diff options
Diffstat (limited to 'site/datasets/final/ijb_c.json')
| -rw-r--r-- | site/datasets/final/ijb_c.json | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/final/ijb_c.json b/site/datasets/final/ijb_c.json index 061704d4..a057bbc0 100644 --- a/site/datasets/final/ijb_c.json +++ b/site/datasets/final/ijb_c.json @@ -1 +1 @@ -{"id": "0cb2dd5f178e3a297a0c33068961018659d0f443", "dataset": {"key": "ijb_c", "name_short": "IJB-C", "using": "N", "ft_share": "1", "subset_of": "", "superset_of": "ijb_b", "name_full": "IARPA Janus Benchmark C", "url": "https://www.nist.gov/programs-projects/face-challenges", "added_on": "", "faces": "", "pdf_paper": "Y", "comments": "IJB-C is in progress", "": "", "relevance": "8"}, "statistics": {"key": "ijb_c", "name": "IJB-C", "berit": "Y", "charlie": "", "adam": "", "priority": "N", "wild": "Y", "indoor": "", "outdoor": "", "cyberspace": "Y", "names": "", "downloaded": "N", "year_start": "", "year_end": "", "year_published": "2017", "ongoing": "", "images": "21,294 ", "videos": "11,779 ", "faces_unique": "3,531 ", "total_faces": "", "img_per_person": "", "num_cameras": "", "faces_persons": "", "female": "", "male": "", "landmarks": "", "width": "", "height": "", "color": "", "gray": "", "derivative_of": "", "tags": "fr", "source": "www", "purpose_short": "face recognition challenge by NIST in full motion videos", "size_gb": "", "agreement": "", "agree_requied": "", "agreement_signed": "", "comment": "", "comment 2": "", "comment 3": "", "": ""}, "paper": {"paper_id": "0cb2dd5f178e3a297a0c33068961018659d0f443", "key": "ijb_c", "title": "IARPA Janus Benchmark-B Face Dataset", "year": "2017", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/Whitelametal_IARPAJanusBenchmark-BFaceDataset_CVPRW17.pdf", "http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Whitelam_IARPA_Janus_Benchmark-B_CVPR_2017_paper.pdf", "http://www.vislab.ucr.edu/Biometrics2017/program_slides/Noblis_CVPRW_IJBB.pdf", "https://www.nist.gov/sites/default/files/documents/2017/05/30/readme.pdf"], "address": "", "name": "IJB-B", "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014821", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.87", "http://doi.org/10.1109/CVPRW.2017.87"]}, "address": null, "additional_papers": [{"paper_id": "140c95e53c619eac594d70f6369f518adfea12ef", "key": "ijb_c", "title": "Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A", "year": "2015", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/Klareetal_UnconstrainedFaceDetectionRecognitionJanus_CVPR15.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_089.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_089_ext.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Klare_Pushing_the_Frontiers_2015_CVPR_paper.pdf"], "address": "", "name": "IJB-B", "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298803", "http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298803", "http://doi.org/10.1109/CVPR.2015.7298803"]}, {"paper_id": "57178b36c21fd7f4529ac6748614bb3374714e91", "key": "ijb_c", "title": "IARPA Janus Benchmark - C: Face Dataset and Protocol", "year": "2018", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/Mazeetal_IARPAJanusBenchmarkCFaceDatasetAndProtocol_ICB2018.pdf"], "address": "", "name": "IJB-B", "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411217", "http://doi.org/10.1109/ICB2018.2018.00033", "https://doi.org/10.1109/ICB2018.2018.00033"]}], "citations": [{"id": "4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e", "title": "Deep Density Clustering of Unconstrained Faces", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "", "pdf": ["https://pdfs.semanticscholar.org/4f7b/92bd678772552b3c3edfc9a7c5c4a8c60a8e.pdf"]}, {"id": "5812d8239d691e99d4108396f8c26ec0619767a6", "title": "GhostVLAD for set-based face recognition", "addresses": [{"address": "University of Oxford", "lat": "51.75345380", "lng": "-1.25400997", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.09951.pdf"]}, {"id": "eb027969f9310e0ae941e2adee2d42cdf07d938c", "title": "VGGFace2: A Dataset for Recognising Faces across Pose and Age", "addresses": [{"address": "University of Oxford", "lat": "51.75345380", "lng": "-1.25400997", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1710.08092.pdf"]}, {"id": "1ffe20eb32dbc4fa85ac7844178937bba97f4bf0", "title": "Face Clustering: Representation and Pairwise Constraints", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.05067.pdf"]}, {"id": "7323b594d3a8508f809e276aa2d224c4e7ec5a80", "title": "An Experimental Evaluation of Covariates Effects on Unconstrained Face Verification", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.05508.pdf"]}, {"id": "4f623e3821d14553b3b286e20910db9225fb723f", "title": "Audio-Visual Person Recognition in Multimedia Data From the Iarpa Janus Program", "addresses": [{"address": "Johns Hopkins University", "lat": "39.32905300", "lng": "-76.61942500", "type": "edu"}], "year": "2018", "pdf": ["http://mirlab.org/conference_papers/International_Conference/ICASSP%202018/pdfs/0003031.pdf"]}, {"id": "0a34fe39e9938ae8c813a81ae6d2d3a325600e5c", "title": "FacePoseNet: Making a Case for Landmark-Free Face Alignment", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.07517.pdf"]}, {"id": "73ea06787925157df519a15ee01cc3dc1982a7e0", "title": "Fast Face Image Synthesis with Minimal Training", "addresses": [{"address": "University of Notre Dame", "lat": "41.70456775", "lng": "-86.23822026", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.01474.pdf"]}, {"id": "c220f457ad0b28886f8b3ef41f012dd0236cd91a", "title": "Crystal Loss and Quality Pooling for Unconstrained Face Verification and Recognition.", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.01159.pdf"]}, {"id": "cd6aaa37fffd0b5c2320f386be322b8adaa1cc68", "title": "Deep Face Recognition: A Survey", "addresses": [{"address": "Beijing University of Posts and Telecommunications", "lat": "39.96014880", "lng": "116.35193921", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.06655.pdf"]}, {"id": "872dfdeccf99bbbed7c8f1ea08afb2d713ebe085", "title": "L2-constrained Softmax Loss for Discriminative Face Verification", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.09507.pdf"]}, {"id": "146a7ecc7e34b85276dd0275c337eff6ba6ef8c0", "title": "AFFACT: Alignment-free facial attribute classification technique", "addresses": [{"address": "University of Colorado, Colorado Springs", "lat": "38.89207560", "lng": "-104.79716389", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.06158.pdf"]}, {"id": "313d5eba97fe064bdc1f00b7587a4b3543ef712a", "title": "Compact Deep Aggregation for Set Retrieval", "addresses": [{"address": "University of Oxford", "lat": "51.75345380", "lng": "-1.25400997", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/cb7f/93467b0ec1afd43d995e511f5d7bf052a5af.pdf"]}, {"id": "5865b6d83ba6dbbf9167f1481e9339c2ef1d1f6b", "title": "Regularized metric adaptation for unconstrained face verification", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2016", "pdf": []}, {"id": "48a9241edda07252c1aadca09875fabcfee32871", "title": "Convolutional Experts Network for Facial Landmark Detection", "addresses": [{"address": "Carnegie Mellon University", "lat": "37.41021930", "lng": "-122.05965487", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "86204fc037936754813b91898377e8831396551a", "title": "Dense Face Alignment", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.01442.pdf"]}, {"id": "b2cb335ded99b10f37002d09753bd5a6ea522ef1", "title": "Analysis of adaptability of deep features for verifying blurred and cross-resolution images", "addresses": [{"address": "Institute of Engineering and Management, Kolkata, India", "lat": "22.57423855", "lng": "88.43373030", "type": "edu"}, {"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "486840f4f524e97f692a7f6b42cd19019ee71533", "title": "DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills", "addresses": [{"address": "\u00c9cole Centrale de Lyon", "lat": "45.78359660", "lng": "4.76789480", "type": "edu"}, {"address": "Safran Identity and Security", "lat": "48.83249300", "lng": "2.26747400", "type": "company"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.08388.pdf"]}, {"id": "2d748f8ee023a5b1fbd50294d176981ded4ad4ee", "title": "Triplet Similarity Embedding for Face Verification", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.03418.pdf"]}, {"id": "f7824758800a7b1a386db5bd35f84c81454d017a", "title": "KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors", "addresses": [{"address": "University of Maryland College Park", "lat": "38.99203005", "lng": "-76.94610290", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.05085.pdf"]}, {"id": "02467703b6e087799e04e321bea3a4c354c5487d", "title": "Grouper: Optimizing Crowdsourced Face Annotations", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2016", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/AdamsAllenMillerKalkaJain_CVPRWB2016_GRPR.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w4/papers/Adams_Grouper_Optimizing_Crowdsourced_CVPR_2016_paper.pdf"]}, {"id": "377f2b65e6a9300448bdccf678cde59449ecd337", "title": "Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results", "addresses": [{"address": "Johns Hopkins University", "lat": "39.32905300", "lng": "-76.61942500", "type": "edu"}, {"address": "Rutgers University", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.10275.pdf"]}, {"id": "cd55fb30737625e86454a2861302b96833ed549d", "title": "Annotating Unconstrained Face Imagery: A scalable approach", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}, {"address": "Noblis, Falls Church, VA, U.S.A.", "lat": "38.95187000", "lng": "-77.36325900", "type": "company"}], "year": "2015", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/TaborskyAllenBlantonJainKlare_UnconstrainedFaceAnnotation_ICB15.pdf"]}, {"id": "1e8eee51fd3bf7a9570d6ee6aa9a09454254689d", "title": "Face Search at Scale", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2017", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/WangOttoJain_FaceSearchAtScale_TPAMI.pdf"]}, {"id": "5226296884b3e151ce317a37f94827dbda0b9d16", "title": "Deep pair-wise similarity learning for face recognition", "addresses": [{"address": "University of Ljubljana", "lat": "46.05015580", "lng": "14.46907327", "type": "edu"}], "year": "2016", "pdf": []}, {"id": "80be8624771104ff4838dcba9629bacfe6b3ea09", "title": "Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition", "addresses": [{"address": "Advanced Digital Sciences Center, Singapore", "lat": "1.30372570", "lng": "103.77377630", "type": "edu"}, {"address": "Nanyang Technological University", "lat": "1.34841040", "lng": "103.68297965", "type": "edu"}, {"address": "Beijing University of Posts and Telecommunications", "lat": "39.96014880", "lng": "116.35193921", "type": "edu"}, {"address": "University of Illinois, Urbana-Champaign", "lat": "40.11116745", "lng": "-88.22587665", "type": "edu"}], "year": "2017", "pdf": ["http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8689/86890265.pdf", "http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf", "http://www.ntu.edu.sg/home/wanggang/LuECCV2014.pdf"]}, {"id": "50b58becaf67e92a6d9633e0eea7d352157377c3", "title": "Dependency-Aware Attention Control for Unconstrained Face Recognition with Image