summaryrefslogtreecommitdiff
path: root/site/datasets/final/ijb_c.csv
diff options
context:
space:
mode:
Diffstat (limited to 'site/datasets/final/ijb_c.csv')
-rw-r--r--site/datasets/final/ijb_c.csv141
1 files changed, 0 insertions, 141 deletions
diff --git a/site/datasets/final/ijb_c.csv b/site/datasets/final/ijb_c.csv
deleted file mode 100644
index 15bfccab..00000000
--- a/site/datasets/final/ijb_c.csv
+++ /dev/null
@@ -1,141 +0,0 @@
-index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
-0,IJB-A,ijb_c,0.0,0.0,,,140c95e53c619eac594d70f6369f518adfea12ef,main,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_089_ext.pdf,Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A,2015
-1,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,872dfdeccf99bbbed7c8f1ea08afb2d713ebe085,citation,https://arxiv.org/pdf/1703.09507.pdf,L2-constrained Softmax Loss for Discriminative Face Verification,2017
-2,IJB-A,ijb_c,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,146a7ecc7e34b85276dd0275c337eff6ba6ef8c0,citation,https://arxiv.org/pdf/1611.06158v1.pdf,AFFACT: Alignment-free facial attribute classification technique,2017
-3,IJB-A,ijb_c,51.7534538,-1.25400997,University of Oxford,edu,313d5eba97fe064bdc1f00b7587a4b3543ef712a,citation,https://pdfs.semanticscholar.org/cb7f/93467b0ec1afd43d995e511f5d7bf052a5af.pdf,Compact Deep Aggregation for Set Retrieval,2018
-4,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,5865b6d83ba6dbbf9167f1481e9339c2ef1d1f6b,citation,https://doi.org/10.1109/ICPR.2016.7900278,Regularized metric adaptation for unconstrained face verification,2016
-5,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,48a9241edda07252c1aadca09875fabcfee32871,citation,https://arxiv.org/pdf/1611.08657v5.pdf,Convolutional Experts Constrained Local Model for Facial Landmark Detection,2017
-6,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,86204fc037936754813b91898377e8831396551a,citation,https://arxiv.org/pdf/1709.01442.pdf,Dense Face Alignment,2017
-7,IJB-A,ijb_c,22.57423855,88.4337303,"Institute of Engineering and Management, Kolkata, India",edu,b2cb335ded99b10f37002d09753bd5a6ea522ef1,citation,https://doi.org/10.1109/ISBA.2017.7947679,Analysis of adaptability of deep features for verifying blurred and cross-resolution images,2017
-8,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,b2cb335ded99b10f37002d09753bd5a6ea522ef1,citation,https://doi.org/10.1109/ISBA.2017.7947679,Analysis of adaptability of deep features for verifying blurred and cross-resolution images,2017
-9,IJB-A,ijb_c,45.7835966,4.7678948,École Centrale de Lyon,edu,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017
-10,IJB-A,ijb_c,48.832493,2.267474,Safran Identity and Security,company,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017
-11,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,2d748f8ee023a5b1fbd50294d176981ded4ad4ee,citation,http://pdfs.semanticscholar.org/2d74/8f8ee023a5b1fbd50294d176981ded4ad4ee.pdf,Triplet Similarity Embedding for Face Verification,2016
-12,IJB-A,ijb_c,38.99203005,-76.9461029,University of Maryland College Park,edu,f7824758800a7b1a386db5bd35f84c81454d017a,citation,https://arxiv.org/pdf/1702.05085.pdf,KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors,2017
-13,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,02467703b6e087799e04e321bea3a4c354c5487d,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.27,Grouper: Optimizing Crowdsourced Face Annotations,2016
-14,IJB-A,ijb_c,39.329053,-76.619425,Johns Hopkins University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018
-15,IJB-A,ijb_c,40.47913175,-74.43168868,Rutgers University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018
-16,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015
