summaryrefslogtreecommitdiff
path: root/site/content/pages/datasets/lfw/index.md
diff options
context:
space:
mode:
Diffstat (limited to 'site/content/pages/datasets/lfw/index.md')
-rw-r--r--site/content/pages/datasets/lfw/index.md61
1 files changed, 5 insertions, 56 deletions
diff --git a/site/content/pages/datasets/lfw/index.md b/site/content/pages/datasets/lfw/index.md
index 1af263dc..7c606364 100644
--- a/site/content/pages/datasets/lfw/index.md
+++ b/site/content/pages/datasets/lfw/index.md
@@ -5,7 +5,6 @@ title: Labeled Faces in The Wild
desc: <span style="color:#ff0000">Labeled Faces in The Wild (LFW)</span> is a database of face photographs designed for studying the problem of unconstrained face recognition.
subdesc: It includes 13,456 images of 4,432 people's images copied from the Internet during 2002-2004.
image: assets/background.jpg
-caption: A few of the 5,749 people in the Labeled Faces in the Wild Dataset, thee most widely used face dataset for benchmarking face recognition algorithms.
slug: lfw
published: 2019-2-23
updated: 2019-2-23
@@ -15,12 +14,12 @@ authors: Adam Harvey
### sidebar
-+ Created: 2002-2004
++ Created: 2002 &ndash; 2004
+ Images: 13,233
+ Identities: 5,749
+ Origin: Yahoo! News Images
+ Used by: Facebook, Google, Microsoft, Baidu, Tencent, SenseTime, Face++, CIA, NSA, IARPA
-+ Website: <a href="http://vis-www.cs.umass.edu/lfw">vis-www.cs.umass.edu/lfw</a>
++ Website: <a href="http://vis-www.cs.umass.edu/lfw">umass.edu</a>
- There are about 3 men for every 1 woman in the LFW dataset[^lfw_www]
- The person with the most images is [George W. Bush](http://vis-www.cs.umass.edu/lfw/person/George_W_Bush_comp.html) with 530
@@ -48,23 +47,13 @@ The *Names and Faces* dataset was the first face recognition dataset created ent
{% include 'map.html' %}
- Sed ut perspiciatis, unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam eaque ipsa, quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt, explicabo. Nemo enim ipsam voluptatem, quia voluptas sit, aspernatur aut odit aut fugit, sed quia.
+Sed ut perspiciatis, unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam eaque ipsa, quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt, explicabo. Nemo enim ipsam voluptatem, quia voluptas sit, aspernatur aut odit aut fugit, sed quia.
-<hr class="supp">
-
-## Supplementary Information for Labeled Faces in The Wild
+{% include 'supplementary_header.html' %}
{% include 'citations.html' %}
-{% include 'synthetic_faces_intro.html' %}
-
-![Synthetically generated face from the visual space of LFW dataset](assets/synthetic_01.jpg)
-![Synthetically generated face from the visual space of LFW dataset](assets/synthetic_02.jpg)
-![Synthetically generated face from the visual space of LFW dataset](assets/synthetic_03.jpg)
-![Synthetically generated face from the visual space of LFW dataset](assets/synthetic_01.jpg)
-
-
-### Commercial Use of Labeled Faces in The Wild
+### Commercial Use
Add a paragraph about how usage extends far beyond academia into research centers for largest companies in the world. And even funnels into CIA funded research in the US and defense industry usage in China.
@@ -73,46 +62,6 @@ load_file assets/lfw_commercial_use.csv
name_display, company_url, example_url, country, description
```
-### Code
-
-The LFW dataset is so widely used that access to the facial data has built directly into a popular code library called Sci-Kit Learn. It includes a function called `fetch_lfw_people` to download the faces in the LFW dataset.
-
-```python
-#!/usr/bin/python
-
-# ------------------------------------------------------------
-#
-# Script to generate montage of LFW faces used in scikit-learn
-#
-# ------------------------------------------------------------
-
-import numpy as np
-from sklearn.datasets import fetch_lfw_people
-import imageio
-import imutils
-
-# download LFW dataset (first run takes a while)
-lfw_people = fetch_lfw_people(min_faces_per_person=1, resize=1, color=True, funneled=False)
-
-# introspect dataset
-n_samples, h, w, c = lfw_people.images.shape
-print(f'{n_samples:,} images at {w}x{h} pixels')
-cols, rows = (176, 76)
-n_ims = cols * rows
-
-# build montages
-im_scale = 0.5
-ims = lfw_people.images[:n_ims]
-montages = imutils.build_montages(ims, (int(w * im_scale, int(h * im_scale)), (cols, rows))
-montage = montages[0]
-
-# save full montage image
-imageio.imwrite('lfw_montage_full.png', montage)
-
-# make a smaller version
-montage = imutils.resize(montage, width=960)
-imageio.imwrite('lfw_montage_960.jpg', montage)
-```
Research, text, and graphics ©Adam Harvey / megapixels.cc