1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
'''
'''
import click
from app.settings import types
from app.utils import click_utils
from app.settings import app_cfg as cfg
from app.utils.logger_utils import Logger
log = Logger.getLogger()
# Choose part of the filepath that will be used for the person identity
# eg subdirectory "lfw/media/original/batch_1/train/barack_obama/001.jpg" --> [subdir_tail] --> "barack_obama"
# eg subdirectory "lfw/media/original/batch_1/train/barack_obama/001.jpg" --> [subdir_head] --> "batch_1"
# eg subdirectory "lfw/media/original/batch_1/train/barack_obama/001.jpg" --> [subdir] --> "barack_obama"
identity_sources = ['subdir', 'numeric']
@click.command()
@click.option('-i', '--input', 'opt_fp_in', default=None,
help='Override enum input filename CSV')
@click.option('-o', '--output', 'opt_fp_out', default=None,
help='Override enum output filename CSV')
@click.option('-m', '--media', 'opt_dir_media', default=None,
help='Override enum media directory')
@click.option('--data_store', 'opt_data_store',
type=cfg.DataStoreVar,
default=click_utils.get_default(types.DataStore.HDD),
show_default=True,
help=click_utils.show_help(types.Dataset))
@click.option('--dataset', 'opt_dataset',
type=cfg.DatasetVar,
required=True,
show_default=True,
help=click_utils.show_help(types.Dataset))
@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
help='Slice list of files')
@click.option('-t', '--threads', 'opt_threads', default=12,
help='Number of threads')
@click.option('-f', '--force', 'opt_force', is_flag=True,
help='Force overwrite file')
@click.option('--identity', 'opt_identity', type=click.Choice(identity_sources),
required=True,
help='Identity source key')
@click.option('--recursive/--no-recursive', 'opt_recursive', is_flag=True, default=False,
help='Use glob recursion (slower)')
@click.option('--max-depth', 'opt_max_depth', default=None, type=int,
help='Max number of images per subdirectory')
@click.pass_context
def cli(ctx, opt_fp_in, opt_fp_out, opt_dataset, opt_data_store, opt_dir_media, opt_slice, opt_threads,
opt_identity, opt_force, opt_recursive, opt_max_depth):
"""Generates sha256, uuid, and identity index CSV file"""
import sys, os
from glob import glob
from os.path import join
from pathlib import Path
import time
from multiprocessing.dummy import Pool as ThreadPool
import random
import uuid
from PIL import Image
import cv2 as cv
import pandas as pd
from tqdm import tqdm
from glob import glob
from operator import itemgetter
from app.models.data_store import DataStore
from app.utils import file_utils, im_utils
# set data_store
data_store = DataStore(opt_data_store, opt_dataset)
# get filepath out
fp_out = data_store.metadata(types.Metadata.FILE_RECORD) if opt_fp_out is None else opt_fp_out
# exit if exists
if not opt_force and Path(fp_out).exists():
log.error('File exists. Use "-f / --force" to overwite')
return
# ----------------------------------------------------------------
# glob files
fp_in = opt_fp_in if opt_fp_in is not None else data_store.media_images_original()
log.info(f'Globbing {fp_in}')
fp_ims = file_utils.glob_multi(fp_in, ['jpg', 'png'], recursive=opt_recursive)
log.info('Found {:,} images'.format(len(fp_ims)))
subdir_groups = {}
if opt_max_depth:
log.debug(f'using max depth: {opt_max_depth}')
for fp_im in fp_ims:
fpp_im = Path(fp_im)
subdir = fp_im.split('/')[-2]
if not subdir in subdir_groups.keys():
subdir_groups[subdir] = []
else:
subdir_groups[subdir].append(fp_im)
# for each subgroup, limit number of files
fp_ims = []
for subdir_name, items in subdir_groups.items():
ims = items[0:opt_max_depth]
fp_ims += ims
log.debug(f'num subdirs: {len(subdir_groups.keys())}')
# fail if none
if not fp_ims:
log.error('No images. Try with "--recursive"')
return
# slice to reduce
if opt_slice:
fp_ims = fp_ims[opt_slice[0]:opt_slice[1]]
log.info('Found {:,} images'.format(len(fp_ims)))
# ----------------------------------------------------------------
# multithread process into SHA256
pbar = tqdm(total=len(fp_ims))
def pool_mapper(fp_im):
pbar.update(1)
try:
sha256 = file_utils.sha256(fp_im)
im = Image.open(fp_im)
im.verify() # throws error if bad file
assert(im.size[0] > 60 and im.size[1] > 60)
except Exception as e:
log.warn(f'skipping file: {fp_im}')
return None
im = cv.imread(fp_im)
w, h = im.shape[:2][::-1]
file_size_kb = os.stat(fp_im).st_size // 1000
num_channels = im_utils.num_channels(im)
return {
'width': w,
'height': h,
'sha256': sha256,
'file_size_kb': file_size_kb,
'num_channels': num_channels
}
# convert to thread pool
pool_maps = [] # ?