-17,IJB-A,ijb_c,38.95187,-77.363259,"Noblis, Falls Church, VA, U.S.A.",company,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015
-18,IJB-A,ijb_c,46.0501558,14.46907327,University of Ljubljana,edu,5226296884b3e151ce317a37f94827dbda0b9d16,citation,https://doi.org/10.1109/IWBF.2016.7449690,Deep pair-wise similarity learning for face recognition,2016
-19,IJB-A,ijb_c,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,80be8624771104ff4838dcba9629bacfe6b3ea09,citation,http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,2014
-20,IJB-A,ijb_c,1.3484104,103.68297965,Nanyang Technological University,edu,80be8624771104ff4838dcba9629bacfe6b3ea09,citation,http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,2014
-21,IJB-A,ijb_c,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,80be8624771104ff4838dcba9629bacfe6b3ea09,citation,http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,2014
-22,IJB-A,ijb_c,22.304572,114.17976285,Hong Kong Polytechnic University,edu,50b58becaf67e92a6d9633e0eea7d352157377c3,citation,https://pdfs.semanticscholar.org/50b5/8becaf67e92a6d9633e0eea7d352157377c3.pdf,Dependency-Aware Attention Control for Unconstrained Face Recognition with Image Sets,2018
-23,IJB-A,ijb_c,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cd6aaa37fffd0b5c2320f386be322b8adaa1cc68,citation,https://arxiv.org/pdf/1804.06655.pdf,Deep Face Recognition: A Survey,2018
-24,IJB-A,ijb_c,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,ac2881bdf7b57dc1672a17b221d68a438d79fce8,citation,https://arxiv.org/pdf/1806.08472.pdf,Learning a High Fidelity Pose Invariant Model for High-resolution Face Frontalization,2018
-25,IJB-A,ijb_c,40.0044795,116.370238,Chinese Academy of Sciences,edu,72a7eb68f0955564e1ceafa75aeeb6b5bbb14e7e,citation,https://pdfs.semanticscholar.org/72a7/eb68f0955564e1ceafa75aeeb6b5bbb14e7e.pdf,Face Recognition with Contrastive Convolution,2018
-26,IJB-A,ijb_c,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,72a7eb68f0955564e1ceafa75aeeb6b5bbb14e7e,citation,https://pdfs.semanticscholar.org/72a7/eb68f0955564e1ceafa75aeeb6b5bbb14e7e.pdf,Face Recognition with Contrastive Convolution,2018
-27,IJB-A,ijb_c,42.3889785,-72.5286987,University of Massachusetts,edu,368e99f669ea5fd395b3193cd75b301a76150f9d,citation,https://arxiv.org/pdf/1506.01342.pdf,One-to-many face recognition with bilinear CNNs,2016
-28,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,1e6ed6ca8209340573a5e907a6e2e546a3bf2d28,citation,http://arxiv.org/pdf/1607.01450v1.pdf,Pooling Faces: Template Based Face Recognition with Pooled Face Images,2016
-29,IJB-A,ijb_c,38.88140235,121.52281098,Dalian University of Technology,edu,052f994898c79529955917f3dfc5181586282cf8,citation,https://arxiv.org/pdf/1708.02191.pdf,Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos,2017
-30,IJB-A,ijb_c,32.9820799,-96.7566278,University of Texas at Dallas,edu,4e8168fbaa615009d1618a9d6552bfad809309e9,citation,http://pdfs.semanticscholar.org/4e81/68fbaa615009d1618a9d6552bfad809309e9.pdf,Deep Convolutional Neural Network Features and the Original Image,2016
-31,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,4e8168fbaa615009d1618a9d6552bfad809309e9,citation,http://pdfs.semanticscholar.org/4e81/68fbaa615009d1618a9d6552bfad809309e9.pdf,Deep Convolutional Neural Network Features and the Original Image,2016
-32,IJB-A,ijb_c,29.7207902,-95.34406271,University of Houston,edu,3cb2841302af1fb9656f144abc79d4f3d0b27380,citation,https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf,When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition,2017
-33,IJB-A,ijb_c,24.4469025,54.3942563,Khalifa University,edu,0c1d85a197a1f5b7376652a485523e616a406273,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.169,Joint Registration and Representation Learning for Unconstrained Face Identification,2017
