summaryrefslogtreecommitdiff
path: root/scraper/reports
diff options
context:
space:
mode:
Diffstat (limited to 'scraper/reports')
-rw-r--r--scraper/reports/paper_title_report.html2
-rw-r--r--scraper/reports/report_coverage.html2
-rw-r--r--scraper/reports/report_index.html2
3 files changed, 3 insertions, 3 deletions
diff --git a/scraper/reports/paper_title_report.html b/scraper/reports/paper_title_report.html
index 2352f6c6..5d309c1c 100644
--- a/scraper/reports/paper_title_report.html
+++ b/scraper/reports/paper_title_report.html
@@ -1,3 +1,3 @@
<!doctype html><html><head><meta charset='utf-8'><title>Paper Title Sanity Check</title><link rel='stylesheet' href='reports.css'></head><body><h2>Paper Title Sanity Check</h2><table border='1' cellpadding='3' cellspacing='3'><th>key</th><th>name</th><th>our title</th><th>found title</th><th></th><th></th><th>address</th><th>s2 id</th><tr><td>yfcc_100m</td><td>YFCC100M</td><td>YFCC100M: The New Data in Multimedia Research</td><td>YFCC100M: the new data in multimedia research</td><td><a href="https://arxiv.org/pdf/1503.01817.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=yfcc100m: the new data in multimedia research&sort=relevance" target="_blank">[s2]</a></td><td></td><td>010f0f4929e6a6644fb01f0e43820f91d0fad292</td></tr><tr><td>fiw_300</td><td>300-W</td><td>A semi-automatic methodology for facial landmark annotation</td><td>A Semi-automatic Methodology for Facial Landmark Annotation</td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a semi-automatic methodology for facial landmark annotation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td></tr><tr><td>buhmap_db</td><td>BUHMAP-DB</td><td>Facial Feature Tracking and Expression Recognition for Sign Language</td><td>Facial feature tracking and expression recognition for sign language</td><td><a href="https://www.cmpe.boun.edu.tr/~ari/files/ari2008iscis.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facial feature tracking and expression recognition for sign language&sort=relevance" target="_blank">[s2]</a></td><td></td><td>014b8df0180f33b9fea98f34ae611c6447d761d2</td></tr><tr><td>vqa</td><td>VQA</td><td>VQA: Visual Question Answering</td><td>VQA: Visual Question Answering</td><td><a href="https://arxiv.org/pdf/1505.00468.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vqa: visual question answering&sort=relevance" target="_blank">[s2]</a></td><td></td><td>01959ef569f74c286956024866c1d107099199f7</td></tr><tr><td>kitti</td><td>KITTI</td><td>Vision meets Robotics: The KITTI Dataset</td><td>Vision meets robotics: The KITTI dataset</td><td><a href="https://pdfs.semanticscholar.org/026e/3363b7f76b51cc711886597a44d5f1fd1de2.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vision meets robotics: the kitti dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>026e3363b7f76b51cc711886597a44d5f1fd1de2</td></tr><tr><td>ilids_mcts</td><td>i-LIDS</td><td>Imagery Library for Intelligent Detection Systems: The i-LIDS User Guide</td><td>Imagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=imagery library for intelligent detection systems: the i-lids user guide&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0297448f3ed948e136bb06ceff10eccb34e5bb77</td></tr><tr><td>ucf_selfie</td><td>UCF Selfie</td><td>How to Take a Good Selfie?</td><td>How to Take a Good Selfie?</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=how to take a good selfie?&sort=relevance" target="_blank">[s2]</a></td><td></td><td>041d3eedf5e45ce5c5229f0181c5c576ed1fafd6</td></tr><tr><td>fiw_300</td><td>300-W</td><td>300 Faces in-the-Wild Challenge: The first facial landmark localization Challenge</td><td>300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge</td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=300 faces in-the-wild challenge: the first facial landmark localization challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td></tr><tr><td>chokepoint</td><td>ChokePoint</td><td>Patch-based Probabilistic Image Quality Assessment for Face Selection and Improved Video-based Face Recognition</td><td>Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition</td><td><a href="https://arxiv.org/pdf/1304.0869.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=patch-based probabilistic image quality assessment for face selection and improved video-based face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0486214fb58ee9a04edfe7d6a74c6d0f661a7668</td></tr><tr><td>hipsterwars</td><td>Hipsterwars</td><td>Hipster Wars: Discovering Elements of Fashion Styles</td><td>Hipster Wars: Discovering Elements of Fashion Styles</td><td><a href="http://acberg.com/papers/hipster_eccv14.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hipster wars: discovering elements of fashion styles&sort=relevance" target="_blank">[s2]</a></td><td></td><td>04c2cda00e5536f4b1508cbd80041e9552880e67</td></tr><tr><td>psu</td><td>PSU</td><td>Vision-based Analysis of Small Groups in Pedestrian Crowds</td><td>Vision-Based Analysis of Small Groups in Pedestrian Crowds</td><td><a href="http://vc.cs.nthu.edu.tw/home/paper/codfiles/htchiang/201212250411/newp12.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vision-based analysis of small groups in pedestrian crowds&sort=relevance" target="_blank">[s2]</a></td><td></td><td>066000d44d6691d27202896691f08b27117918b9</td></tr><tr><td>ifdb</td><td>IFDB</td><td>Iranian Face Database and Evaluation with a New Detection Algorithm</td><td>Iranian Face Database and Evaluation with a New Detection Algorithm</td><td><a href="https://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iranian face database and evaluation with a new detection algorithm&sort=relevance" target="_blank">[s2]</a></td><td></td><td>066d71fcd997033dce4ca58df924397dfe0b5fd1</td></tr><tr><td>columbia_gaze</td><td>Columbia Gaze</td><td>Gaze Locking: Passive Eye Contact Detection for Human–Object Interaction</td><td>Gaze locking: passive eye contact detection for human-object interaction</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=gaze locking: passive eye contact detection for human–object interaction&sort=relevance" target="_blank">[s2]</a></td><td>Columbia University</td><td>06f02199690961ba52997cde1527e714d2b3bf8f</td></tr><tr><td>d3dfacs</td><td>D3DFACS</td><td>A FACS Valid 3D Dynamic Action Unit database with Applications to 3D Dynamic Morphable Facial Modelling</td><td>A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling</td><td><a href="http://www.cs.bath.ac.uk/~dpc/D3DFACS/ICCV_final_2011.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a facs valid 3d dynamic action unit database with applications to 3d dynamic morphable facial modelling&sort=relevance" target="_blank">[s2]</a></td><td></td><td>070de852bc6eb275d7ca3a9cdde8f6be8795d1a3</td></tr><tr><td>mit_cbcl</td><td>MIT CBCL</td><td>Component-based Face Recognition with 3D Morphable Models</td><td>Component-Based Face Recognition with 3D Morphable Models</td><td><a href="http://cbcl.mit.edu/cbcl/publications/theses/thesis-huang.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=component-based face recognition with 3d morphable models&sort=relevance" target="_blank">[s2]</a></td><td></td><td>079a0a3bf5200994e1f972b1b9197bf2f90e87d4</td></tr><tr><td>uccs</td><td>UCCS</td><td>Large scale unconstrained open set face database</td><td>Large scale unconstrained open set face database</td><td><a href="http://vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=large scale unconstrained open set face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1</td></tr><tr><td>uccs</td><td>UCCS</td><td>Unconstrained Face Detection and Open-Set Face Recognition Challenge</td><td>Unconstrained Face Detection and Open-Set Face Recognition Challenge</td><td><a href="https://arxiv.org/pdf/1708.02337.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=unconstrained face detection and open-set face recognition challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d4f1eb008eb80595bcfdac368e23ae9754e1e745</td></tr><tr><td>kin_face</td><td>UB KinFace</td><td>Understanding Kin Relationships in a Photo</td><td>Understanding Kin Relationships in a Photo</td><td><a href="http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=understanding kin relationships in a photo&sort=relevance" target="_blank">[s2]</a></td><td></td><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td></tr><tr><td>raid</td><td>RAiD</td><td>Consistent Re-identification in a Camera Network</td><td>Consistent Re-identification in a Camera Network</td><td><a href="http://cs-people.bu.edu/dasabir/papers/ECCV14_Poster.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=consistent re-identification in a camera network&sort=relevance" target="_blank">[s2]</a></td><td></td><td>09d78009687bec46e70efcf39d4612822e61cb8c</td></tr><tr><td>pipa</td><td>PIPA</td><td>Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues</td><td>Beyond frontal faces: Improving Person Recognition using multiple cues</td><td><a href="https://arxiv.org/pdf/1501.05703.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=beyond frontal faces: improving person recognition using multiple cues&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0a85bdff552615643dd74646ac881862a7c7072d</td></tr><tr><td>kinectface</td><td>KinectFaceDB</td><td>KinectFaceDB: A Kinect Database for Face Recognition</td><td>KinectFaceDB: A Kinect Database for Face Recognition</td><td><a href="http://www.eurecom.fr/fr/publication/4393/download/mm-publi-4393.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=kinectfacedb: a kinect database for face recognition&sort=relevance" target="_blank">[s2]</a></td><td>University of North Carolina at Chapel Hill</td><td>0b440695c822a8e35184fb2f60dcdaa8a6de84ae</td></tr><tr><td>prw</td><td>PRW</td><td>Person Re-identification in the Wild</td><td>Person Re-identification in the Wild</td><td><a href="https://arxiv.org/pdf/1604.02531.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identification in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0b84f07af44f964817675ad961def8a51406dd2e</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET Verification Testing Protocol for Face Recognition Algorithms</td><td>The FERET Verification Testing Protocol for Face Recognition Algorithms</td><td><a href="https://pdfs.semanticscholar.org/8d2a/1c768fce6f71584dd993fb97e7b6419aaf60.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret verification testing protocol for face recognition algorithms&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0c4a139bb87c6743c7905b29a3cfec27a5130652</td></tr><tr><td>graz</td><td>Graz Pedestrian</td><td>Weak Hypotheses and Boosting for Generic Object Detection and Recognition</td><td>Weak Hypotheses and Boosting for Generic Object Detection and Recognition</td><td><a href="https://pdfs.semanticscholar.org/0c91/808994a250d7be332400a534a9291ca3b60e.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=weak hypotheses and boosting for generic object detection and recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0c91808994a250d7be332400a534a9291ca3b60e</td></tr><tr><td>ijb_c</td><td>IJB-B</td><td>IARPA Janus Benchmark-B Face Dataset</td><td>IARPA Janus Benchmark-B Face Dataset</td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Whitelametal_IARPAJanusBenchmark-BFaceDataset_CVPRW17.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iarpa janus benchmark-b face dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0cb2dd5f178e3a297a0c33068961018659d0f443</td></tr><tr><td>casablanca</td><td>Casablanca</td><td>Context-aware {CNNs} for person head detection</td><td>Context-Aware CNNs for Person Head Detection</td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=context-aware {cnns} for person head detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td></tr><tr><td>hollywood_headset</td><td>HollywoodHeads</td><td>Context-aware CNNs for person head detection</td><td>Context-Aware CNNs for Person Head Detection</td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=context-aware cnns for person head detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td></tr><tr><td>lag</td><td>LAG</td><td>Large Age-Gap Face Verification by Feature Injection in Deep Networks</td><td>Large age-gap face verification by feature injection in deep networks</td><td><a href="https://arxiv.org/pdf/1602.06149.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=large age-gap face verification by feature injection in deep networks&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td></tr><tr><td>face_scrub</td><td>FaceScrub</td><td>A data-driven approach to cleaning large face datasets</td><td>A data-driven approach to cleaning large face datasets</td><td><a href="http://stefan.winkler.net/Publications/icip2014a.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a data-driven approach to cleaning large face datasets&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0d3bb75852098b25d90f31d2f48fd0cb4944702b</td></tr><tr><td>stickmen_family</td><td>We Are Family Stickmen</td><td>We Are Family: Joint Pose Estimation of Multiple Persons</td><td>We Are Family: Joint Pose Estimation of Multiple Persons</td><td><a href="http://eprints.pascal-network.org/archive/00007964/01/eichner10eccv.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=we are family: joint pose estimation of multiple persons&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0dc11a37cadda92886c56a6fb5191ded62099c28</td></tr><tr><td>mpii_gaze</td><td>MPIIGaze</td><td>Appearance-based Gaze Estimation in the Wild</td><td>Appearance-based gaze estimation in the wild</td><td><a href="https://arxiv.org/pdf/1504.02863.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=appearance-based gaze estimation in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0df0d1adea39a5bef318b74faa37de7f3e00b452</td></tr><tr><td>afw</td><td>AFW</td><td>Face detection, pose estimation and landmark localization in the wild</td><td>Face detection, pose estimation, and landmark localization in the wild</td><td><a href="http://crcv.ucf.edu/courses/CAP6412/Spring2013/papers/zhu-ramanan-face-cvpr12.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face detection, pose estimation and landmark localization in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0e986f51fe45b00633de9fd0c94d082d2be51406</td></tr><tr><td>voc</td><td>VOC</td><td>The PASCAL Visual Object Classes (VOC) Challenge</td><td>The Pascal Visual Object Classes (VOC) Challenge</td><td><a href="http://eprints.pascal-network.org/archive/00006187/01/PascalVOC_IJCV2009.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the pascal visual object classes (voc) challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET Evaluation Methodology for Face-Recognition Algorithms</td><td>The FERET Evaluation Methodology for Face-Recognition Algorithms</td><td><a href="https://pdfs.semanticscholar.org/5099/7a5605c1f61e09e9a96789ed7495be6625aa.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret evaluation methodology for face-recognition algorithms&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td></tr><tr><td>imdb_wiki</td><td>IMDB</td><td>Deep expectation of real and apparent age from a single image without facial landmarks</td><td>Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks</td><td><a href="http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep expectation of real and apparent age from a single image without facial landmarks&sort=relevance" target="_blank">[s2]</a></td><td></td><td>10195a163ab6348eef37213a46f60a3d87f289c5</td></tr><tr><td>inria_person</td><td>INRIA Pedestrian</td><td>Histograms of Oriented Gradients for Human Detection</td><td>Histograms of oriented gradients for human detection</td><td><a href="http://courses.cs.washington.edu/courses/cse576/12sp/notes/CVPR2005_HOG.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=histograms of oriented gradients for human detection&sort=relevance" target="_blank">[s2]</a></td><td>INRIA Rhone-Alps, Montbonnot, France</td><td>10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5</td></tr><tr><td>graz</td><td>Graz Pedestrian</td><td>Object Recognition Using Segmentation for Feature Detection</td><td>Object recognition using segmentation for feature detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=object recognition using segmentation for feature detection&sort=relevance" target="_blank">[s2]</a></td><td>Inst. of Comput. Sci., Univ. of Leoben, Austria</td><td>12ad3b5bbbf407f8e54ea692c07633d1a867c566</td></tr><tr><td>lfw_a</td><td>LFW-a</td><td>Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</td><td>Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</td><td><a href="http://www.cs.tau.ac.il/~wolf/papers/jpatchlbp.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=effective unconstrained face recognition by combining multiple descriptors and learned background statistics&sort=relevance" target="_blank">[s2]</a></td><td></td><td>133f01aec1534604d184d56de866a4bd531dac87</td></tr><tr><td>hrt_transgender</td><td>HRT Transgender</td><td>Is the Eye Region More Reliable Than the Face? A Preliminary Study of Face-based Recognition on a Transgender Dataset</td><td>Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset</td><td><a href="http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%20139/PID2859389.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=is the eye region more reliable than the face? a preliminary study of face-based recognition on a transgender dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>137aa2f891d474fce1e7a1d1e9b3aefe21e22b34</td></tr><tr><td>eth_andreas_ess</td><td>ETHZ Pedestrian</td><td>Depth and Appearance for Mobile Scene Analysis</td><td>Depth and Appearance for Mobile Scene Analysis</td><td><a href="http://www.mmp.rwth-aachen.de/publications/pdf/ess-depthandappearance-iccv07-poster.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=depth and appearance for mobile scene analysis&sort=relevance" target="_blank">[s2]</a></td><td>ETH Zurich</td><td>13f06b08f371ba8b5d31c3e288b4deb61335b462</td></tr><tr><td>lfw_p</td><td>LFWP</td><td>Localizing Parts of Faces Using a Consensus of Exemplars</td><td>Localizing Parts of Faces Using a Consensus of Exemplars</td><td><a href="http://neerajkumar.org/projects/face-parts/base/papers/nk_cvpr2011_faceparts.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=localizing parts of faces using a consensus of exemplars&sort=relevance" target="_blank">[s2]</a></td><td></td><td>140438a77a771a8fb656b39a78ff488066eb6b50</td></tr><tr><td>ijb_c</td><td>IJB-A</td><td>Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A</td><td>Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A</td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Klareetal_UnconstrainedFaceDetectionRecognitionJanus_CVPR15.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pushing the frontiers of unconstrained face detection and recognition: iarpa janus benchmark a&sort=relevance" target="_blank">[s2]</a></td><td></td><td>140c95e53c619eac594d70f6369f518adfea12ef</td></tr><tr><td>vgg_faces</td><td>VGG Face</td><td>Deep Face Recognition</td><td>Deep Face Recognition</td><td><a href="https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>162ea969d1929ed180cc6de9f0bf116993ff6e06</td></tr><tr><td>prid</td><td>PRID</td><td>Person Re-Identification by Descriptive and Discriminative Classification</td><td>Person Re-identification by Descriptive and Discriminative Classification</td><td><a href="https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identification by descriptive and discriminative classification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>16c7c31a7553d99f1837fc6e88e77b5ccbb346b8</td></tr><tr><td>umb</td><td>UMB</td><td>UMB-DB: A Database of Partially Occluded 3D Faces</td><td>UMB-DB: A database of partially occluded 3D faces</td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/claudio_cusano-slides.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=umb-db: a database of partially occluded 3d faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>16e8b0a1e8451d5f697b94c0c2b32a00abee1d52</td></tr><tr><td>celeba_plus</td><td>CelebFaces+</td><td>Deep Learning Face Representation from Predicting 10,000 Classes</td><td>Deep Learning Face Representation from Predicting 10,000 Classes</td><td><a href="http://mmlab.ie.cuhk.edu.hk/pdf/YiSun_CVPR14.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep learning face representation from predicting 10,000 classes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>177bc509dd0c7b8d388bb47403f28d6228c14b5c</td></tr><tr><td>geofaces</td><td>GeoFaces</td><td>GeoFaceExplorer: Exploring the Geo-Dependence of Facial Attributes</td><td>GeoFaceExplorer: exploring the geo-dependence of facial attributes</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=geofaceexplorer: exploring the geo-dependence of facial attributes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>17b46e2dad927836c689d6787ddb3387c6159ece</td></tr><tr><td>deep_fashion</td><td>DeepFashion</td><td>DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</td><td>DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</td><td><a href="http://personal.ie.cuhk.edu.hk/~lz013/papers/deepfashion_poster.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deepfashion: powering robust clothes recognition and retrieval with rich annotations&sort=relevance" target="_blank">[s2]</a></td><td></td><td>18010284894ed0edcca74e5bf768ee2e15ef7841</td></tr><tr><td>pilot_parliament</td><td>PPB</td><td>Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification</td><td>Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification</td><td><a href="https://pdfs.semanticscholar.org/03c1/fc9c3339813ed81ad0de540132f9f695a0f8.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=gender shades: intersectional accuracy disparities in commercial gender classification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>18858cc936947fc96b5c06bbe3c6c2faa5614540</td></tr><tr><td>frgc</td><td>FRGC</td><td>Overview of the Face Recognition Grand Challenge</td><td>Overview of the face recognition grand challenge</td><td><a href="http://ivizlab.sfu.ca/arya/Papers/IEEE/Proceedings/C%20V%20P%20R-%2005/Face%20Recognition%20Grand%20Challenge.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=overview of the face recognition grand challenge&sort=relevance" target="_blank">[s2]</a></td><td>NIST</td><td>18ae7c9a4bbc832b8b14bc4122070d7939f5e00e</td></tr><tr><td>yale_faces</td><td>YaleFaces</td><td>From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</td><td>From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</td><td><a href="https://pdfs.semanticscholar.org/97bb/c2b439a79d4dc0dc7199d71ed96ad5e3fd0e.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from few to many: illumination cone models for face recognition under variable lighting and pose&sort=relevance" target="_blank">[s2]</a></td><td></td><td>18c72175ddbb7d5956d180b65a96005c100f6014</td></tr><tr><td>york_3d</td><td>UOY 3D Face Database</td><td>Three-Dimensional Face Recognition: An Eigensurface Approach</td><td>Three-dimensional face recognition: an eigensurface approach</td><td><a href="http://www-users.cs.york.ac.uk/~nep/research/3Dface/tomh/3DFaceRecognition-Eigensurface-ICIP(web)2.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=three-dimensional face recognition: an eigensurface approach&sort=relevance" target="_blank">[s2]</a></td><td></td><td>19d1b811df60f86cbd5e04a094b07f32fff7a32a</td></tr><tr><td>sports_videos_in_the_wild</td><td>SVW</td><td>Sports Videos in the Wild (SVW): A Video Dataset for Sports Analysis</td><td>Sports Videos in the Wild (SVW): A video dataset for sports analysis</td><td><a href="http://cse.msu.edu/~liuxm/publication/Safdarnejad_Liu_Udpa_Andrus_Wood_Craven_FG2015.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=sports videos in the wild (svw): a video dataset for sports analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1a40092b493c6b8840257ab7f96051d1a4dbfeb2</td></tr><tr><td>jpl_pose</td><td>JPL-Interaction dataset</td><td>First-Person Activity Recognition: What Are They Doing to Me?</td><td>First-Person Activity Recognition: What Are They Doing to Me?</td><td><a href="http://michaelryoo.com/papers/cvpr2013_ryoo.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=first-person activity recognition: what are they doing to me?&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1aad2da473888cb7ebc1bfaa15bfa0f1502ce005</td></tr><tr><td>adience</td><td>Adience</td><td>Age and Gender Estimation of Unfiltered Faces</td><td>Age and Gender Estimation of Unfiltered Faces</td><td><a href="http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=age and gender estimation of unfiltered faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1be498d4bbc30c3bfd0029114c784bc2114d67c0</td></tr><tr><td>youtube_poses</td><td>YouTube Pose</td><td>Personalizing Human Video Pose Estimation</td><td>Personalizing Human Video Pose Estimation</td><td><a href="https://arxiv.org/pdf/1511.06676.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=personalizing human video pose estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1c2802c2199b6d15ecefe7ba0c39bfe44363de38</td></tr><tr><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td>Pedestrian Detection: A Benchmark</td><td>Pedestrian detection: A benchmark</td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1378.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian detection: a benchmark&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1dc35905a1deff8bc74688f2d7e2f48fd2273275</td></tr><tr><td>immediacy</td><td>Immediacy</td><td>Multi-task Recurrent Neural Network for Immediacy Prediction</td><td>Multi-task Recurrent Neural Network for Immediacy Prediction</td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Chu_Multi-Task_Recurrent_Neural_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-task recurrent neural network for immediacy prediction&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1e3df3ca8feab0b36fd293fe689f93bb2aaac591</td></tr><tr><td>cafe</td><td>CAFE</td><td>The Child Affective Facial Expression (CAFE) Set: Validity and reliability from untrained adults</td><td>The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults</td><td><a href="https://pdfs.semanticscholar.org/2038/8099cc415c772926e47bcbbe554e133343d1.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the child affective facial expression (cafe) set: validity and reliability from untrained adults&sort=relevance" target="_blank">[s2]</a></td><td></td><td>20388099cc415c772926e47bcbbe554e133343d1</td></tr><tr><td>bbc_pose</td><td>BBC Pose</td><td>Automatic and Efficient Human Pose Estimation for Sign Language Videos</td><td>Automatic and Efficient Human Pose Estimation for Sign Language Videos</td><td><a href="http://tomas.pfister.fi/files/charles13ijcv.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic and efficient human pose estimation for sign language videos&sort=relevance" target="_blank">[s2]</a></td><td></td><td>213a579af9e4f57f071b884aa872651372b661fd</td></tr><tr><td>3d_rma</td><td>3D-RMA</td><td>Automatic 3D Face Authentication</td><td>Automatic 3D face authentication</td><td><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.9190&rep=rep1&type=pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic 3d face authentication&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2160788824c4c29ffe213b2cbeb3f52972d73f37</td></tr><tr><td>large_scale_person_search</td><td>Large Scale Person Search</td><td>End-to-End Deep Learning for Person Search</td><td>End-to-End Deep Learning for Person Search</td><td><a href="https://pdfs.semanticscholar.org/2161/f6b7ee3c0acc81603b01dc0df689683577b9.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=end-to-end deep learning for person search&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2161f6b7ee3c0acc81603b01dc0df689683577b9</td></tr><tr><td>images_of_groups</td><td>Images of Groups</td><td>Understanding Groups of Images of People</td><td>Understanding images of groups of people</td><td><a href="http://chenlab.ece.cornell.edu/people/Andy/Andy_files/cvpr09.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=understanding groups of images of people&sort=relevance" target="_blank">[s2]</a></td><td>Carnegie Mellon University</td><td>21d9d0deed16f0ad62a4865e9acf0686f4f15492</td></tr><tr><td>rap_pedestrian</td><td>RAP</td><td>A Richly Annotated Dataset for Pedestrian Attribute Recognition</td><td>A Richly Annotated Dataset for Pedestrian Attribute Recognition</td><td><a href="https://arxiv.org/pdf/1603.07054.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a richly annotated dataset for pedestrian attribute recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>221c18238b829c12b911706947ab38fd017acef7</td></tr><tr><td>mot</td><td>MOT</td><td>Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</td><td>Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</td><td><a href="https://pdfs.semanticscholar.org/2e0b/00f4043e2d4b04c59c88bb54bcd907d0dcd4.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=evaluating multiple object tracking performance: the clear mot metrics&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2258e01865367018ed6f4262c880df85b94959f8</td></tr><tr><td>saivt</td><td>SAIVT SoftBio</td><td>A Database for Person Re-Identification in Multi-Camera Surveillance Networks</td><td>A Database for Person Re-Identification in Multi-Camera Surveillance Networks</td><td><a href="http://eprints.qut.edu.au/53437/3/Bialkowski_Database4PersonReID_DICTA.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a database for person re-identification in multi-camera surveillance networks&sort=relevance" target="_blank">[s2]</a></td><td></td><td>22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b</td></tr><tr><td>pets</td><td>PETS 2017</td><td>PETS 2017: Dataset and Challenge</td><td>PETS 2017: Dataset and Challenge</td><td><a href="http://tahirnawaz.com/papers/2017_CVPRW_PETS2017Dataset_Luis_Nawaz_Cane_Ferryman.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pets 2017: dataset and challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>22909dd19a0ec3b6065334cb5be5392cb24d839d</td></tr><tr><td>gallagher</td><td>Gallagher</td><td>Clothing Cosegmentation for Recognizing People</td><td>Clothing cosegmentation for recognizing people</td><td><a href="http://amp.ece.cmu.edu/people/Andy/Andy_files/2670CVPR08Gallagher.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clothing cosegmentation for recognizing people&sort=relevance" target="_blank">[s2]</a></td><td>Carnegie Mellon University</td><td>22ad2c8c0f4d6aa4328b38d894b814ec22579761</td></tr><tr><td>expw</td><td>ExpW</td><td>From Facial Expression Recognition to Interpersonal Relation Prediction</td><td>From Facial Expression Recognition to Interpersonal Relation Prediction</td><td><a href="https://arxiv.org/pdf/1609.06426.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from facial expression recognition to interpersonal relation prediction&sort=relevance" target="_blank">[s2]</a></td><td></td><td>22f656d0f8426c84a33a267977f511f127bfd7f3</td></tr><tr><td>mifs</td><td>MIFS</td><td>Spoofing Faces Using Makeup: An Investigative Study</td><td>Spoofing faces using makeup: An investigative study</td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenFaceMakeupSpoof_ISBA2017.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=spoofing faces using makeup: an investigative study&sort=relevance" target="_blank">[s2]</a></td><td>INRIA Méditerranée</td><td>23e824d1dfc33f3780dd18076284f07bd99f1c43</td></tr><tr><td>cohn_kanade</td><td>CK</td><td>Comprehensive Database for Facial Expression Analysis</td><td>Comprehensive Database for Facial Expression Analysis</td><td><a href="https://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=comprehensive database for facial expression analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td></tr><tr><td>cas_peal</td><td>CAS-PEAL</td><td>The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</td><td>The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</td><td><a href="http://www.jdl.ac.cn/peal/files/ieee_smc_a_gao_cas-peal.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cas-peal large-scale chinese face database and baseline evaluations&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2485c98aa44131d1a2f7d1355b1e372f2bb148ad</td></tr><tr><td>faceplace</td><td>Face Place</td><td>Recognizing disguised faces</td><td>Recognizing disguised faces</td><td><a href="https://pdfs.semanticscholar.org/d936/7ceb0be378c3a9ddf7cb741c678c1a3c574c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognizing disguised faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>25474c21613607f6bb7687a281d5f9d4ffa1f9f3</td></tr><tr><td>afew_va</td><td>AFEW-VA</td><td>AFEW-VA database for valence and arousal estimation in-the-wild</td><td>AFEW-VA database for valence and arousal estimation in-the-wild</td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/afew-va.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=afew-va database for valence and arousal estimation in-the-wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2624d84503bc2f8e190e061c5480b6aa4d89277a</td></tr><tr><td>cofw</td><td>COFW</td><td>Robust face landmark estimation under occlusion</td><td>Robust Face Landmark Estimation under Occlusion</td><td><a href="http://authors.library.caltech.edu/45988/1/ICCV13%20Burgos-Artizzu.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=robust face landmark estimation under occlusion&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2724ba85ec4a66de18da33925e537f3902f21249</td></tr><tr><td>duke_mtmc</td><td>Duke MTMC</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=performance measures and a data set for multi-target, multi-camera tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td></tr><tr><td>mot</td><td>MOT</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=performance measures and a data set for multi-target, multi-camera tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td></tr><tr><td>h3d</td><td>H3D</td><td>Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations</td><td>Poselets: Body part detectors trained using 3D human pose annotations</td><td><a href="http://http.cs.berkeley.edu/Research/Projects/CS/vision/human/poselets_iccv09.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=poselets: body part detectors trained using 3d human pose annotations&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2830fb5282de23d7784b4b4bc37065d27839a412</td></tr><tr><td>megaface</td><td>MegaFace</td><td>Level Playing Field for Million Scale Face Recognition</td><td>Level Playing Field for Million Scale Face Recognition</td><td><a href="https://arxiv.org/pdf/1705.00393.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=level playing field for million scale face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td></tr><tr><td>msceleb</td><td>MsCeleb</td><td>MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</td><td>MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</td><td><a href="https://arxiv.org/pdf/1607.08221.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ms-celeb-1m: a dataset and benchmark for large-scale face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>291265db88023e92bb8c8e6390438e5da148e8f5</td></tr><tr><td>ferplus</td><td>FER+</td><td>Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label Distribution</td><td>Training deep networks for facial expression recognition with crowd-sourced label distribution</td><td><a href="https://arxiv.org/pdf/1608.01041.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=training deep networks for facial expression recognition with crowd-sourced label distribution&sort=relevance" target="_blank">[s2]</a></td><td></td><td>298cbc3dfbbb3a20af4eed97906650a4ea1c29e0</td></tr><tr><td>scface</td><td>SCface</td><td>SCface – surveillance cameras face database</td><td>SCface – surveillance cameras face database</td><td><a href="http://scface.org/SCface%20-%20Surveillance%20Cameras%20Face%20Database.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scface – surveillance cameras face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d</td></tr><tr><td>social_relation</td><td>Social Relation</td><td>Learning Social Relation Traits from Face Images</td><td>Learning Social Relation Traits from Face Images</td><td><a href="https://arxiv.org/pdf/1509.03936.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning social relation traits from face images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2a171f8d14b6b8735001a11c217af9587d095848</td></tr><tr><td>peta</td><td>PETA</td><td>Pedestrian Attribute Recognition At Far Distance</td><td>Pedestrian Attribute Recognition At Far Distance</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian attribute recognition at far distance&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2a4bbee0b4cf52d5aadbbc662164f7efba89566c</td></tr><tr><td>mmi_facial_expression</td><td>MMI Facial Expression Dataset</td><td>WEB-BASED DATABASE FOR FACIAL EXPRESSION ANALYSIS</td><td>Web-based database for facial expression analysis</td><td><a href="http://dev.pubs.doc.ic.ac.uk/Pantic-ICME05-2/Pantic-ICME05-2.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=web-based database for facial expression analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2a75f34663a60ab1b04a0049ed1d14335129e908</td></tr><tr><td>bosphorus</td><td>The Bosphorus</td><td>Bosphorus Database for 3D Face Analysis</td><td>Bosphorus Database for 3D Face Analysis</td><td><a href="https://pdfs.semanticscholar.org/4254/fbba3846008f50671edc9cf70b99d7304543.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=bosphorus database for 3d face analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2acf7e58f0a526b957be2099c10aab693f795973</td></tr><tr><td>yale_faces</td><td>YaleFaces</td><td>Acquiring Linear Subspaces for Face Recognition under Variable Lighting</td><td>Acquiring linear subspaces for face recognition under variable lighting</td><td><a href="http://vision.cornell.edu/se3/wp-content/uploads/2014/09/pami05.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=acquiring linear subspaces for face recognition under variable lighting&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2ad0ee93d029e790ebb50574f403a09854b65b7e</td></tr><tr><td>frav3d</td><td>FRAV3D</td><td>MULTIMODAL 2D, 2.5D & 3D FACE VERIFICATION</td><td>Multimodal 2D, 2.5D & 3D Face Verification</td><td><a href="http://www.researchgate.net/profile/Enrique_Cabello/publication/224057733_Multimodal_2D_2.5D__3D_Face_Verification/links/0912f50f522298fa95000000.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multimodal 2d, 2.5d & 3d face verification&sort=relevance" target="_blank">[s2]</a></td><td>Universidad Rey Juan Carlos, Spain</td><td>2b926b3586399d028b46315d7d9fb9d879e4f79c</td></tr><tr><td>clothing_co_parsing</td><td>CCP</td><td>Clothing Co-Parsing by Joint Image Segmentation and Labeling</td><td>Clothing Co-parsing by Joint Image Segmentation and Labeling</td><td><a href="https://arxiv.org/pdf/1502.00739.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clothing co-parsing by joint image segmentation and labeling&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2bf8541199728262f78d4dced6fb91479b39b738</td></tr><tr><td>texas_3dfrd</td><td>Texas 3DFRD</td><td>Anthropometric 3D Face Recognition</td><td>Anthropometric 3D Face Recognition</td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ijcv_june10.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=anthropometric 3d face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2ce2560cf59db59ce313bbeb004e8ce55c5ce928</td></tr><tr><td>lfw</td><td>LFW</td><td>Labeled Faces in the Wild: Updates and New Reporting Procedures</td><td>Labeled Faces in the Wild : Updates and New Reporting Procedures</td><td><a href="https://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=labeled faces in the wild: updates and new reporting procedures&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td></tr><tr><td>a_pascal_yahoo</td><td>aPascal</td><td>Describing Objects by their Attributes</td><td>Describing objects by their attributes</td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0468.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=describing objects by their attributes&sort=relevance" target="_blank">[s2]</a></td><td>University of Illinois, Urbana-Champaign</td><td>2e384f057211426ac5922f1b33d2aa8df5d51f57</td></tr><tr><td>3dpes</td><td>3DPeS</td><td>3DPes: 3D People Dataset for Surveillance and Forensics</td><td>3DPeS: 3D people dataset for surveillance and forensics</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=3dpes: 3d people dataset for surveillance and forensics&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e</td></tr><tr><td>kin_face</td><td>UB KinFace</td><td>Genealogical Face Recognition based on UB KinFace Database</td><td>Genealogical face recognition based on UB KinFace database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=genealogical face recognition based on ub kinface database&sort=relevance" target="_blank">[s2]</a></td><td>SUNY Buffalo</td><td>2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d</td></tr><tr><td>qmul_grid</td><td>GRID</td><td>Time-delayed correlation analysis for multi-camera activity understanding</td><td>Time-Delayed Correlation Analysis for Multi-Camera Activity Understanding</td><td><a href="http://www.eecs.qmul.ac.uk/~ccloy/files/ijcv_2010.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=time-delayed correlation analysis for multi-camera activity understanding&sort=relevance" target="_blank">[s2]</a></td><td>Queen Mary University of London</td><td>2edb87494278ad11641b6cf7a3f8996de12b8e14</td></tr><tr><td>graz</td><td>Graz Pedestrian</td><td>Generic Object Recognition with Boosting</td><td>Generic object recognition with boosting</td><td><a href="http://www.cse.unr.edu/~bebis/CS773C/ObjectRecognition/Papers/Opelt06.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=generic object recognition with boosting&sort=relevance" target="_blank">[s2]</a></td><td>TU Graz</td><td>2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9</td></tr><tr><td>hrt_transgender</td><td>HRT Transgender</td><td>Investigating the Periocular-Based Face Recognition Across Gender Transformation</td><td>Investigating the Periocular-Based Face Recognition Across Gender Transformation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=investigating the periocular-based face recognition across gender transformation&sort=relevance" target="_blank">[s2]</a></td><td>University of North Carolina at Wilmington</td><td>2f43b614607163abf41dfe5d17ef6749a1b61304</td></tr><tr><td>names_and_faces_news</td><td>News Dataset</td><td>Names and Faces</td><td>Names and faces in the news</td><td><a href="http://ttic.uchicago.edu/~mmaire/papers/pdf/names_faces_cvpr2004.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=names and faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2fda164863a06a92d3a910b96eef927269aeb730</td></tr><tr><td>umd_faces</td><td>UMD</td><td>UMDFaces: An Annotated Face Dataset for Training Deep Networks</td><td>UMDFaces: An annotated face dataset for training deep networks</td><td><a href="https://arxiv.org/pdf/1611.01484.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=umdfaces: an annotated face dataset for training deep networks&sort=relevance" target="_blank">[s2]</a></td><td></td><td>31b05f65405534a696a847dd19c621b7b8588263</td></tr><tr><td>tiny_images</td><td>Tiny Images</td><td>80 million tiny images: a large dataset for non-parametric object and scene recognition</td><td>80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition</td><td><a href="http://cvcl.mit.edu/SUNSeminar/Torralba_80M_PAMI08.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=80 million tiny images: a large dataset for non-parametric object and scene recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>31b58ced31f22eab10bd3ee2d9174e7c14c27c01</td></tr><tr><td>feret</td><td>FERET</td><td>FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</td><td>FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</td><td><a href="https://pdfs.semanticscholar.org/31de/9b3dd6106ce6eec9a35991b2b9083395fd0b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=feret ( face recognition technology ) recognition algorithm development and test results&sort=relevance" target="_blank">[s2]</a></td><td></td><td>31de9b3dd6106ce6eec9a35991b2b9083395fd0b</td></tr><tr><td>ucf_crowd</td><td>UCF-CC-50</td><td>Multi-Source Multi-Scale Counting in Extremely Dense Crowd Images</td><td>Multi-source Multi-scale Counting in Extremely Dense Crowd Images</td><td><a href="http://crcv-web.eecs.ucf.edu/papers/cvpr2013/Counting_V3o.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-source multi-scale counting in extremely dense crowd images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>32c801cb7fbeb742edfd94cccfca4934baec71da</td></tr><tr><td>cityscapes</td><td>Cityscapes</td><td>The Cityscapes Dataset for Semantic Urban Scene Understanding</td><td>The Cityscapes Dataset for Semantic Urban Scene Understanding</td><td><a href="https://arxiv.org/pdf/1604.01685.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cityscapes dataset for semantic urban scene understanding&sort=relevance" target="_blank">[s2]</a></td><td></td><td>32cde90437ab5a70cf003ea36f66f2de0e24b3ab</td></tr><tr><td>tud_campus</td><td>TUD-Campus</td><td>People-Tracking-by-Detection and People-Detection-by-Tracking</td><td>People-tracking-by-detection and people-detection-by-tracking</td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=people-tracking-by-detection and people-detection-by-tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td></tr><tr><td>tud_crossing</td><td>TUD-Crossing</td><td>People-Tracking-by-Detection and People-Detection-by-Tracking</td><td>People-tracking-by-detection and people-detection-by-tracking</td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=people-tracking-by-detection and people-detection-by-tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td></tr><tr><td>tud_pedestrian</td><td>TUD-Pedestrian</td><td>People-Tracking-by-Detection and People-Detection-by-Tracking</td><td>People-tracking-by-detection and people-detection-by-tracking</td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=people-tracking-by-detection and people-detection-by-tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td></tr><tr><td>mpii_human_pose</td><td>MPII Human Pose</td><td>2D Human Pose Estimation: New Benchmark and State of the Art Analysis</td><td>2D Human Pose Estimation: New Benchmark and State of the Art Analysis</td><td><a href="http://ei.is.tuebingen.mpg.de/uploads_file/attachment/attachment/168/andriluka14benchmark.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=2d human pose estimation: new benchmark and state of the art analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3325860c0c82a93b2eac654f5324dd6a776f609e</td></tr><tr><td>penn_fudan</td><td>Penn Fudan</td><td>Object Detection Combining Recognition and Segmentation</td><td>Object Detection Combining Recognition and Segmentation</td><td><a href="https://pdfs.semanticscholar.org/3394/168ff0719b03ff65bcea35336a76b21fe5e4.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=object detection combining recognition and segmentation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3394168ff0719b03ff65bcea35336a76b21fe5e4</td></tr><tr><td>wider</td><td>WIDER</td><td>Recognize Complex Events from Static Images by Fusing Deep Channels</td><td>Recognize complex events from static images by fusing deep channels</td><td><a href="http://openaccess.thecvf.com/content_cvpr_2015/supplemental/Xiong_Recognize_Complex_Events_2015_CVPR_supplemental.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognize complex events from static images by fusing deep channels&sort=relevance" target="_blank">[s2]</a></td><td></td><td>356b431d4f7a2a0a38cf971c84568207dcdbf189</td></tr><tr><td>coco_qa</td><td>COCO QA</td><td>Exploring Models and Data for Image Question Answering</td><td>Exploring Models and Data for Image Question Answering</td><td><a href="https://arxiv.org/pdf/1505.02074.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=exploring models and data for image question answering&sort=relevance" target="_blank">[s2]</a></td><td></td><td>35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62</td></tr><tr><td>lfw</td><td>LFW</td><td>Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments</td><td>Labeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments</td><td><a href="https://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=labeled faces in the wild: a database for studying face recognition in unconstrained environments&sort=relevance" target="_blank">[s2]</a></td><td></td><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td></tr><tr><td>rafd</td><td>RaFD</td><td>Presentation and validation of the Radboud Faces Database</td><td>Presentation and validation of the Radboud Faces Database</td><td><a href="https://pdfs.semanticscholar.org/3765/df816dc5a061bc261e190acc8bdd9d47bec0.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=presentation and validation of the radboud faces database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3765df816dc5a061bc261e190acc8bdd9d47bec0</td></tr><tr><td>ufdd</td><td>UFDD</td><td>Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</td><td>Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</td><td><a href="https://arxiv.org/pdf/1804.10275.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pushing the limits of unconstrained face detection: a challenge dataset and baseline results&sort=relevance" target="_blank">[s2]</a></td><td></td><td>377f2b65e6a9300448bdccf678cde59449ecd337</td></tr><tr><td>vmu</td><td>VMU</td><td>Can Facial Cosmetics Affect the Matching Accuracy of Face Recognition Systems?</td><td>Can facial cosmetics affect the matching accuracy of face recognition systems?</td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=can facial cosmetics affect the matching accuracy of face recognition systems?&sort=relevance" target="_blank">[s2]</a></td><td>West Virginia University</td><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td></tr><tr><td>youtube_makeup</td><td>YMU</td><td>Can Facial Cosmetics Affect the Matching Accuracy of Face Recognition Systems?</td><td>Can facial cosmetics affect the matching accuracy of face recognition systems?</td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=can facial cosmetics affect the matching accuracy of face recognition systems?&sort=relevance" target="_blank">[s2]</a></td><td>West Virginia University</td><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td></tr><tr><td>cuhk02</td><td>CUHK02</td><td>Locally Aligned Feature Transforms across Views</td><td>Locally Aligned Feature Transforms across Views</td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d594.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=locally aligned feature transforms across views&sort=relevance" target="_blank">[s2]</a></td><td></td><td>38b55d95189c5e69cf4ab45098a48fba407609b4</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</td><td>A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Liu_A_Spatio-Temporal_Appearance_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a spatio-temporal appearance representation for video-based pedestrian re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3b4ec8af470948a72a6ed37a9fd226719a874ebc</td></tr><tr><td>qmul_grid</td><td>GRID</td><td>Multi-Camera Activity Correlation Analysis</td><td>Multi-camera activity correlation analysis</td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0163.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-camera activity correlation analysis&sort=relevance" target="_blank">[s2]</a></td><td>Queen Mary University of London</td><td>3b5b6d19d4733ab606c39c69a889f9e67967f151</td></tr><tr><td>tvhi</td><td>TVHI</td><td>High Five: Recognising human interactions in TV shows</td><td>High Five: Recognising human interactions in TV shows</td><td><a href="https://pdfs.semanticscholar.org/3cd4/0bfa1ff193a96bde0207e5140a399476466c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=high five: recognising human interactions in tv shows&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3cd40bfa1ff193a96bde0207e5140a399476466c</td></tr><tr><td>georgia_tech_face_database</td><td>Georgia Tech Face</td><td>Maximum likelihood training of the embedded HMM for face detection and recognition</td><td>MAXIMUM LIKELIHOOD TRAINING OF THE EMBEDDED HMM FOR FACE DETECTION AND RECOGNITION Ara V. Ne an and Monson H. Hayes III Center for Signal and Image Processing School of Electrical and Computer Engineering</td><td><a href="https://pdfs.semanticscholar.org/3dc3/f0b64ef80f573e3a5f96e456e52ee980b877.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=maximum likelihood training of the embedded hmm for face detection and recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3dc3f0b64ef80f573e3a5f96e456e52ee980b877</td></tr><tr><td>bio_id</td><td>BioID Face</td><td>Robust Face Detection Using the Hausdorff Distance</td><td>Robust Face Detection Using the Hausdorff Distance</td><td><a href="http://facedetection.homepage.t-online.de/downloads/AVBPA01BioID.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=robust face detection using the hausdorff distance&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4053e3423fb70ad9140ca89351df49675197196a</td></tr><tr><td>distance_nighttime</td><td>Long Distance Heterogeneous Face</td><td>Nighttime Face Recognition at Long Distance: Cross-distance and Cross-spectral Matching</td><td>Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching</td><td><a href="https://pdfs.semanticscholar.org/4156/b7e88f2e0ab0a7c095b9bab199ae2b23bd06.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=nighttime face recognition at long distance: cross-distance and cross-spectral matching&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06</td></tr><tr><td>market_1501</td><td>Market 1501</td><td>Scalable Person Re-identification: A Benchmark</td><td>Scalable Person Re-identification: A Benchmark</td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scalable person re-identification: a benchmark&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4308bd8c28e37e2ed9a3fcfe74d5436cce34b410</td></tr><tr><td>tud_multiview</td><td>TUD-Multiview</td><td>Monocular 3D Pose Estimation and Tracking by Detection</td><td>Monocular 3D pose estimation and tracking by detection</td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=monocular 3d pose estimation and tracking by detection&sort=relevance" target="_blank">[s2]</a></td><td>TU Darmstadt</td><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td></tr><tr><td>tud_stadtmitte</td><td>TUD-Stadtmitte</td><td>Monocular 3D Pose Estimation and Tracking by Detection</td><td>Monocular 3D pose estimation and tracking by detection</td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=monocular 3d pose estimation and tracking by detection&sort=relevance" target="_blank">[s2]</a></td><td>TU Darmstadt</td><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td></tr><tr><td>cuhk01</td><td>CUHK01</td><td>Human Reidentification with Transferred Metric Learning</td><td>Human Reidentification with Transferred Metric Learning</td><td><a href="https://pdfs.semanticscholar.org/4448/4d2866f222bbb9b6b0870890f9eea1ffb2d0.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=human reidentification with transferred metric learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>44484d2866f222bbb9b6b0870890f9eea1ffb2d0</td></tr><tr><td>wider_attribute</td><td>WIDER Attribute</td><td>Human Attribute Recognition by Deep Hierarchical Contexts</td><td>Human Attribute Recognition by Deep Hierarchical Contexts</td><td><a href="https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=human attribute recognition by deep hierarchical contexts&sort=relevance" target="_blank">[s2]</a></td><td></td><td>44d23df380af207f5ac5b41459c722c87283e1eb</td></tr><tr><td>vadana</td><td>VADANA</td><td>VADANA: A dense dataset for facial image analysis</td><td>VADANA: A dense dataset for facial image analysis</td><td><a href="http://vims.cis.udel.edu/publications/VADANA_BeFIT2011.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vadana: a dense dataset for facial image analysis&sort=relevance" target="_blank">[s2]</a></td><td>University of Delaware</td><td>4563b46d42079242f06567b3f2e2f7a80cb3befe</td></tr><tr><td>jaffe</td><td>JAFFE</td><td>Coding Facial Expressions with Gabor Wavelets</td><td>Coding Facial Expressions with Gabor Wavelets</td><td><a href="https://pdfs.semanticscholar.org/45c3/1cde87258414f33412b3b12fc5bec7cb3ba9.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=coding facial expressions with gabor wavelets&sort=relevance" target="_blank">[s2]</a></td><td></td><td>45c31cde87258414f33412b3b12fc5bec7cb3ba9</td></tr><tr><td>malf</td><td>MALF</td><td>Fine-grained Evaluation on Face Detection in the Wild.</td><td>Fine-grained evaluation on face detection in the wild</td><td><a href="http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fine-grained evaluation on face detection in the wild.&sort=relevance" target="_blank">[s2]</a></td><td></td><td>45e616093a92e5f1e61a7c6037d5f637aa8964af</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>Local descriptors encoded by Fisher vectors for person re-identification</td><td>Local Descriptors Encoded by Fisher Vectors for Person Re-identification</td><td><a href="https://pdfs.semanticscholar.org/a105/f1ef67b4b02da38eadce8ffb4e13aa301a93.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=local descriptors encoded by fisher vectors for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>46a01565e6afe7c074affb752e7069ee3bf2e4ef</td></tr><tr><td>fia</td><td>CMU FiA</td><td>The CMU Face In Action (FIA) Database</td><td>The CMU Face In Action (FIA) Database</td><td><a href="https://pdfs.semanticscholar.org/4766/2d1a368daf70ba70ef2d59eb6209f98b675d.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cmu face in action (fia) database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>47662d1a368daf70ba70ef2d59eb6209f98b675d</td></tr><tr><td>kin_face</td><td>UB KinFace</td><td>Kinship Verification through Transfer Learning</td><td>Kinship verification through transfer learning</td><td><a href="http://ijcai.org/Proceedings/11/Papers/422.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=kinship verification through transfer learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4793f11fbca4a7dba898b9fff68f70d868e2497c</td></tr><tr><td>am_fed</td><td>AM-FED</td><td>Affectiva MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected “In the Wild”</td><td>Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"</td><td><a href="http://affect.media.mit.edu/pdfs/13.McDuff-etal-AMFED.