Sets", "addresses": [{"address": "Hong Kong Polytechnic University", "lat": "22.30457200", "lng": "114.17976285", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/50b5/8becaf67e92a6d9633e0eea7d352157377c3.pdf"]}, {"id": "77362789d04db4c51be61eaffa4f43e03759e677", "title": "Fuzzy Analysis and Deep Convolution Neural Networks in Still-to-video Recognition", "addresses": [{"address": "Russia", "lat": "61.52401000", "lng": "105.31875600", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "ac2881bdf7b57dc1672a17b221d68a438d79fce8", "title": "Learning a High Fidelity Pose Invariant Model for High-resolution Face Frontalization", "addresses": [{"address": "University of Chinese Academy of Sciences", "lat": "39.90828040", "lng": "116.24585270", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08472.pdf"]}, {"id": "72a7eb68f0955564e1ceafa75aeeb6b5bbb14e7e", "title": "Face Recognition with Contrastive Convolution", "addresses": [{"address": "Chinese Academy of Sciences", "lat": "40.00447950", "lng": "116.37023800", "type": "edu"}, {"address": "University of Chinese Academy of Sciences", "lat": "39.90828040", "lng": "116.24585270", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/72a7/eb68f0955564e1ceafa75aeeb6b5bbb14e7e.pdf"]}, {"id": "368e99f669ea5fd395b3193cd75b301a76150f9d", "title": "One-to-many face recognition with bilinear CNNs", "addresses": [{"address": "University of Massachusetts", "lat": "42.38897850", "lng": "-72.52869870", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1506.01342.pdf"]}, {"id": "1e6ed6ca8209340573a5e907a6e2e546a3bf2d28", "title": "Pooling Faces: Template Based Face Recognition with Pooled Face Images", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1607.01450.pdf"]}, {"id": "052f994898c79529955917f3dfc5181586282cf8", "title": "Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos", "addresses": [{"address": "Dalian University of Technology", "lat": "38.88140235", "lng": "121.52281098", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.02191.pdf"]}, {"id": "b503793943a17d2f569685cd17e86b5b4fffe3fd", "title": "How popular CNNs perform in real applications of face recognition", "addresses": [{"address": "Shahid Rajaee Teacher Training University. Shabanlou", "lat": "35.74071930", "lng": "51.44829060", "type": "edu"}, {"address": "Simon Fraser University", "lat": "49.27674540", "lng": "-122.91777375", "type": "edu"}], "year": "2016", "pdf": []}, {"id": "4e8168fbaa615009d1618a9d6552bfad809309e9", "title": "Deep Convolutional Neural Network Features and the Original Image", "addresses": [{"address": "University of Texas at Dallas", "lat": "32.98207990", "lng": "-96.75662780", "type": "edu"}, {"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.01751.pdf"]}, {"id": "a8117a4733cce9148c35fb6888962f665ae65b1e", "title": "A Good Practice Towards Top Performance of Face Recognition: Transferred Deep Feature Fusion", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.00438.pdf"]}, {"id": "0c1d85a197a1f5b7376652a485523e616a406273", "title": "Joint Registration and Representation Learning for Unconstrained Face Identification", "addresses": [{"address": "University of Canberra", "lat": "-35.23656905", "lng": "149.08446994", "type": "edu"}, {"address": "Khalifa University", "lat": "24.44690250", "lng": "54.39425630", "type": "edu"}], "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Hayat_Joint_Registration_and_CVPR_2017_paper.pdf", "http://staff.estem-uc.edu.au/munawar/files/2017/05/CVPR17.pdf"]}, {"id": "c75e6ce54caf17b2780b4b53f8d29086b391e839", "title": "ExpNet: Landmark-Free, Deep, 3D Facial Expressions", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.00542.pdf"]}, {"id": "450c6a57f19f5aa45626bb08d7d5d6acdb863b4b", "title": "Towards Interpretable Face Recognition", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00611.pdf"]}, {"id": "30180f66d5b4b7c0367e4b43e2b55367b72d6d2a", "title": "Template Adaptation for Face Verification and Identification", "addresses": [{"address": "University of Oxford", "lat": "51.75345380", "lng": "-1.25400997", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1603.03958.pdf"]}, {"id": "8334da483f1986aea87b62028672836cb3dc6205", "title": "Fully Associative Patch-Based 1-to-N Matcher for Face Recognition", "addresses": [{"address": "University of Houston", "lat": "29.72079020", "lng": "-95.34406271", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.06306.pdf"]}, {"id": "af4759f5e636b5d9049010d5f0e2b0df2a69cd72", "title": "Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing", "addresses": [{"address": "National University of Singapore", "lat": "1.29620180", "lng": "103.77689944", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "3b64efa817fd609d525c7244a0e00f98feacc8b4", "title": "A Comprehensive Survey on Pose-Invariant Face Recognition", "addresses": [{"address": "University of Technology Sydney", "lat": "-33.88096510", "lng": "151.20107299", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1502.04383.pdf"]}, {"id": "6fbb179a4ad39790f4558dd32316b9f2818cd106", "title": "Input Aggregated Network for Face Video Representation", "addresses": [{"address": "China", "lat": "35.86166000", "lng": "104.19539700", "type": "edu"}, {"address": "Stony Brook University", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.06655.pdf"]}, {"id": "d4f1eb008eb80595bcfdac368e23ae9754e1e745", "title": "Unconstrained Face Detection and Open-Set Face Recognition Challenge", "addresses": [{"address": "University of Colorado, Colorado Springs", "lat": "38.89207560", "lng": "-104.79716389", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.02337.pdf"]}, {"id": "ebb3d5c70bedf2287f9b26ac0031004f8f617b97", "title": "Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans", "addresses": [{"address": "Electrical and Computer Engineering", "lat": "33.58667840", "lng": "-101.87539204", "type": "edu"}, {"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "d28d32af7ef9889ef9cb877345a90ea85e70f7f1", "title": "Local-Global Landmark Confidences for Face Recognition", "addresses": [{"address": "University of Southern California", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu"}, {"address": "Carnegie Mellon University", "lat": "37.41021930", "lng": "-122.05965487", "type": "edu"}], "year": "2017", "pdf": ["http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Kim_Local.pdf"]}, {"id": "a29566375836f37173ccaffa47dea25eb1240187", "title": "Vehicle Re-Identification in Context", "addresses": [{"address": "Queen Mary University of London", "lat": "51.52472720", "lng": "-0.03931035", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.09409.pdf"]}, {"id": "29f298dd5f806c99951cb434834bc8dcc765df18", "title": "Computationally efficient template-based face recognition", "addresses": [{"address": "University of Southern California", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu"}], "year": "2016", "pdf": ["https://5443dcab-a-62cb3a1a-s-sites.googlegroups.com/site/tuftsyuewu/07899837.pdf?attachauth=ANoY7cqfUhcvdFXMZgmlp5F8vpsgnxBsprKKckxy_aZoISF-hkIFI9fOfhgG4xZaMrCeWwTD5mMdnQ2hBZzxR-8V81R3mF4OfAFLYtwdzfrf-KZK0jmORMVmLD_J8Z9xHoxj2DB6UDiAYoDwXFNg06yeoySgY6iT4Pjc_KCaDToyeyrLijivRbrfFOyvuzxfUXyo9lVg9FY0e5H3mdW1NFllFKgxpOFV9Q%3D%3D&attredirects=0"]}, {"id": "ddf099f0e0631da4a6396a17829160301796151c", "title": "Chen et al . Face Quality Value : Input : Feat -\u2010 5 Features : L 2 R + PKM Model : Feat -\u2010", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ddf0/99f0e0631da4a6396a17829160301796151c.pdf"]}, {"id": "54bb25a213944b08298e4e2de54f2ddea890954a", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "addresses": [{"address": "Imperial College London", "lat": "51.49887085", "lng": "-0.17560797", "type": "edu"}, {"address": "Middlesex University", "lat": "51.59029705", "lng": "-0.22963221", "type": "edu"}], "year": "2017", "pdf": ["http://eprints.mdx.ac.uk/22044/1/agedb_kotsia.pdf", "http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf", "https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"]}, {"id": "5981c309bd0ffd849c51b1d8a2ccc481a8ec2f5c", "title": "SmartFace: Efficient face detection on smartphones for wireless on-demand emergency networks", "addresses": [{"address": "TU Darmstadt", "lat": "49.87482770", "lng": "8.65632810", "type": "edu"}, {"address": "Philipps-Universit\u00e4t Marburg", "lat": "50.81427010", "lng": "8.77143500", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "a2b4a6c6b32900a066d0257ae6d4526db872afe2", "title": "Learning Face Image Quality From Human Assessments", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "3dfb822e16328e0f98a47209d7ecd242e4211f82", "title": "Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments", "addresses": [{"address": "Beijing University of Posts and Telecommunications", "lat": "39.96014880", "lng": "116.35193921", "type": "edu"}, {"address": "China", "lat": "35.86166000", "lng": "104.19539700", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.08197.pdf"]}, {"id": "291265db88023e92bb8c8e6390438e5da148e8f5", "title": "MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition", "addresses": [{"address": "Microsoft", "lat": "36.06303740", "lng": "-95.88099660", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1607.08221.pdf"]}, {"id": "d29eec5e047560627c16803029d2eb8a4e61da75", "title": "Feature Transfer Learning for Deep Face Recognition with Long-Tail Data", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.09014.pdf"]}, {"id": "5180df9d5eb26283fb737f491623395304d57497", "title": "Scalable Angular Discriminative Deep Metric Learning for Face Recognition", "addresses": [{"address": "China", "lat": "35.86166000", "lng": "104.19539700", "type": "edu"}, {"address": "Tianjin University", "lat": "36.20304395", "lng": "117.05842113", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.10899.pdf"]}, {"id": "abdd17e411a7bfe043f280abd4e560a04ab6e992", "title": "Pose-Robust Face Recognition via Deep Residual Equivariant Mapping", "addresses": [{"address": "Chinese University of Hong Kong", "lat": "22.42031295", "lng": "114.20788644", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.00839.pdf"]}, {"id": "3cf1f89d73ca4b25399c237ed3e664a55cd273a2", "title": "Face Sketch Matching via Coupled Deep Transform Learning", "addresses": [{"address": "IIIT Delhi, India", "lat": "28.54562820", "lng": "77.27315050", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.02914.pdf"]}, {"id": "03f7041515d8a6dcb9170763d4f6debd50202c2b", "title": "Clustering Millions of Faces by Identity", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1604.00989.pdf"]}, {"id": "6afe1f668eea8dfdd43f0780634073ed4545af23", "title": "Deep learning for content-based video retrieval in film and television production", "addresses": [{"address": "German National Library of Science and Technology (TIB), Hannover, Germany", "lat": "52.38151500", "lng": "9.72017100", "type": "edu"}, {"address": "taglicht media Film- & Fernsehproduktion GmbH, K\u00f6ln, Germany", "lat": "50.90750920", "lng": "6.96616590", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "be72b20247fb4dc4072d962ced77ed89aa40372f", "title": "Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN", "addresses": [{"address": "Russia", "lat": "61.52401000", "lng": "105.31875600", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.07718.pdf"]}, {"id": "14aed1b7c08c941b1d2ba6c1c2ffb6255c306c74", "title": "Robust