1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
from os.path import join
from pathlib import Path
import cv2 as cv
import numpy as np
import imutils
from app.utils import im_utils, logger_utils
from app.models.bbox import BBox
from app.settings import app_cfg as cfg
from app.settings import types
from app.models.bbox import BBox
# ----------------------------------------------------------------------
#
# 2D landmarks: 5pt and 68pt
#
# ----------------------------------------------------------------------
class Landmarks2D:
# Abstract class
def __init__(self):
self.log = logger_utils.Logger.getLogger()
def landmarks(self, im, bbox):
# override
self.log.warn('Define landmarks() function')
pass
def flatten(self, points):
'''Converts list of point-tupes into a flattened list for CSV
:param points: (list) of x,y points
:returns dict item for each point (eg {'x1':100, 'y1':200})
'''
points_formatted = {}
for idx, pt in enumerate(points, 1):
for j, d in enumerate('xy'):
points_formatted[f'{d}{idx}'] = pt[j]
return points_formatted
def normalize(self, points, dim):
return [np.array(p)/dim for p in points] # divides each point by w,h dim
import face_alignment
class FaceAlignment2D_68(Landmarks2D):
# https://github.com/1adrianb/face-alignment
# Estimates 2D facial landmarks
def __init__(self, gpu=0, flip_input=False):
t = face_alignment.LandmarksType._2D
device = f'cuda:{gpu}' if gpu > -1 else 'cpu'
self.fa = face_alignment.FaceAlignment(t, device=device, flip_input=flip_input)
super().__init__()
self.log.debug(f'{device}')
self.log.debug(f'{t}')
def landmarks(self, im):
'''Calculates the 2D facial landmarks
:param im: (numpy.ndarray) BGR image
:returns (list) of 68 (int) (tuples) as (x,y)
'''
# predict landmarks
points = self.fa.get_landmarks(im) # returns array of arrays of 68 2D pts/face
# convert to data type
points = [list(map(int, p)) for p in points[0]]
return points
class Dlib2D(Landmarks2D):
def __init__(self, model):
super().__init__()
# init dlib
import dlib
self.predictor = dlib.shape_predictor(model)
self.log.info(f'loaded predictor model: {model}')
def landmarks(self, im, bbox):
# Draw high-confidence faces
dim_wh = im.shape[:2][::-1]
bbox = bbox.to_dlib()
im_gray = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
points = [[p.x, p.y] for p in self.predictor(im_gray, bbox).parts()]
return points
class Dlib2D_68(Dlib2D):
def __init__(self):
# Get 68-point landmarks using DLIB
super().__init__(cfg.DIR_MODELS_DLIB_68PT)
class Dlib2D_5(Dlib2D):
def __init__(self):
# Get 5-point landmarks using DLIB
super().__init__(cfg.DIR_MODELS_DLIB_5PT)
class MTCNN2D_5(Landmarks2D):
# Get 5-point landmarks using MTCNN
# https://github.com/ipazc/mtcnn
# pip install mtcnn
def __init__(self):
super().__init__()
self.log.warn('NB: MTCNN runs both face detector and landmark predictor together.')
self.log.warn(' this will use face with most similar ROI')
from mtcnn.mtcnn import MTCNN
self.detector = MTCNN()
def landmarks(self, im, bbox):
'''Detects face using MTCNN and returns (list) of BBox
:param im: (numpy.ndarray) image
:returns list of BBox
'''
results = []
dim_wh = im.shape[:2][::-1] # (w, h)
# run MTCNN to get bbox and landmarks
dets = self.detector.detect_faces(im)
keypoints = []
bboxes = []
#iterate detections and convert to BBox
for det in dets:
#rect = det['box']
points = det['keypoints']
# convert to normalized for contain-comparison
points_norm = [np.array(pt)/dim_wh for pname, pt in points.items()]
contains = False not in [bbox.contains(pn) for pn in points_norm]
if contains:
results.append(points) # append original points
return results
# ----------------------------------------------------------------------
#
# 3D landmarks
#
# ----------------------------------------------------------------------
class Landmarks3D:
def __init__(self):
self.log = logger_utils.Logger.getLogger()
def landmarks(self, im, bbox):
pass
def flatten(self, points):
'''Converts list of point-tupes into a flattened list for CSV
:param points: (list) of x,y points
:returns dict item for each point (eg {'x1':100, 'y1':200})
'''
points_formatted = {}
for idx, pt in enumerate(points, 1):
for j, d in enumerate('xyz'):
points_formatted[f'{d}{idx}'] = pt[j]
return points_formatted
def normalize(self, points, dim):
return [np.array(p)/dim for p in points] # divides each point by w,h dim
class FaceAlignment3D_68(Landmarks3D):
# Estimates 3D facial landmarks
import face_alignment
def __init__(self, gpu=0, flip_input=False):
super().__init__()
device = f'cuda:{gpu}' if gpu > -1 else 'cpu'
self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device=device, flip_input=flip_input)
def landmarks(self, im, as_type=str):
'''Calculates the 3D facial landmarks
:param im: (numpy.ndarray) BGR image
:returns (list) of 68 (int) (tuples) as (x,y, z)
'''
# predict landmarks
points = self.fa.get_landmarks(im) # returns array of arrays of 68 3D pts/face
# convert to data type
points = [list(map(int, p)) for p in points[0]]
return points
|