1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
from glob import glob
import os
from os.path import join
from pathlib import Path
import click
@click.command()
@click.option('-i', '--input', 'opt_fp_in', required=True,
help='Input directory to glob')
@click.option('-o', '--output', 'opt_fp_out', required=True,
help='Output directory for face frames')
@click.option('--size', 'opt_size',
type=(int, int), default=(300, 300),
help='Output image size')
@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
help='Slice list of files')
@click.pass_context
def cli(ctx, opt_fp_in, opt_fp_out, opt_size, opt_slice):
"""Split video to face frames"""
from tqdm import tqdm
import dlib
import pandas as pd
from PIL import Image, ImageOps, ImageFilter
import cv2 as cv
import numpy as np
from app.processors import face_detector
from app.utils import logger_utils, file_utils, im_utils
from app.settings import types
from app.utils import click_utils
from app.settings import app_cfg as cfg
from app.models.bbox import BBox
log = logger_utils.Logger.getLogger()
# -------------------------------------------------
# process
detector = face_detector.DetectorDLIBCNN()
# get file list
fp_videos = glob(join(opt_fp_in, '*.mp4'))
fp_videos += glob(join(opt_fp_in, '*.webm'))
fp_videos += glob(join(opt_fp_in, '*.mkv'))
min_distance_per = .025 # minimum distance percentage to save new face image
face_interval = 5
frame_interval_count = 0
frame_count = 0
bbox_prev = BBox(0,0,0,0)
file_utils.mkdirs(opt_fp_out)
dnn_size = opt_size
max_dim = max(dnn_size)
px_thresh = int(max_dim * min_distance_per)
for fp_video in tqdm(fp_videos):
# load video
video = cv.VideoCapture(fp_video)
# iterate through frames
while video.isOpened():
res, frame = video.read()
if not res:
break
# increment frames, save frame if interval has passed
frame_count += 1 # for naming
frame_interval_count += 1 # for interval
bboxes = detector.detect(frame, opt_size=dnn_size, opt_pyramids=0)
if len(bboxes) > 0 and frame_interval_count >= face_interval:
dim = frame.shape[:2][::-1]
d = bboxes[0].to_dim(dim).distance(bbox_prev)
if d > px_thresh:
# save frame
zfc = file_utils.zpad(frame_count)
fp_frame = join(opt_fp_out, '{}_{}.jpg'.format(Path(fp_video).stem, zfc))
cv.imwrite(fp_frame, frame)
frame_interval_count = 0
bbox_prev = bboxes[0]
|