1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import cv2 as cv\n",
"import numpy as np\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"from glob import glob\n",
"from os.path import join\n",
"from pathlib import Path\n",
"sys.path.append('/work/megapixels_dev/megapixels')\n",
"from app.models.bbox import BBox\n",
"#from app.utils import im_utils\n",
"import random"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"dir_ims = '/data_store_ssd/apps/megapixels/datasets/umd_faces/faces/'"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n"
]
}
],
"source": [
"fp_ims = glob(join(dir_ims, '*.png'))\n",
"print(len(fp_ims))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Help on function choice in module random:\n",
"\n",
"choice(self, seq)\n",
" Choose a random element from a non-empty sequence.\n",
"\n"
]
}
],
"source": [
"help(random.sample)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1, 8, 0, 6, 3] True\n"
]
}
],
"source": [
"a = list(range(0,10))\n",
"b = random.sample(a, 5)\n",
"print(b, len(set(b))==5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from random import randint\n",
"imu"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import face_alignment\n",
"from skimage import io\n",
"\n",
"fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, flip_input=False, device='cuda')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fp_im = np.random.choice(fp_ims)\n",
"im = io.imread(fp_im)\n",
"preds = fa.get_landmarks(im)\n",
"print(preds[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(len(preds[0]))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open('test.json', 'w') as fp:\n",
" json.dump(preds[0].tolist(), fp)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:megapixels]",
"language": "python",
"name": "conda-env-megapixels-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|