watch-list screening using dynamic ensembles of SVMs based on multiple face representations", "addresses": [{"address": "Polytechnique Montr\u00e9al", "lat": "45.50438400", "lng": "-73.61288290", "type": "edu"}], "year": "2016", "pdf": ["https://etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-innovation/Publications/Publications-2017/Bashbaghi_MVA2016vfin.pdf"]}, {"id": "f27fd2a1bc229c773238f1912db94991b8bf389a", "title": "How do you develop a face detector for the unconstrained environment?", "addresses": [{"address": "University of Queensland", "lat": "-27.49741805", "lng": "153.01316956", "type": "edu"}], "year": "2016", "pdf": []}, {"id": "9865fe20df8fe11717d92b5ea63469f59cf1635a", "title": "Wildest Faces: Face Detection and Recognition in Violent Settings", "addresses": [{"address": "Hacettepe University", "lat": "39.86742125", "lng": "32.73519072", "type": "edu"}, {"address": "Middle East Technical University", "lat": "39.87549675", "lng": "32.78553506", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.07566.pdf"]}, {"id": "c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d", "title": "Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis", "addresses": [{"address": "National University of Singapore", "lat": "1.29620180", "lng": "103.77689944", "type": "edu"}, {"address": "National University of Defense Technology, China", "lat": "28.22902090", "lng": "112.99483204", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/aae7/a5182e59f44b7bb49f61999181ce011f800b.pdf"]}, {"id": "f5eb411217f729ad7ae84bfd4aeb3dedb850206a", "title": "Tackling Low Resolution for Better Scene Understanding", "addresses": [{"address": "International Institute of Information Technology", "lat": "17.44549570", "lng": "78.34854698", "type": "edu"}, {"address": "India", "lat": "20.59368400", "lng": "78.96288000", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f5eb/411217f729ad7ae84bfd4aeb3dedb850206a.pdf"]}, {"id": "96e731e82b817c95d4ce48b9e6b08d2394937cf8", "title": "Unconstrained face verification using deep CNN features", "addresses": [{"address": "State University of New Jersey", "lat": "40.51865195", "lng": "-74.44099801", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1508.01722.pdf"]}, {"id": "870433ba89d8cab1656e57ac78f1c26f4998edfb", "title": "Regressing Robust and Discriminative 3D Morphable Models with a Very Deep Neural Network", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1612.04904.pdf"]}, {"id": "3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0", "title": "Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions", "addresses": [{"address": "University of Malta", "lat": "35.90232260", "lng": "14.48341890", "type": "edu"}, {"address": "University of Copenhagen", "lat": "55.68015020", "lng": "12.57232700", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.03827.pdf"]}, {"id": "6341274aca0c2977c3e1575378f4f2126aa9b050", "title": "A multi-scale cascade fully convolutional network face detector", "addresses": [{"address": "University of Southern California", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1609.03536.pdf"]}, {"id": "17479e015a2dcf15d40190e06419a135b66da4e0", "title": "Predicting First Impressions With Deep Learning", "addresses": [{"address": "University of Notre Dame", "lat": "41.70456775", "lng": "-86.23822026", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1610.08119.pdf"]}, {"id": "a0b1990dd2b4cd87e4fd60912cc1552c34792770", "title": "Deep Constrained Local Models for Facial Landmark Detection", "addresses": [{"address": "Carnegie Mellon University", "lat": "37.41021930", "lng": "-122.05965487", "type": "edu"}], "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/a0b1/990dd2b4cd87e4fd60912cc1552c34792770.pdf"]}, {"id": "772474b5b0c90629f4d9c223fd9c1ef45e1b1e66", "title": "Multi-dim: A multi-dimensional face database towards the application of 3D technology in real-world scenarios", "addresses": [{"address": "Sichuan University, Chengdu", "lat": "30.64276900", "lng": "104.06751175", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "4b3f425274b0c2297d136f8833a31866db2f2aec", "title": "Toward Open-Set Face Recognition", "addresses": [{"address": "University of Colorado, Colorado Springs", "lat": "38.89207560", "lng": "-104.79716389", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.01567.pdf"]}, {"id": "17ded725602b4329b1c494bfa41527482bf83a6f", "title": "Compact Convolutional Neural Network Cascade for Face Detection", "addresses": [{"address": "Tomsk Polytechnic University", "lat": "56.46255985", "lng": "84.95565495", "type": "edu"}, {"address": "Russia", "lat": "61.52401000", "lng": "105.31875600", "type": "edu"}], "year": "2015", "pdf": ["https://arxiv.org/pdf/1508.01292.pdf"]}, {"id": "14b016c7a87d142f4b9a0e6dc470dcfc073af517", "title": "Modest proposals for improving biometric recognition papers", "addresses": [{"address": "San Jose State University", "lat": "37.33519080", "lng": "-121.88126008", "type": "edu"}], "year": "2015", "pdf": ["http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=918912", "http://www.nist.gov/customcf/get_pdf.cfm?pub_id=918912"]}, {"id": "93420d9212dd15b3ef37f566e4d57e76bb2fab2f", "title": "An All-In-One Convolutional Neural Network for Face Analysis", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.00851.pdf"]}, {"id": "def2983576001bac7d6461d78451159800938112", "title": "The Do\u2019s and Don\u2019ts for CNN-Based Face Verification", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.07426.pdf"]}, {"id": "4b605e6a9362485bfe69950432fa1f896e7d19bf", "title": "A Comparison of Human and Automated Face Verification Accuracy on Unconstrained Image Sets", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2016", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/BlantonAllenMillerKalkaJain_CVPRWB2016_HID.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w4/papers/Blanton_A_Comparison_of_CVPR_2016_paper.pdf"]}, {"id": "8d3e95c31c93548b8c71dbeee2e9f7180067a888", "title": "Template regularized sparse coding for face verification", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}, {"address": "GE Global Research", "lat": "42.82715560", "lng": "-73.87804810", "type": "company"}], "year": "2016", "pdf": []}, {"id": "337dd4aaca2c5f9b5d2de8e0e2401b5a8feb9958", "title": "Data-specific Adaptive Threshold for Face Recognition and Authentication", "addresses": [{"address": "Institute of Information Science", "lat": "25.04107280", "lng": "121.61475620", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.11160.pdf"]}, {"id": "0aeb5020003e0c89219031b51bd30ff1bceea363", "title": "Sparsifying Neural Network Connections for Face Recognition", "addresses": [{"address": "Chinese University of Hong Kong", "lat": "22.42031295", "lng": "114.20788644", "type": "edu"}, {"address": "Shenzhen Institutes of Advanced Technology", "lat": "22.59805605", "lng": "113.98533784", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1512.01891.pdf"]}, {"id": "99daa2839213f904e279aec7cef26c1dfb768c43", "title": "DocFace: Matching ID Document Photos to Selfies", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.02283.pdf"]}, {"id": "71ca8b6e84c17b3e68f980bfb8cddc837100f8bf", "title": "Effective 3D based frontalization for unconstrained face recognition", "addresses": [{"address": "University of Florence", "lat": "43.77764260", "lng": "11.25976500", "type": "edu"}], "year": "2016", "pdf": ["https://www.micc.unifi.it/wp-content/uploads/2016/12/icpr16_janus_cameraReady.pdf"]}, {"id": "b908487b30002d5ae1ebd819880a713494a45a40", "title": "Developmental Network: An Internal Emergent Object Feature Learning", "addresses": [{"address": "China", "lat": "35.86166000", "lng": "104.19539700", "type": "edu"}, {"address": "Zhengzhou University", "lat": "34.80881680", "lng": "113.53526640", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "c43ed9b34cad1a3976bac7979808eb038d88af84", "title": "Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model", "addresses": [{"address": "Imperial College London", "lat": "51.49887085", "lng": "-0.17560797", "type": "edu"}, {"address": "University of Surrey", "lat": "51.24303255", "lng": "-0.59001382", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.03675.pdf"]}, {"id": "628a3f027b7646f398c68a680add48c7969ab1d9", "title": "Plan for Final Year Project : HKU-Face : A Large Scale Dataset for Deep Face Recognition", "addresses": [{"address": "Facebook", "lat": "37.39367170", "lng": "-122.08072620", "type": "company"}, {"address": "k", "lat": "37.09024000", "lng": "-95.71289100", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/628a/3f027b7646f398c68a680add48c7969ab1d9.pdf"]}, {"id": "61262450d4d814865a4f9a84299c24daa493f66e", "title": "Biometric recognition in surveillance scenarios: a survey", "addresses": [{"address": "University of Beira Interior", "lat": "40.27730770", "lng": "-7.50958010", "type": "edu"}], "year": "2016", "pdf": ["http://www.di.ubi.pt/~hugomcp/doc/BiometricsSurveillance_Survey.pdf"]}, {"id": "626913b8fcbbaee8932997d6c4a78fe1ce646127", "title": "Learning from Millions of 3D Scans for Large-scale 3D Face Recognition", "addresses": [{"address": "University of Western Australia", "lat": "-31.95040445", "lng": "115.79790037", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.05942.pdf"]}, {"id": "4efd58102ff46b7435c9ec6d4fc3dd21d93b15b4", "title": "Matching Software-Generated Sketches to Face Photographs With a Very Deep CNN, Morphed Faces, and Transfer Learning", "addresses": [{"address": "University of Malta", "lat": "35.90232260", "lng": "14.48341890", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "df51dfe55912d30fc2f792561e9e0c2b43179089", "title": "Face Hallucination Using Linear Models of Coupled Sparse Support", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1512.06009.pdf"]}, {"id": "b6f758be954d34817d4ebaa22b30c63a4b8ddb35", "title": "A Proximity-Aware Hierarchical Clustering of Faces", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.04835.pdf"]}, {"id": "dfaa547451aae219cd2ca7a761e6c16c1e1d0add", "title": "Representation Learning by Rotating Your Faces", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1705.11136.pdf"]}, {"id": "84ae55603bffda40c225fe93029d39f04793e01f", "title": "ICB-RW 2016: International challenge on biometric recognition in the wild", "addresses": [{"address": "University of Beira Interior", "lat": "40.27730770", "lng": "-7.50958010", "type": "edu"}], "year": "2016", "pdf": ["http://www.di.ubi.pt/~hugomcp/doc/ICB16.pdf"]}, {"id": "c6382de52636705be5898017f2f8ed7c70d7ae96", "title": "Unconstrained face detection: State of the art baseline and challenges", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}, {"address": "Noblis, Falls Church, VA, U.S.A.", "lat": "38.95187000", "lng": "-77.36325900", "type": "company"}], "year": "2015", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/CheneyKlienJainKlare_UnconstrainedFaceDetection_ICB15.pdf", "https://ai2-s2-pdfs.s3.amazonaws.com/c638/2de52636705be5898017f2f8ed7c70d7ae96.pdf"]}, {"id": "eee06d68497be8bf3a8aba4fde42a13aa090b301", "title": "CR-GAN: Learning Complete Representations for Multi-view Generation", "addresses": [{"address": "Rutgers University", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu"}, {"address": "University of North