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=affectiva mit facial expression dataset (am-fed): naturalistic and spontaneous facial expressions collected “in the wild”&sort=relevance" target="_blank">[s2]</a></td><td></td><td>47aeb3b82f54b5ae8142b4bdda7b614433e69b9a</td></tr><tr><td>apis</td><td>APiS1.0</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian attribute classification in surveillance: database and evaluation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td></tr><tr><td>svs</td><td>SVS</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian attribute classification in surveillance: database and evaluation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td></tr><tr><td>coco_action</td><td>COCO-a</td><td>Describing Common Human Visual Actions in Images</td><td>Describing Common Human Visual Actions in Images</td><td><a href="https://arxiv.org/pdf/1506.02203.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=describing common human visual actions in images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4946ba10a4d5a7d0a38372f23e6622bd347ae273</td></tr><tr><td>leeds_sports_pose</td><td>Leeds Sports Pose</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clustered pose and nonlinear appearance models for human pose estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td></tr><tr><td>stickmen_buffy</td><td>Buffy Stickmen</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clustered pose and nonlinear appearance models for human pose estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td></tr><tr><td>czech_news_agency</td><td>UFI</td><td>Unconstrained Facial Images: Database for Face Recognition under Real-world Conditions</td><td>Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions</td><td><a href="https://pdfs.semanticscholar.org/4b41/06614c1d553365bad75d7866bff0de6056ed.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=unconstrained facial images: database for face recognition under real-world conditions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4b4106614c1d553365bad75d7866bff0de6056ed</td></tr><tr><td>face_tracer</td><td>FaceTracer</td><td>FaceTracer: A Search Engine for Large Collections of Images with Faces</td><td>FaceTracer: A Search Engine for Large Collections of Images with Faces</td><td><a href="https://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facetracer: a search engine for large collections of images with faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4c170a0dcc8de75587dae21ca508dab2f9343974</td></tr><tr><td>cmu_pie</td><td>CMU PIE</td><td>The CMU Pose, Illumination, and Expression Database</td><td>The CMU Pose, Illumination, and Expression (PIE) Database</td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cmu pose, illumination, and expression database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4d423acc78273b75134e2afd1777ba6d3a398973</td></tr><tr><td>multi_pie</td><td>MULTIPIE</td><td>Multi-PIE</td><td>The CMU Pose, Illumination, and Expression (PIE) Database</td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-pie&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4d423acc78273b75134e2afd1777ba6d3a398973</td></tr><tr><td>3dddb_unconstrained</td><td>3D Dynamic</td><td>A 3D Dynamic Database for Unconstrained Face Recognition</td><td>A 3 D Dynamic Database for Unconstrained Face Recognition</td><td><a href="https://pdfs.semanticscholar.org/4d4b/b462c9f1d4e4ab1e4aa6a75cc0bc71b38461.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d dynamic database for unconstrained face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461</td></tr><tr><td>texas_3dfrd</td><td>Texas 3DFRD</td><td>Texas 3D Face Recognition Database</td><td>Texas 3D Face Recognition Database</td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ssiai_may10.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=texas 3d face recognition database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4d58f886f5150b2d5e48fd1b5a49e09799bf895d</td></tr><tr><td>cohn_kanade_plus</td><td>CK+</td><td>The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression</td><td>The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression</td><td><a href="http://www.iainm.com/iainm/Publications_files/2010_The%20Extended.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression&sort=relevance" target="_blank">[s2]</a></td><td>University of Pittsburgh</td><td>4d9a02d080636e9666c4d1cc438b9893391ec6c7</td></tr><tr><td>cfd</td><td>CFD</td><td>The Chicago face database: A free stimulus set of faces and norming data</td><td>The Chicago face database: A free stimulus set of faces and norming data.</td><td><a href="https://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the chicago face database: a free stimulus set of faces and norming data&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4df3143922bcdf7db78eb91e6b5359d6ada004d2</td></tr><tr><td>leeds_sports_pose_extended</td><td>Leeds Sports Pose Extended</td><td>Learning Effective Human Pose Estimation from Inaccurate Annotation</td><td>Learning effective human pose estimation from inaccurate annotation</td><td><a href="http://www.comp.leeds.ac.uk/mat4saj/publications/johnson11cvpr.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning effective human pose estimation from inaccurate annotation&sort=relevance" target="_blank">[s2]</a></td><td>University of Leeds</td><td>4e4746094bf60ee83e40d8597a6191e463b57f76</td></tr><tr><td>dartmouth_children</td><td>Dartmouth Children</td><td>The Dartmouth Database of Children's Faces: Acquisition and validation of a new face stimulus set</td><td>The Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set</td><td><a href="https://pdfs.semanticscholar.org/4e6e/e936eb50dd032f7138702fa39b7c18ee8907.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the dartmouth database of children's faces: acquisition and validation of a new face stimulus set&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4e6ee936eb50dd032f7138702fa39b7c18ee8907</td></tr><tr><td>soton</td><td>SOTON HiD</td><td>On a Large Sequence-Based Human Gait Database</td><td>On a large sequence-based human gait database</td><td><a href="https://eprints.soton.ac.uk/257901/1/Shutler_2002.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=on a large sequence-based human gait database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4f93cd09785c6e77bf4bc5a788e079df524c8d21</td></tr><tr><td>deep_fashion</td><td>DeepFashion</td><td>Fashion Landmark Detection in the Wild</td><td>Fashion Landmark Detection in the Wild</td><td><a href="https://arxiv.org/pdf/1608.03049.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fashion landmark detection in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7</td></tr><tr><td>violent_flows</td><td>Violent Flows</td><td>Violent Flows: Real-Time Detection of Violent Crowd Behavior</td><td>Violent flows: Real-time detection of violent crowd behavior</td><td><a href="http://www.openu.ac.il/home/hassner/data/violentflows/violent_flows.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=violent flows: real-time detection of violent crowd behavior&sort=relevance" target="_blank">[s2]</a></td><td>Open University of Israel</td><td>5194cbd51f9769ab25260446b4fa17204752e799</td></tr><tr><td>imsitu</td><td>imSitu</td><td>Situation Recognition: Visual Semantic Role Labeling for Image Understanding</td><td>Situation Recognition: Visual Semantic Role Labeling for Image Understanding</td><td><a href="http://allenai.org/content/publications/SituationRecognition.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=situation recognition: visual semantic role labeling for image understanding&sort=relevance" target="_blank">[s2]</a></td><td></td><td>51eba481dac6b229a7490f650dff7b17ce05df73</td></tr><tr><td>wider_face</td><td>WIDER FACE</td><td>WIDER FACE: A Face Detection Benchmark</td><td>WIDER FACE: A Face Detection Benchmark</td><td><a href="https://arxiv.org/pdf/1511.06523.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=wider face: a face detection benchmark&sort=relevance" target="_blank">[s2]</a></td><td></td><td>52d7eb0fbc3522434c13cc247549f74bb9609c5d</td></tr><tr><td>bp4d_plus</td><td>BP4D+</td><td>Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</td><td>Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Multimodal_Spontaneous_Emotion_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multimodal spontaneous emotion corpus for human behavior analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4</td></tr><tr><td>reseed</td><td>ReSEED</td><td>ReSEED: Social Event dEtection Dataset</td><td>ReSEED: social event dEtection dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=reseed: social event detection dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>54983972aafc8e149259d913524581357b0f91c3</td></tr><tr><td>orl</td><td>ORL</td><td>Parameterisation of a Stochastic Model for Human Face Identification</td><td>Parameterisation of a stochastic model for human face identification</td><td><a href="https://pdfs.semanticscholar.org/5520/6f0b5f57ce17358999145506cd01e570358c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=parameterisation of a stochastic model for human face identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>55206f0b5f57ce17358999145506cd01e570358c</td></tr><tr><td>ifad</td><td>IFAD</td><td>Indian Face Age Database: A Database for Face Recognition with Age Variation</td><td>Indian Face Age Database : A Database for Face Recognition with Age Variation</td><td><a href="https://pdfs.semanticscholar.org/55c4/0cbcf49a0225e72d911d762c27bb1c2d14aa.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=indian face age database: a database for face recognition with age variation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>55c40cbcf49a0225e72d911d762c27bb1c2d14aa</td></tr><tr><td>youtube_faces</td><td>YouTubeFaces</td><td>Face Recognition in Unconstrained Videos with Matched Background Similarity</td><td>Face recognition in unconstrained videos with matched background similarity</td><td><a href="http://www.cs.tau.ac.il/thesis/thesis/Maoz.Itay-MSc.Thesis.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face recognition in unconstrained videos with matched background similarity&sort=relevance" target="_blank">[s2]</a></td><td></td><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td></tr><tr><td>data_61</td><td>Data61 Pedestrian</td><td>A Multi-Modal Graphical Model for Scene Analysis</td><td>A Multi-modal Graphical Model for Scene Analysis</td><td><a href="http://www.nicta.com.au/wp-content/uploads/2015/02/TaghaviNaminetalWACV15.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a multi-modal graphical model for scene analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>563c940054e4b456661762c1ab858e6f730c3159</td></tr><tr><td>cmdp</td><td>CMDP</td><td>Distance Estimation of an Unknown Person from a Portrait</td><td>Distance Estimation of an Unknown Person from a Portrait</td><td><a href="https://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=distance estimation of an unknown person from a portrait&sort=relevance" target="_blank">[s2]</a></td><td></td><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td></tr><tr><td>unbc_shoulder_pain</td><td>UNBC-McMaster Pain</td><td>PAINFUL DATA: The UNBC-McMaster Shoulder Pain Expression Archive Database</td><td>Painful data: The UNBC-McMaster shoulder pain expression archive database</td><td><a href="http://www.iainm.com/iainm/Publications_files/2011_PAINFUL.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=painful data: the unbc-mcmaster shoulder pain expression archive database&sort=relevance" target="_blank">[s2]</a></td><td>Carnegie Mellon University</td><td>56ffa7d906b08d02d6d5a12c7377a57e24ef3391</td></tr><tr><td>stanford_drone</td><td>Stanford Drone</td><td>Learning Social Etiquette: Human Trajectory Prediction In Crowded Scenes</td><td>Social LSTM: Human Trajectory Prediction in Crowded Spaces</td><td><a href="http://cs.stanford.edu/groups/vision/pdf/CVPR16_N_LSTM.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning social etiquette: human trajectory prediction in crowded scenes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>570f37ed63142312e6ccdf00ecc376341ec72b9f</td></tr><tr><td>ijb_c</td><td>IJB-C</td><td>IARPA Janus Benchmark C</td><td>IARPA Janus Benchmark - C: Face Dataset and Protocol</td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Mazeetal_IARPAJanusBenchmarkCFaceDatasetAndProtocol_ICB2018.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iarpa janus benchmark c&sort=relevance" target="_blank">[s2]</a></td><td></td><td>57178b36c21fd7f4529ac6748614bb3374714e91</td></tr><tr><td>50_people_one_question</td><td>50 People One Question</td><td>Merging Pose Estimates Across Space and Time</td><td>Merging Pose Estimates Across Space and Time</td><td><a href="https://pdfs.semanticscholar.org/63b2/f5348af0f969dfc2afb4977732393c6459ec.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=merging pose estimates across space and time&sort=relevance" target="_blank">[s2]</a></td><td></td><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td></tr><tr><td>mr2</td><td>MR2</td><td>The MR2: A multi-racial mega-resolution database of facial stimuli</td><td>The MR2: A multi-racial, mega-resolution database of facial stimuli.</td><td><a href="https://pdfs.semanticscholar.org/be5b/455abd379240460d022a0e246615b0b86c14.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mr2: a multi-racial mega-resolution database of facial stimuli&sort=relevance" target="_blank">[s2]</a></td><td></td><td>578d4ad74818086bb64f182f72e2c8bd31e3d426</td></tr><tr><td>cvc_01_barcelona</td><td>CVC-01</td><td>Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection</td><td>Adaptive Image Sampling and Windows Classification for On – board Pedestrian Detection</td><td><a href="https://pdfs.semanticscholar.org/57fe/081950f21ca03b5b375ae3e84b399c015861.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=adaptive image sampling and windows classification for on-board pedestrian detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>57fe081950f21ca03b5b375ae3e84b399c015861</td></tr><tr><td>mot</td><td>MOT</td><td>Learning to associate: HybridBoosted multi-target tracker for crowded scene</td><td>Learning to associate: HybridBoosted multi-target tracker for crowded scene</td><td><a href="http://iris.usc.edu/Outlines/papers/2009/yuan-chang-nevatia-cvpr09.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning to associate: hybridboosted multi-target tracker for crowded scene&sort=relevance" target="_blank">[s2]</a></td><td>University of Southern California</td><td>5981e6479c3fd4e31644db35d236bfb84ae46514</td></tr><tr><td>disfa</td><td>DISFA</td><td>DISFA: A Spontaneous Facial Action Intensity Database</td><td>DISFA: A Spontaneous Facial Action Intensity Database</td><td><a href="http://mohammadmahoor.com/wp-content/uploads/2017/06/DiSFA_Paper_andAppendix_Final_OneColumn1-1.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=disfa: a spontaneous facial action intensity database&sort=relevance" target="_blank">[s2]</a></td><td>University of Denver</td><td>5a5f0287484f0d480fed1ce585dbf729586f0edc</td></tr><tr><td>wlfdb</td><td>WLFDB</td><td>WLFDB: Weakly Labeled Face Databases</td><td>WLFDB: Weakly Labeled Face Databases</td><td><a href="https://pdfs.semanticscholar.org/5ad4/e9f947c1653c247d418f05dad758a3f9277b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=wlfdb: weakly labeled face databases&sort=relevance" target="_blank">[s2]</a></td><td></td><td>5ad4e9f947c1653c247d418f05dad758a3f9277b</td></tr><tr><td>coco</td><td>COCO</td><td>Microsoft COCO: Common Objects in Context</td><td>Microsoft COCO: Common Objects in Context</td><td><a href="https://arxiv.org/pdf/1405.0312.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=microsoft coco: common objects in context&sort=relevance" target="_blank">[s2]</a></td><td></td><td>5e0f8c355a37a5a89351c02f174e7a5ddcb98683</td></tr><tr><td>cityscapes</td><td>Cityscapes</td><td>The Cityscapes Dataset</td><td>The Cityscapes Dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cityscapes dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>5ffd74d2873b7cba2cbc5fd295cc7fbdedca22a2</td></tr><tr><td>viper</td><td>VIPeR</td><td>Evaluating Appearance Models for Recognition, Reacquisition, and Tracking</td><td>Evaluating Appearance Models for Recognition , Reacquisition , and Tracking</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=evaluating appearance models for recognition, reacquisition, and tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6273b3491e94ea4dd1ce42b791d77bdc96ee73a8</td></tr><tr><td>caltech_10k_web_faces</td><td>Caltech 10K Web Faces</td><td>Pruning Training Sets for Learning of Object Categories</td><td>Pruning training sets for learning of object categories</td><td><a href="http://authors.library.caltech.edu/11469/1/ANGcvpr05.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pruning training sets for learning of object categories&sort=relevance" target="_blank">[s2]</a></td><td></td><td>636b8ffc09b1b23ff714ac8350bb35635e49fa3c</td></tr><tr><td>bfm</td><td>BFM</td><td>A 3D Face Model for Pose and Illumination Invariant Face Recognition</td><td>A 3D Face Model for Pose and Illumination Invariant Face Recognition</td><td><a href="http://gravis.cs.unibas.ch/publications/2009/BFModel09.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d face model for pose and illumination invariant face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>639937b3a1b8bded3f7e9a40e85bd3770016cf3c</td></tr><tr><td>alert_airport</td><td>ALERT Airport</td><td>A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets</td><td>A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets.</td><td><a href="https://arxiv.org/pdf/1605.09653.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a systematic evaluation and benchmark for person re-identification: features, metrics, and datasets&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6403117f9c005ae81f1e8e6d1302f4a045e3d99d</td></tr><tr><td>celeba</td><td>CelebA</td><td>Deep Learning Face Attributes in the Wild</td><td>Deep Learning Face Attributes in the Wild</td><td><a href="https://arxiv.org/pdf/1411.7766.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep learning face attributes in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4</td></tr><tr><td>complex_activities</td><td>Ongoing Complex Activities</td><td>Recognition of Ongoing Complex Activities by Sequence Prediction over a Hierarchical Label Space</td><td>Recognition of ongoing complex activities by sequence prediction over a hierarchical label space</td><td><a href="https://scalable.mpi-inf.mpg.de/files/2016/01/main_wacv.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognition of ongoing complex activities by sequence prediction over a hierarchical label space&sort=relevance" target="_blank">[s2]</a></td><td></td><td>65355cbb581a219bd7461d48b3afd115263ea760</td></tr><tr><td>afad</td><td>AFAD</td><td>Ordinal Regression with a Multiple Output CNN for Age Estimation</td><td>Ordinal Regression with Multiple Output CNN for Age Estimation</td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Niu_Ordinal_Regression_With_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ordinal regression with a multiple output cnn for age estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c</td></tr><tr><td>sun_attributes</td><td>SUN</td><td>The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</td><td>The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</td><td><a href="http://www.cc.gatech.edu/~hays/papers/attribute_ijcv.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the sun attribute database: beyond categories for deeper scene understanding&sort=relevance" target="_blank">[s2]</a></td><td></td><td>66e6f08873325d37e0ec20a4769ce881e04e964e</td></tr><tr><td>face_tracer</td><td>FaceTracer</td><td>Face Swapping: Automatically Replacing Faces in Photographs</td><td>Face swapping: automatically replacing faces in photographs</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face swapping: automatically replacing faces in photographs&sort=relevance" target="_blank">[s2]</a></td><td></td><td>670637d0303a863c1548d5b19f705860a23e285c</td></tr><tr><td>tud_brussels</td><td>TUD-Brussels</td><td>Multi-Cue Onboard Pedestrian Detection</td><td>Multi-cue onboard pedestrian detection</td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-cue onboard pedestrian detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td></tr><tr><td>tud_motionpairs</td><td>TUD-Motionparis</td><td>Multi-Cue Onboard Pedestrian Detection</td><td>Multi-cue onboard pedestrian detection</td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-cue onboard pedestrian detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td></tr><tr><td>cuhk03</td><td>CUHK03</td><td>DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</td><td>DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</td><td><a href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deepreid: deep filter pairing neural network for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3</td></tr><tr><td>ar_facedb</td><td>AR Face</td><td>The AR Face Database</td><td>The AR face database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the ar face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6d96f946aaabc734af7fe3fc4454cf8547fcd5ed</td></tr><tr><td>agedb</td><td>AgeDB</td><td>AgeDB: the first manually collected, in-the-wild age database</td><td>AgeDB: The First Manually Collected, In-the-Wild Age Database</td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=agedb: the first manually collected, in-the-wild age database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6dcf418c778f528b5792104760f1fbfe90c6dd6a</td></tr><tr><td>stickmen_buffy</td><td>Buffy Stickmen</td><td>Learning to Parse Images of Articulated Objects</td><td>Learning to parse images of articulated bodies</td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning to parse images of articulated objects&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td></tr><tr><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td>Learning to parse images of articulated bodies</td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clustered pose and nonlinear appearance models for human pose estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td></tr><tr><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td>Learning to Parse Images of Articulated Objects</td><td>Learning to parse images of articulated bodies</td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning to parse images of articulated objects&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td></tr><tr><td>ward</td><td>WARD</td><td>Re-identify people in wide area camera network</td><td>Re-identify people in wide area camera network</td><td><a href="http://users.dimi.uniud.it/~niki.martinel/data/publications/2012/CVPR/MarMicCVPR2012.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=re-identify people in wide area camera network&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6f3c76b7c0bd8e1d122c6ea808a271fd4749c951</td></tr><tr><td>umd_faces</td><td>UMD</td><td>The Do's and Don'ts for CNN-based Face Verification</td><td>The Do’s and Don’ts for CNN-Based Face Verification</td><td><a href="https://arxiv.org/pdf/1705.07426.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the do's and don'ts for cnn-based face verification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6</td></tr><tr><td>affectnet</td><td>AffectNet</td><td>AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild</td><td>AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild</td><td><a href="https://arxiv.org/pdf/1708.03985.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=affectnet: a database for facial expression, valence, and arousal computing in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>758d7e1be64cc668c59ef33ba8882c8597406e53</td></tr><tr><td>pubfig</td><td>PubFig</td><td>Attribute and Simile Classifiers for Face Verification</td><td>Attribute and simile classifiers for face verification</td><td><a href="http://acberg.com/papers/kbbn09iccv.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=attribute and simile classifiers for face verification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>759a3b3821d9f0e08e0b0a62c8b693230afc3f8d</td></tr><tr><td>fddb</td><td>FDDB</td><td>FDDB: A Benchmark for Face Detection in Unconstrained Settings</td><td>A Benchmark for Face Detection in Unconstrained Settings</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fddb: a benchmark for face detection in unconstrained settings&sort=relevance" target="_blank">[s2]</a></td><td></td><td>75da1df4ed319926c544eefe17ec8d720feef8c0</td></tr><tr><td>urban_tribes</td><td>Urban Tribes</td><td>From Bikers to Surfers: Visual Recognition of Urban Tribes</td><td>From Bikers to Surfers: Visual Recognition of Urban Tribes</td><td><a href="https://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from bikers to surfers: visual recognition of urban tribes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>774cbb45968607a027ae4729077734db000a1ec5</td></tr><tr><td>wildtrack</td><td>WildTrack</td><td>WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</td><td>WILDTRACK : A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</td><td><a href="https://pdfs.semanticscholar.org/fe1c/ec4e4995b8615855572374ae3efc94949105.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=wildtrack: a multi-camera hd dataset for dense unscripted pedestrian detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>77c81c13a110a341c140995bedb98101b9e84f7f</td></tr><tr><td>berkeley_pose</td><td>BPAD</td><td>Describing People: A Poselet-Based Approach to Attribute Classification</td><td>Describing people: A poselet-based approach to attribute classification</td><td><a href="http://ttic.uchicago.edu/~smaji/papers/attributes-iccv11.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=describing people: a poselet-based approach to attribute classification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td></tr><tr><td>mapillary</td><td>Mapillary</td><td>The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</td><td>The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</td><td><a href="http://openaccess.thecvf.com/content_ICCV_2017/papers/Neuhold_The_Mapillary_Vistas_ICCV_2017_paper.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mapillary vistas dataset for semantic understanding of street scenes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>79828e6e9f137a583082b8b5a9dfce0c301989b8</td></tr><tr><td>nudedetection</td><td>Nude Detection</td><td>A Bag-of-Features Approach based on Hue-SIFT Descriptor for Nude Detection</td><td>A bag-of-features approach based on Hue-SIFT descriptor for nude detection</td><td><a href="http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569191772.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a bag-of-features approach based on hue-sift descriptor for nude detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7ace44190729927e5cb0dd5d363fcae966fe13f7</td></tr><tr><td>lfw</td><td>LFW</td><td>Labeled Faces in the Wild: A Survey</td><td>Labeled Faces in the Wild : A Survey</td><td><a href="https://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=labeled faces in the wild: a survey&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22</td></tr><tr><td>vgg_celebs_in_places</td><td>CIP</td><td>Faces in Places: Compound Query Retrieval</td><td>Faces in Places: compound query retrieval</td><td><a href="https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=faces in places: compound query retrieval&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7ebb153704706e457ab57b432793d2b6e5d12592</td></tr><tr><td>nova_emotions</td><td>Novaemötions Dataset</td><td>Competitive affective gamming: Winning with a smile</td><td>Competitive affective gaming: winning with a smile</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=competitive affective gamming: winning with a smile&sort=relevance" target="_blank">[s2]</a></td><td>Universidade NOVA de Lisboa, Caparica, Portugal</td><td>7f4040b482d16354d5938c1d1b926b544652bf5b</td></tr><tr><td>sun_attributes</td><td>SUN</td><td>SUN Attribute Database:
Discovering, Annotating, and Recognizing Scene Attributes</td><td>SUN attribute database: Discovering, annotating, and recognizing scene attributes</td><td><a href="http://static.cs.brown.edu/~gen/pub_papers/SUN_Attribute_Database_CVPR2012.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=sun attribute database:
-discovering, annotating, and recognizing scene attributes&sort=relevance" target="_blank">[s2]</a></td><td>Brown University</td><td>833fa04463d90aab4a9fe2870d480f0b40df446e</td></tr><tr><td>imdb_wiki</td><td>IMDB</td><td>DEX: Deep EXpectation of apparent age from a single image</td><td>DEX: Deep EXpectation of Apparent Age from a Single Image</td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Rothe_DEX_Deep_EXpectation_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=dex: deep expectation of apparent age from a single image&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8355d095d3534ef511a9af68a3b2893339e3f96b</td></tr><tr><td>awe_ears</td><td>AWE Ears</td><td>Ear Recognition: More Than a Survey</td><td>Ear Recognition: More Than a Survey</td><td><a href="https://arxiv.org/pdf/1611.06203.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ear recognition: more than a survey&sort=relevance" target="_blank">[s2]</a></td><td></td><td>84fe5b4ac805af63206012d29523a1e033bc827e</td></tr><tr><td>casia_webface</td><td>CASIA Webface</td><td>Learning Face Representation from Scratch</td><td>Learning Face Representation from Scratch</td><td><a href="https://arxiv.org/pdf/1411.7923.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning face representation from scratch&sort=relevance" target="_blank">[s2]</a></td><td></td><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td></tr><tr><td>used</td><td>USED Social Event Dataset</td><td>USED: A Large-scale Social Event Detection Dataset</td><td>USED: a large-scale social event detection dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=used: a large-scale social event detection dataset&sort=relevance" target="_blank">[s2]</a></td><td>University of Trento</td><td>8627f019882b024aef92e4eb9355c499c733e5b7</td></tr><tr><td>tiny_faces</td><td>TinyFace</td><td>Low-Resolution Face Recognition</td><td>Low-Resolution Face Recognition</td><td><a href="https://arxiv.org/pdf/1811.08965.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=low-resolution face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8990cdce3f917dad622e43e033db686b354d057c</td></tr><tr><td>mafl</td><td>MAFL</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facial landmark detection by deep multi-task learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td></tr><tr><td>mtfl</td><td>MTFL</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facial landmark detection by deep multi-task learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td></tr><tr><td>10k_US_adult_faces</td><td>10K US Adult Faces</td><td>The intrinsic memorability of face images</td><td>The intrinsic memorability of face photographs.</td><td><a href="https://pdfs.semanticscholar.org/8b2d/d5c61b23ead5ae5508bb8ce808b5ea266730.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the intrinsic memorability of face images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8b2dd5c61b23ead5ae5508bb8ce808b5ea266730</td></tr><tr><td>fei</td><td>FEI</td><td>Captura e Alinhamento de Imagens: Um Banco de Faces Brasileiro</td><td>A new ranking method for principal components analysis and its application to face image analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=captura e alinhamento de imagens: um banco de faces brasileiro&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8b56e33f33e582f3e473dba573a16b598ed9bcdc</td></tr><tr><td>chalearn</td><td>ChaLearn</td><td>ChaLearn Looking at People: A Review of Events and Resources</td><td>ChaLearn looking at people: A review of events and resources</td><td><a href="https://arxiv.org/pdf/1701.02664.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=chalearn looking at people: a review of events and resources&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td></tr><tr><td>hda_plus</td><td>HDA+</td><td>The HDA+ data set for research on fully automated re-identification systems</td><td>The HDA+ Data Set for Research on Fully Automated Re-identification Systems</td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w19/11%20-%20The%20HDA%20data%20set%20for%20research%20on%20fully.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the hda+ data set for research on fully automated re-identification systems&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8f02ec0be21461fbcedf51d864f944cfc42c875f</td></tr><tr><td>morph</td><td>MORPH Commercial</td><td>MORPH: A Longitudinal Image Database of Normal Adult Age-Progression</td><td>MORPH: a longitudinal image database of normal adult age-progression</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=morph: a longitudinal image database of normal adult age-progression&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td></tr><tr><td>morph_nc</td><td>MORPH Non-Commercial</td><td>MORPH: A Longitudinal Image Database of Normal Adult Age-Progression</td><td>MORPH: a longitudinal image database of normal adult age-progression</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=morph: a longitudinal image database of normal adult age-progression&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td></tr><tr><td>v47</td><td>V47</td><td>Re-identification of Pedestrians with Variable Occlusion and Scale</td><td>Re-identification of pedestrians with variable occlusion and scale</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=re-identification of pedestrians with variable occlusion and scale&sort=relevance" target="_blank">[s2]</a></td><td>Kingston University</td><td>922e0a51a3b8c67c4c6ac09a577ff674cbd28b34</td></tr><tr><td>towncenter</td><td>TownCenter</td><td>Stable Multi-Target Tracking in Real-Time Surveillance Video</td><td>Stable multi-target tracking in real-time surveillance video</td><td><a href="http://ben.benfold.com/docs/benfold_reid_cvpr2011-preprint.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=stable multi-target tracking in real-time surveillance video&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9361b784e73e9238d5cefbea5ac40d35d1e3103f</td></tr><tr><td>helen</td><td>Helen</td><td>Interactive Facial Feature Localization</td><td>Interactive Facial Feature Localization</td><td><a href="https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=interactive facial feature localization&sort=relevance" target="_blank">[s2]</a></td><td></td><td>95f12d27c3b4914e0668a268360948bce92f7db3</td></tr><tr><td>4dfab</td><td>4DFAB</td><td>4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</td><td>4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</td><td><a href="https://arxiv.org/pdf/1712.01443.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=4dfab: a large scale 4d facial expression database for biometric applications&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9696ad8b164f5e10fcfe23aacf74bd6168aebb15</td></tr><tr><td>megaface</td><td>MegaFace</td><td>The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</td><td>The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</td><td><a href="https://arxiv.org/pdf/1512.00596.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the megaface benchmark: 1 million faces for recognition at scale&sort=relevance" target="_blank">[s2]</a></td><td></td><td>96e0cfcd81cdeb8282e29ef9ec9962b125f379b0</td></tr><tr><td>ilids_vid_reid</td><td>iLIDS-VID</td><td>Person Re-Identi cation by Video Ranking</td><td>Person Re-identification by Video Ranking</td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identi cation by video ranking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>98bb029afe2a1239c3fdab517323066f0957b81b</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>Person reidentification by video ranking</td><td>Person Re-identification by Video Ranking</td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person reidentification by video ranking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>98bb029afe2a1239c3fdab517323066f0957b81b</td></tr><tr><td>m2vts</td><td>m2vts</td><td>The M2VTS Multimodal Face Database (Release 1.00)</td><td>The M2VTS Multimodal Face Database (Release 1.00)</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the m2vts multimodal face database (release 1.00)&sort=relevance" target="_blank">[s2]</a></td><td>Laboratoire de Télécommunications et Télédétection, UCL, Louvain-La-Neuve, Belgium</td><td>9a9877791945c6fa4c1743ec6d3fb32570ef8481</td></tr><tr><td>who_goes_there</td><td>WGT</td><td>Who Goes There? Approaches to Mapping Facial Appearance Diversity</td><td>Who goes there?: approaches to mapping facial appearance diversity</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=who goes there? approaches to mapping facial appearance diversity&sort=relevance" target="_blank">[s2]</a></td><td>University of Kentucky</td><td>9b9bf5e623cb8af7407d2d2d857bc3f1b531c182</td></tr><tr><td>facebook_100</td><td>Facebook100</td><td>Scaling Up Biologically-Inspired Computer Vision: A Case Study in Unconstrained Face Recognition on Facebook</td><td>Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scaling up biologically-inspired computer vision: a case study in unconstrained face recognition on facebook&sort=relevance" target="_blank">[s2]</a></td><td>Harvard University</td><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td></tr><tr><td>pubfig_83</td><td>pubfig83</td><td>Scaling Up Biologically-Inspired Computer Vision: A Case Study in Unconstrained Face Recognition on Facebook</td><td>Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scaling up biologically-inspired computer vision: a case study in unconstrained face recognition on facebook&sort=relevance" target="_blank">[s2]</a></td><td>Harvard University</td><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td></tr><tr><td>precarious</td><td>Precarious</td><td>Expecting the Unexpected: Training Detectors for Unusual Pedestrians With Adversarial Imposters</td><td>Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters</td><td><a href="https://arxiv.org/pdf/1703.06283.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=expecting the unexpected: training detectors for unusual pedestrians with adversarial imposters&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9e5378e7b336c89735d3bb15cf67eff96f86d39a</td></tr><tr><td>mafl</td><td>MAFL</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning deep representation for face alignment with auxiliary attributes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td></tr><tr><td>mtfl</td><td>MTFL</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning deep representation for face alignment with auxiliary attributes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td></tr><tr><td>moments_in_time</td><td>Moments in Time</td><td>Moments in Time Dataset: one million videos for event understanding</td><td>Moments in Time Dataset: one million videos for event understanding</td><td><a href="https://arxiv.org/pdf/1801.03150.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=moments in time dataset: one million videos for event understanding&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a5a44a32a91474f00a3cda671a802e87c899fbb4</td></tr><tr><td>aflw</td><td>AFLW</td><td>Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization</td><td>Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/martin_koestinger-slides.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td></tr><tr><td>market1203</td><td>Market 1203</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=orientation driven bag of appearances for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td></tr><tr><td>pku_reid</td><td>PKU-Reid</td><td>Orientation driven bag of appearances for person re-identification</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=orientation driven bag of appearances for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td></tr><tr><td>hi4d_adsip</td><td>Hi4D-ADSIP</td><td>Hi4D-ADSIP 3-D dynamic facial articulation database</td><td>Hi4D-ADSIP 3-D dynamic facial articulation database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hi4d-adsip 3-d dynamic facial articulation database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a8d0b149c2eadaa02204d3e4356fbc8eccf3b315</td></tr><tr><td>yawdd</td><td>YawDD</td><td>YawDD: A Yawning Detection Dataset</td><td>YawDD: a yawning detection dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=yawdd: a yawning detection dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a94cae786d515d3450d48267e12ca954aab791c4</td></tr><tr><td>mrp_drone</td><td>MRP Drone</td><td>Investigating Open-World Person Re-identification Using a Drone</td><td>Investigating Open-World Person Re-identification Using a Drone</td><td><a href="https://pdfs.semanticscholar.org/ad01/687649d95cd5b56d7399a9603c4b8e2217d7.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=investigating open-world person re-identification using a drone&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ad01687649d95cd5b56d7399a9603c4b8e2217d7</td></tr><tr><td>put_face</td><td>Put Face</td><td>The PUT face database</td><td>The put face database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the put face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ae0aee03d946efffdc7af2362a42d3750e7dd48a</td></tr><tr><td>afew_va</td><td>AFEW-VA</td><td>Collecting Large, Richly Annotated Facial-Expression Databases from Movies</td><td>Collecting Large, Richly Annotated Facial-Expression Databases from Movies</td><td><a href="http://users.cecs.anu.edu.au/~adhall/Dhall_Goecke_Lucey_Gedeon_M_2012.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=collecting large, richly annotated facial-expression databases from movies&sort=relevance" target="_blank">[s2]</a></td><td>Australian National University</td><td>b1f4423c227fa37b9680787be38857069247a307</td></tr><tr><td>ucf_101</td><td>UCF101</td><td>UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</td><td>UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</td><td><a href="https://arxiv.org/pdf/1212.0402.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ucf101: a dataset of 101 human actions classes from videos in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b5f2846a506fc417e7da43f6a7679146d99c5e96</td></tr><tr><td>m2vtsdb_extended</td><td>xm2vtsdb</td><td>XM2VTSDB: The Extended M2VTS Database</td><td>Xm2vtsdb: the Extended M2vts Database</td><td><a href="https://pdfs.semanticscholar.org/b626/28ac06bbac998a3ab825324a41a11bc3a988.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=xm2vtsdb: the extended m2vts database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b62628ac06bbac998a3ab825324a41a11bc3a988</td></tr><tr><td>ifdb</td><td>IFDB</td><td>Iranian Face Database with age, pose and expression</td><td>Iranian Face Database with age, pose and expression</td><td><a href="http://www.iranprc.org/pdf/paper/2007-02.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iranian face database with age, pose and expression&sort=relevance" target="_blank">[s2]</a></td><td>Islamic Azad University</td><td>b71d1aa90dcbe3638888725314c0d56640c1fef1</td></tr><tr><td>bp4d_spontanous</td><td>BP4D-Spontanous</td><td>A high resolution spontaneous 3D dynamic facial expression database</td><td>A high-resolution spontaneous 3D dynamic facial expression database</td><td><a href="http://www.csee.usf.edu/~scanavan/papers/FG2013.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a high resolution spontaneous 3d dynamic facial expression database&sort=relevance" target="_blank">[s2]</a></td><td>SUNY Binghamton</td><td>b91f54e1581fbbf60392364323d00a0cd43e493c</td></tr><tr><td>pornodb</td><td>Pornography DB</td><td>Pooling in Image Representation: the Visual Codeword Point of View</td><td>Pooling in image representation: The visual codeword point of view</td><td><a href="http://cedric.cnam.fr/~thomen/papers/avila_CVIU2012_final.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pooling in image representation: the visual codeword point of view&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b92a1ed9622b8268ae3ac9090e25789fc41cc9b8</td></tr><tr><td>scut_fbp</td><td>SCUT-FBP</td><td>SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</td><td>SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</td><td><a href="https://arxiv.org/pdf/1511.02459.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scut-fbp: a benchmark dataset for facial beauty perception&sort=relevance" target="_blank">[s2]</a></td><td></td><td>bd26dabab576adb6af30484183c9c9c8379bf2e0</td></tr><tr><td>hda_plus</td><td>HDA+</td><td>A Multi-camera video data set for research on High-Definition surveillance</td><td>HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance</td><td><a href="https://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a multi-camera video data set for research on high-definition surveillance&sort=relevance" target="_blank">[s2]</a></td><td></td><td>bd88bb2e4f351352d88ee7375af834360e223498</td></tr><tr><td>mars</td><td>MARS</td><td>MARS: A Video Benchmark for Large-Scale Person Re-identification</td><td>MARS: A Video Benchmark for Large-Scale Person Re-Identification</td><td><a href="http://liangzheng.org/1320.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=mars: a video benchmark for large-scale person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c0387e788a52f10bf35d4d50659cfa515d89fbec</td></tr><tr><td>nova_emotions</td><td>Novaemötions Dataset</td><td>Crowdsourcing facial expressions for affective-interaction</td><td>Crowdsourcing facial expressions for affective-interaction</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=crowdsourcing facial expressions for affective-interaction&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c06b13d0ec3f5c43e2782cd22542588e233733c3</td></tr><tr><td>mcgill</td><td>McGill Real World</td><td>Hierarchical Temporal Graphical Model for Head Pose Estimation and Subsequent Attribute Classification in Real-World Videos</td><td>Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a5a3bc3e5e9753769163cb30b16dbd12e266b93e</td></tr><tr><td>mcgill</td><td>McGill Real World</td><td>Robust Semi-automatic Head Pose Labeling for Real-World Face Video Sequences</td><td>Robust semi-automatic head pose labeling for real-world face video sequences</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=robust semi-automatic head pose labeling for real-world face video sequences&sort=relevance" target="_blank">[s2]</a></td><td>McGill University</td><td>c570d1247e337f91e555c3be0e8c8a5aba539d9f</td></tr><tr><td>qmul_surv_face</td><td>QMUL-SurvFace</td><td>Surveillance Face Recognition Challenge</td><td>Surveillance Face Recognition Challenge</td><td><a href="https://arxiv.org/pdf/1804.09691.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=surveillance face recognition challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c866a2afc871910e3282fd9498dce4ab20f6a332</td></tr><tr><td>emotio_net</td><td>EmotioNet Database</td><td>EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</td><td>EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</td><td><a href="http://cbcsl.ece.ohio-state.edu/cvpr16.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=emotionet: an accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c900e0ad4c95948baaf0acd8449fde26f9b4952a</td></tr><tr><td>imfdb</td><td>IMFDB</td><td>Indian Movie Face Database: A Benchmark for Face Recognition Under Wide Variations</td><td>Indian Movie Face Database: A benchmark for face recognition under wide variations</td><td><a href="http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/papers/Shankar2013Indian.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=indian movie face database: a benchmark for face recognition under wide variations&sort=relevance" target="_blank">[s2]</a></td><td>India</td><td>ca3e88d87e1344d076c964ea89d91a75c417f5ee</td></tr><tr><td>bu_3dfe</td><td>BU-3DFE</td><td>A 3D Facial Expression Database For Facial Behavior Research</td><td>A 3D facial expression database for facial behavior research</td><td><a href="http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR06_a.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d facial expression database for facial behavior research&sort=relevance" target="_blank">[s2]</a></td><td></td><td>cc589c499dcf323fe4a143bbef0074c3e31f9b60</td></tr><tr><td>b3d_ac</td><td>B3D(AC)</td><td>A 3-D Audio-Visual Corpus of Affective Communication</td><td>A 3-D Audio-Visual Corpus of Affective Communication</td><td><a href="http://files.is.tue.mpg.de/jgall/download/jgall_avcorpus_mm10.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3-d audio-visual corpus of affective communication&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae</td></tr><tr><td>jiku_mobile</td><td>Jiku Mobile Video Dataset</td><td>The Jiku Mobile Video Dataset</td><td>The jiku mobile video dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the jiku mobile video dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d178cde92ab3dc0dd2ebee5a76a33d556c39448b</td></tr><tr><td>stair_actions</td><td>STAIR Action</td><td>STAIR Actions: A Video Dataset of Everyday Home Actions</td><td>STAIR Actions: A Video Dataset of Everyday Home Actions</td><td><a href="https://arxiv.org/pdf/1804.04326.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=stair actions: a video dataset of everyday home actions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td></tr><tr><td>megaage</td><td>MegaAge</td><td>Quantifying Facial Age by Posterior of Age Comparisons</td><td>Quantifying Facial Age by Posterior of Age Comparisons</td><td><a href="https://arxiv.org/pdf/1708.09687.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=quantifying facial age by posterior of age comparisons&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d80a3d1f3a438e02a6685e66ee908446766fefa9</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET database and evaluation procedure for face-recognition algorithms</td><td>The FERET database and evaluation procedure for face-recognition algorithms</td><td><a href="http://biometrics.nist.gov/cs_links/face/frvt/feret/FERET_Database_evaluation_procedure.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret database and evaluation procedure for face-recognition algorithms&sort=relevance" target="_blank">[s2]</a></td><td></td><td>dc8b25e35a3acb812beb499844734081722319b4</td></tr><tr><td>families_in_the_wild</td><td>FIW</td><td>Visual Kinship Recognition of Families in the Wild</td><td>Visual Kinship Recognition of Families in the Wild</td><td><a href="https://web.northeastern.edu/smilelab/fiw/papers/Supplemental_PP.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=visual kinship recognition of families in the wild&sort=relevance" target="_blank">[s2]</a></td><td>University of Massachusetts Dartmouth</td><td>dd65f71dac86e36eecbd3ed225d016c3336b4a13</td></tr><tr><td>scut_head</td><td>SCUT HEAD</td><td>Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</td><td>Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</td><td><a href="https://arxiv.org/pdf/1803.09256.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=detecting heads using feature refine net and cascaded multi-scale architecture&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d3200d49a19a4a4e4e9745ee39649b65d80c834b</td></tr><tr><td>sarc3d</td><td>Sarc3D</td><td>SARC3D: a new 3D body model for People Tracking and Re-identification</td><td>SARC3D: A New 3D Body Model for People Tracking and Re-identification</td><td><a href="https://pdfs.semanticscholar.org/e27e/f52c641c2b5100a1b34fd0b819e84a31b4df.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=sarc3d: a new 3d body model for people tracking and re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>e27ef52c641c2b5100a1b34fd0b819e84a31b4df</td></tr><tr><td>fiw_300</td><td>300-W</td><td>300 faces In-the-wild challenge: Database and results</td><td>300 Faces In-The-Wild Challenge: database and results</td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=300 faces in-the-wild challenge: database and results&sort=relevance" target="_blank">[s2]</a></td><td></td><td>e4754afaa15b1b53e70743880484b8d0736990ff</td></tr><tr><td>gfw</td><td>YouTube Pose</td><td>Merge or Not? Learning to Group Faces via Imitation Learning</td><td>Merge or Not? Learning to Group Faces via Imitation Learning</td><td><a href="https://arxiv.org/pdf/1707.03986.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=merge or not? learning to group faces via imitation learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>e58dd160a76349d46f881bd6ddbc2921f08d1050</td></tr><tr><td>visual_phrases</td><td>Phrasal Recognition</td><td>Recognition using Visual Phrases</td><td>Recognition using visual phrases</td><td><a href="http://vision.cs.uiuc.edu/phrasal/recognition_using_visual_phrases.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognition using visual phrases&sort=relevance" target="_blank">[s2]</a></td><td>University of Illinois, Urbana-Champaign</td><td>e8de844fefd54541b71c9823416daa238be65546</td></tr><tr><td>mpi_large</td><td>Large MPI Facial Expression</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mpi facial expression database — a validated database of emotional and conversational facial expressions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td></tr><tr><td>mpi_small</td><td>Small MPI Facial Expression</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mpi facial expression database — a validated database of emotional and conversational facial expressions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td></tr><tr><td>vgg_faces2</td><td>VGG Face2</td><td>VGGFace2: A dataset for recognising faces across pose and age</td><td>VGGFace2: A Dataset for Recognising Faces across Pose and Age</td><td><a href="https://arxiv.org/pdf/1710.08092.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vggface2: a dataset for recognising faces across pose and age&sort=relevance" target="_blank">[s2]</a></td><td></td><td>eb027969f9310e0ae941e2adee2d42cdf07d938c</td></tr><tr><td>msmt_17</td><td>MSMT17</td><td>Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</td><td>Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</td><td><a href="https://arxiv.org/pdf/1711.08565.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person transfer gan to bridge domain gap for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ec792ad2433b6579f2566c932ee414111e194537</td></tr><tr><td>europersons</td><td>EuroCity Persons</td><td>The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</td><td>The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</td><td><a href="https://arxiv.org/pdf/1805.07193.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the eurocity persons dataset: a novel benchmark for object detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4</td></tr><tr><td>mug_faces</td><td>MUG Faces</td><td>The MUG Facial Expression Database</td><td>The MUG facial expression database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mug facial expression database&sort=relevance" target="_blank">[s2]</a></td><td>Aristotle University of Thessaloniki</td><td>f1af714b92372c8e606485a3982eab2f16772ad8</td></tr><tr><td>pku</td><td>PKU</td><td>Swiss-System Based Cascade Ranking for Gait-based Person Re-identification</td><td>Swiss-System Based Cascade Ranking for Gait-Based Person Re-Identification</td><td><a href="https://pdfs.semanticscholar.org/f6c8/d5e35d7e4d60a0104f233ac1a3ab757da53f.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=swiss-system based cascade ranking for gait-based person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f</td></tr><tr><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td>Pedestrian Detection: An Evaluation of the State of the Art</td><td>Pedestrian Detection: An Evaluation of the State of the Art</td><td><a href="http://vision.caltech.edu/Image_Datasets/CaltechPedestrians/files/PAMI12pedestrians.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian detection: an evaluation of the state of the art&sort=relevance" target="_blank">[s2]</a></td><td>California Institute of Technology</td><td>f72f6a45ee240cc99296a287ff725aaa7e7ebb35</td></tr><tr><td>iit_dehli_ear</td><td>IIT Dehli Ear</td><td>Automated human identification using ear imaging</td><td>Automated Human Identification Using Ear Imaging</td><td><a href="https://pdfs.semanticscholar.org/faf4/0ce28857aedf183e193486f5b4b0a8c478a2.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automated human identification using ear imaging&sort=relevance" target="_blank">[s2]</a></td><td></td><td>faf40ce28857aedf183e193486f5b4b0a8c478a2</td></tr><tr><td>miw</td><td>MIW</td><td>Automatic Facial Makeup Detection with Application in Face Recognition</td><td>Automatic facial makeup detection with application in face recognition</td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic facial makeup detection with application in face recognition&sort=relevance" target="_blank">[s2]</a></td><td>West Virginia University</td><td>fcc6fe6007c322641796cb8792718641856a22a7</td></tr><tr><td>youtube_makeup</td><td>YMU</td><td>Automatic Facial Makeup Detection with Application in Face Recognition</td><td>Automatic facial makeup detection with application in face recognition</td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic facial makeup detection with application in face recognition&sort=relevance" target="_blank">[s2]</a></td><td>West Virginia University</td><td>fcc6fe6007c322641796cb8792718641856a22a7</td></tr><tr><td>nd_2006</td><td>ND-2006</td><td>Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition</td><td>Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=using a multi-instance enrollment representation to improve 3d face recognition&sort=relevance" target="_blank">[s2]</a></td><td>University of Notre Dame</td><td>fd8168f1c50de85bac58a8d328df0a50248b16ae</td></tr><tr><td>imdb_face</td><td>IMDB Face</td><td>The Devil of Face Recognition is in the Noise</td><td>The Devil of Face Recognition is in the Noise</td><td><a href="https://arxiv.org/pdf/1807.11649.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the devil of face recognition is in the noise&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9e31e77f9543ab42474ba4e9330676e18c242e72</td></tr></table></body></html> \ No newline at end of file
