summaryrefslogtreecommitdiff
path: root/megapixels/commands/cv/gen_pose.py
blob: aefadb0026f6f904d418a6f1950c0d5cc70065bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""
Converts ROIs to pose: yaw, roll, pitch
"""

import click

from app.settings import types
from app.utils import click_utils
from app.settings import app_cfg as cfg

@click.command()
@click.option('-i', '--input', 'opt_fp_in', default=None,
  help='Override enum input filename CSV')
@click.option('-o', '--output', 'opt_fp_out', default=None,
  help='Override enum output filename CSV')
@click.option('-m', '--media', 'opt_dir_media', default=None,
  help='Override enum media directory')
@click.option('--data_store', 'opt_data_store',
  type=cfg.DataStoreVar,
  default=click_utils.get_default(types.DataStore.SSD),
  show_default=True,
  help=click_utils.show_help(types.Dataset))
@click.option('--dataset', 'opt_dataset',
  type=cfg.DatasetVar,
  required=True,
  show_default=True,
  help=click_utils.show_help(types.Dataset))
@click.option('--size', 'opt_size', 
  type=(int, int), default=(300, 300),
  help='Output image size')
@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
  help='Slice list of files')
@click.option('-f', '--force', 'opt_force', is_flag=True,
  help='Force overwrite file')
@click.option('-d', '--display', 'opt_display', is_flag=True,
  help='Display image for debugging')
@click.pass_context
def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size, 
  opt_slice, opt_force, opt_display):
  """Converts ROIs to pose: roll, yaw, pitch"""
  
  import sys
  import os
  from os.path import join
  from pathlib import Path
  from glob import glob
  
  from tqdm import tqdm
  import numpy as np
  import dlib  # must keep a local reference for dlib
  import cv2 as cv
  import pandas as pd

  from app.models.bbox import BBox
  from app.utils import logger_utils, file_utils, im_utils
  from app.processors.face_landmarks import LandmarksDLIB
  from app.processors.face_pose import FacePoseDLIB
  from app.models.data_store import DataStore

  # -------------------------------------------------
  # init here

  log = logger_utils.Logger.getLogger()
  
  # set data_store
  data_store = DataStore(opt_data_store, opt_dataset)

  # get filepath out
  fp_out = data_store.metadata(types.Metadata.FACE_POSE) if opt_fp_out is None else opt_fp_out
  if not opt_force and Path(fp_out).exists():
    log.error('File exists. Use "-f / --force" to overwite')
    return

  # init face processors
  face_pose = FacePoseDLIB()
  face_landmarks = LandmarksDLIB()

  # load filepath data
  fp_filepath = data_store.metadata(types.Metadata.FILEPATH)
  df_filepath = pd.read_csv(fp_filepath)
  # load ROI data
  fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
  df_roi = pd.read_csv(fp_roi)
  # slice if you want
  if opt_slice:
    df_roi = df_roi[opt_slice[0]:opt_slice[1]]
  # group by image index (speedup if multiple faces per image)
  df_img_groups = df_roi.groupby('image_index')
  log.debug('processing {:,} groups'.format(len(df_img_groups)))

  # store poses and convert to DataFrame
  poses = []

  # iterate 
  for image_index, df_img_group in tqdm(df_img_groups):
    # make fp
    ds_file = df_filepath.iloc[image_index]
    fp_im = data_store.face_image(ds_file.subdir, ds_file.fn, ds_file.ext)
    #fp_im = join(opt_dir_media, ds_file.subdir, '{}.{}'.format(ds_file.fn, ds_file.ext))
    im = cv.imread(fp_im)
    # get bbox
    x = df_img_group.x.values[0]
    y = df_img_group.y.values[0]
    w = df_img_group.w.values[0]
    h = df_img_group.h.values[0]
    dim = im.shape[:2][::-1]
    bbox = BBox.from_xywh(x, y, w, h).to_dim(dim)
    # get pose
    landmarks = face_landmarks.landmarks(im, bbox)
    pose_data = face_pose.pose(landmarks, dim, project_points=opt_display)
    pose_degrees = pose_data['degrees']  # only keep the degrees data

    # use the project point data if display flag set
    if opt_display:
      pts_im = pose_data['points_image']
      pts_model = pose_data['points_model']
      pt_nose = pose_data['point_nose']
      dst = im.copy()
      face_pose.draw_pose(dst, pts_im, pts_model, pt_nose)
      face_pose.draw_degrees(dst, pose_degrees)
      # display to cv window
      cv.imshow('', dst)
      while True:
        k = cv.waitKey(1) & 0xFF
        if k == 27 or k == ord('q'):  # ESC
          cv.destroyAllWindows()
          sys.exit()
        elif k != 255:
          # any key to continue
          break

    # add image index and append to result CSV data
    pose_degrees['image_index'] = image_index
    poses.append(pose_degrees)


  # save date
  file_utils.mkdirs(fp_out)
  df = pd.DataFrame.from_dict(poses)
  df.index.name = 'index'
  df.to_csv(fp_out)