summaryrefslogtreecommitdiff
path: root/megapixels/app/models/dataset.py
blob: 11d568a53d088cd2895643373d3fbf673602ec7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Dataset model: container for all CSVs about a dataset
"""
import os
from os.path import join
from pathlib import Path
import logging

import pandas as pd
import numpy as np

from app.settings import app_cfg as cfg
from app.settings import types
from app.models.bbox import BBox
from app.utils import file_utils, im_utils, path_utils
from app.utils.logger_utils import Logger

# -------------------------------------------------------------------------
# Dataset
# -------------------------------------------------------------------------

class Dataset:
  
  def __init__(self, opt_dataset_type, opt_data_store=types.DataStore.NAS):
    self._dataset_type = opt_dataset_type  # enum type
    self.log = Logger.getLogger()
    self._metadata = {}
    self._face_vectors = []
    self._nullframe = pd.DataFrame()  # empty placeholder
    self.data_store = path_utils.DataStore(opt_data_store, self._dataset_type)
    self.data_store_s3 = path_utils.DataStoreS3(self._dataset_type)

  def load(self, opt_data_store):
    '''Loads all CSV files into (dict) of DataFrames'''
    for metadata_type in types.Metadata:
      self.log.info(f'load metadata: {metadata_type}')
      fp_csv = self.data_store.metadata(metadata_type)
      self.log.info(f'loading: {fp_csv}')
      if Path(fp_csv).is_file():
        self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index')
        if metadata_type == types.Metadata.FACE_VECTOR:
          # convert DataFrame to list of floats
          self._face_vecs = self.df_to_vec_list(self._metadata[metadata_type])
          self._metadata[metadata_type].drop('vec', axis=1, inplace=True)
      else:
        self.log.error('File not found: {fp_csv}. Replaced with empty DataFrame')
        self._metadata[metadata_type] = self._nullframe
    self.log.info('finished loading')
  
  def metadata(self, opt_metadata_type):
    return self._metadata.get(opt_metadata_type, self._nullframe)

  def roi_idx_to_record(self, vector_index):
    '''Accumulates image and its metadata'''
    df_face_vector = self._metadata[types.Metadata.FACE_VECTOR]
    ds_face_vector = df_face_vector.iloc[vector_index]
    # get the match's ROI index
    image_index = ds_face_vector.image_index
    # get the roi dataframe
    df_face_roi = self._metadata[types.Metadata.FACE_ROI]
    ds_roi = df_face_roi.iloc[image_index]
    # create BBox
    dim = (ds_roi.image_width, ds_roi.image_height)
    bbox = BBox.from_xywh_dim(ds_roi.x, ds_roi.y, ds_roi.w, ds_roi.y, dim)
    # use the ROI index to get identity index from the identity DataFrame
    df_sha256 = self._metadata[types.Metadata.SHA256]
    ds_sha256 = df_sha256.iloc[image_index]
    sha256 = ds_sha256.sha256
    # get the local filepath
    df_filepath = self._metadata[types.Metadata.FILEPATH]
    ds_file = df_filepath.iloc[image_index]
    fp_im = self.data_store.face_image(ds_file.subdir, ds_file.fn, ds_file.ext)\
    # get remote path
    df_uuid = self._metadata[types.Metadata.UUID]
    ds_uuid = df_uuid.iloc[image_index]
    uuid = ds_uuid.uuid
    fp_url = self.data_store_s3.face_image(uuid)
    fp_url_crop = self.data_store_s3.face_image_crop(uuid)

    image_record = ImageRecord(image_index, sha256, uuid, bbox, fp_im, fp_url)
    # now get the identity index (if available)
    identity_index = ds_sha256.identity_index
    if identity_index:
      # then use the identity index to get the identity meta
      df_identity = df_filepath = self._metadata[types.Metadata.IDENTITY]
      ds_identity = df_identity.iloc[identity_index]
      # get the name and description
      name = ds_identity.fullname
      desc = ds_identity.description
      gender = ds_identity.gender
      n_images = ds_identity.images
      url = '(url)'  # TODO
      age = '(age)' # TODO
      nationality = '(nationality)'
      identity = Identity(identity_index, name=name, desc=desc, gender=gender, n_images=n_images,
        url=url, age=age, nationality=nationality)
      image_record.identity = identity 

    return image_record


  def matches(self, query_vec, n_results=5, threshold=0.5):
    image_records = []  # list of image matches w/identity if available
    # find most similar feature vectors indexes
    match_idxs = self.similar(query_vec, n_results, threshold)
    for match_idx in match_idxs:
      # get the corresponding face vector row
      image_record = self.roi_idx_to_record(match_idx)
      results.append(image_record)
    return image_records

  # ----------------------------------------------------------------------
  # utilities

  def df_to_vec_list(self, df):
    # convert the DataFrame CSV to float list of vecs
    vecs = [list(map(float,x.vec.split(','))) for x in df.itertuples()]
    return vecs

  def similar(self, query_vec, n_results):
    '''Finds most similar N indices of query face vector
    :query_vec: (list) of 128 floating point numbers of face encoding
    :n_results: (int) number of most similar indices to return
    :returns (list) of (int) indices
    '''
    # uses np.linalg based on the ageitgey/face_recognition code
    vecs_sim_scores = np.linalg.norm(np.array([query_vec]) - np.array(self._face_vectors), axis=1)
    top_idxs = np.argpartition(vecs_sim_scores, n_results)[:n_results]
    return top_idxs



class ImageRecord:

  def __init__(self, image_index, sha256, uuid, bbox, filepath, url):
    self.image_index = image_index
    self.sha256 = sha256
    self.uuid = uuid
    self.bbox = bbox
    self.filepath = filepath
    self.url = url
    self._identity = None

  @property
  def identity(self):
    return self._identity

  @identity.setter
  def identity(self, value):
    self._identity = value

  def summarize(self):
    '''Summarizes data for debugging'''
    log = Logger.getLogger()
    log.info(f'filepath: {self.filepath}')
    log.info(f'sha256: {self.sha256}')
    log.info(f'UUID: {self.uuid}')
    log.info(f'BBox: {self.bbox}')
    log.info(f's3 url: {self.url}')
    if self._identity:
      log.info(f'name: {self._identity.name}')
      log.info(f'age: {self._identity.age}')
      log.info(f'gender: {self._identity.gender}')
      log.info(f'nationality: {self._identity.nationality}')
      log.info(f'images: {self._identity.n_images}')


class Identity:

  def __init__(self, idx, name='NA', desc='NA', gender='NA', n_images=1, 
    url='NA', age='NA', nationality='NA'):
    self.index = idx
    self.name = name
    self.description = desc
    self.gender = gender
    self.n_images = n_images
    self.url = url
    self.age = age
    self.nationality = nationality