+discovering, annotating, and recognizing scene attributes&sort=relevance" target="_blank">[s2]</a></td><td>Brown University</td><td>833fa04463d90aab4a9fe2870d480f0b40df446e</td></tr><tr><td>imdb_wiki</td><td>IMDB</td><td>DEX: Deep EXpectation of apparent age from a single image</td><td>DEX: Deep EXpectation of Apparent Age from a Single Image</td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Rothe_DEX_Deep_EXpectation_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=dex: deep expectation of apparent age from a single image&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8355d095d3534ef511a9af68a3b2893339e3f96b</td></tr><tr><td>awe_ears</td><td>AWE Ears</td><td>Ear Recognition: More Than a Survey</td><td>Ear Recognition: More Than a Survey</td><td><a href="https://arxiv.org/pdf/1611.06203.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ear recognition: more than a survey&sort=relevance" target="_blank">[s2]</a></td><td></td><td>84fe5b4ac805af63206012d29523a1e033bc827e</td></tr><tr><td>casia_webface</td><td>CASIA Webface</td><td>Learning Face Representation from Scratch</td><td>Learning Face Representation from Scratch</td><td><a href="https://arxiv.org/pdf/1411.7923.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning face representation from scratch&sort=relevance" target="_blank">[s2]</a></td><td></td><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td></tr><tr><td>used</td><td>USED Social Event Dataset</td><td>USED: A Large-scale Social Event Detection Dataset</td><td>USED: a large-scale social event detection dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=used: a large-scale social event detection dataset&sort=relevance" target="_blank">[s2]</a></td><td>University of Trento</td><td>8627f019882b024aef92e4eb9355c499c733e5b7</td></tr><tr><td>tiny_faces</td><td>TinyFace</td><td>Low-Resolution Face Recognition</td><td>Low-Resolution Face Recognition</td><td><a href="https://arxiv.org/pdf/1811.08965.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=low-resolution face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8990cdce3f917dad622e43e033db686b354d057c</td></tr><tr><td>mafl</td><td>MAFL</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facial landmark detection by deep multi-task learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td></tr><tr><td>mtfl</td><td>MTFL</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facial landmark detection by deep multi-task learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td></tr><tr><td>10k_US_adult_faces</td><td>10K US Adult Faces</td><td>The intrinsic memorability of face images</td><td>The intrinsic memorability of face photographs.</td><td><a href="https://pdfs.semanticscholar.org/8b2d/d5c61b23ead5ae5508bb8ce808b5ea266730.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the intrinsic memorability of face images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8b2dd5c61b23ead5ae5508bb8ce808b5ea266730</td></tr><tr><td>fei</td><td>FEI</td><td>Captura e Alinhamento de Imagens: Um Banco de Faces Brasileiro</td><td>A new ranking method for principal components analysis and its application to face image analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=captura e alinhamento de imagens: um banco de faces brasileiro&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8b56e33f33e582f3e473dba573a16b598ed9bcdc</td></tr><tr><td>chalearn</td><td>ChaLearn</td><td>ChaLearn Looking at People: A Review of Events and Resources</td><td>ChaLearn looking at people: A review of events and resources</td><td><a href="https://arxiv.org/pdf/1701.02664.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=chalearn looking at people: a review of events and resources&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td></tr><tr><td>hda_plus</td><td>HDA+</td><td>The HDA+ data set for research on fully automated re-identification systems</td><td>The HDA+ Data Set for Research on Fully Automated Re-identification Systems</td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w19/11%20-%20The%20HDA%20data%20set%20for%20research%20on%20fully.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the hda+ data set for research on fully automated re-identification systems&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8f02ec0be21461fbcedf51d864f944cfc42c875f</td></tr><tr><td>morph</td><td>MORPH Commercial</td><td>MORPH: A Longitudinal Image Database of Normal Adult Age-Progression</td><td>MORPH: a longitudinal image database of normal adult age-progression</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=morph: a longitudinal image database of normal adult age-progression&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td></tr><tr><td>morph_nc</td><td>MORPH Non-Commercial</td><td>MORPH: A Longitudinal Image Database of Normal Adult Age-Progression</td><td>MORPH: a longitudinal image database of normal adult age-progression</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=morph: a longitudinal image database of normal adult age-progression&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td></tr><tr><td>v47</td><td>V47</td><td>Re-identification of Pedestrians with Variable Occlusion and Scale</td><td>Re-identification of pedestrians with variable occlusion and scale</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=re-identification of pedestrians with variable occlusion and scale&sort=relevance" target="_blank">[s2]</a></td><td>Kingston University</td><td>922e0a51a3b8c67c4c6ac09a577ff674cbd28b34</td></tr><tr><td>towncenter</td><td>TownCenter</td><td>Stable Multi-Target Tracking in Real-Time Surveillance Video</td><td>Stable multi-target tracking in real-time surveillance video</td><td><a href="http://ben.benfold.com/docs/benfold_reid_cvpr2011-preprint.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=stable multi-target tracking in real-time surveillance video&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9361b784e73e9238d5cefbea5ac40d35d1e3103f</td></tr><tr><td>helen</td><td>Helen</td><td>Interactive Facial Feature Localization</td><td>Interactive Facial Feature Localization</td><td><a href="https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=interactive facial feature localization&sort=relevance" target="_blank">[s2]</a></td><td></td><td>95f12d27c3b4914e0668a268360948bce92f7db3</td></tr><tr><td>4dfab</td><td>4DFAB</td><td>4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</td><td>4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</td><td><a href="https://arxiv.org/pdf/1712.01443.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=4dfab: a large scale 4d facial expression database for biometric applications&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9696ad8b164f5e10fcfe23aacf74bd6168aebb15</td></tr><tr><td>megaface</td><td>MegaFace</td><td>The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</td><td>The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</td><td><a href="https://arxiv.org/pdf/1512.00596.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the megaface benchmark: 1 million faces for recognition at scale&sort=relevance" target="_blank">[s2]</a></td><td></td><td>96e0cfcd81cdeb8282e29ef9ec9962b125f379b0</td></tr><tr><td>ilids_vid_reid</td><td>iLIDS-VID</td><td>Person Re-Identi cation by Video Ranking</td><td>Person Re-identification by Video Ranking</td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identi cation by video ranking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>98bb029afe2a1239c3fdab517323066f0957b81b</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>Person reidentification by video ranking</td><td>Person Re-identification by Video Ranking</td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person reidentification by video ranking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>98bb029afe2a1239c3fdab517323066f0957b81b</td></tr><tr><td>m2vts</td><td>m2vts</td><td>The M2VTS Multimodal Face Database (Release 1.00)</td><td>The M2VTS Multimodal Face Database (Release 1.00)</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the m2vts multimodal face database (release 1.00)&sort=relevance" target="_blank">[s2]</a></td><td>Laboratoire de Télécommunications et Télédétection, UCL, Louvain-La-Neuve, Belgium</td><td>9a9877791945c6fa4c1743ec6d3fb32570ef8481</td></tr><tr><td>who_goes_there</td><td>WGT</td><td>Who Goes There? Approaches to Mapping Facial Appearance Diversity</td><td>Who goes there?: approaches to mapping facial appearance diversity</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=who goes there? approaches to mapping facial appearance diversity&sort=relevance" target="_blank">[s2]</a></td><td>University of Kentucky</td><td>9b9bf5e623cb8af7407d2d2d857bc3f1b531c182</td></tr><tr><td>facebook_100</td><td>Facebook100</td><td>Scaling Up Biologically-Inspired Computer Vision: A Case Study in Unconstrained Face Recognition on Facebook</td><td>Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scaling up biologically-inspired computer vision: a case study in unconstrained face recognition on facebook&sort=relevance" target="_blank">[s2]</a></td><td>Harvard University</td><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td></tr><tr><td>pubfig_83</td><td>pubfig83</td><td>Scaling Up Biologically-Inspired Computer Vision: A Case Study in Unconstrained Face Recognition on Facebook</td><td>Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scaling up biologically-inspired computer vision: a case study in unconstrained face recognition on facebook&sort=relevance" target="_blank">[s2]</a></td><td>Harvard University</td><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td></tr><tr><td>precarious</td><td>Precarious</td><td>Expecting the Unexpected: Training Detectors for Unusual Pedestrians With Adversarial Imposters</td><td>Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters</td><td><a href="https://arxiv.org/pdf/1703.06283.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=expecting the unexpected: training detectors for unusual pedestrians with adversarial imposters&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9e5378e7b336c89735d3bb15cf67eff96f86d39a</td></tr><tr><td>mafl</td><td>MAFL</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning deep representation for face alignment with auxiliary attributes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td></tr><tr><td>mtfl</td><td>MTFL</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning deep representation for face alignment with auxiliary attributes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td></tr><tr><td>moments_in_time</td><td>Moments in Time</td><td>Moments in Time Dataset: one million videos for event understanding</td><td>Moments in Time Dataset: one million videos for event understanding</td><td><a href="https://arxiv.org/pdf/1801.03150.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=moments in time dataset: one million videos for event understanding&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a5a44a32a91474f00a3cda671a802e87c899fbb4</td></tr><tr><td>aflw</td><td>AFLW</td><td>Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization</td><td>Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/martin_koestinger-slides.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td></tr><tr><td>market1203</td><td>Market 1203</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=orientation driven bag of appearances for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td></tr><tr><td>pku_reid</td><td>PKU-Reid</td><td>Orientation driven bag of appearances for person re-identification</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=orientation driven bag of appearances for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td></tr><tr><td>hi4d_adsip</td><td>Hi4D-ADSIP</td><td>Hi4D-ADSIP 3-D dynamic facial articulation database</td><td>Hi4D-ADSIP 3-D dynamic facial articulation database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hi4d-adsip 3-d dynamic facial articulation database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a8d0b149c2eadaa02204d3e4356fbc8eccf3b315</td></tr><tr><td>yawdd</td><td>YawDD</td><td>YawDD: A Yawning Detection Dataset</td><td>YawDD: a yawning detection dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=yawdd: a yawning detection dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a94cae786d515d3450d48267e12ca954aab791c4</td></tr><tr><td>mrp_drone</td><td>MRP Drone</td><td>Investigating Open-World Person Re-identification Using a Drone</td><td>Investigating Open-World Person Re-identification Using a Drone</td><td><a href="https://pdfs.semanticscholar.org/ad01/687649d95cd5b56d7399a9603c4b8e2217d7.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=investigating open-world person re-identification using a drone&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ad01687649d95cd5b56d7399a9603c4b8e2217d7</td></tr><tr><td>put_face</td><td>Put Face</td><td>The PUT face database</td><td>The put face database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the put face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ae0aee03d946efffdc7af2362a42d3750e7dd48a</td></tr><tr><td>afew_va</td><td>AFEW-VA</td><td>Collecting Large, Richly Annotated Facial-Expression Databases from Movies</td><td>Collecting Large, Richly Annotated Facial-Expression Databases from Movies</td><td><a href="http://users.cecs.anu.edu.au/~adhall/Dhall_Goecke_Lucey_Gedeon_M_2012.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=collecting large, richly annotated facial-expression databases from movies&sort=relevance" target="_blank">[s2]</a></td><td>Australian National University</td><td>b1f4423c227fa37b9680787be38857069247a307</td></tr><tr><td>ucf_101</td><td>UCF101</td><td>UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</td><td>UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</td><td><a href="https://arxiv.org/pdf/1212.0402.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ucf101: a dataset of 101 human actions classes from videos in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b5f2846a506fc417e7da43f6a7679146d99c5e96</td></tr><tr><td>m2vtsdb_extended</td><td>xm2vtsdb</td><td>XM2VTSDB: The Extended M2VTS Database</td><td>Xm2vtsdb: the Extended M2vts Database</td><td><a href="https://pdfs.semanticscholar.org/b626/28ac06bbac998a3ab825324a41a11bc3a988.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=xm2vtsdb: the extended m2vts database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b62628ac06bbac998a3ab825324a41a11bc3a988</td></tr><tr><td>ifdb</td><td>IFDB</td><td>Iranian Face Database with age, pose and expression</td><td>Iranian Face Database with age, pose and expression</td><td><a href="http://www.iranprc.org/pdf/paper/2007-02.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iranian face database with age, pose and expression&sort=relevance" target="_blank">[s2]</a></td><td>Islamic Azad University</td><td>b71d1aa90dcbe3638888725314c0d56640c1fef1</td></tr><tr><td>bp4d_spontanous</td><td>BP4D-Spontanous</td><td>A high resolution spontaneous 3D dynamic facial expression database</td><td>A high-resolution spontaneous 3D dynamic facial expression database</td><td><a href="http://www.csee.usf.edu/~scanavan/papers/FG2013.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a high resolution spontaneous 3d dynamic facial expression database&sort=relevance" target="_blank">[s2]</a></td><td>SUNY Binghamton</td><td>b91f54e1581fbbf60392364323d00a0cd43e493c</td></tr><tr><td>pornodb</td><td>Pornography DB</td><td>Pooling in Image Representation: the Visual Codeword Point of View</td><td>Pooling in image representation: The visual codeword point of view</td><td><a href="http://cedric.cnam.fr/~thomen/papers/avila_CVIU2012_final.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pooling in image representation: the visual codeword point of view&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b92a1ed9622b8268ae3ac9090e25789fc41cc9b8</td></tr><tr><td>scut_fbp</td><td>SCUT-FBP</td><td>SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</td><td>SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</td><td><a href="https://arxiv.org/pdf/1511.02459.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scut-fbp: a benchmark dataset for facial beauty perception&sort=relevance" target="_blank">[s2]</a></td><td></td><td>bd26dabab576adb6af30484183c9c9c8379bf2e0</td></tr><tr><td>hda_plus</td><td>HDA+</td><td>A Multi-camera video data set for research on High-Definition surveillance</td><td>HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance</td><td><a href="https://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a multi-camera video data set for research on high-definition surveillance&sort=relevance" target="_blank">[s2]</a></td><td></td><td>bd88bb2e4f351352d88ee7375af834360e223498</td></tr><tr><td>mars</td><td>MARS</td><td>MARS: A Video Benchmark for Large-Scale Person Re-identification</td><td>MARS: A Video Benchmark for Large-Scale Person Re-Identification</td><td><a href="http://liangzheng.org/1320.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=mars: a video benchmark for large-scale person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c0387e788a52f10bf35d4d50659cfa515d89fbec</td></tr><tr><td>nova_emotions</td><td>Novaemötions Dataset</td><td>Crowdsourcing facial expressions for affective-interaction</td><td>Crowdsourcing facial expressions for affective-interaction</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=crowdsourcing facial expressions for affective-interaction&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c06b13d0ec3f5c43e2782cd22542588e233733c3</td></tr><tr><td>mcgill</td><td>McGill Real World</td><td>Hierarchical Temporal Graphical Model for Head Pose Estimation and Subsequent Attribute Classification in Real-World Videos</td><td>Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a5a3bc3e5e9753769163cb30b16dbd12e266b93e</td></tr><tr><td>mcgill</td><td>McGill Real World</td><td>Robust Semi-automatic Head Pose Labeling for Real-World Face Video Sequences</td><td>Robust semi-automatic head pose labeling for real-world face video sequences</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=robust semi-automatic head pose labeling for real-world face video sequences&sort=relevance" target="_blank">[s2]</a></td><td>McGill University</td><td>c570d1247e337f91e555c3be0e8c8a5aba539d9f</td></tr><tr><td>qmul_surv_face</td><td>QMUL-SurvFace</td><td>Surveillance Face Recognition Challenge</td><td>Surveillance Face Recognition Challenge</td><td><a href="https://arxiv.org/pdf/1804.09691.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=surveillance face recognition challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c866a2afc871910e3282fd9498dce4ab20f6a332</td></tr><tr><td>emotio_net</td><td>EmotioNet Database</td><td>EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</td><td>EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</td><td><a href="http://cbcsl.ece.ohio-state.edu/cvpr16.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=emotionet: an accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c900e0ad4c95948baaf0acd8449fde26f9b4952a</td></tr><tr><td>imfdb</td><td>IMFDB</td><td>Indian Movie Face Database: A Benchmark for Face Recognition Under Wide Variations</td><td>Indian Movie Face Database: A benchmark for face recognition under wide variations</td><td><a href="http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/papers/Shankar2013Indian.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=indian movie face database: a benchmark for face recognition under wide variations&sort=relevance" target="_blank">[s2]</a></td><td>CVIT, IIITH, India</td><td>ca3e88d87e1344d076c964ea89d91a75c417f5ee</td></tr><tr><td>bu_3dfe</td><td>BU-3DFE</td><td>A 3D Facial Expression Database For Facial Behavior Research</td><td>A 3D facial expression database for facial behavior research</td><td><a href="http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR06_a.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d facial expression database for facial behavior research&sort=relevance" target="_blank">[s2]</a></td><td></td><td>cc589c499dcf323fe4a143bbef0074c3e31f9b60</td></tr><tr><td>b3d_ac</td><td>B3D(AC)</td><td>A 3-D Audio-Visual Corpus of Affective Communication</td><td>A 3-D Audio-Visual Corpus of Affective Communication</td><td><a href="http://files.is.tue.mpg.de/jgall/download/jgall_avcorpus_mm10.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3-d audio-visual corpus of affective communication&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae</td></tr><tr><td>jiku_mobile</td><td>Jiku Mobile Video Dataset</td><td>The Jiku Mobile Video Dataset</td><td>The jiku mobile video dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the jiku mobile video dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d178cde92ab3dc0dd2ebee5a76a33d556c39448b</td></tr><tr><td>stair_actions</td><td>STAIR Action</td><td>STAIR Actions: A Video Dataset of Everyday Home Actions</td><td>STAIR Actions: A Video Dataset of Everyday Home Actions</td><td><a href="https://arxiv.org/pdf/1804.04326.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=stair actions: a video dataset of everyday home actions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td></tr><tr><td>megaage</td><td>MegaAge</td><td>Quantifying Facial Age by Posterior of Age Comparisons</td><td>Quantifying Facial Age by Posterior of Age Comparisons</td><td><a href="https://arxiv.org/pdf/1708.09687.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=quantifying facial age by posterior of age comparisons&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d80a3d1f3a438e02a6685e66ee908446766fefa9</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET database and evaluation procedure for face-recognition algorithms</td><td>The FERET database and evaluation procedure for face-recognition algorithms</td><td><a href="http://biometrics.nist.gov/cs_links/face/frvt/feret/FERET_Database_evaluation_procedure.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret database and evaluation procedure for face-recognition algorithms&sort=relevance" target="_blank">[s2]</a></td><td></td><td>dc8b25e35a3acb812beb499844734081722319b4</td></tr><tr><td>families_in_the_wild</td><td>FIW</td><td>Visual Kinship Recognition of Families in the Wild</td><td>Visual Kinship Recognition of Families in the Wild</td><td><a href="https://web.northeastern.edu/smilelab/fiw/papers/Supplemental_PP.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=visual kinship recognition of families in the wild&sort=relevance" target="_blank">[s2]</a></td><td>University of Massachusetts Dartmouth</td><td>dd65f71dac86e36eecbd3ed225d016c3336b4a13</td></tr><tr><td>scut_head</td><td>SCUT HEAD</td><td>Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</td><td>Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</td><td><a href="https://arxiv.org/pdf/1803.09256.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=detecting heads using feature refine net and cascaded multi-scale architecture&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d3200d49a19a4a4e4e9745ee39649b65d80c834b</td></tr><tr><td>sarc3d</td><td>Sarc3D</td><td>SARC3D: a new 3D body model for People Tracking and Re-identification</td><td>SARC3D: A New 3D Body Model for People Tracking and Re-identification</td><td><a href="https://pdfs.semanticscholar.org/e27e/f52c641c2b5100a1b34fd0b819e84a31b4df.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=sarc3d: a new 3d body model for people tracking and re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>e27ef52c641c2b5100a1b34fd0b819e84a31b4df</td></tr><tr><td>fiw_300</td><td>300-W</td><td>300 faces In-the-wild challenge: Database and results</td><td>300 Faces In-The-Wild Challenge: database and results</td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=300 faces in-the-wild challenge: database and results&sort=relevance" target="_blank">[s2]</a></td><td></td><td>e4754afaa15b1b53e70743880484b8d0736990ff</td></tr><tr><td>gfw</td><td>YouTube Pose</td><td>Merge or Not? Learning to Group Faces via Imitation Learning</td><td>Merge or Not? Learning to Group Faces via Imitation Learning</td><td><a href="https://arxiv.org/pdf/1707.03986.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=merge or not? learning to group faces via imitation learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>e58dd160a76349d46f881bd6ddbc2921f08d1050</td></tr><tr><td>visual_phrases</td><td>Phrasal Recognition</td><td>Recognition using Visual Phrases</td><td>Recognition using visual phrases</td><td><a href="http://vision.cs.uiuc.edu/phrasal/recognition_using_visual_phrases.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognition using visual phrases&sort=relevance" target="_blank">[s2]</a></td><td>University of Illinois, Urbana-Champaign</td><td>e8de844fefd54541b71c9823416daa238be65546</td></tr><tr><td>mpi_large</td><td>Large MPI Facial Expression</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mpi facial expression database — a validated database of emotional and conversational facial expressions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td></tr><tr><td>mpi_small</td><td>Small MPI Facial Expression</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mpi facial expression database — a validated database of emotional and conversational facial expressions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td></tr><tr><td>vgg_faces2</td><td>VGG Face2</td><td>VGGFace2: A dataset for recognising faces across pose and age</td><td>VGGFace2: A Dataset for Recognising Faces across Pose and Age</td><td><a href="https://arxiv.org/pdf/1710.08092.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vggface2: a dataset for recognising faces across pose and age&sort=relevance" target="_blank">[s2]</a></td><td></td><td>eb027969f9310e0ae941e2adee2d42cdf07d938c</td></tr><tr><td>msmt_17</td><td>MSMT17</td><td>Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</td><td>Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</td><td><a href="https://arxiv.org/pdf/1711.08565.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person transfer gan to bridge domain gap for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ec792ad2433b6579f2566c932ee414111e194537</td></tr><tr><td>europersons</td><td>EuroCity Persons</td><td>The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</td><td>The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</td><td><a href="https://arxiv.org/pdf/1805.07193.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the eurocity persons dataset: a novel benchmark for object detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4</td></tr><tr><td>mug_faces</td><td>MUG Faces</td><td>The MUG Facial Expression Database</td><td>The MUG facial expression database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mug facial expression database&sort=relevance" target="_blank">[s2]</a></td><td>Aristotle University of Thessaloniki</td><td>f1af714b92372c8e606485a3982eab2f16772ad8</td></tr><tr><td>pku</td><td>PKU</td><td>Swiss-System Based Cascade Ranking for Gait-based Person Re-identification</td><td>Swiss-System Based Cascade Ranking for Gait-Based Person Re-Identification</td><td><a href="https://pdfs.semanticscholar.org/f6c8/d5e35d7e4d60a0104f233ac1a3ab757da53f.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=swiss-system based cascade ranking for gait-based person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f</td></tr><tr><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td>Pedestrian Detection: An Evaluation of the State of the Art</td><td>Pedestrian Detection: An Evaluation of the State of the Art</td><td><a href="http://vision.caltech.edu/Image_Datasets/CaltechPedestrians/files/PAMI12pedestrians.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian detection: an evaluation of the state of the art&sort=relevance" target="_blank">[s2]</a></td><td>California Institute of Technology</td><td>f72f6a45ee240cc99296a287ff725aaa7e7ebb35</td></tr><tr><td>iit_dehli_ear</td><td>IIT Dehli Ear</td><td>Automated human identification using ear imaging</td><td>Automated Human Identification Using Ear Imaging</td><td><a href="https://pdfs.semanticscholar.org/faf4/0ce28857aedf183e193486f5b4b0a8c478a2.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automated human identification using ear imaging&sort=relevance" target="_blank">[s2]</a></td><td></td><td>faf40ce28857aedf183e193486f5b4b0a8c478a2</td></tr><tr><td>miw</td><td>MIW</td><td>Automatic Facial Makeup Detection with Application in Face Recognition</td><td>Automatic facial makeup detection with application in face recognition</td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic facial makeup detection with application in face recognition&sort=relevance" target="_blank">[s2]</a></td><td>West Virginia University</td><td>fcc6fe6007c322641796cb8792718641856a22a7</td></tr><tr><td>youtube_makeup</td><td>YMU</td><td>Automatic Facial Makeup Detection with Application in Face Recognition</td><td>Automatic facial makeup detection with application in face recognition</td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic facial makeup detection with application in face recognition&sort=relevance" target="_blank">[s2]</a></td><td>West Virginia University</td><td>fcc6fe6007c322641796cb8792718641856a22a7</td></tr><tr><td>nd_2006</td><td>ND-2006</td><td>Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition</td><td>Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=using a multi-instance enrollment representation to improve 3d face recognition&sort=relevance" target="_blank">[s2]</a></td><td>University of Notre Dame</td><td>fd8168f1c50de85bac58a8d328df0a50248b16ae</td></tr><tr><td>imdb_face</td><td>IMDB Face</td><td>The Devil of Face Recognition is in the Noise</td><td>The Devil of Face Recognition is in the Noise</td><td><a href="https://arxiv.org/pdf/1807.11649.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the devil of face recognition is in the noise&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9e31e77f9543ab42474ba4e9330676e18c242e72</td></tr></table></body></html> \ No newline at end of file
diff --git a/scraper/reports/report_coverage.html b/scraper/reports/report_coverage.html
index 9243895f..4e5847be 100644
--- a/scraper/reports/report_coverage.html
+++ b/scraper/reports/report_coverage.html
@@ -1 +1 @@
-<!doctype html><html><head><meta charset='utf-8'><title>Coverage</title><link rel='stylesheet' href='reports.css'></head><body><h2>Coverage</h2><table border='1' cellpadding='3' cellspacing='3'><th>Paper ID</th><th>Megapixels Key</th><th>Megapixels Name</th><th>Report Link</th><th>PDF Link</th><th>Journal</th><th>Type</th><th>Address</th><th>Country</th><th>Lat</th><th>Lng</th><th>Coverage</th><th>Total Citations</th><th>Geocoded Citations</th><th>Unknown Citations</th><th>Empty Citations</th><th>With PDF</th><th>With DOI</th><tr><td>0e986f51fe45b00633de9fd0c94d082d2be51406</td><td>afw</td><td>AFW</td><td><a href="papers/0e986f51fe45b00633de9fd0c94d082d2be51406.html" target="_blank">Face detection, pose estimation, and landmark localization in the wild</a></td><td><a href="http://crcv.ucf.edu/courses/CAP6412/Spring2013/papers/zhu-ramanan-face-cvpr12.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>999</td><td>623</td><td>376</td><td>59</td><td>622</td><td>387</td></tr><tr><td>b5f2846a506fc417e7da43f6a7679146d99c5e96</td><td>ucf_101</td><td>UCF101</td><td><a href="papers/b5f2846a506fc417e7da43f6a7679146d99c5e96.html" target="_blank">UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</a></td><td><a href="https://arxiv.org/pdf/1212.0402.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>999</td><td>614</td><td>385</td><td>73</td><td>716</td><td>283</td></tr><tr><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td><td>lfw</td><td>LFW</td><td><a href="papers/370b5757a5379b15e30d619e4d3fb9e8e13f3256.html" target="_blank">Labeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments</a></td><td><a href="https://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>999</td><td>591</td><td>406</td><td>71</td><td>639</td><td>371</td></tr><tr><td>0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a</td><td>voc</td><td>VOC</td><td><a href="papers/0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a.html" target="_blank">The Pascal Visual Object Classes (VOC) Challenge</a></td><td><a href="http://eprints.pascal-network.org/archive/00006187/01/PascalVOC_IJCV2009.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>59%</td><td>999</td><td>587</td><td>412</td><td>35</td><td>611</td><td>414</td></tr><tr><td>2e384f057211426ac5922f1b33d2aa8df5d51f57</td><td>a_pascal_yahoo</td><td>aPascal</td><td><a href="papers/2e384f057211426ac5922f1b33d2aa8df5d51f57.html" target="_blank">Describing objects by their attributes</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0468.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>University of Illinois, Urbana-Champaign</td><td>United States</td><td>40.11116745</td><td>-88.22587665</td><td>58%</td><td>999</td><td>575</td><td>423</td><td>74</td><td>738</td><td>264</td></tr><tr><td>5e0f8c355a37a5a89351c02f174e7a5ddcb98683</td><td>coco</td><td>COCO</td><td><a href="papers/5e0f8c355a37a5a89351c02f174e7a5ddcb98683.html" target="_blank">Microsoft COCO: Common Objects in Context</a></td><td><a href="https://arxiv.org/pdf/1405.0312.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>999</td><td>574</td><td>425</td><td>29</td><td>799</td><td>193</td></tr><tr><td>4d9a02d080636e9666c4d1cc438b9893391ec6c7</td><td>cohn_kanade_plus</td><td>CK+</td><td><a href="papers/4d9a02d080636e9666c4d1cc438b9893391ec6c7.html" target="_blank">The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression</a></td><td><a href="http://www.iainm.com/iainm/Publications_files/2010_The%20Extended.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops</td><td>edu</td><td>University of Pittsburgh</td><td>United States</td><td>40.44415295</td><td>-79.96243993</td><td>58%</td><td>975</td><td>569</td><td>405</td><td>67</td><td>475</td><td>510</td></tr><tr><td>10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5</td><td>inria_person</td><td>INRIA Pedestrian</td><td><a href="papers/10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5.html" target="_blank">Histograms of oriented gradients for human detection</a></td><td><a href="http://courses.cs.washington.edu/courses/cse576/12sp/notes/CVPR2005_HOG.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td>edu</td><td>INRIA Rhone-Alps, Montbonnot, France</td><td>France</td><td>45.21788600</td><td>5.80736900</td><td>57%</td><td>999</td><td>565</td><td>434</td><td>67</td><td>537</td><td>477</td></tr><tr><td>759a3b3821d9f0e08e0b0a62c8b693230afc3f8d</td><td>pubfig</td><td>PubFig</td><td><a href="papers/759a3b3821d9f0e08e0b0a62c8b693230afc3f8d.html" target="_blank">Attribute and simile classifiers for face verification</a></td><td><a href="http://acberg.com/papers/kbbn09iccv.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 12th International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>894</td><td>557</td><td>337</td><td>56</td><td>604</td><td>300</td></tr><tr><td>162ea969d1929ed180cc6de9f0bf116993ff6e06</td><td>vgg_faces</td><td>VGG Face</td><td><a href="papers/162ea969d1929ed180cc6de9f0bf116993ff6e06.html" target="_blank">Deep Face Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>999</td><td>550</td><td>449</td><td>70</td><td>635</td><td>370</td></tr><tr><td>6d96f946aaabc734af7fe3fc4454cf8547fcd5ed</td><td>ar_facedb</td><td>AR Face</td><td><a href="papers/6d96f946aaabc734af7fe3fc4454cf8547fcd5ed.html" target="_blank">The AR face database</a></td><td><span class="gray">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>999</td><td>541</td><td>458</td><td>51</td><td>459</td><td>573</td></tr><tr><td>31b58ced31f22eab10bd3ee2d9174e7c14c27c01</td><td>tiny_images</td><td>Tiny Images</td><td><a href="papers/31b58ced31f22eab10bd3ee2d9174e7c14c27c01.html" target="_blank">80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition</a></td><td><a href="http://cvcl.mit.edu/SUNSeminar/Torralba_80M_PAMI08.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>999</td><td>540</td><td>458</td><td>94</td><td>685</td><td>327</td></tr><tr><td>026e3363b7f76b51cc711886597a44d5f1fd1de2</td><td>kitti</td><td>KITTI</td><td><a href="papers/026e3363b7f76b51cc711886597a44d5f1fd1de2.html" target="_blank">Vision meets robotics: The KITTI dataset</a></td><td><a href="https://pdfs.semanticscholar.org/026e/3363b7f76b51cc711886597a44d5f1fd1de2.pdf" target="_blank">[pdf]</a></td><td>I. J. Robotics Res.</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>999</td><td>538</td><td>461</td><td>37</td><td>570</td><td>448</td></tr><tr><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td><td>cohn_kanade</td><td>CK</td><td><a href="papers/23fc83c8cfff14a16df7ca497661264fc54ed746.html" target="_blank">Comprehensive Database for Facial Expression Analysis</a></td><td><a href="https://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>999</td><td>532</td><td>467</td><td>75</td><td>572</td><td>439</td></tr><tr><td>18c72175ddbb7d5956d180b65a96005c100f6014</td><td>yale_faces</td><td>YaleFaces</td><td><a href="papers/18c72175ddbb7d5956d180b65a96005c100f6014.html" target="_blank">From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</a></td><td><a href="https://pdfs.semanticscholar.org/97bb/c2b439a79d4dc0dc7199d71ed96ad5e3fd0e.pdf" target="_blank">[pdf]</a></td><td>IEEE Trans. Pattern Anal. Mach. Intell.</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>999</td><td>528</td><td>471</td><td>77</td><td>551</td><td>459</td></tr><tr><td>18ae7c9a4bbc832b8b14bc4122070d7939f5e00e</td><td>frgc</td><td>FRGC</td><td><a href="papers/18ae7c9a4bbc832b8b14bc4122070d7939f5e00e.html" target="_blank">Overview of the face recognition grand challenge</a></td><td><a href="http://ivizlab.sfu.ca/arya/Papers/IEEE/Proceedings/C%20V%20P%20R-%2005/Face%20Recognition%20Grand%20Challenge.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td>edu</td><td>NIST</td><td>United States</td><td>39.14004000</td><td>-77.21850600</td><td>51%</td><td>999</td><td>513</td><td>485</td><td>114</td><td>594</td><td>424</td></tr><tr><td>2ad0ee93d029e790ebb50574f403a09854b65b7e</td><td>yale_faces</td><td>YaleFaces</td><td><a href="papers/2ad0ee93d029e790ebb50574f403a09854b65b7e.html" target="_blank">Acquiring linear subspaces for face recognition under variable lighting</a></td><td><a href="http://vision.cornell.edu/se3/wp-content/uploads/2014/09/pami05.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>999</td><td>510</td><td>489</td><td>110</td><td>525</td><td>485</td></tr><tr><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td><td>feret</td><td>FERET</td><td><a href="papers/0f0fcf041559703998abf310e56f8a2f90ee6f21.html" target="_blank">The FERET Evaluation Methodology for Face-Recognition Algorithms</a></td><td><a href="https://pdfs.semanticscholar.org/5099/7a5605c1f61e09e9a96789ed7495be6625aa.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>999</td><td>503</td><td>496</td><td>103</td><td>560</td><td>454</td></tr><tr><td>f72f6a45ee240cc99296a287ff725aaa7e7ebb35</td><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td><a href="papers/f72f6a45ee240cc99296a287ff725aaa7e7ebb35.html" target="_blank">Pedestrian Detection: An Evaluation of the State of the Art</a></td><td><a href="http://vision.caltech.edu/Image_Datasets/CaltechPedestrians/files/PAMI12pedestrians.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>California Institute of Technology</td><td>United States</td><td>34.13710185</td><td>-118.12527487</td><td>49%</td><td>999</td><td>493</td><td>506</td><td>71</td><td>541</td><td>464</td></tr><tr><td>b62628ac06bbac998a3ab825324a41a11bc3a988</td><td>m2vtsdb_extended</td><td>xm2vtsdb</td><td><a href="papers/b62628ac06bbac998a3ab825324a41a11bc3a988.html" target="_blank">Xm2vtsdb: the Extended M2vts Database</a></td><td><a href="https://pdfs.semanticscholar.org/b626/28ac06bbac998a3ab825324a41a11bc3a988.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>906</td><td>491</td><td>415</td><td>44</td><td>542</td><td>408</td></tr><tr><td>55206f0b5f57ce17358999145506cd01e570358c</td><td>orl</td><td>ORL</td><td><a href="papers/55206f0b5f57ce17358999145506cd01e570358c.html" target="_blank">Parameterisation of a stochastic model for human face identification</a></td><td><a href="https://pdfs.semanticscholar.org/5520/6f0b5f57ce17358999145506cd01e570358c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>999</td><td>466</td><td>533</td><td>97</td><td>569</td><td>445</td></tr><tr><td>45c31cde87258414f33412b3b12fc5bec7cb3ba9</td><td>jaffe</td><td>JAFFE</td><td><a href="papers/45c31cde87258414f33412b3b12fc5bec7cb3ba9.html" target="_blank">Coding Facial Expressions with Gabor Wavelets</a></td><td><a href="https://pdfs.semanticscholar.org/45c3/1cde87258414f33412b3b12fc5bec7cb3ba9.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>848</td><td>464</td><td>384</td><td>55</td><td>420</td><td>433</td></tr><tr><td>dc8b25e35a3acb812beb499844734081722319b4</td><td>feret</td><td>FERET</td><td><a href="papers/dc8b25e35a3acb812beb499844734081722319b4.html" target="_blank">The FERET database and evaluation procedure for face-recognition algorithms</a></td><td><a href="http://biometrics.nist.gov/cs_links/face/frvt/feret/FERET_Database_evaluation_procedure.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>999</td><td>462</td><td>537</td><td>106</td><td>606</td><td>413</td></tr><tr><td>01959ef569f74c286956024866c1d107099199f7</td><td>vqa</td><td>VQA</td><td><a href="papers/01959ef569f74c286956024866c1d107099199f7.html" target="_blank">VQA: Visual Question Answering</a></td><td><a href="https://arxiv.org/pdf/1505.00468.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>731</td><td>449</td><td>282</td><td>47</td><td>629</td><td>96</td></tr><tr><td>6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4</td><td>celeba</td><td>CelebA</td><td><a href="papers/6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4.html" target="_blank">Deep Learning Face Attributes in the Wild</a></td><td><a href="https://arxiv.org/pdf/1411.7766.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td>edu</td><td>Chinese University of Hong Kong</td><td>China</td><td>22.41626320</td><td>114.21093180</td><td>52%</td><td>808</td><td>424</td><td>383</td><td>68</td><td>670</td><td>118</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td>cmu_pie</td><td>CMU PIE</td><td><a href="papers/4d423acc78273b75134e2afd1777ba6d3a398973.html" target="_blank">The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces</a></td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>742</td><td>408</td><td>332</td><td>59</td><td>416</td><td>329</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td>multi_pie</td><td>MULTIPIE</td><td><a href="papers/4d423acc78273b75134e2afd1777ba6d3a398973.html" target="_blank">The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces</a></td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>742</td><td>408</td><td>332</td><td>59</td><td>416</td><td>329</td></tr><tr><td>32cde90437ab5a70cf003ea36f66f2de0e24b3ab</td><td>cityscapes</td><td>Cityscapes</td><td><a href="papers/32cde90437ab5a70cf003ea36f66f2de0e24b3ab.html" target="_blank">The Cityscapes Dataset for Semantic Urban Scene Understanding</a></td><td><a href="https://arxiv.org/pdf/1604.01685.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>771</td><td>407</td><td>364</td><td>54</td><td>624</td><td>138</td></tr><tr><td>177bc509dd0c7b8d388bb47403f28d6228c14b5c</td><td>celeba_plus</td><td>CelebFaces+</td><td><a href="papers/177bc509dd0c7b8d388bb47403f28d6228c14b5c.html" target="_blank">Deep Learning Face Representation from Predicting 10,000 Classes</a></td><td><a href="http://mmlab.ie.cuhk.edu.hk/pdf/YiSun_CVPR14.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>660</td><td>405</td><td>255</td><td>25</td><td>340</td><td>330</td></tr><tr><td>2830fb5282de23d7784b4b4bc37065d27839a412</td><td>h3d</td><td>H3D</td><td><a href="papers/2830fb5282de23d7784b4b4bc37065d27839a412.html" target="_blank">Poselets: Body part detectors trained using 3D human pose annotations</a></td><td><a href="http://http.cs.berkeley.edu/Research/Projects/CS/vision/human/poselets_iccv09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 12th International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>707</td><td>374</td><td>333</td><td>67</td><td>509</td><td>215</td></tr><tr><td>6273b3491e94ea4dd1ce42b791d77bdc96ee73a8</td><td>viper</td><td>VIPeR</td><td><a href="papers/6273b3491e94ea4dd1ce42b791d77bdc96ee73a8.html" target="_blank">Evaluating Appearance Models for Recognition, Reacquisition, and Tracking</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>584</td><td>335</td><td>249</td><td>38</td><td>338</td><td>245</td></tr><tr><td>140438a77a771a8fb656b39a78ff488066eb6b50</td><td>lfw_p</td><td>LFWP</td><td><a href="papers/140438a77a771a8fb656b39a78ff488066eb6b50.html" target="_blank">Localizing Parts of Faces Using a Consensus of Exemplars</a></td><td><a href="http://neerajkumar.org/projects/face-parts/base/papers/nk_cvpr2011_faceparts.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>521</td><td>321</td><td>200</td><td>42</td><td>337</td><td>195</td></tr><tr><td>6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3</td><td>cuhk03</td><td>CUHK03</td><td><a href="papers/6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3.html" target="_blank">DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>512</td><td>306</td><td>206</td><td>29</td><td>324</td><td>180</td></tr><tr><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td><td>youtube_faces</td><td>YouTubeFaces</td><td><a href="papers/560e0e58d0059259ddf86fcec1fa7975dee6a868.html" target="_blank">Face recognition in unconstrained videos with matched background similarity</a></td><td><a href="http://www.cs.tau.ac.il/thesis/thesis/Maoz.Itay-MSc.Thesis.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>Tel Aviv University</td><td>Israel</td><td>32.11198890</td><td>34.80459702</td><td>62%</td><td>485</td><td>299</td><td>185</td><td>30</td><td>298</td><td>193</td></tr><tr><td>2258e01865367018ed6f4262c880df85b94959f8</td><td>mot</td><td>MOT</td><td><a href="papers/2258e01865367018ed6f4262c880df85b94959f8.html" target="_blank">Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</a></td><td><a href="https://pdfs.semanticscholar.org/2e0b/00f4043e2d4b04c59c88bb54bcd907d0dcd4.pdf" target="_blank">[pdf]</a></td><td>EURASIP J. Image and Video Processing</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>586</td><td>296</td><td>288</td><td>48</td><td>345</td><td>244</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_campus</td><td>TUD-Campus</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>529</td><td>292</td><td>236</td><td>40</td><td>324</td><td>213</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_crossing</td><td>TUD-Crossing</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>529</td><td>292</td><td>236</td><td>40</td><td>324</td><td>213</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_pedestrian</td><td>TUD-Pedestrian</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>529</td><td>292</td><td>236</td><td>40</td><td>324</td><td>213</td></tr><tr><td>cc589c499dcf323fe4a143bbef0074c3e31f9b60</td><td>bu_3dfe</td><td>BU-3DFE</td><td><a href="papers/cc589c499dcf323fe4a143bbef0074c3e31f9b60.html" target="_blank">A 3D facial expression database for facial behavior research</a></td><td><a href="http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR06_a.pdf" target="_blank">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>555</td><td>275</td><td>279</td><td>47</td><td>299</td><td>270</td></tr><tr><td>1dc35905a1deff8bc74688f2d7e2f48fd2273275</td><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td><a href="papers/1dc35905a1deff8bc74688f2d7e2f48fd2273275.html" target="_blank">Pedestrian detection: A benchmark</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1378.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>519</td><td>265</td><td>254</td><td>27</td><td>289</td><td>233</td></tr><tr><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td><td>casia_webface</td><td>CASIA Webface</td><td><a href="papers/853bd61bc48a431b9b1c7cab10c603830c488e39.html" target="_blank">Learning Face Representation from Scratch</a></td><td><a href="https://arxiv.org/pdf/1411.7923.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td>edu</td><td>Chinese Academy of Sciences</td><td>China</td><td>40.00447950</td><td>116.37023800</td><td>60%</td><td>436</td><td>263</td><td>173</td><td>30</td><td>288</td><td>150</td></tr><tr><td>4053e3423fb70ad9140ca89351df49675197196a</td><td>bio_id</td><td>BioID Face</td><td><a href="papers/4053e3423fb70ad9140ca89351df49675197196a.html" target="_blank">Robust Face Detection Using the Hausdorff Distance</a></td><td><a href="http://facedetection.homepage.t-online.de/downloads/AVBPA01BioID.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>498</td><td>249</td><td>249</td><td>56</td><td>330</td><td>179</td></tr><tr><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td><td>morph</td><td>MORPH Commercial</td><td><a href="papers/9055b155cbabdce3b98e16e5ac9c0edf00f9552f.html" target="_blank">MORPH: a longitudinal image database of normal adult age-progression</a></td><td><span class="gray">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>424</td><td>239</td><td>184</td><td>26</td><td>239</td><td>190</td></tr><tr><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td><td>morph_nc</td><td>MORPH Non-Commercial</td><td><a href="papers/9055b155cbabdce3b98e16e5ac9c0edf00f9552f.html" target="_blank">MORPH: a longitudinal image database of normal adult age-progression</a></td><td><span class="gray">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>424</td><td>239</td><td>184</td><td>26</td><td>239</td><td>190</td></tr><tr><td>4308bd8c28e37e2ed9a3fcfe74d5436cce34b410</td><td>market_1501</td><td>Market 1501</td><td><a href="papers/4308bd8c28e37e2ed9a3fcfe74d5436cce34b410.html" target="_blank">Scalable Person Re-identification: A Benchmark</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>394</td><td>238</td><td>156</td><td>18</td><td>272</td><td>116</td></tr><tr><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td><td>mafl</td><td>MAFL</td><td><a href="papers/8a3c5507237957d013a0fe0f082cab7f757af6ee.html" target="_blank">Facial Landmark Detection by Deep Multi-task Learning</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>383</td><td>233</td><td>150</td><td>25</td><td>265</td><td>121</td></tr><tr><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td><td>mtfl</td><td>MTFL</td><td><a href="papers/8a3c5507237957d013a0fe0f082cab7f757af6ee.html" target="_blank">Facial Landmark Detection by Deep Multi-task Learning</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>383</td><td>233</td><td>150</td><td>25</td><td>265</td><td>121</td></tr><tr><td>2a75f34663a60ab1b04a0049ed1d14335129e908</td><td>mmi_facial_expression</td><td>MMI Facial Expression Dataset</td><td><a href="papers/2a75f34663a60ab1b04a0049ed1d14335129e908.html" target="_blank">Web-based database for facial expression analysis</a></td><td><a href="http://dev.pubs.doc.ic.ac.uk/Pantic-ICME05-2/Pantic-ICME05-2.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE International Conference on Multimedia and Expo</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>440</td><td>223</td><td>217</td><td>44</td><td>267</td><td>181</td></tr><tr><td>3325860c0c82a93b2eac654f5324dd6a776f609e</td><td>mpii_human_pose</td><td>MPII Human Pose</td><td><a href="papers/3325860c0c82a93b2eac654f5324dd6a776f609e.html" target="_blank">2D Human Pose Estimation: New Benchmark and State of the Art Analysis</a></td><td><a href="http://ei.is.tuebingen.mpg.de/uploads_file/attachment/attachment/168/andriluka14benchmark.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>356</td><td>221</td><td>135</td><td>21</td><td>304</td><td>53</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_buffy</td><td>Buffy Stickmen</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>217</td><td>155</td><td>35</td><td>251</td><td>129</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>217</td><td>155</td><td>35</td><td>251</td><td>129</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>217</td><td>155</td><td>35</td><td>251</td><td>129</td></tr><tr><td>2485c98aa44131d1a2f7d1355b1e372f2bb148ad</td><td>cas_peal</td><td>CAS-PEAL</td><td><a href="papers/2485c98aa44131d1a2f7d1355b1e372f2bb148ad.html" target="_blank">The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</a></td><td><a href="http://www.jdl.ac.cn/peal/files/ieee_smc_a_gao_cas-peal.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>415</td><td>212</td><td>203</td><td>39</td><td>189</td><td>232</td></tr><tr><td>16c7c31a7553d99f1837fc6e88e77b5ccbb346b8</td><td>prid</td><td>PRID</td><td><a href="papers/16c7c31a7553d99f1837fc6e88e77b5ccbb346b8.html" target="_blank">Person Re-identification by Descriptive and Discriminative Classification</a></td><td><a href="https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>352</td><td>206</td><td>146</td><td>27</td><td>196</td><td>157</td></tr><tr><td>95f12d27c3b4914e0668a268360948bce92f7db3</td><td>helen</td><td>Helen</td><td><a href="papers/95f12d27c3b4914e0668a268360948bce92f7db3.html" target="_blank">Interactive Facial Feature Localization</a></td><td><a href="https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>company</td><td>Facebook</td><td>United States</td><td>37.39367170</td><td>-122.08072620</td><td>59%</td><td>339</td><td>201</td><td>138</td><td>29</td><td>219</td><td>129</td></tr><tr><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td><td>fiw_300</td><td>300-W</td><td><a href="papers/044d9a8c61383312cdafbcc44b9d00d650b21c70.html" target="_blank">300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>324</td><td>199</td><td>125</td><td>29</td><td>211</td><td>118</td></tr><tr><td>2724ba85ec4a66de18da33925e537f3902f21249</td><td>cofw</td><td>COFW</td><td><a href="papers/2724ba85ec4a66de18da33925e537f3902f21249.html" target="_blank">Robust Face Landmark Estimation under Occlusion</a></td><td><a href="http://authors.library.caltech.edu/45988/1/ICCV13%20Burgos-Artizzu.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision</td><td>edu</td><td>California Institute of Technology</td><td>United States</td><td>34.13710185</td><td>-118.12527487</td><td>62%</td><td>305</td><td>188</td><td>117</td><td>16</td><td>192</td><td>116</td></tr><tr><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td><td>leeds_sports_pose</td><td>Leeds Sports Pose</td><td><a href="papers/4b1d23d17476fcf78f4cbadf69fb130b1aa627c0.html" target="_blank">Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</a></td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>278</td><td>182</td><td>96</td><td>13</td><td>208</td><td>78</td></tr><tr><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td><td>stickmen_buffy</td><td>Buffy Stickmen</td><td><a href="papers/4b1d23d17476fcf78f4cbadf69fb130b1aa627c0.html" target="_blank">Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</a></td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>278</td><td>182</td><td>96</td><td>13</td><td>208</td><td>78</td></tr><tr><td>3765df816dc5a061bc261e190acc8bdd9d47bec0</td><td>rafd</td><td>RaFD</td><td><a href="papers/3765df816dc5a061bc261e190acc8bdd9d47bec0.html" target="_blank">Presentation and validation of the Radboud Faces Database</a></td><td><a href="https://pdfs.semanticscholar.org/3765/df816dc5a061bc261e190acc8bdd9d47bec0.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>446</td><td>180</td><td>266</td><td>43</td><td>322</td><td>136</td></tr><tr><td>13f06b08f371ba8b5d31c3e288b4deb61335b462</td><td>eth_andreas_ess</td><td>ETHZ Pedestrian</td><td><a href="papers/13f06b08f371ba8b5d31c3e288b4deb61335b462.html" target="_blank">Depth and Appearance for Mobile Scene Analysis</a></td><td><a href="http://www.mmp.rwth-aachen.de/publications/pdf/ess-depthandappearance-iccv07-poster.pdf" target="_blank">[pdf]</a></td><td>2007 IEEE 11th International Conference on Computer Vision</td><td>edu</td><td>ETH Zurich</td><td>Switzerland</td><td>47.37631300</td><td>8.54766990</td><td>56%</td><td>319</td><td>179</td><td>140</td><td>27</td><td>195</td><td>127</td></tr><tr><td>639937b3a1b8bded3f7e9a40e85bd3770016cf3c</td><td>bfm</td><td>BFM</td><td><a href="papers/639937b3a1b8bded3f7e9a40e85bd3770016cf3c.html" target="_blank">A 3D Face Model for Pose and Illumination Invariant Face Recognition</a></td><td><a href="http://gravis.cs.unibas.ch/publications/2009/BFModel09.pdf" target="_blank">[pdf]</a></td><td>2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>323</td><td>178</td><td>145</td><td>29</td><td>226</td><td>98</td></tr><tr><td>5981e6479c3fd4e31644db35d236bfb84ae46514</td><td>mot</td><td>MOT</td><td><a href="papers/5981e6479c3fd4e31644db35d236bfb84ae46514.html" target="_blank">Learning to associate: HybridBoosted multi-target tracker for crowded scene</a></td><td><a href="http://iris.usc.edu/Outlines/papers/2009/yuan-chang-nevatia-cvpr09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>University of Southern California</td><td>United States</td><td>34.02241490</td><td>-118.28634407</td><td>53%</td><td>330</td><td>176</td><td>153</td><td>27</td><td>196</td><td>139</td></tr><tr><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td><td>aflw</td><td>AFLW</td><td><a href="papers/a74251efa970b92925b89eeef50a5e37d9281ad0.html" target="_blank">Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</a></td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/martin_koestinger-slides.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>292</td><td>175</td><td>117</td><td>37</td><td>212</td><td>84</td></tr><tr><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td><td>tud_multiview</td><td>TUD-Multiview</td><td><a href="papers/436f798d1a4e54e5947c1e7d7375c31b2bdb4064.html" target="_blank">Monocular 3D pose estimation and tracking by detection</a></td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>TU Darmstadt</td><td>Germany</td><td>49.87482770</td><td>8.65632810</td><td>55%</td><td>302</td><td>166</td><td>136</td><td>34</td><td>207</td><td>100</td></tr><tr><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td><td>tud_stadtmitte</td><td>TUD-Stadtmitte</td><td><a href="papers/436f798d1a4e54e5947c1e7d7375c31b2bdb4064.html" target="_blank">Monocular 3D pose estimation and tracking by detection</a></td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>TU Darmstadt</td><td>Germany</td><td>49.87482770</td><td>8.65632810</td><td>55%</td><td>302</td><td>166</td><td>136</td><td>34</td><td>207</td><td>100</td></tr><tr><td>2acf7e58f0a526b957be2099c10aab693f795973</td><td>bosphorus</td><td>The Bosphorus</td><td><a href="papers/2acf7e58f0a526b957be2099c10aab693f795973.html" target="_blank">Bosphorus Database for 3D Face Analysis</a></td><td><a href="https://pdfs.semanticscholar.org/4254/fbba3846008f50671edc9cf70b99d7304543.