-34,IJB-A,ijb_c,-35.23656905,149.08446994,University of Canberra,edu,0c1d85a197a1f5b7376652a485523e616a406273,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.169,Joint Registration and Representation Learning for Unconstrained Face Identification,2017
-35,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,c75e6ce54caf17b2780b4b53f8d29086b391e839,citation,https://arxiv.org/pdf/1802.00542.pdf,"ExpNet: Landmark-Free, Deep, 3D Facial Expressions",2018
-36,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,450c6a57f19f5aa45626bb08d7d5d6acdb863b4b,citation,https://arxiv.org/pdf/1805.00611.pdf,Towards Interpretable Face Recognition,2018
-37,IJB-A,ijb_c,51.7534538,-1.25400997,University of Oxford,edu,30180f66d5b4b7c0367e4b43e2b55367b72d6d2a,citation,http://www.robots.ox.ac.uk/~vgg/publications/2017/Crosswhite17/crosswhite17.pdf,Template Adaptation for Face Verification and Identification,2017
-38,IJB-A,ijb_c,29.7207902,-95.34406271,University of Houston,edu,8334da483f1986aea87b62028672836cb3dc6205,citation,https://arxiv.org/pdf/1805.06306.pdf,Fully Associative Patch-Based 1-to-N Matcher for Face Recognition,2018
-39,IJB-A,ijb_c,-33.8809651,151.20107299,University of Technology Sydney,edu,3b64efa817fd609d525c7244a0e00f98feacc8b4,citation,http://doi.acm.org/10.1145/2845089,A Comprehensive Survey on Pose-Invariant Face Recognition,2016
-40,IJB-A,ijb_c,40.9153196,-73.1270626,Stony Brook University,edu,6fbb179a4ad39790f4558dd32316b9f2818cd106,citation,http://pdfs.semanticscholar.org/6fbb/179a4ad39790f4558dd32316b9f2818cd106.pdf,Input Aggregated Network for Face Video Representation,2016
-41,IJB-A,ijb_c,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,d4f1eb008eb80595bcfdac368e23ae9754e1e745,citation,https://arxiv.org/pdf/1708.02337.pdf,Unconstrained Face Detection and Open-Set Face Recognition Challenge,2017
-42,IJB-A,ijb_c,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
-43,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
-44,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,d28d32af7ef9889ef9cb877345a90ea85e70f7f1,citation,http://doi.ieeecomputersociety.org/10.1109/FG.2017.84,Local-Global Landmark Confidences for Face Recognition,2017
-45,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,d28d32af7ef9889ef9cb877345a90ea85e70f7f1,citation,http://doi.ieeecomputersociety.org/10.1109/FG.2017.84,Local-Global Landmark Confidences for Face Recognition,2017
-46,IJB-A,ijb_c,51.5247272,-0.03931035,Queen Mary University of London,edu,a29566375836f37173ccaffa47dea25eb1240187,citation,https://arxiv.org/pdf/1809.09409.pdf,Vehicle Re-Identification in Context,2018
-47,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,29f298dd5f806c99951cb434834bc8dcc765df18,citation,https://doi.org/10.1109/ICPR.2016.7899837,Computationally efficient template-based face recognition,2016
-48,IJB-A,ijb_c,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017
-49,IJB-A,ijb_c,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017
-50,IJB-A,ijb_c,50.8142701,8.771435,Philipps-Universität Marburg,edu,5981c309bd0ffd849c51b1d8a2ccc481a8ec2f5c,citation,https://doi.org/10.1109/ICT.2017.7998256,SmartFace: Efficient face detection on smartphones for wireless on-demand emergency networks,2017
-51,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,a2b4a6c6b32900a066d0257ae6d4526db872afe2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272466,Learning Face Image Quality From Human Assessments,2018
-52,IJB-A,ijb_c,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,3dfb822e16328e0f98a47209d7ecd242e4211f82,citation,https://arxiv.org/pdf/1708.08197.pdf,Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments,2017
