diff options
Diffstat (limited to 'site/public/datasets/lfw/index.html')
| -rw-r--r-- | site/public/datasets/lfw/index.html | 18 |
1 files changed, 9 insertions, 9 deletions
diff --git a/site/public/datasets/lfw/index.html b/site/public/datasets/lfw/index.html index 54b6aa22..08ec8ee3 100644 --- a/site/public/datasets/lfw/index.html +++ b/site/public/datasets/lfw/index.html @@ -28,10 +28,10 @@ <div class="content"> <section class='intro_section' style='background-image: url(https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/lfw/assets/lfw_feature.jpg)'><div class='inner'><div class='hero_desc'><span><span style='color: #ff0000'>Labeled Faces in The Wild</span> (LFW) is a database of face photographs designed for studying the problem of unconstrained face recognition.</span></div><div class='hero_subdesc'><span>It includes 13,456 images of 4,432 people’s images copied from the Internet during 2002-2004. -</span></div></div></section><section><div class='image'><div class='caption'>Eighteen of the 5,749 people in the Labeled Faces in the Wild Dataset. The most widely used face dataset for benchmarking commercial face recognition algorithms.</div></div></section><section><div class='right-sidebar'><h3>Statistics</h3> +</span></div></div></section><section><div class='image'><div class='caption'>A few of the 5,749 people in the Labeled Faces in the Wild Dataset. The most widely used face dataset for benchmarking commercial face recognition algorithms.</div></div></section><section><div class='right-sidebar'><h3>Statistics</h3> <div class='meta'><div><div class='gray'>Years</div><div>2002-2004</div></div><div><div class='gray'>Images</div><div>13,233</div></div><div><div class='gray'>Identities</div><div>5,749</div></div><div><div class='gray'>Origin</div><div>Yahoo News Images</div></div><div><div class='gray'>Funding</div><div>(Possibly, partially CIA)</div></div></div><h3>INSIGHTS</h3> <ul> -<li>There are about 3 men for every 1 woman (4,277 men and 1,472 women) in the LFW dataset<a href="#[^lfw_www]" class="footnote" title="Footnote 1">1</a></li> +<li>There are about 3 men for every 1 woman (4,277 men and 1,472 women) in the LFW dataset<a class="footnote_shim" name="[^lfw_www]_1"> </a><a href="#[^lfw_www]" class="footnote" title="Footnote 1">1</a></li> <li>The person with the most images is <a href="http://vis-www.cs.umass.edu/lfw/person/George_W_Bush_comp.html">George W. Bush</a> with 530</li> <li>There are about 3 George W. Bush's for every 1 <a href="http://vis-www.cs.umass.edu/lfw/person/Tony_Blair.html">Tony Blair</a></li> <li>The LFW dataset includes over 500 actors, 30 models, 10 presidents, 124 basketball players, 24 football players, 11 kings, 7 queens, and 1 <a href="http://vis-www.cs.umass.edu/lfw/person/Moby.html">Moby</a></li> @@ -39,7 +39,7 @@ <li>The word "future" appears 71 times</li> </ul> </div><h2>Labeled Faces in the Wild</h2> -<p><em>Labeled Faces in The Wild</em> (LFW) is "a database of face photographs designed for studying the problem of unconstrained face recognition<a href="#[^lfw_www]" class="footnote" title="Footnote 1">1</a>. It is used to evaluate and improve the performance of facial recognition algorithms in academic, commercial, and government research. According to BiometricUpdate.com<a href="#[^lfw_pingan]" class="footnote" title="Footnote 3">3</a>, LFW is "the most widely used evaluation set in the field of facial recognition, LFW attracts a few dozen teams from around the globe including Google, Facebook, Microsoft Research Asia, Baidu, Tencent, SenseTime, Face++ and Chinese University of Hong Kong."</p> +<p><em>Labeled Faces in The Wild</em> (LFW) is "a database of face photographs designed for studying the problem of unconstrained face recognition<a class="footnote_shim" name="[^lfw_www]_2"> </a><a href="#[^lfw_www]" class="footnote" title="Footnote 1">1</a>. It is used to evaluate and improve the performance of facial recognition algorithms in academic, commercial, and government research. According to BiometricUpdate.com<a class="footnote_shim" name="[^lfw_pingan]_1"> </a><a href="#[^lfw_pingan]" class="footnote" title="Footnote 3">3</a>, LFW is "the most widely used evaluation set in the field of facial recognition, LFW attracts a few dozen teams from around the globe including Google, Facebook, Microsoft Research Asia, Baidu, Tencent, SenseTime, Face++ and Chinese University of Hong Kong."</p> <p>The LFW dataset includes 13,233 images of 5,749 people that were collected between 2002-2004. LFW is a subset of <em>Names of Faces</em> and is part of the first facial recognition training dataset created entirely from images appearing on the Internet. The people appearing in LFW are...</p> <p>The <em>Names and Faces</em> dataset was the first face recognition dataset created entire from online photos. However, <em>Names and Faces</em> and <em>LFW</em> are not the first face recognition dataset created entirely "in the wild". That title belongs to the <a href="/datasets/ucd_faces/">UCD dataset</a>. Images obtained "in the wild" means using an image without explicit consent or awareness from the subject or photographer.