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>328</td><td>165</td><td>163</td><td>19</td><td>149</td><td>183</td></tr><tr><td>2fda164863a06a92d3a910b96eef927269aeb730</td><td>names_and_faces_news</td><td>News Dataset</td><td><a href="papers/2fda164863a06a92d3a910b96eef927269aeb730.html" target="_blank">Names and faces in the news</a></td><td><a href="http://ttic.uchicago.edu/~mmaire/papers/pdf/names_faces_cvpr2004.pdf" target="_blank">[pdf]</a></td><td>Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>294</td><td>165</td><td>128</td><td>29</td><td>215</td><td>82</td></tr><tr><td>44484d2866f222bbb9b6b0870890f9eea1ffb2d0</td><td>cuhk01</td><td>CUHK01</td><td><a href="papers/44484d2866f222bbb9b6b0870890f9eea1ffb2d0.html" target="_blank">Human Reidentification with Transferred Metric Learning</a></td><td><a href="https://pdfs.semanticscholar.org/4448/4d2866f222bbb9b6b0870890f9eea1ffb2d0.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>258</td><td>161</td><td>97</td><td>12</td><td>142</td><td>115</td></tr><tr><td>833fa04463d90aab4a9fe2870d480f0b40df446e</td><td>sun_attributes</td><td>SUN</td><td><a href="papers/833fa04463d90aab4a9fe2870d480f0b40df446e.html" target="_blank">SUN attribute database: Discovering, annotating, and recognizing scene attributes</a></td><td><a href="http://static.cs.brown.edu/~gen/pub_papers/SUN_Attribute_Database_CVPR2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Brown University</td><td>United States</td><td>41.82686820</td><td>-71.40123146</td><td>58%</td><td>269</td><td>156</td><td>113</td><td>29</td><td>215</td><td>57</td></tr><tr><td>010f0f4929e6a6644fb01f0e43820f91d0fad292</td><td>yfcc_100m</td><td>YFCC100M</td><td><a href="papers/010f0f4929e6a6644fb01f0e43820f91d0fad292.html" target="_blank">YFCC100M: the new data in multimedia research</a></td><td><a href="https://arxiv.org/pdf/1503.01817.pdf" target="_blank">[pdf]</a></td><td>Commun. ACM</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>56%</td><td>276</td><td>155</td><td>121</td><td>23</td><td>175</td><td>99</td></tr><tr><td>9361b784e73e9238d5cefbea5ac40d35d1e3103f</td><td>towncenter</td><td>TownCenter</td><td><a href="papers/9361b784e73e9238d5cefbea5ac40d35d1e3103f.html" target="_blank">Stable multi-target tracking in real-time surveillance video</a></td><td><a href="http://ben.benfold.com/docs/benfold_reid_cvpr2011-preprint.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>310</td><td>142</td><td>168</td><td>24</td><td>180</td><td>131</td></tr><tr><td>2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9.html" target="_blank">Generic object recognition with boosting</a></td><td><a href="http://www.cse.unr.edu/~bebis/CS773C/ObjectRecognition/Papers/Opelt06.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>TU Graz</td><td>Austria</td><td>47.07071400</td><td>15.43950400</td><td>49%</td><td>286</td><td>141</td><td>145</td><td>16</td><td>193</td><td>97</td></tr><tr><td>e8de844fefd54541b71c9823416daa238be65546</td><td>visual_phrases</td><td>Phrasal Recognition</td><td><a href="papers/e8de844fefd54541b71c9823416daa238be65546.html" target="_blank">Recognition using visual phrases</a></td><td><a href="http://vision.cs.uiuc.edu/phrasal/recognition_using_visual_phrases.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>University of Illinois, Urbana-Champaign</td><td>United States</td><td>40.11116745</td><td>-88.22587665</td><td>58%</td><td>233</td><td>136</td><td>97</td><td>18</td><td>177</td><td>58</td></tr><tr><td>38b55d95189c5e69cf4ab45098a48fba407609b4</td><td>cuhk02</td><td>CUHK02</td><td><a href="papers/38b55d95189c5e69cf4ab45098a48fba407609b4.html" target="_blank">Locally Aligned Feature Transforms across Views</a></td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d594.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>242</td><td>130</td><td>112</td><td>17</td><td>139</td><td>102</td></tr><tr><td>4c170a0dcc8de75587dae21ca508dab2f9343974</td><td>face_tracer</td><td>FaceTracer</td><td><a href="papers/4c170a0dcc8de75587dae21ca508dab2f9343974.html" target="_blank">FaceTracer: A Search Engine for Large Collections of Images with Faces</a></td><td><a href="https://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>218</td><td>126</td><td>91</td><td>17</td><td>152</td><td>71</td></tr><tr><td>0c91808994a250d7be332400a534a9291ca3b60e</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/0c91808994a250d7be332400a534a9291ca3b60e.html" target="_blank">Weak Hypotheses and Boosting for Generic Object Detection and Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/0c91/808994a250d7be332400a534a9291ca3b60e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>247</td><td>125</td><td>122</td><td>18</td><td>177</td><td>78</td></tr><tr><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td><td>berkeley_pose</td><td>BPAD</td><td><a href="papers/7808937b46acad36e43c30ae4e9f3fd57462853d.html" target="_blank">Describing people: A poselet-based approach to attribute classification</a></td><td><a href="http://ttic.uchicago.edu/~smaji/papers/attributes-iccv11.pdf" target="_blank">[pdf]</a></td><td>2011 International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>221</td><td>125</td><td>96</td><td>14</td><td>165</td><td>59</td></tr><tr><td>140c95e53c619eac594d70f6369f518adfea12ef</td><td>ijb_c</td><td>IJB-A</td><td><a href="papers/140c95e53c619eac594d70f6369f518adfea12ef.html" target="_blank">Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Klareetal_UnconstrainedFaceDetectionRecognitionJanus_CVPR15.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>222</td><td>123</td><td>99</td><td>19</td><td>161</td><td>62</td></tr><tr><td>98bb029afe2a1239c3fdab517323066f0957b81b</td><td>ilids_vid_reid</td><td>iLIDS-VID</td><td><a href="papers/98bb029afe2a1239c3fdab517323066f0957b81b.html" target="_blank">Person Re-identification by Video Ranking</a></td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>210</td><td>122</td><td>88</td><td>10</td><td>115</td><td>94</td></tr><tr><td>98bb029afe2a1239c3fdab517323066f0957b81b</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/98bb029afe2a1239c3fdab517323066f0957b81b.html" target="_blank">Person Re-identification by Video Ranking</a></td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>210</td><td>122</td><td>88</td><td>10</td><td>115</td><td>94</td></tr><tr><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td><td>tud_brussels</td><td>TUD-Brussels</td><td><a href="papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html" target="_blank">Multi-cue onboard pedestrian detection</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>217</td><td>121</td><td>96</td><td>14</td><td>133</td><td>86</td></tr><tr><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td><td>tud_motionpairs</td><td>TUD-Motionparis</td><td><a href="papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html" target="_blank">Multi-cue onboard pedestrian detection</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>217</td><td>121</td><td>96</td><td>14</td><td>133</td><td>86</td></tr><tr><td>46a01565e6afe7c074affb752e7069ee3bf2e4ef</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/46a01565e6afe7c074affb752e7069ee3bf2e4ef.html" target="_blank">Local Descriptors Encoded by Fisher Vectors for Person Re-identification</a></td><td><a href="https://pdfs.semanticscholar.org/a105/f1ef67b4b02da38eadce8ffb4e13aa301a93.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>198</td><td>117</td><td>81</td><td>16</td><td>111</td><td>88</td></tr><tr><td>35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62</td><td>coco_qa</td><td>COCO QA</td><td><a href="papers/35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62.html" target="_blank">Exploring Models and Data for Image Question Answering</a></td><td><a href="https://arxiv.org/pdf/1505.02074.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>191</td><td>116</td><td>75</td><td>12</td><td>165</td><td>27</td></tr><tr><td>21d9d0deed16f0ad62a4865e9acf0686f4f15492</td><td>images_of_groups</td><td>Images of Groups</td><td><a href="papers/21d9d0deed16f0ad62a4865e9acf0686f4f15492.html" target="_blank">Understanding images of groups of people</a></td><td><a href="http://chenlab.ece.cornell.edu/people/Andy/Andy_files/cvpr09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>56%</td><td>202</td><td>113</td><td>89</td><td>12</td><td>132</td><td>75</td></tr><tr><td>4e4746094bf60ee83e40d8597a6191e463b57f76</td><td>leeds_sports_pose_extended</td><td>Leeds Sports Pose Extended</td><td><a href="papers/4e4746094bf60ee83e40d8597a6191e463b57f76.html" target="_blank">Learning effective human pose estimation from inaccurate annotation</a></td><td><a href="http://www.comp.leeds.ac.uk/mat4saj/publications/johnson11cvpr.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>University of Leeds</td><td>United Kingdom</td><td>53.80387185</td><td>-1.55245712</td><td>65%</td><td>173</td><td>112</td><td>61</td><td>10</td><td>122</td><td>56</td></tr><tr><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td><td>fiw_300</td><td>300-W</td><td><a href="papers/013909077ad843eb6df7a3e8e290cfd5575999d2.html" target="_blank">A Semi-automatic Methodology for Facial Landmark Annotation</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>185</td><td>111</td><td>74</td><td>15</td><td>124</td><td>64</td></tr><tr><td>b1f4423c227fa37b9680787be38857069247a307</td><td>afew_va</td><td>AFEW-VA</td><td><a href="papers/b1f4423c227fa37b9680787be38857069247a307.html" target="_blank">Collecting Large, Richly Annotated Facial-Expression Databases from Movies</a></td><td><a href="http://users.cecs.anu.edu.au/~adhall/Dhall_Goecke_Lucey_Gedeon_M_2012.pdf" target="_blank">[pdf]</a></td><td>IEEE MultiMedia</td><td>edu</td><td>Australian National University</td><td>Australia</td><td>-35.27769990</td><td>149.11852700</td><td>61%</td><td>182</td><td>111</td><td>71</td><td>8</td><td>86</td><td>99</td></tr><tr><td>570f37ed63142312e6ccdf00ecc376341ec72b9f</td><td>stanford_drone</td><td>Stanford Drone</td><td><a href="papers/570f37ed63142312e6ccdf00ecc376341ec72b9f.html" target="_blank">Social LSTM: Human Trajectory Prediction in Crowded Spaces</a></td><td><a href="http://cs.stanford.edu/groups/vision/pdf/CVPR16_N_LSTM.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>229</td><td>106</td><td>123</td><td>5</td><td>150</td><td>79</td></tr><tr><td>1aad2da473888cb7ebc1bfaa15bfa0f1502ce005</td><td>jpl_pose</td><td>JPL-Interaction dataset</td><td><a href="papers/1aad2da473888cb7ebc1bfaa15bfa0f1502ce005.html" target="_blank">First-Person Activity Recognition: What Are They Doing to Me?</a></td><td><a href="http://michaelryoo.com/papers/cvpr2013_ryoo.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>148</td><td>103</td><td>45</td><td>8</td><td>111</td><td>38</td></tr><tr><td>22ad2c8c0f4d6aa4328b38d894b814ec22579761</td><td>gallagher</td><td>Gallagher</td><td><a href="papers/22ad2c8c0f4d6aa4328b38d894b814ec22579761.html" target="_blank">Clothing cosegmentation for recognizing people</a></td><td><a href="http://amp.ece.cmu.edu/people/Andy/Andy_files/2670CVPR08Gallagher.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>58%</td><td>177</td><td>103</td><td>74</td><td>7</td><td>101</td><td>84</td></tr><tr><td>133f01aec1534604d184d56de866a4bd531dac87</td><td>lfw_a</td><td>LFW-a</td><td><a href="papers/133f01aec1534604d184d56de866a4bd531dac87.html" target="_blank">Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</a></td><td><a href="http://www.cs.tau.ac.il/~wolf/papers/jpatchlbp.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>177</td><td>101</td><td>76</td><td>15</td><td>104</td><td>75</td></tr><tr><td>1be498d4bbc30c3bfd0029114c784bc2114d67c0</td><td>adience</td><td>Adience</td><td><a href="papers/1be498d4bbc30c3bfd0029114c784bc2114d67c0.html" target="_blank">Age and Gender Estimation of Unfiltered Faces</a></td><td><a href="http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Information Forensics and Security</td><td>edu</td><td>Open University of Israel</td><td>Israel</td><td>32.77824165</td><td>34.99565673</td><td>60%</td><td>168</td><td>101</td><td>67</td><td>5</td><td>94</td><td>78</td></tr><tr><td>18010284894ed0edcca74e5bf768ee2e15ef7841</td><td>deep_fashion</td><td>DeepFashion</td><td><a href="papers/18010284894ed0edcca74e5bf768ee2e15ef7841.html" target="_blank">DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~lz013/papers/deepfashion_poster.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>150</td><td>97</td><td>53</td><td>4</td><td>111</td><td>38</td></tr><tr><td>29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d</td><td>scface</td><td>SCface</td><td><a href="papers/29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d.html" target="_blank">SCface – surveillance cameras face database</a></td><td><a href="http://scface.org/SCface%20-%20Surveillance%20Cameras%20Face%20Database.pdf" target="_blank">[pdf]</a></td><td>Multimedia Tools and Applications</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>178</td><td>97</td><td>81</td><td>15</td><td>90</td><td>89</td></tr><tr><td>56ffa7d906b08d02d6d5a12c7377a57e24ef3391</td><td>unbc_shoulder_pain</td><td>UNBC-McMaster Pain</td><td><a href="papers/56ffa7d906b08d02d6d5a12c7377a57e24ef3391.html" target="_blank">Painful data: The UNBC-McMaster shoulder pain expression archive database</a></td><td><a href="http://www.iainm.com/iainm/Publications_files/2011_PAINFUL.pdf" target="_blank">[pdf]</a></td><td>Face and Gesture 2011</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>52%</td><td>184</td><td>96</td><td>88</td><td>23</td><td>112</td><td>71</td></tr><tr><td>5a5f0287484f0d480fed1ce585dbf729586f0edc</td><td>disfa</td><td>DISFA</td><td><a href="papers/5a5f0287484f0d480fed1ce585dbf729586f0edc.html" target="_blank">DISFA: A Spontaneous Facial Action Intensity Database</a></td><td><a href="http://mohammadmahoor.com/wp-content/uploads/2017/06/DiSFA_Paper_andAppendix_Final_OneColumn1-1.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Affective Computing</td><td>edu</td><td>University of Denver</td><td>United States</td><td>39.67665410</td><td>-104.96220300</td><td>51%</td><td>190</td><td>96</td><td>94</td><td>19</td><td>100</td><td>91</td></tr><tr><td>0df0d1adea39a5bef318b74faa37de7f3e00b452</td><td>mpii_gaze</td><td>MPIIGaze</td><td><a href="papers/0df0d1adea39a5bef318b74faa37de7f3e00b452.html" target="_blank">Appearance-based gaze estimation in the wild</a></td><td><a href="https://arxiv.org/pdf/1504.02863.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>138</td><td>92</td><td>46</td><td>3</td><td>97</td><td>42</td></tr><tr><td>291265db88023e92bb8c8e6390438e5da148e8f5</td><td>msceleb</td><td>MsCeleb</td><td><a href="papers/291265db88023e92bb8c8e6390438e5da148e8f5.html" target="_blank">MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1607.08221.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>167</td><td>91</td><td>76</td><td>14</td><td>131</td><td>36</td></tr><tr><td>32c801cb7fbeb742edfd94cccfca4934baec71da</td><td>ucf_crowd</td><td>UCF-CC-50</td><td><a href="papers/32c801cb7fbeb742edfd94cccfca4934baec71da.html" target="_blank">Multi-source Multi-scale Counting in Extremely Dense Crowd Images</a></td><td><a href="http://crcv-web.eecs.ucf.edu/papers/cvpr2013/Counting_V3o.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>125</td><td>89</td><td>36</td><td>6</td><td>73</td><td>52</td></tr><tr><td>3b5b6d19d4733ab606c39c69a889f9e67967f151</td><td>qmul_grid</td><td>GRID</td><td><a href="papers/3b5b6d19d4733ab606c39c69a889f9e67967f151.html" target="_blank">Multi-camera activity correlation analysis</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0163.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Queen Mary University of London</td><td>United Kingdom</td><td>51.52472720</td><td>-0.03931035</td><td>64%</td><td>138</td><td>89</td><td>49</td><td>8</td><td>79</td><td>61</td></tr><tr><td>4f93cd09785c6e77bf4bc5a788e079df524c8d21</td><td>soton</td><td>SOTON HiD</td><td><a href="papers/4f93cd09785c6e77bf4bc5a788e079df524c8d21.html" target="_blank">On a Large Sequence-Based Human Gait Database</a></td><td><a href="https://eprints.soton.ac.uk/257901/1/Shutler_2002.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>148</td><td>88</td><td>60</td><td>17</td><td>104</td><td>49</td></tr><tr><td>52d7eb0fbc3522434c13cc247549f74bb9609c5d</td><td>wider_face</td><td>WIDER FACE</td><td><a href="papers/52d7eb0fbc3522434c13cc247549f74bb9609c5d.html" target="_blank">WIDER FACE: A Face Detection Benchmark</a></td><td><a href="https://arxiv.org/pdf/1511.06523.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Chinese University of Hong Kong</td><td>China</td><td>22.41626320</td><td>114.21093180</td><td>58%</td><td>148</td><td>86</td><td>62</td><td>15</td><td>108</td><td>41</td></tr><tr><td>8b56e33f33e582f3e473dba573a16b598ed9bcdc</td><td>fei</td><td>FEI</td><td><a href="papers/8b56e33f33e582f3e473dba573a16b598ed9bcdc.html" target="_blank">A new ranking method for principal components analysis and its application to face image analysis</a></td><td><span class="gray">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>169</td><td>86</td><td>83</td><td>6</td><td>72</td><td>101</td></tr><tr><td>c0387e788a52f10bf35d4d50659cfa515d89fbec</td><td>mars</td><td>MARS</td><td><a href="papers/c0387e788a52f10bf35d4d50659cfa515d89fbec.html" target="_blank">MARS: A Video Benchmark for Large-Scale Person Re-Identification</a></td><td><a href="http://liangzheng.org/1320.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>146</td><td>85</td><td>61</td><td>6</td><td>97</td><td>49</td></tr><tr><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td><td>duke_mtmc</td><td>Duke MTMC</td><td><a href="papers/27a2fad58dd8727e280f97036e0d2bc55ef5424c.html" target="_blank">Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</a></td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>136</td><td>79</td><td>57</td><td>7</td><td>108</td><td>27</td></tr><tr><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td><td>mot</td><td>MOT</td><td><a href="papers/27a2fad58dd8727e280f97036e0d2bc55ef5424c.html" target="_blank">Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</a></td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>136</td><td>79</td><td>57</td><td>7</td><td>108</td><td>27</td></tr><tr><td>066000d44d6691d27202896691f08b27117918b9</td><td>psu</td><td>PSU</td><td><a href="papers/066000d44d6691d27202896691f08b27117918b9.html" target="_blank">Vision-Based Analysis of Small Groups in Pedestrian Crowds</a></td><td><a href="http://vc.cs.nthu.edu.tw/home/paper/codfiles/htchiang/201212250411/newp12.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>151</td><td>78</td><td>73</td><td>9</td><td>79</td><td>73</td></tr><tr><td>b91f54e1581fbbf60392364323d00a0cd43e493c</td><td>bp4d_spontanous</td><td>BP4D-Spontanous</td><td><a href="papers/b91f54e1581fbbf60392364323d00a0cd43e493c.html" target="_blank">A high-resolution spontaneous 3D dynamic facial expression database</a></td><td><a href="http://www.csee.usf.edu/~scanavan/papers/FG2013.pdf" target="_blank">[pdf]</a></td><td>2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td>edu</td><td>SUNY Binghamton</td><td>United States</td><td>42.08779975</td><td>-75.97066066</td><td>52%</td><td>151</td><td>78</td><td>73</td><td>7</td><td>87</td><td>65</td></tr><tr><td>10195a163ab6348eef37213a46f60a3d87f289c5</td><td>imdb_wiki</td><td>IMDB</td><td><a href="papers/10195a163ab6348eef37213a46f60a3d87f289c5.html" target="_blank">Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks</a></td><td><a href="http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>ETH Zurich</td><td>Switzerland</td><td>47.37631300</td><td>8.54766990</td><td>55%</td><td>133</td><td>73</td><td>60</td><td>13</td><td>94</td><td>41</td></tr><tr><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td><td>lfw</td><td>LFW</td><td><a href="papers/2d3482dcff69c7417c7b933f22de606a0e8e42d4.html" target="_blank">Labeled Faces in the Wild : Updates and New Reporting Procedures</a></td><td><a href="https://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Massachusetts</td><td>United States</td><td>42.38897850</td><td>-72.52869870</td><td>59%</td><td>123</td><td>73</td><td>50</td><td>3</td><td>72</td><td>50</td></tr><tr><td>0486214fb58ee9a04edfe7d6a74c6d0f661a7668</td><td>chokepoint</td><td>ChokePoint</td><td><a href="papers/0486214fb58ee9a04edfe7d6a74c6d0f661a7668.html" target="_blank">Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition</a></td><td><a href="https://arxiv.org/pdf/1304.0869.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>128</td><td>71</td><td>57</td><td>6</td><td>73</td><td>60</td></tr><tr><td>66e6f08873325d37e0ec20a4769ce881e04e964e</td><td>sun_attributes</td><td>SUN</td><td><a href="papers/66e6f08873325d37e0ec20a4769ce881e04e964e.html" target="_blank">The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</a></td><td><a href="http://www.cc.gatech.edu/~hays/papers/attribute_ijcv.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>63%</td><td>112</td><td>71</td><td>41</td><td>14</td><td>84</td><td>29</td></tr><tr><td>8355d095d3534ef511a9af68a3b2893339e3f96b</td><td>imdb_wiki</td><td>IMDB</td><td><a href="papers/8355d095d3534ef511a9af68a3b2893339e3f96b.html" target="_blank">DEX: Deep EXpectation of Apparent Age from a Single Image</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Rothe_DEX_Deep_EXpectation_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision Workshop (ICCVW)</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>120</td><td>71</td><td>49</td><td>5</td><td>74</td><td>47</td></tr><tr><td>96e0cfcd81cdeb8282e29ef9ec9962b125f379b0</td><td>megaface</td><td>MegaFace</td><td><a href="papers/96e0cfcd81cdeb8282e29ef9ec9962b125f379b0.html" target="_blank">The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</a></td><td><a href="https://arxiv.org/pdf/1512.00596.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>121</td><td>71</td><td>50</td><td>9</td><td>98</td><td>22</td></tr><tr><td>0d3bb75852098b25d90f31d2f48fd0cb4944702b</td><td>face_scrub</td><td>FaceScrub</td><td><a href="papers/0d3bb75852098b25d90f31d2f48fd0cb4944702b.html" target="_blank">A data-driven approach to cleaning large face datasets</a></td><td><a href="http://stefan.winkler.net/Publications/icip2014a.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE International Conference on Image Processing (ICIP)</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>123</td><td>66</td><td>57</td><td>4</td><td>96</td><td>27</td></tr><tr><td>04c2cda00e5536f4b1508cbd80041e9552880e67</td><td>hipsterwars</td><td>Hipsterwars</td><td><a href="papers/04c2cda00e5536f4b1508cbd80041e9552880e67.html" target="_blank">Hipster wars: Discovering elements of fashion styles</a></td><td><a href="http://acberg.com/papers/hipster_eccv14.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>68%</td><td>91</td><td>62</td><td>29</td><td>5</td><td>61</td><td>29</td></tr><tr><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7.html" target="_blank">Understanding Kin Relationships in a Photo</a></td><td><a href="http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Multimedia</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>96</td><td>61</td><td>35</td><td>2</td><td>34</td><td>63</td></tr><tr><td>2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e</td><td>3dpes</td><td>3DPeS</td><td><a href="papers/2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e.html" target="_blank">3DPeS: 3D people dataset for surveillance and forensics</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>122</td><td>61</td><td>61</td><td>11</td><td>71</td><td>51</td></tr><tr><td>e4754afaa15b1b53e70743880484b8d0736990ff</td><td>fiw_300</td><td>300-W</td><td><a href="papers/e4754afaa15b1b53e70743880484b8d0736990ff.html" target="_blank">300 Faces In-The-Wild Challenge: database and results</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>114</td><td>61</td><td>53</td><td>10</td><td>71</td><td>43</td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>mafl</td><td>MAFL</td><td><a href="papers/a0fd85b3400c7b3e11122f44dc5870ae2de9009a.html" target="_blank">Learning Deep Representation for Face Alignment with Auxiliary Attributes</a></td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>110</td><td>60</td><td>50</td><td>12</td><td>69</td><td>43</td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>mtfl</td><td>MTFL</td><td><a href="papers/a0fd85b3400c7b3e11122f44dc5870ae2de9009a.html" target="_blank">Learning Deep Representation for Face Alignment with Auxiliary Attributes</a></td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>110</td><td>60</td><td>50</td><td>12</td><td>69</td><td>43</td></tr><tr><td>2ce2560cf59db59ce313bbeb004e8ce55c5ce928</td><td>texas_3dfrd</td><td>Texas 3DFRD</td><td><a href="papers/2ce2560cf59db59ce313bbeb004e8ce55c5ce928.html" target="_blank">Anthropometric 3D Face Recognition</a></td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ijcv_june10.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>63%</td><td>90</td><td>57</td><td>33</td><td>5</td><td>60</td><td>31</td></tr><tr><td>9a9877791945c6fa4c1743ec6d3fb32570ef8481</td><td>m2vts</td><td>m2vts</td><td><a href="papers/9a9877791945c6fa4c1743ec6d3fb32570ef8481.html" target="_blank">The M2VTS Multimodal Face Database (Release 1.00)</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Laboratoire de Télécommunications et Télédétection, UCL, Louvain-La-Neuve, Belgium</td><td>Belgium</td><td>50.66968750</td><td>4.61559090</td><td>44%</td><td>129</td><td>57</td><td>72</td><td>4</td><td>80</td><td>54</td></tr><tr><td>2a4bbee0b4cf52d5aadbbc662164f7efba89566c</td><td>peta</td><td>PETA</td><td><a href="papers/2a4bbee0b4cf52d5aadbbc662164f7efba89566c.html" target="_blank">Pedestrian Attribute Recognition At Far Distance</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>80</td><td>55</td><td>25</td><td>2</td><td>51</td><td>28</td></tr><tr><td>06f02199690961ba52997cde1527e714d2b3bf8f</td><td>columbia_gaze</td><td>Columbia Gaze</td><td><a href="papers/06f02199690961ba52997cde1527e714d2b3bf8f.html" target="_blank">Gaze locking: passive eye contact detection for human-object interaction</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Columbia University</td><td>United States</td><td>40.84198360</td><td>-73.94368971</td><td>66%</td><td>80</td><td>53</td><td>27</td><td>0</td><td>49</td><td>35</td></tr><tr><td>3b4ec8af470948a72a6ed37a9fd226719a874ebc</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/3b4ec8af470948a72a6ed37a9fd226719a874ebc.html" target="_blank">A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</a></td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Liu_A_Spatio-Temporal_Appearance_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>85</td><td>53</td><td>32</td><td>9</td><td>51</td><td>34</td></tr><tr><td>3394168ff0719b03ff65bcea35336a76b21fe5e4</td><td>penn_fudan</td><td>Penn Fudan</td><td><a href="papers/3394168ff0719b03ff65bcea35336a76b21fe5e4.html" target="_blank">Object Detection Combining Recognition and Segmentation</a></td><td><a href="https://pdfs.semanticscholar.org/3394/168ff0719b03ff65bcea35336a76b21fe5e4.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>101</td><td>52</td><td>49</td><td>11</td><td>58</td><td>42</td></tr><tr><td>0dc11a37cadda92886c56a6fb5191ded62099c28</td><td>stickmen_family</td><td>We Are Family Stickmen</td><td><a href="papers/0dc11a37cadda92886c56a6fb5191ded62099c28.html" target="_blank">We are family: joint pose estimation of multiple persons</a></td><td><a href="http://eprints.pascal-network.org/archive/00007964/01/eichner10eccv.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>66%</td><td>77</td><td>51</td><td>26</td><td>5</td><td>60</td><td>19</td></tr><tr><td>0c4a139bb87c6743c7905b29a3cfec27a5130652</td><td>feret</td><td>FERET</td><td><a href="papers/0c4a139bb87c6743c7905b29a3cfec27a5130652.html" target="_blank">The FERET Verification Testing Protocol for Face Recognition Algorithms</a></td><td><a href="https://pdfs.semanticscholar.org/8d2a/1c768fce6f71584dd993fb97e7b6419aaf60.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>112</td><td>50</td><td>62</td><td>11</td><td>79</td><td>35</td></tr><tr><td>0b440695c822a8e35184fb2f60dcdaa8a6de84ae</td><td>kinectface</td><td>KinectFaceDB</td><td><a href="papers/0b440695c822a8e35184fb2f60dcdaa8a6de84ae.html" target="_blank">KinectFaceDB: A Kinect Database for Face Recognition</a></td><td><a href="http://www.eurecom.fr/fr/publication/4393/download/mm-publi-4393.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Systems, Man, and Cybernetics: Systems</td><td>edu</td><td>University of North Carolina at Chapel Hill</td><td>United States</td><td>35.91139710</td><td>-79.05045290</td><td>64%</td><td>75</td><td>48</td><td>27</td><td>6</td><td>26</td><td>50</td></tr><tr><td>3cd40bfa1ff193a96bde0207e5140a399476466c</td><td>tvhi</td><td>TVHI</td><td><a href="papers/3cd40bfa1ff193a96bde0207e5140a399476466c.html" target="_blank">High Five: Recognising human interactions in TV shows</a></td><td><a href="https://pdfs.semanticscholar.org/3cd4/0bfa1ff193a96bde0207e5140a399476466c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>91</td><td>47</td><td>44</td><td>11</td><td>64</td><td>27</td></tr><tr><td>5194cbd51f9769ab25260446b4fa17204752e799</td><td>violent_flows</td><td>Violent Flows</td><td><a href="papers/5194cbd51f9769ab25260446b4fa17204752e799.html" target="_blank">Violent flows: Real-time detection of violent crowd behavior</a></td><td><a href="http://www.openu.ac.il/home/hassner/data/violentflows/violent_flows.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</td><td>edu</td><td>Open University of Israel</td><td>Israel</td><td>32.77824165</td><td>34.99565673</td><td>57%</td><td>83</td><td>47</td><td>36</td><td>6</td><td>44</td><td>41</td></tr><tr><td>7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22</td><td>lfw</td><td>LFW</td><td><a href="papers/7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22.html" target="_blank">Labeled Faces in the Wild : A Survey</a></td><td><a href="https://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Stevens Institute of Technology</td><td>United States</td><td>40.74225200</td><td>-74.02709490</td><td>47%</td><td>99</td><td>47</td><td>52</td><td>8</td><td>63</td><td>36</td></tr><tr><td>2160788824c4c29ffe213b2cbeb3f52972d73f37</td><td>3d_rma</td><td>3D-RMA</td><td><a href="papers/2160788824c4c29ffe213b2cbeb3f52972d73f37.html" target="_blank">Automatic 3D face authentication</a></td><td><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.9190&rep=rep1&type=pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>95</td><td>45</td><td>50</td><td>8</td><td>61</td><td>35</td></tr><tr><td>2edb87494278ad11641b6cf7a3f8996de12b8e14</td><td>qmul_grid</td><td>GRID</td><td><a href="papers/2edb87494278ad11641b6cf7a3f8996de12b8e14.html" target="_blank">Time-Delayed Correlation Analysis for Multi-Camera Activity Understanding</a></td><td><a href="http://www.eecs.qmul.ac.uk/~ccloy/files/ijcv_2010.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>Queen Mary University of London</td><td>United Kingdom</td><td>51.52472720</td><td>-0.03931035</td><td>52%</td><td>83</td><td>43</td><td>40</td><td>6</td><td>51</td><td>33</td></tr><tr><td>4793f11fbca4a7dba898b9fff68f70d868e2497c</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/4793f11fbca4a7dba898b9fff68f70d868e2497c.html" target="_blank">Kinship verification through transfer learning</a></td><td><a href="http://ijcai.org/Proceedings/11/Papers/422.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>71</td><td>43</td><td>28</td><td>2</td><td>29</td><td>43</td></tr><tr><td>ae0aee03d946efffdc7af2362a42d3750e7dd48a</td><td>put_face</td><td>Put Face</td><td><a href="papers/ae0aee03d946efffdc7af2362a42d3750e7dd48a.html" target="_blank">The put face database</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>100</td><td>43</td><td>57</td><td>7</td><td>56</td><td>48</td></tr><tr><td>2bf8541199728262f78d4dced6fb91479b39b738</td><td>clothing_co_parsing</td><td>CCP</td><td><a href="papers/2bf8541199728262f78d4dced6fb91479b39b738.html" target="_blank">Clothing Co-parsing by Joint Image Segmentation and Labeling</a></td><td><a href="https://arxiv.org/pdf/1502.00739.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>60</td><td>42</td><td>18</td><td>0</td><td>38</td><td>24</td></tr><tr><td>636b8ffc09b1b23ff714ac8350bb35635e49fa3c</td><td>caltech_10k_web_faces</td><td>Caltech 10K Web Faces</td><td><a href="papers/636b8ffc09b1b23ff714ac8350bb35635e49fa3c.html" target="_blank">Pruning training sets for learning of object categories</a></td><td><a href="http://authors.library.caltech.edu/11469/1/ANGcvpr05.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td></td><td></td><td></td><td></td><td></td><td>68%</td><td>60</td><td>41</td><td>19</td><td>5</td><td>43</td><td>17</td></tr><tr><td>c900e0ad4c95948baaf0acd8449fde26f9b4952a</td><td>emotio_net</td><td>EmotioNet Database</td><td><a href="papers/c900e0ad4c95948baaf0acd8449fde26f9b4952a.html" target="_blank">EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</a></td><td><a href="http://cbcsl.ece.ohio-state.edu/cvpr16.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>72</td><td>41</td><td>31</td><td>7</td><td>54</td><td>17</td></tr><tr><td>4df3143922bcdf7db78eb91e6b5359d6ada004d2</td><td>cfd</td><td>CFD</td><td><a href="papers/4df3143922bcdf7db78eb91e6b5359d6ada004d2.html" target="_blank">The Chicago face database: A free stimulus set of faces and norming data.</a></td><td><a href="https://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf" target="_blank">[pdf]</a></td><td>Behavior research methods</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>83</td><td>40</td><td>43</td><td>2</td><td>63</td><td>19</td></tr><tr><td>31de9b3dd6106ce6eec9a35991b2b9083395fd0b</td><td>feret</td><td>FERET</td><td><a href="papers/31de9b3dd6106ce6eec9a35991b2b9083395fd0b.html" target="_blank">FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</a></td><td><a href="https://pdfs.semanticscholar.org/31de/9b3dd6106ce6eec9a35991b2b9083395fd0b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>82</td><td>38</td><td>44</td><td>5</td><td>62</td><td>20</td></tr><tr><td>4d58f886f5150b2d5e48fd1b5a49e09799bf895d</td><td>texas_3dfrd</td><td>Texas 3DFRD</td><td><a href="papers/4d58f886f5150b2d5e48fd1b5a49e09799bf895d.html" target="_blank">Texas 3D Face Recognition Database</a></td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ssiai_may10.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>61</td><td>38</td><td>23</td><td>3</td><td>37</td><td>25</td></tr><tr><td>faf40ce28857aedf183e193486f5b4b0a8c478a2</td><td>iit_dehli_ear</td><td>IIT Dehli Ear</td><td><a href="papers/faf40ce28857aedf183e193486f5b4b0a8c478a2.html" target="_blank">Automated Human Identification Using Ear Imaging</a></td><td><a href="https://pdfs.semanticscholar.org/faf4/0ce28857aedf183e193486f5b4b0a8c478a2.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>70</td><td>38</td><td>32</td><td>6</td><td>28</td><td>42</td></tr><tr><td>0a85bdff552615643dd74646ac881862a7c7072d</td><td>pipa</td><td>PIPA</td><td><a href="papers/0a85bdff552615643dd74646ac881862a7c7072d.html" target="_blank">Beyond frontal faces: Improving Person Recognition using multiple cues</a></td><td><a href="https://arxiv.org/pdf/1501.05703.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>company</td><td>Facebook</td><td>United States</td><td>37.39367170</td><td>-122.08072620</td><td>74%</td><td>50</td><td>37</td><td>12</td><td>2</td><td>40</td><td>9</td></tr><tr><td>47aeb3b82f54b5ae8142b4bdda7b614433e69b9a</td><td>am_fed</td><td>AM-FED</td><td><a href="papers/47aeb3b82f54b5ae8142b4bdda7b614433e69b9a.html" target="_blank">Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"</a></td><td><a href="http://affect.media.mit.edu/pdfs/13.McDuff-etal-AMFED.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>73</td><td>36</td><td>37</td><td>6</td><td>41</td><td>34</td></tr><tr><td>6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c</td><td>afad</td><td>AFAD</td><td><a href="papers/6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c.html" target="_blank">Ordinal Regression with Multiple Output CNN for Age Estimation</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Niu_Ordinal_Regression_With_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>68</td><td>36</td><td>32</td><td>8</td><td>49</td><td>17</td></tr><tr><td>fcc6fe6007c322641796cb8792718641856a22a7</td><td>miw</td><td>MIW</td><td><a href="papers/fcc6fe6007c322641796cb8792718641856a22a7.html" target="_blank">Automatic facial makeup detection with application in face recognition</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td>2013 International Conference on Biometrics (ICB)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>78%</td><td>46</td><td>36</td><td>10</td><td>1</td><td>18</td><td>28</td></tr><tr><td>fcc6fe6007c322641796cb8792718641856a22a7</td><td>youtube_makeup</td><td>YMU</td><td><a href="papers/fcc6fe6007c322641796cb8792718641856a22a7.html" target="_blank">Automatic facial makeup detection with application in face recognition</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td>2013 International Conference on Biometrics (ICB)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>78%</td><td>46</td><td>36</td><td>10</td><td>1</td><td>18</td><td>28</td></tr><tr><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td><td>vmu</td><td>VMU</td><td><a href="papers/37d6f0eb074d207b53885bd2eb78ccc8a04be597.html" target="_blank">Can facial cosmetics affect the matching accuracy of face recognition systems?</a></td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>69%</td><td>49</td><td>34</td><td>15</td><td>0</td><td>18</td><td>31</td></tr><tr><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td><td>youtube_makeup</td><td>YMU</td><td><a href="papers/37d6f0eb074d207b53885bd2eb78ccc8a04be597.html" target="_blank">Can facial cosmetics affect the matching accuracy of face recognition systems?</a></td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>69%</td><td>49</td><td>34</td><td>15</td><td>0</td><td>18</td><td>31</td></tr><tr><td>f1af714b92372c8e606485a3982eab2f16772ad8</td><td>mug_faces</td><td>MUG Faces</td><td><a href="papers/f1af714b92372c8e606485a3982eab2f16772ad8.html" target="_blank">The MUG facial expression database</a></td><td><span class="gray">[pdf]</a></td><td>11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10</td><td>edu</td><td>Aristotle University of Thessaloniki</td><td>Greece</td><td>40.62984145</td><td>22.95889350</td><td>50%</td><td>68</td><td>34</td><td>34</td><td>5</td><td>28</td><td>40</td></tr><tr><td>0b84f07af44f964817675ad961def8a51406dd2e</td><td>prw</td><td>PRW</td><td><a href="papers/0b84f07af44f964817675ad961def8a51406dd2e.html" target="_blank">Person Re-identification in the Wild</a></td><td><a href="https://arxiv.org/pdf/1604.02531.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>65</td><td>33</td><td>32</td><td>1</td><td>46</td><td>17</td></tr><tr><td>7ace44190729927e5cb0dd5d363fcae966fe13f7</td><td>nudedetection</td><td>Nude Detection</td><td><a href="papers/7ace44190729927e5cb0dd5d363fcae966fe13f7.html" target="_blank">A bag-of-features approach based on Hue-SIFT descriptor for nude detection</a></td><td><a href="http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569191772.pdf" target="_blank">[pdf]</a></td><td>2009 17th European Signal Processing Conference</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>51</td><td>33</td><td>18</td><td>1</td><td>18</td><td>33</td></tr><tr><td>5ffd74d2873b7cba2cbc5fd295cc7fbdedca22a2</td><td>cityscapes</td><td>Cityscapes</td><td><a href="papers/5ffd74d2873b7cba2cbc5fd295cc7fbdedca22a2.html" target="_blank">The Cityscapes Dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>54</td><td>32</td><td>22</td><td>3</td><td>40</td><td>14</td></tr><tr><td>070de852bc6eb275d7ca3a9cdde8f6be8795d1a3</td><td>d3dfacs</td><td>D3DFACS</td><td><a href="papers/070de852bc6eb275d7ca3a9cdde8f6be8795d1a3.html" target="_blank">A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling</a></td><td><a href="http://www.cs.bath.ac.uk/~dpc/D3DFACS/ICCV_final_2011.pdf" target="_blank">[pdf]</a></td><td>2011 International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>52</td><td>30</td><td>22</td><td>5</td><td>37</td><td>15</td></tr><tr><td>356b431d4f7a2a0a38cf971c84568207dcdbf189</td><td>wider</td><td>WIDER</td><td><a href="papers/356b431d4f7a2a0a38cf971c84568207dcdbf189.html" target="_blank">Recognize complex events from static images by fusing deep channels</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2015/supplemental/Xiong_Recognize_Complex_Events_2015_CVPR_supplemental.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>45</td><td>30</td><td>15</td><td>1</td><td>30</td><td>15</td></tr><tr><td>51eba481dac6b229a7490f650dff7b17ce05df73</td><td>imsitu</td><td>imSitu</td><td><a href="papers/51eba481dac6b229a7490f650dff7b17ce05df73.html" target="_blank">Situation Recognition: Visual Semantic Role Labeling for Image Understanding</a></td><td><a href="http://allenai.org/content/publications/SituationRecognition.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>48</td><td>30</td><td>18</td><td>2</td><td>46</td><td>2</td></tr><tr><td>16e8b0a1e8451d5f697b94c0c2b32a00abee1d52</td><td>umb</td><td>UMB</td><td><a href="papers/16e8b0a1e8451d5f697b94c0c2b32a00abee1d52.html" target="_blank">UMB-DB: A database of partially occluded 3D faces</a></td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/claudio_cusano-slides.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>45</td><td>29</td><td>16</td><td>2</td><td>20</td><td>24</td></tr><tr><td>18858cc936947fc96b5c06bbe3c6c2faa5614540</td><td>pilot_parliament</td><td>PPB</td><td><a href="papers/18858cc936947fc96b5c06bbe3c6c2faa5614540.html" target="_blank">Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification</a></td><td><a href="https://pdfs.semanticscholar.org/03c1/fc9c3339813ed81ad0de540132f9f695a0f8.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>55</td><td>29</td><td>26</td><td>0</td><td>47</td><td>7</td></tr><tr><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td><td>facebook_100</td><td>Facebook100</td><td><a href="papers/9c23859ec7313f2e756a3e85575735e0c52249f4.html" target="_blank">Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</a></td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>Harvard University</td><td>United States</td><td>42.36782045</td><td>-71.12666653</td><td>58%</td><td>50</td><td>29</td><td>21</td><td>3</td><td>39</td><td>11</td></tr><tr><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td><td>pubfig_83</td><td>pubfig83</td><td><a href="papers/9c23859ec7313f2e756a3e85575735e0c52249f4.html" target="_blank">Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</a></td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>Harvard University</td><td>United States</td><td>42.36782045</td><td>-71.12666653</td><td>58%</td><td>50</td><td>29</td><td>21</td><td>3</td><td>39</td><td>11</td></tr><tr><td>22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b</td><td>saivt</td><td>SAIVT SoftBio</td><td><a href="papers/22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b.html" target="_blank">A Database for Person Re-Identification in Multi-Camera Surveillance Networks</a></td><td><a href="http://eprints.qut.edu.au/53437/3/Bialkowski_Database4PersonReID_DICTA.pdf" target="_blank">[pdf]</a></td><td>2012 International Conference on Digital Image Computing Techniques and Applications (DICTA)</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>58</td><td>27</td><td>31</td><td>7</td><td>41</td><td>18</td></tr><tr><td>8b2dd5c61b23ead5ae5508bb8ce808b5ea266730</td><td>10k_US_adult_faces</td><td>10K US Adult Faces</td><td><a href="papers/8b2dd5c61b23ead5ae5508bb8ce808b5ea266730.html" target="_blank">The intrinsic memorability of face photographs.</a></td><td><a href="https://pdfs.semanticscholar.org/8b2d/d5c61b23ead5ae5508bb8ce808b5ea266730.pdf" target="_blank">[pdf]</a></td><td>Journal of experimental psychology. General</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>47</td><td>25</td><td>22</td><td>3</td><td>34</td><td>13</td></tr><tr><td>b92a1ed9622b8268ae3ac9090e25789fc41cc9b8</td><td>pornodb</td><td>Pornography DB</td><td><a href="papers/b92a1ed9622b8268ae3ac9090e25789fc41cc9b8.html" target="_blank">Pooling in image representation: The visual codeword point of view</a></td><td><a href="http://cedric.cnam.fr/~thomen/papers/avila_CVIU2012_final.pdf" target="_blank">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>32%</td><td>77</td><td>25</td><td>52</td><td>7</td><td>46</td><td>34</td></tr><tr><td>eb027969f9310e0ae941e2adee2d42cdf07d938c</td><td>vgg_faces2</td><td>VGG Face2</td><td><a href="papers/eb027969f9310e0ae941e2adee2d42cdf07d938c.html" target="_blank">VGGFace2: A Dataset for Recognising Faces across Pose and Age</a></td><td><a href="https://arxiv.org/pdf/1710.08092.pdf" target="_blank">[pdf]</a></td><td>2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>45%</td><td>56</td><td>25</td><td>31</td><td>6</td><td>50</td><td>6</td></tr><tr><td>09d78009687bec46e70efcf39d4612822e61cb8c</td><td>raid</td><td>RAiD</td><td><a href="papers/09d78009687bec46e70efcf39d4612822e61cb8c.html" target="_blank">Consistent Re-identification in a Camera Network</a></td><td><a href="http://cs-people.bu.edu/dasabir/papers/ECCV14_Poster.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>45</td><td>24</td><td>21</td><td>7</td><td>34</td><td>11</td></tr><tr><td>47662d1a368daf70ba70ef2d59eb6209f98b675d</td><td>fia</td><td>CMU FiA</td><td><a href="papers/47662d1a368daf70ba70ef2d59eb6209f98b675d.html" target="_blank">The CMU Face In Action (FIA) Database</a></td><td><a href="https://pdfs.semanticscholar.org/4766/2d1a368daf70ba70ef2d59eb6209f98b675d.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>55</td><td>24</td><td>31</td><td>5</td><td>41</td><td>17</td></tr><tr><td>79828e6e9f137a583082b8b5a9dfce0c301989b8</td><td>mapillary</td><td>Mapillary</td><td><a href="papers/79828e6e9f137a583082b8b5a9dfce0c301989b8.html" target="_blank">The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</a></td><td><a href="http://openaccess.thecvf.com/content_ICCV_2017/papers/Neuhold_The_Mapillary_Vistas_ICCV_2017_paper.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>44</td><td>23</td><td>21</td><td>0</td><td>36</td><td>7</td></tr><tr><td>2161f6b7ee3c0acc81603b01dc0df689683577b9</td><td>large_scale_person_search</td><td>Large Scale Person Search</td><td><a href="papers/2161f6b7ee3c0acc81603b01dc0df689683577b9.html" target="_blank">End-to-End Deep Learning for Person Search</a></td><td><a href="https://pdfs.semanticscholar.org/2161/f6b7ee3c0acc81603b01dc0df689683577b9.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>41</td><td>22</td><td>19</td><td>2</td><td>27</td><td>12</td></tr><tr><td>758d7e1be64cc668c59ef33ba8882c8597406e53</td><td>affectnet</td><td>AffectNet</td><td><a href="papers/758d7e1be64cc668c59ef33ba8882c8597406e53.html" target="_blank">AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild</a></td><td><a href="https://arxiv.org/pdf/1708.03985.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>38</td><td>22</td><td>16</td><td>1</td><td>26</td><td>11</td></tr><tr><td>1c2802c2199b6d15ecefe7ba0c39bfe44363de38</td><td>youtube_poses</td><td>YouTube Pose</td><td><a href="papers/1c2802c2199b6d15ecefe7ba0c39bfe44363de38.html" target="_blank">Personalizing Human Video Pose Estimation</a></td><td><a href="https://arxiv.org/pdf/1511.06676.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>66%</td><td>32</td><td>21</td><td>11</td><td>2</td><td>29</td><td>5</td></tr><tr><td>6f3c76b7c0bd8e1d122c6ea808a271fd4749c951</td><td>ward</td><td>WARD</td><td><a href="papers/6f3c76b7c0bd8e1d122c6ea808a271fd4749c951.html" target="_blank">Re-identify people in wide area camera network</a></td><td><a href="http://users.dimi.uniud.it/~niki.martinel/data/publications/2012/CVPR/MarMicCVPR2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>38%</td><td>55</td><td>21</td><td>34</td><td>2</td><td>35</td><td>19</td></tr><tr><td>d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae</td><td>b3d_ac</td><td>B3D(AC)</td><td><a href="papers/d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae.html" target="_blank">A 3-D Audio-Visual Corpus of Affective Communication</a></td><td><a href="http://files.is.tue.mpg.de/jgall/download/jgall_avcorpus_mm10.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Multimedia</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>39</td><td>21</td><td>18</td><td>2</td><td>27</td><td>12</td></tr><tr><td>31b05f65405534a696a847dd19c621b7b8588263</td><td>umd_faces</td><td>UMD</td><td><a href="papers/31b05f65405534a696a847dd19c621b7b8588263.html" target="_blank">UMDFaces: An annotated face dataset for training deep networks</a></td><td><a href="https://arxiv.org/pdf/1611.01484.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Joint Conference on Biometrics (IJCB)</td><td>edu</td><td>University of Maryland</td><td>United States</td><td>39.28996850</td><td>-76.62196103</td><td>57%</td><td>35</td><td>20</td><td>15</td><td>4</td><td>28</td><td>7</td></tr><tr><td>53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4</td><td>bp4d_plus</td><td>BP4D+</td><td><a href="papers/53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4.html" target="_blank">Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Multimodal_Spontaneous_Emotion_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>40</td><td>20</td><td>20</td><td>0</td><td>21</td><td>20</td></tr><tr><td>213a579af9e4f57f071b884aa872651372b661fd</td><td>bbc_pose</td><td>BBC Pose</td><td><a href="papers/213a579af9e4f57f071b884aa872651372b661fd.html" target="_blank">Automatic and Efficient Human Pose Estimation for Sign Language Videos</a></td><td><a href="http://tomas.pfister.fi/files/charles13ijcv.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>76%</td><td>25</td><td>19</td><td>6</td><td>1</td><td>19</td><td>7</td></tr><tr><td>57fe081950f21ca03b5b375ae3e84b399c015861</td><td>cvc_01_barcelona</td><td>CVC-01</td><td><a href="papers/57fe081950f21ca03b5b375ae3e84b399c015861.html" target="_blank">Adaptive Image Sampling and Windows Classification for On – board Pedestrian Detection</a></td><td><a href="https://pdfs.semanticscholar.org/57fe/081950f21ca03b5b375ae3e84b399c015861.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>44</td><td>19</td><td>25</td><td>1</td><td>21</td><td>23</td></tr><tr><td>fd8168f1c50de85bac58a8d328df0a50248b16ae</td><td>nd_2006</td><td>ND-2006</td><td><a href="papers/fd8168f1c50de85bac58a8d328df0a50248b16ae.html" target="_blank">Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition</a></td><td><span class="gray">[pdf]</a></td><td>2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems</td><td>edu</td><td>University of Notre Dame</td><td>United States</td><td>41.70456775</td><td>-86.23822026</td><td>59%</td><td>32</td><td>19</td><td>13</td><td>3</td><td>17</td><td>15</td></tr><tr><td>298cbc3dfbbb3a20af4eed97906650a4ea1c29e0</td><td>ferplus</td><td>FER+</td><td><a href="papers/298cbc3dfbbb3a20af4eed97906650a4ea1c29e0.html" target="_blank">Training deep networks for facial expression recognition with crowd-sourced label distribution</a></td><td><a href="https://arxiv.org/pdf/1608.01041.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>29</td><td>18</td><td>11</td><td>0</td><td>15</td><td>14</td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>apis</td><td>APiS1.0</td><td><a href="papers/488e475eeb3bb39a145f23ede197cd3620f1d98a.html" target="_blank">Pedestrian Attribute Classification in Surveillance: Database and Evaluation</a></td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>13</td><td>13</td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>svs</td><td>SVS</td><td><a href="papers/488e475eeb3bb39a145f23ede197cd3620f1d98a.html" target="_blank">Pedestrian Attribute Classification in Surveillance: Database and Evaluation</a></td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>13</td><td>13</td></tr><tr><td>4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7</td><td>deep_fashion</td><td>DeepFashion</td><td><a href="papers/4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7.html" target="_blank">Fashion Landmark Detection in the Wild</a></td><td><a href="https://arxiv.org/pdf/1608.03049.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>17</td><td>9</td></tr><tr><td>84fe5b4ac805af63206012d29523a1e033bc827e</td><td>awe_ears</td><td>AWE Ears</td><td><a href="papers/84fe5b4ac805af63206012d29523a1e033bc827e.html" target="_blank">Ear Recognition: More Than a Survey</a></td><td><a href="https://arxiv.org/pdf/1611.06203.pdf" target="_blank">[pdf]</a></td><td>Neurocomputing</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>24</td><td>17</td><td>7</td><td>0</td><td>11</td><td>13</td></tr><tr><td>1e3df3ca8feab0b36fd293fe689f93bb2aaac591</td><td>immediacy</td><td>Immediacy</td><td><a href="papers/1e3df3ca8feab0b36fd293fe689f93bb2aaac591.html" target="_blank">Multi-task Recurrent Neural Network for Immediacy Prediction</a></td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Chu_Multi-Task_Recurrent_Neural_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>25</td><td>16</td><td>9</td><td>2</td><td>21</td><td>5</td></tr><tr><td>20388099cc415c772926e47bcbbe554e133343d1</td><td>cafe</td><td>CAFE</td><td><a href="papers/20388099cc415c772926e47bcbbe554e133343d1.html" target="_blank">The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults</a></td><td><a href="https://pdfs.semanticscholar.org/2038/8099cc415c772926e47bcbbe554e133343d1.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>33</td><td>16</td><td>17</td><td>3</td><td>28</td><td>5</td></tr><tr><td>a5a44a32a91474f00a3cda671a802e87c899fbb4</td><td>moments_in_time</td><td>Moments in Time</td><td><a href="papers/a5a44a32a91474f00a3cda671a802e87c899fbb4.html" target="_blank">Moments in Time Dataset: one million videos for event understanding</a></td><td><a href="https://arxiv.org/pdf/1801.03150.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>25</td><td>16</td><td>9</td><td>2</td><td>25</td><td>0</td></tr><tr><td>014b8df0180f33b9fea98f34ae611c6447d761d2</td><td>buhmap_db</td><td>BUHMAP-DB</td><td><a href="papers/014b8df0180f33b9fea98f34ae611c6447d761d2.html" target="_blank">Facial feature tracking and expression recognition for sign language</a></td><td><a href="https://www.cmpe.boun.edu.tr/~ari/files/ari2008iscis.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 17th Signal Processing and Communications Applications Conference</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>25</td><td>15</td><td>10</td><td>1</td><td>11</td><td>15</td></tr><tr><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td><td>casablanca</td><td>Casablanca</td><td><a href="papers/0ceda9dae8b9f322df65ca2ef02caca9758aec6f.html" target="_blank">Context-Aware CNNs for Person Head Detection</a></td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>27</td><td>15</td><td>12</td><td>1</td><td>23</td><td>5</td></tr><tr><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td><td>hollywood_headset</td><td>HollywoodHeads</td><td><a href="papers/0ceda9dae8b9f322df65ca2ef02caca9758aec6f.html" target="_blank">Context-Aware CNNs for Person Head Detection</a></td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>27</td><td>15</td><td>12</td><td>1</td><td>23</td><td>5</td></tr><tr><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td><td>megaface</td><td>MegaFace</td><td><a href="papers/28d4e027c7e90b51b7d8908fce68128d1964668a.html" target="_blank">Level Playing Field for Million Scale Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1705.00393.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>University of Washington</td><td>United States</td><td>47.65432380</td><td>-122.30800894</td><td>39%</td><td>38</td><td>15</td><td>23</td><td>2</td><td>29</td><td>8</td></tr><tr><td>4946ba10a4d5a7d0a38372f23e6622bd347ae273</td><td>coco_action</td><td>COCO-a</td><td><a href="papers/4946ba10a4d5a7d0a38372f23e6622bd347ae273.html" target="_blank">Describing Common Human Visual Actions in Images</a></td><td><a href="https://arxiv.org/pdf/1506.02203.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>26</td><td>15</td><td>11</td><td>0</td><td>25</td><td>1</td></tr><tr><td>221c18238b829c12b911706947ab38fd017acef7</td><td>rap_pedestrian</td><td>RAP</td><td><a href="papers/221c18238b829c12b911706947ab38fd017acef7.html" target="_blank">A Richly Annotated Dataset for Pedestrian Attribute Recognition</a></td><td><a href="https://arxiv.org/pdf/1603.07054.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>21</td><td>14</td><td>7</td><td>0</td><td>18</td><td>3</td></tr><tr><td>2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d.html" target="_blank">Genealogical face recognition based on UB KinFace database</a></td><td><span class="gray">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>SUNY Buffalo</td><td>United States</td><td>42.93362780</td><td>-78.88394479</td><td>47%</td><td>30</td><td>14</td><td>16</td><td>1</td><td>10</td><td>21</td></tr><tr><td>44d23df380af207f5ac5b41459c722c87283e1eb</td><td>wider_attribute</td><td>WIDER Attribute</td><td><a href="papers/44d23df380af207f5ac5b41459c722c87283e1eb.html" target="_blank">Human Attribute Recognition by Deep Hierarchical Contexts</a></td><td><a href="https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>78%</td><td>18</td><td>14</td><td>4</td><td>0</td><td>16</td><td>2</td></tr><tr><td>0297448f3ed948e136bb06ceff10eccb34e5bb77</td><td>ilids_mcts</td><td>i-LIDS</td><td><a href="papers/0297448f3ed948e136bb06ceff10eccb34e5bb77.html" target="_blank">Imagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems</a></td><td><span class="gray">[pdf]</a></td><td>Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology</td><td></td><td></td><td></td><td></td><td></td><td>41%</td><td>32</td><td>13</td><td>19</td><td>2</td><td>18</td><td>15</td></tr><tr><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td><td>50_people_one_question</td><td>50 People One Question</td><td><a href="papers/5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725.html" target="_blank">Merging Pose Estimates Across Space and Time</a></td><td><a href="https://pdfs.semanticscholar.org/63b2/f5348af0f969dfc2afb4977732393c6459ec.