summaryrefslogtreecommitdiff
path: root/site/datasets/citations/flickr_faces.json
diff options
context:
space:
mode:
Diffstat (limited to 'site/datasets/citations/flickr_faces.json')
-rw-r--r--site/datasets/citations/flickr_faces.json1
1 files changed, 1 insertions, 0 deletions
diff --git a/site/datasets/citations/flickr_faces.json b/site/datasets/citations/flickr_faces.json
new file mode 100644
index 00000000..fd4c9416
--- /dev/null
+++ b/site/datasets/citations/flickr_faces.json
@@ -0,0 +1 @@
+{"id": "f038758e85c9ee6fee68a4f3992d0303b5c93efd", "paper": {"key": "flickr_faces", "name": "FFHQ", "title": "A Style-Based Generator Architecture for Generative Adversarial Networks", "year": "2018", "addresses": []}, "citations": [{"id": "ccaf15d4ad006171061508ca0a99c73814671501", "title": "SinGAN: Learning a Generative Model from a Single Natural Image", "addresses": [{"name": "Technion", "source_name": "Technion", "street_adddress": "Haifa, 3200003, Israel", "lat": "32.77677830", "lng": "35.02312710", "type": "edu", "country": "Israel"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1905.01164.pdf"], "doi": []}, {"id": "854aaeb2ad96d369a8d955b91dd7320056a71efb", "title": "M2FPA: A Multi-Yaw Multi-Pitch High-Quality Database and Benchmark for Facial Pose Analysis", "addresses": [{"name": "National Laboratory of Pattern Recognition", "source_name": "National Laboratory of Pattern Recognition & Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, China", "street_adddress": "China, Beijing, Haidian, Zhongguancun South 1st Alley, \u4e2d\u5173\u6751\u5357\u4e00\u6761", "lat": "39.98177000", "lng": "116.33008600", "type": "edu", "country": "China"}, {"name": "University of Chinese Academy of Sciences", "source_name": "University of Chinese Academy of Sciences", "street_adddress": "University of Chinese Academy of Sciences, UCAS, Yuquanlu, \u7389\u6cc9\u8def, \u7530\u6751, \u6d77\u6dc0\u533a, 100049, \u4e2d\u56fd", "lat": "39.90828040", "lng": "116.24585270", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.00168.pdf"], "doi": []}, {"id": "ac425e39ef62ac3533ac6f205ce07651cec55a9f", "title": "DiamondGAN: Unified Multi-Modal Generative Adversarial Networks for MRI Sequences Synthesis", "addresses": [{"name": "Technical University of Munich", "source_name": "Computer Aided Medical Procedures, Technical University of Munich, Garching, Germany", "street_adddress": "Boltzmannstra\u00dfe 3, 85748 Garching bei M\u00fcnchen, Germany", "lat": "48.26301100", "lng": "11.66685700", "type": "edu", "country": "Germany"}, {"name": "University of Dundee", "source_name": "University of Dundee", "street_adddress": "University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK", "lat": "56.45796755", "lng": "-2.98214831", "type": "edu", "country": "United Kingdom"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.12894.pdf"], "doi": []}, {"id": "1e10a58cd3d3974d083ec5aa323e5d10c43fc061", "title": "Image Generation from Small Datasets via Batch Statistics Adaptation", "addresses": [{"name": "University of Tokyo", "source_name": "University of Tokyo", "street_adddress": "\u6771\u4eac\u5927\u5b66 \u67cf\u30ad\u30e3\u30f3\u30d1\u30b9, \u5b66\u878d\u5408\u306e\u9053, \u67cf\u5e02, \u5343\u8449\u770c, \u95a2\u6771\u5730\u65b9, 277-8583, \u65e5\u672c", "lat": "35.90204480", "lng": "139.93622009", "type": "edu", "country": "Japan"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.01774.pdf"], "doi": []}, {"id": "57f8c9813a76842939a71ad57cf5182885131f07", "title": "Smart, Deep Copy-Paste", "addresses": [{"name": "University of Bern", "source_name": "University of Bern, Neubr\u00fcckstrasse 10, Bern, Switzerland", "street_adddress": "Hochschulstrasse 6, 3012 Bern, Switzerland", "lat": "46.95048960", "lng": "7.43811900", "type": "edu", "country": "Switzerland"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1903.06763.pdf"], "doi": []}, {"id": "f03ac35cf205dae0a3b138840197e7f4fb01d54d", "title": "Disentangling Style and Content in Anime Illustrations", "addresses": [{"name": "University of Southern California", "source_name": "University of Southern