Carolina at Charlotte", "lat": "35.31034410", "lng": "-80.73261617", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.11191.pdf"]}, {"id": "a3201e955d6607d383332f3a12a7befa08c5a18c", "title": "VLAD encoded Deep Convolutional features for unconstrained face verification", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}, {"address": "Rutgers University", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu"}], "year": "2016", "pdf": ["http://www.rci.rutgers.edu/~vmp93/Conference_pub/ICPR2016_FV_CNN_final.pdf"]}, {"id": "52d7eb0fbc3522434c13cc247549f74bb9609c5d", "title": "WIDER FACE: A Face Detection Benchmark", "addresses": [{"address": "Chinese University of Hong Kong", "lat": "22.42031295", "lng": "114.20788644", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.06523.pdf"]}, {"id": "19458454308a9f56b7de76bf7d8ff8eaa52b0173", "title": "Deep Features for Recognizing Disguised Faces in the Wild", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "", "pdf": ["https://pdfs.semanticscholar.org/1945/8454308a9f56b7de76bf7d8ff8eaa52b0173.pdf"]}, {"id": "746c0205fdf191a737df7af000eaec9409ede73f", "title": "Investigating Nuisances in DCNN-Based Face Recognition", "addresses": [{"address": "University of Florence", "lat": "43.77764260", "lng": "11.25976500", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "0081e2188c8f34fcea3e23c49fb3e17883b33551", "title": "Training Deep Face Recognition Systems with Synthetic Data", "addresses": [{"address": "University of Basel", "lat": "47.56126510", "lng": "7.57529610", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.05891.pdf"]}, {"id": "2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4", "title": "Ring loss: Convex Feature Normalization for Face Recognition", "addresses": [{"address": "Carnegie Mellon University", "lat": "37.41021930", "lng": "-122.05965487", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.00130.pdf"]}, {"id": "5f771fed91c8e4b666489ba2384d0705bcf75030", "title": "Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing", "addresses": [{"address": "National University of Singapore", "lat": "1.29620180", "lng": "103.77689944", "type": "edu"}, {"address": "National University of Defense Technology, China", "lat": "28.22902090", "lng": "112.99483204", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.03287.pdf"]}, {"id": "2241eda10b76efd84f3c05bdd836619b4a3df97e", "title": "Face Identification with Bilinear CNNs", "addresses": [{"address": "University of Massachusetts", "lat": "42.38897850", "lng": "-72.52869870", "type": "edu"}], "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/2241/eda10b76efd84f3c05bdd836619b4a3df97e.pdf"]}, {"id": "58d76380d194248b3bb291b8c7c5137a0a376897", "title": "FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis", "addresses": [{"address": "Chinese University of Hong Kong", "lat": "22.42031295", "lng": "114.20788644", "type": "edu"}, {"address": "Shenzhen Institutes of Advanced Technology", "lat": "22.59805605", "lng": "113.98533784", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf"]}, {"id": "7fb5006b6522436ece5bedf509e79bdb7b79c9a7", "title": "Multi-Task Convolutional Neural Network for Face Recognition", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7fb5/006b6522436ece5bedf509e79bdb7b79c9a7.pdf"]}, {"id": "28646c6220848db46c6944967298d89a6559c700", "title": "It takes two to tango : Cascading off-the-shelf face detectors", "addresses": [{"address": "University of Queensland", "lat": "-27.49741805", "lng": "153.01316956", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2864/6c6220848db46c6944967298d89a6559c700.pdf"]}, {"id": "e4c3587392d477b7594086c6f28a00a826abf004", "title": "Face recognition by facial attribute assisted network", "addresses": [{"address": "National Taiwan University of Science and Technology", "lat": "25.01353105", "lng": "121.54173736", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "47190d213caef85e8b9dd0d271dbadc29ed0a953", "title": "The Devil of Face Recognition is in the Noise", "addresses": [{"address": "University of California, San Diego", "lat": "32.87935255", "lng": "-117.23110049", "type": "edu"}, {"address": "Nanyang Technological University", "lat": "1.34841040", "lng": "103.68297965", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.11649.pdf"]}, {"id": "ce6d60b69eb95477596535227958109e07c61e1e", "title": "Unconstrained face verification using fisher vectors computed from frontalized faces", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2015", "pdf": ["http://www.rci.rutgers.edu/~vmp93/Conference_pub/BTAS_2015_FVFF_JunCheng_Chen.pdf"]}, {"id": "38d8ff137ff753f04689e6b76119a44588e143f3", "title": "When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition", "addresses": [{"address": "University of Houston", "lat": "29.72079020", "lng": "-95.34406271", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.06532.pdf"]}, {"id": "5905b4610389cd3b11a3a1ce06c05fee36a97f86", "title": "Unconstrained Face Recognition Using a Set-to-Set Distance Measure on Deep Learned Features", "addresses": [{"address": "Northumbria University", "lat": "55.00306320", "lng": "-1.57463231", "type": "edu"}, {"address": "University of East Anglia", "lat": "52.62215710", "lng": "1.24091360", "type": "edu"}, {"address": "Lancaster University", "lat": "54.00975365", "lng": "-2.78757491", "type": "edu"}], "year": "2018", "pdf": ["http://eprints.lancs.ac.uk/87886/4/07936556.pdf"]}, {"id": "3d78c144672c4ee76d92d21dad012bdf3c3aa1a0", "title": "Unconstrained Still/Video-Based Face Verification with Deep Convolutional Neural Networks", "addresses": [{"address": "Rutgers University", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu"}, {"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": ["http://www.rci.rutgers.edu/~vmp93/Journal_pub/IJCV_20170517_v4.pdf"]}, {"id": "9627f28ea5f4c389350572b15968386d7ce3fe49", "title": "Load Balanced GANs for Multi-view Face Image Synthesis", "addresses": [{"address": "University of Chinese Academy of Sciences", "lat": "39.90828040", "lng": "116.24585270", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.07447.pdf"]}, {"id": "4e7ed13e541b8ed868480375785005d33530e06d", "title": "Face recognition using deep multi-pose representations", "addresses": [{"address": "University of Southern California", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu"}, {"address": "Open University", "lat": "52.02453775", "lng": "-0.70927481", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.07388.pdf"]}, {"id": "582edc19f2b1ab2ac6883426f147196c8306685a", "title": "Do We Really Need to Collect Millions of Faces for Effective Face Recognition?", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.07057.pdf"]}, {"id": "87e6cb090aecfc6f03a3b00650a5c5f475dfebe1", "title": "Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection", "addresses": [{"address": "University of Southern California", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu"}, {"address": "Carnegie Mellon University", "lat": "37.41021930", "lng": "-122.05965487", "type": "edu"}], "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf"]}, {"id": "3b9b200e76a35178da940279d566bbb7dfebb787", "title": "Learning Channel Inter-dependencies at Multiple Scales on Dense Networks for Face Recognition", "addresses": [{"address": "West Virginia University", "lat": "39.65404635", "lng": "-79.96475355", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.10103.pdf"]}, {"id": "de79437f74e8e3b266afc664decf4e6e4bdf34d7", "title": "To face or not to face: Towards reducing false positive of face detection", "addresses": [{"address": "University of Queensland", "lat": "-27.49741805", "lng": "153.01316956", "type": "edu"}], "year": "2016", "pdf": []}, {"id": "6005a30bf103164fe3410185976b6b8b36537aca", "title": "Communication, Networks and Computing", "addresses": [{"address": "ITM University", "lat": "26.13821220", "lng": "78.20778860", "type": "edu"}, {"address": "India", "lat": "20.59368400", "lng": "78.96288000", "type": "edu"}, {"address": "Deakin University", "lat": "-38.19928505", "lng": "144.30365229", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "368d59cf1733af511ed8abbcbeb4fb47afd4da1c", "title": "To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition", "addresses": [{"address": "University of Notre Dame", "lat": "41.70456775", "lng": "-86.23822026", "type": "edu"}, {"address": "University of Ljubljana", "lat": "46.05015580", "lng": "14.46907327", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1610.04823.pdf"]}, {"id": "62e913431bcef5983955e9ca160b91bb19d9de42", "title": "Facial Landmark Detection with Tweaked Convolutional Neural Networks", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1511.04031.pdf"]}, {"id": "acd4280453b995cb071c33f7c9db5760432f4279", "title": "Deep transformation learning for face recognition in the unconstrained scene", "addresses": [{"address": "Chongqing University", "lat": "29.50841740", "lng": "106.57858552", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "ceeb67bf53ffab1395c36f1141b516f893bada27", "title": "Face Alignment by Local Deep Descriptor Regression", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}, {"address": "Rutgers University", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1601.07950.pdf"]}, {"id": "fab60b3db164327be8588bce6ce5e45d5b882db6", "title": "Maximum A Posteriori Estimation of Distances Between Deep Features in Still-to-Video Face Recognition", "addresses": [{"address": "Russia", "lat": "61.52401000", "lng": "105.31875600", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/fab6/0b3db164327be8588bce6ce5e45d5b882db6.pdf"]}, {"id": "37619564574856c6184005830deda4310d3ca580", "title": "A deep pyramid Deformable Part Model for face detection", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2015", "pdf": ["https://arxiv.org/pdf/1508.04389.pdf"]}, {"id": "3c97c32ff575989ef2869f86d89c63005fc11ba9", "title": "Face Detection with the Faster R-CNN", "addresses": [{"address": "University of Massachusetts", "lat": "42.38897850", "lng": "-72.52869870", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1606.03473.pdf"]}, {"id": "fca9ebaa30d69ccec8bb577c31693c936c869e72", "title": "Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition", "addresses": [{"address": "National University of Singapore", "lat": "1.29620180", "lng": "103.77689944", "type": "edu"}, {"address": "Chinese Academy of Sciences", "lat": "40.00447950", "lng": "116.37023800", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.00338.pdf"]}]}