-53,IJB-A,ijb_c,47.6423318,-122.1369302,Microsoft,company,291265db88023e92bb8c8e6390438e5da148e8f5,citation,http://pdfs.semanticscholar.org/4603/cb8e05258bb0572ae912ad20903b8f99f4b1.pdf,MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition,2016
-54,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,d29eec5e047560627c16803029d2eb8a4e61da75,citation,http://pdfs.semanticscholar.org/d29e/ec5e047560627c16803029d2eb8a4e61da75.pdf,Feature Transfer Learning for Deep Face Recognition with Long-Tail Data,2018
-55,IJB-A,ijb_c,36.20304395,117.05842113,Tianjin University,edu,5180df9d5eb26283fb737f491623395304d57497,citation,https://arxiv.org/pdf/1804.10899.pdf,Scalable Angular Discriminative Deep Metric Learning for Face Recognition,2018
-56,IJB-A,ijb_c,22.42031295,114.20788644,Chinese University of Hong Kong,edu,abdd17e411a7bfe043f280abd4e560a04ab6e992,citation,https://arxiv.org/pdf/1803.00839.pdf,Pose-Robust Face Recognition via Deep Residual Equivariant Mapping,2018
-57,IJB-A,ijb_c,28.5456282,77.2731505,"IIIT Delhi, India",edu,3cf1f89d73ca4b25399c237ed3e664a55cd273a2,citation,https://arxiv.org/pdf/1710.02914.pdf,Face Sketch Matching via Coupled Deep Transform Learning,2017
-58,IJB-A,ijb_c,-27.49741805,153.01316956,University of Queensland,edu,f27fd2a1bc229c773238f1912db94991b8bf389a,citation,https://doi.org/10.1109/IVCNZ.2016.7804414,How do you develop a face detector for the unconstrained environment?,2016
-59,IJB-A,ijb_c,39.86742125,32.73519072,Hacettepe University,edu,9865fe20df8fe11717d92b5ea63469f59cf1635a,citation,https://arxiv.org/pdf/1805.07566.pdf,Wildest Faces: Face Detection and Recognition in Violent Settings,2018
-60,IJB-A,ijb_c,39.87549675,32.78553506,Middle East Technical University,edu,9865fe20df8fe11717d92b5ea63469f59cf1635a,citation,https://arxiv.org/pdf/1805.07566.pdf,Wildest Faces: Face Detection and Recognition in Violent Settings,2018
-61,IJB-A,ijb_c,28.2290209,112.99483204,"National University of Defense Technology, China",edu,c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d,citation,https://pdfs.semanticscholar.org/aae7/a5182e59f44b7bb49f61999181ce011f800b.pdf,Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis,2017
-62,IJB-A,ijb_c,1.2962018,103.77689944,National University of Singapore,edu,c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d,citation,https://pdfs.semanticscholar.org/aae7/a5182e59f44b7bb49f61999181ce011f800b.pdf,Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis,2017
-63,IJB-A,ijb_c,17.4454957,78.34854698,International Institute of Information Technology,edu,f5eb411217f729ad7ae84bfd4aeb3dedb850206a,citation,https://pdfs.semanticscholar.org/f5eb/411217f729ad7ae84bfd4aeb3dedb850206a.pdf,Tackling Low Resolution for Better Scene Understanding,2018
-64,IJB-A,ijb_c,40.51865195,-74.44099801,State University of New Jersey,edu,96e731e82b817c95d4ce48b9e6b08d2394937cf8,citation,http://arxiv.org/pdf/1508.01722v2.pdf,Unconstrained face verification using deep CNN features,2016
-65,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,96e731e82b817c95d4ce48b9e6b08d2394937cf8,citation,http://arxiv.org/pdf/1508.01722v2.pdf,Unconstrained face verification using deep CNN features,2016
-66,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,870433ba89d8cab1656e57ac78f1c26f4998edfb,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.163,Regressing Robust and Discriminative 3D Morphable Models with a Very Deep Neural Network,2017
-67,IJB-A,ijb_c,55.6801502,12.572327,University of Copenhagen,edu,3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,citation,http://pdfs.semanticscholar.org/3dfd/94d3fad7e17f52a8ae815eb9cc5471172bc0.pdf,Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions,2018
-68,IJB-A,ijb_c,35.9023226,14.4834189,University of Malta,edu,3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,citation,http://pdfs.semanticscholar.org/3dfd/94d3fad7e17f52a8ae815eb9cc5471172bc0.pdf,Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions,2018
