summaryrefslogtreecommitdiff
path: root/site/datasets/final/umd_faces.csv
diff options
context:
space:
mode:
Diffstat (limited to 'site/datasets/final/umd_faces.csv')
-rw-r--r--site/datasets/final/umd_faces.csv34
1 files changed, 0 insertions, 34 deletions
diff --git a/site/datasets/final/umd_faces.csv b/site/datasets/final/umd_faces.csv
deleted file mode 100644
index 53788401..00000000
--- a/site/datasets/final/umd_faces.csv
+++ /dev/null
@@ -1,34 +0,0 @@
-index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
-0,UMD,umd_faces,0.0,0.0,,,31b05f65405534a696a847dd19c621b7b8588263,main,http://arxiv.org/abs/1611.01484,UMDFaces: An annotated face dataset for training deep networks,2017
-1,UMD,umd_faces,39.2899685,-76.62196103,University of Maryland,edu,19458454308a9f56b7de76bf7d8ff8eaa52b0173,citation,https://pdfs.semanticscholar.org/1945/8454308a9f56b7de76bf7d8ff8eaa52b0173.pdf,Deep Features for Recognizing Disguised Faces in the Wild,0
-2,UMD,umd_faces,28.2290209,112.99483204,"National University of Defense Technology, China",edu,511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7,citation,https://pdfs.semanticscholar.org/511a/8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7.pdf,A Community Detection Approach to Cleaning Extremely Large Face Database,2018
-3,UMD,umd_faces,25.01682835,121.53846924,National Taiwan University,edu,81884e1de00e59f24bc20254584d73a1a1806933,citation,https://arxiv.org/pdf/1811.02328.pdf,Super-Identity Convolutional Neural Network for Face Hallucination,2018
-4,UMD,umd_faces,39.993008,116.329882,SenseTime,company,81884e1de00e59f24bc20254584d73a1a1806933,citation,https://arxiv.org/pdf/1811.02328.pdf,Super-Identity Convolutional Neural Network for Face Hallucination,2018
-5,UMD,umd_faces,30.284151,-97.73195598,University of Texas at Austin,edu,81884e1de00e59f24bc20254584d73a1a1806933,citation,https://arxiv.org/pdf/1811.02328.pdf,Super-Identity Convolutional Neural Network for Face Hallucination,2018
-6,UMD,umd_faces,45.7835966,4.7678948,École Centrale de Lyon,edu,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017
-7,UMD,umd_faces,48.832493,2.267474,Safran Identity and Security,company,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017
-8,UMD,umd_faces,41.70456775,-86.23822026,University of Notre Dame,edu,73ea06787925157df519a15ee01cc3dc1982a7e0,citation,https://arxiv.org/pdf/1811.01474.pdf,Fast Face Image Synthesis with Minimal Training,2018
-9,UMD,umd_faces,30.40550035,-91.18620474,Louisiana State University,edu,9f65319b8a33c8ec11da2f034731d928bf92e29d,citation,http://pdfs.semanticscholar.org/9f65/319b8a33c8ec11da2f034731d928bf92e29d.pdf,Taking Roll: a Pipeline for Face Recognition,2018
-10,UMD,umd_faces,51.24303255,-0.59001382,University of Surrey,edu,ed07856461da6c7afa4f1782b5b607b45eebe9f6,citation,https://pdfs.semanticscholar.org/ed07/856461da6c7afa4f1782b5b607b45eebe9f6.pdf,D Morphable Models as Spatial Transformer Networks,2017
-11,UMD,umd_faces,53.94540365,-1.03138878,University of York,edu,ed07856461da6c7afa4f1782b5b607b45eebe9f6,citation,https://pdfs.semanticscholar.org/ed07/856461da6c7afa4f1782b5b607b45eebe9f6.pdf,D Morphable Models as Spatial Transformer Networks,2017
-12,UMD,umd_faces,53.94540365,-1.03138878,University of York,edu,6a4419ce2338ea30a570cf45624741b754fa52cb,citation,https://arxiv.org/pdf/1804.02541.pdf,Statistical transformer networks: learning shape and appearance models via self supervision,2018
-13,UMD,umd_faces,51.49887085,-0.17560797,Imperial College London,edu,809ea255d144cff780300440d0f22c96e98abd53,citation,http://pdfs.semanticscholar.org/809e/a255d144cff780300440d0f22c96e98abd53.pdf,ArcFace: Additive Angular Margin Loss for Deep Face Recognition,2018
