summaryrefslogtreecommitdiff
path: root/megapixels/app/server/api.py
blob: e7db11f173d747e54422d87a878d59453bf6240f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from flask import Blueprint, jsonify

from app.models.sql_factory import list_datasets, get_dataset, get_table

# from jinja2 import TemplateNotFound

# import os
# import sys
# import json
# import time
# import argparse
# import cv2 as cv
# import numpy as np
# from datetime import datetime
# from flask import Flask, request, render_template, jsonify
# from PIL import Image  # todo: try to remove PIL dependency
# import re

# sanitize_re = re.compile('[\W]+')
# valid_exts = ['.gif', '.jpg', '.jpeg', '.png']

# from dotenv import load_dotenv
# load_dotenv()

# from feature_extractor import FeatureExtractor

# DEFAULT_LIMIT = 50

api = Blueprint('api', __name__)

@api.route('/')
def index():
  return jsonify({ 'datasets': list_datasets() })

@api.route('/dataset/<dataset>/test', methods=['POST'])
def test(dataset='test'):
  dataset = get_dataset(dataset)
  print('hiiiiii')
  return jsonify({ 'test': 'OK', 'dataset': dataset })

# @router.route('/<dataset>/face', methods=['POST'])
# def upload(name):
#   file = request.files['query_img']
#   fn = file.filename
#   if fn.endswith('blob'):
#     fn = 'filename.jpg'

#   basename, ext = os.path.splitext(fn)
#   print("got {}, type {}".format(basename, ext))
#   if ext.lower() not in valid_exts:
#     return jsonify({ 'error': 'not an image' })

#   uploaded_fn = datetime.now().isoformat() + "_" + basename
#   uploaded_fn = sanitize_re.sub('', uploaded_fn)
#   uploaded_img_path = "static/uploaded/" + uploaded_fn + ext
#   uploaded_img_path = uploaded_img_path.lower()
#   print('query: {}'.format(uploaded_img_path))

#   img = Image.open(file.stream).convert('RGB')
#   # img.save(uploaded_img_path)
#   # vec = db.load_feature_vector_from_file(uploaded_img_path)
#   vec = fe.extract(img)
#   # print(vec.shape)

#   results = db.search(vec, limit=limit)
#   query = {
#     'timing': time.time() - start,
#   }
#   print(results)
#   return jsonify({
#     'results': results,
#   })