California", "street_adddress": "University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA", "lat": "34.02241490", "lng": "-118.28634407", "type": "edu", "country": "United States"}, {"name": "USC Institute for Creative Technologies", "source_name": "USC Institute for Creative Technologies", "street_adddress": "12015 E Waterfront Dr, Los Angeles, CA 90094, USA", "lat": "33.98325260", "lng": "-118.40417000", "type": "edu", "country": "United States"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1905.10742.pdf"], "doi": []}, {"id": "e0a3737381fe393f6d761ddba16c795b31bcdad2", "title": "High Fidelity Face Manipulation with Extreme Pose and Expression", "addresses": [{"name": "Chinese Academy of Sciences", "source_name": "Chinese Academy of Sciences", "street_adddress": "\u4e2d\u56fd\u79d1\u5b66\u9662\u5fc3\u7406\u7814\u7a76\u6240, 16, \u6797\u8403\u8def, \u671d\u9633\u533a / Chaoyang, \u5317\u4eac\u5e02, 100101, \u4e2d\u56fd", "lat": "40.00447950", "lng": "116.37023800", "type": "edu", "country": "China"}, {"name": "University of Chinese Academy of Sciences", "source_name": "University of Chinese Academy of Sciences", "street_adddress": "University of Chinese Academy of Sciences, UCAS, Yuquanlu, \u7389\u6cc9\u8def, \u7530\u6751, \u6d77\u6dc0\u533a, 100049, \u4e2d\u56fd", "lat": "39.90828040", "lng": "116.24585270", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1903.12003.pdf"], "doi": []}, {"id": "6acc86a3434b10fad8e9818d89c70b9826809d74", "title": "Learning Feature Extraction for Transfer from Simulation to Reality", "addresses": [{"name": "Brown University", "source_name": "Brown University", "street_adddress": "Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA", "lat": "41.82686820", "lng": "-71.40123146", "type": "edu", "country": "United States"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/6acc/86a3434b10fad8e9818d89c70b9826809d74.pdf"], "doi": []}, {"id": "f89b9883136e764570393c56af326c4dc87b45f1", "title": "Towards Photographic Image Manipulation with Balanced Growing of Generative Autoencoders", "addresses": [{"name": "Aalto University", "source_name": "Aalto University", "street_adddress": "Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etel\u00e4-Suomi, Manner-Suomi, 02150, Suomi", "lat": "60.18558755", "lng": "24.82427330", "type": "edu", "country": "Finland"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.06145.pdf"], "doi": []}, {"id": "894eb5cccf9d5318522bb01c2cc656b3993ffdbd", "title": "HoloGAN: Unsupervised learning of 3D representations from natural images", "addresses": [{"name": "University of Bath", "source_name": "University of Bath", "street_adddress": "University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK", "lat": "51.37914420", "lng": "-2.32523320", "type": "edu", "country": "United Kingdom"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.01326.pdf"], "doi": []}, {"id": "2d395f7715692aefc8c5d3f264e2fb3bd405585f", "title": "Neuroscore: A Brain-inspired Evaluation Metric for Generative Adversarial Networks", "addresses": [{"name": "Dublin City University", "source_name": "DUBLIN CITY UNIVERSITY", "street_adddress": "Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland", "lat": "53.38522185", "lng": "-6.25740874", "type": "edu", "country": "Ireland"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1905.04243.pdf"], "doi": []}, {"id": "a2bd2c4e24d374082a87198161798b26f19e0710", "title": "A PCA-like Autoencoder", "addresses": [{"name": "T\u00e9l\u00e9com ParisTech", "source_name": "Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, Sophia Antipolis, France", "street_adddress": "Business P\u00f4le. 1047 route des Dolines. All\u00e9e Pierre Ziller, 06560 Sophia Antipolis, France", "lat": "43.62716550", "lng": "7.04109170", "type": "edu", "country": "France"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.01277.pdf"], "doi": []}, {"id": "fbdcd3ad1ac5bd1a13a49163e568d0d85b59b2c4", "title": "Beauty Learning and Counterfactual Inference", "addresses": [{"name": "Purdue University", "source_name": "Purdue University", "street_adddress": "Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA", "lat": "40.43197220", "lng": "-86.92389368", "type": "edu", "country": "United