-14,UMD,umd_faces,39.2899685,-76.62196103,University of Maryland,edu,def2983576001bac7d6461d78451159800938112,citation,https://arxiv.org/pdf/1705.07426.pdf,The Do’s and Don’ts for CNN-Based Face Verification,2017
-15,UMD,umd_faces,43.7776426,11.259765,University of Florence,edu,746c0205fdf191a737df7af000eaec9409ede73f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423119,Investigating Nuisances in DCNN-Based Face Recognition,2018
-16,UMD,umd_faces,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
-17,UMD,umd_faces,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
-18,UMD,umd_faces,51.24303255,-0.59001382,University of Surrey,edu,c146aa6d56233ce700032f1cb179700778557601,citation,https://arxiv.org/pdf/1708.07199.pdf,3D Morphable Models as Spatial Transformer Networks,2017
-19,UMD,umd_faces,53.94540365,-1.03138878,University of York,edu,c146aa6d56233ce700032f1cb179700778557601,citation,https://arxiv.org/pdf/1708.07199.pdf,3D Morphable Models as Spatial Transformer Networks,2017
-20,UMD,umd_faces,25.01682835,121.53846924,National Taiwan University,edu,17423fe480b109e1d924314c1dddb11b084e8a42,citation,https://pdfs.semanticscholar.org/1742/3fe480b109e1d924314c1dddb11b084e8a42.pdf,Deep Disguised Faces Recognition,0
-21,UMD,umd_faces,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,7a131fafa7058fb75fdca32d0529bc7cb50429bd,citation,https://arxiv.org/pdf/1704.04086.pdf,Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis,2017
-22,UMD,umd_faces,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cd6aaa37fffd0b5c2320f386be322b8adaa1cc68,citation,https://arxiv.org/pdf/1804.06655.pdf,Deep Face Recognition: A Survey,2018
-23,UMD,umd_faces,30.274084,120.15507,Alibaba,company,89497854eada7e32f06aa8f3c0ceedc0e91ecfef,citation,https://doi.org/10.1109/TIP.2017.2784571,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,2018
-24,UMD,umd_faces,30.19331415,120.11930822,Zhejiang University,edu,89497854eada7e32f06aa8f3c0ceedc0e91ecfef,citation,https://doi.org/10.1109/TIP.2017.2784571,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,2018
-25,UMD,umd_faces,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,d4f1eb008eb80595bcfdac368e23ae9754e1e745,citation,https://arxiv.org/pdf/1708.02337.pdf,Unconstrained Face Detection and Open-Set Face Recognition Challenge,2017
-26,UMD,umd_faces,51.7534538,-1.25400997,University of Oxford,edu,eb027969f9310e0ae941e2adee2d42cdf07d938c,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018
-27,UMD,umd_faces,51.49887085,-0.17560797,Imperial College London,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018
-28,UMD,umd_faces,51.24303255,-0.59001382,University of Surrey,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018
-29,UMD,umd_faces,41.70456775,-86.23822026,University of Notre Dame,edu,e64c166dc5bb33bc61462a8b5ac92edb24d905a1,citation,https://arxiv.org/pdf/1811.01474.pdf,Fast Face Image Synthesis with Minimal Training.,2018
-30,UMD,umd_faces,51.7534538,-1.25400997,University of Oxford,edu,70c59dc3470ae867016f6ab0e008ac8ba03774a1,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018
-31,UMD,umd_faces,38.99203005,-76.9461029,University of Maryland College Park,edu,3d2891950f1b76f783a9ba77b3c55b8e68b95fbe,citation,https://arxiv.org/pdf/1802.06713.pdf,Disentangling 3D Pose in a Dendritic CNN for Unconstrained 2D Face Alignment,2018
-32,UMD,umd_faces,51.49887085,-0.17560797,Imperial College London,edu,1929863fff917ee7f6dc428fc1ce732777668eca,citation,https://arxiv.org/pdf/1712.04695.pdf,UV-GAN: Adversarial Facial UV Map Completion for Pose-Invariant Face Recognition,2018