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>87%</td><td>15</td><td>13</td><td>2</td><td>0</td><td>12</td><td>4</td></tr><tr><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td><td>mpi_large</td><td>Large MPI Facial Expression</td><td><a href="papers/ea050801199f98a1c7c1df6769f23f658299a3ae.html" target="_blank">The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</a></td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>28</td><td>13</td><td>15</td><td>4</td><td>24</td><td>4</td></tr><tr><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td><td>mpi_small</td><td>Small MPI Facial Expression</td><td><a href="papers/ea050801199f98a1c7c1df6769f23f658299a3ae.html" target="_blank">The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</a></td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>28</td><td>13</td><td>15</td><td>4</td><td>24</td><td>4</td></tr><tr><td>12ad3b5bbbf407f8e54ea692c07633d1a867c566</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/12ad3b5bbbf407f8e54ea692c07633d1a867c566.html" target="_blank">Object recognition using segmentation for feature detection</a></td><td><span class="gray">[pdf]</a></td><td>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.</td><td>edu</td><td>Inst. of Comput. Sci., Univ. of Leoben, Austria</td><td>Austria</td><td>47.38473720</td><td>15.09302010</td><td>41%</td><td>29</td><td>12</td><td>17</td><td>1</td><td>21</td><td>8</td></tr><tr><td>19d1b811df60f86cbd5e04a094b07f32fff7a32a</td><td>york_3d</td><td>UOY 3D Face Database</td><td><a href="papers/19d1b811df60f86cbd5e04a094b07f32fff7a32a.html" target="_blank">Three-dimensional face recognition: an eigensurface approach</a></td><td><a href="http://www-users.cs.york.ac.uk/~nep/research/3Dface/tomh/3DFaceRecognition-Eigensurface-ICIP(web)2.pdf" target="_blank">[pdf]</a></td><td>2004 International Conference on Image Processing, 2004. ICIP '04.</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>36</td><td>12</td><td>24</td><td>4</td><td>25</td><td>11</td></tr><tr><td>45e616093a92e5f1e61a7c6037d5f637aa8964af</td><td>malf</td><td>MALF</td><td><a href="papers/45e616093a92e5f1e61a7c6037d5f637aa8964af.html" target="_blank">Fine-grained evaluation on face detection in the wild</a></td><td><a href="http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf" target="_blank">[pdf]</a></td><td>2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>17</td><td>12</td><td>5</td><td>0</td><td>13</td><td>4</td></tr><tr><td>ca3e88d87e1344d076c964ea89d91a75c417f5ee</td><td>imfdb</td><td>IMFDB</td><td><a href="papers/ca3e88d87e1344d076c964ea89d91a75c417f5ee.html" target="_blank">Indian Movie Face Database: A benchmark for face recognition under wide variations</a></td><td><a href="http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/papers/Shankar2013Indian.pdf" target="_blank">[pdf]</a></td><td>2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)</td><td>edu</td><td>India</td><td></td><td>20.59368400</td><td>78.96288000</td><td>80%</td><td>15</td><td>12</td><td>3</td><td>0</td><td>10</td><td>5</td></tr><tr><td>e27ef52c641c2b5100a1b34fd0b819e84a31b4df</td><td>sarc3d</td><td>Sarc3D</td><td><a href="papers/e27ef52c641c2b5100a1b34fd0b819e84a31b4df.html" target="_blank">SARC3D: A New 3D Body Model for People Tracking and Re-identification</a></td><td><a href="https://pdfs.semanticscholar.org/e27e/f52c641c2b5100a1b34fd0b819e84a31b4df.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>41%</td><td>29</td><td>12</td><td>17</td><td>3</td><td>17</td><td>12</td></tr><tr><td>774cbb45968607a027ae4729077734db000a1ec5</td><td>urban_tribes</td><td>Urban Tribes</td><td><a href="papers/774cbb45968607a027ae4729077734db000a1ec5.html" target="_blank">From Bikers to Surfers: Visual Recognition of Urban Tribes</a></td><td><a href="https://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>17</td><td>11</td><td>6</td><td>1</td><td>12</td><td>5</td></tr><tr><td>a8d0b149c2eadaa02204d3e4356fbc8eccf3b315</td><td>hi4d_adsip</td><td>Hi4D-ADSIP</td><td><a href="papers/a8d0b149c2eadaa02204d3e4356fbc8eccf3b315.html" target="_blank">Hi4D-ADSIP 3-D dynamic facial articulation database</a></td><td><span class="gray">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>18</td><td>11</td><td>7</td><td>1</td><td>7</td><td>11</td></tr><tr><td>25474c21613607f6bb7687a281d5f9d4ffa1f9f3</td><td>faceplace</td><td>Face Place</td><td><a href="papers/25474c21613607f6bb7687a281d5f9d4ffa1f9f3.html" target="_blank">Recognizing disguised faces</a></td><td><a href="https://pdfs.semanticscholar.org/d936/7ceb0be378c3a9ddf7cb741c678c1a3c574c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>42%</td><td>24</td><td>10</td><td>14</td><td>0</td><td>18</td><td>6</td></tr><tr><td>2f43b614607163abf41dfe5d17ef6749a1b61304</td><td>hrt_transgender</td><td>HRT Transgender</td><td><a href="papers/2f43b614607163abf41dfe5d17ef6749a1b61304.html" target="_blank">Investigating the Periocular-Based Face Recognition Across Gender Transformation</a></td><td><span class="gray">[pdf]</a></td><td>IEEE Transactions on Information Forensics and Security</td><td>edu</td><td>University of North Carolina at Wilmington</td><td>United States</td><td>34.22498270</td><td>-77.86907744</td><td>77%</td><td>13</td><td>10</td><td>3</td><td>0</td><td>6</td><td>8</td></tr><tr><td>4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06</td><td>distance_nighttime</td><td>Long Distance Heterogeneous Face</td><td><a href="papers/4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06.html" target="_blank">Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching</a></td><td><a href="https://pdfs.semanticscholar.org/4156/b7e88f2e0ab0a7c095b9bab199ae2b23bd06.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>21</td><td>10</td><td>11</td><td>3</td><td>11</td><td>10</td></tr><tr><td>6dcf418c778f528b5792104760f1fbfe90c6dd6a</td><td>agedb</td><td>AgeDB</td><td><a href="papers/6dcf418c778f528b5792104760f1fbfe90c6dd6a.html" target="_blank">AgeDB: The First Manually Collected, In-the-Wild Age Database</a></td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>91%</td><td>11</td><td>10</td><td>1</td><td>0</td><td>10</td><td>1</td></tr><tr><td>b71d1aa90dcbe3638888725314c0d56640c1fef1</td><td>ifdb</td><td>IFDB</td><td><a href="papers/b71d1aa90dcbe3638888725314c0d56640c1fef1.html" target="_blank">Iranian Face Database with age, pose and expression</a></td><td><a href="http://www.iranprc.org/pdf/paper/2007-02.pdf" target="_blank">[pdf]</a></td><td>2007 International Conference on Machine Vision</td><td>edu</td><td>Islamic Azad University</td><td>Iran</td><td>34.84529990</td><td>48.55962120</td><td>50%</td><td>20</td><td>10</td><td>10</td><td>2</td><td>12</td><td>9</td></tr><tr><td>c570d1247e337f91e555c3be0e8c8a5aba539d9f</td><td>mcgill</td><td>McGill Real World</td><td><a href="papers/c570d1247e337f91e555c3be0e8c8a5aba539d9f.html" target="_blank">Robust semi-automatic head pose labeling for real-world face video sequences</a></td><td><span class="gray">[pdf]</a></td><td>Multimedia Tools and Applications</td><td>edu</td><td>McGill University</td><td>Canada</td><td>45.50397610</td><td>-73.57496870</td><td>56%</td><td>18</td><td>10</td><td>8</td><td>0</td><td>13</td><td>7</td></tr><tr><td>ec792ad2433b6579f2566c932ee414111e194537</td><td>msmt_17</td><td>MSMT17</td><td><a href="papers/ec792ad2433b6579f2566c932ee414111e194537.html" target="_blank">Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</a></td><td><a href="https://arxiv.org/pdf/1711.08565.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>14</td><td>10</td><td>4</td><td>1</td><td>11</td><td>3</td></tr><tr><td>2a171f8d14b6b8735001a11c217af9587d095848</td><td>social_relation</td><td>Social Relation</td><td><a href="papers/2a171f8d14b6b8735001a11c217af9587d095848.html" target="_blank">Learning Social Relation Traits from Face Images</a></td><td><a href="https://arxiv.org/pdf/1509.03936.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>20</td><td>9</td><td>11</td><td>5</td><td>15</td><td>5</td></tr><tr><td>4e6ee936eb50dd032f7138702fa39b7c18ee8907</td><td>dartmouth_children</td><td>Dartmouth Children</td><td><a href="papers/4e6ee936eb50dd032f7138702fa39b7c18ee8907.html" target="_blank">The Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set</a></td><td><a href="https://pdfs.semanticscholar.org/4e6e/e936eb50dd032f7138702fa39b7c18ee8907.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>20</td><td>9</td><td>11</td><td>2</td><td>17</td><td>4</td></tr><tr><td>71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6</td><td>umd_faces</td><td>UMD</td><td><a href="papers/71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6.html" target="_blank">The Do’s and Don’ts for CNN-Based Face Verification</a></td><td><a href="https://arxiv.org/pdf/1705.07426.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Computer Vision Workshops (ICCVW)</td><td></td><td></td><td></td><td></td><td></td><td>36%</td><td>25</td><td>9</td><td>16</td><td>3</td><td>17</td><td>6</td></tr><tr><td>2b926b3586399d028b46315d7d9fb9d879e4f79c</td><td>frav3d</td><td>FRAV3D</td><td><a href="papers/2b926b3586399d028b46315d7d9fb9d879e4f79c.html" target="_blank">Multimodal 2D, 2.5D & 3D Face Verification</a></td><td><a href="http://www.researchgate.net/profile/Enrique_Cabello/publication/224057733_Multimodal_2D_2.5D__3D_Face_Verification/links/0912f50f522298fa95000000.pdf" target="_blank">[pdf]</a></td><td>2006 International Conference on Image Processing</td><td>edu</td><td>Universidad Rey Juan Carlos, Spain</td><td></td><td>40.33586610</td><td>-3.87694320</td><td>57%</td><td>14</td><td>8</td><td>6</td><td>0</td><td>2</td><td>12</td></tr><tr><td>a94cae786d515d3450d48267e12ca954aab791c4</td><td>yawdd</td><td>YawDD</td><td><a href="papers/a94cae786d515d3450d48267e12ca954aab791c4.html" target="_blank">YawDD: a yawning detection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>14</td><td>8</td><td>6</td><td>1</td><td>2</td><td>12</td></tr><tr><td>0cb2dd5f178e3a297a0c33068961018659d0f443</td><td>ijb_c</td><td>IJB-B</td><td><a href="papers/0cb2dd5f178e3a297a0c33068961018659d0f443.html" target="_blank">IARPA Janus Benchmark-B Face Dataset</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Whitelametal_IARPAJanusBenchmark-BFaceDataset_CVPRW17.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td>edu</td><td>Michigan State University</td><td>United States</td><td>42.71856800</td><td>-84.47791571</td><td>28%</td><td>25</td><td>7</td><td>18</td><td>6</td><td>21</td><td>4</td></tr><tr><td>22f656d0f8426c84a33a267977f511f127bfd7f3</td><td>expw</td><td>ExpW</td><td><a href="papers/22f656d0f8426c84a33a267977f511f127bfd7f3.html" target="_blank">From Facial Expression Recognition to Interpersonal Relation Prediction</a></td><td><a href="https://arxiv.org/pdf/1609.06426.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>78%</td><td>9</td><td>7</td><td>2</td><td>0</td><td>5</td><td>4</td></tr><tr><td>2624d84503bc2f8e190e061c5480b6aa4d89277a</td><td>afew_va</td><td>AFEW-VA</td><td><a href="papers/2624d84503bc2f8e190e061c5480b6aa4d89277a.html" target="_blank">AFEW-VA database for valence and arousal estimation in-the-wild</a></td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/afew-va.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>15</td><td>7</td><td>8</td><td>1</td><td>10</td><td>4</td></tr><tr><td>4563b46d42079242f06567b3f2e2f7a80cb3befe</td><td>vadana</td><td>VADANA</td><td><a href="papers/4563b46d42079242f06567b3f2e2f7a80cb3befe.html" target="_blank">VADANA: A dense dataset for facial image analysis</a></td><td><a href="http://vims.cis.udel.edu/publications/VADANA_BeFIT2011.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td>edu</td><td>University of Delaware</td><td>United States</td><td>39.68103280</td><td>-75.75401840</td><td>44%</td><td>16</td><td>7</td><td>9</td><td>0</td><td>6</td><td>10</td></tr><tr><td>6403117f9c005ae81f1e8e6d1302f4a045e3d99d</td><td>alert_airport</td><td>ALERT Airport</td><td><a href="papers/6403117f9c005ae81f1e8e6d1302f4a045e3d99d.html" target="_blank">A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets.</a></td><td><a href="https://arxiv.org/pdf/1605.09653.pdf" target="_blank">[pdf]</a></td><td>IEEE transactions on pattern analysis and machine intelligence</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>15</td><td>7</td><td>8</td><td>1</td><td>10</td><td>5</td></tr><tr><td>bd26dabab576adb6af30484183c9c9c8379bf2e0</td><td>scut_fbp</td><td>SCUT-FBP</td><td><a href="papers/bd26dabab576adb6af30484183c9c9c8379bf2e0.html" target="_blank">SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</a></td><td><a href="https://arxiv.org/pdf/1511.02459.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Systems, Man, and Cybernetics</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>14</td><td>7</td><td>7</td><td>3</td><td>5</td><td>9</td></tr><tr><td>041d3eedf5e45ce5c5229f0181c5c576ed1fafd6</td><td>ucf_selfie</td><td>UCF Selfie</td><td><a href="papers/041d3eedf5e45ce5c5229f0181c5c576ed1fafd6.html" target="_blank">How to Take a Good Selfie?</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>9</td><td>6</td><td>3</td><td>0</td><td>6</td><td>4</td></tr><tr><td>079a0a3bf5200994e1f972b1b9197bf2f90e87d4</td><td>mit_cbcl</td><td>MIT CBCL</td><td><a href="papers/079a0a3bf5200994e1f972b1b9197bf2f90e87d4.html" target="_blank">Component-Based Face Recognition with 3D Morphable Models</a></td><td><a href="http://cbcl.mit.edu/cbcl/publications/theses/thesis-huang.pdf" target="_blank">[pdf]</a></td><td>2004 Conference on Computer Vision and Pattern Recognition Workshop</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>12</td><td>6</td><td>6</td><td>0</td><td>8</td><td>4</td></tr><tr><td>7f4040b482d16354d5938c1d1b926b544652bf5b</td><td>nova_emotions</td><td>Novaemötions Dataset</td><td><a href="papers/7f4040b482d16354d5938c1d1b926b544652bf5b.html" target="_blank">Competitive affective gaming: winning with a smile</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Universidade NOVA de Lisboa, Caparica, Portugal</td><td>Portugal</td><td>38.66096400</td><td>-9.20581300</td><td>75%</td><td>8</td><td>6</td><td>2</td><td>0</td><td>4</td><td>4</td></tr><tr><td>8f02ec0be21461fbcedf51d864f944cfc42c875f</td><td>hda_plus</td><td>HDA+</td><td><a href="papers/8f02ec0be21461fbcedf51d864f944cfc42c875f.html" target="_blank">The HDA+ Data Set for Research on Fully Automated Re-identification Systems</a></td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w19/11%20-%20The%20HDA%20data%20set%20for%20research%20on%20fully.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>35%</td><td>17</td><td>6</td><td>11</td><td>2</td><td>11</td><td>6</td></tr><tr><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td><td>lag</td><td>LAG</td><td><a href="papers/0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e.html" target="_blank">Large age-gap face verification by feature injection in deep networks</a></td><td><a href="https://arxiv.org/pdf/1602.06149.pdf" target="_blank">[pdf]</a></td><td>Pattern Recognition Letters</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>7</td><td>5</td><td>2</td><td>0</td><td>3</td><td>4</td></tr><tr><td>137aa2f891d474fce1e7a1d1e9b3aefe21e22b34</td><td>hrt_transgender</td><td>HRT Transgender</td><td><a href="papers/137aa2f891d474fce1e7a1d1e9b3aefe21e22b34.html" target="_blank">Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset</a></td><td><a href="http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%20139/PID2859389.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>7</td><td>5</td><td>2</td><td>1</td><td>3</td><td>5</td></tr><tr><td>1a40092b493c6b8840257ab7f96051d1a4dbfeb2</td><td>sports_videos_in_the_wild</td><td>SVW</td><td><a href="papers/1a40092b493c6b8840257ab7f96051d1a4dbfeb2.html" target="_blank">Sports Videos in the Wild (SVW): A video dataset for sports analysis</a></td><td><a href="http://cse.msu.edu/~liuxm/publication/Safdarnejad_Liu_Udpa_Andrus_Wood_Craven_FG2015.pdf" target="_blank">[pdf]</a></td><td>2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td></td><td></td><td></td><td></td><td></td><td>83%</td><td>6</td><td>5</td><td>1</td><td>1</td><td>5</td><td>1</td></tr><tr><td>8627f019882b024aef92e4eb9355c499c733e5b7</td><td>used</td><td>USED Social Event Dataset</td><td><a href="papers/8627f019882b024aef92e4eb9355c499c733e5b7.html" target="_blank">USED: a large-scale social event detection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Trento</td><td>Italy</td><td>46.06588360</td><td>11.11598940</td><td>71%</td><td>7</td><td>5</td><td>2</td><td>0</td><td>3</td><td>4</td></tr><tr><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td><td>chalearn</td><td>ChaLearn</td><td><a href="papers/8d5998cd984e7cce307da7d46f155f9db99c6590.html" target="_blank">ChaLearn looking at people: A review of events and resources</a></td><td><a href="https://arxiv.org/pdf/1701.02664.pdf" target="_blank">[pdf]</a></td><td>2017 International Joint Conference on Neural Networks (IJCNN)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>10</td><td>5</td><td>5</td><td>1</td><td>6</td><td>4</td></tr><tr><td>a5a3bc3e5e9753769163cb30b16dbd12e266b93e</td><td>mcgill</td><td>McGill Real World</td><td><a href="papers/a5a3bc3e5e9753769163cb30b16dbd12e266b93e.html" target="_blank">Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos</a></td><td><span class="gray">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>8</td><td>5</td><td>3</td><td>1</td><td>5</td><td>3</td></tr><tr><td>07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1</td><td>uccs</td><td>UCCS</td><td><a href="papers/07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1.html" target="_blank">Large scale unconstrained open set face database</a></td><td><a href="http://vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>University of Colorado at Colorado Springs</td><td>United States</td><td>38.89646790</td><td>-104.80505940</td><td>80%</td><td>5</td><td>4</td><td>1</td><td>0</td><td>3</td><td>2</td></tr><tr><td>4b4106614c1d553365bad75d7866bff0de6056ed</td><td>czech_news_agency</td><td>UFI</td><td><a href="papers/4b4106614c1d553365bad75d7866bff0de6056ed.html" target="_blank">Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions</a></td><td><a href="https://pdfs.semanticscholar.org/4b41/06614c1d553365bad75d7866bff0de6056ed.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>10</td><td>4</td><td>6</td><td>0</td><td>4</td><td>6</td></tr><tr><td>54983972aafc8e149259d913524581357b0f91c3</td><td>reseed</td><td>ReSEED</td><td><a href="papers/54983972aafc8e149259d913524581357b0f91c3.html" target="_blank">ReSEED: social event dEtection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>6</td><td>4</td><td>2</td><td>1</td><td>1</td><td>5</td></tr><tr><td>563c940054e4b456661762c1ab858e6f730c3159</td><td>data_61</td><td>Data61 Pedestrian</td><td><a href="papers/563c940054e4b456661762c1ab858e6f730c3159.html" target="_blank">A Multi-modal Graphical Model for Scene Analysis</a></td><td><a href="http://www.nicta.com.au/wp-content/uploads/2015/02/TaghaviNaminetalWACV15.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Winter Conference on Applications of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>8</td><td>4</td><td>4</td><td>0</td><td>5</td><td>3</td></tr><tr><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td><td>cmdp</td><td>CMDP</td><td><a href="papers/56ae6d94fc6097ec4ca861f0daa87941d1c10b70.html" target="_blank">Distance Estimation of an Unknown Person from a Portrait</a></td><td><a href="https://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>9</td><td>4</td><td>5</td><td>0</td><td>6</td><td>3</td></tr><tr><td>7ebb153704706e457ab57b432793d2b6e5d12592</td><td>vgg_celebs_in_places</td><td>CIP</td><td><a href="papers/7ebb153704706e457ab57b432793d2b6e5d12592.html" target="_blank">Faces in Places: compound query retrieval</a></td><td><a href="https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>80%</td><td>5</td><td>4</td><td>1</td><td>0</td><td>4</td><td>1</td></tr><tr><td>23e824d1dfc33f3780dd18076284f07bd99f1c43</td><td>mifs</td><td>MIFS</td><td><a href="papers/23e824d1dfc33f3780dd18076284f07bd99f1c43.html" target="_blank">Spoofing faces using makeup: An investigative study</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenFaceMakeupSpoof_ISBA2017.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)</td><td>edu</td><td>INRIA Méditerranée</td><td>France</td><td>43.61581310</td><td>7.06838000</td><td>60%</td><td>5</td><td>3</td><td>2</td><td>0</td><td>1</td><td>4</td></tr><tr><td>57178b36c21fd7f4529ac6748614bb3374714e91</td><td>ijb_c</td><td>IJB-C</td><td><a href="papers/57178b36c21fd7f4529ac6748614bb3374714e91.html" target="_blank">IARPA Janus Benchmark - C: Face Dataset and Protocol</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Mazeetal_IARPAJanusBenchmarkCFaceDatasetAndProtocol_ICB2018.pdf" target="_blank">[pdf]</a></td><td>2018 International Conference on Biometrics (ICB)</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>9</td><td>3</td><td>6</td><td>2</td><td>9</td><td>0</td></tr><tr><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td><td>market1203</td><td>Market 1203</td><td><a href="papers/a7fe834a0af614ce6b50dc093132b031dd9a856b.html" target="_blank">Orientation Driven Bag of Appearances for Person Re-identification</a></td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>4</td><td>4</td></tr><tr><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td><td>pku_reid</td><td>PKU-Reid</td><td><a href="papers/a7fe834a0af614ce6b50dc093132b031dd9a856b.html" target="_blank">Orientation Driven Bag of Appearances for Person Re-identification</a></td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>4</td><td>4</td></tr><tr><td>dd65f71dac86e36eecbd3ed225d016c3336b4a13</td><td>families_in_the_wild</td><td>FIW</td><td><a href="papers/dd65f71dac86e36eecbd3ed225d016c3336b4a13.html" target="_blank">Visual Kinship Recognition of Families in the Wild</a></td><td><a href="https://web.northeastern.edu/smilelab/fiw/papers/Supplemental_PP.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>University of Massachusetts Dartmouth</td><td>United States</td><td>41.62772475</td><td>-71.00724501</td><td>100%</td><td>3</td><td>3</td><td>0</td><td>0</td><td>2</td><td>1</td></tr><tr><td>d4f1eb008eb80595bcfdac368e23ae9754e1e745</td><td>uccs</td><td>UCCS</td><td><a href="papers/d4f1eb008eb80595bcfdac368e23ae9754e1e745.html" target="_blank">Unconstrained Face Detection and Open-Set Face Recognition Challenge</a></td><td><a href="https://arxiv.org/pdf/1708.02337.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Joint Conference on Biometrics (IJCB)</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>5</td><td>2</td><td>3</td><td>0</td><td>4</td><td>1</td></tr><tr><td>17b46e2dad927836c689d6787ddb3387c6159ece</td><td>geofaces</td><td>GeoFaces</td><td><a href="papers/17b46e2dad927836c689d6787ddb3387c6159ece.html" target="_blank">GeoFaceExplorer: exploring the geo-dependence of facial attributes</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>2</td><td>2</td><td>0</td><td>0</td><td>1</td><td>1</td></tr><tr><td>9e5378e7b336c89735d3bb15cf67eff96f86d39a</td><td>precarious</td><td>Precarious</td><td><a href="papers/9e5378e7b336c89735d3bb15cf67eff96f86d39a.html" target="_blank">Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters</a></td><td><a href="https://arxiv.org/pdf/1703.06283.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>17%</td><td>12</td><td>2</td><td>10</td><td>1</td><td>11</td><td>1</td></tr><tr><td>ad01687649d95cd5b56d7399a9603c4b8e2217d7</td><td>mrp_drone</td><td>MRP Drone</td><td><a href="papers/ad01687649d95cd5b56d7399a9603c4b8e2217d7.html" target="_blank">Investigating Open-World Person Re-identification Using a Drone</a></td><td><a href="https://pdfs.semanticscholar.org/ad01/687649d95cd5b56d7399a9603c4b8e2217d7.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>5</td><td>2</td><td>3</td><td>0</td><td>3</td><td>2</td></tr><tr><td>f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f</td><td>pku</td><td>PKU</td><td><a href="papers/f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f.html" target="_blank">Swiss-System Based Cascade Ranking for Gait-Based Person Re-Identification</a></td><td><a href="https://pdfs.semanticscholar.org/f6c8/d5e35d7e4d60a0104f233ac1a3ab757da53f.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>3</td><td>2</td><td>1</td><td>0</td><td>1</td><td>2</td></tr><tr><td>22909dd19a0ec3b6065334cb5be5392cb24d839d</td><td>pets</td><td>PETS 2017</td><td><a href="papers/22909dd19a0ec3b6065334cb5be5392cb24d839d.html" target="_blank">PETS 2017: Dataset and Challenge</a></td><td><a href="http://tahirnawaz.com/papers/2017_CVPRW_PETS2017Dataset_Luis_Nawaz_Cane_Ferryman.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>12%</td><td>8</td><td>1</td><td>7</td><td>0</td><td>2</td><td>6</td></tr><tr><td>3dc3f0b64ef80f573e3a5f96e456e52ee980b877</td><td>georgia_tech_face_database</td><td>Georgia Tech Face</td><td><a href="papers/3dc3f0b64ef80f573e3a5f96e456e52ee980b877.html" target="_blank">MAXIMUM LIKELIHOOD TRAINING OF THE EMBEDDED HMM FOR FACE DETECTION AND RECOGNITION Ara V. Ne an and Monson H. Hayes III Center for Signal and Image Processing School of Electrical and Computer Engineering</a></td><td><a href="https://pdfs.semanticscholar.org/3dc3/f0b64ef80f573e3a5f96e456e52ee980b877.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>3</td><td>1</td><td>2</td><td>0</td><td>2</td><td>1</td></tr><tr><td>4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461</td><td>3dddb_unconstrained</td><td>3D Dynamic</td><td><a href="papers/4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461.html" target="_blank">A 3 D Dynamic Database for Unconstrained Face Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/4d4b/b462c9f1d4e4ab1e4aa6a75cc0bc71b38461.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td></tr><tr><td>55c40cbcf49a0225e72d911d762c27bb1c2d14aa</td><td>ifad</td><td>IFAD</td><td><a href="papers/55c40cbcf49a0225e72d911d762c27bb1c2d14aa.html" target="_blank">Indian Face Age Database : A Database for Face Recognition with Age Variation</a></td><td><a href="https://pdfs.semanticscholar.org/55c4/0cbcf49a0225e72d911d762c27bb1c2d14aa.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>578d4ad74818086bb64f182f72e2c8bd31e3d426</td><td>mr2</td><td>MR2</td><td><a href="papers/578d4ad74818086bb64f182f72e2c8bd31e3d426.html" target="_blank">The MR2: A multi-racial, mega-resolution database of facial stimuli.</a></td><td><a href="https://pdfs.semanticscholar.org/be5b/455abd379240460d022a0e246615b0b86c14.pdf" target="_blank">[pdf]</a></td><td>Behavior research methods</td><td></td><td></td><td></td><td></td><td></td><td>14%</td><td>7</td><td>1</td><td>6</td><td>0</td><td>7</td><td>0</td></tr><tr><td>5ad4e9f947c1653c247d418f05dad758a3f9277b</td><td>wlfdb</td><td>WLFDB</td><td><a href="papers/5ad4e9f947c1653c247d418f05dad758a3f9277b.html" target="_blank">WLFDB: Weakly Labeled Face Databases</a></td><td><a href="https://pdfs.semanticscholar.org/5ad4/e9f947c1653c247d418f05dad758a3f9277b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td></tr><tr><td>65355cbb581a219bd7461d48b3afd115263ea760</td><td>complex_activities</td><td>Ongoing Complex Activities</td><td><a href="papers/65355cbb581a219bd7461d48b3afd115263ea760.html" target="_blank">Recognition of ongoing complex activities by sequence prediction over a hierarchical label space</a></td><td><a href="https://scalable.mpi-inf.mpg.de/files/2016/01/main_wacv.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Winter Conference on Applications of Computer Vision (WACV)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>922e0a51a3b8c67c4c6ac09a577ff674cbd28b34</td><td>v47</td><td>V47</td><td><a href="papers/922e0a51a3b8c67c4c6ac09a577ff674cbd28b34.html" target="_blank">Re-identification of pedestrians with variable occlusion and scale</a></td><td><span class="gray">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td>edu</td><td>Kingston University</td><td>United Kingdom</td><td>51.42930860</td><td>-0.26840440</td><td>10%</td><td>10</td><td>1</td><td>9</td><td>2</td><td>6</td><td>4</td></tr><tr><td>c06b13d0ec3f5c43e2782cd22542588e233733c3</td><td>nova_emotions</td><td>Novaemötions Dataset</td><td><a href="papers/c06b13d0ec3f5c43e2782cd22542588e233733c3.html" target="_blank">Crowdsourcing facial expressions for affective-interaction</a></td><td><span class="gray">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td></tr><tr><td>d80a3d1f3a438e02a6685e66ee908446766fefa9</td><td>megaage</td><td>MegaAge</td><td><a href="papers/d80a3d1f3a438e02a6685e66ee908446766fefa9.html" target="_blank">Quantifying Facial Age by Posterior of Age Comparisons</a></td><td><a href="https://arxiv.org/pdf/1708.09687.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>25%</td><td>4</td><td>1</td><td>3</td><td>1</td><td>4</td><td>0</td></tr><tr><td>e58dd160a76349d46f881bd6ddbc2921f08d1050</td><td>gfw</td><td>YouTube Pose</td><td><a href="papers/e58dd160a76349d46f881bd6ddbc2921f08d1050.html" target="_blank">Merge or Not? Learning to Group Faces via Imitation Learning</a></td><td><a href="https://arxiv.org/pdf/1707.03986.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>9e31e77f9543ab42474ba4e9330676e18c242e72</td><td>imdb_face</td><td>IMDB Face</td><td><a href="papers/9e31e77f9543ab42474ba4e9330676e18c242e72.html" target="_blank">The Devil of Face Recognition is in the Noise</a></td><td><a href="https://arxiv.org/pdf/1807.11649.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Nanyang Technological University</td><td>Singapore</td><td>1.34841040</td><td>103.68297965</td><td>20%</td><td>5</td><td>1</td><td>4</td><td>0</td><td>3</td><td>1</td></tr><tr><td>066d71fcd997033dce4ca58df924397dfe0b5fd1</td><td>ifdb</td><td>IFDB</td><td><a href="papers/066d71fcd997033dce4ca58df924397dfe0b5fd1.html" target="_blank">Iranian Face Database and Evaluation with a New Detection Algorithm</a></td><td><a href="https://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>377f2b65e6a9300448bdccf678cde59449ecd337</td><td>ufdd</td><td>UFDD</td><td><a href="papers/377f2b65e6a9300448bdccf678cde59449ecd337.html" target="_blank">Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</a></td><td><a href="https://arxiv.org/pdf/1804.10275.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>2</td><td>0</td><td>2</td><td>0</td><td>2</td><td>0</td></tr><tr><td>670637d0303a863c1548d5b19f705860a23e285c</td><td>face_tracer</td><td>FaceTracer</td><td><a href="papers/670637d0303a863c1548d5b19f705860a23e285c.html" target="_blank">Face swapping: automatically replacing faces in photographs</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>75da1df4ed319926c544eefe17ec8d720feef8c0</td><td>fddb</td><td>FDDB</td><td><a href="papers/75da1df4ed319926c544eefe17ec8d720feef8c0.html" target="_blank">FDDB: A benchmark for face detection in unconstrained settings</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td></tr><tr><td>77c81c13a110a341c140995bedb98101b9e84f7f</td><td>wildtrack</td><td>WildTrack</td><td><a href="papers/77c81c13a110a341c140995bedb98101b9e84f7f.html" target="_blank">WILDTRACK : A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</a></td><td><a href="https://pdfs.semanticscholar.org/fe1c/ec4e4995b8615855572374ae3efc94949105.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>8990cdce3f917dad622e43e033db686b354d057c</td><td>tiny_faces</td><td>TinyFace</td><td><a href="papers/8990cdce3f917dad622e43e033db686b354d057c.html" target="_blank">Low-Resolution Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1811.08965.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>9696ad8b164f5e10fcfe23aacf74bd6168aebb15</td><td>4dfab</td><td>4DFAB</td><td><a href="papers/9696ad8b164f5e10fcfe23aacf74bd6168aebb15.html" target="_blank">4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</a></td><td><a href="https://arxiv.org/pdf/1712.01443.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>4</td><td>0</td><td>4</td><td>0</td><td>2</td><td>2</td></tr><tr><td>9b9bf5e623cb8af7407d2d2d857bc3f1b531c182</td><td>who_goes_there</td><td>WGT</td><td><a href="papers/9b9bf5e623cb8af7407d2d2d857bc3f1b531c182.html" target="_blank">Who goes there?: approaches to mapping facial appearance diversity</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Kentucky</td><td>United States</td><td>38.03337420</td><td>-84.50177580</td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>bd88bb2e4f351352d88ee7375af834360e223498</td><td>hda_plus</td><td>HDA+</td><td><a href="papers/bd88bb2e4f351352d88ee7375af834360e223498.html" target="_blank">HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance</a></td><td><a href="https://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>2</td><td>0</td><td>2</td><td>0</td><td>1</td><td>2</td></tr><tr><td>c866a2afc871910e3282fd9498dce4ab20f6a332</td><td>qmul_surv_face</td><td>QMUL-SurvFace</td><td><a href="papers/c866a2afc871910e3282fd9498dce4ab20f6a332.html" target="_blank">Surveillance Face Recognition Challenge</a></td><td><a href="https://arxiv.org/pdf/1804.09691.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td><td>stair_actions</td><td>STAIR Action</td><td><a href="papers/d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9.html" target="_blank">STAIR Actions: A Video Dataset of Everyday Home Actions</a></td><td><a href="https://arxiv.org/pdf/1804.04326.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>d3200d49a19a4a4e4e9745ee39649b65d80c834b</td><td>scut_head</td><td>SCUT HEAD</td><td><a href="papers/d3200d49a19a4a4e4e9745ee39649b65d80c834b.html" target="_blank">Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</a></td><td><a href="https://arxiv.org/pdf/1803.09256.pdf" target="_blank">[pdf]</a></td><td>2018 24th International Conference on Pattern Recognition (ICPR)</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4</td><td>europersons</td><td>EuroCity Persons</td><td><a href="papers/f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4.html" target="_blank">The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</a></td><td><a href="https://arxiv.org/pdf/1805.07193.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td></tr></table></body></html> \ No newline at end of file
+<!doctype html><html><head><meta charset='utf-8'><title>Coverage</title><link rel='stylesheet' href='reports.css'></head><body><h2>Coverage</h2><table border='1' cellpadding='3' cellspacing='3'><th>Paper ID</th><th>Megapixels Key</th><th>Megapixels Name</th><th>Report Link</th><th>PDF Link</th><th>Journal</th><th>Type</th><th>Address</th><th>Country</th><th>Lat</th><th>Lng</th><th>Coverage</th><th>Total Citations</th><th>Geocoded Citations</th><th>Unknown Citations</th><th>Empty Citations</th><th>With PDF</th><th>With DOI</th><tr><td>b5f2846a506fc417e7da43f6a7679146d99c5e96</td><td>ucf_101</td><td>UCF101</td><td><a href="papers/b5f2846a506fc417e7da43f6a7679146d99c5e96.html" target="_blank">UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</a></td><td><a href="https://arxiv.org/pdf/1212.0402.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>999</td><td>611</td><td>388</td><td>73</td><td>716</td><td>283</td></tr><tr><td>0e986f51fe45b00633de9fd0c94d082d2be51406</td><td>afw</td><td>AFW</td><td><a href="papers/0e986f51fe45b00633de9fd0c94d082d2be51406.html" target="_blank">Face detection, pose estimation, and landmark localization in the wild</a></td><td><a href="http://crcv.ucf.edu/courses/CAP6412/Spring2013/papers/zhu-ramanan-face-cvpr12.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>999</td><td>608</td><td>391</td><td>59</td><td>622</td><td>387</td></tr><tr><td>0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a</td><td>voc</td><td>VOC</td><td><a href="papers/0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a.html" target="_blank">The Pascal Visual Object Classes (VOC) Challenge</a></td><td><a href="http://eprints.pascal-network.org/archive/00006187/01/PascalVOC_IJCV2009.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>58%</td><td>999</td><td>575</td><td>424</td><td>35</td><td>611</td><td>414</td></tr><tr><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td><td>lfw</td><td>LFW</td><td><a href="papers/370b5757a5379b15e30d619e4d3fb9e8e13f3256.html" target="_blank">Labeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments</a></td><td><a href="https://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>999</td><td>575</td><td>422</td><td>71</td><td>639</td><td>371</td></tr><tr><td>5e0f8c355a37a5a89351c02f174e7a5ddcb98683</td><td>coco</td><td>COCO</td><td><a href="papers/5e0f8c355a37a5a89351c02f174e7a5ddcb98683.html" target="_blank">Microsoft COCO: Common Objects in Context</a></td><td><a href="https://arxiv.org/pdf/1405.0312.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>999</td><td>569</td><td>430</td><td>29</td><td>799</td><td>193</td></tr><tr><td>2e384f057211426ac5922f1b33d2aa8df5d51f57</td><td>a_pascal_yahoo</td><td>aPascal</td><td><a href="papers/2e384f057211426ac5922f1b33d2aa8df5d51f57.html" target="_blank">Describing objects by their attributes</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0468.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>University of Illinois, Urbana-Champaign</td><td>United States</td><td>40.11116745</td><td>-88.22587665</td><td>57%</td><td>999</td><td>565</td><td>433</td><td>74</td><td>738</td><td>264</td></tr><tr><td>759a3b3821d9f0e08e0b0a62c8b693230afc3f8d</td><td>pubfig</td><td>PubFig</td><td><a href="papers/759a3b3821d9f0e08e0b0a62c8b693230afc3f8d.html" target="_blank">Attribute and simile classifiers for face verification</a></td><td><a href="http://acberg.com/papers/kbbn09iccv.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 12th International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>894</td><td>544</td><td>350</td><td>56</td><td>604</td><td>300</td></tr><tr><td>162ea969d1929ed180cc6de9f0bf116993ff6e06</td><td>vgg_faces</td><td>VGG Face</td><td><a href="papers/162ea969d1929ed180cc6de9f0bf116993ff6e06.html" target="_blank">Deep Face Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>999</td><td>543</td><td>456</td><td>70</td><td>635</td><td>370</td></tr><tr><td>10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5</td><td>inria_person</td><td>INRIA Pedestrian</td><td><a href="papers/10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5.html" target="_blank">Histograms of oriented gradients for human detection</a></td><td><a href="http://courses.cs.washington.edu/courses/cse576/12sp/notes/CVPR2005_HOG.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td>edu</td><td>INRIA Rhone-Alps, Montbonnot, France</td><td>France</td><td>45.21788600</td><td>5.80736900</td><td>54%</td><td>999</td><td>539</td><td>460</td><td>67</td><td>537</td><td>477</td></tr><tr><td>31b58ced31f22eab10bd3ee2d9174e7c14c27c01</td><td>tiny_images</td><td>Tiny Images</td><td><a href="papers/31b58ced31f22eab10bd3ee2d9174e7c14c27c01.html" target="_blank">80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition</a></td><td><a href="http://cvcl.mit.edu/SUNSeminar/Torralba_80M_PAMI08.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>999</td><td>535</td><td>463</td><td>94</td><td>685</td><td>327</td></tr><tr><td>4d9a02d080636e9666c4d1cc438b9893391ec6c7</td><td>cohn_kanade_plus</td><td>CK+</td><td><a href="papers/4d9a02d080636e9666c4d1cc438b9893391ec6c7.html" target="_blank">The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression</a></td><td><a href="http://www.iainm.com/iainm/Publications_files/2010_The%20Extended.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops</td><td>edu</td><td>University of Pittsburgh</td><td>United States</td><td>40.44415295</td><td>-79.96243993</td><td>55%</td><td>975</td><td>535</td><td>439</td><td>67</td><td>475</td><td>510</td></tr><tr><td>026e3363b7f76b51cc711886597a44d5f1fd1de2</td><td>kitti</td><td>KITTI</td><td><a href="papers/026e3363b7f76b51cc711886597a44d5f1fd1de2.html" target="_blank">Vision meets robotics: The KITTI dataset</a></td><td><a href="https://pdfs.semanticscholar.org/026e/3363b7f76b51cc711886597a44d5f1fd1de2.pdf" target="_blank">[pdf]</a></td><td>I. J. Robotics Res.</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>999</td><td>532</td><td>467</td><td>37</td><td>570</td><td>448</td></tr><tr><td>6d96f946aaabc734af7fe3fc4454cf8547fcd5ed</td><td>ar_facedb</td><td>AR Face</td><td><a href="papers/6d96f946aaabc734af7fe3fc4454cf8547fcd5ed.html" target="_blank">The AR face database</a></td><td><span class="gray">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>999</td><td>526</td><td>473</td><td>51</td><td>459</td><td>573</td></tr><tr><td>18c72175ddbb7d5956d180b65a96005c100f6014</td><td>yale_faces</td><td>YaleFaces</td><td><a href="papers/18c72175ddbb7d5956d180b65a96005c100f6014.html" target="_blank">From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</a></td><td><a href="https://pdfs.semanticscholar.org/97bb/c2b439a79d4dc0dc7199d71ed96ad5e3fd0e.pdf" target="_blank">[pdf]</a></td><td>IEEE Trans. Pattern Anal. Mach. Intell.</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>999</td><td>514</td><td>485</td><td>77</td><td>551</td><td>459</td></tr><tr><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td><td>cohn_kanade</td><td>CK</td><td><a href="papers/23fc83c8cfff14a16df7ca497661264fc54ed746.html" target="_blank">Comprehensive Database for Facial Expression Analysis</a></td><td><a href="https://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>999</td><td>503</td><td>496</td><td>75</td><td>572</td><td>439</td></tr><tr><td>18ae7c9a4bbc832b8b14bc4122070d7939f5e00e</td><td>frgc</td><td>FRGC</td><td><a href="papers/18ae7c9a4bbc832b8b14bc4122070d7939f5e00e.html" target="_blank">Overview of the face recognition grand challenge</a></td><td><a href="http://ivizlab.sfu.ca/arya/Papers/IEEE/Proceedings/C%20V%20P%20R-%2005/Face%20Recognition%20Grand%20Challenge.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td>edu</td><td>NIST</td><td>United States</td><td>39.14004000</td><td>-77.21850600</td><td>50%</td><td>999</td><td>497</td><td>501</td><td>114</td><td>594</td><td>424</td></tr><tr><td>f72f6a45ee240cc99296a287ff725aaa7e7ebb35</td><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td><a href="papers/f72f6a45ee240cc99296a287ff725aaa7e7ebb35.html" target="_blank">Pedestrian Detection: An Evaluation of the State of the Art</a></td><td><a href="http://vision.caltech.edu/Image_Datasets/CaltechPedestrians/files/PAMI12pedestrians.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>California Institute of Technology</td><td>United States</td><td>34.13710185</td><td>-118.12527487</td><td>49%</td><td>999</td><td>485</td><td>514</td><td>71</td><td>541</td><td>464</td></tr><tr><td>2ad0ee93d029e790ebb50574f403a09854b65b7e</td><td>yale_faces</td><td>YaleFaces</td><td><a href="papers/2ad0ee93d029e790ebb50574f403a09854b65b7e.html" target="_blank">Acquiring linear subspaces for face recognition under variable lighting</a></td><td><a href="http://vision.cornell.edu/se3/wp-content/uploads/2014/09/pami05.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>999</td><td>484</td><td>515</td><td>110</td><td>525</td><td>485</td></tr><tr><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td><td>feret</td><td>FERET</td><td><a href="papers/0f0fcf041559703998abf310e56f8a2f90ee6f21.html" target="_blank">The FERET Evaluation Methodology for Face-Recognition Algorithms</a></td><td><a href="https://pdfs.semanticscholar.org/5099/7a5605c1f61e09e9a96789ed7495be6625aa.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>999</td><td>482</td><td>517</td><td>103</td><td>560</td><td>454</td></tr><tr><td>b62628ac06bbac998a3ab825324a41a11bc3a988</td><td>m2vtsdb_extended</td><td>xm2vtsdb</td><td><a href="papers/b62628ac06bbac998a3ab825324a41a11bc3a988.html" target="_blank">Xm2vtsdb: the Extended M2vts Database</a></td><td><a href="https://pdfs.semanticscholar.org/b626/28ac06bbac998a3ab825324a41a11bc3a988.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>906</td><td>481</td><td>425</td><td>44</td><td>542</td><td>408</td></tr><tr><td>01959ef569f74c286956024866c1d107099199f7</td><td>vqa</td><td>VQA</td><td><a href="papers/01959ef569f74c286956024866c1d107099199f7.html" target="_blank">VQA: Visual Question Answering</a></td><td><a href="https://arxiv.org/pdf/1505.00468.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>731</td><td>444</td><td>287</td><td>47</td><td>629</td><td>96</td></tr><tr><td>dc8b25e35a3acb812beb499844734081722319b4</td><td>feret</td><td>FERET</td><td><a href="papers/dc8b25e35a3acb812beb499844734081722319b4.html" target="_blank">The FERET database and evaluation procedure for face-recognition algorithms</a></td><td><a href="http://biometrics.nist.gov/cs_links/face/frvt/feret/FERET_Database_evaluation_procedure.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>999</td><td>443</td><td>556</td><td>106</td><td>606</td><td>413</td></tr><tr><td>55206f0b5f57ce17358999145506cd01e570358c</td><td>orl</td><td>ORL</td><td><a href="papers/55206f0b5f57ce17358999145506cd01e570358c.html" target="_blank">Parameterisation of a stochastic model for human face identification</a></td><td><a href="https://pdfs.semanticscholar.org/5520/6f0b5f57ce17358999145506cd01e570358c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>999</td><td>442</td><td>557</td><td>97</td><td>569</td><td>445</td></tr><tr><td>45c31cde87258414f33412b3b12fc5bec7cb3ba9</td><td>jaffe</td><td>JAFFE</td><td><a href="papers/45c31cde87258414f33412b3b12fc5bec7cb3ba9.html" target="_blank">Coding Facial Expressions with Gabor Wavelets</a></td><td><a href="https://pdfs.semanticscholar.org/45c3/1cde87258414f33412b3b12fc5bec7cb3ba9.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>848</td><td>422</td><td>426</td><td>55</td><td>420</td><td>433</td></tr><tr><td>6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4</td><td>celeba</td><td>CelebA</td><td><a href="papers/6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4.html" target="_blank">Deep Learning Face Attributes in the Wild</a></td><td><a href="https://arxiv.org/pdf/1411.7766.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td>edu</td><td>Chinese University of Hong Kong</td><td>China</td><td>22.41626320</td><td>114.21093180</td><td>52%</td><td>808</td><td>421</td><td>386</td><td>68</td><td>670</td><td>118</td></tr><tr><td>32cde90437ab5a70cf003ea36f66f2de0e24b3ab</td><td>cityscapes</td><td>Cityscapes</td><td><a href="papers/32cde90437ab5a70cf003ea36f66f2de0e24b3ab.html" target="_blank">The Cityscapes Dataset for Semantic Urban Scene Understanding</a></td><td><a href="https://arxiv.org/pdf/1604.01685.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>771</td><td>403</td><td>368</td><td>54</td><td>624</td><td>138</td></tr><tr><td>177bc509dd0c7b8d388bb47403f28d6228c14b5c</td><td>celeba_plus</td><td>CelebFaces+</td><td><a href="papers/177bc509dd0c7b8d388bb47403f28d6228c14b5c.html" target="_blank">Deep Learning Face Representation from Predicting 10,000 Classes</a></td><td><a href="http://mmlab.ie.cuhk.edu.hk/pdf/YiSun_CVPR14.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>660</td><td>397</td><td>263</td><td>25</td><td>340</td><td>330</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td>cmu_pie</td><td>CMU PIE</td><td><a href="papers/4d423acc78273b75134e2afd1777ba6d3a398973.html" target="_blank">The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces</a></td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>742</td><td>396</td><td>344</td><td>59</td><td>416</td><td>329</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td>multi_pie</td><td>MULTIPIE</td><td><a href="papers/4d423acc78273b75134e2afd1777ba6d3a398973.html" target="_blank">The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces</a></td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>742</td><td>396</td><td>344</td><td>59</td><td>416</td><td>329</td></tr><tr><td>2830fb5282de23d7784b4b4bc37065d27839a412</td><td>h3d</td><td>H3D</td><td><a href="papers/2830fb5282de23d7784b4b4bc37065d27839a412.html" target="_blank">Poselets: Body part detectors trained using 3D human pose annotations</a></td><td><a href="http://http.cs.berkeley.edu/Research/Projects/CS/vision/human/poselets_iccv09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 12th International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>707</td><td>368</td><td>339</td><td>67</td><td>509</td><td>215</td></tr><tr><td>6273b3491e94ea4dd1ce42b791d77bdc96ee73a8</td><td>viper</td><td>VIPeR</td><td><a href="papers/6273b3491e94ea4dd1ce42b791d77bdc96ee73a8.html" target="_blank">Evaluating Appearance Models for Recognition, Reacquisition, and Tracking</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>584</td><td>329</td><td>255</td><td>38</td><td>338</td><td>245</td></tr><tr><td>140438a77a771a8fb656b39a78ff488066eb6b50</td><td>lfw_p</td><td>LFWP</td><td><a href="papers/140438a77a771a8fb656b39a78ff488066eb6b50.html" target="_blank">Localizing Parts of Faces Using a Consensus of Exemplars</a></td><td><a href="http://neerajkumar.org/projects/face-parts/base/papers/nk_cvpr2011_faceparts.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>521</td><td>315</td><td>206</td><td>42</td><td>337</td><td>195</td></tr><tr><td>6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3</td><td>cuhk03</td><td>CUHK03</td><td><a href="papers/6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3.html" target="_blank">DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>512</td><td>304</td><td>208</td><td>29</td><td>324</td><td>180</td></tr><tr><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td><td>youtube_faces</td><td>YouTubeFaces</td><td><a href="papers/560e0e58d0059259ddf86fcec1fa7975dee6a868.html" target="_blank">Face recognition in unconstrained videos with matched background similarity</a></td><td><a href="http://www.cs.tau.ac.il/thesis/thesis/Maoz.Itay-MSc.Thesis.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>Tel Aviv University</td><td>Israel</td><td>32.11198890</td><td>34.80459702</td><td>60%</td><td>485</td><td>292</td><td>192</td><td>30</td><td>298</td><td>193</td></tr><tr><td>2258e01865367018ed6f4262c880df85b94959f8</td><td>mot</td><td>MOT</td><td><a href="papers/2258e01865367018ed6f4262c880df85b94959f8.html" target="_blank">Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</a></td><td><a href="https://pdfs.semanticscholar.org/2e0b/00f4043e2d4b04c59c88bb54bcd907d0dcd4.pdf" target="_blank">[pdf]</a></td><td>EURASIP J. Image and Video Processing</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>586</td><td>290</td><td>294</td><td>48</td><td>345</td><td>244</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_campus</td><td>TUD-Campus</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>529</td><td>280</td><td>248</td><td>40</td><td>324</td><td>213</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_crossing</td><td>TUD-Crossing</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>529</td><td>280</td><td>248</td><td>40</td><td>324</td><td>213</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_pedestrian</td><td>TUD-Pedestrian</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>529</td><td>280</td><td>248</td><td>40</td><td>324</td><td>213</td></tr><tr><td>cc589c499dcf323fe4a143bbef0074c3e31f9b60</td><td>bu_3dfe</td><td>BU-3DFE</td><td><a href="papers/cc589c499dcf323fe4a143bbef0074c3e31f9b60.html" target="_blank">A 3D facial expression database for facial behavior research</a></td><td><a href="http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR06_a.pdf" target="_blank">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>555</td><td>263</td><td>291</td><td>47</td><td>299</td><td>270</td></tr><tr><td>1dc35905a1deff8bc74688f2d7e2f48fd2273275</td><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td><a href="papers/1dc35905a1deff8bc74688f2d7e2f48fd2273275.html" target="_blank">Pedestrian detection: A benchmark</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1378.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>519</td><td>261</td><td>258</td><td>27</td><td>289</td><td>233</td></tr><tr><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td><td>casia_webface</td><td>CASIA Webface</td><td><a href="papers/853bd61bc48a431b9b1c7cab10c603830c488e39.html" target="_blank">Learning Face Representation from Scratch</a></td><td><a href="https://arxiv.org/pdf/1411.7923.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td>edu</td><td>Chinese Academy of Sciences</td><td>China</td><td>40.00447950</td><td>116.37023800</td><td>60%</td><td>436</td><td>260</td><td>176</td><td>30</td><td>288</td><td>150</td></tr><tr><td>4308bd8c28e37e2ed9a3fcfe74d5436cce34b410</td><td>market_1501</td><td>Market 1501</td><td><a href="papers/4308bd8c28e37e2ed9a3fcfe74d5436cce34b410.html" target="_blank">Scalable Person Re-identification: A Benchmark</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>394</td><td>238</td><td>156</td><td>18</td><td>272</td><td>116</td></tr><tr><td>4053e3423fb70ad9140ca89351df49675197196a</td><td>bio_id</td><td>BioID Face</td><td><a href="papers/4053e3423fb70ad9140ca89351df49675197196a.html" target="_blank">Robust Face Detection Using the Hausdorff Distance</a></td><td><a href="http://facedetection.homepage.t-online.de/downloads/AVBPA01BioID.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>498</td><td>237</td><td>261</td><td>56</td><td>330</td><td>179</td></tr><tr><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td><td>mafl</td><td>MAFL</td><td><a href="papers/8a3c5507237957d013a0fe0f082cab7f757af6ee.html" target="_blank">Facial Landmark Detection by Deep Multi-task Learning</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>383</td><td>231</td><td>152</td><td>25</td><td>265</td><td>121</td></tr><tr><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td><td>mtfl</td><td>MTFL</td><td><a href="papers/8a3c5507237957d013a0fe0f082cab7f757af6ee.html" target="_blank">Facial Landmark Detection by Deep Multi-task Learning</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>383</td><td>231</td><td>152</td><td>25</td><td>265</td><td>121</td></tr><tr><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td><td>morph</td><td>MORPH Commercial</td><td><a href="papers/9055b155cbabdce3b98e16e5ac9c0edf00f9552f.html" target="_blank">MORPH: a longitudinal image database of normal adult age-progression</a></td><td><span class="gray">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>424</td><td>225</td><td>198</td><td>26</td><td>239</td><td>190</td></tr><tr><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td><td>morph_nc</td><td>MORPH Non-Commercial</td><td><a href="papers/9055b155cbabdce3b98e16e5ac9c0edf00f9552f.html" target="_blank">MORPH: a longitudinal image database of normal adult age-progression</a></td><td><span class="gray">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>424</td><td>225</td><td>198</td><td>26</td><td>239</td><td>190</td></tr><tr><td>3325860c0c82a93b2eac654f5324dd6a776f609e</td><td>mpii_human_pose</td><td>MPII Human Pose</td><td><a href="papers/3325860c0c82a93b2eac654f5324dd6a776f609e.html" target="_blank">2D Human Pose Estimation: New Benchmark and State of the Art Analysis</a></td><td><a href="http://ei.is.tuebingen.mpg.de/uploads_file/attachment/attachment/168/andriluka14benchmark.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>356</td><td>221</td><td>135</td><td>21</td><td>304</td><td>53</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_buffy</td><td>Buffy Stickmen</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>215</td><td>157</td><td>35</td><td>251</td><td>129</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>215</td><td>157</td><td>35</td><td>251</td><td>129</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>215</td><td>157</td><td>35</td><td>251</td><td>129</td></tr><tr><td>2a75f34663a60ab1b04a0049ed1d14335129e908</td><td>mmi_facial_expression</td><td>MMI Facial Expression Dataset</td><td><a href="papers/2a75f34663a60ab1b04a0049ed1d14335129e908.html" target="_blank">Web-based database for facial expression analysis</a></td><td><a href="http://dev.pubs.doc.ic.ac.uk/Pantic-ICME05-2/Pantic-ICME05-2.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE International Conference on Multimedia and Expo</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>440</td><td>212</td><td>228</td><td>44</td><td>267</td><td>181</td></tr><tr><td>2485c98aa44131d1a2f7d1355b1e372f2bb148ad</td><td>cas_peal</td><td>CAS-PEAL</td><td><a href="papers/2485c98aa44131d1a2f7d1355b1e372f2bb148ad.html" target="_blank">The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</a></td><td><a href="http://www.jdl.ac.cn/peal/files/ieee_smc_a_gao_cas-peal.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>415</td><td>209</td><td>206</td><td>39</td><td>189</td><td>232</td></tr><tr><td>16c7c31a7553d99f1837fc6e88e77b5ccbb346b8</td><td>prid</td><td>PRID</td><td><a href="papers/16c7c31a7553d99f1837fc6e88e77b5ccbb346b8.html" target="_blank">Person Re-identification by Descriptive and Discriminative Classification</a></td><td><a href="https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>352</td><td>204</td><td>148</td><td>27</td><td>196</td><td>157</td></tr><tr><td>95f12d27c3b4914e0668a268360948bce92f7db3</td><td>helen</td><td>Helen</td><td><a href="papers/95f12d27c3b4914e0668a268360948bce92f7db3.html" target="_blank">Interactive Facial Feature Localization</a></td><td><a href="https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>company</td><td>Facebook</td><td>United States</td><td>37.39367170</td><td>-122.08072620</td><td>59%</td><td>339</td><td>201</td><td>138</td><td>29</td><td>219</td><td>129</td></tr><tr><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td><td>fiw_300</td><td>300-W</td><td><a href="papers/044d9a8c61383312cdafbcc44b9d00d650b21c70.html" target="_blank">300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>324</td><td>199</td><td>125</td><td>29</td><td>211</td><td>118</td></tr><tr><td>2724ba85ec4a66de18da33925e537f3902f21249</td><td>cofw</td><td>COFW</td><td><a href="papers/2724ba85ec4a66de18da33925e537f3902f21249.html" target="_blank">Robust Face Landmark Estimation under Occlusion</a></td><td><a href="http://authors.library.caltech.edu/45988/1/ICCV13%20Burgos-Artizzu.