diff options
Diffstat (limited to 'site/public/datasets/oxford_town_centre/index.html')
| -rw-r--r-- | site/public/datasets/oxford_town_centre/index.html | 150 |
1 files changed, 150 insertions, 0 deletions
diff --git a/site/public/datasets/oxford_town_centre/index.html b/site/public/datasets/oxford_town_centre/index.html new file mode 100644 index 00000000..db62a5a6 --- /dev/null +++ b/site/public/datasets/oxford_town_centre/index.html @@ -0,0 +1,150 @@ +<!doctype html> +<html> +<head> + <title>MegaPixels</title> + <meta charset="utf-8" /> + <meta name="author" content="Adam Harvey" /> + <meta name="description" content="Oxford Town Centre is a dataset of surveillance camera footage from Cornmarket St Oxford, England" /> + <meta name="referrer" content="no-referrer" /> + <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" /> + <link rel='stylesheet' href='/assets/css/fonts.css' /> + <link rel='stylesheet' href='/assets/css/css.css' /> + <link rel='stylesheet' href='/assets/css/leaflet.css' /> + <link rel='stylesheet' href='/assets/css/applets.css' /> +</head> +<body> + <header> + <a class='slogan' href="/"> + <div class='logo'></div> + <div class='site_name'>MegaPixels</div> + <div class='splash'>TownCentre</div> + </a> + <div class='links'> + <a href="/datasets/">Datasets</a> + <a href="/about/">About</a> + </div> + </header> + <div class="content content-dataset"> + + <section class='intro_section' style='background-image: url(https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/oxford_town_centre/assets/background.jpg)'><div class='inner'><div class='hero_desc'><span class='bgpad'>Oxford Town Centre is a dataset of surveillance camera footage from Cornmarket St Oxford, England</span></div><div class='hero_subdesc'><span class='bgpad'>The Oxford Town Centre dataset includes +</span></div></div></section><section><div class='left-sidebar'><div class='meta'> + <div class='gray'>Published</div> + <div>2011</div> + </div><div class='meta'> + <div class='gray'>Videos</div> + <div>1 </div> + </div><div class='meta'> + <div class='gray'>Purpose</div> + <div>Person detection, gaze estimation</div> + </div><div class='meta'> + <div class='gray'>Funded by</div> + <div>EU FP6 Hermes project and Oxford Risk </div> + </div><div class='meta'> + <div class='gray'>Download Size</div> + <div>0.118 GB</div> + </div><div class='meta'> + <div class='gray'>Website</div> + <div><a href='http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/2009bbenfold_headpose/project.html' target='_blank' rel='nofollow noopener'>ox.ac.uk</a></div> + </div></div><h2>Oxford Town Centre</h2> +<p>[ page under development ]</p> +<p>The Oxford Town Centre dataset is a video of pedestrians in a busy downtown area in Oxford used for creating surveillance algorithms with "potential applications in activity recognition and remote biometric analysis" or non-cooperative face recognition. <a class="footnote_shim" name="[^ben_benfold_orig]_1"> </a><a href="#[^ben_benfold_orig]" class="footnote" title="Footnote 1">1</a></p> +<p>Based on observations of the dataset video and Google Street images, the source of the footage has been geolocated to a public CCTV camera at the intersection of Cornmarket and Market St. Oxford, England (<a href="https://www.google.com/maps/@51.7528347,-1.2581078,3a,90y,324.38h,101.91t/data=!3m6!1e1!3m4!1s3uTXi12qVnI35DnDJbDofg!2e0!7i13312!8i6656">map</a>). Based on an analysis of the papers that use or cite this dataset <a class="footnote_shim" name="[^guiding_surveillance]_1"> </a><a href="#[^guiding_surveillance]" class="footnote" title="Footnote 2">2</a> the inferred year of capture was definitely 2009 and the season was perhaps February or March based on the the window advertisements and cool-weather clothing.</p> +<p>Halfway through the video a peculiar and somewhat rude man enters the video and stands directly over top a water drain for over a minute. His unusual demeanor and apparently scripted behavior suggests a possible relationship to the CCTV operators.</p> +<p>Although Oxford Town Centre dataset first appears as a pedestrian dataset, it was created to improve the stabilization of pedstrian detections in order to extract a more accurate head region that would lead to improvements in face recognition.</p> +</section><section class='images'><div class='image'><img src='https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/oxford_town_centre/assets/surveillance_camera.jpg' alt=' Footage from this public CCTV camera was used to create the Oxford Town Centre dataset. Image source Google Sreet View'><div class='caption'> Footage from this public CCTV camera was used to create the Oxford Town Centre dataset. Image source Google Sreet View</div></div></section><section> + <h3>Who used TownCentre?