\ No newline at end of file +{"id": "0cb2dd5f178e3a297a0c33068961018659d0f443", "dataset": {"key": "ijb_c", "name_short": "IJB-C", "using": "N", "ft_share": "1", "subset_of": "", "superset_of": "ijb_b", "name_full": "IARPA Janus Benchmark C", "url": "https://www.nist.gov/programs-projects/face-challenges", "added_on": "", "faces": "", "pdf_paper": "Y", "comments": "IJB-C is in progress", "": "", "relevance": "8"}, "statistics": {"key": "ijb_c", "name": "IJB-C", "berit": "Y", "charlie": "", "adam": "", "priority": "N", "wild": "Y", "indoor": "", "outdoor": "", "cyberspace": "Y", "names": "", "downloaded": "N", "year_start": "", "year_end": "", "year_published": "2017", "ongoing": "", "images": "21,294 ", "videos": "11,779 ", "faces_unique": "3,531 ", "total_faces": "", "img_per_person": "", "num_cameras": "", "faces_persons": "", "female": "", "male": "", "landmarks": "", "width": "", "height": "", "color": "", "gray": "", "derivative_of": "", "tags": "fr", "source": "www", "purpose_short": "face recognition challenge by NIST in full motion videos", "size_gb": "", "agreement": "", "agree_requied": "", "agreement_signed": "", "comment": "", "comment 2": "", "comment 3": "", "": ""}, "paper": {"paper_id": "0cb2dd5f178e3a297a0c33068961018659d0f443", "key": "ijb_c", "title": "IARPA Janus Benchmark-B Face Dataset", "year": "2017", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/Whitelametal_IARPAJanusBenchmark-BFaceDataset_CVPRW17.pdf", "http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Whitelam_IARPA_Janus_Benchmark-B_CVPR_2017_paper.pdf", "http://www.vislab.ucr.edu/Biometrics2017/program_slides/Noblis_CVPRW_IJBB.pdf", "https://www.nist.gov/sites/default/files/documents/2017/05/30/readme.pdf"], "address": {"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}, "name": "IJB-B", "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014821", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.87", "http://doi.org/10.1109/CVPRW.2017.87"]}, "address": {"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}, "additional_papers": [{"paper_id": "140c95e53c619eac594d70f6369f518adfea12ef", "key": "ijb_c", "title": "Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A", "year": "2015", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/Klareetal_UnconstrainedFaceDetectionRecognitionJanus_CVPR15.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_089.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_089_ext.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Klare_Pushing_the_Frontiers_2015_CVPR_paper.pdf"], "address": "", "name": "IJB-B", "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298803", "http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298803", "http://doi.org/10.1109/CVPR.2015.7298803"]}, {"paper_id": "57178b36c21fd7f4529ac6748614bb3374714e91", "key": "ijb_c", "title": "IARPA Janus Benchmark - C: Face Dataset and Protocol", "year": "2018", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/Mazeetal_IARPAJanusBenchmarkCFaceDatasetAndProtocol_ICB2018.pdf"], "address": "", "name": "IJB-B", "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411217", "http://doi.org/10.1109/ICB2018.2018.00033", "https://doi.org/10.1109/ICB2018.2018.00033"]}], "citations": [{"id": "4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e", "title": "Deep Density Clustering of Unconstrained Faces", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "", "pdf": ["https://pdfs.semanticscholar.org/4f7b/92bd678772552b3c3edfc9a7c5c4a8c60a8e.pdf"]}, {"id": "5812d8239d691e99d4108396f8c26ec0619767a6", "title": "GhostVLAD for set-based face recognition", "addresses": [{"address": "University of Oxford", "lat": "51.75345380", "lng": "-1.25400997", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.09951.pdf"]}, {"id": "eb027969f9310e0ae941e2adee2d42cdf07d938c", "title": "VGGFace2: A Dataset for Recognising Faces across Pose and Age", "addresses": [{"address": "Oxford University", "lat": "51.75208490", "lng": "-1.25166460", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1710.08092.pdf"]}, {"id": "1ffe20eb32dbc4fa85ac7844178937bba97f4bf0", "title": "Face Clustering: Representation and Pairwise Constraints", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.05067.pdf"]}, {"id": "7323b594d3a8508f809e276aa2d224c4e7ec5a80", "title": "An Experimental Evaluation of Covariates Effects on Unconstrained Face Verification", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.05508.pdf"]}, {"id": "4f623e3821d14553b3b286e20910db9225fb723f", "title": "Audio-Visual Person Recognition in Multimedia Data From the Iarpa Janus Program", "addresses": [{"address": "Johns Hopkins University", "lat": "39.32905300", "lng": "-76.61942500", "type": "edu"}], "year": "2018", "pdf": ["http://mirlab.org/conference_papers/International_Conference/ICASSP%202018/pdfs/0003031.pdf"]}, {"id": "0a34fe39e9938ae8c813a81ae6d2d3a325600e5c", "title": "FacePoseNet: Making a Case for Landmark-Free Face Alignment", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.07517.pdf"]}, {"id": "73ea06787925157df519a15ee01cc3dc1982a7e0", "title": "Fast Face Image Synthesis with Minimal Training", "addresses": [{"address": "University of Notre Dame", "lat": "41.70456775", "lng": "-86.23822026", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.01474.pdf"]}, {"id": "c220f457ad0b28886f8b3ef41f012dd0236cd91a", "title": "Crystal Loss and Quality Pooling for Unconstrained Face Verification and Recognition.", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.01159.pdf"]}, {"id": "cd6aaa37fffd0b5c2320f386be322b8adaa1cc68", "title": "Deep Face Recognition: A Survey", "addresses": [{"address": "Beijing University of Posts and Telecommunications", "lat": "39.96014880", "lng": "116.35193921", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.06655.pdf"]}, {"id": "872dfdeccf99bbbed7c8f1ea08afb2d713ebe085", "title": "L2-constrained Softmax Loss for Discriminative Face Verification", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.09507.pdf"]}, {"id": "146a7ecc7e34b85276dd0275c337eff6ba6ef8c0", "title": "AFFACT: Alignment-free facial attribute classification technique", "addresses": [{"address": "University of Colorado, Colorado Springs", "lat": "38.89207560", "lng": "-104.79716389", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.06158.pdf"]}, {"id": "313d5eba97fe064bdc1f00b7587a4b3543ef712a", "title": "Compact Deep Aggregation for Set Retrieval", "addresses": [{"address": "University of Oxford", "lat": "51.75345380", "lng": "-1.25400997", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/cb7f/93467b0ec1afd43d995e511f5d7bf052a5af.pdf"]}, {"id": "5865b6d83ba6dbbf9167f1481e9339c2ef1d1f6b", "title": "Regularized metric adaptation for unconstrained face verification", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2016", "pdf": []}, {"id": "48a9241edda07252c1aadca09875fabcfee32871", "title": "Convolutional Experts Network for Facial Landmark Detection", "addresses": [{"address": "Carnegie Mellon University", "lat": "37.41021930", "lng": "-122.05965487", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "86204fc037936754813b91898377e8831396551a", "title": "Dense Face Alignment", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.01442.pdf"]}, {"id": "b2cb335ded99b10f37002d09753bd5a6ea522ef1", "title": "Analysis of adaptability of deep features for verifying blurred and cross-resolution images", "addresses": [{"address": "Institute of Engineering and Management, Kolkata, India", "lat": "22.57423855", "lng": "88.43373030", "type": "edu"}, {"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "486840f4f524e97f692a7f6b42cd19019ee71533", "title": "DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills", "addresses": [{"address": "\u00c9cole Centrale de Lyon", "lat": "45.78359660", "lng": "4.76789480", "type": "edu"}, {"address": "Safran Identity and Security", "lat": "48.83249300", "lng": "2.26747400", "type": "company"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.08388.pdf"]}, {"id": "2d748f8ee023a5b1fbd50294d176981ded4ad4ee", "title": "Triplet Similarity Embedding for Face Verification", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.03418.pdf"]}, {"id": "f7824758800a7b1a386db5bd35f84c81454d017a", "title": "KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors", "addresses": [{"address": "University of Maryland College Park", "lat": "38.99203005", "lng": "-76.94610290", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.05085.pdf"]}, {"id": "02467703b6e087799e04e321bea3a4c354c5487d", "title": "Grouper: Optimizing Crowdsourced Face Annotations", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2016", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/AdamsAllenMillerKalkaJain_CVPRWB2016_GRPR.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w4/papers/Adams_Grouper_Optimizing_Crowdsourced_CVPR_2016_paper.pdf"]}, {"id": "377f2b65e6a9300448bdccf678cde59449ecd337", "title": "Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results", "addresses": [{"address": "Johns Hopkins University", "lat": "39.32905300", "lng": "-76.61942500", "type": "edu"}, {"address": "Rutgers University", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.10275.pdf"]}, {"id": "cd55fb30737625e86454a2861302b96833ed549d", "title": "Annotating Unconstrained Face Imagery: A scalable approach", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}, {"address": "Noblis, Falls Church, VA, U.S.A.", "lat": "38.95187000", "lng": "-77.36325900", "type": "company"}], "year": "2015", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/TaborskyAllenBlantonJainKlare_UnconstrainedFaceAnnotation_ICB15.pdf"]}, {"id": "1e8eee51fd3bf7a9570d6ee6aa9a09454254689d", "title": "Face Search at Scale", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2017", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/WangOttoJain_FaceSearchAtScale_TPAMI.pdf"]}, {"id": "5226296884b3e151ce317a37f94827dbda0b9d16", "title": "Deep pair-wise similarity learning for face recognition", "addresses": [{"address": "University of Ljubljana", "lat": "46.05015580", "lng": "14.46907327", "type": "edu"}], "year": "2016", "pdf": []}, {"id": "80be8624771104ff4838dcba9629bacfe6b3ea09", "title": "Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition", "addresses": [{"address": "Advanced Digital Sciences Center, Singapore", "lat": "1.30372570", "lng": "103.77377630", "type": "edu"}, {"address": "Nanyang Technological University", "lat": "1.34841040", "lng": "103.68297965", "type": "edu"}, {"address": "Beijing University of Posts and Telecommunications", "lat": "39.96014880", "lng": "116.35193921", "type": "edu"}, {"address": "University of Illinois, Urbana-Champaign", "lat": "40.11116745", "lng": "-88.22587665", "type": "edu"}], "year": "2017", "pdf": ["http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8689/86890265.pdf", "http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf", "http://www.ntu.edu.sg/home/wanggang/LuECCV2014.pdf"]}, {"id": "50b58becaf67e92a6d9633e0eea7d352157377c3", "title": "Dependency-Aware Attention Control for Unconstrained Face Recognition with Image Sets", "addresses": [{"address": "Hong Kong Polytechnic University", "lat": "22.30457200", "lng": "114.17976285", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/50b5/8becaf67e92a6d9633e0eea7d352157377c3.pdf"]}, {"id": "77362789d04db4c51be61eaffa4f43e03759e677", "title": "Fuzzy Analysis and Deep Convolution Neural Networks in Still-to-video Recognition", "addresses": [{"address": "Russia", "lat": "61.52401000", "lng": "105.31875600", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "ac2881bdf7b57dc1672a17b221d68a438d79fce8", "title": "Learning a High Fidelity Pose Invariant Model for High-resolution Face Frontalization", "addresses": [{"address": "University of Chinese Academy of Sciences", "lat": "39.90828040", "lng": "116.24585270", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08472.pdf"]}, {"id": "72a7eb68f0955564e1ceafa75aeeb6b5bbb14e7e", "title": "Face Recognition with Contrastive Convolution", "addresses": [{"address": "Chinese Academy of Sciences", "lat": "40.00447950", "lng": "116.37023800", "type": "edu"}, {"address": "University