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision</td><td>edu</td><td>California Institute of Technology</td><td>United States</td><td>34.13710185</td><td>-118.12527487</td><td>61%</td><td>305</td><td>186</td><td>119</td><td>16</td><td>192</td><td>116</td></tr><tr><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td><td>leeds_sports_pose</td><td>Leeds Sports Pose</td><td><a href="papers/4b1d23d17476fcf78f4cbadf69fb130b1aa627c0.html" target="_blank">Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</a></td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>278</td><td>180</td><td>98</td><td>13</td><td>208</td><td>78</td></tr><tr><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td><td>stickmen_buffy</td><td>Buffy Stickmen</td><td><a href="papers/4b1d23d17476fcf78f4cbadf69fb130b1aa627c0.html" target="_blank">Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</a></td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>278</td><td>180</td><td>98</td><td>13</td><td>208</td><td>78</td></tr><tr><td>13f06b08f371ba8b5d31c3e288b4deb61335b462</td><td>eth_andreas_ess</td><td>ETHZ Pedestrian</td><td><a href="papers/13f06b08f371ba8b5d31c3e288b4deb61335b462.html" target="_blank">Depth and Appearance for Mobile Scene Analysis</a></td><td><a href="http://www.mmp.rwth-aachen.de/publications/pdf/ess-depthandappearance-iccv07-poster.pdf" target="_blank">[pdf]</a></td><td>2007 IEEE 11th International Conference on Computer Vision</td><td>edu</td><td>ETH Zurich</td><td>Switzerland</td><td>47.37631300</td><td>8.54766990</td><td>55%</td><td>319</td><td>176</td><td>143</td><td>27</td><td>195</td><td>127</td></tr><tr><td>639937b3a1b8bded3f7e9a40e85bd3770016cf3c</td><td>bfm</td><td>BFM</td><td><a href="papers/639937b3a1b8bded3f7e9a40e85bd3770016cf3c.html" target="_blank">A 3D Face Model for Pose and Illumination Invariant Face Recognition</a></td><td><a href="http://gravis.cs.unibas.ch/publications/2009/BFModel09.pdf" target="_blank">[pdf]</a></td><td>2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>323</td><td>176</td><td>147</td><td>29</td><td>226</td><td>98</td></tr><tr><td>3765df816dc5a061bc261e190acc8bdd9d47bec0</td><td>rafd</td><td>RaFD</td><td><a href="papers/3765df816dc5a061bc261e190acc8bdd9d47bec0.html" target="_blank">Presentation and validation of the Radboud Faces Database</a></td><td><a href="https://pdfs.semanticscholar.org/3765/df816dc5a061bc261e190acc8bdd9d47bec0.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>39%</td><td>446</td><td>175</td><td>271</td><td>43</td><td>322</td><td>136</td></tr><tr><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td><td>aflw</td><td>AFLW</td><td><a href="papers/a74251efa970b92925b89eeef50a5e37d9281ad0.html" target="_blank">Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</a></td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/martin_koestinger-slides.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>292</td><td>175</td><td>117</td><td>37</td><td>212</td><td>84</td></tr><tr><td>5981e6479c3fd4e31644db35d236bfb84ae46514</td><td>mot</td><td>MOT</td><td><a href="papers/5981e6479c3fd4e31644db35d236bfb84ae46514.html" target="_blank">Learning to associate: HybridBoosted multi-target tracker for crowded scene</a></td><td><a href="http://iris.usc.edu/Outlines/papers/2009/yuan-chang-nevatia-cvpr09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>University of Southern California</td><td>United States</td><td>34.02241490</td><td>-118.28634407</td><td>52%</td><td>330</td><td>172</td><td>157</td><td>27</td><td>196</td><td>139</td></tr><tr><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td><td>tud_multiview</td><td>TUD-Multiview</td><td><a href="papers/436f798d1a4e54e5947c1e7d7375c31b2bdb4064.html" target="_blank">Monocular 3D pose estimation and tracking by detection</a></td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>TU Darmstadt</td><td>Germany</td><td>49.87482770</td><td>8.65632810</td><td>54%</td><td>302</td><td>164</td><td>138</td><td>34</td><td>207</td><td>100</td></tr><tr><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td><td>tud_stadtmitte</td><td>TUD-Stadtmitte</td><td><a href="papers/436f798d1a4e54e5947c1e7d7375c31b2bdb4064.html" target="_blank">Monocular 3D pose estimation and tracking by detection</a></td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>TU Darmstadt</td><td>Germany</td><td>49.87482770</td><td>8.65632810</td><td>54%</td><td>302</td><td>164</td><td>138</td><td>34</td><td>207</td><td>100</td></tr><tr><td>44484d2866f222bbb9b6b0870890f9eea1ffb2d0</td><td>cuhk01</td><td>CUHK01</td><td><a href="papers/44484d2866f222bbb9b6b0870890f9eea1ffb2d0.html" target="_blank">Human Reidentification with Transferred Metric Learning</a></td><td><a href="https://pdfs.semanticscholar.org/4448/4d2866f222bbb9b6b0870890f9eea1ffb2d0.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>258</td><td>160</td><td>98</td><td>12</td><td>142</td><td>115</td></tr><tr><td>2acf7e58f0a526b957be2099c10aab693f795973</td><td>bosphorus</td><td>The Bosphorus</td><td><a href="papers/2acf7e58f0a526b957be2099c10aab693f795973.html" target="_blank">Bosphorus Database for 3D Face Analysis</a></td><td><a href="https://pdfs.semanticscholar.org/4254/fbba3846008f50671edc9cf70b99d7304543.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>328</td><td>158</td><td>170</td><td>19</td><td>149</td><td>183</td></tr><tr><td>833fa04463d90aab4a9fe2870d480f0b40df446e</td><td>sun_attributes</td><td>SUN</td><td><a href="papers/833fa04463d90aab4a9fe2870d480f0b40df446e.html" target="_blank">SUN attribute database: Discovering, annotating, and recognizing scene attributes</a></td><td><a href="http://static.cs.brown.edu/~gen/pub_papers/SUN_Attribute_Database_CVPR2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Brown University</td><td>United States</td><td>41.82686820</td><td>-71.40123146</td><td>58%</td><td>269</td><td>156</td><td>113</td><td>29</td><td>215</td><td>57</td></tr><tr><td>010f0f4929e6a6644fb01f0e43820f91d0fad292</td><td>yfcc_100m</td><td>YFCC100M</td><td><a href="papers/010f0f4929e6a6644fb01f0e43820f91d0fad292.html" target="_blank">YFCC100M: the new data in multimedia research</a></td><td><a href="https://arxiv.org/pdf/1503.01817.pdf" target="_blank">[pdf]</a></td><td>Commun. ACM</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>56%</td><td>276</td><td>155</td><td>121</td><td>23</td><td>175</td><td>99</td></tr><tr><td>2fda164863a06a92d3a910b96eef927269aeb730</td><td>names_and_faces_news</td><td>News Dataset</td><td><a href="papers/2fda164863a06a92d3a910b96eef927269aeb730.html" target="_blank">Names and faces in the news</a></td><td><a href="http://ttic.uchicago.edu/~mmaire/papers/pdf/names_faces_cvpr2004.pdf" target="_blank">[pdf]</a></td><td>Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>294</td><td>150</td><td>143</td><td>29</td><td>215</td><td>82</td></tr><tr><td>9361b784e73e9238d5cefbea5ac40d35d1e3103f</td><td>towncenter</td><td>TownCenter</td><td><a href="papers/9361b784e73e9238d5cefbea5ac40d35d1e3103f.html" target="_blank">Stable multi-target tracking in real-time surveillance video</a></td><td><a href="http://ben.benfold.com/docs/benfold_reid_cvpr2011-preprint.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>310</td><td>137</td><td>173</td><td>24</td><td>180</td><td>131</td></tr><tr><td>2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9.html" target="_blank">Generic object recognition with boosting</a></td><td><a href="http://www.cse.unr.edu/~bebis/CS773C/ObjectRecognition/Papers/Opelt06.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>TU Graz</td><td>Austria</td><td>47.07071400</td><td>15.43950400</td><td>48%</td><td>286</td><td>136</td><td>150</td><td>16</td><td>193</td><td>97</td></tr><tr><td>e8de844fefd54541b71c9823416daa238be65546</td><td>visual_phrases</td><td>Phrasal Recognition</td><td><a href="papers/e8de844fefd54541b71c9823416daa238be65546.html" target="_blank">Recognition using visual phrases</a></td><td><a href="http://vision.cs.uiuc.edu/phrasal/recognition_using_visual_phrases.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>University of Illinois, Urbana-Champaign</td><td>United States</td><td>40.11116745</td><td>-88.22587665</td><td>58%</td><td>233</td><td>135</td><td>98</td><td>18</td><td>177</td><td>58</td></tr><tr><td>38b55d95189c5e69cf4ab45098a48fba407609b4</td><td>cuhk02</td><td>CUHK02</td><td><a href="papers/38b55d95189c5e69cf4ab45098a48fba407609b4.html" target="_blank">Locally Aligned Feature Transforms across Views</a></td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d594.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>242</td><td>129</td><td>113</td><td>17</td><td>139</td><td>102</td></tr><tr><td>0c91808994a250d7be332400a534a9291ca3b60e</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/0c91808994a250d7be332400a534a9291ca3b60e.html" target="_blank">Weak Hypotheses and Boosting for Generic Object Detection and Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/0c91/808994a250d7be332400a534a9291ca3b60e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>247</td><td>125</td><td>122</td><td>18</td><td>177</td><td>78</td></tr><tr><td>4c170a0dcc8de75587dae21ca508dab2f9343974</td><td>face_tracer</td><td>FaceTracer</td><td><a href="papers/4c170a0dcc8de75587dae21ca508dab2f9343974.html" target="_blank">FaceTracer: A Search Engine for Large Collections of Images with Faces</a></td><td><a href="https://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>218</td><td>125</td><td>92</td><td>17</td><td>152</td><td>71</td></tr><tr><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td><td>berkeley_pose</td><td>BPAD</td><td><a href="papers/7808937b46acad36e43c30ae4e9f3fd57462853d.html" target="_blank">Describing people: A poselet-based approach to attribute classification</a></td><td><a href="http://ttic.uchicago.edu/~smaji/papers/attributes-iccv11.pdf" target="_blank">[pdf]</a></td><td>2011 International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>221</td><td>125</td><td>96</td><td>14</td><td>165</td><td>59</td></tr><tr><td>140c95e53c619eac594d70f6369f518adfea12ef</td><td>ijb_c</td><td>IJB-A</td><td><a href="papers/140c95e53c619eac594d70f6369f518adfea12ef.html" target="_blank">Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Klareetal_UnconstrainedFaceDetectionRecognitionJanus_CVPR15.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>222</td><td>123</td><td>99</td><td>19</td><td>161</td><td>62</td></tr><tr><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td><td>tud_brussels</td><td>TUD-Brussels</td><td><a href="papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html" target="_blank">Multi-cue onboard pedestrian detection</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>217</td><td>121</td><td>96</td><td>14</td><td>133</td><td>86</td></tr><tr><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td><td>tud_motionpairs</td><td>TUD-Motionparis</td><td><a href="papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html" target="_blank">Multi-cue onboard pedestrian detection</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>217</td><td>121</td><td>96</td><td>14</td><td>133</td><td>86</td></tr><tr><td>98bb029afe2a1239c3fdab517323066f0957b81b</td><td>ilids_vid_reid</td><td>iLIDS-VID</td><td><a href="papers/98bb029afe2a1239c3fdab517323066f0957b81b.html" target="_blank">Person Re-identification by Video Ranking</a></td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>210</td><td>120</td><td>90</td><td>10</td><td>115</td><td>94</td></tr><tr><td>98bb029afe2a1239c3fdab517323066f0957b81b</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/98bb029afe2a1239c3fdab517323066f0957b81b.html" target="_blank">Person Re-identification by Video Ranking</a></td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>210</td><td>120</td><td>90</td><td>10</td><td>115</td><td>94</td></tr><tr><td>35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62</td><td>coco_qa</td><td>COCO QA</td><td><a href="papers/35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62.html" target="_blank">Exploring Models and Data for Image Question Answering</a></td><td><a href="https://arxiv.org/pdf/1505.02074.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>191</td><td>115</td><td>76</td><td>12</td><td>165</td><td>27</td></tr><tr><td>46a01565e6afe7c074affb752e7069ee3bf2e4ef</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/46a01565e6afe7c074affb752e7069ee3bf2e4ef.html" target="_blank">Local Descriptors Encoded by Fisher Vectors for Person Re-identification</a></td><td><a href="https://pdfs.semanticscholar.org/a105/f1ef67b4b02da38eadce8ffb4e13aa301a93.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>198</td><td>114</td><td>84</td><td>16</td><td>111</td><td>88</td></tr><tr><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td><td>fiw_300</td><td>300-W</td><td><a href="papers/013909077ad843eb6df7a3e8e290cfd5575999d2.html" target="_blank">A Semi-automatic Methodology for Facial Landmark Annotation</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>185</td><td>111</td><td>74</td><td>15</td><td>124</td><td>64</td></tr><tr><td>4e4746094bf60ee83e40d8597a6191e463b57f76</td><td>leeds_sports_pose_extended</td><td>Leeds Sports Pose Extended</td><td><a href="papers/4e4746094bf60ee83e40d8597a6191e463b57f76.html" target="_blank">Learning effective human pose estimation from inaccurate annotation</a></td><td><a href="http://www.comp.leeds.ac.uk/mat4saj/publications/johnson11cvpr.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>University of Leeds</td><td>United Kingdom</td><td>53.80387185</td><td>-1.55245712</td><td>64%</td><td>173</td><td>111</td><td>62</td><td>10</td><td>122</td><td>56</td></tr><tr><td>21d9d0deed16f0ad62a4865e9acf0686f4f15492</td><td>images_of_groups</td><td>Images of Groups</td><td><a href="papers/21d9d0deed16f0ad62a4865e9acf0686f4f15492.html" target="_blank">Understanding images of groups of people</a></td><td><a href="http://chenlab.ece.cornell.edu/people/Andy/Andy_files/cvpr09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>54%</td><td>202</td><td>110</td><td>92</td><td>12</td><td>132</td><td>75</td></tr><tr><td>b1f4423c227fa37b9680787be38857069247a307</td><td>afew_va</td><td>AFEW-VA</td><td><a href="papers/b1f4423c227fa37b9680787be38857069247a307.html" target="_blank">Collecting Large, Richly Annotated Facial-Expression Databases from Movies</a></td><td><a href="http://users.cecs.anu.edu.au/~adhall/Dhall_Goecke_Lucey_Gedeon_M_2012.pdf" target="_blank">[pdf]</a></td><td>IEEE MultiMedia</td><td>edu</td><td>Australian National University</td><td>Australia</td><td>-35.27769990</td><td>149.11852700</td><td>60%</td><td>182</td><td>109</td><td>73</td><td>8</td><td>86</td><td>99</td></tr><tr><td>570f37ed63142312e6ccdf00ecc376341ec72b9f</td><td>stanford_drone</td><td>Stanford Drone</td><td><a href="papers/570f37ed63142312e6ccdf00ecc376341ec72b9f.html" target="_blank">Social LSTM: Human Trajectory Prediction in Crowded Spaces</a></td><td><a href="http://cs.stanford.edu/groups/vision/pdf/CVPR16_N_LSTM.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>229</td><td>106</td><td>123</td><td>5</td><td>150</td><td>79</td></tr><tr><td>1aad2da473888cb7ebc1bfaa15bfa0f1502ce005</td><td>jpl_pose</td><td>JPL-Interaction dataset</td><td><a href="papers/1aad2da473888cb7ebc1bfaa15bfa0f1502ce005.html" target="_blank">First-Person Activity Recognition: What Are They Doing to Me?</a></td><td><a href="http://michaelryoo.com/papers/cvpr2013_ryoo.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>148</td><td>103</td><td>45</td><td>8</td><td>111</td><td>38</td></tr><tr><td>22ad2c8c0f4d6aa4328b38d894b814ec22579761</td><td>gallagher</td><td>Gallagher</td><td><a href="papers/22ad2c8c0f4d6aa4328b38d894b814ec22579761.html" target="_blank">Clothing cosegmentation for recognizing people</a></td><td><a href="http://amp.ece.cmu.edu/people/Andy/Andy_files/2670CVPR08Gallagher.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>58%</td><td>177</td><td>103</td><td>74</td><td>7</td><td>101</td><td>84</td></tr><tr><td>133f01aec1534604d184d56de866a4bd531dac87</td><td>lfw_a</td><td>LFW-a</td><td><a href="papers/133f01aec1534604d184d56de866a4bd531dac87.html" target="_blank">Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</a></td><td><a href="http://www.cs.tau.ac.il/~wolf/papers/jpatchlbp.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>177</td><td>98</td><td>79</td><td>15</td><td>104</td><td>75</td></tr><tr><td>18010284894ed0edcca74e5bf768ee2e15ef7841</td><td>deep_fashion</td><td>DeepFashion</td><td><a href="papers/18010284894ed0edcca74e5bf768ee2e15ef7841.html" target="_blank">DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~lz013/papers/deepfashion_poster.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>150</td><td>97</td><td>53</td><td>4</td><td>111</td><td>38</td></tr><tr><td>56ffa7d906b08d02d6d5a12c7377a57e24ef3391</td><td>unbc_shoulder_pain</td><td>UNBC-McMaster Pain</td><td><a href="papers/56ffa7d906b08d02d6d5a12c7377a57e24ef3391.html" target="_blank">Painful data: The UNBC-McMaster shoulder pain expression archive database</a></td><td><a href="http://www.iainm.com/iainm/Publications_files/2011_PAINFUL.pdf" target="_blank">[pdf]</a></td><td>Face and Gesture 2011</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>52%</td><td>184</td><td>95</td><td>89</td><td>23</td><td>112</td><td>71</td></tr><tr><td>5a5f0287484f0d480fed1ce585dbf729586f0edc</td><td>disfa</td><td>DISFA</td><td><a href="papers/5a5f0287484f0d480fed1ce585dbf729586f0edc.html" target="_blank">DISFA: A Spontaneous Facial Action Intensity Database</a></td><td><a href="http://mohammadmahoor.com/wp-content/uploads/2017/06/DiSFA_Paper_andAppendix_Final_OneColumn1-1.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Affective Computing</td><td>edu</td><td>University of Denver</td><td>United States</td><td>39.67665410</td><td>-104.96220300</td><td>49%</td><td>190</td><td>94</td><td>96</td><td>19</td><td>100</td><td>91</td></tr><tr><td>1be498d4bbc30c3bfd0029114c784bc2114d67c0</td><td>adience</td><td>Adience</td><td><a href="papers/1be498d4bbc30c3bfd0029114c784bc2114d67c0.html" target="_blank">Age and Gender Estimation of Unfiltered Faces</a></td><td><a href="http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Information Forensics and Security</td><td>edu</td><td>Open University of Israel</td><td>Israel</td><td>32.77824165</td><td>34.99565673</td><td>55%</td><td>168</td><td>92</td><td>76</td><td>5</td><td>94</td><td>78</td></tr><tr><td>291265db88023e92bb8c8e6390438e5da148e8f5</td><td>msceleb</td><td>MsCeleb</td><td><a href="papers/291265db88023e92bb8c8e6390438e5da148e8f5.html" target="_blank">MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1607.08221.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>167</td><td>91</td><td>76</td><td>14</td><td>131</td><td>36</td></tr><tr><td>0df0d1adea39a5bef318b74faa37de7f3e00b452</td><td>mpii_gaze</td><td>MPIIGaze</td><td><a href="papers/0df0d1adea39a5bef318b74faa37de7f3e00b452.html" target="_blank">Appearance-based gaze estimation in the wild</a></td><td><a href="https://arxiv.org/pdf/1504.02863.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>138</td><td>90</td><td>48</td><td>3</td><td>97</td><td>42</td></tr><tr><td>29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d</td><td>scface</td><td>SCface</td><td><a href="papers/29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d.html" target="_blank">SCface – surveillance cameras face database</a></td><td><a href="http://scface.org/SCface%20-%20Surveillance%20Cameras%20Face%20Database.pdf" target="_blank">[pdf]</a></td><td>Multimedia Tools and Applications</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>178</td><td>90</td><td>88</td><td>15</td><td>90</td><td>89</td></tr><tr><td>32c801cb7fbeb742edfd94cccfca4934baec71da</td><td>ucf_crowd</td><td>UCF-CC-50</td><td><a href="papers/32c801cb7fbeb742edfd94cccfca4934baec71da.html" target="_blank">Multi-source Multi-scale Counting in Extremely Dense Crowd Images</a></td><td><a href="http://crcv-web.eecs.ucf.edu/papers/cvpr2013/Counting_V3o.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>125</td><td>88</td><td>37</td><td>6</td><td>73</td><td>52</td></tr><tr><td>3b5b6d19d4733ab606c39c69a889f9e67967f151</td><td>qmul_grid</td><td>GRID</td><td><a href="papers/3b5b6d19d4733ab606c39c69a889f9e67967f151.html" target="_blank">Multi-camera activity correlation analysis</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0163.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Queen Mary University of London</td><td>United Kingdom</td><td>51.52472720</td><td>-0.03931035</td><td>62%</td><td>138</td><td>86</td><td>52</td><td>8</td><td>79</td><td>61</td></tr><tr><td>4f93cd09785c6e77bf4bc5a788e079df524c8d21</td><td>soton</td><td>SOTON HiD</td><td><a href="papers/4f93cd09785c6e77bf4bc5a788e079df524c8d21.html" target="_blank">On a Large Sequence-Based Human Gait Database</a></td><td><a href="https://eprints.soton.ac.uk/257901/1/Shutler_2002.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>148</td><td>86</td><td>62</td><td>17</td><td>104</td><td>49</td></tr><tr><td>52d7eb0fbc3522434c13cc247549f74bb9609c5d</td><td>wider_face</td><td>WIDER FACE</td><td><a href="papers/52d7eb0fbc3522434c13cc247549f74bb9609c5d.html" target="_blank">WIDER FACE: A Face Detection Benchmark</a></td><td><a href="https://arxiv.org/pdf/1511.06523.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Chinese University of Hong Kong</td><td>China</td><td>22.41626320</td><td>114.21093180</td><td>57%</td><td>148</td><td>85</td><td>63</td><td>15</td><td>108</td><td>41</td></tr><tr><td>c0387e788a52f10bf35d4d50659cfa515d89fbec</td><td>mars</td><td>MARS</td><td><a href="papers/c0387e788a52f10bf35d4d50659cfa515d89fbec.html" target="_blank">MARS: A Video Benchmark for Large-Scale Person Re-Identification</a></td><td><a href="http://liangzheng.org/1320.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>146</td><td>85</td><td>61</td><td>6</td><td>97</td><td>49</td></tr><tr><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td><td>duke_mtmc</td><td>Duke MTMC</td><td><a href="papers/27a2fad58dd8727e280f97036e0d2bc55ef5424c.html" target="_blank">Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</a></td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>136</td><td>79</td><td>57</td><td>7</td><td>108</td><td>27</td></tr><tr><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td><td>mot</td><td>MOT</td><td><a href="papers/27a2fad58dd8727e280f97036e0d2bc55ef5424c.html" target="_blank">Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</a></td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>136</td><td>79</td><td>57</td><td>7</td><td>108</td><td>27</td></tr><tr><td>8b56e33f33e582f3e473dba573a16b598ed9bcdc</td><td>fei</td><td>FEI</td><td><a href="papers/8b56e33f33e582f3e473dba573a16b598ed9bcdc.html" target="_blank">A new ranking method for principal components analysis and its application to face image analysis</a></td><td><span class="gray">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>169</td><td>78</td><td>91</td><td>6</td><td>72</td><td>101</td></tr><tr><td>b91f54e1581fbbf60392364323d00a0cd43e493c</td><td>bp4d_spontanous</td><td>BP4D-Spontanous</td><td><a href="papers/b91f54e1581fbbf60392364323d00a0cd43e493c.html" target="_blank">A high-resolution spontaneous 3D dynamic facial expression database</a></td><td><a href="http://www.csee.usf.edu/~scanavan/papers/FG2013.pdf" target="_blank">[pdf]</a></td><td>2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td>edu</td><td>SUNY Binghamton</td><td>United States</td><td>42.08779975</td><td>-75.97066066</td><td>51%</td><td>151</td><td>77</td><td>74</td><td>7</td><td>87</td><td>65</td></tr><tr><td>066000d44d6691d27202896691f08b27117918b9</td><td>psu</td><td>PSU</td><td><a href="papers/066000d44d6691d27202896691f08b27117918b9.html" target="_blank">Vision-Based Analysis of Small Groups in Pedestrian Crowds</a></td><td><a href="http://vc.cs.nthu.edu.tw/home/paper/codfiles/htchiang/201212250411/newp12.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>151</td><td>74</td><td>77</td><td>9</td><td>79</td><td>73</td></tr><tr><td>10195a163ab6348eef37213a46f60a3d87f289c5</td><td>imdb_wiki</td><td>IMDB</td><td><a href="papers/10195a163ab6348eef37213a46f60a3d87f289c5.html" target="_blank">Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks</a></td><td><a href="http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>ETH Zurich</td><td>Switzerland</td><td>47.37631300</td><td>8.54766990</td><td>53%</td><td>133</td><td>71</td><td>62</td><td>13</td><td>94</td><td>41</td></tr><tr><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td><td>lfw</td><td>LFW</td><td><a href="papers/2d3482dcff69c7417c7b933f22de606a0e8e42d4.html" target="_blank">Labeled Faces in the Wild : Updates and New Reporting Procedures</a></td><td><a href="https://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Massachusetts</td><td>United States</td><td>42.38897850</td><td>-72.52869870</td><td>58%</td><td>123</td><td>71</td><td>52</td><td>3</td><td>72</td><td>50</td></tr><tr><td>96e0cfcd81cdeb8282e29ef9ec9962b125f379b0</td><td>megaface</td><td>MegaFace</td><td><a href="papers/96e0cfcd81cdeb8282e29ef9ec9962b125f379b0.html" target="_blank">The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</a></td><td><a href="https://arxiv.org/pdf/1512.00596.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>121</td><td>71</td><td>50</td><td>9</td><td>98</td><td>22</td></tr><tr><td>66e6f08873325d37e0ec20a4769ce881e04e964e</td><td>sun_attributes</td><td>SUN</td><td><a href="papers/66e6f08873325d37e0ec20a4769ce881e04e964e.html" target="_blank">The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</a></td><td><a href="http://www.cc.gatech.edu/~hays/papers/attribute_ijcv.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>112</td><td>70</td><td>42</td><td>14</td><td>84</td><td>29</td></tr><tr><td>0486214fb58ee9a04edfe7d6a74c6d0f661a7668</td><td>chokepoint</td><td>ChokePoint</td><td><a href="papers/0486214fb58ee9a04edfe7d6a74c6d0f661a7668.html" target="_blank">Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition</a></td><td><a href="https://arxiv.org/pdf/1304.0869.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>128</td><td>68</td><td>60</td><td>6</td><td>73</td><td>60</td></tr><tr><td>8355d095d3534ef511a9af68a3b2893339e3f96b</td><td>imdb_wiki</td><td>IMDB</td><td><a href="papers/8355d095d3534ef511a9af68a3b2893339e3f96b.html" target="_blank">DEX: Deep EXpectation of Apparent Age from a Single Image</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Rothe_DEX_Deep_EXpectation_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision Workshop (ICCVW)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>120</td><td>67</td><td>53</td><td>5</td><td>74</td><td>47</td></tr><tr><td>0d3bb75852098b25d90f31d2f48fd0cb4944702b</td><td>face_scrub</td><td>FaceScrub</td><td><a href="papers/0d3bb75852098b25d90f31d2f48fd0cb4944702b.html" target="_blank">A data-driven approach to cleaning large face datasets</a></td><td><a href="http://stefan.winkler.net/Publications/icip2014a.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE International Conference on Image Processing (ICIP)</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>123</td><td>66</td><td>57</td><td>4</td><td>96</td><td>27</td></tr><tr><td>e4754afaa15b1b53e70743880484b8d0736990ff</td><td>fiw_300</td><td>300-W</td><td><a href="papers/e4754afaa15b1b53e70743880484b8d0736990ff.html" target="_blank">300 Faces In-The-Wild Challenge: database and results</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>114</td><td>61</td><td>53</td><td>10</td><td>71</td><td>43</td></tr><tr><td>04c2cda00e5536f4b1508cbd80041e9552880e67</td><td>hipsterwars</td><td>Hipsterwars</td><td><a href="papers/04c2cda00e5536f4b1508cbd80041e9552880e67.html" target="_blank">Hipster wars: Discovering elements of fashion styles</a></td><td><a href="http://acberg.com/papers/hipster_eccv14.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>66%</td><td>91</td><td>60</td><td>31</td><td>5</td><td>61</td><td>29</td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>mafl</td><td>MAFL</td><td><a href="papers/a0fd85b3400c7b3e11122f44dc5870ae2de9009a.html" target="_blank">Learning Deep Representation for Face Alignment with Auxiliary Attributes</a></td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>110</td><td>60</td><td>50</td><td>12</td><td>69</td><td>43</td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>mtfl</td><td>MTFL</td><td><a href="papers/a0fd85b3400c7b3e11122f44dc5870ae2de9009a.html" target="_blank">Learning Deep Representation for Face Alignment with Auxiliary Attributes</a></td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>110</td><td>60</td><td>50</td><td>12</td><td>69</td><td>43</td></tr><tr><td>2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e</td><td>3dpes</td><td>3DPeS</td><td><a href="papers/2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e.html" target="_blank">3DPeS: 3D people dataset for surveillance and forensics</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>122</td><td>59</td><td>63</td><td>11</td><td>71</td><td>51</td></tr><tr><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7.html" target="_blank">Understanding Kin Relationships in a Photo</a></td><td><a href="http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Multimedia</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>96</td><td>55</td><td>41</td><td>2</td><td>34</td><td>63</td></tr><tr><td>9a9877791945c6fa4c1743ec6d3fb32570ef8481</td><td>m2vts</td><td>m2vts</td><td><a href="papers/9a9877791945c6fa4c1743ec6d3fb32570ef8481.html" target="_blank">The M2VTS Multimodal Face Database (Release 1.00)</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Laboratoire de Télécommunications et Télédétection, UCL, Louvain-La-Neuve, Belgium</td><td>Belgium</td><td>50.66968750</td><td>4.61559090</td><td>43%</td><td>129</td><td>55</td><td>74</td><td>4</td><td>80</td><td>54</td></tr><tr><td>2a4bbee0b4cf52d5aadbbc662164f7efba89566c</td><td>peta</td><td>PETA</td><td><a href="papers/2a4bbee0b4cf52d5aadbbc662164f7efba89566c.html" target="_blank">Pedestrian Attribute Recognition At Far Distance</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>68%</td><td>80</td><td>54</td><td>26</td><td>2</td><td>51</td><td>28</td></tr><tr><td>3b4ec8af470948a72a6ed37a9fd226719a874ebc</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/3b4ec8af470948a72a6ed37a9fd226719a874ebc.html" target="_blank">A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</a></td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Liu_A_Spatio-Temporal_Appearance_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>85</td><td>53</td><td>32</td><td>9</td><td>51</td><td>34</td></tr><tr><td>06f02199690961ba52997cde1527e714d2b3bf8f</td><td>columbia_gaze</td><td>Columbia Gaze</td><td><a href="papers/06f02199690961ba52997cde1527e714d2b3bf8f.html" target="_blank">Gaze locking: passive eye contact detection for human-object interaction</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Columbia University</td><td>United States</td><td>40.84198360</td><td>-73.94368971</td><td>64%</td><td>80</td><td>51</td><td>29</td><td>0</td><td>49</td><td>35</td></tr><tr><td>0dc11a37cadda92886c56a6fb5191ded62099c28</td><td>stickmen_family</td><td>We Are Family Stickmen</td><td><a href="papers/0dc11a37cadda92886c56a6fb5191ded62099c28.html" target="_blank">We are family: joint pose estimation of multiple persons</a></td><td><a href="http://eprints.pascal-network.org/archive/00007964/01/eichner10eccv.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>66%</td><td>77</td><td>51</td><td>26</td><td>5</td><td>60</td><td>19</td></tr><tr><td>3394168ff0719b03ff65bcea35336a76b21fe5e4</td><td>penn_fudan</td><td>Penn Fudan</td><td><a href="papers/3394168ff0719b03ff65bcea35336a76b21fe5e4.html" target="_blank">Object Detection Combining Recognition and Segmentation</a></td><td><a href="https://pdfs.semanticscholar.org/3394/168ff0719b03ff65bcea35336a76b21fe5e4.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>101</td><td>50</td><td>51</td><td>11</td><td>58</td><td>42</td></tr><tr><td>0c4a139bb87c6743c7905b29a3cfec27a5130652</td><td>feret</td><td>FERET</td><td><a href="papers/0c4a139bb87c6743c7905b29a3cfec27a5130652.html" target="_blank">The FERET Verification Testing Protocol for Face Recognition Algorithms</a></td><td><a href="https://pdfs.semanticscholar.org/8d2a/1c768fce6f71584dd993fb97e7b6419aaf60.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>112</td><td>49</td><td>63</td><td>11</td><td>79</td><td>35</td></tr><tr><td>3cd40bfa1ff193a96bde0207e5140a399476466c</td><td>tvhi</td><td>TVHI</td><td><a href="papers/3cd40bfa1ff193a96bde0207e5140a399476466c.html" target="_blank">High Five: Recognising human interactions in TV shows</a></td><td><a href="https://pdfs.semanticscholar.org/3cd4/0bfa1ff193a96bde0207e5140a399476466c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>91</td><td>47</td><td>44</td><td>11</td><td>64</td><td>27</td></tr><tr><td>0b440695c822a8e35184fb2f60dcdaa8a6de84ae</td><td>kinectface</td><td>KinectFaceDB</td><td><a href="papers/0b440695c822a8e35184fb2f60dcdaa8a6de84ae.html" target="_blank">KinectFaceDB: A Kinect Database for Face Recognition</a></td><td><a href="http://www.eurecom.fr/fr/publication/4393/download/mm-publi-4393.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Systems, Man, and Cybernetics: Systems</td><td>edu</td><td>University of North Carolina at Chapel Hill</td><td>United States</td><td>35.91139710</td><td>-79.05045290</td><td>61%</td><td>75</td><td>46</td><td>29</td><td>6</td><td>26</td><td>50</td></tr><tr><td>5194cbd51f9769ab25260446b4fa17204752e799</td><td>violent_flows</td><td>Violent Flows</td><td><a href="papers/5194cbd51f9769ab25260446b4fa17204752e799.html" target="_blank">Violent flows: Real-time detection of violent crowd behavior</a></td><td><a href="http://www.openu.ac.il/home/hassner/data/violentflows/violent_flows.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</td><td>edu</td><td>Open University of Israel</td><td>Israel</td><td>32.77824165</td><td>34.99565673</td><td>55%</td><td>83</td><td>46</td><td>37</td><td>6</td><td>44</td><td>41</td></tr><tr><td>2ce2560cf59db59ce313bbeb004e8ce55c5ce928</td><td>texas_3dfrd</td><td>Texas 3DFRD</td><td><a href="papers/2ce2560cf59db59ce313bbeb004e8ce55c5ce928.html" target="_blank">Anthropometric 3D Face Recognition</a></td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ijcv_june10.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>90</td><td>45</td><td>45</td><td>5</td><td>60</td><td>31</td></tr><tr><td>7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22</td><td>lfw</td><td>LFW</td><td><a href="papers/7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22.html" target="_blank">Labeled Faces in the Wild : A Survey</a></td><td><a href="https://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Stevens Institute of Technology</td><td>United States</td><td>40.74225200</td><td>-74.02709490</td><td>45%</td><td>99</td><td>45</td><td>54</td><td>8</td><td>63</td><td>36</td></tr><tr><td>2160788824c4c29ffe213b2cbeb3f52972d73f37</td><td>3d_rma</td><td>3D-RMA</td><td><a href="papers/2160788824c4c29ffe213b2cbeb3f52972d73f37.html" target="_blank">Automatic 3D face authentication</a></td><td><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.9190&rep=rep1&type=pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>95</td><td>44</td><td>51</td><td>8</td><td>61</td><td>35</td></tr><tr><td>2bf8541199728262f78d4dced6fb91479b39b738</td><td>clothing_co_parsing</td><td>CCP</td><td><a href="papers/2bf8541199728262f78d4dced6fb91479b39b738.html" target="_blank">Clothing Co-parsing by Joint Image Segmentation and Labeling</a></td><td><a href="https://arxiv.org/pdf/1502.00739.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>60</td><td>42</td><td>18</td><td>0</td><td>38</td><td>24</td></tr><tr><td>ae0aee03d946efffdc7af2362a42d3750e7dd48a</td><td>put_face</td><td>Put Face</td><td><a href="papers/ae0aee03d946efffdc7af2362a42d3750e7dd48a.html" target="_blank">The put face database</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>42%</td><td>100</td><td>42</td><td>58</td><td>7</td><td>56</td><td>48</td></tr><tr><td>2edb87494278ad11641b6cf7a3f8996de12b8e14</td><td>qmul_grid</td><td>GRID</td><td><a href="papers/2edb87494278ad11641b6cf7a3f8996de12b8e14.html" target="_blank">Time-Delayed Correlation Analysis for Multi-Camera Activity Understanding</a></td><td><a href="http://www.eecs.qmul.ac.uk/~ccloy/files/ijcv_2010.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>Queen Mary University of London</td><td>United Kingdom</td><td>51.52472720</td><td>-0.03931035</td><td>49%</td><td>83</td><td>41</td><td>42</td><td>6</td><td>51</td><td>33</td></tr><tr><td>4df3143922bcdf7db78eb91e6b5359d6ada004d2</td><td>cfd</td><td>CFD</td><td><a href="papers/4df3143922bcdf7db78eb91e6b5359d6ada004d2.html" target="_blank">The Chicago face database: A free stimulus set of faces and norming data.</a></td><td><a href="https://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf" target="_blank">[pdf]</a></td><td>Behavior research methods</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>83</td><td>40</td><td>43</td><td>2</td><td>63</td><td>19</td></tr><tr><td>4793f11fbca4a7dba898b9fff68f70d868e2497c</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/4793f11fbca4a7dba898b9fff68f70d868e2497c.html" target="_blank">Kinship verification through transfer learning</a></td><td><a href="http://ijcai.org/Proceedings/11/Papers/422.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>71</td><td>39</td><td>32</td><td>2</td><td>29</td><td>43</td></tr><tr><td>636b8ffc09b1b23ff714ac8350bb35635e49fa3c</td><td>caltech_10k_web_faces</td><td>Caltech 10K Web Faces</td><td><a href="papers/636b8ffc09b1b23ff714ac8350bb35635e49fa3c.html" target="_blank">Pruning training sets for learning of object categories</a></td><td><a href="http://authors.library.caltech.edu/11469/1/ANGcvpr05.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>60</td><td>39</td><td>21</td><td>5</td><td>43</td><td>17</td></tr><tr><td>c900e0ad4c95948baaf0acd8449fde26f9b4952a</td><td>emotio_net</td><td>EmotioNet Database</td><td><a href="papers/c900e0ad4c95948baaf0acd8449fde26f9b4952a.html" target="_blank">EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</a></td><td><a href="http://cbcsl.ece.ohio-state.edu/cvpr16.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>72</td><td>39</td><td>33</td><td>7</td><td>54</td><td>17</td></tr><tr><td>31de9b3dd6106ce6eec9a35991b2b9083395fd0b</td><td>feret</td><td>FERET</td><td><a href="papers/31de9b3dd6106ce6eec9a35991b2b9083395fd0b.html" target="_blank">FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</a></td><td><a href="https://pdfs.semanticscholar.org/31de/9b3dd6106ce6eec9a35991b2b9083395fd0b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>82</td><td>38</td><td>44</td><td>5</td><td>62</td><td>20</td></tr><tr><td>0a85bdff552615643dd74646ac881862a7c7072d</td><td>pipa</td><td>PIPA</td><td><a href="papers/0a85bdff552615643dd74646ac881862a7c7072d.html" target="_blank">Beyond frontal faces: Improving Person Recognition using multiple cues</a></td><td><a href="https://arxiv.org/pdf/1501.05703.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>company</td><td>Facebook</td><td>United States</td><td>37.39367170</td><td>-122.08072620</td><td>72%</td><td>50</td><td>36</td><td>13</td><td>2</td><td>40</td><td>9</td></tr><tr><td>6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c</td><td>afad</td><td>AFAD</td><td><a href="papers/6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c.html" target="_blank">Ordinal Regression with Multiple Output CNN for Age Estimation</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Niu_Ordinal_Regression_With_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>68</td><td>36</td><td>32</td><td>8</td><td>49</td><td>17</td></tr><tr><td>47aeb3b82f54b5ae8142b4bdda7b614433e69b9a</td><td>am_fed</td><td>AM-FED</td><td><a href="papers/47aeb3b82f54b5ae8142b4bdda7b614433e69b9a.html" target="_blank">Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"</a></td><td><a href="http://affect.media.mit.edu/pdfs/13.McDuff-etal-AMFED.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>73</td><td>34</td><td>39</td><td>6</td><td>41</td><td>34</td></tr><tr><td>fcc6fe6007c322641796cb8792718641856a22a7</td><td>miw</td><td>MIW</td><td><a href="papers/fcc6fe6007c322641796cb8792718641856a22a7.html" target="_blank">Automatic facial makeup detection with application in face recognition</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td>2013 International Conference on Biometrics (ICB)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>74%</td><td>46</td><td>34</td><td>12</td><td>1</td><td>18</td><td>28</td></tr><tr><td>fcc6fe6007c322641796cb8792718641856a22a7</td><td>youtube_makeup</td><td>YMU</td><td><a href="papers/fcc6fe6007c322641796cb8792718641856a22a7.html" target="_blank">Automatic facial makeup detection with application in face recognition</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td>2013 International Conference on Biometrics (ICB)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>74%</td><td>46</td><td>34</td><td>12</td><td>1</td><td>18</td><td>28</td></tr><tr><td>0b84f07af44f964817675ad961def8a51406dd2e</td><td>prw</td><td>PRW</td><td><a href="papers/0b84f07af44f964817675ad961def8a51406dd2e.html" target="_blank">Person Re-identification in the Wild</a></td><td><a href="https://arxiv.org/pdf/1604.02531.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>65</td><td>33</td><td>32</td><td>1</td><td>46</td><td>17</td></tr><tr><td>5ffd74d2873b7cba2cbc5fd295cc7fbdedca22a2</td><td>cityscapes</td><td>Cityscapes</td><td><a href="papers/5ffd74d2873b7cba2cbc5fd295cc7fbdedca22a2.html" target="_blank">The Cityscapes Dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>54</td><td>32</td><td>22</td><td>3</td><td>40</td><td>14</td></tr><tr><td>7ace44190729927e5cb0dd5d363fcae966fe13f7</td><td>nudedetection</td><td>Nude Detection</td><td><a href="papers/7ace44190729927e5cb0dd5d363fcae966fe13f7.html" target="_blank">A bag-of-features approach based on Hue-SIFT descriptor for nude detection</a></td><td><a href="http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569191772.pdf" target="_blank">[pdf]</a></td><td>2009 17th European Signal Processing Conference</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>51</td><td>31</td><td>20</td><td>1</td><td>18</td><td>33</td></tr><tr><td>070de852bc6eb275d7ca3a9cdde8f6be8795d1a3</td><td>d3dfacs</td><td>D3DFACS</td><td><a href="papers/070de852bc6eb275d7ca3a9cdde8f6be8795d1a3.html" target="_blank">A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling</a></td><td><a href="http://www.cs.bath.ac.uk/~dpc/D3DFACS/ICCV_final_2011.pdf" target="_blank">[pdf]</a></td><td>2011 International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>52</td><td>30</td><td>22</td><td>5</td><td>37</td><td>15</td></tr><tr><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td><td>vmu</td><td>VMU</td><td><a href="papers/37d6f0eb074d207b53885bd2eb78ccc8a04be597.html" target="_blank">Can facial cosmetics affect the matching accuracy of face recognition systems?</a></td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>61%</td><td>49</td><td>30</td><td>19</td><td>0</td><td>18</td><td>31</td></tr><tr><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td><td>youtube_makeup</td><td>YMU</td><td><a href="papers/37d6f0eb074d207b53885bd2eb78ccc8a04be597.html" target="_blank">Can facial cosmetics affect the matching accuracy of face recognition systems?</a></td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>61%</td><td>49</td><td>30</td><td>19</td><td>0</td><td>18</td><td>31</td></tr><tr><td>51eba481dac6b229a7490f650dff7b17ce05df73</td><td>imsitu</td><td>imSitu</td><td><a href="papers/51eba481dac6b229a7490f650dff7b17ce05df73.html" target="_blank">Situation Recognition: Visual Semantic Role Labeling for Image Understanding</a></td><td><a href="http://allenai.org/content/publications/SituationRecognition.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>48</td><td>30</td><td>18</td><td>2</td><td>46</td><td>2</td></tr><tr><td>18858cc936947fc96b5c06bbe3c6c2faa5614540</td><td>pilot_parliament</td><td>PPB</td><td><a href="papers/18858cc936947fc96b5c06bbe3c6c2faa5614540.html" target="_blank">Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification</a></td><td><a href="https://pdfs.semanticscholar.org/03c1/fc9c3339813ed81ad0de540132f9f695a0f8.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>55</td><td>29</td><td>26</td><td>0</td><td>47</td><td>7</td></tr><tr><td>356b431d4f7a2a0a38cf971c84568207dcdbf189</td><td>wider</td><td>WIDER</td><td><a href="papers/356b431d4f7a2a0a38cf971c84568207dcdbf189.html" target="_blank">Recognize complex events from static images by fusing deep channels</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2015/supplemental/Xiong_Recognize_Complex_Events_2015_CVPR_supplemental.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>45</td><td>29</td><td>16</td><td>1</td><td>30</td><td>15</td></tr><tr><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td><td>facebook_100</td><td>Facebook100</td><td><a href="papers/9c23859ec7313f2e756a3e85575735e0c52249f4.html" target="_blank">Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</a></td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>Harvard University</td><td>United States</td><td>42.36782045</td><td>-71.12666653</td><td>58%</td><td>50</td><td>29</td><td>21</td><td>3</td><td>39</td><td>11</td></tr><tr><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td><td>pubfig_83</td><td>pubfig83</td><td><a href="papers/9c23859ec7313f2e756a3e85575735e0c52249f4.html" target="_blank">Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</a></td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>Harvard University</td><td>United States</td><td>42.36782045</td><td>-71.12666653</td><td>58%</td><td>50</td><td>29</td><td>21</td><td>3</td><td>39</td><td>11</td></tr><tr><td>f1af714b92372c8e606485a3982eab2f16772ad8</td><td>mug_faces</td><td>MUG Faces</td><td><a href="papers/f1af714b92372c8e606485a3982eab2f16772ad8.html" target="_blank">The MUG facial expression database</a></td><td><span class="gray">[pdf]</a></td><td>11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10</td><td>edu</td><td>Aristotle University of Thessaloniki</td><td>Greece</td><td>40.62984145</td><td>22.95889350</td><td>43%</td><td>68</td><td>29</td><td>39</td><td>5</td><td>28</td><td>40</td></tr><tr><td>16e8b0a1e8451d5f697b94c0c2b32a00abee1d52</td><td>umb</td><td>UMB</td><td><a href="papers/16e8b0a1e8451d5f697b94c0c2b32a00abee1d52.html" target="_blank">UMB-DB: A database of partially occluded 3D faces</a></td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/claudio_cusano-slides.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>45</td><td>27</td><td>18</td><td>2</td><td>20</td><td>24</td></tr><tr><td>22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b</td><td>saivt</td><td>SAIVT SoftBio</td><td><a href="papers/22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b.html" target="_blank">A Database for Person Re-Identification in Multi-Camera Surveillance Networks</a></td><td><a href="http://eprints.qut.edu.au/53437/3/Bialkowski_Database4PersonReID_DICTA.pdf" target="_blank">[pdf]</a></td><td>2012 International Conference on Digital Image Computing Techniques and Applications (DICTA)</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>58</td><td>26</td><td>32</td><td>7</td><td>41</td><td>18</td></tr><tr><td>faf40ce28857aedf183e193486f5b4b0a8c478a2</td><td>iit_dehli_ear</td><td>IIT Dehli Ear</td><td><a href="papers/faf40ce28857aedf183e193486f5b4b0a8c478a2.html" target="_blank">Automated Human Identification Using Ear Imaging</a></td><td><a href="https://pdfs.semanticscholar.org/faf4/0ce28857aedf183e193486f5b4b0a8c478a2.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>37%</td><td>70</td><td>26</td><td>44</td><td>6</td><td>28</td><td>42</td></tr><tr><td>b92a1ed9622b8268ae3ac9090e25789fc41cc9b8</td><td>pornodb</td><td>Pornography DB</td><td><a href="papers/b92a1ed9622b8268ae3ac9090e25789fc41cc9b8.html" target="_blank">Pooling in image representation: The visual codeword point of view</a></td><td><a href="http://cedric.cnam.fr/~thomen/papers/avila_CVIU2012_final.pdf" target="_blank">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>32%</td><td>77</td><td>25</td><td>52</td><td>7</td><td>46</td><td>34</td></tr><tr><td>eb027969f9310e0ae941e2adee2d42cdf07d938c</td><td>vgg_faces2</td><td>VGG Face2</td><td><a href="papers/eb027969f9310e0ae941e2adee2d42cdf07d938c.html" target="_blank">VGGFace2: A Dataset for Recognising Faces across Pose and Age</a></td><td><a href="https://arxiv.org/pdf/1710.08092.pdf" target="_blank">[pdf]</a></td><td>2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>45%</td><td>56</td><td>25</td><td>31</td><td>6</td><td>50</td><td>6</td></tr><tr><td>47662d1a368daf70ba70ef2d59eb6209f98b675d</td><td>fia</td><td>CMU FiA</td><td><a href="papers/47662d1a368daf70ba70ef2d59eb6209f98b675d.html" target="_blank">The CMU Face In Action (FIA) Database</a></td><td><a href="https://pdfs.semanticscholar.org/4766/2d1a368daf70ba70ef2d59eb6209f98b675d.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>55</td><td>24</td><td>31</td><td>5</td><td>41</td><td>17</td></tr><tr><td>4d58f886f5150b2d5e48fd1b5a49e09799bf895d</td><td>texas_3dfrd</td><td>Texas 3DFRD</td><td><a href="papers/4d58f886f5150b2d5e48fd1b5a49e09799bf895d.html" target="_blank">Texas 3D Face Recognition Database</a></td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ssiai_may10.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)</td><td></td><td></td><td></td><td></td><td></td><td>39%</td><td>61</td><td>24</td><td>37</td><td>3</td><td>37</td><td>25</td></tr><tr><td>8b2dd5c61b23ead5ae5508bb8ce808b5ea266730</td><td>10k_US_adult_faces</td><td>10K US Adult Faces</td><td><a href="papers/8b2dd5c61b23ead5ae5508bb8ce808b5ea266730.html" target="_blank">The intrinsic memorability of face photographs.</a></td><td><a href="https://pdfs.semanticscholar.org/8b2d/d5c61b23ead5ae5508bb8ce808b5ea266730.pdf" target="_blank">[pdf]</a></td><td>Journal of experimental psychology. General</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>47</td><td>24</td><td>23</td><td>3</td><td>34</td><td>13</td></tr><tr><td>09d78009687bec46e70efcf39d4612822e61cb8c</td><td>raid</td><td>RAiD</td><td><a href="papers/09d78009687bec46e70efcf39d4612822e61cb8c.html" target="_blank">Consistent Re-identification in a Camera Network</a></td><td><a href="http://cs-people.bu.edu/dasabir/papers/ECCV14_Poster.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>45</td><td>23</td><td>22</td><td>7</td><td>34</td><td>11</td></tr><tr><td>79828e6e9f137a583082b8b5a9dfce0c301989b8</td><td>mapillary</td><td>Mapillary</td><td><a href="papers/79828e6e9f137a583082b8b5a9dfce0c301989b8.html" target="_blank">The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</a></td><td><a href="http://openaccess.thecvf.com/content_ICCV_2017/papers/Neuhold_The_Mapillary_Vistas_ICCV_2017_paper.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>44</td><td>23</td><td>21</td><td>0</td><td>36</td><td>7</td></tr><tr><td>2161f6b7ee3c0acc81603b01dc0df689683577b9</td><td>large_scale_person_search</td><td>Large Scale Person Search</td><td><a href="papers/2161f6b7ee3c0acc81603b01dc0df689683577b9.html" target="_blank">End-to-End Deep Learning for Person Search</a></td><td><a href="https://pdfs.semanticscholar.org/2161/f6b7ee3c0acc81603b01dc0df689683577b9.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>41</td><td>22</td><td>19</td><td>2</td><td>27</td><td>12</td></tr><tr><td>1c2802c2199b6d15ecefe7ba0c39bfe44363de38</td><td>youtube_poses</td><td>YouTube Pose</td><td><a href="papers/1c2802c2199b6d15ecefe7ba0c39bfe44363de38.html" target="_blank">Personalizing Human Video Pose Estimation</a></td><td><a href="https://arxiv.org/pdf/1511.06676.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>66%</td><td>32</td><td>21</td><td>11</td><td>2</td><td>29</td><td>5</td></tr><tr><td>6f3c76b7c0bd8e1d122c6ea808a271fd4749c951</td><td>ward</td><td>WARD</td><td><a href="papers/6f3c76b7c0bd8e1d122c6ea808a271fd4749c951.html" target="_blank">Re-identify people in wide area camera network</a></td><td><a href="http://users.dimi.uniud.it/~niki.martinel/data/publications/2012/CVPR/MarMicCVPR2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>38%</td><td>55</td><td>21</td><td>34</td><td>2</td><td>35</td><td>19</td></tr><tr><td>31b05f65405534a696a847dd19c621b7b8588263</td><td>umd_faces</td><td>UMD</td><td><a href="papers/31b05f65405534a696a847dd19c621b7b8588263.html" target="_blank">UMDFaces: An annotated face dataset for training deep networks</a></td><td><a href="https://arxiv.org/pdf/1611.01484.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Joint Conference on Biometrics (IJCB)</td><td>edu</td><td>University of Maryland</td><td>United States</td><td>39.28996850</td><td>-76.62196103</td><td>57%</td><td>35</td><td>20</td><td>15</td><td>4</td><td>28</td><td>7</td></tr><tr><td>53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4</td><td>bp4d_plus</td><td>BP4D+</td><td><a href="papers/53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4.html" target="_blank">Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Multimodal_Spontaneous_Emotion_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>40</td><td>20</td><td>20</td><td>0</td><td>21</td><td>20</td></tr><tr><td>758d7e1be64cc668c59ef33ba8882c8597406e53</td><td>affectnet</td><td>AffectNet</td><td><a href="papers/758d7e1be64cc668c59ef33ba8882c8597406e53.html" target="_blank">AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild</a></td><td><a href="https://arxiv.org/pdf/1708.03985.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>38</td><td>20</td><td>18</td><td>1</td><td>26</td><td>11</td></tr><tr><td>213a579af9e4f57f071b884aa872651372b661fd</td><td>bbc_pose</td><td>BBC Pose</td><td><a href="papers/213a579af9e4f57f071b884aa872651372b661fd.html" target="_blank">Automatic and Efficient Human Pose Estimation for Sign Language Videos</a></td><td><a href="http://tomas.pfister.fi/files/charles13ijcv.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>76%</td><td>25</td><td>19</td><td>6</td><td>1</td><td>19</td><td>7</td></tr><tr><td>d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae</td><td>b3d_ac</td><td>B3D(AC)</td><td><a href="papers/d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae.html" target="_blank">A 3-D Audio-Visual Corpus of Affective Communication</a></td><td><a href="http://files.is.tue.mpg.de/jgall/download/jgall_avcorpus_mm10.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Multimedia</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>39</td><td>19</td><td>20</td><td>2</td><td>27</td><td>12</td></tr><tr><td>298cbc3dfbbb3a20af4eed97906650a4ea1c29e0</td><td>ferplus</td><td>FER+</td><td><a href="papers/298cbc3dfbbb3a20af4eed97906650a4ea1c29e0.html" target="_blank">Training deep networks for facial expression recognition with crowd-sourced label distribution</a></td><td><a href="https://arxiv.org/pdf/1608.01041.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>29</td><td>18</td><td>11</td><td>0</td><td>15</td><td>14</td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>apis</td><td>APiS1.0</td><td><a href="papers/488e475eeb3bb39a145f23ede197cd3620f1d98a.html" target="_blank">Pedestrian Attribute Classification in Surveillance: Database and Evaluation</a></td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>13</td><td>13</td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>svs</td><td>SVS</td><td><a href="papers/488e475eeb3bb39a145f23ede197cd3620f1d98a.html" target="_blank">Pedestrian Attribute Classification in Surveillance: Database and Evaluation</a></td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>13</td><td>13</td></tr><tr><td>fd8168f1c50de85bac58a8d328df0a50248b16ae</td><td>nd_2006</td><td>ND-2006</td><td><a href="papers/fd8168f1c50de85bac58a8d328df0a50248b16ae.html" target="_blank">Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition</a></td><td><span class="gray">[pdf]</a></td><td>2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems</td><td>edu</td><td>University of Notre Dame</td><td>United States</td><td>41.70456775</td><td>-86.23822026</td><td>56%</td><td>32</td><td>18</td><td>14</td><td>3</td><td>17</td><td>15</td></tr><tr><td>4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7</td><td>deep_fashion</td><td>DeepFashion</td><td><a href="papers/4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7.html" target="_blank">Fashion Landmark Detection in the Wild</a></td><td><a href="https://arxiv.org/pdf/1608.03049.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>26</td><td>17</td><td>9</td><td>1</td><td>17</td><td>9</td></tr><tr><td>57fe081950f21ca03b5b375ae3e84b399c015861</td><td>cvc_01_barcelona</td><td>CVC-01</td><td><a href="papers/57fe081950f21ca03b5b375ae3e84b399c015861.html" target="_blank">Adaptive Image Sampling and Windows Classification for On – board Pedestrian Detection</a></td><td><a href="https://pdfs.semanticscholar.org/57fe/081950f21ca03b5b375ae3e84b399c015861.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>39%</td><td>44</td><td>17</td><td>27</td><td>1</td><td>21</td><td>23</td></tr><tr><td>1e3df3ca8feab0b36fd293fe689f93bb2aaac591</td><td>immediacy</td><td>Immediacy</td><td><a href="papers/1e3df3ca8feab0b36fd293fe689f93bb2aaac591.html" target="_blank">Multi-task Recurrent Neural Network for Immediacy Prediction</a></td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Chu_Multi-Task_Recurrent_Neural_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>25</td><td>16</td><td>9</td><td>2</td><td>21</td><td>5</td></tr><tr><td>20388099cc415c772926e47bcbbe554e133343d1</td><td>cafe</td><td>CAFE</td><td><a href="papers/20388099cc415c772926e47bcbbe554e133343d1.html" target="_blank">The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults</a></td><td><a href="https://pdfs.semanticscholar.org/2038/8099cc415c772926e47bcbbe554e133343d1.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>33</td><td>16</td><td>17</td><td>3</td><td>28</td><td>5</td></tr><tr><td>84fe5b4ac805af63206012d29523a1e033bc827e</td><td>awe_ears</td><td>AWE Ears</td><td><a href="papers/84fe5b4ac805af63206012d29523a1e033bc827e.html" target="_blank">Ear Recognition: More Than a Survey</a></td><td><a href="https://arxiv.org/pdf/1611.06203.pdf" target="_blank">[pdf]</a></td><td>Neurocomputing</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>24</td><td>16</td><td>8</td><td>0</td><td>11</td><td>13</td></tr><tr><td>a5a44a32a91474f00a3cda671a802e87c899fbb4</td><td>moments_in_time</td><td>Moments in Time</td><td><a href="papers/a5a44a32a91474f00a3cda671a802e87c899fbb4.html" target="_blank">Moments in Time Dataset: one million videos for event understanding</a></td><td><a href="https://arxiv.org/pdf/1801.03150.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>25</td><td>16</td><td>9</td><td>2</td><td>25</td><td>0</td></tr><tr><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td><td>casablanca</td><td>Casablanca</td><td><a href="papers/0ceda9dae8b9f322df65ca2ef02caca9758aec6f.html" target="_blank">Context-Aware CNNs for Person Head Detection</a></td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>27</td><td>15</td><td>12</td><td>1</td><td>23</td><td>5</td></tr><tr><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td><td>hollywood_headset</td><td>HollywoodHeads</td><td><a href="papers/0ceda9dae8b9f322df65ca2ef02caca9758aec6f.html" target="_blank">Context-Aware CNNs for Person Head Detection</a></td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>27</td><td>15</td><td>12</td><td>1</td><td>23</td><td>5</td></tr><tr><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td><td>megaface</td><td>MegaFace</td><td><a href="papers/28d4e027c7e90b51b7d8908fce68128d1964668a.html" target="_blank">Level Playing Field for Million Scale Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1705.00393.