1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
import app.settings.app_cfg as cfg
from app.server.tasks import celery
from celery.utils.log import get_task_logger
log = get_task_logger(__name__)
opt_size = (256, 256,)
@celery.task(bind=True)
def demo_task(self, uuid_name, fn):
import sys
import os
from os.path import join
from pathlib import Path
import time
import numpy as np
import cv2 as cv
import dlib
from PIL import Image
import matplotlib.pyplot as plt
from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
from app.utils import plot_utils
from app.processors import face_detector, face_landmarks, face_age_gender, face_beauty
# , face_emotion
from app.models.data_store import DataStore
# TODO add selective testing
opt_gpu = -1
opt_run_pose = True
opt_run_2d_68 = True
opt_run_3d_68 = True
opt_run_3d_68 = True
opt_gif_size = (256, 256,)
opt_gif_frames = 15
meta = {
'step': 0,
'total': 10,
'message': 'Starting',
'uuid': uuid_name,
'data': { 'statistics': {} },
}
paths = []
def step(msg, step=1):
meta['message'] = msg
meta['step'] += step
log.debug('> {}'.format(msg))
self.update_state(state='PROCESSING', meta=meta)
def save_image(key, title, data):
fn = '{}_{}.jpg'.format(uuid_name, key)
fpath = os.path.join(cfg.DIR_SITE_USER_CONTENT, fn)
paths.append(fpath)
cv.imwrite(fpath, data)
meta['data'][key] = {
'title': title,
'url': os.path.join('/user_content/', fn),
}
step('Loading image')
self.update_state(state='PROCESSING', meta=meta)
# -------------------------------------------------
# init here
# load image
im = cv.imread(fn)
im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
os.remove(fn)
# ----------------------------------------------------------------------------
# detect face
face_detector_instance = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
step('Detecting face')
st = time.time()
bboxes = face_detector_instance.detect(im_resized, largest=True, pyramids=2)
bbox = bboxes[0]
dim = im_resized.shape[:2][::-1]
bbox_dim = bbox.to_dim(dim)
if not bbox:
log.error('No face detected')
meta['error'] = 'No face detected'
self.update_state(state='FAILURE', meta=meta)
return meta
else:
log.info(f'Detected face in {(time.time() - st):.2f}s')
# ----------------------------------------------------------------------------
# detect 3D landmarks
step('Generating 3D Landmarks')
log.info('loading 3D landmark generator files...')
landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
log.info('generating 3D landmarks...')
st = time.time()
points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
log.info('')
# draw 3d landmarks
im_landmarks_3d_68 = im_resized.copy()
draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
save_image('landmarks_3d_68', '3D Landmarks', im_landmarks_3d_68)
# ----------------------------------------------------------------------------
# generate 3D GIF animation
step('Generating GIF Animation')
log.info('generating 3D animation...')
fn = '{}_{}.gif'.format(uuid_name, '3d')
fp_out = os.path.join(cfg.DIR_SITE_USER_CONTENT, fn)
paths.append(fp_out)
st = time.time()
plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
size=opt_gif_size, num_frames=opt_gif_frames)
log.info(f'Generated animation in {(time.time() - st):.2f}s')
log.info(f'Saved to: {fp_out}')
log.info('')
meta['data']['points_3d_68'] = points_3d_68
meta['data']['points_3d_68'] = {
'title': '3D Animated GIF',
'url': os.path.join('/user_content/', fn),
}
# ----------------------------------------------------------------------------
# generate 68 point landmarks using dlib
step('Generating 2D 68PT landmarks')
log.info('initializing face landmarks 68 dlib...')
from app.processors import face_landmarks
landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
log.info('generating 2D 68PT landmarks...')
st = time.time()
points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
log.info('')
# draw 2d landmarks
im_landmarks_2d_68 = im_resized.copy()
draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
save_image('landmarks_2d_68', '2D Landmarks', im_landmarks_2d_68)
# ----------------------------------------------------------------------------
# generate pose from 68 point 2D landmarks
if opt_run_pose:
step('Generating pose')
log.info('initialize pose...')
