diff options
Diffstat (limited to 'site/public/datasets/uccs/index.html')
| -rw-r--r-- | site/public/datasets/uccs/index.html | 238 |
1 files changed, 221 insertions, 17 deletions
diff --git a/site/public/datasets/uccs/index.html b/site/public/datasets/uccs/index.html index 0925763b..4de64ebc 100644 --- a/site/public/datasets/uccs/index.html +++ b/site/public/datasets/uccs/index.html @@ -27,9 +27,211 @@ <div class="content content-dataset"> <section class='intro_section' style='background-image: url(https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/uccs/assets/background.jpg)'><div class='inner'><div class='hero_desc'><span class='bgpad'><span class="dataset-name">Unconstrained College Students (UCCS)</span> is a dataset of long-range surveillance photos of students taken without their knowledge</span></div><div class='hero_subdesc'><span class='bgpad'>The UCCS dataset includes 16,149 images and 1,732 identities of students at University of Colorado Colorado Springs campus and is used for face recognition and face detection -</span></div></div></section><section><div class='left-sidebar'><p>{% include 'sidebar.html' %}</p> -<div class='meta'><div><div class='gray'>Published</div><div>2018</div></div><div><div class='gray'>Images</div><div>16,149</div></div><div><div class='gray'>Identities</div><div>1,732</div></div><div><div class='gray'>Used for</div><div>Face recognition, face detection</div></div><div><div class='gray'>Created by</div><div>Unviversity of Colorado Colorado Springs (US)</div></div><div><div class='gray'>Funded by</div><div>ODNI, IARPA, ONR MURI, Amry SBIR, SOCOM SBIR</div></div><div><div class='gray'>Website</div><div><a href="https://vast.uccs.edu/Opensetface/">vast.uccs.edu</a></div></div></div></div><h2>Unconstrained College Students ...</h2> +</span></div></div></section><section><div class='left-sidebar'><div class='meta'> + <div class='gray'>Published</div> + <div>2018</div> + </div><div class='meta'> + <div class='gray'>Images</div> + <div>16,149 </div> + </div><div class='meta'> + <div class='gray'>Identities</div> + <div>1,732 </div> + </div><div class='meta'> + <div class='gray'>Purpose</div> + <div>Face recognition, face detection</div> + </div><div class='meta'> + <div class='gray'>Created by</div> + <div>University of Colorado Colorado Springs (US)</div> + </div><div class='meta'> + <div class='gray'>Funded by</div> + <div>ODNI, IARPA, ONR MURI, Amry SBIR, SOCOM SBIR</div> + </div><div class='meta'> + <div class='gray'>Website</div> + <div><a href='http://vast.uccs.edu/Opensetface/' target='_blank' rel='nofollow noopener'>uccs.edu</a></div> + </div><div class='meta'><div><div class='gray'>Published</div><div>2018</div></div><div><div class='gray'>Images</div><div>16,149</div></div><div><div class='gray'>Identities</div><div>1,732</div></div><div><div class='gray'>Used for</div><div>Face recognition, face detection</div></div><div><div class='gray'>Created by</div><div>Unviversity of Colorado Colorado Springs (US)</div></div><div><div class='gray'>Funded by</div><div>ODNI, IARPA, ONR MURI, Amry SBIR, SOCOM SBIR</div></div><div><div class='gray'>Website</div><div><a href="https://vast.uccs.edu/Opensetface/">vast.uccs.edu</a></div></div></div></div><h2>Unconstrained College Students ...</h2> <p>(PAGE UNDER DEVELOPMENT)</p> +<p>Unconstrained College Students (UCCS) is a dataset of long-range surveillance photos captured at University of Colorado Colorado Springs. According to the authors of two papers associated with the dataset, subjects were "photographed using a long-range high-resolution surveillance camera without their knowledge" [^funding_sb]. The images were captured using a Canon 7D digital camera fitted with a Sigma 800mm telephoto lens pointed out the window of an office.</p> +<p>The UCCS dataset was funded by ODNI (Office of Director of National Intelligence), IARPA (Intelligence Advance Research Projects Activity), ONR MURI Office of Naval Research and The Department of Defense Multidisciplinary University Research Initiative, Army SBIR (Small Business Innovation Research), SOCOM SBIR (Special Operations Command and Small Business Innovation Research), and the National Science Foundation.</p> +<p>The images in UCCS include students walking between classes on campus over 19 days in 2012 - 2013. The dates include:</p> +<table> +<thead><tr> +<th>Year</th> +<th>Month</th> +<th>Day</th> +<th>Date</th> +<th>Time Range</th> +<th>Photos</th> +</tr> +</thead> +<tbody> +<tr> +<td>2012</td> +<td>Februay</td> +<td>---</td> +<td>23</td> +<td>-</td> +<td>132</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>6</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>8</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>13</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>Februay</td> +<td>---</td> +<td>23</td> +<td>-</td> +<td>132</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>6</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>8</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>13</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>Februay</td> +<td>---</td> +<td>23</td> +<td>-</td> +<td>132</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>6</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>8</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>13</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>Februay</td> +<td>---</td> +<td>23</td> +<td>-</td> +<td>132</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>6</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>8</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>13</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>Februay</td> +<td>---</td> +<td>23</td> +<td>-</td> +<td>132</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>6</td> +<td>-</td> +<td>-</td> +</tr> +<tr> +<td>2012</td> +<td>March</td> +<td>---</td> +<td>8</td> +<td>-</td> +<td>-</td> +</tr> +</tbody> +</table> +<p>2012-03-20 +2012-03-22 +2012-04-03 +2012-04-12 +2012-04-17 +2012-04-24 +2012-04-25 +2012-04-26 +2013-01-28 +2013-01-29 +2013-02-13 +2013-02-19 +2013-02-20 +2013-02-26</p> </section><section class='images'><div class='image'><img src='https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/uccs/assets/uccs_mean_bboxes_comp.jpg' alt=' The pixel-average of all Uconstrained College Students images is shown with all 51,838 face annotations. (c) Adam Harvey'><div class='caption'> The pixel-average of all Uconstrained College Students images is shown with all 51,838 face annotations. (c) Adam Harvey</div></div></section><section> <h3>Biometric Trade Routes</h3> @@ -83,6 +285,14 @@ <div class="applet" data-payload="{"command": "chart"}"></div> </section><section class="applet_container"> <div class="applet" data-payload="{"command": "piechart"}"></div> +</section><section class="applet_container"> + + <h3>Dataset Citations</h3> + <p> + The dataset citations used in the visualizations were collected from <a href="https://www.semanticscholar.org">Semantic Scholar</a>, a website which aggregates and indexes research papers. Each citation was geocoded using names of institutions found in the PDF front matter, or as listed on other resources. These papers have been manually verified to show that researchers downloaded and used the dataset to train or test machine learning algorithms. + </p> + + <div class="applet" data-payload="{"command": "citations"}"></div> </section><section> <div class="hr-wave-holder"> @@ -92,16 +302,7 @@ <h3>Supplementary Information</h3> -</section><section class="applet_container"> - - <h3>Dataset Citations</h3> - <p> - The dataset citations used in the visualizations were collected from <a href="https://www.semanticscholar.org">Semantic Scholar</a>, a website which aggregates and indexes research papers. Each citation was geocoded using names of institutions found in the PDF front matter, or as listed on other resources. These papers have been manually verified to show that researchers downloaded and used the dataset to train or test machine learning algorithms. - </p> - - <div class="applet" data-payload="{"command": "citations"}"></div> -</section><section><h3>Research Notes</h3> -<p>The original Sapkota and Boult dataset, from which UCCS is derived, received funding from<sup class="footnote-ref" id="fnref-funding_sb"><a href="#fn-funding_sb">1</a></sup>:</p> +</section><section><p>The original Sapkota and Boult dataset, from which UCCS is derived, received funding from<sup class="footnote-ref" id="fnref-funding_sb"><a href="#fn-funding_sb">1</a></sup>:</p> <ul> <li>ONR (Office of Naval Research) MURI (The Department of Defense Multidisciplinary University Research Initiative) grant N00014-08-1-0638</li> <li>Army SBIR (Small Business Innovation Research) grant W15P7T-12-C-A210</li> @@ -113,11 +314,14 @@ <li>ODNI (Office of Director of National Intelligence)</li> <li>IARPA (Intelligence Advance Research Projects Activity) R&D contract 2014-14071600012</li> </ul> -<p>" In most face detection/recognition datasets, the majority of images are “posed”, i.e. the subjects know they are being photographed, and/or the images are selected for publication in public media. Hence, blurry, occluded and badly illuminated images are generally uncommon in these datasets. In addition, most of these challenges are close-set, i.e. the list of subjects in the gallery is the same as the one used for testing.</p> -<p>This challenge explores more unconstrained data, by introducing the new UnConstrained College Students (UCCS) dataset, where subjects are photographed using a long-range high-resolution surveillance camera without their knowledge. Faces inside these images are of various poses, and varied levels of blurriness and occlusion. The challenge also creates an open set recognition problem, where unknown people will be seen during testing and must be rejected.</p> -<p>With this challenge, we hope to foster face detection and recognition research towards surveillance applications that are becoming more popular and more required nowadays, and where no automatic recognition algorithm has proven to be useful yet.</p> -<p>UnConstrained College Students (UCCS) Dataset</p> -<p>The UCCS dataset was collected over several months using Canon 7D camera fitted with Sigma 800mm F5.6 EX APO DG HSM lens, taking images at one frame per second, during times when many students were walking on the sidewalk. "</p> +<h3>TODO</h3> +<ul> +<li>add tabulator module for dates</li> +<li>parse dates into CSV using Python</li> +<li>get google image showing line of sight?</li> +<li>fix up quote/citations</li> +</ul> +<h3>footnotes</h3> <div class="footnotes"> <hr> <ol><li id="fn-funding_sb"><p>Sapkota, Archana and Boult, Terrance. "Large Scale Unconstrained Open Set Face Database." 2013.<a href="#fnref-funding_sb" class="footnote">↩</a></p></li> |
