnLq7H5Sxu8jMmHgfaRCkE38mRE93mX8+CIRsIfHq0N6RE55xpCVl9OiAt6YXo9fBy3+7oqYRyXqNFdiEPhJHc92NvRYy4Zbr931EBuZHrKvtzp/B51rMkYEDCij+Rgb0pv38I1BL5FZ29uN7bZo/oC9OdiDrVatR1971ZprDfqNPF672r9Oqul2z+2Hai36IX5dr1nrjNbLxMc5SAS8Zn/z/ViDq8RGdiF+NJGMWDnHP+Pn3PSOdPgSjjhtxUrHtO4eBeuwlmGcs5RiIItmGTVaa5IbYNsGObSeEgFX1WRdz4ZnPQ7xetgAT1itpNtS9QEf8GS9j8iE3rCUtzupXr+Ghbz9WQCrVGhwKXug9BaPR99UEJEpYzmNZ+0Yr01x2FNlkmpD3YtXsAst2Ef8vX9M8veOEhvIMWJvsZvsGl0HsaFoVX9HyJnkf6dwA2Gl1JPtPHeD6KSZ7I3ouvZCleAB3wiMGO1bLUJ+lficjmEJbt/PzwfUazqZ6ag6vsvquEbIqhMNquMaJBXO/FwZf9V/8ygRMKY9GV36MxI7Dtdrc5WJ8BjfZHCdKNe9nlT77CDrvXaTusY0Zn43V9XfcXW+8bAykutVqywikwzl/T4fDmkeD+Tlubncg61e8+xcxCeV+x89h4aqL93MEIqBrDQzZSNWlAGllob4BJOLg1hpju0pDNt1nvVkhLtNEsgAgV4AdmM719c9pNYTl6rJc4MK0f6dn/eQmqB/YmN58x72gs4Qe2eb0Rkf8y549WyhrFbLHh7rzypLVtVa4ks1Sb/GEzXq2bPqUMd1hmyCyTCRaaLcTdbDiidsDOQ8l7vQ4hv3COtxwbbReh3GE8PDWsEHoL9yqQde5PFN3Gel2ybuswX5OtFFGyYcsMeGTeyBjhEbRC1cjiN8E3TR+d7oGLkeUZ3/v8Iclw7Hj6jzrK9zjz6G5TbRaYSI13CX2dA239j0AY9xws/UfHXDpG4Oxp0xREPARkEnEuJEo0rK+QyxUGw0DB5mchKPKyKfdk2zsXqeYVR8YZZw9hlInU1Za8zdSDW/f45CjhN7KKdHfCb2mu1b5/4T4RMyobZ1OGzW6bCcgGZ+vI94gr1KvKakQ5i372evoJV44tLehF4PJLUdXrPeCL0Abp57mkDfc7YnTtuQbFRRyA1ZHiWr/YkP2HPqIasJqo3HPuKJWmvF6jU7Nyv09v18jHcXkKkLRBOxduleNW69PtnPRg1P2+uftLboXSfXW3+RoEtoiPhcjpJV+tESfyfVtnjYlku0On9bnWO8rs4zNrDx0MeqQ5sn1e9xlDhU+giueHW4bBx5Pc/N1t2JHdwpRQkFmGM4zedtWH2/7ixylJQHu0wlF53VBge2LOVta+RNlxAl3+aGSnvMuaJgpxXmTdv3cSXg92TkGxtPnlA40zn7DOR0ou7VV2qm10fGw6dpdNdJ9zmvsyKN8qqetoXQc3+/ZTIRR0kZuQaeyHtIeUFEpnPDPvX6ANkODzpUOfU7GXk93WHC8K8wOq1o5Ekb3wTKI9T338Jck+2ps1TRZEXSO8iu4+lSj6n51iM7o8e/gUO8ptnz03Z8Y4F9p17/hJscfVwuddaoNSLKA1TnE02Ol6i8ctT75Suj6vwPkK2TJOJQKT7na/EL5mMIKzB5Zw7LvAUE65vRrTJEreHWCTxNOAEsYk1Usx79NF+j68T1gk/ia07IeZONfC8pyb+lbCwX/HlDfbbbePxDWMFZyH/3x2Svdxu2Yzea0R1U29E8mvB6IkdkvW8GUwxkQdyZ/k9Rjl5yhTK9CWz+vIEFppZtB94HvcrZirweFt8eH/p390R8Jz95Zw4m7lNlDWSzKrtIeRgPqUSnt2BqBPEQG6WnMIxGnEIP8aT+BM6rNa4ub9/HsBrHsQrrcciMfTM6vbCXNtwDRBzufc96j/tIhViXs9HpI+WJPURGuk17kLoOEot4gnYlzLCWJ24rps6/nyUY88d8bcomZqRkQ7qdWGz95IgTzh13bhjAhuU5qxqkBQ6OEt90XCd+XyfDXCQVKbg2hctqnGhU1+MfYIO21oo04Bu/O0YDznH7r8ak3xGvW2rjhbf58Rl9/Rs4rDuguI+s53tUjbHH/T19RSDqMxmm3YF93r3F+zHn5R/J+quuHGFP4P0wo/KBit9nM6C61lhYUxQDmY35eVW1Rp0JGeWT+Dr4eqgVVrSuTff/ozX+Wh+dhS24V4kC14lMkoaeCHVJhK4ZPIT1bBiXswHFi/yeFirXYVBt3HRPw6i492WKj509W3ediDNvO4hMooX2Oq6rxzrho1WNEWv5r05i0etkOgSsvUu8rRJR3ouPQxfPR0tmdDaop6Sjz23kO0aJuOdk0vVuA7QB0ud8gAgYscZxhNiL7CCbuavrIHVz6mHiMPGYOidaU5eIPTkiYrH3FynuGT8Ps28iXnv0PLMRGNEJPEygnarB8WO2m8c+dS3biaMMR9VvR4+zV72PMVs6dAH1XneV3zAPNNc9VxPB65JM3+gZj/5s+b1Gr6PPC+XfnzBIMZC1QvYmqrf/3tDrTq9J3b7J5UmKS2glHQc62UvBUtshg8h6BT2kXn9aJW5s4ol84j4C1rNBOo8neLIPTHI7sYPHsiF5MvHaMhGpfpXMXzCfJ+OlPCHjEwLe5DHpNdAzZMOrR4kN4c17It7UJxQTmdDGtz1hXEajVa2TBq9FRmrjRf+667++iq+VNkC6FvUMscHX6kA96jWs52PW9Ymj6njPEBvppzAMfJjHuNxw8QaYDNbJO3O87FKtRnR3AQH1bNz79G/jAJ+bU2g0a5s6BH+ZbKsrb78f+H+jTBPuD7NAY5XyuzRjDWU/C6tJMZCzk9FwTnb5q7SCax3a2o7d3jpQL6m0fGzBGbKJIFiu1vrqbYePPvWZDvU+VinP7Fu1LvkaT+7cbzDDZPWvu7HEim4i4CpLjHUTGUm9EbKJLaRe36fG0Uo2SQX1ZHRgV2DI1ERiGQXLCS6SCnWr+rQ0LyZLEkhMIlDfyATCeXdvqbEpA6WbQus1VZ14dJlseUU7qZuZ1/hY2olvQI7gJaNUY8LUK4F1OKz2d9uOMXqMr8Icm/Eet7P3d/cWGTEEDCiP9wN7U9JD1kvtI21I+EYM79jjILLKTcz22PnQv0d6FKA1CIr8h1qOJS0hxK5NgiEuhpURBblegX1MO4qBtPQnF7eXYTmJs2RVOPKl+Vzuz8fT1QNrJjtt6MvU3j0IL/nGG3uv8zwyOWsVGu2l4aCaxDYAeEd5hi+SlyXZRewBuWuS48ST5FViz0fXrd1doCbheWpi7STQXjuG3zCPpcW28Wt3b7EnN/HnvWzkm+GFntHMn/kaT6Kd2KuauM+GTnehxTQO7iVbdjBxn2O8lVE4qo5b64iaffw9fK1i4escdD2lpPA5kZVUM3ydM0+xnM+5Xt/TggzaUx5W53yfoi6jwAY2AC3YBTytfiM7wb0zj5D1hJ/hvyfQFBTbNglF9XxDoUO5pM7tGXVcWOWsOy61Y9RqO6R+H33ExhZrI7/PzwPngAgYIVYrWgasxrH4/+Pc9P+nXWiJacwm8hL8/ydF3VUmmbezfb/HuwV8RphCMZCzmZk0VgvkEzhv1iL1HfkYEbCHDQW2s1HrJluU3koEtPB2J4m30wamh+z6JR4jYK/NlNWSdKGki+g6a1LiSDexkduPjbyPtdZoa+UY+gxY8OcN9mhfJNAoTKara6gaccpkjRKRr9ai6zX/ddcL+YY8czfxJZVuf1AntOquAxL5LcKI1HrtUeCPSdvCS0u80Wdgg9iiblw28fFo5Rr92/Fukly+i2AWri1jOeNdO12+4wo+4Glei8NaAoZs9jLe4XPue3UToO/hZSlfJus56ybdIeWcXCy0s0chDIWJhVWjGMhqUCeYTEfGJvLA3TaWMV1JNFv3dsasH7UTe3XjxB6XLlzXa1/szYIN4mmerF2FEHxERmiciCfuoDJKQPnnFfRi8s4cM+muwJCpm5uar47hbX89UCeNELGR1sa7lygmCOC1WGoihJriTt6ZYzyMkKxgMb8Tt1+nHq9+rL01rLL1hviZjb6+CSEiE37UUoCxVlEJXtQa9BvDaSIIH7A3F83W1GUwuiQEn/N1/AXzgffUuV2mIiDLYMYwTOy1dpHjOR4HsMh+9zGsjhvwVwE39BotD8pdj0wgum5vbgKqPSX5v6owM3vEs4tiIGuDyWuAXTk+q720WqHuQuFOprpAm0iFXb91RMeP8GR3Hk9g4j69frcPk3fmoI9suyqtguKm8PshtYveOHoyjNVt34UX2UjoBsmL8YMRy564z2ZwTtxHoCHgOrEx0eO5THwcvUTAa/zaduz2unCMYUnCWMbt4xxi1/iQYgoxLrnEaILDy/8ATAZ2s/1eU3/4GHE3lw0wRr6HlCf/AZ9ffKDWZLXogdLQvUgEWgk/oUiF/KOT7WGsiy0jHMcqc011cb