</h3> + + <p> + This bar chart presents a ranking of the top countries where dataset citations originated. Mouse over individual columns to see yearly totals. These charts show at most the top 10 countries. + </p> + + </section> + +<section class="applet_container"> +<!-- <div style="position: absolute;top: 0px;right: -55px;width: 180px;font-size: 14px;">Labeled Faces in the Wild Dataset<br><span class="numc" style="font-size: 11px;">20 citations</span> +</div> --> + <div class="applet" data-payload="{"command": "chart"}"></div> +</section> + +<section class="applet_container"> + <div class="applet" data-payload="{"command": "piechart"}"></div> +</section> + +<section> + + <h3>Biometric Trade Routes</h3> + + <p> + To help understand how TownCentre has been used around the world by commercial, military, and academic organizations; existing publicly available research citing Oxford Town Centre was collected, verified, and geocoded to show the biometric trade routes of people appearing in the images. Click on the markers to reveal research projects at that location. + </p> + + </section> + +<section class="applet_container fullwidth"> + <div class="applet" data-payload="{"command": "map"}"></div> +</section> + +<div class="caption"> + <ul class="map-legend"> + <li class="edu">Academic</li> + <li class="com">Commercial</li> + <li class="gov">Military / Government</li> + </ul> + <div class="source">Citation data is collected using <a href="https://semanticscholar.org" target="_blank">SemanticScholar.org</a> then dataset usage verified and geolocated.</div > +</div> + + +<section class="applet_container"> + + <h3>Dataset Citations</h3> + <p> + The dataset citations used in the visualizations were collected from <a href="https://www.semanticscholar.org">Semantic Scholar</a>, a website which aggregates and indexes research papers. Each citation was geocoded using names of institutions found in the PDF front matter, or as listed on other resources. These papers have been manually verified to show that researchers downloaded and used the dataset to trainĀ or test machine learning algorithms. + </p> + + <div class="applet" data-payload="{"command": "citations"}"></div> +</section><section> + + <div class="hr-wave-holder"> + <div class="hr-wave-line hr-wave-line1"></div> + <div class="hr-wave-line hr-wave-line2"></div> + </div> + + <h2>Supplementary Information</h2> + +</section><section><p>Several researchers have posted their demo videos using the Oxford Town Centre dataset on YouTube:</p> +<ul> +<li><a href="https://www.youtube.com/watch?v=nO-3EM9dEd4">Multi target tracking on Oxford Dataset</a></li> +<li>[Multi-pedestrian tracking (TownCentre dataset)]<a href="https://www.youtube.com/watch?v=nO-3EM9dEd4">https://www.youtube.com/watch?v=nO-3EM9dEd4</a></li> +<li><a href="https://www.youtube.com/watch?v=SKXk6uB8348">Multiple object tracking with kalman tracker and sort</a></li> +<li><a href="https://www.youtube.com/watch?v=RM_RdXH7pSY">Multi target tracking on Oxford dataset</a></li> +<li><a href="https://www.youtube.com/watch?v=ErLtfUAJA8U">towncentre</a></li> +<li><a href="https://www.youtube.com/watch?v=LwMOmqvhnoc">VTD - towncenter.avi</a></li> +</ul> +<p>[ add visualization ]</p> +<p>TODO</p> +<ul> +<li>make visualization</li> +<li>add license info</li> +</ul> +</section><section><ul class="footnotes"><li><a name="[^ben_benfold_orig]" class="footnote_shim"></a><span class="backlinks"><a href="#[^ben_benfold_orig]_1">a</a></span><p>Benfold, Ben and Reid, Ian. "Stable Multi-Target Tracking in Real-Time Surveillance Video". CVPR 2011. Pages 3457-3464.</p> +</li><li><a name="[^guiding_surveillance]" class="footnote_shim"></a><span class="backlinks"><a href="#[^guiding_surveillance]_1">a</a></span><p>"Guiding Visual Surveillance by Tracking Human Attention". 2009.</p> +</li></ul></section> + + </div> + <footer> + <div> + <a href="/">MegaPixels.cc</a> + <a href="/datasets/">Datasets</a> + <a href="/about/">About</a> + <a href="/about/press/">Press</a> + <a href="/about/legal/">Legal and Privacy</a> + </div> + <div> + MegaPixels ©2017-19 Adam R. Harvey / + <a href="https://ahprojects.com">ahprojects.com</a> + </div> + </footer> +</body> + +<script src="/assets/js/dist/index.js"></script> +</html>
\ No newline at end of file |