States"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/fbdc/d3ad1ac5bd1a13a49163e568d0d85b59b2c4.pdf"], "doi": []}, {"id": "9602d1b8c046eb5da6b7c97a2b0bcb18b66968b2", "title": "Artist Style Transfer Via Quadratic Potential", "addresses": [{"name": "Sun Yat-Sen University", "source_name": "Sun Yat-Sen University", "street_adddress": "\u4e2d\u5927, \u65b0\u6e2f\u897f\u8def, \u9f99\u8239\u6ed8, \u5eb7\u4e50, \u6d77\u73e0\u533a (Haizhu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510105, \u4e2d\u56fd", "lat": "23.09461185", "lng": "113.28788994", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1902.11108.pdf"], "doi": []}, {"id": "aaaaa07ca70c86c0e84567f52128486d1f3df75f", "title": "MSG-GAN: Multi-Scale Gradient GAN for Stable Image Synthesis", "addresses": [{"name": "Pune, India", "source_name": "Pune, India", "street_adddress": "Pune, Maharashtra, India", "lat": "18.52043030", "lng": "73.85674370", "type": "edu", "country": "India"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1903.06048.pdf"], "doi": []}, {"id": "35259b3802bf27b7650d301ad34c26f3a8794d88", "title": "GENERATIVE MODELS", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/3525/9b3802bf27b7650d301ad34c26f3a8794d88.pdf"], "doi": []}, {"id": "30d265c4dec1276579942b42fb6c46a5ff490e7f", "title": "Meta-Sim: Learning to Generate Synthetic Datasets", "addresses": [{"name": "NVIDIA", "source_name": "NVIDIA", "street_adddress": "2788 San Tomas Expy, Santa Clara, CA 95051, USA", "lat": "37.37062540", "lng": "-121.96718940", "type": "company", "country": "United States"}, {"name": "University of Toronto", "source_name": "University of Toronto", "street_adddress": "University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada", "lat": "43.66333345", "lng": "-79.39769975", "type": "edu", "country": "Canada"}, {"name": "MIT", "source_name": "Massachusetts Institute", "street_adddress": "MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA", "lat": "42.35839610", "lng": "-71.09567788", "type": "edu", "country": "United States"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.11621.pdf"], "doi": []}, {"id": "655979e9e79f5eaf30550cb20ba5f00c15447da7", "title": "FTGAN: A Fully-trained Generative Adversarial Networks for Text to Face Generation", "addresses": [{"name": "Sichuan University, Chengdu", "source_name": "Sichuan Univ., Chengdu", "street_adddress": "\u56db\u5ddd\u5927\u5b66\uff08\u534e\u897f\u6821\u533a\uff09, \u6821\u4e1c\u8def, \u6b66\u4faf\u533a, \u6b66\u4faf\u533a (Wuhou), \u6210\u90fd\u5e02 / Chengdu, \u56db\u5ddd\u7701, 610014, \u4e2d\u56fd", "lat": "30.64276900", "lng": "104.06751175", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.05729.pdf"], "doi": []}, {"id": "40c7b8b84cc23c85c37598d6eaa8b21633770480", "title": "Lifting AutoEncoders: Unsupervised Learning of a Fully-Disentangled 3D Morphable Model using Deep Non-Rigid Structure from Motion", "addresses": [{"name": "Stony Brook University", "source_name": "Stony Brook University", "street_adddress": "Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu", "country": "United States"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.11960.pdf"], "doi": []}, {"id": "e351cdef6f21b64088646cb54a107998ca79360d", "title": "Label-Noise Robust Multi-Domain Image-to-Image Translation", "addresses": [{"name": "University of Tokyo", "source_name": "University of Tokyo", "street_adddress": "\u6771\u4eac\u5927\u5b66 \u67cf\u30ad\u30e3\u30f3\u30d1\u30b9, \u5b66\u878d\u5408\u306e\u9053, \u67cf\u5e02, \u5343\u8449\u770c, \u95a2\u6771\u5730\u65b9, 277-8583, \u65e5\u672c", "lat": "35.90204480", "lng": "139.93622009", "type": "edu", "country": "Japan"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1905.02185.pdf"], "doi": []}, {"id": "e40ac1763af1635393d7b556f750a7ad5c41abde", "title": "Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network", "addresses": [{"name": "Columbia University", "source_name": "Columbia University", "street_adddress": "Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA", "lat": "40.84198360", "lng": "-73.94368971", "type": "edu", "country": "United