-69,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,6341274aca0c2977c3e1575378f4f2126aa9b050,citation,http://arxiv.org/pdf/1609.03536v1.pdf,A multi-scale cascade fully convolutional network face detector,2016
-70,IJB-A,ijb_c,41.70456775,-86.23822026,University of Notre Dame,edu,17479e015a2dcf15d40190e06419a135b66da4e0,citation,https://arxiv.org/pdf/1610.08119.pdf,Predicting First Impressions With Deep Learning,2017
-71,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,a0b1990dd2b4cd87e4fd60912cc1552c34792770,citation,https://pdfs.semanticscholar.org/a0b1/990dd2b4cd87e4fd60912cc1552c34792770.pdf,Deep Constrained Local Models for Facial Landmark Detection,2016
-72,IJB-A,ijb_c,30.642769,104.06751175,"Sichuan University, Chengdu",edu,772474b5b0c90629f4d9c223fd9c1ef45e1b1e66,citation,https://doi.org/10.1109/BTAS.2017.8272716,Multi-dim: A multi-dimensional face database towards the application of 3D technology in real-world scenarios,2017
-73,IJB-A,ijb_c,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,4b3f425274b0c2297d136f8833a31866db2f2aec,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.85,Toward Open-Set Face Recognition,2017
-74,IJB-A,ijb_c,56.46255985,84.95565495,Tomsk Polytechnic University,edu,17ded725602b4329b1c494bfa41527482bf83a6f,citation,http://pdfs.semanticscholar.org/cb10/434a5d68ffbe9ed0498771192564ecae8894.pdf,Compact Convolutional Neural Network Cascade for Face Detection,2015
-75,IJB-A,ijb_c,37.3351908,-121.88126008,San Jose State University,edu,14b016c7a87d142f4b9a0e6dc470dcfc073af517,citation,http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=918912,Modest proposals for improving biometric recognition papers,2015
-76,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017
-77,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,def2983576001bac7d6461d78451159800938112,citation,https://arxiv.org/pdf/1705.07426.pdf,The Do’s and Don’ts for CNN-Based Face Verification,2017
-78,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,4b605e6a9362485bfe69950432fa1f896e7d19bf,citation,http://biometrics.cse.msu.edu/Publications/Face/BlantonAllenMillerKalkaJain_CVPRWB2016_HID.pdf,A Comparison of Human and Automated Face Verification Accuracy on Unconstrained Image Sets,2016
-79,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,8d3e95c31c93548b8c71dbeee2e9f7180067a888,citation,https://doi.org/10.1109/ICPR.2016.7899841,Template regularized sparse coding for face verification,2016
-80,IJB-A,ijb_c,42.8271556,-73.8780481,GE Global Research,company,8d3e95c31c93548b8c71dbeee2e9f7180067a888,citation,https://doi.org/10.1109/ICPR.2016.7899841,Template regularized sparse coding for face verification,2016
-81,IJB-A,ijb_c,25.0410728,121.6147562,Institute of Information Science,edu,337dd4aaca2c5f9b5d2de8e0e2401b5a8feb9958,citation,https://arxiv.org/pdf/1810.11160.pdf,Data-specific Adaptive Threshold for Face Recognition and Authentication,2018
-82,IJB-A,ijb_c,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,0aeb5020003e0c89219031b51bd30ff1bceea363,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.525,Sparsifying Neural Network Connections for Face Recognition,2016
-83,IJB-A,ijb_c,22.42031295,114.20788644,Chinese University of Hong Kong,edu,0aeb5020003e0c89219031b51bd30ff1bceea363,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.525,Sparsifying Neural Network Connections for Face Recognition,2016
-84,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,99daa2839213f904e279aec7cef26c1dfb768c43,citation,https://arxiv.org/pdf/1805.02283.pdf,DocFace: Matching ID Document Photos to Selfies,2018
-85,IJB-A,ijb_c,43.7776426,11.259765,University of Florence,edu,71ca8b6e84c17b3e68f980bfb8cddc837100f8bf,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899774,Effective 3D based frontalization for unconstrained face recognition,2016
