summaryrefslogtreecommitdiff
path: root/megapixels/commands/processor/resize_dataset.py
blob: 3a6ec15f7aafa9c31a0332e0637909af4edd118c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""
Crop images to prepare for training
"""

import click
import cv2 as cv
from PIL import Image, ImageOps, ImageFilter

from app.settings import types
from app.utils import click_utils
from app.settings import app_cfg as cfg

cv_resize_algos = {
  'area': cv.INTER_AREA,
  'lanco': cv.INTER_LANCZOS4,
  'linear': cv.INTER_LINEAR,
  'linear_exact': cv.INTER_LINEAR_EXACT,
  'nearest': cv.INTER_NEAREST
}
"""
Filter    Q-Down Q-Up   Speed
NEAREST              ⭐⭐⭐⭐⭐
BOX       ⭐          ⭐⭐⭐⭐
BILINEAR  ⭐      ⭐   ⭐⭐⭐
HAMMING   ⭐⭐         ⭐⭐⭐
BICUBIC   ⭐⭐⭐   ⭐⭐⭐  ⭐⭐
LANCZOS   ⭐⭐⭐⭐  ⭐⭐⭐⭐  ⭐
"""
pil_resize_algos = {
  'antialias': Image.ANTIALIAS,
  'lanczos': Image.LANCZOS,
  'bicubic': Image.BICUBIC,
  'hamming': Image.HAMMING,
  'bileaner': Image.BILINEAR,
  'box': Image.BOX,
  'nearest': Image.NEAREST
  }

@click.command()
@click.option('--dataset', 'opt_dataset',
  type=cfg.DatasetVar,
  required=True,
  show_default=True,
  help=click_utils.show_help(types.Dataset))
@click.option('--store', 'opt_data_store',
  type=cfg.DataStoreVar,
  default=click_utils.get_default(types.DataStore.HDD),
  show_default=True,
  help=click_utils.show_help(types.Dataset))
@click.option('-o', '--output', 'opt_dir_out', required=True,
  help='Output directory')
@click.option('-e', '--ext', 'opt_glob_ext',
  default='png', type=click.Choice(['jpg', 'png']),
  help='File glob ext')
@click.option('--size', 'opt_size',  
  type=(int, int), default=(256, 256),
  help='Output image size max (w,h)')
@click.option('--interp', 'opt_interp_algo', 
  type=click.Choice(pil_resize_algos.keys()),
  default='bicubic',
  help='Interpolation resizing algorithms')
@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
  help='Slice the input list')
@click.option('-t', '--threads', 'opt_threads', default=8,
  help='Number of threads')
@click.option('--recursive/--no-recursive', 'opt_recursive', is_flag=True, default=False,
  help='Use glob recursion (slower)')
@click.pass_context
def cli(ctx, opt_dataset, opt_data_store, opt_dir_out, opt_glob_ext, opt_size, opt_interp_algo,
  opt_slice, opt_threads, opt_recursive):
  """Resize dataset images"""
  
  import os
  from os.path import join
  from pathlib import Path
  from glob import glob
  from tqdm import tqdm
  from multiprocessing.dummy import Pool as ThreadPool
  from functools import partial
  import pandas as pd
  import numpy as np

  from app.utils import logger_utils, file_utils, im_utils
  from app.models.data_store import DataStore

  # -------------------------------------------------
  # init

  log = logger_utils.Logger.getLogger()


  # -------------------------------------------------
  # process here

  def pool_resize(fp_in, dir_in, dir_out, im_size, interp_algo):
    # Threaded image resize function
    pbar.update(1)
    try:
      im = Image.open(fp_in).convert('RGB')
      im.verify()  # throws error if image is corrupt
      im.thumbnail(im_size, interp_algo)
      fp_out = fp_in.replace(dir_in, dir_out)
      file_utils.mkdirs(fp_out)
      im.save(fp_out, quality=100)
    except Exception as e:
      log.warn(f'Could not open: {fp_in}, Error: {e}')
      return False
    return True


  data_store = DataStore(opt_data_store, opt_dataset)
  fp_records = data_store.metadata(types.Metadata.FILE_RECORD)
  df_records = pd.read_csv(fp_records, dtype=cfg.FILE_RECORD_DTYPES).set_index('index')
  dir_in = data_store.media_images_original()

  # get list of files to process
  #fp_ims = file_utils.glob_multi(opt_dir_in, ['jpg', 'png'], recursive=opt_recursive)
  fp_ims = []
  for ds_record in df_records.itertuples():
    fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
    fp_ims.append(fp_im)

  if opt_slice:
    fp_ims = fp_ims[opt_slice[0]:opt_slice[1]]
  if not fp_ims:
    log.error('No images. Try with "--recursive"')
    return
  log.info(f'processing {len(fp_ims):,} images')
  
  # algorithm to use for resizing
  interp_algo = pil_resize_algos[opt_interp_algo]
  log.info(f'using {interp_algo} for interpoloation')

  # ensure output dir exists
  file_utils.mkdirs(opt_dir_out)

  # setup multithreading
  pbar = tqdm(total=len(fp_ims))
  # fixed arguments for pool function
  map_pool_resize = partial(pool_resize, dir_in=dir_in, dir_out=opt_dir_out, im_size=opt_size, interp_algo=interp_algo)
  #result_list = pool.map(prod_x, data_list)  # simple
  pool = ThreadPool(opt_threads)
  # start multithreading
  with tqdm(total=len(fp_ims)) as pbar:
    results = pool.map(map_pool_resize, fp_ims)
  # end multithreading
  pbar.close()

  log.info(f'Resized: {results.count(True)} / {len(fp_ims)} images')