States"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1905.09453.pdf"], "doi": []}, {"id": "926e5f8ae216d6596b58787745684545a56cfca4", "title": "CFSNet: Toward a Controllable Feature Space for Image Restoration", "addresses": [{"name": "Tsinghua University", "source_name": "Tsinghua University", "street_adddress": "\u6e05\u534e\u5927\u5b66, 30, \u53cc\u6e05\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100084, \u4e2d\u56fd", "lat": "40.00229045", "lng": "116.32098908", "type": "edu", "country": "China"}, {"name": "Chinese University of Hong Kong", "source_name": "Chinese University of Hong Kong", "street_adddress": "Hong Kong, \u99ac\u6599\u6c34\u6c60\u65c1\u8def", "lat": "22.41626320", "lng": "114.21093180", "type": "edu", "country": "China"}, {"name": "University of Rochester", "source_name": "University of Rochester", "street_adddress": "Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA", "lat": "43.15769690", "lng": "-77.58829158", "type": "edu", "country": "United States"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.00634.pdf"], "doi": []}, {"id": "9656a10c9d4a35fd8d4ad994bc03fcd69231ff22", "title": "Yes, we GAN: Applying Adversarial Techniques for Autonomous Driving", "addresses": [{"name": "Valeo Vision Systems, Ireland", "source_name": "Valeo Vision Systems, Ireland", "street_adddress": "IDA Business Park, Dunmore Rd, Galway, Ireland", "lat": "53.52190380", "lng": "-8.84273220", "type": "edu", "country": "Ireland"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1902.03442.pdf"], "doi": []}, {"id": "717d85bd48aca5d950a4da4bc63b647a57233075", "title": "HYPE: Human eYe Perceptual Evaluation of Generative Models", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.01121.pdf"], "doi": []}, {"id": "ca52c488775b4ed923e722edce33120905ea7087", "title": "Improved Precision and Recall Metric for Assessing Generative Models", "addresses": [{"name": "Aalto University", "source_name": "Aalto University", "street_adddress": "Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etel\u00e4-Suomi, Manner-Suomi, 02150, Suomi", "lat": "60.18558755", "lng": "24.82427330", "type": "edu", "country": "Finland"}, {"name": "NVIDIA", "source_name": "NVIDIA", "street_adddress": "2788 San Tomas Expy, Santa Clara, CA 95051, USA", "lat": "37.37062540", "lng": "-121.96718940", "type": "company", "country": "United States"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.06991.pdf"], "doi": []}, {"id": "352120e91c09a4fba38aba38a554b4d36f2ec74f", "title": "O-GAN: Extremely Concise Approach for Auto-Encoding Generative Adversarial Networks", "addresses": [{"name": "Sun Yat-Sen University", "source_name": "Sun Yat-Sen University", "street_adddress": "\u4e2d\u5927, \u65b0\u6e2f\u897f\u8def, \u9f99\u8239\u6ed8, \u5eb7\u4e50, \u6d77\u73e0\u533a (Haizhu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510105, \u4e2d\u56fd", "lat": "23.09461185", "lng": "113.28788994", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1903.01931.pdf"], "doi": []}, {"id": "3e248a4d381f04cba0536e53fc99dd2adcc87bc6", "title": "Copy-paste network Network input Residuals + Blending Result", "addresses": [{"name": "University of Bern", "source_name": "University of Bern, Neubr\u00fcckstrasse 10, Bern, Switzerland", "street_adddress": "Hochschulstrasse 6, 3012 Bern, Switzerland", "lat": "46.95048960", "lng": "7.43811900", "type": "edu", "country": "Switzerland"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/3e24/8a4d381f04cba0536e53fc99dd2adcc87bc6.pdf"], "doi": []}, {"id": "0638f57d119cd610de8202b67398cfe47eb9fb6c", "title": "Biphasic Learning of GANs for High-Resolution Image-to-Image Translation", "addresses": [{"name": "Baidu, Inc.", "source_name": "Baidu International Technology (Shenzhen) Company, Ltd., Shenzhen, China", "street_adddress": "Shenzhen, Guangdong, China", "lat": "22.54309600", "lng": "114.05786500", "type": "company", "country": "China"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.06624.pdf"], "doi": []}, {"id": "dbdeac01daf69c3725032c42be04f42c17ea439d", "title": "HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.01121.pdf"], "doi": []}]} \ No newline at end of file