of Chinese Academy of Sciences", "lat": "39.90828040", "lng": "116.24585270", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/72a7/eb68f0955564e1ceafa75aeeb6b5bbb14e7e.pdf"]}, {"id": "368e99f669ea5fd395b3193cd75b301a76150f9d", "title": "One-to-many face recognition with bilinear CNNs", "addresses": [{"address": "University of Massachusetts", "lat": "42.38897850", "lng": "-72.52869870", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1506.01342.pdf"]}, {"id": "1e6ed6ca8209340573a5e907a6e2e546a3bf2d28", "title": "Pooling Faces: Template Based Face Recognition with Pooled Face Images", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1607.01450.pdf"]}, {"id": "052f994898c79529955917f3dfc5181586282cf8", "title": "Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos", "addresses": [{"address": "Dalian University of Technology", "lat": "38.88140235", "lng": "121.52281098", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.02191.pdf"]}, {"id": "b503793943a17d2f569685cd17e86b5b4fffe3fd", "title": "How popular CNNs perform in real applications of face recognition", "addresses": [{"address": "Shahid Rajaee Teacher Training University. Shabanlou", "lat": "35.74071930", "lng": "51.44829060", "type": "edu"}, {"address": "Simon Fraser University", "lat": "49.27674540", "lng": "-122.91777375", "type": "edu"}], "year": "2016", "pdf": []}, {"id": "4e8168fbaa615009d1618a9d6552bfad809309e9", "title": "Deep Convolutional Neural Network Features and the Original Image", "addresses": [{"address": "University of Texas at Dallas", "lat": "32.98207990", "lng": "-96.75662780", "type": "edu"}, {"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.01751.pdf"]}, {"id": "a8117a4733cce9148c35fb6888962f665ae65b1e", "title": "A Good Practice Towards Top Performance of Face Recognition: Transferred Deep Feature Fusion", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.00438.pdf"]}, {"id": "0c1d85a197a1f5b7376652a485523e616a406273", "title": "Joint Registration and Representation Learning for Unconstrained Face Identification", "addresses": [{"address": "University of Canberra", "lat": "-35.23656905", "lng": "149.08446994", "type": "edu"}, {"address": "Khalifa University", "lat": "24.44690250", "lng": "54.39425630", "type": "edu"}], "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Hayat_Joint_Registration_and_CVPR_2017_paper.pdf", "http://staff.estem-uc.edu.au/munawar/files/2017/05/CVPR17.pdf"]}, {"id": "c75e6ce54caf17b2780b4b53f8d29086b391e839", "title": "ExpNet: Landmark-Free, Deep, 3D Facial Expressions", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.00542.pdf"]}, {"id": "450c6a57f19f5aa45626bb08d7d5d6acdb863b4b", "title": "Towards Interpretable Face Recognition", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00611.pdf"]}, {"id": "30180f66d5b4b7c0367e4b43e2b55367b72d6d2a", "title": "Template Adaptation for Face Verification and Identification", "addresses": [{"address": "University of Oxford", "lat": "51.75345380", "lng": "-1.25400997", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1603.03958.pdf"]}, {"id": "8334da483f1986aea87b62028672836cb3dc6205", "title": "Fully Associative Patch-Based 1-to-N Matcher for Face Recognition", "addresses": [{"address": "University of Houston", "lat": "29.72079020", "lng": "-95.34406271", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.06306.pdf"]}, {"id": "af4759f5e636b5d9049010d5f0e2b0df2a69cd72", "title": "Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing", "addresses": [{"address": "National University of Singapore", "lat": "1.29620180", "lng": "103.77689944", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "3b64efa817fd609d525c7244a0e00f98feacc8b4", "title": "A Comprehensive Survey on Pose-Invariant Face Recognition", "addresses": [{"address": "University of Technology Sydney", "lat": "-33.88096510", "lng": "151.20107299", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1502.04383.pdf"]}, {"id": "6fbb179a4ad39790f4558dd32316b9f2818cd106", "title": "Input Aggregated Network for Face Video Representation", "addresses": [{"address": "China", "lat": "35.86166000", "lng": "104.19539700", "type": "edu"}, {"address": "Stony Brook University", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.06655.pdf"]}, {"id": "d4f1eb008eb80595bcfdac368e23ae9754e1e745", "title": "Unconstrained Face Detection and Open-Set Face Recognition Challenge", "addresses": [{"address": "University of Colorado, Colorado Springs", "lat": "38.89207560", "lng": "-104.79716389", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.02337.pdf"]}, {"id": "ebb3d5c70bedf2287f9b26ac0031004f8f617b97", "title": "Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans", "addresses": [{"address": "Electrical and Computer Engineering", "lat": "33.58667840", "lng": "-101.87539204", "type": "edu"}, {"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "d28d32af7ef9889ef9cb877345a90ea85e70f7f1", "title": "Local-Global Landmark Confidences for Face Recognition", "addresses": [{"address": "University of Southern California", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu"}, {"address": "Carnegie Mellon University", "lat": "37.41021930", "lng": "-122.05965487", "type": "edu"}], "year": "2017", "pdf": ["http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Kim_Local.pdf"]}, {"id": "a29566375836f37173ccaffa47dea25eb1240187", "title": "Vehicle Re-Identification in Context", "addresses": [{"address": "Queen Mary University of London", "lat": "51.52472720", "lng": "-0.03931035", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.09409.pdf"]}, {"id": "29f298dd5f806c99951cb434834bc8dcc765df18", "title": "Computationally efficient template-based face recognition", "addresses": [{"address": "University of Southern California", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu"}], "year": "2016", "pdf": ["https://5443dcab-a-62cb3a1a-s-sites.googlegroups.com/site/tuftsyuewu/07899837.pdf?attachauth=ANoY7cqfUhcvdFXMZgmlp5F8vpsgnxBsprKKckxy_aZoISF-hkIFI9fOfhgG4xZaMrCeWwTD5mMdnQ2hBZzxR-8V81R3mF4OfAFLYtwdzfrf-KZK0jmORMVmLD_J8Z9xHoxj2DB6UDiAYoDwXFNg06yeoySgY6iT4Pjc_KCaDToyeyrLijivRbrfFOyvuzxfUXyo9lVg9FY0e5H3mdW1NFllFKgxpOFV9Q%3D%3D&attredirects=0"]}, {"id": "ddf099f0e0631da4a6396a17829160301796151c", "title": "Chen et al . Face Quality Value : Input : Feat -\u2010 5 Features : L 2 R + PKM Model : Feat -\u2010", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ddf0/99f0e0631da4a6396a17829160301796151c.pdf"]}, {"id": "54bb25a213944b08298e4e2de54f2ddea890954a", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "addresses": [{"address": "Imperial College London", "lat": "51.49887085", "lng": "-0.17560797", "type": "edu"}, {"address": "Middlesex University", "lat": "51.59029705", "lng": "-0.22963221", "type": "edu"}], "year": "2017", "pdf": ["http://eprints.mdx.ac.uk/22044/1/agedb_kotsia.pdf", "http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf", "https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"]}, {"id": "5981c309bd0ffd849c51b1d8a2ccc481a8ec2f5c", "title": "SmartFace: Efficient face detection on smartphones for wireless on-demand emergency networks", "addresses": [{"address": "TU Darmstadt", "lat": "49.87482770", "lng": "8.65632810", "type": "edu"}, {"address": "Philipps-Universit\u00e4t Marburg", "lat": "50.81427010", "lng": "8.77143500", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "a2b4a6c6b32900a066d0257ae6d4526db872afe2", "title": "Learning Face Image Quality From Human Assessments", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "3dfb822e16328e0f98a47209d7ecd242e4211f82", "title": "Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments", "addresses": [{"address": "Beijing University of Posts and Telecommunications", "lat": "39.96014880", "lng": "116.35193921", "type": "edu"}, {"address": "China", "lat": "35.86166000", "lng": "104.19539700", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.08197.pdf"]}, {"id": "291265db88023e92bb8c8e6390438e5da148e8f5", "title": "MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition", "addresses": [{"address": "Microsoft", "lat": "36.06303740", "lng": "-95.88099660", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1607.08221.pdf"]}, {"id": "7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22", "title": "Labeled Faces in the Wild : A Survey", "addresses": [{"address": "Stevens Institute of Technology", "lat": "40.74225200", "lng": "-74.02709490", "type": "edu"}, {"address": "University of Massachusetts", "lat": "42.38897850", "lng": "-72.52869870", "type": "edu"}], "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf"]}, {"id": "d29eec5e047560627c16803029d2eb8a4e61da75", "title": "Feature Transfer Learning for Deep Face Recognition with Long-Tail Data", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.09014.pdf"]}, {"id": "5180df9d5eb26283fb737f491623395304d57497", "title": "Scalable Angular Discriminative Deep Metric Learning for Face Recognition", "addresses": [{"address": "China", "lat": "35.86166000", "lng": "104.19539700", "type": "edu"}, {"address": "Tianjin University", "lat": "36.20304395", "lng": "117.05842113", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.10899.pdf"]}, {"id": "abdd17e411a7bfe043f280abd4e560a04ab6e992", "title": "Pose-Robust Face Recognition via Deep Residual Equivariant Mapping", "addresses": [{"address": "Chinese University of Hong Kong", "lat": "22.42031295", "lng": "114.20788644", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.00839.pdf"]}, {"id": "3cf1f89d73ca4b25399c237ed3e664a55cd273a2", "title": "Face Sketch Matching via Coupled Deep Transform Learning", "addresses": [{"address": "IIIT Delhi, India", "lat": "28.54562820", "lng": "77.27315050", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.02914.pdf"]}, {"id": "03f7041515d8a6dcb9170763d4f6debd50202c2b", "title": "Clustering Millions of Faces by Identity", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1604.00989.pdf"]}, {"id": "6afe1f668eea8dfdd43f0780634073ed4545af23", "title": "Deep learning for content-based video retrieval in film and television production", "addresses": [{"address": "German National Library of Science and Technology (TIB), Hannover, Germany", "lat": "52.38151500", "lng": "9.72017100", "type": "edu"}, {"address": "taglicht media Film- & Fernsehproduktion GmbH, K\u00f6ln, Germany", "lat": "50.90750920", "lng": "6.96616590", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "be72b20247fb4dc4072d962ced77ed89aa40372f", "title": "Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN", "addresses": [{"address": "Russia", "lat": "61.52401000", "lng": "105.31875600", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.07718.pdf"]}, {"id": "14aed1b7c08c941b1d2ba6c1c2ffb6255c306c74", "title": "Robust watch-list screening using dynamic ensembles of SVMs based on multiple face representations", "addresses": [{"address": "Polytechnique Montr\u00e9al", "lat": "45.50438400", "lng": "-73.61288290", "type": "edu"}], "year": "2016", "pdf": ["https://etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-innovation/Publications/Publications-2017/Bashbaghi_MVA2016vfin.pdf"]}, {"id": "f27fd2a1bc229c773238f1912db94991b8bf389a", "title": "How do you develop a face detector for the unconstrained environment?", "addresses": [{"address": "University of