pool = ThreadPool(opt_threads)
with tqdm(total=len(fp_ims)) as pbar:
pool_maps = pool.map(pool_mapper, fp_ims)
pbar.close()
# ----------------------------------------------------------------
# convert data to dict
data = []
indentity_count = 0
for pool_map, fp_im in zip(pool_maps, fp_ims):
if pool_map is None:
log.warn(f'skipping file: {fp_im}')
continue # skip error files
fpp_im = Path(fp_im)
subdir = str(fpp_im.parent.relative_to(fp_in))
if opt_identity:
subdirs = subdir.split('/')
if not len(subdirs) > 0:
log.error(f'Could not split subdir: "{subdir}. Try different option for "--identity"')
log.error('exiting')
return
if opt_identity == 'subdir':
identity = subdirs[-1] # use last part of subdir path
elif opt_identity == 'numeric':
identity = indentity_count # use incrementing number
indentity_count += 1
else:
identity = ''
data.append({
'subdir': subdir,
'num_channels': pool_map['num_channels'],
'fn': fpp_im.stem,
'ext': fpp_im.suffix.replace('.',''),
'sha256': pool_map['sha256'],
'uuid': uuid.uuid4(),
'identity_key': identity,
'width': pool_map['width'],
'height': pool_map['height']
})
# create dataframe
df_records = pd.DataFrame.from_dict(data)
df_records.index.name = 'index' # reassign 'index' as primary key column
# write to CSV
file_utils.mkdirs(fp_out)
df_records.to_csv(fp_out)
# done
log.info(f'wrote {len(df_records)} rows to "{fp_out}"')
# save script
cmd_line = ' '.join(sys.argv)
file_utils.write_text(cmd_line, '{}.sh'.format(fp_out))
'''
# create dataframe
df_records = pd.DataFrame.from_dict(data)
# add identity key (used for associating identity)
if opt_identity:
log.info(f'adding identity index using: "{opt_identity}" subdirectory')
# convert dict to DataFrame
# sort based on identity_key
df_records = df_records.sort_values(by=['identity_key'], ascending=True)
# add new column for identity
df_records['identity_index'] = [-1] * len(df_records)
# populate the identity_index
df_records_identity_groups = df_records.groupby('identity_key')
# enumerate groups to create identity indices
log.info(f'updating records with identity_key. This may take a while...')
st = time.time()
for identity_index, df_records_identity_group_tuple in enumerate(df_records_identity_groups):
identity_key, df_records_identity_group = df_records_identity_group_tuple
for ds_record in df_records_identity_group.itertuples():
df_records.at[ds_record.Index, 'identity_index'] = identity_index
# reset index after being sorted
df_records = df_records.reset_index(drop=True)
log.debug('update time: {:.2f}s'.format(time.time() - st))
else:
# name everyone person 1, 2, 3...
df_records = df_records.sort_values(by=['subdir'], ascending=True)
pass
'''
|