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>University of Washington</td><td>United States</td><td>47.65432380</td><td>-122.30800894</td><td>39%</td><td>38</td><td>15</td><td>23</td><td>2</td><td>29</td><td>8</td></tr><tr><td>4946ba10a4d5a7d0a38372f23e6622bd347ae273</td><td>coco_action</td><td>COCO-a</td><td><a href="papers/4946ba10a4d5a7d0a38372f23e6622bd347ae273.html" target="_blank">Describing Common Human Visual Actions in Images</a></td><td><a href="https://arxiv.org/pdf/1506.02203.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>26</td><td>15</td><td>11</td><td>0</td><td>25</td><td>1</td></tr><tr><td>221c18238b829c12b911706947ab38fd017acef7</td><td>rap_pedestrian</td><td>RAP</td><td><a href="papers/221c18238b829c12b911706947ab38fd017acef7.html" target="_blank">A Richly Annotated Dataset for Pedestrian Attribute Recognition</a></td><td><a href="https://arxiv.org/pdf/1603.07054.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>21</td><td>14</td><td>7</td><td>0</td><td>18</td><td>3</td></tr><tr><td>2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d.html" target="_blank">Genealogical face recognition based on UB KinFace database</a></td><td><span class="gray">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>SUNY Buffalo</td><td>United States</td><td>42.93362780</td><td>-78.88394479</td><td>47%</td><td>30</td><td>14</td><td>16</td><td>1</td><td>10</td><td>21</td></tr><tr><td>44d23df380af207f5ac5b41459c722c87283e1eb</td><td>wider_attribute</td><td>WIDER Attribute</td><td><a href="papers/44d23df380af207f5ac5b41459c722c87283e1eb.html" target="_blank">Human Attribute Recognition by Deep Hierarchical Contexts</a></td><td><a href="https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>78%</td><td>18</td><td>14</td><td>4</td><td>0</td><td>16</td><td>2</td></tr><tr><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td><td>50_people_one_question</td><td>50 People One Question</td><td><a href="papers/5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725.html" target="_blank">Merging Pose Estimates Across Space and Time</a></td><td><a href="https://pdfs.semanticscholar.org/63b2/f5348af0f969dfc2afb4977732393c6459ec.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>87%</td><td>15</td><td>13</td><td>2</td><td>0</td><td>12</td><td>4</td></tr><tr><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td><td>mpi_large</td><td>Large MPI Facial Expression</td><td><a href="papers/ea050801199f98a1c7c1df6769f23f658299a3ae.html" target="_blank">The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</a></td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>28</td><td>13</td><td>15</td><td>4</td><td>24</td><td>4</td></tr><tr><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td><td>mpi_small</td><td>Small MPI Facial Expression</td><td><a href="papers/ea050801199f98a1c7c1df6769f23f658299a3ae.html" target="_blank">The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</a></td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>28</td><td>13</td><td>15</td><td>4</td><td>24</td><td>4</td></tr><tr><td>014b8df0180f33b9fea98f34ae611c6447d761d2</td><td>buhmap_db</td><td>BUHMAP-DB</td><td><a href="papers/014b8df0180f33b9fea98f34ae611c6447d761d2.html" target="_blank">Facial feature tracking and expression recognition for sign language</a></td><td><a href="https://www.cmpe.boun.edu.tr/~ari/files/ari2008iscis.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 17th Signal Processing and Communications Applications Conference</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>25</td><td>12</td><td>13</td><td>1</td><td>11</td><td>15</td></tr><tr><td>0297448f3ed948e136bb06ceff10eccb34e5bb77</td><td>ilids_mcts</td><td>i-LIDS</td><td><a href="papers/0297448f3ed948e136bb06ceff10eccb34e5bb77.html" target="_blank">Imagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems</a></td><td><span class="gray">[pdf]</a></td><td>Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology</td><td></td><td></td><td></td><td></td><td></td><td>38%</td><td>32</td><td>12</td><td>20</td><td>2</td><td>18</td><td>15</td></tr><tr><td>12ad3b5bbbf407f8e54ea692c07633d1a867c566</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/12ad3b5bbbf407f8e54ea692c07633d1a867c566.html" target="_blank">Object recognition using segmentation for feature detection</a></td><td><span class="gray">[pdf]</a></td><td>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.</td><td>edu</td><td>Inst. of Comput. Sci., Univ. of Leoben, Austria</td><td>Austria</td><td>47.38473720</td><td>15.09302010</td><td>41%</td><td>29</td><td>12</td><td>17</td><td>1</td><td>21</td><td>8</td></tr><tr><td>19d1b811df60f86cbd5e04a094b07f32fff7a32a</td><td>york_3d</td><td>UOY 3D Face Database</td><td><a href="papers/19d1b811df60f86cbd5e04a094b07f32fff7a32a.html" target="_blank">Three-dimensional face recognition: an eigensurface approach</a></td><td><a href="http://www-users.cs.york.ac.uk/~nep/research/3Dface/tomh/3DFaceRecognition-Eigensurface-ICIP(web)2.pdf" target="_blank">[pdf]</a></td><td>2004 International Conference on Image Processing, 2004. ICIP '04.</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>36</td><td>12</td><td>24</td><td>4</td><td>25</td><td>11</td></tr><tr><td>45e616093a92e5f1e61a7c6037d5f637aa8964af</td><td>malf</td><td>MALF</td><td><a href="papers/45e616093a92e5f1e61a7c6037d5f637aa8964af.html" target="_blank">Fine-grained evaluation on face detection in the wild</a></td><td><a href="http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf" target="_blank">[pdf]</a></td><td>2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>17</td><td>12</td><td>5</td><td>0</td><td>13</td><td>4</td></tr><tr><td>e27ef52c641c2b5100a1b34fd0b819e84a31b4df</td><td>sarc3d</td><td>Sarc3D</td><td><a href="papers/e27ef52c641c2b5100a1b34fd0b819e84a31b4df.html" target="_blank">SARC3D: A New 3D Body Model for People Tracking and Re-identification</a></td><td><a href="https://pdfs.semanticscholar.org/e27e/f52c641c2b5100a1b34fd0b819e84a31b4df.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>41%</td><td>29</td><td>12</td><td>17</td><td>3</td><td>17</td><td>12</td></tr><tr><td>774cbb45968607a027ae4729077734db000a1ec5</td><td>urban_tribes</td><td>Urban Tribes</td><td><a href="papers/774cbb45968607a027ae4729077734db000a1ec5.html" target="_blank">From Bikers to Surfers: Visual Recognition of Urban Tribes</a></td><td><a href="https://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>17</td><td>11</td><td>6</td><td>1</td><td>12</td><td>5</td></tr><tr><td>a8d0b149c2eadaa02204d3e4356fbc8eccf3b315</td><td>hi4d_adsip</td><td>Hi4D-ADSIP</td><td><a href="papers/a8d0b149c2eadaa02204d3e4356fbc8eccf3b315.html" target="_blank">Hi4D-ADSIP 3-D dynamic facial articulation database</a></td><td><span class="gray">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>18</td><td>11</td><td>7</td><td>1</td><td>7</td><td>11</td></tr><tr><td>6dcf418c778f528b5792104760f1fbfe90c6dd6a</td><td>agedb</td><td>AgeDB</td><td><a href="papers/6dcf418c778f528b5792104760f1fbfe90c6dd6a.html" target="_blank">AgeDB: The First Manually Collected, In-the-Wild Age Database</a></td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>91%</td><td>11</td><td>10</td><td>1</td><td>0</td><td>10</td><td>1</td></tr><tr><td>ec792ad2433b6579f2566c932ee414111e194537</td><td>msmt_17</td><td>MSMT17</td><td><a href="papers/ec792ad2433b6579f2566c932ee414111e194537.html" target="_blank">Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</a></td><td><a href="https://arxiv.org/pdf/1711.08565.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>14</td><td>10</td><td>4</td><td>1</td><td>11</td><td>3</td></tr><tr><td>2f43b614607163abf41dfe5d17ef6749a1b61304</td><td>hrt_transgender</td><td>HRT Transgender</td><td><a href="papers/2f43b614607163abf41dfe5d17ef6749a1b61304.html" target="_blank">Investigating the Periocular-Based Face Recognition Across Gender Transformation</a></td><td><span class="gray">[pdf]</a></td><td>IEEE Transactions on Information Forensics and Security</td><td>edu</td><td>University of North Carolina at Wilmington</td><td>United States</td><td>34.22498270</td><td>-77.86907744</td><td>69%</td><td>13</td><td>9</td><td>4</td><td>0</td><td>6</td><td>8</td></tr><tr><td>4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06</td><td>distance_nighttime</td><td>Long Distance Heterogeneous Face</td><td><a href="papers/4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06.html" target="_blank">Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching</a></td><td><a href="https://pdfs.semanticscholar.org/4156/b7e88f2e0ab0a7c095b9bab199ae2b23bd06.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>21</td><td>9</td><td>12</td><td>3</td><td>11</td><td>10</td></tr><tr><td>4e6ee936eb50dd032f7138702fa39b7c18ee8907</td><td>dartmouth_children</td><td>Dartmouth Children</td><td><a href="papers/4e6ee936eb50dd032f7138702fa39b7c18ee8907.html" target="_blank">The Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set</a></td><td><a href="https://pdfs.semanticscholar.org/4e6e/e936eb50dd032f7138702fa39b7c18ee8907.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>20</td><td>9</td><td>11</td><td>2</td><td>17</td><td>4</td></tr><tr><td>71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6</td><td>umd_faces</td><td>UMD</td><td><a href="papers/71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6.html" target="_blank">The Do’s and Don’ts for CNN-Based Face Verification</a></td><td><a href="https://arxiv.org/pdf/1705.07426.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Computer Vision Workshops (ICCVW)</td><td></td><td></td><td></td><td></td><td></td><td>36%</td><td>25</td><td>9</td><td>16</td><td>3</td><td>17</td><td>6</td></tr><tr><td>ca3e88d87e1344d076c964ea89d91a75c417f5ee</td><td>imfdb</td><td>IMFDB</td><td><a href="papers/ca3e88d87e1344d076c964ea89d91a75c417f5ee.html" target="_blank">Indian Movie Face Database: A benchmark for face recognition under wide variations</a></td><td><a href="http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/papers/Shankar2013Indian.pdf" target="_blank">[pdf]</a></td><td>2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)</td><td>edu</td><td>CVIT, IIITH, India</td><td>India</td><td>17.44595810</td><td>78.34959940</td><td>60%</td><td>15</td><td>9</td><td>6</td><td>0</td><td>10</td><td>5</td></tr><tr><td>25474c21613607f6bb7687a281d5f9d4ffa1f9f3</td><td>faceplace</td><td>Face Place</td><td><a href="papers/25474c21613607f6bb7687a281d5f9d4ffa1f9f3.html" target="_blank">Recognizing disguised faces</a></td><td><a href="https://pdfs.semanticscholar.org/d936/7ceb0be378c3a9ddf7cb741c678c1a3c574c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>24</td><td>8</td><td>16</td><td>0</td><td>18</td><td>6</td></tr><tr><td>2a171f8d14b6b8735001a11c217af9587d095848</td><td>social_relation</td><td>Social Relation</td><td><a href="papers/2a171f8d14b6b8735001a11c217af9587d095848.html" target="_blank">Learning Social Relation Traits from Face Images</a></td><td><a href="https://arxiv.org/pdf/1509.03936.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>20</td><td>8</td><td>12</td><td>5</td><td>15</td><td>5</td></tr><tr><td>a94cae786d515d3450d48267e12ca954aab791c4</td><td>yawdd</td><td>YawDD</td><td><a href="papers/a94cae786d515d3450d48267e12ca954aab791c4.html" target="_blank">YawDD: a yawning detection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>14</td><td>8</td><td>6</td><td>1</td><td>2</td><td>12</td></tr><tr><td>c570d1247e337f91e555c3be0e8c8a5aba539d9f</td><td>mcgill</td><td>McGill Real World</td><td><a href="papers/c570d1247e337f91e555c3be0e8c8a5aba539d9f.html" target="_blank">Robust semi-automatic head pose labeling for real-world face video sequences</a></td><td><span class="gray">[pdf]</a></td><td>Multimedia Tools and Applications</td><td>edu</td><td>McGill University</td><td>Canada</td><td>45.50397610</td><td>-73.57496870</td><td>44%</td><td>18</td><td>8</td><td>10</td><td>0</td><td>13</td><td>7</td></tr><tr><td>0cb2dd5f178e3a297a0c33068961018659d0f443</td><td>ijb_c</td><td>IJB-B</td><td><a href="papers/0cb2dd5f178e3a297a0c33068961018659d0f443.html" target="_blank">IARPA Janus Benchmark-B Face Dataset</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Whitelametal_IARPAJanusBenchmark-BFaceDataset_CVPRW17.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td>edu</td><td>Michigan State University</td><td>United States</td><td>42.71856800</td><td>-84.47791571</td><td>28%</td><td>25</td><td>7</td><td>18</td><td>6</td><td>21</td><td>4</td></tr><tr><td>22f656d0f8426c84a33a267977f511f127bfd7f3</td><td>expw</td><td>ExpW</td><td><a href="papers/22f656d0f8426c84a33a267977f511f127bfd7f3.html" target="_blank">From Facial Expression Recognition to Interpersonal Relation Prediction</a></td><td><a href="https://arxiv.org/pdf/1609.06426.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>78%</td><td>9</td><td>7</td><td>2</td><td>0</td><td>5</td><td>4</td></tr><tr><td>2624d84503bc2f8e190e061c5480b6aa4d89277a</td><td>afew_va</td><td>AFEW-VA</td><td><a href="papers/2624d84503bc2f8e190e061c5480b6aa4d89277a.html" target="_blank">AFEW-VA database for valence and arousal estimation in-the-wild</a></td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/afew-va.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>15</td><td>7</td><td>8</td><td>1</td><td>10</td><td>4</td></tr><tr><td>2b926b3586399d028b46315d7d9fb9d879e4f79c</td><td>frav3d</td><td>FRAV3D</td><td><a href="papers/2b926b3586399d028b46315d7d9fb9d879e4f79c.html" target="_blank">Multimodal 2D, 2.5D & 3D Face Verification</a></td><td><a href="http://www.researchgate.net/profile/Enrique_Cabello/publication/224057733_Multimodal_2D_2.5D__3D_Face_Verification/links/0912f50f522298fa95000000.pdf" target="_blank">[pdf]</a></td><td>2006 International Conference on Image Processing</td><td>edu</td><td>Universidad Rey Juan Carlos, Spain</td><td></td><td>40.33586610</td><td>-3.87694320</td><td>50%</td><td>14</td><td>7</td><td>7</td><td>0</td><td>2</td><td>12</td></tr><tr><td>4563b46d42079242f06567b3f2e2f7a80cb3befe</td><td>vadana</td><td>VADANA</td><td><a href="papers/4563b46d42079242f06567b3f2e2f7a80cb3befe.html" target="_blank">VADANA: A dense dataset for facial image analysis</a></td><td><a href="http://vims.cis.udel.edu/publications/VADANA_BeFIT2011.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td>edu</td><td>University of Delaware</td><td>United States</td><td>39.68103280</td><td>-75.75401840</td><td>44%</td><td>16</td><td>7</td><td>9</td><td>0</td><td>6</td><td>10</td></tr><tr><td>6403117f9c005ae81f1e8e6d1302f4a045e3d99d</td><td>alert_airport</td><td>ALERT Airport</td><td><a href="papers/6403117f9c005ae81f1e8e6d1302f4a045e3d99d.html" target="_blank">A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets.</a></td><td><a href="https://arxiv.org/pdf/1605.09653.pdf" target="_blank">[pdf]</a></td><td>IEEE transactions on pattern analysis and machine intelligence</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>15</td><td>7</td><td>8</td><td>1</td><td>10</td><td>5</td></tr><tr><td>b71d1aa90dcbe3638888725314c0d56640c1fef1</td><td>ifdb</td><td>IFDB</td><td><a href="papers/b71d1aa90dcbe3638888725314c0d56640c1fef1.html" target="_blank">Iranian Face Database with age, pose and expression</a></td><td><a href="http://www.iranprc.org/pdf/paper/2007-02.pdf" target="_blank">[pdf]</a></td><td>2007 International Conference on Machine Vision</td><td>edu</td><td>Islamic Azad University</td><td>Iran</td><td>34.84529990</td><td>48.55962120</td><td>35%</td><td>20</td><td>7</td><td>13</td><td>2</td><td>12</td><td>9</td></tr><tr><td>041d3eedf5e45ce5c5229f0181c5c576ed1fafd6</td><td>ucf_selfie</td><td>UCF Selfie</td><td><a href="papers/041d3eedf5e45ce5c5229f0181c5c576ed1fafd6.html" target="_blank">How to Take a Good Selfie?</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>9</td><td>6</td><td>3</td><td>0</td><td>6</td><td>4</td></tr><tr><td>7f4040b482d16354d5938c1d1b926b544652bf5b</td><td>nova_emotions</td><td>Novaemötions Dataset</td><td><a href="papers/7f4040b482d16354d5938c1d1b926b544652bf5b.html" target="_blank">Competitive affective gaming: winning with a smile</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Universidade NOVA de Lisboa, Caparica, Portugal</td><td>Portugal</td><td>38.66096400</td><td>-9.20581300</td><td>75%</td><td>8</td><td>6</td><td>2</td><td>0</td><td>4</td><td>4</td></tr><tr><td>8f02ec0be21461fbcedf51d864f944cfc42c875f</td><td>hda_plus</td><td>HDA+</td><td><a href="papers/8f02ec0be21461fbcedf51d864f944cfc42c875f.html" target="_blank">The HDA+ Data Set for Research on Fully Automated Re-identification Systems</a></td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w19/11%20-%20The%20HDA%20data%20set%20for%20research%20on%20fully.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>35%</td><td>17</td><td>6</td><td>11</td><td>2</td><td>11</td><td>6</td></tr><tr><td>bd26dabab576adb6af30484183c9c9c8379bf2e0</td><td>scut_fbp</td><td>SCUT-FBP</td><td><a href="papers/bd26dabab576adb6af30484183c9c9c8379bf2e0.html" target="_blank">SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</a></td><td><a href="https://arxiv.org/pdf/1511.02459.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Systems, Man, and Cybernetics</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>14</td><td>6</td><td>8</td><td>3</td><td>5</td><td>9</td></tr><tr><td>1a40092b493c6b8840257ab7f96051d1a4dbfeb2</td><td>sports_videos_in_the_wild</td><td>SVW</td><td><a href="papers/1a40092b493c6b8840257ab7f96051d1a4dbfeb2.html" target="_blank">Sports Videos in the Wild (SVW): A video dataset for sports analysis</a></td><td><a href="http://cse.msu.edu/~liuxm/publication/Safdarnejad_Liu_Udpa_Andrus_Wood_Craven_FG2015.pdf" target="_blank">[pdf]</a></td><td>2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td></td><td></td><td></td><td></td><td></td><td>83%</td><td>6</td><td>5</td><td>1</td><td>1</td><td>5</td><td>1</td></tr><tr><td>8627f019882b024aef92e4eb9355c499c733e5b7</td><td>used</td><td>USED Social Event Dataset</td><td><a href="papers/8627f019882b024aef92e4eb9355c499c733e5b7.html" target="_blank">USED: a large-scale social event detection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Trento</td><td>Italy</td><td>46.06588360</td><td>11.11598940</td><td>71%</td><td>7</td><td>5</td><td>2</td><td>0</td><td>3</td><td>4</td></tr><tr><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td><td>chalearn</td><td>ChaLearn</td><td><a href="papers/8d5998cd984e7cce307da7d46f155f9db99c6590.html" target="_blank">ChaLearn looking at people: A review of events and resources</a></td><td><a href="https://arxiv.org/pdf/1701.02664.pdf" target="_blank">[pdf]</a></td><td>2017 International Joint Conference on Neural Networks (IJCNN)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>10</td><td>5</td><td>5</td><td>1</td><td>6</td><td>4</td></tr><tr><td>079a0a3bf5200994e1f972b1b9197bf2f90e87d4</td><td>mit_cbcl</td><td>MIT CBCL</td><td><a href="papers/079a0a3bf5200994e1f972b1b9197bf2f90e87d4.html" target="_blank">Component-Based Face Recognition with 3D Morphable Models</a></td><td><a href="http://cbcl.mit.edu/cbcl/publications/theses/thesis-huang.pdf" target="_blank">[pdf]</a></td><td>2004 Conference on Computer Vision and Pattern Recognition Workshop</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>12</td><td>4</td><td>8</td><td>0</td><td>8</td><td>4</td></tr><tr><td>07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1</td><td>uccs</td><td>UCCS</td><td><a href="papers/07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1.html" target="_blank">Large scale unconstrained open set face database</a></td><td><a href="http://vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>University of Colorado at Colorado Springs</td><td>United States</td><td>38.89646790</td><td>-104.80505940</td><td>80%</td><td>5</td><td>4</td><td>1</td><td>0</td><td>3</td><td>2</td></tr><tr><td>137aa2f891d474fce1e7a1d1e9b3aefe21e22b34</td><td>hrt_transgender</td><td>HRT Transgender</td><td><a href="papers/137aa2f891d474fce1e7a1d1e9b3aefe21e22b34.html" target="_blank">Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset</a></td><td><a href="http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%20139/PID2859389.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>7</td><td>4</td><td>3</td><td>1</td><td>3</td><td>5</td></tr><tr><td>4b4106614c1d553365bad75d7866bff0de6056ed</td><td>czech_news_agency</td><td>UFI</td><td><a href="papers/4b4106614c1d553365bad75d7866bff0de6056ed.html" target="_blank">Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions</a></td><td><a href="https://pdfs.semanticscholar.org/4b41/06614c1d553365bad75d7866bff0de6056ed.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>10</td><td>4</td><td>6</td><td>0</td><td>4</td><td>6</td></tr><tr><td>54983972aafc8e149259d913524581357b0f91c3</td><td>reseed</td><td>ReSEED</td><td><a href="papers/54983972aafc8e149259d913524581357b0f91c3.html" target="_blank">ReSEED: social event dEtection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>6</td><td>4</td><td>2</td><td>1</td><td>1</td><td>5</td></tr><tr><td>563c940054e4b456661762c1ab858e6f730c3159</td><td>data_61</td><td>Data61 Pedestrian</td><td><a href="papers/563c940054e4b456661762c1ab858e6f730c3159.html" target="_blank">A Multi-modal Graphical Model for Scene Analysis</a></td><td><a href="http://www.nicta.com.au/wp-content/uploads/2015/02/TaghaviNaminetalWACV15.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Winter Conference on Applications of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>8</td><td>4</td><td>4</td><td>0</td><td>5</td><td>3</td></tr><tr><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td><td>cmdp</td><td>CMDP</td><td><a href="papers/56ae6d94fc6097ec4ca861f0daa87941d1c10b70.html" target="_blank">Distance Estimation of an Unknown Person from a Portrait</a></td><td><a href="https://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>9</td><td>4</td><td>5</td><td>0</td><td>6</td><td>3</td></tr><tr><td>7ebb153704706e457ab57b432793d2b6e5d12592</td><td>vgg_celebs_in_places</td><td>CIP</td><td><a href="papers/7ebb153704706e457ab57b432793d2b6e5d12592.html" target="_blank">Faces in Places: compound query retrieval</a></td><td><a href="https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>80%</td><td>5</td><td>4</td><td>1</td><td>0</td><td>4</td><td>1</td></tr><tr><td>a5a3bc3e5e9753769163cb30b16dbd12e266b93e</td><td>mcgill</td><td>McGill Real World</td><td><a href="papers/a5a3bc3e5e9753769163cb30b16dbd12e266b93e.html" target="_blank">Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos</a></td><td><span class="gray">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>8</td><td>4</td><td>4</td><td>1</td><td>5</td><td>3</td></tr><tr><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td><td>lag</td><td>LAG</td><td><a href="papers/0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e.html" target="_blank">Large age-gap face verification by feature injection in deep networks</a></td><td><a href="https://arxiv.org/pdf/1602.06149.pdf" target="_blank">[pdf]</a></td><td>Pattern Recognition Letters</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>3</td><td>4</td></tr><tr><td>23e824d1dfc33f3780dd18076284f07bd99f1c43</td><td>mifs</td><td>MIFS</td><td><a href="papers/23e824d1dfc33f3780dd18076284f07bd99f1c43.html" target="_blank">Spoofing faces using makeup: An investigative study</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenFaceMakeupSpoof_ISBA2017.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)</td><td>edu</td><td>INRIA Méditerranée</td><td>France</td><td>43.61581310</td><td>7.06838000</td><td>60%</td><td>5</td><td>3</td><td>2</td><td>0</td><td>1</td><td>4</td></tr><tr><td>57178b36c21fd7f4529ac6748614bb3374714e91</td><td>ijb_c</td><td>IJB-C</td><td><a href="papers/57178b36c21fd7f4529ac6748614bb3374714e91.html" target="_blank">IARPA Janus Benchmark - C: Face Dataset and Protocol</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Mazeetal_IARPAJanusBenchmarkCFaceDatasetAndProtocol_ICB2018.pdf" target="_blank">[pdf]</a></td><td>2018 International Conference on Biometrics (ICB)</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>9</td><td>3</td><td>6</td><td>2</td><td>9</td><td>0</td></tr><tr><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td><td>market1203</td><td>Market 1203</td><td><a href="papers/a7fe834a0af614ce6b50dc093132b031dd9a856b.html" target="_blank">Orientation Driven Bag of Appearances for Person Re-identification</a></td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>4</td><td>4</td></tr><tr><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td><td>pku_reid</td><td>PKU-Reid</td><td><a href="papers/a7fe834a0af614ce6b50dc093132b031dd9a856b.html" target="_blank">Orientation Driven Bag of Appearances for Person Re-identification</a></td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>4</td><td>4</td></tr><tr><td>dd65f71dac86e36eecbd3ed225d016c3336b4a13</td><td>families_in_the_wild</td><td>FIW</td><td><a href="papers/dd65f71dac86e36eecbd3ed225d016c3336b4a13.html" target="_blank">Visual Kinship Recognition of Families in the Wild</a></td><td><a href="https://web.northeastern.edu/smilelab/fiw/papers/Supplemental_PP.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>University of Massachusetts Dartmouth</td><td>United States</td><td>41.62772475</td><td>-71.00724501</td><td>100%</td><td>3</td><td>3</td><td>0</td><td>0</td><td>2</td><td>1</td></tr><tr><td>d4f1eb008eb80595bcfdac368e23ae9754e1e745</td><td>uccs</td><td>UCCS</td><td><a href="papers/d4f1eb008eb80595bcfdac368e23ae9754e1e745.html" target="_blank">Unconstrained Face Detection and Open-Set Face Recognition Challenge</a></td><td><a href="https://arxiv.org/pdf/1708.02337.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Joint Conference on Biometrics (IJCB)</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>5</td><td>2</td><td>3</td><td>0</td><td>4</td><td>1</td></tr><tr><td>17b46e2dad927836c689d6787ddb3387c6159ece</td><td>geofaces</td><td>GeoFaces</td><td><a href="papers/17b46e2dad927836c689d6787ddb3387c6159ece.html" target="_blank">GeoFaceExplorer: exploring the geo-dependence of facial attributes</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>2</td><td>2</td><td>0</td><td>0</td><td>1</td><td>1</td></tr><tr><td>9e5378e7b336c89735d3bb15cf67eff96f86d39a</td><td>precarious</td><td>Precarious</td><td><a href="papers/9e5378e7b336c89735d3bb15cf67eff96f86d39a.html" target="_blank">Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters</a></td><td><a href="https://arxiv.org/pdf/1703.06283.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>17%</td><td>12</td><td>2</td><td>10</td><td>1</td><td>11</td><td>1</td></tr><tr><td>ad01687649d95cd5b56d7399a9603c4b8e2217d7</td><td>mrp_drone</td><td>MRP Drone</td><td><a href="papers/ad01687649d95cd5b56d7399a9603c4b8e2217d7.html" target="_blank">Investigating Open-World Person Re-identification Using a Drone</a></td><td><a href="https://pdfs.semanticscholar.org/ad01/687649d95cd5b56d7399a9603c4b8e2217d7.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>5</td><td>2</td><td>3</td><td>0</td><td>3</td><td>2</td></tr><tr><td>f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f</td><td>pku</td><td>PKU</td><td><a href="papers/f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f.html" target="_blank">Swiss-System Based Cascade Ranking for Gait-Based Person Re-Identification</a></td><td><a href="https://pdfs.semanticscholar.org/f6c8/d5e35d7e4d60a0104f233ac1a3ab757da53f.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>3</td><td>2</td><td>1</td><td>0</td><td>1</td><td>2</td></tr><tr><td>3dc3f0b64ef80f573e3a5f96e456e52ee980b877</td><td>georgia_tech_face_database</td><td>Georgia Tech Face</td><td><a href="papers/3dc3f0b64ef80f573e3a5f96e456e52ee980b877.html" target="_blank">MAXIMUM LIKELIHOOD TRAINING OF THE EMBEDDED HMM FOR FACE DETECTION AND RECOGNITION Ara V. Ne an and Monson H. Hayes III Center for Signal and Image Processing School of Electrical and Computer Engineering</a></td><td><a href="https://pdfs.semanticscholar.org/3dc3/f0b64ef80f573e3a5f96e456e52ee980b877.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>3</td><td>1</td><td>2</td><td>0</td><td>2</td><td>1</td></tr><tr><td>4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461</td><td>3dddb_unconstrained</td><td>3D Dynamic</td><td><a href="papers/4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461.html" target="_blank">A 3 D Dynamic Database for Unconstrained Face Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/4d4b/b462c9f1d4e4ab1e4aa6a75cc0bc71b38461.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td></tr><tr><td>55c40cbcf49a0225e72d911d762c27bb1c2d14aa</td><td>ifad</td><td>IFAD</td><td><a href="papers/55c40cbcf49a0225e72d911d762c27bb1c2d14aa.html" target="_blank">Indian Face Age Database : A Database for Face Recognition with Age Variation</a></td><td><a href="https://pdfs.semanticscholar.org/55c4/0cbcf49a0225e72d911d762c27bb1c2d14aa.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>578d4ad74818086bb64f182f72e2c8bd31e3d426</td><td>mr2</td><td>MR2</td><td><a href="papers/578d4ad74818086bb64f182f72e2c8bd31e3d426.html" target="_blank">The MR2: A multi-racial, mega-resolution database of facial stimuli.</a></td><td><a href="https://pdfs.semanticscholar.org/be5b/455abd379240460d022a0e246615b0b86c14.pdf" target="_blank">[pdf]</a></td><td>Behavior research methods</td><td></td><td></td><td></td><td></td><td></td><td>14%</td><td>7</td><td>1</td><td>6</td><td>0</td><td>7</td><td>0</td></tr><tr><td>5ad4e9f947c1653c247d418f05dad758a3f9277b</td><td>wlfdb</td><td>WLFDB</td><td><a href="papers/5ad4e9f947c1653c247d418f05dad758a3f9277b.html" target="_blank">WLFDB: Weakly Labeled Face Databases</a></td><td><a href="https://pdfs.semanticscholar.org/5ad4/e9f947c1653c247d418f05dad758a3f9277b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td></tr><tr><td>65355cbb581a219bd7461d48b3afd115263ea760</td><td>complex_activities</td><td>Ongoing Complex Activities</td><td><a href="papers/65355cbb581a219bd7461d48b3afd115263ea760.html" target="_blank">Recognition of ongoing complex activities by sequence prediction over a hierarchical label space</a></td><td><a href="https://scalable.mpi-inf.mpg.de/files/2016/01/main_wacv.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Winter Conference on Applications of Computer Vision (WACV)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>922e0a51a3b8c67c4c6ac09a577ff674cbd28b34</td><td>v47</td><td>V47</td><td><a href="papers/922e0a51a3b8c67c4c6ac09a577ff674cbd28b34.html" target="_blank">Re-identification of pedestrians with variable occlusion and scale</a></td><td><span class="gray">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td>edu</td><td>Kingston University</td><td>United Kingdom</td><td>51.42930860</td><td>-0.26840440</td><td>10%</td><td>10</td><td>1</td><td>9</td><td>2</td><td>6</td><td>4</td></tr><tr><td>c06b13d0ec3f5c43e2782cd22542588e233733c3</td><td>nova_emotions</td><td>Novaemötions Dataset</td><td><a href="papers/c06b13d0ec3f5c43e2782cd22542588e233733c3.html" target="_blank">Crowdsourcing facial expressions for affective-interaction</a></td><td><span class="gray">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td></tr><tr><td>d80a3d1f3a438e02a6685e66ee908446766fefa9</td><td>megaage</td><td>MegaAge</td><td><a href="papers/d80a3d1f3a438e02a6685e66ee908446766fefa9.html" target="_blank">Quantifying Facial Age by Posterior of Age Comparisons</a></td><td><a href="https://arxiv.org/pdf/1708.09687.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>25%</td><td>4</td><td>1</td><td>3</td><td>1</td><td>4</td><td>0</td></tr><tr><td>e58dd160a76349d46f881bd6ddbc2921f08d1050</td><td>gfw</td><td>YouTube Pose</td><td><a href="papers/e58dd160a76349d46f881bd6ddbc2921f08d1050.html" target="_blank">Merge or Not? Learning to Group Faces via Imitation Learning</a></td><td><a href="https://arxiv.org/pdf/1707.03986.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>9e31e77f9543ab42474ba4e9330676e18c242e72</td><td>imdb_face</td><td>IMDB Face</td><td><a href="papers/9e31e77f9543ab42474ba4e9330676e18c242e72.html" target="_blank">The Devil of Face Recognition is in the Noise</a></td><td><a href="https://arxiv.org/pdf/1807.11649.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Nanyang Technological University</td><td>Singapore</td><td>1.34841040</td><td>103.68297965</td><td>20%</td><td>5</td><td>1</td><td>4</td><td>0</td><td>3</td><td>1</td></tr><tr><td>066d71fcd997033dce4ca58df924397dfe0b5fd1</td><td>ifdb</td><td>IFDB</td><td><a href="papers/066d71fcd997033dce4ca58df924397dfe0b5fd1.html" target="_blank">Iranian Face Database and Evaluation with a New Detection Algorithm</a></td><td><a href="https://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>22909dd19a0ec3b6065334cb5be5392cb24d839d</td><td>pets</td><td>PETS 2017</td><td><a href="papers/22909dd19a0ec3b6065334cb5be5392cb24d839d.html" target="_blank">PETS 2017: Dataset and Challenge</a></td><td><a href="http://tahirnawaz.com/papers/2017_CVPRW_PETS2017Dataset_Luis_Nawaz_Cane_Ferryman.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>8</td><td>0</td><td>8</td><td>0</td><td>2</td><td>6</td></tr><tr><td>377f2b65e6a9300448bdccf678cde59449ecd337</td><td>ufdd</td><td>UFDD</td><td><a href="papers/377f2b65e6a9300448bdccf678cde59449ecd337.html" target="_blank">Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</a></td><td><a href="https://arxiv.org/pdf/1804.10275.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>2</td><td>0</td><td>2</td><td>0</td><td>2</td><td>0</td></tr><tr><td>670637d0303a863c1548d5b19f705860a23e285c</td><td>face_tracer</td><td>FaceTracer</td><td><a href="papers/670637d0303a863c1548d5b19f705860a23e285c.html" target="_blank">Face swapping: automatically replacing faces in photographs</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>75da1df4ed319926c544eefe17ec8d720feef8c0</td><td>fddb</td><td>FDDB</td><td><a href="papers/75da1df4ed319926c544eefe17ec8d720feef8c0.html" target="_blank">FDDB: A benchmark for face detection in unconstrained settings</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td></tr><tr><td>77c81c13a110a341c140995bedb98101b9e84f7f</td><td>wildtrack</td><td>WildTrack</td><td><a href="papers/77c81c13a110a341c140995bedb98101b9e84f7f.html" target="_blank">WILDTRACK : A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</a></td><td><a href="https://pdfs.semanticscholar.org/fe1c/ec4e4995b8615855572374ae3efc94949105.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>8990cdce3f917dad622e43e033db686b354d057c</td><td>tiny_faces</td><td>TinyFace</td><td><a href="papers/8990cdce3f917dad622e43e033db686b354d057c.html" target="_blank">Low-Resolution Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1811.08965.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>9696ad8b164f5e10fcfe23aacf74bd6168aebb15</td><td>4dfab</td><td>4DFAB</td><td><a href="papers/9696ad8b164f5e10fcfe23aacf74bd6168aebb15.html" target="_blank">4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</a></td><td><a href="https://arxiv.org/pdf/1712.01443.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>4</td><td>0</td><td>4</td><td>0</td><td>2</td><td>2</td></tr><tr><td>9b9bf5e623cb8af7407d2d2d857bc3f1b531c182</td><td>who_goes_there</td><td>WGT</td><td><a href="papers/9b9bf5e623cb8af7407d2d2d857bc3f1b531c182.html" target="_blank">Who goes there?: approaches to mapping facial appearance diversity</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Kentucky</td><td>United States</td><td>38.03337420</td><td>-84.50177580</td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>bd88bb2e4f351352d88ee7375af834360e223498</td><td>hda_plus</td><td>HDA+</td><td><a href="papers/bd88bb2e4f351352d88ee7375af834360e223498.html" target="_blank">HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance</a></td><td><a href="https://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>2</td><td>0</td><td>2</td><td>0</td><td>1</td><td>2</td></tr><tr><td>c866a2afc871910e3282fd9498dce4ab20f6a332</td><td>qmul_surv_face</td><td>QMUL-SurvFace</td><td><a href="papers/c866a2afc871910e3282fd9498dce4ab20f6a332.html" target="_blank">Surveillance Face Recognition Challenge</a></td><td><a href="https://arxiv.org/pdf/1804.09691.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td><td>stair_actions</td><td>STAIR Action</td><td><a href="papers/d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9.html" target="_blank">STAIR Actions: A Video Dataset of Everyday Home Actions</a></td><td><a href="https://arxiv.org/pdf/1804.04326.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>d3200d49a19a4a4e4e9745ee39649b65d80c834b</td><td>scut_head</td><td>SCUT HEAD</td><td><a href="papers/d3200d49a19a4a4e4e9745ee39649b65d80c834b.html" target="_blank">Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</a></td><td><a href="https://arxiv.org/pdf/1803.09256.pdf" target="_blank">[pdf]</a></td><td>2018 24th International Conference on Pattern Recognition (ICPR)</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4</td><td>europersons</td><td>EuroCity Persons</td><td><a href="papers/f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4.html" target="_blank">The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</a></td><td><a href="https://arxiv.org/pdf/1805.07193.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td></tr></table></body></html> \ No newline at end of file
diff --git a/scraper/reports/report_index.html b/scraper/reports/report_index.html
index 2a993bf9..51df8eb5 100644
--- a/scraper/reports/report_index.html
+++ b/scraper/reports/report_index.html
@@ -1 +1 @@
-<!doctype html><html><head><meta charset='utf-8'><title>All Papers</title><link rel='stylesheet' href='reports.css'></head><body><h2>All Papers</h2><table border='1' cellpadding='3' cellspacing='3'><th>Paper ID</th><th>Megapixels Key</th><th>Megapixels Name</th><th>Report Link</th><th>PDF Link</th><th>Journal</th><th>Type</th><th>Address</th><th>Country</th><th>Lat</th><th>Lng</th><th>Coverage</th><th>Total Citations</th><th>Geocoded Citations</th><th>Unknown Citations</th><th>Empty Citations</th><th>With PDF</th><th>With DOI</th><tr><td>3325860c0c82a93b2eac654f5324dd6a776f609e</td><td>mpii_human_pose</td><td>MPII Human Pose</td><td><a href="papers/3325860c0c82a93b2eac654f5324dd6a776f609e.html" target="_blank">2D Human Pose Estimation: New Benchmark and State of the Art Analysis</a></td><td><a href="http://ei.is.tuebingen.mpg.de/uploads_file/attachment/attachment/168/andriluka14benchmark.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>356</td><td>221</td><td>135</td><td>21</td><td>304</td><td>53</td></tr><tr><td>e4754afaa15b1b53e70743880484b8d0736990ff</td><td>fiw_300</td><td>300-W</td><td><a href="papers/e4754afaa15b1b53e70743880484b8d0736990ff.html" target="_blank">300 Faces In-The-Wild Challenge: database and results</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>114</td><td>61</td><td>53</td><td>10</td><td>71</td><td>43</td></tr><tr><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td><td>fiw_300</td><td>300-W</td><td><a href="papers/044d9a8c61383312cdafbcc44b9d00d650b21c70.html" target="_blank">300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>324</td><td>199</td><td>125</td><td>29</td><td>211</td><td>118</td></tr><tr><td>2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e</td><td>3dpes</td><td>3DPeS</td><td><a href="papers/2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e.html" target="_blank">3DPeS: 3D people dataset for surveillance and forensics</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>122</td><td>61</td><td>61</td><td>11</td><td>71</td><td>51</td></tr><tr><td>9696ad8b164f5e10fcfe23aacf74bd6168aebb15</td><td>4dfab</td><td>4DFAB</td><td><a href="papers/9696ad8b164f5e10fcfe23aacf74bd6168aebb15.html" target="_blank">4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</a></td><td><a href="https://arxiv.org/pdf/1712.01443.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>4</td><td>0</td><td>4</td><td>0</td><td>2</td><td>2</td></tr><tr><td>31b58ced31f22eab10bd3ee2d9174e7c14c27c01</td><td>tiny_images</td><td>Tiny Images</td><td><a href="papers/31b58ced31f22eab10bd3ee2d9174e7c14c27c01.html" target="_blank">80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition</a></td><td><a href="http://cvcl.mit.edu/SUNSeminar/Torralba_80M_PAMI08.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>999</td><td>540</td><td>458</td><td>94</td><td>685</td><td>327</td></tr><tr><td>4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461</td><td>3dddb_unconstrained</td><td>3D Dynamic</td><td><a href="papers/4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461.html" target="_blank">A 3 D Dynamic Database for Unconstrained Face Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/4d4b/b462c9f1d4e4ab1e4aa6a75cc0bc71b38461.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td></tr><tr><td>d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae</td><td>b3d_ac</td><td>B3D(AC)</td><td><a href="papers/d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae.html" target="_blank">A 3-D Audio-Visual Corpus of Affective Communication</a></td><td><a href="http://files.is.tue.mpg.de/jgall/download/jgall_avcorpus_mm10.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Multimedia</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>39</td><td>21</td><td>18</td><td>2</td><td>27</td><td>12</td></tr><tr><td>639937b3a1b8bded3f7e9a40e85bd3770016cf3c</td><td>bfm</td><td>BFM</td><td><a href="papers/639937b3a1b8bded3f7e9a40e85bd3770016cf3c.html" target="_blank">A 3D Face Model for Pose and Illumination Invariant Face Recognition</a></td><td><a href="http://gravis.cs.unibas.ch/publications/2009/BFModel09.pdf" target="_blank">[pdf]</a></td><td>2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>323</td><td>178</td><td>145</td><td>29</td><td>226</td><td>98</td></tr><tr><td>cc589c499dcf323fe4a143bbef0074c3e31f9b60</td><td>bu_3dfe</td><td>BU-3DFE</td><td><a href="papers/cc589c499dcf323fe4a143bbef0074c3e31f9b60.html" target="_blank">A 3D facial expression database for facial behavior research</a></td><td><a href="http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR06_a.pdf" target="_blank">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>555</td><td>275</td><td>279</td><td>47</td><td>299</td><td>270</td></tr><tr><td>22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b</td><td>saivt</td><td>SAIVT SoftBio</td><td><a href="papers/22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b.html" target="_blank">A Database for Person Re-Identification in Multi-Camera Surveillance Networks</a></td><td><a href="http://eprints.qut.edu.au/53437/3/Bialkowski_Database4PersonReID_DICTA.pdf" target="_blank">[pdf]</a></td><td>2012 International Conference on Digital Image Computing Techniques and Applications (DICTA)</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>58</td><td>27</td><td>31</td><td>7</td><td>41</td><td>18</td></tr><tr><td>070de852bc6eb275d7ca3a9cdde8f6be8795d1a3</td><td>d3dfacs</td><td>D3DFACS</td><td><a href="papers/070de852bc6eb275d7ca3a9cdde8f6be8795d1a3.html" target="_blank">A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling</a></td><td><a href="http://www.cs.bath.ac.uk/~dpc/D3DFACS/ICCV_final_2011.pdf" target="_blank">[pdf]</a></td><td>2011 International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>52</td><td>30</td><td>22</td><td>5</td><td>37</td><td>15</td></tr><tr><td>563c940054e4b456661762c1ab858e6f730c3159</td><td>data_61</td><td>Data61 Pedestrian</td><td><a href="papers/563c940054e4b456661762c1ab858e6f730c3159.html" target="_blank">A Multi-modal Graphical Model for Scene Analysis</a></td><td><a href="http://www.nicta.com.au/wp-content/uploads/2015/02/TaghaviNaminetalWACV15.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Winter Conference on Applications of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>8</td><td>4</td><td>4</td><td>0</td><td>5</td><td>3</td></tr><tr><td>221c18238b829c12b911706947ab38fd017acef7</td><td>rap_pedestrian</td><td>RAP</td><td><a href="papers/221c18238b829c12b911706947ab38fd017acef7.html" target="_blank">A Richly Annotated Dataset for Pedestrian Attribute Recognition</a></td><td><a href="https://arxiv.org/pdf/1603.07054.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>21</td><td>14</td><td>7</td><td>0</td><td>18</td><td>3</td></tr><tr><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td><td>fiw_300</td><td>300-W</td><td><a href="papers/013909077ad843eb6df7a3e8e290cfd5575999d2.html" target="_blank">A Semi-automatic Methodology for Facial Landmark Annotation</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>185</td><td>111</td><td>74</td><td>15</td><td>124</td><td>64</td></tr><tr><td>3b4ec8af470948a72a6ed37a9fd226719a874ebc</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/3b4ec8af470948a72a6ed37a9fd226719a874ebc.html" target="_blank">A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</a></td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Liu_A_Spatio-Temporal_Appearance_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>85</td><td>53</td><td>32</td><td>9</td><td>51</td><td>34</td></tr><tr><td>6403117f9c005ae81f1e8e6d1302f4a045e3d99d</td><td>alert_airport</td><td>ALERT Airport</td><td><a href="papers/6403117f9c005ae81f1e8e6d1302f4a045e3d99d.html" target="_blank">A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets.</a></td><td><a href="https://arxiv.org/pdf/1605.09653.pdf" target="_blank">[pdf]</a></td><td>IEEE transactions on pattern analysis and machine intelligence</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>15</td><td>7</td><td>8</td><td>1</td><td>10</td><td>5</td></tr><tr><td>7ace44190729927e5cb0dd5d363fcae966fe13f7</td><td>nudedetection</td><td>Nude Detection</td><td><a href="papers/7ace44190729927e5cb0dd5d363fcae966fe13f7.html" target="_blank">A bag-of-features approach based on Hue-SIFT descriptor for nude detection</a></td><td><a href="http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569191772.pdf" target="_blank">[pdf]</a></td><td>2009 17th European Signal Processing Conference</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>51</td><td>33</td><td>18</td><td>1</td><td>18</td><td>33</td></tr><tr><td>0d3bb75852098b25d90f31d2f48fd0cb4944702b</td><td>face_scrub</td><td>FaceScrub</td><td><a href="papers/0d3bb75852098b25d90f31d2f48fd0cb4944702b.html" target="_blank">A data-driven approach to cleaning large face datasets</a></td><td><a href="http://stefan.winkler.net/Publications/icip2014a.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE International Conference on Image Processing (ICIP)</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>123</td><td>66</td><td>57</td><td>4</td><td>96</td><td>27</td></tr><tr><td>b91f54e1581fbbf60392364323d00a0cd43e493c</td><td>bp4d_spontanous</td><td>BP4D-Spontanous</td><td><a href="papers/b91f54e1581fbbf60392364323d00a0cd43e493c.html" target="_blank">A high-resolution spontaneous 3D dynamic facial expression database</a></td><td><a href="http://www.csee.usf.edu/~scanavan/papers/FG2013.pdf" target="_blank">[pdf]</a></td><td>2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td>edu</td><td>SUNY Binghamton</td><td>United States</td><td>42.08779975</td><td>-75.97066066</td><td>52%</td><td>151</td><td>78</td><td>73</td><td>7</td><td>87</td><td>65</td></tr><tr><td>8b56e33f33e582f3e473dba573a16b598ed9bcdc</td><td>fei</td><td>FEI</td><td><a href="papers/8b56e33f33e582f3e473dba573a16b598ed9bcdc.html" target="_blank">A new ranking method for principal components analysis and its application to face image analysis</a></td><td><span class="gray">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>169</td><td>86</td><td>83</td><td>6</td><td>72</td><td>101</td></tr><tr><td>2624d84503bc2f8e190e061c5480b6aa4d89277a</td><td>afew_va</td><td>AFEW-VA</td><td><a href="papers/2624d84503bc2f8e190e061c5480b6aa4d89277a.html" target="_blank">AFEW-VA database for valence and arousal estimation in-the-wild</a></td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/afew-va.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>15</td><td>7</td><td>8</td><td>1</td><td>10</td><td>4</td></tr><tr><td>2ad0ee93d029e790ebb50574f403a09854b65b7e</td><td>yale_faces</td><td>YaleFaces</td><td><a href="papers/2ad0ee93d029e790ebb50574f403a09854b65b7e.html" target="_blank">Acquiring linear subspaces for face recognition under variable lighting</a></td><td><a href="http://vision.cornell.edu/se3/wp-content/uploads/2014/09/pami05.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>999</td><td>510</td><td>489</td><td>110</td><td>525</td><td>485</td></tr><tr><td>57fe081950f21ca03b5b375ae3e84b399c015861</td><td>cvc_01_barcelona</td><td>CVC-01</td><td><a href="papers/57fe081950f21ca03b5b375ae3e84b399c015861.html" target="_blank">Adaptive Image Sampling and Windows Classification for On – board Pedestrian Detection</a></td><td><a href="https://pdfs.semanticscholar.org/57fe/081950f21ca03b5b375ae3e84b399c015861.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>44</td><td>19</td><td>25</td><td>1</td><td>21</td><td>23</td></tr><tr><td>758d7e1be64cc668c59ef33ba8882c8597406e53</td><td>affectnet</td><td>AffectNet</td><td><a href="papers/758d7e1be64cc668c59ef33ba8882c8597406e53.html" target="_blank">AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild</a></td><td><a href="https://arxiv.org/pdf/1708.03985.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>38</td><td>22</td><td>16</td><td>1</td><td>26</td><td>11</td></tr><tr><td>47aeb3b82f54b5ae8142b4bdda7b614433e69b9a</td><td>am_fed</td><td>AM-FED</td><td><a href="papers/47aeb3b82f54b5ae8142b4bdda7b614433e69b9a.html" target="_blank">Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"</a></td><td><a href="http://affect.media.mit.edu/pdfs/13.McDuff-etal-AMFED.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>73</td><td>36</td><td>37</td><td>6</td><td>41</td><td>34</td></tr><tr><td>1be498d4bbc30c3bfd0029114c784bc2114d67c0</td><td>adience</td><td>Adience</td><td><a href="papers/1be498d4bbc30c3bfd0029114c784bc2114d67c0.html" target="_blank">Age and Gender Estimation of Unfiltered Faces</a></td><td><a href="http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Information Forensics and Security</td><td>edu</td><td>Open University of Israel</td><td>Israel</td><td>32.77824165</td><td>34.99565673</td><td>60%</td><td>168</td><td>101</td><td>67</td><td>5</td><td>94</td><td>78</td></tr><tr><td>6dcf418c778f528b5792104760f1fbfe90c6dd6a</td><td>agedb</td><td>AgeDB</td><td><a href="papers/6dcf418c778f528b5792104760f1fbfe90c6dd6a.html" target="_blank">AgeDB: The First Manually Collected, In-the-Wild Age Database</a></td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>91%</td><td>11</td><td>10</td><td>1</td><td>0</td><td>10</td><td>1</td></tr><tr><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td><td>aflw</td><td>AFLW</td><td><a href="papers/a74251efa970b92925b89eeef50a5e37d9281ad0.html" target="_blank">Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</a></td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/martin_koestinger-slides.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>292</td><td>175</td><td>117</td><td>37</td><td>212</td><td>84</td></tr><tr><td>2ce2560cf59db59ce313bbeb004e8ce55c5ce928</td><td>texas_3dfrd</td><td>Texas 3DFRD</td><td><a href="papers/2ce2560cf59db59ce313bbeb004e8ce55c5ce928.html" target="_blank">Anthropometric 3D Face Recognition</a></td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ijcv_june10.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>63%</td><td>90</td><td>57</td><td>33</td><td>5</td><td>60</td><td>31</td></tr><tr><td>0df0d1adea39a5bef318b74faa37de7f3e00b452</td><td>mpii_gaze</td><td>MPIIGaze</td><td><a href="papers/0df0d1adea39a5bef318b74faa37de7f3e00b452.html" target="_blank">Appearance-based gaze estimation in the wild</a></td><td><a href="https://arxiv.org/pdf/1504.02863.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>138</td><td>92</td><td>46</td><td>3</td><td>97</td><td>42</td></tr><tr><td>759a3b3821d9f0e08e0b0a62c8b693230afc3f8d</td><td>pubfig</td><td>PubFig</td><td><a href="papers/759a3b3821d9f0e08e0b0a62c8b693230afc3f8d.html" target="_blank">Attribute and simile classifiers for face verification</a></td><td><a href="http://acberg.com/papers/kbbn09iccv.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 12th International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>894</td><td>557</td><td>337</td><td>56</td><td>604</td><td>300</td></tr><tr><td>faf40ce28857aedf183e193486f5b4b0a8c478a2</td><td>iit_dehli_ear</td><td>IIT Dehli Ear</td><td><a href="papers/faf40ce28857aedf183e193486f5b4b0a8c478a2.html" target="_blank">Automated Human Identification Using Ear Imaging</a></td><td><a href="https://pdfs.semanticscholar.org/faf4/0ce28857aedf183e193486f5b4b0a8c478a2.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>70</td><td>38</td><td>32</td><td>6</td><td>28</td><td>42</td></tr><tr><td>2160788824c4c29ffe213b2cbeb3f52972d73f37</td><td>3d_rma</td><td>3D-RMA</td><td><a href="papers/2160788824c4c29ffe213b2cbeb3f52972d73f37.html" target="_blank">Automatic 3D face authentication</a></td><td><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.9190&rep=rep1&type=pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>95</td><td>45</td><td>50</td><td>8</td><td>61</td><td>35</td></tr><tr><td>213a579af9e4f57f071b884aa872651372b661fd</td><td>bbc_pose</td><td>BBC Pose</td><td><a href="papers/213a579af9e4f57f071b884aa872651372b661fd.html" target="_blank">Automatic and Efficient Human Pose Estimation for Sign Language Videos</a></td><td><a href="http://tomas.pfister.fi/files/charles13ijcv.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>76%</td><td>25</td><td>19</td><td>6</td><td>1</td><td>19</td><td>7</td></tr><tr><td>fcc6fe6007c322641796cb8792718641856a22a7</td><td>miw</td><td>MIW</td><td><a href="papers/fcc6fe6007c322641796cb8792718641856a22a7.html" target="_blank">Automatic facial makeup detection with application in face recognition</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td>2013 International Conference on Biometrics (ICB)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>78%</td><td>46</td><td>36</td><td>10</td><td>1</td><td>18</td><td>28</td></tr><tr><td>fcc6fe6007c322641796cb8792718641856a22a7</td><td>youtube_makeup</td><td>YMU</td><td><a href="papers/fcc6fe6007c322641796cb8792718641856a22a7.html" target="_blank">Automatic facial makeup detection with application in face recognition</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td>2013 International Conference on Biometrics (ICB)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>78%</td><td>46</td><td>36</td><td>10</td><td>1</td><td>18</td><td>28</td></tr><tr><td>0a85bdff552615643dd74646ac881862a7c7072d</td><td>pipa</td><td>PIPA</td><td><a href="papers/0a85bdff552615643dd74646ac881862a7c7072d.html" target="_blank">Beyond frontal faces: Improving Person Recognition using multiple cues</a></td><td><a href="https://arxiv.org/pdf/1501.05703.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>company</td><td>Facebook</td><td>United States</td><td>37.39367170</td><td>-122.08072620</td><td>74%</td><td>50</td><td>37</td><td>12</td><td>2</td><td>40</td><td>9</td></tr><tr><td>2acf7e58f0a526b957be2099c10aab693f795973</td><td>bosphorus</td><td>The Bosphorus</td><td><a href="papers/2acf7e58f0a526b957be2099c10aab693f795973.html" target="_blank">Bosphorus Database for 3D Face Analysis</a></td><td><a href="https://pdfs.semanticscholar.org/4254/fbba3846008f50671edc9cf70b99d7304543.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>328</td><td>165</td><td>163</td><td>19</td><td>149</td><td>183</td></tr><tr><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td><td>vmu</td><td>VMU</td><td><a href="papers/37d6f0eb074d207b53885bd2eb78ccc8a04be597.html" target="_blank">Can facial cosmetics affect the matching accuracy of face recognition systems?</a></td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>69%</td><td>49</td><td>34</td><td>15</td><td>0</td><td>18</td><td>31</td></tr><tr><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td><td>youtube_makeup</td><td>YMU</td><td><a href="papers/37d6f0eb074d207b53885bd2eb78ccc8a04be597.html" target="_blank">Can facial cosmetics affect the matching accuracy of face recognition systems?</a></td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>69%</td><td>49</td><td>34</td><td>15</td><td>0</td><td>18</td><td>31</td></tr><tr><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td><td>chalearn</td><td>ChaLearn</td><td><a href="papers/8d5998cd984e7cce307da7d46f155f9db99c6590.html" target="_blank">ChaLearn looking at people: A review of events and resources</a></td><td><a href="https://arxiv.org/pdf/1701.02664.pdf" target="_blank">[pdf]</a></td><td>2017 International Joint Conference on Neural Networks (IJCNN)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>10</td><td>5</td><td>5</td><td>1</td><td>6</td><td>4</td></tr><tr><td>2bf8541199728262f78d4dced6fb91479b39b738</td><td>clothing_co_parsing</td><td>CCP</td><td><a href="papers/2bf8541199728262f78d4dced6fb91479b39b738.html" target="_blank">Clothing Co-parsing by Joint Image Segmentation and Labeling</a></td><td><a href="https://arxiv.org/pdf/1502.00739.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>60</td><td>42</td><td>18</td><td>0</td><td>38</td><td>24</td></tr><tr><td>22ad2c8c0f4d6aa4328b38d894b814ec22579761</td><td>gallagher</td><td>Gallagher</td><td><a href="papers/22ad2c8c0f4d6aa4328b38d894b814ec22579761.html" target="_blank">Clothing cosegmentation for recognizing people</a></td><td><a href="http://amp.ece.cmu.edu/people/Andy/Andy_files/2670CVPR08Gallagher.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>58%</td><td>177</td><td>103</td><td>74</td><td>7</td><td>101</td><td>84</td></tr><tr><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td><td>leeds_sports_pose</td><td>Leeds Sports Pose</td><td><a href="papers/4b1d23d17476fcf78f4cbadf69fb130b1aa627c0.html" target="_blank">Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</a></td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>278</td><td>182</td><td>96</td><td>13</td><td>208</td><td>78</td></tr><tr><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td><td>stickmen_buffy</td><td>Buffy Stickmen</td><td><a href="papers/4b1d23d17476fcf78f4cbadf69fb130b1aa627c0.html" target="_blank">Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</a></td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>278</td><td>182</td><td>96</td><td>13</td><td>208</td><td>78</td></tr><tr><td>45c31cde87258414f33412b3b12fc5bec7cb3ba9</td><td>jaffe</td><td>JAFFE</td><td><a href="papers/45c31cde87258414f33412b3b12fc5bec7cb3ba9.html" target="_blank">Coding Facial Expressions with Gabor Wavelets</a></td><td><a href="https://pdfs.semanticscholar.org/45c3/1cde87258414f33412b3b12fc5bec7cb3ba9.