from app.processors import face_pose
pose_detector = face_pose.FacePoseDLIB()
log.info('generating pose...')
st = time.time()
pose_data = pose_detector.pose(points_2d_68, dim)
log.info(f'generated pose {(time.time() - st):.2f}s')
log.info('')
im_pose = im_resized.copy()
draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
draw_utils.draw_degrees(im_pose, pose_data)
save_image('pose', 'Pose', im_pose)
# ----------------------------------------------------------------------------
# age
# real
step('Running age predictor')
age_real_predictor = face_age_gender.FaceAgeReal()
st = time.time()
age_real = age_real_predictor.predict(im_resized, bbox_dim)
log.info(f'age real took: {(time.time()-st)/1000:.5f}s')
meta['data']['statistics']['age_real'] = f'{(age_real):.2f}'
# apparent
age_apparent_predictor = face_age_gender.FaceAgeApparent()
st = time.time()
age_apparent = age_apparent_predictor.predict(im_resized, bbox_dim)
log.info(f'age apparent took: {(time.time()-st)/1000:.5f}s')
meta['data']['statistics']['age_apparent'] = f'{(age_apparent):.2f}'
# gender
step('Running gender predictor')
gender_predictor = face_age_gender.FaceGender()
st = time.time()
gender = gender_predictor.predict(im_resized, bbox_dim)
log.info(f'gender took: {(time.time()-st)/1000:.5f}s')
meta['data']['statistics']['gender'] = f"M: {gender['m']:.2f}, F: {gender['f']:.2f}"
# # ----------------------------------------------------------------------------
# # emotion
# emotion_predictor = face_emotion.FaceEmotion(gpu=opt_gpu)
# emotion_score = emotion_predictor.emotion(im_resized, bbox_dim)
# log.info(f'emotion score: {(100*emotion_score):.2f}')
# im_emotion = im_resized.copy()
# draw_utils.draw_bbox(im_emotion, bbox_dim)
# txt = f'emotion score: {(100*emotion_score):.2f}'
# draw_utils.draw_text(im_emotion, bbox_dim.pt_tl, txt)
# save_image('emotion', 'Emotion', im_emotion)
# ----------------------------------------------------------------------------
# beauty
# TODO fix Keras CPU/GPU device selection issue
# NB: GPU visibility issues with dlib/keras
# Wrap this with cuda toggle and run before init dlib GPU
step('Running beauty predictor')
device_cur = os.getenv('CUDA_VISIBLE_DEVICES', '')
os.environ['CUDA_VISIBLE_DEVICES'] = ''
beauty_predictor = face_beauty.FaceBeauty()
os.environ['CUDA_VISIBLE_DEVICES'] = device_cur
beauty_score = beauty_predictor.beauty(im_resized, bbox_dim)
log.info(f'beauty score: {(100*beauty_score):.2f}')
# # draw 2d landmarks
# im_beauty = im_resized.copy()
# draw_utils.draw_bbox(im_beauty, bbox_dim)
# txt = f'Beauty score: {(100*beauty_score):.2f}'
# draw_utils.draw_text(im_beauty, bbox_dim.pt_tl, txt)
# save_image('beauty', 'Beauty', im_beauty)
meta['data']['statistics']['beauty'] = f'{(100*beauty_score):.2f}'
step('Done')
# # 3DDFA
# self.log.debug('Add depth')
# self.log.debug('Add pncc')
# # TODO
# self.log.debug('Add 3D face model')
# self.log.debug('Add face texture flat')
# self.log.debug('Add ethnicity')
log.debug('done!!')
time.sleep(3)
for path in paths:
if os.path.exists(path):
os.remove(path)
meta['step'] = meta['total']
meta['state'] = 'SUCCESS'
return meta
|