-86,IJB-A,ijb_c,51.49887085,-0.17560797,Imperial College London,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018
-87,IJB-A,ijb_c,51.24303255,-0.59001382,University of Surrey,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018
-88,IJB-A,ijb_c,37.3936717,-122.0807262,Facebook,company,628a3f027b7646f398c68a680add48c7969ab1d9,citation,https://pdfs.semanticscholar.org/628a/3f027b7646f398c68a680add48c7969ab1d9.pdf,Plan for Final Year Project : HKU-Face : A Large Scale Dataset for Deep Face Recognition,2017
-89,IJB-A,ijb_c,40.2773077,-7.5095801,University of Beira Interior,edu,61262450d4d814865a4f9a84299c24daa493f66e,citation,http://doi.org/10.1007/s10462-016-9474-x,Biometric recognition in surveillance scenarios: a survey,2016
-90,IJB-A,ijb_c,-31.95040445,115.79790037,University of Western Australia,edu,626913b8fcbbaee8932997d6c4a78fe1ce646127,citation,https://arxiv.org/pdf/1711.05942.pdf,Learning from Millions of 3D Scans for Large-scale 3D Face Recognition,2017
-91,IJB-A,ijb_c,35.9023226,14.4834189,University of Malta,edu,4efd58102ff46b7435c9ec6d4fc3dd21d93b15b4,citation,https://doi.org/10.1109/TIFS.2017.2788002,"Matching Software-Generated Sketches to Face Photographs With a Very Deep CNN, Morphed Faces, and Transfer Learning",2018
-92,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,b6f758be954d34817d4ebaa22b30c63a4b8ddb35,citation,http://arxiv.org/abs/1703.04835,A Proximity-Aware Hierarchical Clustering of Faces,2017
-93,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,citation,https://arxiv.org/pdf/1708.07517.pdf,FacePoseNet: Making a Case for Landmark-Free Face Alignment,2017
-94,IJB-A,ijb_c,40.2773077,-7.5095801,University of Beira Interior,edu,84ae55603bffda40c225fe93029d39f04793e01f,citation,https://doi.org/10.1109/ICB.2016.7550066,ICB-RW 2016: International challenge on biometric recognition in the wild,2016
-95,IJB-A,ijb_c,41.70456775,-86.23822026,University of Notre Dame,edu,73ea06787925157df519a15ee01cc3dc1982a7e0,citation,https://arxiv.org/pdf/1811.01474.pdf,Fast Face Image Synthesis with Minimal Training,2018
-96,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,c6382de52636705be5898017f2f8ed7c70d7ae96,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089,Unconstrained face detection: State of the art baseline and challenges,2015
-97,IJB-A,ijb_c,38.95187,-77.363259,"Noblis, Falls Church, VA, U.S.A.",company,c6382de52636705be5898017f2f8ed7c70d7ae96,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089,Unconstrained face detection: State of the art baseline and challenges,2015
-98,IJB-A,ijb_c,40.47913175,-74.43168868,Rutgers University,edu,eee06d68497be8bf3a8aba4fde42a13aa090b301,citation,https://arxiv.org/pdf/1806.11191.pdf,CR-GAN: Learning Complete Representations for Multi-view Generation,2018
-99,IJB-A,ijb_c,35.3103441,-80.73261617,University of North Carolina at Charlotte,edu,eee06d68497be8bf3a8aba4fde42a13aa090b301,citation,https://arxiv.org/pdf/1806.11191.pdf,CR-GAN: Learning Complete Representations for Multi-view Generation,2018
-100,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,a3201e955d6607d383332f3a12a7befa08c5a18c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900276,VLAD encoded Deep Convolutional features for unconstrained face verification,2016
-101,IJB-A,ijb_c,40.47913175,-74.43168868,Rutgers University,edu,a3201e955d6607d383332f3a12a7befa08c5a18c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900276,VLAD encoded Deep Convolutional features for unconstrained face verification,2016
-102,IJB-A,ijb_c,22.42031295,114.20788644,Chinese University of Hong Kong,edu,52d7eb0fbc3522434c13cc247549f74bb9609c5d,citation,https://arxiv.org/pdf/1511.06523.pdf,WIDER FACE: A Face Detection Benchmark,2016