7+nZxDAy4SG/IxIuP1GfUgPX6dZPUqOGz7jL8PN7uWu5DY8qs2815uZSMiCurklo3PVHBfwjSKgRQWxqiHQmQTJW7e47/+BM6zsgzx2s/Ne5QBHQJL0S3jiV+nz3MmrFove9NmGpoCeKXxSuTUeS5JmlSSJ5voOpCWAtPJQlPzeZ/XsNAo5PSQSvL5SgljrwHodQA/8dqabjCNd/i4dJstIqfMI8CkmrwkcuumgPce6Nk5TgR6Fyrj+KR53ZzPRWTbnj1gvxOd9ly8gl60q3G2YBd3YPlWbff3+D6vk+99j1N0m3EvA9p4tcpIjmEJsJaPU5futJISOHibjPxcH6mbxGcA/Bypj2wgVs35J1RfUvteC3YZ7710vFri78vwfxgQjRCWjGIgZwQLuLvNmlJeqJiz2yGkj8i0cMJzxF6SSuo5o7bRHtp1IlvLppSE9OSm/2rjeAtzvdDmmTzGhyECLUVQWYeIJx40qeQglXyDF22PRO0h96jtz6HBydwdTt7vIv95/h0bcpUlpGckR2tc44bLGauSxHPXV90G1FhEwEMJn40ZzTwaBb/L138lBs0NB1E3SxY2EtBob8awQdU/EmVcU89d0/wUkq+fx6zh1X+VJ3mmHBmzQo9iIIWKiR6Yy0htnQqlhTLyTE/DszCehvdZVa83cR97XrpUQJdI6PUv08x4rS7tUM9zFHyz4Rz0X99kjzHUWcN4RA/5odJHcIVLD1SIr4fY48XbzDFio51tHWkwwzZZr0cefNfxDHucY36IjOiDVtwh4jU/HcLsIfbk0WKTavBmvPQhLsweoRPmjRpqc+OgpNtu3kPGAOn3XsIRz2MaIZudjZbkjF4dFk5irP9mhNdT3iMiTzVJ/+azXRcJpdY4xUDOBkYno3pcKPz7Yuou/Nw1DoPEcmPedkd5u4n7OAFDZ0xeJA5h6uL6NuIJbRAr2UiuAcupPQDcvCc+dl/Wb8qML1nuT4XBViJ2LGZtbjnfnc/9/Za3BrwaxzwZMqatHwtp5x7D6nTlm0IYaFBNRN76pafEEiF7HtYT5VKIERBdd6TrAqpETgbocOQ9Dk+rlld9acfr1Ep+Ei7DIPIjHGgmNa7bnlHeho+BI+yFXyS+0Qp93xr085qqXq8/7tws5NA7zpy8ElA9Ek57ioG0zCMEVAKmCSan0Sil5EPPGzmZ9+dDk05aG6C0tTavkPsLAPWqrm4ovm2r+nsKjSBSYcykNZdQD8BA49sotVfajG7Qq1bhBRucRA7VDFiPER9RbEIMecmaevxWizXKkyljjisThaQAQ2TpuvjnTcu1XTDhSd3yy+VhrPN0cIl8b0x7Tl4Grm6c7IpRrIH1Wl0d4y/4sf+/4PeV1CF+vf/92AjaCS8Bx4wxUHLire1GNJS9fpV7w+cw2hqrYL4b/33mYj79JoVloRhIoWViokggs1K3iwqt+2hDoGsQ+8j/Z8dzNkHkOhF35HD0Jk+q7bFWFWVvst/tZseayf1lKPUbJwQ8mj4hRY1VKAy3BR1YiB+Dxju29vYpEt+/GBpDpbIiI+3LtKfurSU2+p/x5AM/BWgI6EYziLJHH3Q2c5Rpa54hemHcyDnuIbUWOS/3uczdQOBMRa6H22ZNWPMUAznTGcowJCqyxs6pqbuasE20yD2aUIArBFoC7hTxnG9Q8CaZUob1OISd2AG8yWokUWHsqFRYWmiRiFQdHEcLcCS/c5aJFWh/5JbN5GZf5m3dNmhuqNW8pr3kpBBvHjQ3WA+RL3SgGNX0tfWKrADFv4OrZpxdeEN5aekJNmklMh5z3GARUUyIIS8W4FFqRlV5hGWjGMjcrK21heLTuuOhNJ/ZWnWlrc2gOfk9rRSyEfvNZDVGFKvnxDfWW/wN87ALLbzOtQmRyftuXt5Y6pqSk8RD16bwMbZxqcknzudHbGhuwZ83rA7ptSm4BeheJuQ2cPnEM/DEE4gINA+e/qpbFpKTDaHjBkrlDf2C+Z4QxM17uPl1apbn63x9cJYjA9G1SjPuv8G7buaaeqUXZ8y5TlpaMGN8Ffx7cRJkNmK/lbXby78xfEOswxr9XUT1bfNhwIPFaTLau8Vzn/1ttdXWfDTDKQay0tTyaFnIBdT5/0NkXaPStHqZKnEjQxbeKhzHG+hKfN90Zo/uS2VJurWSWizcJMk0EYguopfShZq1Wk3y8bJ6jdU6vRh5PyzQfAQvRV6zhfxauozXxk6CqDV2PKlcDOTj1QXPYeQmKas8mWvoicjIutn103AJyc177PV0lXBwhRJLHfBJcmeXNO3Zw1jniSsQkZGnw5v+7wpfkZ852wcvXIwrboaqvYahzjRCYYBiIGcKK6P4b6kTT5LoJvFEw3XeTcIleHJfI/r15crrioTz8hX2JiLQX+KT+AXUx9tfRUKu+IAnWXe8IS3XH7A4KOie1EopVhYQYbSo3XwuGh50Q5NZvJUbf/jSgOpGCAfU88Xx852WgatrVwsW26d4CzJNXutMrllM+lzy0oFVzDF1k0eUkS9w7GVlmWonhXlRDOR0pFGPqUkeVZmqTvlDUjH5kPJItsEquYS2c7yEaCsiN4EnStdo4QPKNJGbdbhA6yg3w3Q/NnrvLfjzhvGEo9SJLVqDNh/qyVyr/BBRSUoKotmy9lxFogI6MUb9dY87X/Ufs+881njTiuF5LKPmhkNn53r6qkuLP1eauRN9hDOMYiCF5WJxE1O06bAl1zFmatabkt0Yzb79Y5JAL8B6U0QgGjQdMC6g3oQoY2UsSp4tc+LTZwBRW1Wvj444vIQjua/FR87jJvLqCInIW7v1Quc/8xphUq1jNtryq1BBP37295+bycsCrtfm95VkFnccwmlIMZCznUn1X8XSn0zinSxSx9Sj/kaSfUzYNhR+OuxMktowhpJ3cgpBJ0+gaPKNhctBrPTHaKgMYdYwZCHlH5uQqWN9lG7omL0xFdK88Yfxehf8ecM/Z7vgGSq8aI/dO1eRDM/U39nhbGOPGvNYO7BSCzKUlONV3r+wAIqBFBbKozm3iSe7JNB4eq3BHoIeczSzzY+tie+lyY95LZsihm+wyDF5iTQZSg0K2sevOa6plniLeulnYW8QlgD01+zjy+TxZ/ke3T4r0MXGrIka5m46rOs7C+ZnBVyjMl1XYckpBrIoBtPsq0uvyDuRdty5pLbyoTYqe7A1lllqxjUPwJd2oqMhxGoHw02Nz8RfK3CiwUEKemq5Q2jd9rorQ+2tDRbJWAmPUkDiNbWA0pOXfJRNCSqpfdqgOi40EievrCXQJthGxk5ikUkiUolBMVnBYs7B0oSsXBXGXolBHmdIbH+It2nBLvVaHr+P53NsmyuMm0GsII0563eF1aAYSGGcmUS3O/OdEGyJhTUEKvT6aOS7FpfmxgNfke0Z+TJyl0Ncm8ItzI293oQTxlDotTstqu6OPb27wtX42l2pWOCNWkhkvgtvYDe2J4aSiaLJKrm9tEacir1mvXCY8Ku37pfy++rEZk8XloiA/rBXSUTYgfcxZ3wy9noHtmQ8V7V3IyysCMVAznRm0SMthNyPMG2byFpewhpZ6tqUDl9G795T1unyOd7VOGYeJ0moWW/Ecid2pBSWpySB1BjRyEpF7ms6ASlq7HdiR2rGcLQ7yvw7v+QVgg2NwZINcuycZ203lfa7KLBERdRsZgXFQFaNCQYjXybVgxXLYqTomMnrey6/xpPWG4tQa7m6TPIC92CrERovjLk9oZzMEGbzDE+RYbnifx82eUp3UTHj/NI+zqnu81YZjiOvtT2ucazZmkbhdKUYSGGYbmail5TisB4XgkLeWekLCPSEvclrUzZMSsTC5gnftwstJgQayqxM5oD3fGo+5SzUjmareqLaOUKeXMcaVfXJTv8mwfdYo+uoqR76tdzNg4P8B2Ji5EmavOnkc+AJMXxCtqNKSm1sGpN+r1mZ/Bsr/JoJpyXFQArLy1yqMT7bs297NG6EbOumMHNLjPUGQm5qsvXEpZ2EGNMEeCDHdztMCg2m9lEMT/ylbIlUlB5puX4/CSITpaMYPWEixUCGOR1qlkYLOqbiJekKC0XqxBw3DNpGFAszmuzWrAyE4tJKCrIef6qerVkDdby3ufC9t+eLDDuWOvyaWbrMFzCweqpd3vGGM43JiI2767uloNULTtlmk7/f1GtYgfB2yTkdxzy9KQay0qzFdO7QWl+5qQ2VDheaZJFAnaO3jvYg/BDmzvwnjVA5R6h+ES1O02RKN7zFMN915Pj6cFjzNZt3eTn2mjnmZfbc6jCoDdnmroONcVnytWpP+VzuMH7SeneF9Uz3ltiAZWgakPu3ISyCYiCFxTGmZpLCthzvJ4l0G+4FaDFUKUa47i+q1apppeV6E8etM3OjXeTxFdkMzpSsR61nmpR0VA5GO3QUzAcAY1AeCBzjYniG3L3Ru0wUFGvPmwFR+TTW4wJoG3AJj6MvtE2BWbRZeA0LK3J9L1dgH8JEioEsP6enKn+WlkCprbsKURhJKt/YCdvlQzMWbuLnaZ6I2/0iNPb5d34BEaGXCETtqYk+IQ3T1F6TJQ2P5bFWq8fWGz6vee/bO46492ne3xYJnRdQbnQx7XiSQrz5spDfaQmZVF4krAmKgZzJLLjbQklCiX7Pw2IkvfyCdmsc3LKEEKOZli6HsCJ87E8nfN8QoA2CHk/S+S1JmCsQatbruGlCDmkSeaksgYiBe77jvSDV72FDvvtph14XzbIOWSzda3oJj8cECYqnXuOdKPuxCIumGMhaZ6pXUsr9pIXqoj0CS8m/IVEyziuliCSZ7MD7+R1D2rEfCN8UBD3kkMpPcxnPT77H0q8eb4CvLPNCfIwh70WvDbsSeniH/AzXhISftDrUVThuEngMvwByJ8T5XuoYloAoIRxfwR6KXkutkrB2fkNCQzGQwjBPoKmoz3+MbXl+xk6Ehda/5UPsJdAFxBJActXQdaPZGoLlaZPayeR9O3V2WBrepmBPUK/jbStgwo14rdGWYEmMnjN9/ZIyhnP3M83Pu6pkklm0+XfsN5XHd72B6aO6NEspBlIYYeAuHD2USdR8JQbLOrb8auJac25zCo3mcbbyDz9s3ItX4l7RNGZoXW8H3gf2UKrMnMtzaEh8L6RzG6K3/l3S7i0zhcM1MIZZwUwGDDY8ngAAIABJREFUsk4Zvkyoq6vLvrFgFgNEVFftQQiIiF4H4f+ro7r/I32zPiJ6vSIDiuB7EC2tjd/KGBH9p2oPQlApnAewPNdGcyoxEkFhOIx1uTe6NlXAN7cW8Bkf+CRtfOWf8NDLf+txQb1yMedn3KPGe+rBW/ae7xDWEzrtdxMR4SH+24EtyWM5TXQCTf5rX+UcTvi7Psi9zW5sN4/bc31XX7pxnLiPCIvYOGKv89leUjknRESj1Ixu7/ydQqO/r9NE9DKIqIuI2OBmwtI671y5Y0jDH5OhVwdT/2e2Y3fqd4pxFMQgIdbpQ5OkUYMM63X6a3Xc2b70+87WJ9MyFHJNy+59HJcqdy6/yD/sGBpftJNHuZhPrWxi15cM69KlVu+Zdlwj4egSU9Yghcx+rKnMvtr9f+LkBIubOb4rPBno7EJ3fTFK3dtx3uRvifqnIRUaLCWc/P/b+/5QLcr2z+vUGwkGht/X1g2jHyQo37Potm4/yMXWffGbUVRYkiDkkmtFLgmGVNubhsdQ8MCRRORUHOG8iIi9eKgsD4kHFDzUcTNexTikW2lk7yokKIUbfvaP675n7pm5Z56Z55nn5/l84IPPj3lm7rnnONdc131dn0skUjv3Ft7wj2VX69ys8EuO7TKaT9vWTrbZcpDYtDnrHA97P9f5Mu+NJm0yGUg/L6tIvtaEM3LCkgayvVieRmztmqzlMKuWEU8UOI8UgxTVdu2PGb4LsIk3oRKMbz8mw9YxInb7XVha/zkqUGRvyx9wm/P7edm/saUT+eiXtYsz/oAyJMnSiKKlEoM1zEvn0q8oRZZCGsh2YjVZorUU6BdmyRmdvrBaVDTA1Nc5770KN6bAHCOCmy5eTp3Loh6L7ZNYdUeNGa3jZQZztSj6PlM72PGk4+HnddiQMGjKsCQkvAaxso6RBsxL7G813r6s09gqD8RtRhrIjuT535p6/LjRSucOyF0pN8OUc8Cm/OPQYvdzBcZetEOKGdNIFfP0CXAfjqTK62mtZfVNnDMl9wwjN02fFN50QNYgI1wd/43O3y4sDR5E/HWe1yE7qzeCec4tzmANdlYtxre4xB/Z1qSB7HQ268k4b+ixokC5iEqsuZ0gpgPoE1yotP+cOpt7KowFy+OfZRd4l6YTWiLjIu4HssbtUwtyt9se/ywqK5fsK7knc3+V6DaIjmsE34ewJrDSWuPPmNL061A2fdcxF1+v5UFhwpAGsgirbd5aZlPbRrJx467eU8q8XiajVxNDzmV0ivezYpZnigHe18zrVlBT1V2jxe2Cfs82SzAYJOqICDZgXfh9Slh9HTZA5GxKof+o47FeyO7bKG7Y1/Hwnwn36w8Dn63L/FYaq4/5Iypki5EGkqyOmaook5B4mk8rP8GIZLaQqsQ8Cj8Yit3Uc4zLilb3i+Cc8/lS7Irst9nXoTLXQyRN+s/0dLwXiIeix0QSDwDDmG8k8PSBZjee1M9FIN9fC+YLr3jmeUs4FpGwc0patmsupnV/aQQzM3ibSHqGZZIGkqwfZ+O49/PLNzvvVxb9D50RruuO7msGxiHfOp/Fbmp40/z7dPhZXFe02hIB3F2/eU0z9rn5CSCyI9LTcBeWAgeT26Z1PbEMReOHIp/vwPPBQ1RaJKLm83DGXq+5LptXJzd/DGRu0kBONMazQMujpwTlmaLGT5nVzsklbhMswGfhZyvs8Tx9Cu1vBsLXvm4W8YSUSiUSLt21spa4RgW7jBzBfbm3fR47IHPhvVbW8HmbGIt4DbGX31b395OHVa/dkROJNJDlMl+NWNNY97BQT02/X4iPc2+L0wJXtDkI95kmx9aDS2vBpL8XPI696un0uXOzA0Px33x3vXJSkGd+rTJQNWtXqSyQAdqLl7PncZbEQtw21Bpfw9NtsCVDlch0EjmPqd7vE97oPue4HzivPeuabmg7yvVBn8x2Yik9Q8l6kwaSbBx9HlZalm28fnN9YhvTdWQkfjMNQ7AYNP86NXo2UQcDNnlCjbqurYWdTHB7MnSXzN40n9cxnFpv7sDzgbKQtl/S9cVrvya39bapuhUQuR7UhEbpSZT5Qq/XfiyqPL6XfA8CWhjvZq8W42jT55xsG9JATjTmDm8ZtmKBsfUSU89xJHy9BauDc7h8swBf2frI6M3belqaYJIM0SYaNO8CIlmVDS36r64xsK1NjMxVmlpRLHFqOs6Ev0mUcZxNrDdrFqt/3zY7uFKS0wnMjHqZFVncaFb6WyInNGkgydblDReueD8PjXzMUMRKHIqs5U3DD5iN48Dc6sbajS/rPh+hkHs5xjhLrzagKdPwrU+69Z5u4lUoGq4JTxpePpsqOJ4mtHAfjniNeqvRu2a+tZEPTGSdSAM5ERhJZGkS0250xzAn/XcrwptMJEzq3JizvBC8bf7N6ALvbnfYvA/XGtOTfYL95q47vJDabcEXzmwEK2d/hgIAdv7xjkTKOPziClHvfC02Bg2Xo2U55yCPunPyDUR84XSSbAppICcii4ZZQx4obQyln9Pbyc+GRVSaLujYYRJNTnv28f21iEqLXav064nmGE+O9kxFaMe2rdJxa6rNXI+E3N680IDtxePeBwKbIPVP3BJJRsJpCUpohkVgDeC1Kf4MYhEJE3TW+B4mkpnS2BIdI0mWSBrI1uV6/+cVZMDahUXVRazBmY3jkH0Aljnffar/7saTkVpI3CaQ768BK0MtTuwO9+d2k7h8s0QzKUUg0q834EkIjOyHWAZXcLsdWElBKGpUk39fQWnM3GJ/e3au/cZOsBz9+mCTmPf0619/ZoylyrIlsm1JA0nWn9aAhawsII6jApkf3pA0sabK448KcFYgomoviZKLFQjKPBJNnSNG4Vxqjab1ogLWsYavcq/MDLqlKPthslDFL1YeUB8IEtm6wTmq17kDz3s9eZf34Yi3w0wQDjdtuuIKR5X2S5J1IA0kWZlpijgi4ml223hab3Q2jkMeAfBYbIwj4WtbXmAVcmZg3CjLJPdr9Uen4YfQOJhs1Xqv68YVfRrF3Xgy9PwSouz9WIDPTB3kePB3YUPWeEwg85AQaz+D6eZ1mFQ1HWcgs5B48FmCQWBTWMaRFBjflzr2+olgkBOUNJDtxdoK8eNMK6LPQw011vd8fcbXrZ/zJYj0iyTqFdFnbt7yjbkhb3OSQ65CBKGo9p6oscQhgUyHqfMzLZwWRNfQVFLtm+Q5eIW6W5WXvdcVgzrPrvHBV05NZKRWMSyzmINjwF6d9z6swsUbw30ew5xIWYwreZf2d5pWg1p0nrP/bj3XsEZWWjMmW5o0kGTr0rdO6XaRDz2T2DaJJJw9SR3Wta5gtmi9XSQBZU+q+o3b5cPu4yEccra5ln1u25GepFKUjzbACKesIYocCUo68H60E8j9GIGIRAzjQziEO3Hasx+/AlVeOTj3elTbcYckPaSBJNuD134N16dCHkClXoMRL/RRAOvC915lGBHgl/hn+4AHMsZXUPO08UyWq7hh80CO7lYE68XWU1dBd/UMtVxmD0TC87WiAVb4vZK0nYhUnXCTvC4hE0IOhsvR4vKPZCuTBrKVqH0Lmz+OVuRxzE7cBDEUTd4Zwf1BRqZPAeiIqJD2gP39ixJ4jfhFtGXTBtfYjUIeiXmevhKRUrk5kpxUC/Fi1veHkRZSHDLz5PPGVqEPGBF8ie7wOJucLGFrxObBqbO8EOut2QNZA/yMKd4ogArEjwf7qtiAOiPEWkSn1d8SLMk8DwFkR5AGkqw/38IbKbqakqLhWWFf5rUN17nNfEVEi9lXCDASFv+LhF6RFUXfJrGi9LuiY7TKNWqYR4GDKm5uv6/YULkgeyWt+W9R+kUZsjKBfdm5rjiDnTfMCt8vwGfYgefNnHyj82tKNrSt0w5gwCTanP8tMJg4bY/n10U9LOltxtz5D8b5bPP/xstgO4qudzhpIEnPTaqErh9p4TB3Taro+CLNin8xCTn/EIgMQs7/Fn7XF66HnRMJ9DxtF4pIBmqGJNgpkbBGzxSjZyaLiKBandQidHVR/TRroL5G1DFv64LYhCP387MY9e53KJjHoHayT1te4W1fmPNwJKSNnQIcFaA79rfycOw4312P1LlW/Te4Nf+28zFcaN/7io6HNZTtSBrIVmAjdDzbgn3Jm8jh4HVvEBoVkUjoU2sQNVwYubHvB7BIvQ68L5CViBhoHFSN0R7Rf8ObpHa08Aq1rwauX4qKDIjYbiDJc8K68j2DqFxbtX9vA57vkvNvzyss/RCIjIXi7uZBaBp+CNZ0Z+JE8ICCubqPj7AYfVgFrLTqRAe0bvIO3S6Q2zuJoLtIUUGGouITJFmBNJAtw7r3amw/arsqN2Tn8DUAW0M90Z8xBdgk+Mb9/cHYmuPt0S728bDiPTgZ1N/hkHgEDmLcD123lFhGbBoLdabwzMf7Fb73eO3+hy9PGyrLW8MxnsH0SGi8Fy8H3p/rhWOFAI+FIW+fd3UCM3F9qkAeReABf4yFuD5VjIiD8oj4HzYS/SBTM2uz+U0Vvym7vKoozzXx2BOcNJBkk5kzA1RrDdXoxW+gj2Mvpv5xHiIHNCwqAvzd/LvC/DsvZkD+hmiHikDuTP8dxwx9HyujeBK7Y2NTg5ren9Aptu9OO9dqexvWTrfcJJJ4c0c4TyICbNLQLrbYB4de4HToSe/A86EknfTg8h83YRwz9CHnb9Hzxjvh2u8w5kP2A6dEgLUCzNTPs8QplJtLmgPzQDRQxr4ayA6RnGxx0kC2NQtqY7Yr8YTb6in23d7QK7DC2NIN7f04KBDZEQtJ7jE3w6jc3bUpApHrxjNCkJUpkiORyIgL+BpCB8yhN1oVS4w8xJsYW4/QtgA7IhrG7M3Yx/eYhpO4x7wf1+vwmIaa12IjRFQtZ7No1vFhUXk/m5ykGawhP8MC08jZc+23Ro/b7L9TsuNIA0lWywKqI2+l38RtBuqgRFVO1LiFxG0aZj1s3h/DHFzCJDWcDwJYYBKAjJeGtQIZAe7HiK5BPqvhWKwQyCcIwqd2bW0LViMwmn8GBrEEWFtAMSieELPSvo8nQZWv1lIsAeRcxSbYOCiBJy4ikOdUSWibnVcRYLld89PzuxOng2SbLViNS5gUUWpCn1kLXqZe5x6RIEyKQc/1/km9VhGPd1fDg6EbYo8wR0cQ1lROONJATjRW3+qqPM7AeMVt+iVM3HCb8eKgACv1hrwMHwILBbYNl7v2NYglwJAaVHvDtzWM34iuobl9IpPaquq1YIuROpvpfDcLsIYurhWKf1Qu1aikopMWrrVdObKuYVaWcFyIPVHa8aAaiWEJDVZwLncZY7ZcDSC2COQ1oFdU/P2cSLA+Oezsc0AENukJ76uXj2UC3K7XxF6zHomv447nFqjP7ClaArMECsiOJg0kWT6tzFgRuk143bUw98keuwXjEpZwYKH1/Izh3Gp6Fooag914Uj0V0bWt65fszfsw8IAE6i8iWoOI3RKuvYkaxuuXkokdeEdM8kqYvOFvHFwDdxXxkpKeja9jxgjuT93HfAybkpeox2s9/Gu/aphU/oxAR3VINCS6CPsxKJpBvASDqsH6kxqWS5gEzNXvrk1RYzYkWoOKQQkSj4K14sc0IQcrdV/2+opEjX/uZJu6rtUN1HHfyrS12MprtGQJpIEkW4fx+jiRaKmFlTUTEWBBMrsPs3SdrA+r1ODdLt7wbr+EXqm9AQ+KJoz0Y7mGaU9WuLGaukvbyNitAcRXHiH4Bmcpu3WEaTJsSRpDa9ZUI+dk1nfXYUP4gLLFGMA3BSKDQYnNR1gciHT3iABP6ANLL14GVoZeow3XiuhaI24XExHQ39jvLmGSXq9H0uZwfXnz1rC+k2QbkAZywvP7CsLaBTheZHsjp2ZviMrDKduHeqv9IpA/IVB00ZvyODBXjSm6BTvEZFy+rYavX0TLNu4WbBZNRrFC5JqtujnwTtToXsNGrMXm4PjqVc3AOGQsfpM2JRMrixpA7aGYKF8owKKSZ8OYn/qdG8YWkYSqEIaioXGsMF73Il2b240n0SOaYYy5gj123m/T13hRtW+xQjAmGqp9ErtNG7Gr4X6fEMgz0A4sA3otluFD7Q/qGTe+9nz+Xa1iDRdq/D3ZIaSBJFuDGjI6EskedYluzSa1JR5BaPVFgfTozfzaFDUC1rBtE03sCUTJHwfOit7UNWvV7PsVAd7WkCA2JVsUnRXjKX7uN4J4RaIKOy8hIkM3B8dqmhssr7Z+r8J+jQC7TVQ65d0uXA+N15VKjxb1HzBzIJuBh3AIH2Exrvx+A7BMx33xRjWouD2Uu7M6r+hWj/JDLHNEIfqD6xkc+53086DQBlkn0kCSZbM2jzQemrTG6jMsUC/HeHDrRYvPe/Gy0eLU1ktYEe7jGOZgn6ghGMZ84KAazFOiIUN067bfYxoGRIKEE6vVKhJ6VicwM/jsS3Sr3NovAqzUcK9d+xSxyj7AWL3meLXHUD8V/Ww2jmc2dbayey6XYhfewhuh8Zql5491ep663R6cx1Rg1IZxh7FNBL9dEWBmGEodFH1oGBY1nmdFPXg8rV7/WmyMhMjdUhpbViIikUQqEb8xxI+1zecq9JV3bZ7yP0SRbUkayE7l4RYYQxqDmreY3uY0/JCafLAWGyHnf1Nj+P01YIGG6vpFgL2qKbpPzJrXm/r+lKiHuQPPY1BMmcFtGoK9hEkaqt2r+z8nAvSJE1b1dbNXbsC6SBstNYjnIJvRMhmPrkHPQ/ehQCRZV2hD0FhmQqvmwUBEDaGuSwJYpNfh6mQNrdowcK/ovOMBAR4OhRgwV2tc95jrtl40+efyzRLprIJF+u/L6I2M6wym4zhmN2GOx4pt79PFJVudNJBkDXzO/U+/Pqhby+Jh9/234e8j8mQPIgypbUWgXrMAn5k1p35NptkADIjerM9gOnCbhuWsoTwsZr3rJ73xXpuiN/VBEVyfqlmSF0QNLG4zvMPwqBrCk7gH2B6GBBOSd5YeHdlWJhZ61h2/vxZcH9yhDwu4XeflgqhHqbWOZ3Ftiq45bzbzjDcFmKfh1os36vb9Zp6xUCMBY6K/vzpZ1AM1STrDmB+ZV7uuGHqtuiY4B8dUvMAYG+u5Vj0PqcpGIa2CEzkhSQPZSUwTzG4Gb7rob7mUm7H1vl1YClkNnMad+tmI+X4WtNzgafUA38MLuDpZb9AXRILykcNibtBrNdR3J06rNzMowHK9sV/+4ybgUy1TwQItaO8X9XysysxhM57TuNNI1RmB857oeN2SCr0utcjJrUdc+ScXMzJnn8TuoKTFer323GzBf8RoLTBh0u7QQ9wm6gH2itY7YpExqk+rF3jWfD5k9tkvamTPikC+u64e/qu674iGrlkbDcLAK/I8fAB4QjLXKtuat7TXA1iHkAaSbA3aEFpFmqzbk7gH8hdgXDSMKg8CmGdu2gtMGHCZhvku3qg35yu/3wDZCuBhNZIY0VAiFnpqHR/W0GlFjU6njMRXpqIcirwPwpUrc55zNZwHyKj/pmrVZFzvy5ZVWIWh9e5crFTDd/lm/ff6VPP5XBOa/kW3n/TrpbDGcaEa3HOi1+LyzQL8Xb1OvGPC3yP6fkgE8ojz8GPqLPN65b6azyy6Qg1pTcrdutxWZdByjKwXaSDJbNYUwnK5ATiPqZnbDMY/mxW9QWK5wJaCTPn9Z6wX4zk+rDflQZGwPtLIz12bIkECjq3Bszf4ftG6yetTNaR4bYqyR0RLBfYDe0STSkbF3FhTn+Qr9xNMuxnHaYvmI6xBXs1mg+I2/3xvFuNZm1rH65fUa5atAIbMvD4rwGPqlW8TAbbrNv2iYdhrU/QBAc/qXGGteux7zHHstpcwSR9O7taG05vdsbwFYK4AAxJpzCwikM1IbaJs1yXzKDSVwTOY3pDj5PpbGW/+GDqYNJAtw0ervwG2Mo/gvvJCv3+KztFHWAy8qq/RLZCd0Jv30+qZnBL1DC/frP/idvU2cLfeuHdImA2Lp9WInhPRNcknwk4V5zFVb/7d4hS361iiyTBazxd4QjmYLxR9oeq1MBX/PpDaQzIiNzcPmkhjJO0uYZLOx0qB3Atgpz48DIkEma3rRR8y8KbO9xERYKY+lFgDfAxz9Dij0DlcKMBXZtsBCTqvuLwHJwMPGz+Ktw7Sip9naf0m5uOOfNuVwYEGHYesG2kgycq03RSyMjRtNmi1TLaRUo9FRIJOGHhb35+z300Hvsc0zYB8QL0OWxayR/SGvcNsizs05NcraixHRcNop0Rv+PvM5+cxVdfTHtBQqK7DXfWO+bAYb1PEMd7RcGqof7oN1vvNknwrzIzsSBzStVXfdyO4P6ovK2GzaSxzjN1BM4dzTXLNFsENF65oUtRRvRajog8P1hvsEfUk5bvrOGKv15DuV14HMEvn7pRI0Ew6CNvazNhPdR+DonWs8zGcDHsaNSO8HRr1bFYvNu72rCz9GrpMCYuTTSENJFk7496JKx4dLx9IZ+zm9QESNyVXfgx3677X4F01kG9r+M+GQ/GiGsBRMbV4yzXEZ9ckD4jxhLrVi8ITus8xUa/LfoeVAjn/G6bhB+CoREoKzmA6brhwRcdTrWeSYuBS12S/zXkD9fXZnASoAbcNkzVx6NoU9bp7RNd2Z+O4hlWNgMCgqPGzDwNYoUYzCLc+YUKtK3Rfdtshs02ghztLX5/GnbiESWqAjwpkJxBVr9mHVejTtckI/YlKuf7GttLwkIVJA0lGOdyM43rW9ayItRWExlH1LqxEnMwHcLuY3oTrIRsAPKAhP3tjR7eGYXtEf4sV6qnYzNRjmIMB0Zv2PjEe0zwVJbDhV2wyhnK7GgKbcWll23ZhaeCJ9YhoVqyzfuZXp8lmovyiDsRjAtnvzPtr0LXIuWLWehG2m7pbgNvVk3sXa7BedN57zL+nRB9EBkQL+e1aJl5RI3kG07Wh8oga4CAy4I5nmaim61/CMcUTpNKED7BSUqXoipItrUiHNJBkbYx7edXQJl/swtLwczfU9FL4eiE+1pDf6fD3X6I7KNzfIxLU7a0XAUb15n0eUzVRZ7l6idemmPq9V/Tfk7hHVXdmqSG9fLMaQyu2PSQm4/Ufojqhb0bP4U6cTjT7jTNe5J45r6OVt4mvS/bHvo8bZxuitKHqGRgPtGCxXTt3nDLjxCKdkyGJhj+HRWXh8Kzuz67lDph5PyyhvNwF0Xn77Yo+eOABk/DzqlE2ekVM4tZYMHdWUcc+5NgwqogKN9ixyCfJh6qpf5zX1xOkkThZd9JAklXQJ3VWgNG+f5W5EWshJxDW6T0hENEx9IjenC/eqGtdJzATQ2LWzRYYI2nLCh7Q7afhB23ftEh/t0N0fa1HJOhTOCxOSHG7Cb0u0u/RLZDpKiVnvSzb1cPNQMUrklw3u6v2m3eWtxSvA7wTpyNh4V5JipaPixo3zDQGbJ16jScwEwdEPcAB0fndhaWqhCOhEdwnEmQUHzavx80cYpMayfsxApw265EPa0YvVkiQZDXl95+1XEckWJcMzukBJ1Hqq/Rz98nQlaHTmkcAowzWKplHlk4ayE5j3fQ/DdNS7Ssyo2jdbWOVxbMiTug1rCe8fHO0U/xmMWuIs3St8Zxo+LRfREOgM/X7HlFvath8v8/M37DoOhlWqME4hjm4II7BnGdECJ52DFLc8P0NQSjR3vhsAb53Dm5P+y4pabYI+3PNq4hoP8R9/m0u/3ETjmO2es5PqFfdKxK0u8LdpkPKq8ZrPqTfW9WjyzeHGqs2xDosAizU7Q6b+d0j2gTa1kLiRQF2GqO43Bjlp01PSmd8Y6Lttex7u9b4LtYEGcYioXD9YnyUKrEXb2LtLTmai8IdUsiOJg1k0/lchRtcCzB+c6k3D4tEBKvHMQO9osbZqqyICOQLqPrNHQJ8bbzGQQHu0OSR61PVGO4TNUADop8Pid7Af8YUjEkYErw2RQ2liBrAMQnrJs+JepJ42657SpBxKZuB65ckWHsTEW+YL1xb3Bb5PNIgOg9jZQ3WC3ONgzfj+AOEa8wfIDDYNsFoh/3tsvC641CohCPieNIPh9mt2K0e6IBIEBpGn+4X7+jnQQ/IwTDR6RjmADPD+RQJM6ZdbsTaQHjeNx+fYUH6XNXc+iqbcaOezipqNOe3/r2hw0kDSVbJkrMC47WDj2NvYpvrlxyjJHr8cVHP5qwZ08+YouuEr+rN+Bjm4OpklXs7IBo+PSvqDV6fahJzjAzaYQkVZNCtXtV6EeAnCTpSXJ1suoiIaPmI8X5xm2jY9rb4ufXjQyzLPQ+1tsaK0643+hJcsFbnbwT3ay/Pb1W2T3YC2O7MxSx9wMCmUDrOarFipq5J/owpwAJjJH8x3vo69baxUIDlAmwxogWj0O8XCEQGgnpGN3zq9ag/QbD2qCUl39Q+R3+hESJTSQNJtgrdBJZT0e9mADICYF34mdv53RakL8ZHGMcM9SL3qjfTK2q4BkQgtwDrRb3I85iKMQmTcC7eGIYJ8ZiqvMh314FNTkG6PfZcXXMcENH1wGBNNmz1NRvHMRvHU4rFncbDM/POTzozG1Ubg2Il5HZIstFyjwgewiHgYW15NSpmzXCF2WYMwDKdn6l/nFfPcbdA7tLM1/ViDLGRARwTNar9oupDNgEHvwgwog8Y7+EF/WxcDWOkxdVZ3eZw7FxwOvnghB9FJem+aLyhSxWuL4OP03C3AGkgydYhvpZU/c24pBb+HmZt4u9mTXC3eoXbRN+Pi1nfMjWFGBRYI4ZDRl3nNgl0XMdFvZ6LN4brknaNMQg/3qH7DPRUFxppO6sfugZByDMy3kghe/rN7yEcKmUu40ZdxDQ2DlqMOeUMPRp6tePuFVPf2KcPD8P2/U/qPR4QnftRCcPGw2I86id0TnrElHzMjF6nU2K9vyPqWd4dZi/3OGM9JYLV2JKcx5je7YdYpuvF4wJszZiTvPWjJBmSBpKsL4v2JcziMnwIEdvjofFmAAAgAElEQVRLMAyvBckzP2pCiFWPsV4mlmuodVRMW6yf9PMDYoziLDWAe0SNwzpswA5Rz3NQjPCAzWQ0STGYK0G4d1jESNCdDZKkJv16CSKjCRk1zAs7gzSCm0XCNUuzprURa/Wh4UGoERySaLbtfAThVdufc7MZ+29XzIPDWvUG94gEPSB3iCbS4AmdxwOiYelx0YeIbnyJQ3hI52GRGjQsN+uTNXpM2pMz+lmj187JjiMNZKswkpnYQkzrtu7W6bnd4H289mt1x16Ij0PP8V5EOkxYz8XW8X2PaZBRBJ7dBVEPaI/oTf3aFBN2XeboiZ41XtU8vVmvF/N+rXIXlgLdahB2YSmGxexnU3hel28266c7gY+wGFuwOqzlu0MgAm3MvF1/Y6XnrLSeO7+ZySYVaPcXJOEECR49+u8YTHuu6DonFopJLrqKPqxSYYQ71OPFq/pwMCTqne8T9XDPivEW1+p8XZ2s5zUqmmH6LtZgm6iRXC/qQQ6IHuck7lEZuaCkAcBRxyPvFi3/eEcgchjDmK/rmzMFImNGdUdgQ/L4UY37IJak/p2ldWTJU2uai68hmONC22dwfd5j31qeZ+wuW5ACoYEkG8GidY+W1hC5XmiQydgH7Mci4GgoCm0L8W0YDl9ZIzWGizdqqQFuN96fkZXrMb8bNfvGVuMxzjLiAma9DovUkKpnqK8v36zGw65dWtm5+xD2fsQKzXSM1h72q1Zp2rlX3X1+W8rn5zTc6ZHDc5NhMEsg84AeCUUGxkQ/w141vkMSepvWCIoYr9I8zGChepci6j0eEUdr916j2GPWXm2bMfw9XNPDkEBOOHOwGsD76c2LbYJXoLKUSSrlkLlJA0k2h64STlqnicRvvgq3VcN1MbHN1cmCN/BXfb8V4drhKwIclOBzrNDw3mbR9To8bMoafjSG8rEw2xXz1NCNid78ZRICYW5bF4q7BfKU3tT7RVQ8PbZeZttOuXTLGlahL9RQ/f5axlwMVpyreDKLDZWKaIeVJRjUObwXgbeJ5ephh2UnqtmKhyUwarbMBmtVw3aPCPCiejzf2Ll907mmW4Gzog8hJ3GP/nalv5wjcq0dOTpXtcjbKaUNlHPcv3eybUgDadPgyTKZ5skUvDZmrTBeomDLJu7HSDKRYwwqLP50cn/WSJzATGCWeknjIkGtXKAh+oB6vZvFtMf6WoUIdmGprt19AE1GecKswa1Tb3IXlkKOIqKIEgk/zwPkZLGbuXp9Pfl/46mdi5fGiEhogG8B7scI5K3Q6IuMq9DB3wXyFjQCYMohcNa0ssKSoGsH1ppMVtt6bKEEWa6aHGPHrw806ulfBLb6e2RenWwehr6OnYep7Tybdu5e5p/vmu4FHdquboKTBrJ1madPYL1Z3yLrdJ7zvj4lgiUw3tNOjyEYNCFAk82Ih1UMAG+qlzMdZ7BHzA14hRq1my5e1vKDmVYk4LIm+Zz/DVcn6zaBF/pwuE6IhWq8xjED16aojin6xJvBqkky/k4UqaykkJObrid6zl/39zo07GwMkg3F2vKZITEe8SvGEC4zYdB5SKyV4U01YENiMnLvAq5O1jVhMdcGC/Thx5aeiEgkScj2qHTLV7Ylzsv8LkULOLV8Zk1jDBkfvDuCNJBkyEjz3BwMQpaGi/FRYhtXEqxWg+uWeoTlChLZv/UysFK9P/f7IyKQ16Bi3MvU85GnEHihuEOTfnpFhQX6sRwfYpl6jnebEGN39Nj2RuiGDN3j7vCcRy7R8qcadCNPKO5EQ58fYTGOiK69rsYWDb+u1mSomTgB7NQEG3yq3uCYqPeI3ephv4D3IA+GoW4ZBeQ1RIyf1bGN0hOF8DwUWfo80eLsLC+w1h6tJA1kG7JgiK7ln2T35NrOvQG6htmWDYhoWM6KU+NF0UbL201ocFCAo5rBiTfVOGK3qWH8C4ARCVRxbrp4GTityTVHRCBHzZzbEo/dYRYtvlZv6n6MaIhyJSJrYnvxeOQ8zmB6rtKXmy6mRxDioccs2sSh+LzhkJ53kHQ0qB7yTRcvA8vUUzwnApEDELkYjAdDJoHnLwDO6rrq5Zv1Zoz3BTIKnMF0lQDsM57ioM7Padyp29q+nidhHiwQZHYuwGfq3f9xU+Jcvse0XPOT+f9hYcHttzf7/wfZRNJAkuUyXveXZNp6WtY62zmIqOZluB5p1g2/lkhGqC/khmcl0jZJRA1AEDp9zJR3bNcQIY6qtzkuTmjwzTDM50sUyfK+3ca/v12JfV9FZ5SgNOSR6G/x96jX4Cu0l1nhb2xJyFLs0iScQYHsAb5Ed7AeaQUBrKFYhT5gYRjKXoU+FVzYacKvL+oacaBXOyCQ7dBw7XZ9EJENuobrCpEXZiwxJ60ciSRrIA0kWQfmUS05WtwwhIyG3+Kh3cDwmbZQQQbhBgSGzOp+YqYm0mCZqLEy5QVDIpAvALxqjGcs03YHnvcmi7jlHAvwmYYal5vve5xz9onU5xSnrrap7wt4L/J+wP1+KwJBgcMigfTbz5gS9mYU9SAj1878ZjeeBPZqKBafqmEMGlcv0n1uE80E/giLtX7vc/2tt4PGaHQuxjEjov/r+03gmTaKn3dWSJZMkAaSbG3OwHikxVaYkelwg4qUz8SJyOe2EHy9+R1+Ua/JbhckckzXRJKwNKJXmwLfLRA5h+k4o593Qw2gkcO78vsNWrqxwm/4rk4WyF+Ak7gnYZy8yTwBs0o8ohyVyiUTtghfRMKbujFAGDKlLAOmZdgaQL6AjndMQ5/hOuWwCgQcVOP6MnoDTdXgoWWNuWO8aBWPBHIrIp4t9pqaxg1mDBlry+hL1zy9ByeD19WKUZBkBmkgyfrQysKl0g2RZdb8pROnJaHRGud63+9i61D7RHsKWo/zEB5SGbYhRx/UrGXKd9e1q729uZtC+y1YjVG7rVlPs62zMFMiXlicVuGmFHpqAq9OFsjjiCkeASO4P5KkE1mvXOnuYxTnMRUfYXF4HssRSZo5jtnqXYpAnkNQoiMiQcKRqw+LHyWz8bPyar6/gwJrss1ls7LCySpJA0lWz1qby/qyXi19XlG847p3jc3yOfXc5HUAC51MyR7ouuJR6JqdERHfjSchu8Ibvgqbh55icLyngF1YGijN2HBuj/1+DMD7YQPnAyKQ181+4x0nNqSE6BKSZcmmyWnEwfhDwfXw+CKm0F8TXOy6HVaIJjTNNzWRogYyLv6NPglDn0442C8Svi1sBTZk1m1H9aEDg+E5YlSvdUTmrCd6/n1YFbyO94TchaWJRtQHEmPJb0QrG21yApEGkjScFN6UvGoluZgvIzUvbQd5Hzfn2YdT8xasnZmbb68IZBTYi8fVsPUgrBE0YUi8E4b85uAY8LDjUT4HbMRayHxg6h/nNXnFhhHdcoRIw94Ka1ZpBrMCccjz+Yg5B+vxPQJj9P0MQpQ7EemqISKQrQiSlaxK0RasNkk2sTGvVO+xXxxdWDvOwNsfhXx/LVNuL83jDptO52Fej83/d1v9/wOHNa21k00mDSTZmswyjtVyKOVzK2tmZdQS7I7f5C5E31uPr1IR+r3+73PVRZYxVzlEsr1rvOLI99nt4sLWPep94u9Ss6xaZmTA0K2jjK4/jhY6lk+fNg9thIDsaNJAkvVltqd3Ifd+rIKODQFaer0nK/v1BYA3o2trluOYYTJZhyBi2yWZ8YwCs3Ec2Js8XlR0/BSexw7N4EwzrlUyKFepsVtDJPs2vq/XoF7cI8bbdGtmH4yGUDWMCsjn6iEex2wViw/WKs16oclqVcMz7HiJOs92PTKy3rnQ7Nsd5xcI23Q5rJSQRJIlkgaSzFEysKI1wkRW7Do3U9RoXI/tXayBiOlGsdUYdFumshyQW8z/gK8E8pKuoV35/QYcwX1arL4SuIRJQWNlEYmEMoPWUrb+0Cf1VpTfZYcOk7WoGdvPB2RzTDLO6aQRJN4YIxp5QHgN+B7TIvNpdXJXYwtuuHAFH2JZWCP6KIL6yIDbPfPRk/xsFfpwHlOD5sre887MDCbJwqSBbG/mT96YCIwn8eBstBRARICZTkNl4/1c8O3LJJ4EnS3uRSSBI1Fz9zoyM1WzOPWP8+XNw6ScBvgWs92fANtbUcRJ8HkGatxnIZgn/BQ+pETG7HqmjsEbwf2RbewapJt0E8znK+I1jFX9HXjUcioLWJBkgjSQZOswqQtqmNJtfhBLKkuOmazLYZHgBh0pd0gUe4f7c8OAg1iCq5NDAxFfN8ReSSa31IvTUwxJhlZpxbkfl0xVn2CdbwaC6+H2vYyLsR+R6HpmZP33b+Fx1gefJ1uXudcGu/Ua+Me3r9C5cv2QzEkaSLJsVu5VKCKBkk2Es6q7wQ9jPg57Pr/hwhU9zgdmXWwwdtwNgCtxh4WqLXrl9xuwXiQSDlRjGY7vQyzDu1iDy3/chDOYrr8366H7sSiSaII+SZQiiBwA3vYn6Njyl+Ie6ebM792ekO4cuHNitWzDcxaIDEAkqoWqfSsRkc4bsOf7iiBYcxSBzRINPPxHAYxoB5S0Wkfd9lQQAhcRyDPpfx/rsCHhJT6EQ1X9PZGkIQ0k2V70NR3GUUmo6ATf/Zj8bBwzEjfP+3AkKOwXUQPoZjjGszjH48f6czRUKSKV1xtH4NlH1vkPJz7zdbHwd7Ywa80vISKgnqtcRlTRyLakWoYPtcRFBCLQ9ddRALPC6+Gbp6XYpa/36XlqYpTnWqVk+1ZFsw5Nr5GsgjSQZF4eboExJMW+vZ6ooV0/jG6jXtYglug6oxPGq7QW6Bpb661YGbfzmFph7BcjPQ9T6dNoTeMaaAPnovP4SPIY2CTpzZwfQSCogHkpc/OmBOHsO3E6EQ3A++LtLFPZcDki9ilzE394IcmSSANJtgfjbaOKUtfDDkBEi9jj+/wQyyI368h6lw3txdYr14sguIFXLMeobPjc8Kb7ukxiU1TyLfKdEUWIKyThbYlktkZkBD/wGNu59rXON876Pfl4v87Efl7M+C6i3pNPki4XayyrITuKNJDtweZnq8a7WTSK85EMK1pm9VUM6iNneG7gT0eb9LqlC2G7rDDpZNS3/1ihvHqU5lh/SrnJpiQbFWautdr1+fb1aLivY5gDkWi42s04XYyPomu9gYRdsp7VGsTgIcSKozt1q5V0dCMCDS+VMHfzaPzIQqSBnLCsuN5VXw56PkN39H1cd7MiC7UfMtmqHgP6jRjx7WcFIoislVmvJxDjNkLrdv0tzhfwXnZxe508llyh18jfwFBOL30IkbCnbSJ9m7uNzklcas5yFfrC2sjR6s8/voZJkiWTBpIsmR6Dk2SZXQ2GIu81MzL/7xNC25NgMlDDsgM1Nkgm1RxFaJSfQkQU3LKwuEGtjKnPVPTS8l6z+LmLAJ+6DaytR38RsgF+Y1vVw0C+rGj3+tV+TJIUCA0kWRc24Kb0T9xSdRd5m4EZTxrBPyo0IzbZl/Igss/RKXjPEryue2blhiqvgxN2xabk93Gt1ezrkAy/Bt5jGXSvw67087W9QRvBqhKnyFYkDWQnMUy971zadTLLPVlzcFfKDXMWEhquVvXFNWiRuj+54M+WfB1BEk9Z878aWyArm+v5uOU0I7jf72V6EnQsMRArvXE8u7DJcqM53tQ5JduONJBka/PyHzfl29YTAhSJeolhAk5lvoU3InWRUe5zsjKdUGyVnSGKs2DYMY0pWrVZxF7JudbrUcaJM61Rdl9y/3HJwAg9ouZl8mMsbNB1JVuMNJBk+3A/FlX/e3PTDZJp3Jq67TDrZxfC8OJOBLWNkXID6wnFVF3inqyvg4gapH0phfwV+K1zvLKyYatgWjssS1/ylYgTVt0JTX4qlCR2OPhts86bnJCkgSSbQ19dXOl8tPIN1c0wzZXQkmB2k+hq10kz6TEuV36/ocb9bsu97YDvegaGcyD53VGBvAT/Q0MacwmXF+1q0tp8HHubPgYyQhpIMgeb6LH4mEikyQj5JTp8VDDMYZF7nNGbcZBgkxYmbElmG0E3I3UN3vVnrv4Uvl6Ofv/c28bMKdqpI7gf+EmwBavDz8fq+zeGkebM+aRfL7XAdS+fhR522pc0kGSSh/BQ6x3zaMoaY8zgvYD3gte7sDSQSBORoIvEEdyX3M876ft0mZZ56oqT14vViDW4uqhJ9kbnPseDEA6af/8hqQ8mR3AfXsB7UQPoZf6G2VnMyjwOPPga6i3JCUsaSLJ5dLVPI70DC7BInWH8qRefhjd8S82wTIYJK7OkxJkOob0u+LT+3sY6bGj6+ZIdSRpIsnHMU4uG9+t3/PT6u2SbqCUIDZ6356RP+iynHNpy9DdQYLuYKIOrXpQl5Re5ZrG2XNgiwLqs31Tu39iIzFFf42aSdEgDSdbK6kNXaaLZZdLnXWSWDMSY9Gz1fKPNgjuT2OqsS3anX2dsFRUUiNVFRkLVHpUhEWFmKtnKpIFsKm/hzcGyog7oPETXE+tIrPV/vhFrsQtL9X0LrWm5666VeSr9vP+R9pswuScQdvcKf4drgf7s3cq1kRGvLo9HntaiiyRrJw0kWWfG0vUXYX/0e1OfWHuZQgbTumsYxntM5mGYgDJa09ji4Ukf65s01VPSfsJymbMikfZY1TM5t4m/n5z8GVN0vj39Q5uRlEa2BWkgyYlJG/6LdqHIof4iAtvnUORCRJf0G2ebXGIAdS5tyMeMTiM1Mm/yTDxRiiRbhDSQLc22qrFL5xlMb9zxMnolLsZH+vol4EnshojTa/IoEuUfeCV87U8aMckmH6BQJmVEo7Td6IRW3UQml1kC7cHcDhU9duVko7qLv5MTjTSQ7cds5Za2YY61o3HMyL2/afghUgzuNkGO8LnKx83DuOB2XLVlDd6tvJ8Kod+GMC15JsFzhfZ7w4UreBm93u98HUK8vNcZWyvMFTnRSANJtjB3+W6KZa2ZJYkXxSlPqN9xMsdQJNxoCvuLe2N15INAGKq+kOzPGLCYwW0JtpiiFFl30kCS7cIwkxJbo+G0QEP1kXJuYFgRvvaGh7e7x/F7SRON7jxVp2lrkqXyLis0MHvVTezx1sSSnUoaSLK5zBWKLEBs1X/H0r7fVJ/jVjXWQUEnGNikzmllIYBKTF+3PhA9do2NkIPuLiSZJA0k2Qo8UPg3btulQSwJXudJEBEJ0/7j9XodI1tWbcPlktZold80fx7qSV8TabKTSANJ1oGNuHGkdLPHE+b1t57vUwTPs/ZXiWmJKGkMxtcK3JM85yypP/ySf995H1RIsoVJA0lWyyY/PXsSeKqtp0N3teOovhsF9lbxm69rm7M84ciemuajRObo5ZmXlbuK1E5fh5go2z+UPgFJA0m2B5M3ufwNfuN0W1vVypaovXvKGBPHqKQLs2fMy08ljsnhh1gWPY6VtMvy6Emy+aSB7ES2VNp/XZjsvhGhJx2/Yu3dI/qbbnyZbwxujV5qKUMedq6RuOHClUirqxfwXmjMG0WWZpDVkwaSbC6r8XQSLCD6fvmPmyB/ydjeGLsstRtfFxJ82vy5LJeeh4xY8+Vi3nNeGb+CXBGOM6vFls1uTmWVa9BkR5MGkqyOTdPPfKaGG1nQsinugUb3ib6c+xupMJZCY40rJIVrVqXNdZ7kqQrn1FPHa+szYnNwrNA+6tJnswYVnwN1nC+y7qSBJNuIr9XjKb9CuDYHvQYsq1zCVwxfreH3JCtl0Zew8jj2lj6vmBt9f/2SeT1R1h1reZAjW4U0kBOJzeya0Li0f70xYbtz3jsr/24Y83F1siR7Ij4HZNXzBTf+KllW0+gibaCwWxJtyKplxT6eDeXZFhgD2UGkgSSz2YuXmzuG1KSOyt0dAqasUebO2jz/W4Vt+vOPpQx+V+Dc6819GYa26LreXfS6yJYiDSQ5QXmrczMukIXaj+Xez21/yXrwHpzM3mZFYw1LlthBROKvYPi35nHlaD7d0OtCtjtzGcguY/hyoaurK//GREvhJO6R7q6zzR5G6Zjy+89yedK/9395F0S+7/J+hUMiXf+t2LFwUKTr35wP/gSRP/z772hMgsjvDTjvWRD5tg7HeRAioxPwuhEujgOYV2mjGxoxEqL56ETjKCeRbhxFRP6W/lWqcVyT/gwYGsce/aegcbw6udDmjcUtBZ5948ZxDUTmV//sfByz/V/UwziK0DgS+cEQa2fwIyxu+hgKcW45IbqTuKeU/WCLoG71fK3A/Z75PlHwGmStSUbYj1rEzHfg+fC6HK1uHyRZgVyDJFuDtWaD5mfYCPktvBG8Tq/vu9q8eXmwSUkrWUIKVXT7cOc54KPANPzQvLltCTanKTeZmzSQZHuwKm1RI7n3PHYkv3OL0gsYokA6LZYZm9Z/sqWZtzmxw+exI+iUUkTT1m0rFm8xltdQRATBzfyXosREkn7SQJKdz2RD38o8jtkQOVfsOA3OomwMxyLvXWWbokLtH2Nhge1VwEGbShfgGEtFyNJIA0m2NvuwSl+PFrnxxVsLJTvcp/ZxvLf6G2w1hrgQ8/bZ3FztOWwuLrxeZL5uAZZgMPf2G7E2eF3kdyRZEmkgyebx2q/6b1U3vyqK5XdhaUljr6HVVi31klWs/1V7Tcrge3gh5bvNhcXdUxOtauikUlHAvBL/Rm+1w0kDSbYGR3B/w49Zcf3qVrRUyK5yU94qeWuDz9GnU5rVIHmi6LeSrUYaSHLiECvD17vxZPj53c0fW8O4Jr+xGa51vk/HPivQlqwUVh1qbgyD5QOyVUkDSbYv12Jjrjq9/kr7+jMiocV8dXU11kM6ocFiySutxsaXKpRV11oL8ZXzfnlrG2KyatJAkrWzZRIoYmtC2Jux7Xzd1u14n5fv4YVC64Gl67TWsvbVgHVM6ykmDX/6sdfg3eS8VerLacpzEuumr9NgkaWQBpIsxpoTG0pircICGPV87hqeGpI/yLi4wljhffyMKfq6pLBsyzzEke1EipUTExmHReS/NncIyyHyN+p+BmiUyDlBVAbFyokGYVL6c9NabGzgQFykG8ctWF3x12NlDKHpxnHI//Gfa33O7Sm09QJ8pi/qYRyP8pmdqCMYYiV9jCQqtBEfx96mj6HqOX+/nGtxCA8VP/6fs8Odg1hSYR9OYtOeBoSwPzHHaPFsVrJlyTVIcqJSb5q3XPlnRLElk7F1yV683MDShQuFf1OeMIJLld+bj+HEd7dc+WfKb/oLHSNdYCCkdlYhybqSBrJ5rF6NpZP4IZY1fQxp/BgLMY4ZNe6nNbyXzIzeODM8xc0tcC4k2SDSQJJtxgp1j2cwvYTjFG9xNQ0/QLa7Yyvu8dWFVhigESHNSvwi/xhO487mj5ec6GQWK9EemIYf5P923VlhK4hIuUkeL+A9+bDrf5a6z85Gr4isbfYgCKIMMIuVaA9UNo4i+DRqHOfgWM3HLWIcP8bCcCxbaj50m6J1jOOdOF34N+41JIhcYIiVTOPUP87X9Pu8GaWLsL+m41Sle9muItnzaxv3u1gTvJ7066War/cLeK9uwgu1/l2UwcrZu2SbkmuQZHsxn06q53cDzvuiaf8FMlXdhsLtzsiclc7NTT8/kqxAGsiWZCP0MutM1wuJsk7nVtBDiXuUX6K7puMnOlfUkbnLUurFz925PuWX7YvwMHAwY+4yvmsvhvOSXvJCthFpIMl01qPLRO37PGL+HTD/FquxK4Nv4K9NvzYVWUVD6TJYxHg3Yh6b/jCRxs/b/yF4ApBZrEQrAZKehdrI7MhTIvKvgoMiXf/WoEN2Mh6FyOfR63r9ksgN/1JkJ4el6bq5xEQDs1iJ5mMV+syrrBKNFOOYpRl6i/1uW8ER/auOxmsc0/cVnIZ9f3vBw0ZwoZYfNwDf6D+3pM3/vvDl58nrWsw4itA4Eq0KepAEQbQRhkVkUbMHQbQ/6EESIfBVbb+fjjPlDCQDSzCY+t1MnCi4t9iz3Gbnfapn1HxUNc9rUs5nbvLzjVgr2Br78Bm7nbv9cHSb/eF3eF+keV6wMY7s4kE0AkzSIevJVegr/JuTuCf62aO1Jj0kxbdbndUmueDTWo99scbfh6xHIhhJlkRmsZK1cX2BbVdjS9PH6+NbeAMirS2cXhW7WyNT0s4vSbYZaSDJFJZUJuC2XHoZvTXtayZO1O98P2kNY9LKtLV9Ra5DtWUW135t/vk2lK0gJk/GyTIPokUxCdnd5T2lA7mxHyJP1aFzfYdgLTZKb9dfmz0Mgmg2mKRDtBB2Os9WWcZRJNs4jqY8o91qPi/DOD7Y4OfA1/IdzyvQ/hycUprKoHEkiPygB0l0JGbjuJzu+k/NHkZ5+BwijzbGM7ZzdwT3yX/p+t8NOSZBNBj0IImJC2scN8KKEKQ/212/1IAB1YqyjOOjlZ9x7dwVN458fiY6CzSQRMsAm8rf51+7es2rdANTXPklC8OVN6kb1EDhKxEMpWxS7dpuLhTZ99VCe8YvxUZCEGWABpJoGXT9r2aPIAX7inhGdVB5eS7v8dVAdf1nka4nix1iMT4q9oO8SJ27yYV20/Xv7Kui0oIl4Bl6xhMVXIMkqgLeF+n6H80eRQjfeHC3SNf/ac54Jg7GRKTiUg5BtBq4BknUD61kHEXC8Wx2P6uDcYzLtDXBnymAseBVL16uvPmtOZ9/IyLyNI5EB4NCAWS78TMsyLXdDjxfnzG81DmF33Yul2Cw6WMhyQaSQgFEZ2Ij1jrJN4QXlcQYCGJigyFWojNRxDji6Rzb7K5hMK2KNjOOiQ4jBNECoAdJlA58LdL1H5s9CiIL2CvStbTZoyCIpoEeJFFfDGKJ9/PqjePZ3Ft+hgXVHiQXsLeuuy8d+WdO8fmzzvxNKvLce67gkQiijcEkHbI57GmBMbQix1pgDBlc7k9Q6sfy5o+NJPOTSToEkYn5EDla21rdehF5p5zRTHhsE5FXmz0IYqKAIVaiDRHTCsXBKvaR1vEjjiLGcZ5/n51kHPGP5h6fxpFoNdBAEptroxcAAAV7SURBVK2FmFZo179VsY8HCxi+vOtvY3XMCv2kNQIzXf+hzL19Ixgoc38E0XjQQBItCzTCPWt6OcR1kcebPYZ6YI50/fdmj4EgagMNJNGy6Frf7BHUG4elUf8FqwpVt8C+CaKZoIEkOggXU7/px/Iq93mtyt/5EC/G+K8l7jsbWaHqWktaqgqDe7GjrB0RRClgFisxsfEURPb7Q5yYK9J1osHjIQiiEWAWK1E9cLSMvXxT+Thvl3GcGpBiHEXyG8fV2FLSYJIo5zoQBFEN6EESBEEQEw30IInaUf3aXRSNl2670OgDloPn+AzqhbdX5XDDh0FMLNCDJCYkdmGprOhqM8FVgiDKAj1IgkhD44zj5QYdh8jCpF8vxT7hdSEqgwaSIOqKKc0egLRtuLlE/H7rv8Q+aYXrQrQ6aCAJoo1Q3ZrwdBEROYY55Q6GIDocXIMkCCIA3pkICkYEkW8NkgaSINoKl4XhQYKoGUzSIYjOA41j+YhLABKEggaSIIgJjnuaPQCiRUEDSRDNxEquWhBEq4IGkiCaiQ86sRckQXQGaCAJgkhgLTY2ewgE0XTQQBITGh9hcbOH0JLo7fprzftovP4uQZQLlnkQzcXjEPmEYUaCIBoKlnkQbQAaR4IgWhQ0kARBEAThAQ0k0XmI9VS86SI7NxAEURw0kETnYU80bPv//twY9RksashhCIJoEGggCaIkdLHBPUF0FGggCYIgCMIDGkiiI3EJk5o9BIIg2hw0kERH4l+6fm/2EAiCaHPQQBIEURxzqRlCdD5oIAmCKI4TFHggOh80kARBEAThAQ0kQRAEQXhAA0kQBEEQHtBAEgRBEIQHNJAEQRAE4QENJEEQBEF4QANJEARBEB7QQBIEURo2N3sABFEiuoD8ihhdXV2UzyAIgiDaHccBzKu0ET1IgpgoeJzPtwRRBDSQBDFR8Anl4QiiCGggCYIgCMIDGkiCIAiC8IAGkiAIgiA8oIEkPLjc7AEQBEE0HTSQhAdTmj0AgiCIpoMGkiAIgiA8oIEkOhZUdSEIohZQSYcgCIKYaKCSDkEQBEFUCxpIgiAIgvCABpIgCIIgPKCBJAiCIAgPaCAJgiAIwgMaSIIgCILwgAaSIAiCIDyggSQIgiAID2ggCYIgCMIDGkiCIAiC8IAGkiAIgiA8oIEkCIIgCA9oIAmCIAjCAxpIgiAIgvCABpIgCIIgPKCBJAiCIAgPaCAJgiAIwgMaSIIgCILwgAaSIAiCIDyggSQIgiAID2ggCYIgCMIDGkiCIAiC8IAGkiAIgiA8oIEkCIIgCA9oIAmCIAjCAxpIgiAIgvCABpIgCIIgPKCBJAiCIAgPaCAJgiAIwgMaSIIgCILwgAaSIAiCIDyggSQIgiAID2ggCYIgCMIDGkiCIAiC8IAGkiAIgiA8oIEkCIIgCA9oIAmCIAjCAxpIgiAIgvCABpIgCIIgPKCBJAiCIAgPaCAJgiAIwgMaSIIgCILwgAaSIAiCIDyggSQIgiAID2ggCYIgCMIDGkiCIAiC8IAGkiAIgiA8oIEkCIIgCA9oIAmCIAjCAxpIgiAIgvCABpIgCIIgPKCBJAiCIAgPaCAJgiAIwgMaSIIgCILwgAaSIAiCIDyggSQIgiAID2ggCYIgCMIDGkiCIAiC8IAGkiAIgiA8oIEkCIIgCA9oIAmCIAjCAxpIgiAIgvCABpIgCIIgPKCBJAiCIAgPaCAJgiAIwgMaSIIgCILw4E8Ft78oIj/UYyAEQRAE0SDcmWejLgD1HghBEARBtB0YYiUIgiAID2ggCYIgCMIDGkiCIAiC8IAGkiAIgiA8oIEkCIIgCA9oIAmCIAjCAxpIgiAIgvCABpIgCIIgPKCBJAiCIAgP/j/4fqQFDXzTbwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x720 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "cv.imwrite('face_tracer.png', im)\n",
    "plt.figure(figsize=(10,10))\n",
    "plt.xticks([]), plt.yticks([])\n",
    "plt.imshow(cv.cvtColor(im, cv.COLOR_BGR2RGB))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 112,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7f2ad218a710>"
      ]
     },
     "execution_count": 112,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAI1CAYAAADB12CmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAACtpJREFUeJzt3cFt20AQQFExcAs5pwi5/wpUhHOOe2BOAmQYsCVaJPdL753X4hw/ZmFymuf5AABQ9mvvAQAAfkrQAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHkvtxyepsl3EoKOx+PeIwDAIm9vb4f39/fpu3M3BQ1Np9Np7xEAYJHX19erzrlyAgDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABA3tAv1rv2tcTfvj4QAHhowwXNkm8rXP6NuAGA5zNM0NzrI1HiBgCez+5Bs+bXLs+/LWwA4LHtEjRbf7Jb2ADAY9v8v5y2jplRng0ArGfToBkhKEaYAQC4r82CZqSQGGkWAODnvFgPAMgTNABA3iZBM+IVz4gzAQDL2NAAAHmrB83Im5CRZwMArmdDAwDkrRo0hQ1IYUYA4Gs2NABAnqABAPJWC5rSVU5pVgDgMxsaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIG+1oJnW+uEVlGYFAD6zoQEA8gQNAJC3atAUrnIKMwIAX7OhAQDyBA0AkLd60Ix8pTPybADA9WxoAIC8TYJmxE3IiDMBAMvY0AAAeZsFzUgbkZFmAQB+btMNzQghMcIMAMB9bX7ltGdQiBkAeEwvezz0MizmjZ8HADyeXYLm0jk21ggbIQMAz2H3oDm7V9iIGAB4PsMEzdmS6ygRAwDPbbiguSRUAIBreLEeAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIe7nl8PF4PJxOp7VmAQBYxIYGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABAnqABAPIEDQCQJ2gAgDxBAwDkCRoAIE/QAAB5ggYAyBM0AECeoAEA8gQNAJAnaACAPEEDAOQJGgAgT9AAAHmCBgDIEzQAQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMib5nm+/vA0/TscDn/XGwcA4IM/8zz//u7QTUEDADAiV04AQJ6gAQDyBA0AkCdoAIA8QQMA5AkaACBP0AAAeYIGAMgTNABA3n99GDp3jDzgDgAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x720 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "im = Image.new('RGB', (500,500), color='#FFFFFF')\n",
    "im_draw = ImageDraw.Draw(im)\n",
    "im_draw.rectangle(((0, 0), (100, 100)), fill=\"black\")\n",
    "im_draw.ellipse( (10, 10, 50, 50), fill=\"#ff0000\")\n",
    "\n",
    "plt.figure(figsize=(10,10))\n",
    "plt.xticks([]), plt.yticks([])\n",
    "plt.imshow(im)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "megapixels",
   "language": "python",
   "name": "megapixels"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}