1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
import os
import re
import time
import dlib
import numpy as np
from flask import Blueprint, request, jsonify
from PIL import Image # todo: try to remove PIL dependency
from app.processors import face_recognition
from app.processors import face_detector
from app.processors.faiss import load_faiss_databases
from app.models.sql_factory import load_sql_datasets, list_datasets, get_dataset, get_table
from app.utils.im_utils import pil2np
sanitize_re = re.compile('[\W]+')
valid_exts = ['.gif', '.jpg', '.jpeg', '.png']
api = Blueprint('api', __name__)
faiss_datasets = load_faiss_databases()
@api.route('/')
def index():
return jsonify({ 'datasets': list_datasets() })
@api.route('/dataset/<name>')
def show(name):
dataset = get_dataset(name)
if dataset:
return jsonify(dataset.describe())
else:
return jsonify({ 'status': 404 })
@api.route('/dataset/<name>/face/', methods=['POST'])
def upload(name):
start = time.time()
dataset = get_dataset(name)
if name not in faiss_datasets:
return jsonify({
'error': 'invalid dataset'
})
faiss_dataset = faiss_datasets[name]
file = request.files['query_img']
fn = file.filename
if fn.endswith('blob'):
fn = 'filename.jpg'
basename, ext = os.path.splitext(fn)
print("got {}, type {}".format(basename, ext))
if ext.lower() not in valid_exts:
return jsonify({ 'error': 'not an image' })
im = Image.open(file.stream).convert('RGB')
im_np = pil2np(im)
# Face detection
detector = face_detector.DetectorDLIBHOG()
# get detection as BBox object
bboxes = detector.detect(im_np, largest=True)
if not len(bboxes):
return jsonify({
'error': 'bbox'
})
bbox = bboxes[0]
dim = im_np.shape[:2][::-1]
bbox = bbox.to_dim(dim) # convert back to real dimensions
# face recognition/vector
recognition = face_recognition.RecognitionDLIB(gpu=-1)
vec = recognition.vec(im_np, bbox)
# print(vec)
query = np.array([ vec ]).astype('float32')
# query FAISS!
distances, indexes = faiss_dataset.search(query, 10)
if len(indexes) == 0:
return jsonify({
'error': 'nomatch'
})
# get the results for this single query...
distances = distances[0]
indexes = indexes[0]
if len(indexes) == 0:
return jsonify({
'error': 'nomatch'
})
lookup = {}
ids = [i+1 for i in indexes]
for _d, _i in zip(distances, indexes):
lookup[_i+1] = _d
print(distances)
print(indexes)
# with the result we have an ID
# query the sql dataset for the UUID etc here
query = {
'timing': time.time() - start,
}
results = [ dataset.get_identity(id) for id in ids ]
print(results)
return jsonify({
'results': results,
'distances': distances.tolist(),
'indexes': indexes.tolist(),
})
@api.route('/dataset/<name>/name', methods=['GET'])
def name_lookup(dataset):
start = time.time()
dataset = get_dataset(name)
# we have a query from the request query string...
# use this to do a like* query on the identities_meta table
query = {
'timing': time.time() - start,
}
results = []
print(results)
return jsonify({
'query': query,
'results': results,
})
|