</p> <h3>Biometric Trade Routes</h3> @@ -51,11 +51,11 @@ </section><section class='applet_container'><div class='applet' data-payload='{"command": "citations"}'></div></section><section><h3>Additional Information</h3> <p>(tweet-sized snippets go here)</p> <ul> -<li>The LFW dataset is considered the "most popular benchmark for face recognition" <a href="#[^lfw_baidu]" class="footnote" title="Footnote 2">2</a></li> -<li>The LFW dataset is "the most widely used evaluation set in the field of facial recognition" <a href="#[^lfw_pingan]" class="footnote" title="Footnote 3">3</a></li> +<li>The LFW dataset is considered the "most popular benchmark for face recognition" <a class="footnote_shim" name="[^lfw_baidu]_1"> </a><a href="#[^lfw_baidu]" class="footnote" title="Footnote 2">2</a></li> +<li>The LFW dataset is "the most widely used evaluation set in the field of facial recognition" <a class="footnote_shim" name="[^lfw_pingan]_2"> </a><a href="#[^lfw_pingan]" class="footnote" title="Footnote 3">3</a></li> <li>All images in LFW dataset were obtained "in the wild" meaning without any consent from the subject or from the photographer</li> <li>The faces in the LFW dataset were detected using the Viola-Jones haarcascade face detector [^lfw_website] [^lfw-survey]</li> -<li>The LFW dataset is used by several of the largest tech companies in the world including "Google, Facebook, Microsoft Research Asia, Baidu, Tencent, SenseTime, Face++ and Chinese University of Hong Kong." <a href="#[^lfw_pingan]" class="footnote" title="Footnote 3">3</a></li> +<li>The LFW dataset is used by several of the largest tech companies in the world including "Google, Facebook, Microsoft Research Asia, Baidu, Tencent, SenseTime, Face++ and Chinese University of Hong Kong." <a class="footnote_shim" name="[^lfw_pingan]_3"> </a><a href="#[^lfw_pingan]" class="footnote" title="Footnote 3">3</a></li> <li>All images in the LFW dataset were copied from Yahoo News between 2002 - 2004</li> <li>In 2014, two of the four original authors of the LFW dataset received funding from IARPA and ODNI for their followup paper <a href="https://www.semanticscholar.org/paper/Labeled-Faces-in-the-Wild-%3A-Updates-and-New-Huang-Learned-Miller/2d3482dcff69c7417c7b933f22de606a0e8e42d4">Labeled Faces in the Wild: Updates and New Reporting Procedures</a> via IARPA contract number 2014-14071600010</li> <li>The dataset includes 2 images of <a href="http://vis-www.cs.umass.edu/lfw/person/George_Tenet.html">George Tenet</a>, the former Director of Central Intelligence (DCI) for the Central Intelligence Agency whose facial biometrics were eventually used to help train facial recognition software in China and Russia</li> @@ -94,9 +94,9 @@ imageio.imwrite('lfw_montage_960.jpg', montage) </code></pre> </section><section><h3>Supplementary Material</h3> </section><section class='applet_container'><div class='applet' data-payload='{"command": "load_file assets/lfw_commercial_use.csv", "fields": ["name_display, company_url, example_url, country, description"]}'></div></section><section><p>Text and graphics ©Adam Harvey / megapixels.cc</p> -</section><section><ul class="footnotes"><li><a name="[^lfw_www]" class="footnote_anchor">^</a><p><a href="http://vis-www.cs.umass.edu/lfw/results.html">http://vis-www.cs.umass.edu/lfw/results.html</a></p> -</li><li><a name="[^lfw_baidu]" class="footnote_anchor">^</a><p>Jingtuo Liu, Yafeng Deng, Tao Bai, Zhengping Wei, Chang Huang. Targeting Ultimate Accuracy: Face Recognition via Deep Embedding. <a href="https://arxiv.org/abs/1506.07310">https://arxiv.org/abs/1506.07310</a></p> -</li><li><a name="[^lfw_pingan]" class="footnote_anchor">^</a><p>Lee, Justin. "PING AN Tech facial recognition receives high score in latest LFW test results". BiometricUpdate.com. Feb 13, 2017. <a href="https://www.biometricupdate.com/201702/ping-an-tech-facial-recognition-receives-high-score-in-latest-lfw-test-results">https://www.biometricupdate.com/201702/ping-an-tech-facial-recognition-receives-high-score-in-latest-lfw-test-results</a></p> +</section><section><ul class="footnotes"><li><a name="[^lfw_www]" class="footnote_shim"></a><span class="backlinks"><a href="#[^lfw_www]_1">a</a><a href="#[^lfw_www]_2">b</a></span><p><a href="http://vis-www.cs.umass.edu/lfw/results.html">http://vis-www.cs.umass.edu/lfw/results.html</a></p> +</li><li><a name="[^lfw_baidu]" class="footnote_shim"></a><span class="backlinks"><a href="#[^lfw_baidu]_1">a</a></span><p>Jingtuo Liu, Yafeng Deng, Tao Bai, Zhengping Wei, Chang Huang. Targeting Ultimate Accuracy: Face Recognition via Deep Embedding. <a href="https://arxiv.org/abs/1506.07310">https://arxiv.org/abs/1506.07310</a></p> +</li><li><a name="[^lfw_pingan]" class="footnote_shim"></a><span class="backlinks"><a href="#[^lfw_pingan]_1">a</a><a href="#[^lfw_pingan]_2">b</a><a href="#[^lfw_pingan]_3">c</a></span><p>Lee, Justin. "PING AN Tech facial recognition receives high score in latest LFW test results". BiometricUpdate.com. Feb 13, 2017. <a href="https://www.biometricupdate.com/201702/ping-an-tech-facial-recognition-receives-high-score-in-latest-lfw-test-results">https://www.biometricupdate.com/201702/ping-an-tech-facial-recognition-receives-high-score-in-latest-lfw-test-results</a></p> </li></ul></section> </div> |