-103,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,19458454308a9f56b7de76bf7d8ff8eaa52b0173,citation,https://pdfs.semanticscholar.org/1945/8454308a9f56b7de76bf7d8ff8eaa52b0173.pdf,Deep Features for Recognizing Disguised Faces in the Wild,0
-104,IJB-A,ijb_c,43.7776426,11.259765,University of Florence,edu,746c0205fdf191a737df7af000eaec9409ede73f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423119,Investigating Nuisances in DCNN-Based Face Recognition,2018
-105,IJB-A,ijb_c,47.5612651,7.5752961,University of Basel,edu,0081e2188c8f34fcea3e23c49fb3e17883b33551,citation,http://pdfs.semanticscholar.org/0081/e2188c8f34fcea3e23c49fb3e17883b33551.pdf,Training Deep Face Recognition Systems with Synthetic Data,2018
-106,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4,citation,https://arxiv.org/pdf/1803.00130.pdf,Ring loss: Convex Feature Normalization for Face Recognition,2018
-107,IJB-A,ijb_c,28.2290209,112.99483204,"National University of Defense Technology, China",edu,5f771fed91c8e4b666489ba2384d0705bcf75030,citation,https://arxiv.org/pdf/1804.03287.pdf,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,2018
-108,IJB-A,ijb_c,1.2962018,103.77689944,National University of Singapore,edu,5f771fed91c8e4b666489ba2384d0705bcf75030,citation,https://arxiv.org/pdf/1804.03287.pdf,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,2018
-109,IJB-A,ijb_c,42.3889785,-72.5286987,University of Massachusetts,edu,2241eda10b76efd84f3c05bdd836619b4a3df97e,citation,http://arxiv.org/pdf/1506.01342v5.pdf,One-to-many face recognition with bilinear CNNs,2016
-110,IJB-A,ijb_c,22.42031295,114.20788644,Chinese University of Hong Kong,edu,58d76380d194248b3bb291b8c7c5137a0a376897,citation,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,2018
-111,IJB-A,ijb_c,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,58d76380d194248b3bb291b8c7c5137a0a376897,citation,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,2018
-112,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,7fb5006b6522436ece5bedf509e79bdb7b79c9a7,citation,https://pdfs.semanticscholar.org/7fb5/006b6522436ece5bedf509e79bdb7b79c9a7.pdf,Multi-Task Convolutional Neural Network for Face Recognition,2017
-113,IJB-A,ijb_c,-27.49741805,153.01316956,University of Queensland,edu,28646c6220848db46c6944967298d89a6559c700,citation,https://pdfs.semanticscholar.org/2864/6c6220848db46c6944967298d89a6559c700.pdf,It takes two to tango : Cascading off-the-shelf face detectors,2018
-114,IJB-A,ijb_c,51.7534538,-1.25400997,University of Oxford,edu,5812d8239d691e99d4108396f8c26ec0619767a6,citation,https://arxiv.org/pdf/1810.09951.pdf,GhostVLAD for set-based face recognition,2018
-115,IJB-A,ijb_c,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,e4c3587392d477b7594086c6f28a00a826abf004,citation,https://doi.org/10.1109/ICIP.2017.8296998,Face recognition by facial attribute assisted network,2017
-116,IJB-A,ijb_c,1.3484104,103.68297965,Nanyang Technological University,edu,47190d213caef85e8b9dd0d271dbadc29ed0a953,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018
-117,IJB-A,ijb_c,32.87935255,-117.23110049,"University of California, San Diego",edu,47190d213caef85e8b9dd0d271dbadc29ed0a953,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018
-118,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,ce6d60b69eb95477596535227958109e07c61e1e,citation,http://www.rci.rutgers.edu/~vmp93/Conference_pub/BTAS_2015_FVFF_JunCheng_Chen.pdf,Unconstrained face verification using fisher vectors computed from frontalized faces,2015
-119,IJB-A,ijb_c,29.7207902,-95.34406271,University of Houston,edu,38d8ff137ff753f04689e6b76119a44588e143f3,citation,http://pdfs.semanticscholar.org/38d8/ff137ff753f04689e6b76119a44588e143f3.pdf,When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition,2017
