1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
import os
import glob
import time
import pandas as pd
from sqlalchemy import create_engine, Table, Column, String, Integer, DateTime, Float
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base
from app.utils.file_utils import load_recipe, load_csv_safe
from app.settings import app_cfg as cfg
connection_url = "mysql+mysqlconnector://{}:{}@{}/{}?charset=utf8mb4".format(
os.getenv("DB_USER"),
os.getenv("DB_PASS"),
os.getenv("DB_HOST"),
os.getenv("DB_NAME")
)
datasets = {}
loaded = False
Session = None
def list_datasets():
return [dataset.describe() for dataset in datasets.values()]
def get_dataset(name):
return datasets[name] if name in datasets else None
def get_table(name, table_name):
dataset = get_dataset(name)
return dataset.get_table(table_name) if dataset else None
def load_sql_datasets(replace=False, base_model=None):
global datasets, loaded, Session
if loaded:
return datasets
engine = create_engine(connection_url, encoding="utf-8", pool_recycle=3600)
# db.set_character_set('utf8')
# dbc = db.cursor()
# dbc.execute('SET NAMES utf8;')
# dbc.execute('SET CHARACTER SET utf8;')
# dbc.execute('SET character_set_connection=utf8;')
Session = sessionmaker(bind=engine)
for path in glob.iglob(os.path.join(cfg.DIR_FAISS_METADATA, "*")):
dataset = load_sql_dataset(path, replace, engine, base_model)
datasets[dataset.name] = dataset
loaded = True
return datasets
def load_sql_dataset(path, replace=False, engine=None, base_model=None):
name = os.path.basename(path)
dataset = SqlDataset(name, base_model=base_model)
for fn in glob.iglob(os.path.join(path, "*.csv")):
key = os.path.basename(fn).replace(".csv", "")
table = dataset.get_table(key)
if table is None:
continue
if replace:
print('loading dataset {}'.format(fn))
df = pd.read_csv(fn)
# fix columns that are named "index", a sql reserved word
df.reindex_axis(sorted(df.columns), axis=1)
# df.columns = sorted(table.__table__.columns).keys()
df.to_sql(name=table.__tablename__, con=engine, if_exists='replace', index=False)
return dataset
class SqlDataset:
"""
Bridge between the facial information CSVs connected to the datasets, and MySQL
- each dataset should have files that can be loaded into these database models
- names will be fixed to work in SQL (index -> id)
- we can then have more generic models for fetching this info after doing a FAISS query
"""
def __init__(self, name, engine=None, base_model=None):
self.name = name
self.tables = {}
if base_model is None:
self.engine = create_engine(connection_url, encoding="utf-8", pool_recycle=3600)
base_model = declarative_base(engine)
self.base_model = base_model
def describe(self):
"""
List the available SQL tables for a given dataset.
"""
return {
'name': self.name,
'tables': list(self.tables.keys()),
}
def get_identity(self, id):
"""
Get an identity given an ID.
"""
table = self.get_table('identity')
# id += 1
identity = table.query.filter(table.record_id <= id).order_by(table.record_id.desc()).first().toJSON()
return {
'uuid': self.select('uuids', id),
'identity': identity,
'roi': self.select('roi', id),
'pose': self.select('pose', id),
}
def search_name(self, q):
"""
Find an identity by name.
"""
table = self.get_table('identity')
identity_list = table.query.filter(table.fullname.like(q)).order_by(table.fullname.desc()).limit(10)
return identity_list
def get_file_records_for_identities(self, identity_list):
"""
Given a list of identities, map these to file records.
"""
identities = []
file_record_table = self.get_table('file_record')
for row in identity_list:
file_record = file_record_table.query.filter(file_record_table.id == row.record_id).first()
identities.append({
'file_record': file_record.toJSON(),
'identity': row.toJSON(),
})
return identities
def select(self, table, id):
"""
Perform a generic select.
"""
table = self.get_table(table)
if not table:
return None
session = Session()
# for obj in session.query(table).filter_by(id=id):
# print(table)
obj = session.query(table).filter(table.id == id).first()
session.close()
return obj.toJSON()
def get_table(self, type):
"""
Get one of these memoized, dynamically generated tables.
"""
if type in self.tables:
return self.tables[type]
elif type == 'file_record':
self.tables[type] = self.file_record_table()
elif type == 'identity':
self.tables[type] = self.identity_table()
elif type == 'face_roi':
self.tables[type] = self.face_roi_table()
elif type == 'face_pose':
self.tables[type] = self.face_pose_table()
else:
return None
return self.tables[type]
# ==> file_record.csv <==
# index,ext,fn,identity_key,sha256,subdir,uuid,identity_index
def file_record_table(self):
class FileRecord(self.base_model):
__tablename__ = self.name + "_file_record"
id = Column(Integer, primary_key=True)
ext = Column(String(3, convert_unicode=True), nullable=False)
fn = Column(String(36, convert_unicode=True), nullable=False)
identity_key = Column(String(36, convert_unicode=True), nullable=False)
sha256 = Column(String(36, convert_unicode=True), nullable=False)
subdir = Column(String(36, convert_unicode=True), nullable=False)
uuid = Column(String(36, convert_unicode=True), nullable=False)
identity_index = Column(Integer)
def toJSON(self):
return {
'id': self.id,
'uuid': self.uuid,
'identity_index': self.identity_index,
}
return FileRecord
# ==> identity.csv <==
# index,description,gender,images,fullname
# 0,A. J. Cook,Canadian actress,f,1,0
def identity_table(self):
class Identity(self.base_model):
__tablename__ = self.name + "_identity"
id = Column(Integer, primary_key=True)
description = Column(String(36, convert_unicode=True), nullable=False)
gender = Column(String(1, convert_unicode=True), nullable=False)
images = Column(Integer, nullable=False)
fullname = Column(String(36, convert_unicode=True), nullable=False)
def toJSON(self):
return {
'id': self.id,
'fullname': self.fullname,
'images': self.images,
'gender': self.gender,
'description': self.description,
}
return Identity
# ==> face_roi.csv <==
# index,h,image_height,image_index,image_width,w,x,y
# 0,0.33000000000000007,250,0,250,0.32999999999999996,0.33666666666666667,0.35
def face_roi_table(self):
class FaceROI(self.base_model):
__tablename__ = self.name + "_roi"
id = Column(Integer, primary_key=True)
h = Column(Float, nullable=False)
image_height = Column(Integer, nullable=False)
record_index = Column(Integer, nullable=False)
image_width = Column(Integer, nullable=False)
w = Column(Float, nullable=False)
x = Column(Float, nullable=False)
y = Column(Float, nullable=False)
def toJSON(self):
return {
'id': self.id,
'record_index': self.record_index,
'image_height': self.image_height,
'image_width': self.image_width,
'w': self.w,
'h': self.h,
'x': self.x,
'y': self.y,
}
return FaceROI
# ==> face_pose.csv <==
# index,record_index,pitch,roll,yaw
# 0,0,11.16264458441435,10.415885631337728,22.99719032415318
def face_pose_table(self):
class FacePose(self.base_model):
__tablename__ = self.name + "_pose"
id = Column(Integer, primary_key=True)
record_id = Column(Integer, nullable=False)
pitch = Column(Float, nullable=False)
roll = Column(Float, nullable=False)
yaw = Column(Float, nullable=False)
def toJSON(self):
return {
'id': self.id,
'record_id': self.record_id,
'pitch': self.pitch,
'roll': self.roll,
'yaw': self.yaw,
}
return FacePose
|