Queensland", "lat": "-27.49741805", "lng": "153.01316956", "type": "edu"}], "year": "2016", "pdf": []}, {"id": "9865fe20df8fe11717d92b5ea63469f59cf1635a", "title": "Wildest Faces: Face Detection and Recognition in Violent Settings", "addresses": [{"address": "Hacettepe University", "lat": "39.86742125", "lng": "32.73519072", "type": "edu"}, {"address": "Middle East Technical University", "lat": "39.87549675", "lng": "32.78553506", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.07566.pdf"]}, {"id": "c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d", "title": "Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis", "addresses": [{"address": "National University of Singapore", "lat": "1.29620180", "lng": "103.77689944", "type": "edu"}, {"address": "National University of Defense Technology, China", "lat": "28.22902090", "lng": "112.99483204", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/aae7/a5182e59f44b7bb49f61999181ce011f800b.pdf"]}, {"id": "f5eb411217f729ad7ae84bfd4aeb3dedb850206a", "title": "Tackling Low Resolution for Better Scene Understanding", "addresses": [{"address": "International Institute of Information Technology", "lat": "17.44549570", "lng": "78.34854698", "type": "edu"}, {"address": "India", "lat": "20.59368400", "lng": "78.96288000", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f5eb/411217f729ad7ae84bfd4aeb3dedb850206a.pdf"]}, {"id": "96e731e82b817c95d4ce48b9e6b08d2394937cf8", "title": "Unconstrained face verification using deep CNN features", "addresses": [{"address": "State University of New Jersey", "lat": "40.51865195", "lng": "-74.44099801", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1508.01722.pdf"]}, {"id": "870433ba89d8cab1656e57ac78f1c26f4998edfb", "title": "Regressing Robust and Discriminative 3D Morphable Models with a Very Deep Neural Network", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1612.04904.pdf"]}, {"id": "3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0", "title": "Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions", "addresses": [{"address": "University of Malta", "lat": "35.90232260", "lng": "14.48341890", "type": "edu"}, {"address": "University of Copenhagen", "lat": "55.68015020", "lng": "12.57232700", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.03827.pdf"]}, {"id": "6341274aca0c2977c3e1575378f4f2126aa9b050", "title": "A multi-scale cascade fully convolutional network face detector", "addresses": [{"address": "University of Southern California", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1609.03536.pdf"]}, {"id": "17479e015a2dcf15d40190e06419a135b66da4e0", "title": "Predicting First Impressions With Deep Learning", "addresses": [{"address": "University of Notre Dame", "lat": "41.70456775", "lng": "-86.23822026", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1610.08119.pdf"]}, {"id": "a0b1990dd2b4cd87e4fd60912cc1552c34792770", "title": "Deep Constrained Local Models for Facial Landmark Detection", "addresses": [{"address": "Carnegie Mellon University", "lat": "37.41021930", "lng": "-122.05965487", "type": "edu"}], "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/a0b1/990dd2b4cd87e4fd60912cc1552c34792770.pdf"]}, {"id": "772474b5b0c90629f4d9c223fd9c1ef45e1b1e66", "title": "Multi-dim: A multi-dimensional face database towards the application of 3D technology in real-world scenarios", "addresses": [{"address": "Sichuan University, Chengdu", "lat": "30.64276900", "lng": "104.06751175", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "4b3f425274b0c2297d136f8833a31866db2f2aec", "title": "Toward Open-Set Face Recognition", "addresses": [{"address": "University of Colorado, Colorado Springs", "lat": "38.89207560", "lng": "-104.79716389", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.01567.pdf"]}, {"id": "17ded725602b4329b1c494bfa41527482bf83a6f", "title": "Compact Convolutional Neural Network Cascade for Face Detection", "addresses": [{"address": "Tomsk Polytechnic University", "lat": "56.46255985", "lng": "84.95565495", "type": "edu"}, {"address": "Russia", "lat": "61.52401000", "lng": "105.31875600", "type": "edu"}], "year": "2015", "pdf": ["https://arxiv.org/pdf/1508.01292.pdf"]}, {"id": "14b016c7a87d142f4b9a0e6dc470dcfc073af517", "title": "Modest proposals for improving biometric recognition papers", "addresses": [{"address": "San Jose State University", "lat": "37.33519080", "lng": "-121.88126008", "type": "edu"}], "year": "2015", "pdf": ["http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=918912", "http://www.nist.gov/customcf/get_pdf.cfm?pub_id=918912"]}, {"id": "93420d9212dd15b3ef37f566e4d57e76bb2fab2f", "title": "An All-In-One Convolutional Neural Network for Face Analysis", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.00851.pdf"]}, {"id": "def2983576001bac7d6461d78451159800938112", "title": "The Do\u2019s and Don\u2019ts for CNN-Based Face Verification", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.07426.pdf"]}, {"id": "4b605e6a9362485bfe69950432fa1f896e7d19bf", "title": "A Comparison of Human and Automated Face Verification Accuracy on Unconstrained Image Sets", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2016", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/BlantonAllenMillerKalkaJain_CVPRWB2016_HID.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w4/papers/Blanton_A_Comparison_of_CVPR_2016_paper.pdf"]}, {"id": "8d3e95c31c93548b8c71dbeee2e9f7180067a888", "title": "Template regularized sparse coding for face verification", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}, {"address": "GE Global Research", "lat": "42.82715560", "lng": "-73.87804810", "type": "company"}], "year": "2016", "pdf": []}, {"id": "337dd4aaca2c5f9b5d2de8e0e2401b5a8feb9958", "title": "Data-specific Adaptive Threshold for Face Recognition and Authentication", "addresses": [{"address": "Institute of Information Science", "lat": "25.04107280", "lng": "121.61475620", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.11160.pdf"]}, {"id": "0aeb5020003e0c89219031b51bd30ff1bceea363", "title": "Sparsifying Neural Network Connections for Face Recognition", "addresses": [{"address": "Chinese University of Hong Kong", "lat": "22.42031295", "lng": "114.20788644", "type": "edu"}, {"address": "Shenzhen Institutes of Advanced Technology", "lat": "22.59805605", "lng": "113.98533784", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1512.01891.pdf"]}, {"id": "31b05f65405534a696a847dd19c621b7b8588263", "title": "UMDFaces: An annotated face dataset for training deep networks", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.01484.pdf"]}, {"id": "99daa2839213f904e279aec7cef26c1dfb768c43", "title": "DocFace: Matching ID Document Photos to Selfies", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.02283.pdf"]}, {"id": "71ca8b6e84c17b3e68f980bfb8cddc837100f8bf", "title": "Effective 3D based frontalization for unconstrained face recognition", "addresses": [{"address": "University of Florence", "lat": "43.77764260", "lng": "11.25976500", "type": "edu"}], "year": "2016", "pdf": ["https://www.micc.unifi.it/wp-content/uploads/2016/12/icpr16_janus_cameraReady.pdf"]}, {"id": "b908487b30002d5ae1ebd819880a713494a45a40", "title": "Developmental Network: An Internal Emergent Object Feature Learning", "addresses": [{"address": "China", "lat": "35.86166000", "lng": "104.19539700", "type": "edu"}, {"address": "Zhengzhou University", "lat": "34.80881680", "lng": "113.53526640", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "c43ed9b34cad1a3976bac7979808eb038d88af84", "title": "Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model", "addresses": [{"address": "Imperial College London", "lat": "51.49887085", "lng": "-0.17560797", "type": "edu"}, {"address": "University of Surrey", "lat": "51.24303255", "lng": "-0.59001382", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.03675.pdf"]}, {"id": "628a3f027b7646f398c68a680add48c7969ab1d9", "title": "Plan for Final Year Project : HKU-Face : A Large Scale Dataset for Deep Face Recognition", "addresses": [{"address": "Facebook", "lat": "37.39367170", "lng": "-122.08072620", "type": "company"}, {"address": "k", "lat": "37.09024000", "lng": "-95.71289100", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/628a/3f027b7646f398c68a680add48c7969ab1d9.pdf"]}, {"id": "61262450d4d814865a4f9a84299c24daa493f66e", "title": "Biometric recognition in surveillance scenarios: a survey", "addresses": [{"address": "University of Beira Interior", "lat": "40.27730770", "lng": "-7.50958010", "type": "edu"}], "year": "2016", "pdf": ["http://www.di.ubi.pt/~hugomcp/doc/BiometricsSurveillance_Survey.pdf"]}, {"id": "626913b8fcbbaee8932997d6c4a78fe1ce646127", "title": "Learning from Millions of 3D Scans for Large-scale 3D Face Recognition", "addresses": [{"address": "University of Western Australia", "lat": "-31.95040445", "lng": "115.79790037", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.05942.pdf"]}, {"id": "4efd58102ff46b7435c9ec6d4fc3dd21d93b15b4", "title": "Matching Software-Generated Sketches to Face Photographs With a Very Deep CNN, Morphed Faces, and Transfer Learning", "addresses": [{"address": "University of Malta", "lat": "35.90232260", "lng": "14.48341890", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "df51dfe55912d30fc2f792561e9e0c2b43179089", "title": "Face Hallucination Using Linear Models of Coupled Sparse Support", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1512.06009.pdf"]}, {"id": "b6f758be954d34817d4ebaa22b30c63a4b8ddb35", "title": "A Proximity-Aware Hierarchical Clustering of Faces", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.04835.pdf"]}, {"id": "dfaa547451aae219cd2ca7a761e6c16c1e1d0add", "title": "Representation Learning by Rotating Your Faces", "addresses": [{"address": "Member", "lat": "37.05826350", "lng": "-95.67914910", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1705.11136.pdf"]}, {"id": "84ae55603bffda40c225fe93029d39f04793e01f", "title": "ICB-RW 2016: International challenge on biometric recognition in the wild", "addresses": [{"address": "University of Beira Interior", "lat": "40.27730770", "lng": "-7.50958010", "type": "edu"}], "year": "2016", "pdf": ["http://www.di.ubi.pt/~hugomcp/doc/ICB16.pdf"]}, {"id": "c6382de52636705be5898017f2f8ed7c70d7ae96", "title": "Unconstrained face detection: State of the art baseline and challenges", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}, {"address": "Noblis, Falls Church, VA, U.S.A.", "lat": "38.95187000", "lng": "-77.36325900", "type": "company"}], "year": "2015", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/CheneyKlienJainKlare_UnconstrainedFaceDetection_ICB15.pdf", "https://ai2-s2-pdfs.s3.amazonaws.com/c638/2de52636705be5898017f2f8ed7c70d7ae96.pdf"]}, {"id": "eee06d68497be8bf3a8aba4fde42a13aa090b301", "title": "CR-GAN: Learning Complete Representations for Multi-view Generation", "addresses": [{"address": "Rutgers University", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu"}, {"address": "University of North Carolina at Charlotte", "lat": "35.31034410", "lng": "-80.73261617", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.11191.pdf"]}, {"id": "a3201e955d6607d383332f3a12a7befa08c5a18c", "title": "VLAD encoded Deep Convolutional features for unconstrained face verification", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}, {"address": "Rutgers University", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu"}], "year": "2016", "pdf": ["http://www.rci.rutgers.edu/~vmp93/Conference_pub/ICPR2016_FV_CNN_final.pdf"]}, {"id": "52d7eb0fbc3522434c13cc247549f74bb9609c5d", "title": "WIDER FACE: A Face Detection Benchmark", "addresses": [{"address": "Chinese University of Hong Kong", "lat": "22.42031295", "lng": "114.20788644", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.06523.pdf"]}, {"id": "19458454308a9f56b7de76bf7d8ff8eaa52b0173", "title": "Deep Features for Recognizing Disguised Faces in the Wild", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "", "pdf": ["https://pdfs.semanticscholar.org/1945/8454308a9f56b7de76bf7d8ff8eaa52b0173.pdf"]}, {"id": "746c0205fdf191a737df7af000eaec9409ede73f", "title": "Investigating Nuisances in DCNN-Based Face Recognition", "addresses": [{"address": "University of Florence", "lat": "43.77764260", "lng": "11.25976500", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "0081e2188c8f34fcea3e23c49fb3e17883b33551", "title": "Training Deep Face Recognition Systems with Synthetic Data", "addresses": [{"address": "University of Basel", "lat": "47.56126510", "lng": "7.57529610", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.05891.pdf"]}, {"id": "2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4", "title": "Ring loss: Convex Feature Normalization for Face Recognition", "addresses": [{"address": "Carnegie Mellon University", "lat": "37.41021930", "lng": "-122.05965487", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.00130.pdf"]}, {"id": "5f771fed91c8e4b666489ba2384d0705bcf75030", "title": "Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing", "addresses": [{"address": "National University of Singapore", "lat": "1.29620180", "lng": "103.77689944", "type": "edu"}, {"address": "National University of Defense Technology, China", "lat": "28.22902090", "lng": "112.99483204", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.03287.pdf"]}, {"id": "2241eda10b76efd84f3c05bdd836619b4a3df97e", "title": "Face Identification with Bilinear CNNs", "addresses": [{"address": "University of Massachusetts", "lat": "42.38897850", "lng": "-72.52869870", "type": "edu"}], "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/2241/eda10b76efd84f3c05bdd836619b4a3df97e.pdf"]}, {"id": "58d76380d194248b3bb291b8c7c5137a0a376897", "title": "FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis", "addresses": [{"address": "Chinese University of Hong Kong", "lat": "22.42031295", "lng": "114.20788644", "type": "edu"}, {"address": "Shenzhen Institutes of Advanced Technology", "lat": "22.59805605", "lng": "113.98533784", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf"]}, {"id": "7fb5006b6522436ece5bedf509e79bdb7b79c9a7", "title": "Multi-Task Convolutional Neural Network for Face Recognition", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7fb5/006b6522436ece5bedf509e79bdb7b79c9a7.pdf"]}, {"id": "28646c6220848db46c6944967298d89a6559c700", "title": "It takes two to tango : Cascading off-the-shelf face detectors", "addresses": [{"address": "University of Queensland", "lat": "-27.49741805", "lng": "153.01316956", "type": "edu"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2864/6c6220848db46c6944967298d89a6559c700.pdf"]}, {"id": "e4c3587392d477b7594086c6f28a00a826abf004", "title": "Face recognition by facial attribute assisted network", "addresses": [{"address": "National Taiwan University of Science and Technology", "lat": "25.01353105", "lng": "121.54173736", "type": "edu"}], "year": "2017", "pdf": []}, {"id": "47190d213caef85e8b9dd0d271dbadc29ed0a953", "title": "The Devil of Face Recognition is in the Noise", "addresses": [{"address": "University of California, San Diego", "lat": "32.87935255", "lng": "-117.23110049", "type": "edu"}, {"address": "Nanyang Technological University", "lat": "1.34841040", "lng": "103.68297965", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.11649.pdf"]}, {"id": "ce6d60b69eb95477596535227958109e07c61e1e", "title": "Unconstrained face verification using fisher vectors computed from frontalized faces", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2015", "pdf": ["http://www.rci.rutgers.edu/~vmp93/Conference_pub/BTAS_2015_FVFF_JunCheng_Chen.pdf"]}, {"id": "38d8ff137ff753f04689e6b76119a44588e143f3", "title": "When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition", "addresses": [{"address": "University of Houston", "lat": "29.72079020", "lng": "-95.34406271", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.06532.pdf"]}, {"id": "0cb2dd5f178e3a297a0c33068961018659d0f443", "title": "IARPA Janus Benchmark-B Face Dataset", "addresses": [{"address": "Michigan State University", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu"}], "year": "2017", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/Whitelametal_IARPAJanusBenchmark-BFaceDataset_CVPRW17.pdf", "http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Whitelam_IARPA_Janus_Benchmark-B_CVPR_2017_paper.pdf", "http://www.vislab.ucr.edu/Biometrics2017/program_slides/Noblis_CVPRW_IJBB.pdf", "https://www.nist.gov/sites/default/files/documents/2017/05/30/readme.pdf"]}, {"id": "5905b4610389cd3b11a3a1ce06c05fee36a97f86", "title": "Unconstrained Face Recognition Using a Set-to-Set Distance Measure on Deep Learned Features", "addresses": [{"address": "Northumbria University", "lat": "55.00306320", "lng": "-1.57463231", "type": "edu"}, {"address": "University of East Anglia", "lat": "52.62215710", "lng": "1.24091360", "type": "edu"}, {"address": "Lancaster University", "lat": "54.00975365", "lng": "-2.78757491", "type": "edu"}], "year": "2018", "pdf": ["http://eprints.lancs.ac.uk/87886/4/07936556.pdf"]}, {"id": "3d78c144672c4ee76d92d21dad012bdf3c3aa1a0", "title": "Unconstrained Still/Video-Based Face Verification with Deep Convolutional Neural Networks", "addresses": [{"address": "Rutgers University", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu"}, {"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2017", "pdf": ["http://www.rci.rutgers.edu/~vmp93/Journal_pub/IJCV_20170517_v4.pdf"]}, {"id": "9627f28ea5f4c389350572b15968386d7ce3fe49", "title": "Load Balanced GANs for Multi-view Face Image Synthesis", "addresses": [{"address": "University of Chinese Academy of Sciences", "lat": "39.90828040", "lng": "116.24585270", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.07447.pdf"]}, {"id": "4e7ed13e541b8ed868480375785005d33530e06d", "title": "Face recognition using deep multi-pose representations", "addresses": [{"address": "University of Southern California", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu"}, {"address": "Open University", "lat": "52.02453775", "lng": "-0.70927481", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.07388.pdf"]}, {"id": "28d4e027c7e90b51b7d8908fce68128d1964668a", "title": "Level Playing Field for Million Scale Face Recognition", "addresses": [{"address": "University of Washington", "lat": "47.65432380", "lng": "-122.30800894", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.00393.pdf"]}, {"id": "582edc19f2b1ab2ac6883426f147196c8306685a", "title": "Do We Really Need to Collect Millions of Faces for Effective Face Recognition?", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.07057.pdf"]}, {"id": "87e6cb090aecfc6f03a3b00650a5c5f475dfebe1", "title": "Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection", "addresses": [{"address": "University of Southern California", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu"}, {"address": "Carnegie Mellon University", "lat": "37.41021930", "lng": "-122.05965487", "type": "edu"}], "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf"]}, {"id": "3b9b200e76a35178da940279d566bbb7dfebb787", "title": "Learning Channel Inter-dependencies at Multiple Scales on Dense Networks for Face Recognition", "addresses": [{"address": "West Virginia University", "lat": "39.65404635", "lng": "-79.96475355", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.10103.pdf"]}, {"id": "de79437f74e8e3b266afc664decf4e6e4bdf34d7", "title": "To face or not to face: Towards reducing false positive of face detection", "addresses": [{"address": "University of Queensland", "lat": "-27.49741805", "lng": "153.01316956", "type": "edu"}], "year": "2016", "pdf": []}, {"id": "6005a30bf103164fe3410185976b6b8b36537aca", "title": "Communication, Networks and Computing", "addresses": [{"address": "ITM University", "lat": "26.13821220", "lng": "78.20778860", "type": "edu"}, {"address": "India", "lat": "20.59368400", "lng": "78.96288000", "type": "edu"}, {"address": "Deakin University", "lat": "-38.19928505", "lng": "144.30365229", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "368d59cf1733af511ed8abbcbeb4fb47afd4da1c", "title": "To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition", "addresses": [{"address": "University of Notre Dame", "lat": "41.70456775", "lng": "-86.23822026", "type": "edu"}, {"address": "University of Ljubljana", "lat": "46.05015580", "lng": "14.46907327", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1610.04823.pdf"]}, {"id": "62e913431bcef5983955e9ca160b91bb19d9de42", "title": "Facial Landmark Detection with Tweaked Convolutional Neural Networks", "addresses": [{"address": "Open University of Israel", "lat": "32.77824165", "lng": "34.99565673", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1511.04031.pdf"]}, {"id": "acd4280453b995cb071c33f7c9db5760432f4279", "title": "Deep transformation learning for face recognition in the unconstrained scene", "addresses": [{"address": "Chongqing University", "lat": "29.50841740", "lng": "106.57858552", "type": "edu"}], "year": "2018", "pdf": []}, {"id": "ceeb67bf53ffab1395c36f1141b516f893bada27", "title": "Face Alignment by Local Deep Descriptor Regression", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}, {"address": "Rutgers University", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1601.07950.pdf"]}, {"id": "fab60b3db164327be8588bce6ce5e45d5b882db6", "title": "Maximum A Posteriori Estimation of Distances Between Deep Features in Still-to-Video Face Recognition", "addresses": [{"address": "Russia", "lat": "61.52401000", "lng": "105.31875600", "type": "edu"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/fab6/0b3db164327be8588bce6ce5e45d5b882db6.pdf"]}, {"id": "37619564574856c6184005830deda4310d3ca580", "title": "A deep pyramid Deformable Part Model for face detection", "addresses": [{"address": "University of Maryland", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu"}], "year": "2015", "pdf": ["https://arxiv.org/pdf/1508.04389.pdf"]}, {"id": "3c97c32ff575989ef2869f86d89c63005fc11ba9", "title": "Face Detection with the Faster R-CNN", "addresses": [{"address": "University of Massachusetts", "lat": "42.38897850", "lng": "-72.52869870", "type": "edu"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1606.03473.pdf"]}, {"id": "fca9ebaa30d69ccec8bb577c31693c936c869e72", "title": "Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition", "addresses": [{"address": "National University of Singapore", "lat": "1.29620180", "lng": "103.77689944", "type": "edu"}, {"address": "Chinese Academy of Sciences", "lat": "40.00447950", "lng": "116.37023800", "type": "edu"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.00338.pdf"]}]}
\ No newline at end of file |