-120,IJB-A,ijb_c,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,9627f28ea5f4c389350572b15968386d7ce3fe49,citation,https://arxiv.org/pdf/1802.07447.pdf,Load Balanced GANs for Multi-view Face Image Synthesis,2018
-121,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,4e7ed13e541b8ed868480375785005d33530e06d,citation,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477555,Face recognition using deep multi-pose representations,2016
-122,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,582edc19f2b1ab2ac6883426f147196c8306685a,citation,http://pdfs.semanticscholar.org/be6c/db7b181e73f546d43cf2ab6bc7181d7d619b.pdf,Do We Really Need to Collect Millions of Faces for Effective Face Recognition?,2016
-123,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016
-124,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016
-125,IJB-A,ijb_c,39.65404635,-79.96475355,West Virginia University,edu,3b9b200e76a35178da940279d566bbb7dfebb787,citation,http://pdfs.semanticscholar.org/3b9b/200e76a35178da940279d566bbb7dfebb787.pdf,Learning Channel Inter-dependencies at Multiple Scales on Dense Networks for Face Recognition,2017
-126,IJB-A,ijb_c,-27.49741805,153.01316956,University of Queensland,edu,de79437f74e8e3b266afc664decf4e6e4bdf34d7,citation,https://doi.org/10.1109/IVCNZ.2016.7804415,To face or not to face: Towards reducing false positive of face detection,2016
-127,IJB-A,ijb_c,46.0501558,14.46907327,University of Ljubljana,edu,368d59cf1733af511ed8abbcbeb4fb47afd4da1c,citation,http://pdfs.semanticscholar.org/368d/59cf1733af511ed8abbcbeb4fb47afd4da1c.pdf,To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition,2016
-128,IJB-A,ijb_c,41.70456775,-86.23822026,University of Notre Dame,edu,368d59cf1733af511ed8abbcbeb4fb47afd4da1c,citation,http://pdfs.semanticscholar.org/368d/59cf1733af511ed8abbcbeb4fb47afd4da1c.pdf,To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition,2016
-129,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,62e913431bcef5983955e9ca160b91bb19d9de42,citation,http://pdfs.semanticscholar.org/62e9/13431bcef5983955e9ca160b91bb19d9de42.pdf,Facial Landmark Detection with Tweaked Convolutional Neural Networks,2015
-130,IJB-A,ijb_c,29.5084174,106.57858552,Chongqing University,edu,acd4280453b995cb071c33f7c9db5760432f4279,citation,https://doi.org/10.1007/s00138-018-0907-1,Deep transformation learning for face recognition in the unconstrained scene,2018
-131,IJB-A,ijb_c,38.99203005,-76.9461029,University of Maryland College Park,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016
-132,IJB-A,ijb_c,40.47913175,-74.43168868,Rutgers University,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016
-133,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016
-134,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,37619564574856c6184005830deda4310d3ca580,citation,https://doi.org/10.1109/BTAS.2015.7358755,A deep pyramid Deformable Part Model for face detection,2015
-135,IJB-A,ijb_c,51.7534538,-1.25400997,University of Oxford,edu,eb027969f9310e0ae941e2adee2d42cdf07d938c,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018
-136,IJB-A,ijb_c,42.3889785,-72.5286987,University of Massachusetts,edu,3c97c32ff575989ef2869f86d89c63005fc11ba9,citation,http://people.cs.umass.edu/~hzjiang/pubs/face_det_fg_2017.pdf,Face Detection with the Faster R-CNN,2017
-137,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e,citation,https://pdfs.semanticscholar.org/4f7b/92bd678772552b3c3edfc9a7c5c4a8c60a8e.pdf,Deep Density Clustering of Unconstrained Faces,0
-138,IJB-A,ijb_c,1.2962018,103.77689944,National University of Singapore,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018
-139,IJB-A,ijb_c,40.0044795,116.370238,Chinese Academy of Sciences,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018