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>848</td><td>464</td><td>384</td><td>55</td><td>420</td><td>433</td></tr><tr><td>b1f4423c227fa37b9680787be38857069247a307</td><td>afew_va</td><td>AFEW-VA</td><td><a href="papers/b1f4423c227fa37b9680787be38857069247a307.html" target="_blank">Collecting Large, Richly Annotated Facial-Expression Databases from Movies</a></td><td><a href="http://users.cecs.anu.edu.au/~adhall/Dhall_Goecke_Lucey_Gedeon_M_2012.pdf" target="_blank">[pdf]</a></td><td>IEEE MultiMedia</td><td>edu</td><td>Australian National University</td><td>Australia</td><td>-35.27769990</td><td>149.11852700</td><td>61%</td><td>182</td><td>111</td><td>71</td><td>8</td><td>86</td><td>99</td></tr><tr><td>7f4040b482d16354d5938c1d1b926b544652bf5b</td><td>nova_emotions</td><td>Novaemötions Dataset</td><td><a href="papers/7f4040b482d16354d5938c1d1b926b544652bf5b.html" target="_blank">Competitive affective gaming: winning with a smile</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Universidade NOVA de Lisboa, Caparica, Portugal</td><td>Portugal</td><td>38.66096400</td><td>-9.20581300</td><td>75%</td><td>8</td><td>6</td><td>2</td><td>0</td><td>4</td><td>4</td></tr><tr><td>079a0a3bf5200994e1f972b1b9197bf2f90e87d4</td><td>mit_cbcl</td><td>MIT CBCL</td><td><a href="papers/079a0a3bf5200994e1f972b1b9197bf2f90e87d4.html" target="_blank">Component-Based Face Recognition with 3D Morphable Models</a></td><td><a href="http://cbcl.mit.edu/cbcl/publications/theses/thesis-huang.pdf" target="_blank">[pdf]</a></td><td>2004 Conference on Computer Vision and Pattern Recognition Workshop</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>12</td><td>6</td><td>6</td><td>0</td><td>8</td><td>4</td></tr><tr><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td><td>cohn_kanade</td><td>CK</td><td><a href="papers/23fc83c8cfff14a16df7ca497661264fc54ed746.html" target="_blank">Comprehensive Database for Facial Expression Analysis</a></td><td><a href="https://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>999</td><td>532</td><td>467</td><td>75</td><td>572</td><td>439</td></tr><tr><td>09d78009687bec46e70efcf39d4612822e61cb8c</td><td>raid</td><td>RAiD</td><td><a href="papers/09d78009687bec46e70efcf39d4612822e61cb8c.html" target="_blank">Consistent Re-identification in a Camera Network</a></td><td><a href="http://cs-people.bu.edu/dasabir/papers/ECCV14_Poster.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>45</td><td>24</td><td>21</td><td>7</td><td>34</td><td>11</td></tr><tr><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td><td>casablanca</td><td>Casablanca</td><td><a href="papers/0ceda9dae8b9f322df65ca2ef02caca9758aec6f.html" target="_blank">Context-Aware CNNs for Person Head Detection</a></td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>27</td><td>15</td><td>12</td><td>1</td><td>23</td><td>5</td></tr><tr><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td><td>hollywood_headset</td><td>HollywoodHeads</td><td><a href="papers/0ceda9dae8b9f322df65ca2ef02caca9758aec6f.html" target="_blank">Context-Aware CNNs for Person Head Detection</a></td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>27</td><td>15</td><td>12</td><td>1</td><td>23</td><td>5</td></tr><tr><td>c06b13d0ec3f5c43e2782cd22542588e233733c3</td><td>nova_emotions</td><td>Novaemötions Dataset</td><td><a href="papers/c06b13d0ec3f5c43e2782cd22542588e233733c3.html" target="_blank">Crowdsourcing facial expressions for affective-interaction</a></td><td><span class="gray">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td></tr><tr><td>8355d095d3534ef511a9af68a3b2893339e3f96b</td><td>imdb_wiki</td><td>IMDB</td><td><a href="papers/8355d095d3534ef511a9af68a3b2893339e3f96b.html" target="_blank">DEX: Deep EXpectation of Apparent Age from a Single Image</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Rothe_DEX_Deep_EXpectation_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision Workshop (ICCVW)</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>120</td><td>71</td><td>49</td><td>5</td><td>74</td><td>47</td></tr><tr><td>5a5f0287484f0d480fed1ce585dbf729586f0edc</td><td>disfa</td><td>DISFA</td><td><a href="papers/5a5f0287484f0d480fed1ce585dbf729586f0edc.html" target="_blank">DISFA: A Spontaneous Facial Action Intensity Database</a></td><td><a href="http://mohammadmahoor.com/wp-content/uploads/2017/06/DiSFA_Paper_andAppendix_Final_OneColumn1-1.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Affective Computing</td><td>edu</td><td>University of Denver</td><td>United States</td><td>39.67665410</td><td>-104.96220300</td><td>51%</td><td>190</td><td>96</td><td>94</td><td>19</td><td>100</td><td>91</td></tr><tr><td>10195a163ab6348eef37213a46f60a3d87f289c5</td><td>imdb_wiki</td><td>IMDB</td><td><a href="papers/10195a163ab6348eef37213a46f60a3d87f289c5.html" target="_blank">Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks</a></td><td><a href="http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>ETH Zurich</td><td>Switzerland</td><td>47.37631300</td><td>8.54766990</td><td>55%</td><td>133</td><td>73</td><td>60</td><td>13</td><td>94</td><td>41</td></tr><tr><td>162ea969d1929ed180cc6de9f0bf116993ff6e06</td><td>vgg_faces</td><td>VGG Face</td><td><a href="papers/162ea969d1929ed180cc6de9f0bf116993ff6e06.html" target="_blank">Deep Face Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>999</td><td>550</td><td>449</td><td>70</td><td>635</td><td>370</td></tr><tr><td>6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4</td><td>celeba</td><td>CelebA</td><td><a href="papers/6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4.html" target="_blank">Deep Learning Face Attributes in the Wild</a></td><td><a href="https://arxiv.org/pdf/1411.7766.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td>edu</td><td>Chinese University of Hong Kong</td><td>China</td><td>22.41626320</td><td>114.21093180</td><td>52%</td><td>808</td><td>424</td><td>383</td><td>68</td><td>670</td><td>118</td></tr><tr><td>177bc509dd0c7b8d388bb47403f28d6228c14b5c</td><td>celeba_plus</td><td>CelebFaces+</td><td><a href="papers/177bc509dd0c7b8d388bb47403f28d6228c14b5c.html" target="_blank">Deep Learning Face Representation from Predicting 10,000 Classes</a></td><td><a href="http://mmlab.ie.cuhk.edu.hk/pdf/YiSun_CVPR14.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>660</td><td>405</td><td>255</td><td>25</td><td>340</td><td>330</td></tr><tr><td>18010284894ed0edcca74e5bf768ee2e15ef7841</td><td>deep_fashion</td><td>DeepFashion</td><td><a href="papers/18010284894ed0edcca74e5bf768ee2e15ef7841.html" target="_blank">DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~lz013/papers/deepfashion_poster.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>150</td><td>97</td><td>53</td><td>4</td><td>111</td><td>38</td></tr><tr><td>6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3</td><td>cuhk03</td><td>CUHK03</td><td><a href="papers/6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3.html" target="_blank">DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>512</td><td>306</td><td>206</td><td>29</td><td>324</td><td>180</td></tr><tr><td>13f06b08f371ba8b5d31c3e288b4deb61335b462</td><td>eth_andreas_ess</td><td>ETHZ Pedestrian</td><td><a href="papers/13f06b08f371ba8b5d31c3e288b4deb61335b462.html" target="_blank">Depth and Appearance for Mobile Scene Analysis</a></td><td><a href="http://www.mmp.rwth-aachen.de/publications/pdf/ess-depthandappearance-iccv07-poster.pdf" target="_blank">[pdf]</a></td><td>2007 IEEE 11th International Conference on Computer Vision</td><td>edu</td><td>ETH Zurich</td><td>Switzerland</td><td>47.37631300</td><td>8.54766990</td><td>56%</td><td>319</td><td>179</td><td>140</td><td>27</td><td>195</td><td>127</td></tr><tr><td>4946ba10a4d5a7d0a38372f23e6622bd347ae273</td><td>coco_action</td><td>COCO-a</td><td><a href="papers/4946ba10a4d5a7d0a38372f23e6622bd347ae273.html" target="_blank">Describing Common Human Visual Actions in Images</a></td><td><a href="https://arxiv.org/pdf/1506.02203.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>26</td><td>15</td><td>11</td><td>0</td><td>25</td><td>1</td></tr><tr><td>2e384f057211426ac5922f1b33d2aa8df5d51f57</td><td>a_pascal_yahoo</td><td>aPascal</td><td><a href="papers/2e384f057211426ac5922f1b33d2aa8df5d51f57.html" target="_blank">Describing objects by their attributes</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0468.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>University of Illinois, Urbana-Champaign</td><td>United States</td><td>40.11116745</td><td>-88.22587665</td><td>58%</td><td>999</td><td>575</td><td>423</td><td>74</td><td>738</td><td>264</td></tr><tr><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td><td>berkeley_pose</td><td>BPAD</td><td><a href="papers/7808937b46acad36e43c30ae4e9f3fd57462853d.html" target="_blank">Describing people: A poselet-based approach to attribute classification</a></td><td><a href="http://ttic.uchicago.edu/~smaji/papers/attributes-iccv11.pdf" target="_blank">[pdf]</a></td><td>2011 International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>221</td><td>125</td><td>96</td><td>14</td><td>165</td><td>59</td></tr><tr><td>d3200d49a19a4a4e4e9745ee39649b65d80c834b</td><td>scut_head</td><td>SCUT HEAD</td><td><a href="papers/d3200d49a19a4a4e4e9745ee39649b65d80c834b.html" target="_blank">Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</a></td><td><a href="https://arxiv.org/pdf/1803.09256.pdf" target="_blank">[pdf]</a></td><td>2018 24th International Conference on Pattern Recognition (ICPR)</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td><td>cmdp</td><td>CMDP</td><td><a href="papers/56ae6d94fc6097ec4ca861f0daa87941d1c10b70.html" target="_blank">Distance Estimation of an Unknown Person from a Portrait</a></td><td><a href="https://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>9</td><td>4</td><td>5</td><td>0</td><td>6</td><td>3</td></tr><tr><td>84fe5b4ac805af63206012d29523a1e033bc827e</td><td>awe_ears</td><td>AWE Ears</td><td><a href="papers/84fe5b4ac805af63206012d29523a1e033bc827e.html" target="_blank">Ear Recognition: More Than a Survey</a></td><td><a href="https://arxiv.org/pdf/1611.06203.pdf" target="_blank">[pdf]</a></td><td>Neurocomputing</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>24</td><td>17</td><td>7</td><td>0</td><td>11</td><td>13</td></tr><tr><td>133f01aec1534604d184d56de866a4bd531dac87</td><td>lfw_a</td><td>LFW-a</td><td><a href="papers/133f01aec1534604d184d56de866a4bd531dac87.html" target="_blank">Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</a></td><td><a href="http://www.cs.tau.ac.il/~wolf/papers/jpatchlbp.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>177</td><td>101</td><td>76</td><td>15</td><td>104</td><td>75</td></tr><tr><td>c900e0ad4c95948baaf0acd8449fde26f9b4952a</td><td>emotio_net</td><td>EmotioNet Database</td><td><a href="papers/c900e0ad4c95948baaf0acd8449fde26f9b4952a.html" target="_blank">EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</a></td><td><a href="http://cbcsl.ece.ohio-state.edu/cvpr16.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>72</td><td>41</td><td>31</td><td>7</td><td>54</td><td>17</td></tr><tr><td>2161f6b7ee3c0acc81603b01dc0df689683577b9</td><td>large_scale_person_search</td><td>Large Scale Person Search</td><td><a href="papers/2161f6b7ee3c0acc81603b01dc0df689683577b9.html" target="_blank">End-to-End Deep Learning for Person Search</a></td><td><a href="https://pdfs.semanticscholar.org/2161/f6b7ee3c0acc81603b01dc0df689683577b9.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>41</td><td>22</td><td>19</td><td>2</td><td>27</td><td>12</td></tr><tr><td>6273b3491e94ea4dd1ce42b791d77bdc96ee73a8</td><td>viper</td><td>VIPeR</td><td><a href="papers/6273b3491e94ea4dd1ce42b791d77bdc96ee73a8.html" target="_blank">Evaluating Appearance Models for Recognition, Reacquisition, and Tracking</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>584</td><td>335</td><td>249</td><td>38</td><td>338</td><td>245</td></tr><tr><td>2258e01865367018ed6f4262c880df85b94959f8</td><td>mot</td><td>MOT</td><td><a href="papers/2258e01865367018ed6f4262c880df85b94959f8.html" target="_blank">Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</a></td><td><a href="https://pdfs.semanticscholar.org/2e0b/00f4043e2d4b04c59c88bb54bcd907d0dcd4.pdf" target="_blank">[pdf]</a></td><td>EURASIP J. Image and Video Processing</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>586</td><td>296</td><td>288</td><td>48</td><td>345</td><td>244</td></tr><tr><td>9e5378e7b336c89735d3bb15cf67eff96f86d39a</td><td>precarious</td><td>Precarious</td><td><a href="papers/9e5378e7b336c89735d3bb15cf67eff96f86d39a.html" target="_blank">Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters</a></td><td><a href="https://arxiv.org/pdf/1703.06283.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>17%</td><td>12</td><td>2</td><td>10</td><td>1</td><td>11</td><td>1</td></tr><tr><td>35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62</td><td>coco_qa</td><td>COCO QA</td><td><a href="papers/35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62.html" target="_blank">Exploring Models and Data for Image Question Answering</a></td><td><a href="https://arxiv.org/pdf/1505.02074.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>191</td><td>116</td><td>75</td><td>12</td><td>165</td><td>27</td></tr><tr><td>75da1df4ed319926c544eefe17ec8d720feef8c0</td><td>fddb</td><td>FDDB</td><td><a href="papers/75da1df4ed319926c544eefe17ec8d720feef8c0.html" target="_blank">FDDB: A benchmark for face detection in unconstrained settings</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td></tr><tr><td>31de9b3dd6106ce6eec9a35991b2b9083395fd0b</td><td>feret</td><td>FERET</td><td><a href="papers/31de9b3dd6106ce6eec9a35991b2b9083395fd0b.html" target="_blank">FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</a></td><td><a href="https://pdfs.semanticscholar.org/31de/9b3dd6106ce6eec9a35991b2b9083395fd0b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>82</td><td>38</td><td>44</td><td>5</td><td>62</td><td>20</td></tr><tr><td>0e986f51fe45b00633de9fd0c94d082d2be51406</td><td>afw</td><td>AFW</td><td><a href="papers/0e986f51fe45b00633de9fd0c94d082d2be51406.html" target="_blank">Face detection, pose estimation, and landmark localization in the wild</a></td><td><a href="http://crcv.ucf.edu/courses/CAP6412/Spring2013/papers/zhu-ramanan-face-cvpr12.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>999</td><td>623</td><td>376</td><td>59</td><td>622</td><td>387</td></tr><tr><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td><td>youtube_faces</td><td>YouTubeFaces</td><td><a href="papers/560e0e58d0059259ddf86fcec1fa7975dee6a868.html" target="_blank">Face recognition in unconstrained videos with matched background similarity</a></td><td><a href="http://www.cs.tau.ac.il/thesis/thesis/Maoz.Itay-MSc.Thesis.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>Tel Aviv University</td><td>Israel</td><td>32.11198890</td><td>34.80459702</td><td>62%</td><td>485</td><td>299</td><td>185</td><td>30</td><td>298</td><td>193</td></tr><tr><td>670637d0303a863c1548d5b19f705860a23e285c</td><td>face_tracer</td><td>FaceTracer</td><td><a href="papers/670637d0303a863c1548d5b19f705860a23e285c.html" target="_blank">Face swapping: automatically replacing faces in photographs</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>4c170a0dcc8de75587dae21ca508dab2f9343974</td><td>face_tracer</td><td>FaceTracer</td><td><a href="papers/4c170a0dcc8de75587dae21ca508dab2f9343974.html" target="_blank">FaceTracer: A Search Engine for Large Collections of Images with Faces</a></td><td><a href="https://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>218</td><td>126</td><td>91</td><td>17</td><td>152</td><td>71</td></tr><tr><td>7ebb153704706e457ab57b432793d2b6e5d12592</td><td>vgg_celebs_in_places</td><td>CIP</td><td><a href="papers/7ebb153704706e457ab57b432793d2b6e5d12592.html" target="_blank">Faces in Places: compound query retrieval</a></td><td><a href="https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>80%</td><td>5</td><td>4</td><td>1</td><td>0</td><td>4</td><td>1</td></tr><tr><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td><td>mafl</td><td>MAFL</td><td><a href="papers/8a3c5507237957d013a0fe0f082cab7f757af6ee.html" target="_blank">Facial Landmark Detection by Deep Multi-task Learning</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>383</td><td>233</td><td>150</td><td>25</td><td>265</td><td>121</td></tr><tr><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td><td>mtfl</td><td>MTFL</td><td><a href="papers/8a3c5507237957d013a0fe0f082cab7f757af6ee.html" target="_blank">Facial Landmark Detection by Deep Multi-task Learning</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>383</td><td>233</td><td>150</td><td>25</td><td>265</td><td>121</td></tr><tr><td>014b8df0180f33b9fea98f34ae611c6447d761d2</td><td>buhmap_db</td><td>BUHMAP-DB</td><td><a href="papers/014b8df0180f33b9fea98f34ae611c6447d761d2.html" target="_blank">Facial feature tracking and expression recognition for sign language</a></td><td><a href="https://www.cmpe.boun.edu.tr/~ari/files/ari2008iscis.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 17th Signal Processing and Communications Applications Conference</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>25</td><td>15</td><td>10</td><td>1</td><td>11</td><td>15</td></tr><tr><td>4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7</td><td>deep_fashion</td><td>DeepFashion</td><td><a href="papers/4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7.html" target="_blank">Fashion Landmark Detection in the Wild</a></td><td><a href="https://arxiv.org/pdf/1608.03049.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>17</td><td>9</td></tr><tr><td>45e616093a92e5f1e61a7c6037d5f637aa8964af</td><td>malf</td><td>MALF</td><td><a href="papers/45e616093a92e5f1e61a7c6037d5f637aa8964af.html" target="_blank">Fine-grained evaluation on face detection in the wild</a></td><td><a href="http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf" target="_blank">[pdf]</a></td><td>2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>17</td><td>12</td><td>5</td><td>0</td><td>13</td><td>4</td></tr><tr><td>1aad2da473888cb7ebc1bfaa15bfa0f1502ce005</td><td>jpl_pose</td><td>JPL-Interaction dataset</td><td><a href="papers/1aad2da473888cb7ebc1bfaa15bfa0f1502ce005.html" target="_blank">First-Person Activity Recognition: What Are They Doing to Me?</a></td><td><a href="http://michaelryoo.com/papers/cvpr2013_ryoo.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>148</td><td>103</td><td>45</td><td>8</td><td>111</td><td>38</td></tr><tr><td>774cbb45968607a027ae4729077734db000a1ec5</td><td>urban_tribes</td><td>Urban Tribes</td><td><a href="papers/774cbb45968607a027ae4729077734db000a1ec5.html" target="_blank">From Bikers to Surfers: Visual Recognition of Urban Tribes</a></td><td><a href="https://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>17</td><td>11</td><td>6</td><td>1</td><td>12</td><td>5</td></tr><tr><td>22f656d0f8426c84a33a267977f511f127bfd7f3</td><td>expw</td><td>ExpW</td><td><a href="papers/22f656d0f8426c84a33a267977f511f127bfd7f3.html" target="_blank">From Facial Expression Recognition to Interpersonal Relation Prediction</a></td><td><a href="https://arxiv.org/pdf/1609.06426.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>78%</td><td>9</td><td>7</td><td>2</td><td>0</td><td>5</td><td>4</td></tr><tr><td>18c72175ddbb7d5956d180b65a96005c100f6014</td><td>yale_faces</td><td>YaleFaces</td><td><a href="papers/18c72175ddbb7d5956d180b65a96005c100f6014.html" target="_blank">From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</a></td><td><a href="https://pdfs.semanticscholar.org/97bb/c2b439a79d4dc0dc7199d71ed96ad5e3fd0e.pdf" target="_blank">[pdf]</a></td><td>IEEE Trans. Pattern Anal. Mach. Intell.</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>999</td><td>528</td><td>471</td><td>77</td><td>551</td><td>459</td></tr><tr><td>06f02199690961ba52997cde1527e714d2b3bf8f</td><td>columbia_gaze</td><td>Columbia Gaze</td><td><a href="papers/06f02199690961ba52997cde1527e714d2b3bf8f.html" target="_blank">Gaze locking: passive eye contact detection for human-object interaction</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Columbia University</td><td>United States</td><td>40.84198360</td><td>-73.94368971</td><td>66%</td><td>80</td><td>53</td><td>27</td><td>0</td><td>49</td><td>35</td></tr><tr><td>18858cc936947fc96b5c06bbe3c6c2faa5614540</td><td>pilot_parliament</td><td>PPB</td><td><a href="papers/18858cc936947fc96b5c06bbe3c6c2faa5614540.html" target="_blank">Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification</a></td><td><a href="https://pdfs.semanticscholar.org/03c1/fc9c3339813ed81ad0de540132f9f695a0f8.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>55</td><td>29</td><td>26</td><td>0</td><td>47</td><td>7</td></tr><tr><td>2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d.html" target="_blank">Genealogical face recognition based on UB KinFace database</a></td><td><span class="gray">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>SUNY Buffalo</td><td>United States</td><td>42.93362780</td><td>-78.88394479</td><td>47%</td><td>30</td><td>14</td><td>16</td><td>1</td><td>10</td><td>21</td></tr><tr><td>2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9.html" target="_blank">Generic object recognition with boosting</a></td><td><a href="http://www.cse.unr.edu/~bebis/CS773C/ObjectRecognition/Papers/Opelt06.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>TU Graz</td><td>Austria</td><td>47.07071400</td><td>15.43950400</td><td>49%</td><td>286</td><td>141</td><td>145</td><td>16</td><td>193</td><td>97</td></tr><tr><td>17b46e2dad927836c689d6787ddb3387c6159ece</td><td>geofaces</td><td>GeoFaces</td><td><a href="papers/17b46e2dad927836c689d6787ddb3387c6159ece.html" target="_blank">GeoFaceExplorer: exploring the geo-dependence of facial attributes</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>2</td><td>2</td><td>0</td><td>0</td><td>1</td><td>1</td></tr><tr><td>bd88bb2e4f351352d88ee7375af834360e223498</td><td>hda_plus</td><td>HDA+</td><td><a href="papers/bd88bb2e4f351352d88ee7375af834360e223498.html" target="_blank">HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance</a></td><td><a href="https://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>2</td><td>0</td><td>2</td><td>0</td><td>1</td><td>2</td></tr><tr><td>a8d0b149c2eadaa02204d3e4356fbc8eccf3b315</td><td>hi4d_adsip</td><td>Hi4D-ADSIP</td><td><a href="papers/a8d0b149c2eadaa02204d3e4356fbc8eccf3b315.html" target="_blank">Hi4D-ADSIP 3-D dynamic facial articulation database</a></td><td><span class="gray">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>18</td><td>11</td><td>7</td><td>1</td><td>7</td><td>11</td></tr><tr><td>a5a3bc3e5e9753769163cb30b16dbd12e266b93e</td><td>mcgill</td><td>McGill Real World</td><td><a href="papers/a5a3bc3e5e9753769163cb30b16dbd12e266b93e.html" target="_blank">Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos</a></td><td><span class="gray">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>8</td><td>5</td><td>3</td><td>1</td><td>5</td><td>3</td></tr><tr><td>3cd40bfa1ff193a96bde0207e5140a399476466c</td><td>tvhi</td><td>TVHI</td><td><a href="papers/3cd40bfa1ff193a96bde0207e5140a399476466c.html" target="_blank">High Five: Recognising human interactions in TV shows</a></td><td><a href="https://pdfs.semanticscholar.org/3cd4/0bfa1ff193a96bde0207e5140a399476466c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>91</td><td>47</td><td>44</td><td>11</td><td>64</td><td>27</td></tr><tr><td>04c2cda00e5536f4b1508cbd80041e9552880e67</td><td>hipsterwars</td><td>Hipsterwars</td><td><a href="papers/04c2cda00e5536f4b1508cbd80041e9552880e67.html" target="_blank">Hipster wars: Discovering elements of fashion styles</a></td><td><a href="http://acberg.com/papers/hipster_eccv14.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>68%</td><td>91</td><td>62</td><td>29</td><td>5</td><td>61</td><td>29</td></tr><tr><td>10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5</td><td>inria_person</td><td>INRIA Pedestrian</td><td><a href="papers/10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5.html" target="_blank">Histograms of oriented gradients for human detection</a></td><td><a href="http://courses.cs.washington.edu/courses/cse576/12sp/notes/CVPR2005_HOG.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td>edu</td><td>INRIA Rhone-Alps, Montbonnot, France</td><td>France</td><td>45.21788600</td><td>5.80736900</td><td>57%</td><td>999</td><td>565</td><td>434</td><td>67</td><td>537</td><td>477</td></tr><tr><td>041d3eedf5e45ce5c5229f0181c5c576ed1fafd6</td><td>ucf_selfie</td><td>UCF Selfie</td><td><a href="papers/041d3eedf5e45ce5c5229f0181c5c576ed1fafd6.html" target="_blank">How to Take a Good Selfie?</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>9</td><td>6</td><td>3</td><td>0</td><td>6</td><td>4</td></tr><tr><td>44d23df380af207f5ac5b41459c722c87283e1eb</td><td>wider_attribute</td><td>WIDER Attribute</td><td><a href="papers/44d23df380af207f5ac5b41459c722c87283e1eb.html" target="_blank">Human Attribute Recognition by Deep Hierarchical Contexts</a></td><td><a href="https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>78%</td><td>18</td><td>14</td><td>4</td><td>0</td><td>16</td><td>2</td></tr><tr><td>44484d2866f222bbb9b6b0870890f9eea1ffb2d0</td><td>cuhk01</td><td>CUHK01</td><td><a href="papers/44484d2866f222bbb9b6b0870890f9eea1ffb2d0.html" target="_blank">Human Reidentification with Transferred Metric Learning</a></td><td><a href="https://pdfs.semanticscholar.org/4448/4d2866f222bbb9b6b0870890f9eea1ffb2d0.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>258</td><td>161</td><td>97</td><td>12</td><td>142</td><td>115</td></tr><tr><td>57178b36c21fd7f4529ac6748614bb3374714e91</td><td>ijb_c</td><td>IJB-C</td><td><a href="papers/57178b36c21fd7f4529ac6748614bb3374714e91.html" target="_blank">IARPA Janus Benchmark - C: Face Dataset and Protocol</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Mazeetal_IARPAJanusBenchmarkCFaceDatasetAndProtocol_ICB2018.pdf" target="_blank">[pdf]</a></td><td>2018 International Conference on Biometrics (ICB)</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>9</td><td>3</td><td>6</td><td>2</td><td>9</td><td>0</td></tr><tr><td>0cb2dd5f178e3a297a0c33068961018659d0f443</td><td>ijb_c</td><td>IJB-B</td><td><a href="papers/0cb2dd5f178e3a297a0c33068961018659d0f443.html" target="_blank">IARPA Janus Benchmark-B Face Dataset</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Whitelametal_IARPAJanusBenchmark-BFaceDataset_CVPRW17.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td>edu</td><td>Michigan State University</td><td>United States</td><td>42.71856800</td><td>-84.47791571</td><td>28%</td><td>25</td><td>7</td><td>18</td><td>6</td><td>21</td><td>4</td></tr><tr><td>0297448f3ed948e136bb06ceff10eccb34e5bb77</td><td>ilids_mcts</td><td>i-LIDS</td><td><a href="papers/0297448f3ed948e136bb06ceff10eccb34e5bb77.html" target="_blank">Imagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems</a></td><td><span class="gray">[pdf]</a></td><td>Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology</td><td></td><td></td><td></td><td></td><td></td><td>41%</td><td>32</td><td>13</td><td>19</td><td>2</td><td>18</td><td>15</td></tr><tr><td>55c40cbcf49a0225e72d911d762c27bb1c2d14aa</td><td>ifad</td><td>IFAD</td><td><a href="papers/55c40cbcf49a0225e72d911d762c27bb1c2d14aa.html" target="_blank">Indian Face Age Database : A Database for Face Recognition with Age Variation</a></td><td><a href="https://pdfs.semanticscholar.org/55c4/0cbcf49a0225e72d911d762c27bb1c2d14aa.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>ca3e88d87e1344d076c964ea89d91a75c417f5ee</td><td>imfdb</td><td>IMFDB</td><td><a href="papers/ca3e88d87e1344d076c964ea89d91a75c417f5ee.html" target="_blank">Indian Movie Face Database: A benchmark for face recognition under wide variations</a></td><td><a href="http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/papers/Shankar2013Indian.pdf" target="_blank">[pdf]</a></td><td>2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)</td><td>edu</td><td>India</td><td></td><td>20.59368400</td><td>78.96288000</td><td>80%</td><td>15</td><td>12</td><td>3</td><td>0</td><td>10</td><td>5</td></tr><tr><td>95f12d27c3b4914e0668a268360948bce92f7db3</td><td>helen</td><td>Helen</td><td><a href="papers/95f12d27c3b4914e0668a268360948bce92f7db3.html" target="_blank">Interactive Facial Feature Localization</a></td><td><a href="https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>company</td><td>Facebook</td><td>United States</td><td>37.39367170</td><td>-122.08072620</td><td>59%</td><td>339</td><td>201</td><td>138</td><td>29</td><td>219</td><td>129</td></tr><tr><td>ad01687649d95cd5b56d7399a9603c4b8e2217d7</td><td>mrp_drone</td><td>MRP Drone</td><td><a href="papers/ad01687649d95cd5b56d7399a9603c4b8e2217d7.html" target="_blank">Investigating Open-World Person Re-identification Using a Drone</a></td><td><a href="https://pdfs.semanticscholar.org/ad01/687649d95cd5b56d7399a9603c4b8e2217d7.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>5</td><td>2</td><td>3</td><td>0</td><td>3</td><td>2</td></tr><tr><td>2f43b614607163abf41dfe5d17ef6749a1b61304</td><td>hrt_transgender</td><td>HRT Transgender</td><td><a href="papers/2f43b614607163abf41dfe5d17ef6749a1b61304.html" target="_blank">Investigating the Periocular-Based Face Recognition Across Gender Transformation</a></td><td><span class="gray">[pdf]</a></td><td>IEEE Transactions on Information Forensics and Security</td><td>edu</td><td>University of North Carolina at Wilmington</td><td>United States</td><td>34.22498270</td><td>-77.86907744</td><td>77%</td><td>13</td><td>10</td><td>3</td><td>0</td><td>6</td><td>8</td></tr><tr><td>066d71fcd997033dce4ca58df924397dfe0b5fd1</td><td>ifdb</td><td>IFDB</td><td><a href="papers/066d71fcd997033dce4ca58df924397dfe0b5fd1.html" target="_blank">Iranian Face Database and Evaluation with a New Detection Algorithm</a></td><td><a href="https://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>b71d1aa90dcbe3638888725314c0d56640c1fef1</td><td>ifdb</td><td>IFDB</td><td><a href="papers/b71d1aa90dcbe3638888725314c0d56640c1fef1.html" target="_blank">Iranian Face Database with age, pose and expression</a></td><td><a href="http://www.iranprc.org/pdf/paper/2007-02.pdf" target="_blank">[pdf]</a></td><td>2007 International Conference on Machine Vision</td><td>edu</td><td>Islamic Azad University</td><td>Iran</td><td>34.84529990</td><td>48.55962120</td><td>50%</td><td>20</td><td>10</td><td>10</td><td>2</td><td>12</td><td>9</td></tr><tr><td>137aa2f891d474fce1e7a1d1e9b3aefe21e22b34</td><td>hrt_transgender</td><td>HRT Transgender</td><td><a href="papers/137aa2f891d474fce1e7a1d1e9b3aefe21e22b34.html" target="_blank">Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset</a></td><td><a href="http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%20139/PID2859389.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>7</td><td>5</td><td>2</td><td>1</td><td>3</td><td>5</td></tr><tr><td>0b440695c822a8e35184fb2f60dcdaa8a6de84ae</td><td>kinectface</td><td>KinectFaceDB</td><td><a href="papers/0b440695c822a8e35184fb2f60dcdaa8a6de84ae.html" target="_blank">KinectFaceDB: A Kinect Database for Face Recognition</a></td><td><a href="http://www.eurecom.fr/fr/publication/4393/download/mm-publi-4393.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Systems, Man, and Cybernetics: Systems</td><td>edu</td><td>University of North Carolina at Chapel Hill</td><td>United States</td><td>35.91139710</td><td>-79.05045290</td><td>64%</td><td>75</td><td>48</td><td>27</td><td>6</td><td>26</td><td>50</td></tr><tr><td>4793f11fbca4a7dba898b9fff68f70d868e2497c</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/4793f11fbca4a7dba898b9fff68f70d868e2497c.html" target="_blank">Kinship verification through transfer learning</a></td><td><a href="http://ijcai.org/Proceedings/11/Papers/422.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>71</td><td>43</td><td>28</td><td>2</td><td>29</td><td>43</td></tr><tr><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td><td>lfw</td><td>LFW</td><td><a href="papers/370b5757a5379b15e30d619e4d3fb9e8e13f3256.html" target="_blank">Labeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments</a></td><td><a href="https://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>999</td><td>591</td><td>406</td><td>71</td><td>639</td><td>371</td></tr><tr><td>7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22</td><td>lfw</td><td>LFW</td><td><a href="papers/7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22.html" target="_blank">Labeled Faces in the Wild : A Survey</a></td><td><a href="https://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Stevens Institute of Technology</td><td>United States</td><td>40.74225200</td><td>-74.02709490</td><td>47%</td><td>99</td><td>47</td><td>52</td><td>8</td><td>63</td><td>36</td></tr><tr><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td><td>lfw</td><td>LFW</td><td><a href="papers/2d3482dcff69c7417c7b933f22de606a0e8e42d4.html" target="_blank">Labeled Faces in the Wild : Updates and New Reporting Procedures</a></td><td><a href="https://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Massachusetts</td><td>United States</td><td>42.38897850</td><td>-72.52869870</td><td>59%</td><td>123</td><td>73</td><td>50</td><td>3</td><td>72</td><td>50</td></tr><tr><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td><td>lag</td><td>LAG</td><td><a href="papers/0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e.html" target="_blank">Large age-gap face verification by feature injection in deep networks</a></td><td><a href="https://arxiv.org/pdf/1602.06149.pdf" target="_blank">[pdf]</a></td><td>Pattern Recognition Letters</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>7</td><td>5</td><td>2</td><td>0</td><td>3</td><td>4</td></tr><tr><td>07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1</td><td>uccs</td><td>UCCS</td><td><a href="papers/07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1.html" target="_blank">Large scale unconstrained open set face database</a></td><td><a href="http://vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>University of Colorado at Colorado Springs</td><td>United States</td><td>38.89646790</td><td>-104.80505940</td><td>80%</td><td>5</td><td>4</td><td>1</td><td>0</td><td>3</td><td>2</td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>mafl</td><td>MAFL</td><td><a href="papers/a0fd85b3400c7b3e11122f44dc5870ae2de9009a.html" target="_blank">Learning Deep Representation for Face Alignment with Auxiliary Attributes</a></td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>110</td><td>60</td><td>50</td><td>12</td><td>69</td><td>43</td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>mtfl</td><td>MTFL</td><td><a href="papers/a0fd85b3400c7b3e11122f44dc5870ae2de9009a.html" target="_blank">Learning Deep Representation for Face Alignment with Auxiliary Attributes</a></td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>110</td><td>60</td><td>50</td><td>12</td><td>69</td><td>43</td></tr><tr><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td><td>casia_webface</td><td>CASIA Webface</td><td><a href="papers/853bd61bc48a431b9b1c7cab10c603830c488e39.html" target="_blank">Learning Face Representation from Scratch</a></td><td><a href="https://arxiv.org/pdf/1411.7923.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td>edu</td><td>Chinese Academy of Sciences</td><td>China</td><td>40.00447950</td><td>116.37023800</td><td>60%</td><td>436</td><td>263</td><td>173</td><td>30</td><td>288</td><td>150</td></tr><tr><td>2a171f8d14b6b8735001a11c217af9587d095848</td><td>social_relation</td><td>Social Relation</td><td><a href="papers/2a171f8d14b6b8735001a11c217af9587d095848.html" target="_blank">Learning Social Relation Traits from Face Images</a></td><td><a href="https://arxiv.org/pdf/1509.03936.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>20</td><td>9</td><td>11</td><td>5</td><td>15</td><td>5</td></tr><tr><td>4e4746094bf60ee83e40d8597a6191e463b57f76</td><td>leeds_sports_pose_extended</td><td>Leeds Sports Pose Extended</td><td><a href="papers/4e4746094bf60ee83e40d8597a6191e463b57f76.html" target="_blank">Learning effective human pose estimation from inaccurate annotation</a></td><td><a href="http://www.comp.leeds.ac.uk/mat4saj/publications/johnson11cvpr.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>University of Leeds</td><td>United Kingdom</td><td>53.80387185</td><td>-1.55245712</td><td>65%</td><td>173</td><td>112</td><td>61</td><td>10</td><td>122</td><td>56</td></tr><tr><td>5981e6479c3fd4e31644db35d236bfb84ae46514</td><td>mot</td><td>MOT</td><td><a href="papers/5981e6479c3fd4e31644db35d236bfb84ae46514.html" target="_blank">Learning to associate: HybridBoosted multi-target tracker for crowded scene</a></td><td><a href="http://iris.usc.edu/Outlines/papers/2009/yuan-chang-nevatia-cvpr09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>University of Southern California</td><td>United States</td><td>34.02241490</td><td>-118.28634407</td><td>53%</td><td>330</td><td>176</td><td>153</td><td>27</td><td>196</td><td>139</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_buffy</td><td>Buffy Stickmen</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>217</td><td>155</td><td>35</td><td>251</td><td>129</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>217</td><td>155</td><td>35</td><td>251</td><td>129</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>217</td><td>155</td><td>35</td><td>251</td><td>129</td></tr><tr><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td><td>megaface</td><td>MegaFace</td><td><a href="papers/28d4e027c7e90b51b7d8908fce68128d1964668a.html" target="_blank">Level Playing Field for Million Scale Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1705.00393.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>University of Washington</td><td>United States</td><td>47.65432380</td><td>-122.30800894</td><td>39%</td><td>38</td><td>15</td><td>23</td><td>2</td><td>29</td><td>8</td></tr><tr><td>46a01565e6afe7c074affb752e7069ee3bf2e4ef</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/46a01565e6afe7c074affb752e7069ee3bf2e4ef.html" target="_blank">Local Descriptors Encoded by Fisher Vectors for Person Re-identification</a></td><td><a href="https://pdfs.semanticscholar.org/a105/f1ef67b4b02da38eadce8ffb4e13aa301a93.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>198</td><td>117</td><td>81</td><td>16</td><td>111</td><td>88</td></tr><tr><td>140438a77a771a8fb656b39a78ff488066eb6b50</td><td>lfw_p</td><td>LFWP</td><td><a href="papers/140438a77a771a8fb656b39a78ff488066eb6b50.html" target="_blank">Localizing Parts of Faces Using a Consensus of Exemplars</a></td><td><a href="http://neerajkumar.org/projects/face-parts/base/papers/nk_cvpr2011_faceparts.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>521</td><td>321</td><td>200</td><td>42</td><td>337</td><td>195</td></tr><tr><td>38b55d95189c5e69cf4ab45098a48fba407609b4</td><td>cuhk02</td><td>CUHK02</td><td><a href="papers/38b55d95189c5e69cf4ab45098a48fba407609b4.html" target="_blank">Locally Aligned Feature Transforms across Views</a></td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d594.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>242</td><td>130</td><td>112</td><td>17</td><td>139</td><td>102</td></tr><tr><td>8990cdce3f917dad622e43e033db686b354d057c</td><td>tiny_faces</td><td>TinyFace</td><td><a href="papers/8990cdce3f917dad622e43e033db686b354d057c.html" target="_blank">Low-Resolution Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1811.08965.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>c0387e788a52f10bf35d4d50659cfa515d89fbec</td><td>mars</td><td>MARS</td><td><a href="papers/c0387e788a52f10bf35d4d50659cfa515d89fbec.html" target="_blank">MARS: A Video Benchmark for Large-Scale Person Re-Identification</a></td><td><a href="http://liangzheng.org/1320.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>146</td><td>85</td><td>61</td><td>6</td><td>97</td><td>49</td></tr><tr><td>3dc3f0b64ef80f573e3a5f96e456e52ee980b877</td><td>georgia_tech_face_database</td><td>Georgia Tech Face</td><td><a href="papers/3dc3f0b64ef80f573e3a5f96e456e52ee980b877.html" target="_blank">MAXIMUM LIKELIHOOD TRAINING OF THE EMBEDDED HMM FOR FACE DETECTION AND RECOGNITION Ara V. Ne an and Monson H. Hayes III Center for Signal and Image Processing School of Electrical and Computer Engineering</a></td><td><a href="https://pdfs.semanticscholar.org/3dc3/f0b64ef80f573e3a5f96e456e52ee980b877.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>3</td><td>1</td><td>2</td><td>0</td><td>2</td><td>1</td></tr><tr><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td><td>morph</td><td>MORPH Commercial</td><td><a href="papers/9055b155cbabdce3b98e16e5ac9c0edf00f9552f.html" target="_blank">MORPH: a longitudinal image database of normal adult age-progression</a></td><td><span class="gray">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>424</td><td>239</td><td>184</td><td>26</td><td>239</td><td>190</td></tr><tr><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td><td>morph_nc</td><td>MORPH Non-Commercial</td><td><a href="papers/9055b155cbabdce3b98e16e5ac9c0edf00f9552f.html" target="_blank">MORPH: a longitudinal image database of normal adult age-progression</a></td><td><span class="gray">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>424</td><td>239</td><td>184</td><td>26</td><td>239</td><td>190</td></tr><tr><td>291265db88023e92bb8c8e6390438e5da148e8f5</td><td>msceleb</td><td>MsCeleb</td><td><a href="papers/291265db88023e92bb8c8e6390438e5da148e8f5.html" target="_blank">MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1607.08221.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>167</td><td>91</td><td>76</td><td>14</td><td>131</td><td>36</td></tr><tr><td>e58dd160a76349d46f881bd6ddbc2921f08d1050</td><td>gfw</td><td>YouTube Pose</td><td><a href="papers/e58dd160a76349d46f881bd6ddbc2921f08d1050.html" target="_blank">Merge or Not? Learning to Group Faces via Imitation Learning</a></td><td><a href="https://arxiv.org/pdf/1707.03986.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td><td>50_people_one_question</td><td>50 People One Question</td><td><a href="papers/5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725.html" target="_blank">Merging Pose Estimates Across Space and Time</a></td><td><a href="https://pdfs.semanticscholar.org/63b2/f5348af0f969dfc2afb4977732393c6459ec.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>87%</td><td>15</td><td>13</td><td>2</td><td>0</td><td>12</td><td>4</td></tr><tr><td>5e0f8c355a37a5a89351c02f174e7a5ddcb98683</td><td>coco</td><td>COCO</td><td><a href="papers/5e0f8c355a37a5a89351c02f174e7a5ddcb98683.html" target="_blank">Microsoft COCO: Common Objects in Context</a></td><td><a href="https://arxiv.org/pdf/1405.0312.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>999</td><td>574</td><td>425</td><td>29</td><td>799</td><td>193</td></tr><tr><td>a5a44a32a91474f00a3cda671a802e87c899fbb4</td><td>moments_in_time</td><td>Moments in Time</td><td><a href="papers/a5a44a32a91474f00a3cda671a802e87c899fbb4.html" target="_blank">Moments in Time Dataset: one million videos for event understanding</a></td><td><a href="https://arxiv.org/pdf/1801.03150.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>25</td><td>16</td><td>9</td><td>2</td><td>25</td><td>0</td></tr><tr><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td><td>tud_multiview</td><td>TUD-Multiview</td><td><a href="papers/436f798d1a4e54e5947c1e7d7375c31b2bdb4064.html" target="_blank">Monocular 3D pose estimation and tracking by detection</a></td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>TU Darmstadt</td><td>Germany</td><td>49.87482770</td><td>8.65632810</td><td>55%</td><td>302</td><td>166</td><td>136</td><td>34</td><td>207</td><td>100</td></tr><tr><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td><td>tud_stadtmitte</td><td>TUD-Stadtmitte</td><td><a href="papers/436f798d1a4e54e5947c1e7d7375c31b2bdb4064.html" target="_blank">Monocular 3D pose estimation and tracking by detection</a></td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>TU Darmstadt</td><td>Germany</td><td>49.87482770</td><td>8.65632810</td><td>55%</td><td>302</td><td>166</td><td>136</td><td>34</td><td>207</td><td>100</td></tr><tr><td>3b5b6d19d4733ab606c39c69a889f9e67967f151</td><td>qmul_grid</td><td>GRID</td><td><a href="papers/3b5b6d19d4733ab606c39c69a889f9e67967f151.html" target="_blank">Multi-camera activity correlation analysis</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0163.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Queen Mary University of London</td><td>United Kingdom</td><td>51.52472720</td><td>-0.03931035</td><td>64%</td><td>138</td><td>89</td><td>49</td><td>8</td><td>79</td><td>61</td></tr><tr><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td><td>tud_brussels</td><td>TUD-Brussels</td><td><a href="papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html" target="_blank">Multi-cue onboard pedestrian detection</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>217</td><td>121</td><td>96</td><td>14</td><td>133</td><td>86</td></tr><tr><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td><td>tud_motionpairs</td><td>TUD-Motionparis</td><td><a href="papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html" target="_blank">Multi-cue onboard pedestrian detection</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>217</td><td>121</td><td>96</td><td>14</td><td>133</td><td>86</td></tr><tr><td>32c801cb7fbeb742edfd94cccfca4934baec71da</td><td>ucf_crowd</td><td>UCF-CC-50</td><td><a href="papers/32c801cb7fbeb742edfd94cccfca4934baec71da.html" target="_blank">Multi-source Multi-scale Counting in Extremely Dense Crowd Images</a></td><td><a href="http://crcv-web.eecs.ucf.edu/papers/cvpr2013/Counting_V3o.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>125</td><td>89</td><td>36</td><td>6</td><td>73</td><td>52</td></tr><tr><td>1e3df3ca8feab0b36fd293fe689f93bb2aaac591</td><td>immediacy</td><td>Immediacy</td><td><a href="papers/1e3df3ca8feab0b36fd293fe689f93bb2aaac591.html" target="_blank">Multi-task Recurrent Neural Network for Immediacy Prediction</a></td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Chu_Multi-Task_Recurrent_Neural_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>25</td><td>16</td><td>9</td><td>2</td><td>21</td><td>5</td></tr><tr><td>2b926b3586399d028b46315d7d9fb9d879e4f79c</td><td>frav3d</td><td>FRAV3D</td><td><a href="papers/2b926b3586399d028b46315d7d9fb9d879e4f79c.html" target="_blank">Multimodal 2D, 2.5D & 3D Face Verification</a></td><td><a href="http://www.researchgate.net/profile/Enrique_Cabello/publication/224057733_Multimodal_2D_2.5D__3D_Face_Verification/links/0912f50f522298fa95000000.pdf" target="_blank">[pdf]</a></td><td>2006 International Conference on Image Processing</td><td>edu</td><td>Universidad Rey Juan Carlos, Spain</td><td></td><td>40.33586610</td><td>-3.87694320</td><td>57%</td><td>14</td><td>8</td><td>6</td><td>0</td><td>2</td><td>12</td></tr><tr><td>53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4</td><td>bp4d_plus</td><td>BP4D+</td><td><a href="papers/53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4.html" target="_blank">Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Multimodal_Spontaneous_Emotion_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>40</td><td>20</td><td>20</td><td>0</td><td>21</td><td>20</td></tr><tr><td>2fda164863a06a92d3a910b96eef927269aeb730</td><td>names_and_faces_news</td><td>News Dataset</td><td><a href="papers/2fda164863a06a92d3a910b96eef927269aeb730.html" target="_blank">Names and faces in the news</a></td><td><a href="http://ttic.uchicago.edu/~mmaire/papers/pdf/names_faces_cvpr2004.pdf" target="_blank">[pdf]</a></td><td>Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>294</td><td>165</td><td>128</td><td>29</td><td>215</td><td>82</td></tr><tr><td>4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06</td><td>distance_nighttime</td><td>Long Distance Heterogeneous Face</td><td><a href="papers/4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06.html" target="_blank">Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching</a></td><td><a href="https://pdfs.semanticscholar.org/4156/b7e88f2e0ab0a7c095b9bab199ae2b23bd06.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>21</td><td>10</td><td>11</td><td>3</td><td>11</td><td>10</td></tr><tr><td>3394168ff0719b03ff65bcea35336a76b21fe5e4</td><td>penn_fudan</td><td>Penn Fudan</td><td><a href="papers/3394168ff0719b03ff65bcea35336a76b21fe5e4.html" target="_blank">Object Detection Combining Recognition and Segmentation</a></td><td><a href="https://pdfs.semanticscholar.org/3394/168ff0719b03ff65bcea35336a76b21fe5e4.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>101</td><td>52</td><td>49</td><td>11</td><td>58</td><td>42</td></tr><tr><td>12ad3b5bbbf407f8e54ea692c07633d1a867c566</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/12ad3b5bbbf407f8e54ea692c07633d1a867c566.html" target="_blank">Object recognition using segmentation for feature detection</a></td><td><span class="gray">[pdf]</a></td><td>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.</td><td>edu</td><td>Inst. of Comput. Sci., Univ. of Leoben, Austria</td><td>Austria</td><td>47.38473720</td><td>15.09302010</td><td>41%</td><td>29</td><td>12</td><td>17</td><td>1</td><td>21</td><td>8</td></tr><tr><td>4f93cd09785c6e77bf4bc5a788e079df524c8d21</td><td>soton</td><td>SOTON HiD</td><td><a href="papers/4f93cd09785c6e77bf4bc5a788e079df524c8d21.html" target="_blank">On a Large Sequence-Based Human Gait Database</a></td><td><a href="https://eprints.soton.ac.uk/257901/1/Shutler_2002.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>148</td><td>88</td><td>60</td><td>17</td><td>104</td><td>49</td></tr><tr><td>6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c</td><td>afad</td><td>AFAD</td><td><a href="papers/6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c.html" target="_blank">Ordinal Regression with Multiple Output CNN for Age Estimation</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Niu_Ordinal_Regression_With_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>68</td><td>36</td><td>32</td><td>8</td><td>49</td><td>17</td></tr><tr><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td><td>market1203</td><td>Market 1203</td><td><a href="papers/a7fe834a0af614ce6b50dc093132b031dd9a856b.html" target="_blank">Orientation Driven Bag of Appearances for Person Re-identification</a></td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>4</td><td>4</td></tr><tr><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td><td>pku_reid</td><td>PKU-Reid</td><td><a href="papers/a7fe834a0af614ce6b50dc093132b031dd9a856b.html" target="_blank">Orientation Driven Bag of Appearances for Person Re-identification</a></td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>4</td><td>4</td></tr><tr><td>18ae7c9a4bbc832b8b14bc4122070d7939f5e00e</td><td>frgc</td><td>FRGC</td><td><a href="papers/18ae7c9a4bbc832b8b14bc4122070d7939f5e00e.html" target="_blank">Overview of the face recognition grand challenge</a></td><td><a href="http://ivizlab.sfu.ca/arya/Papers/IEEE/Proceedings/C%20V%20P%20R-%2005/Face%20Recognition%20Grand%20Challenge.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td>edu</td><td>NIST</td><td>United States</td><td>39.14004000</td><td>-77.21850600</td><td>51%</td><td>999</td><td>513</td><td>485</td><td>114</td><td>594</td><td>424</td></tr><tr><td>22909dd19a0ec3b6065334cb5be5392cb24d839d</td><td>pets</td><td>PETS 2017</td><td><a href="papers/22909dd19a0ec3b6065334cb5be5392cb24d839d.html" target="_blank">PETS 2017: Dataset and Challenge</a></td><td><a href="http://tahirnawaz.com/papers/2017_CVPRW_PETS2017Dataset_Luis_Nawaz_Cane_Ferryman.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>12%</td><td>8</td><td>1</td><td>7</td><td>0</td><td>2</td><td>6</td></tr><tr><td>56ffa7d906b08d02d6d5a12c7377a57e24ef3391</td><td>unbc_shoulder_pain</td><td>UNBC-McMaster Pain</td><td><a href="papers/56ffa7d906b08d02d6d5a12c7377a57e24ef3391.html" target="_blank">Painful data: The UNBC-McMaster shoulder pain expression archive database</a></td><td><a href="http://www.iainm.com/iainm/Publications_files/2011_PAINFUL.pdf" target="_blank">[pdf]</a></td><td>Face and Gesture 2011</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>52%</td><td>184</td><td>96</td><td>88</td><td>23</td><td>112</td><td>71</td></tr><tr><td>55206f0b5f57ce17358999145506cd01e570358c</td><td>orl</td><td>ORL</td><td><a href="papers/55206f0b5f57ce17358999145506cd01e570358c.html" target="_blank">Parameterisation of a stochastic model for human face identification</a></td><td><a href="https://pdfs.semanticscholar.org/5520/6f0b5f57ce17358999145506cd01e570358c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>999</td><td>466</td><td>533</td><td>97</td><td>569</td><td>445</td></tr><tr><td>0486214fb58ee9a04edfe7d6a74c6d0f661a7668</td><td>chokepoint</td><td>ChokePoint</td><td><a href="papers/0486214fb58ee9a04edfe7d6a74c6d0f661a7668.html" target="_blank">Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition</a></td><td><a href="https://arxiv.org/pdf/1304.0869.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>128</td><td>71</td><td>57</td><td>6</td><td>73</td><td>60</td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>apis</td><td>APiS1.0</td><td><a href="papers/488e475eeb3bb39a145f23ede197cd3620f1d98a.html" target="_blank">Pedestrian Attribute Classification in Surveillance: Database and Evaluation</a></td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>13</td><td>13</td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>svs</td><td>SVS</td><td><a href="papers/488e475eeb3bb39a145f23ede197cd3620f1d98a.html" target="_blank">Pedestrian Attribute Classification in Surveillance: Database and Evaluation</a></td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>13</td><td>13</td></tr><tr><td>2a4bbee0b4cf52d5aadbbc662164f7efba89566c</td><td>peta</td><td>PETA</td><td><a href="papers/2a4bbee0b4cf52d5aadbbc662164f7efba89566c.html" target="_blank">Pedestrian Attribute Recognition At Far Distance</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>80</td><td>55</td><td>25</td><td>2</td><td>51</td><td>28</td></tr><tr><td>f72f6a45ee240cc99296a287ff725aaa7e7ebb35</td><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td><a href="papers/f72f6a45ee240cc99296a287ff725aaa7e7ebb35.html" target="_blank">Pedestrian Detection: An Evaluation of the State of the Art</a></td><td><a href="http://vision.caltech.edu/Image_Datasets/CaltechPedestrians/files/PAMI12pedestrians.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>California Institute of Technology</td><td>United States</td><td>34.13710185</td><td>-118.12527487</td><td>49%</td><td>999</td><td>493</td><td>506</td><td>71</td><td>541</td><td>464</td></tr><tr><td>1dc35905a1deff8bc74688f2d7e2f48fd2273275</td><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td><a href="papers/1dc35905a1deff8bc74688f2d7e2f48fd2273275.html" target="_blank">Pedestrian detection: A benchmark</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1378.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>519</td><td>265</td><td>254</td><td>27</td><td>289</td><td>233</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_campus</td><td>TUD-Campus</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>529</td><td>292</td><td>236</td><td>40</td><td>324</td><td>213</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_crossing</td><td>TUD-Crossing</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>529</td><td>292</td><td>236</td><td>40</td><td>324</td><td>213</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_pedestrian</td><td>TUD-Pedestrian</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>529</td><td>292</td><td>236</td><td>40</td><td>324</td><td>213</td></tr><tr><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td><td>duke_mtmc</td><td>Duke MTMC</td><td><a href="papers/27a2fad58dd8727e280f97036e0d2bc55ef5424c.html" target="_blank">Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</a></td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>136</td><td>79</td><td>57</td><td>7</td><td>108</td><td>27</td></tr><tr><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td><td>mot</td><td>MOT</td><td><a href="papers/27a2fad58dd8727e280f97036e0d2bc55ef5424c.html" target="_blank">Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</a></td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>136</td><td>79</td><td>57</td><td>7</td><td>108</td><td>27</td></tr><tr><td>16c7c31a7553d99f1837fc6e88e77b5ccbb346b8</td><td>prid</td><td>PRID</td><td><a href="papers/16c7c31a7553d99f1837fc6e88e77b5ccbb346b8.html" target="_blank">Person Re-identification by Descriptive and Discriminative Classification</a></td><td><a href="https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>352</td><td>206</td><td>146</td><td>27</td><td>196</td><td>157</td></tr><tr><td>98bb029afe2a1239c3fdab517323066f0957b81b</td><td>ilids_vid_reid</td><td>iLIDS-VID</td><td><a href="papers/98bb029afe2a1239c3fdab517323066f0957b81b.html" target="_blank">Person Re-identification by Video Ranking</a></td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>210</td><td>122</td><td>88</td><td>10</td><td>115</td><td>94</td></tr><tr><td>98bb029afe2a1239c3fdab517323066f0957b81b</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/98bb029afe2a1239c3fdab517323066f0957b81b.html" target="_blank">Person Re-identification by Video Ranking</a></td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>210</td><td>122</td><td>88</td><td>10</td><td>115</td><td>94</td></tr><tr><td>0b84f07af44f964817675ad961def8a51406dd2e</td><td>prw</td><td>PRW</td><td><a href="papers/0b84f07af44f964817675ad961def8a51406dd2e.html" target="_blank">Person Re-identification in the Wild</a></td><td><a href="https://arxiv.org/pdf/1604.02531.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>65</td><td>33</td><td>32</td><td>1</td><td>46</td><td>17</td></tr><tr><td>ec792ad2433b6579f2566c932ee414111e194537</td><td>msmt_17</td><td>MSMT17</td><td><a href="papers/ec792ad2433b6579f2566c932ee414111e194537.html" target="_blank">Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</a></td><td><a href="https://arxiv.org/pdf/1711.08565.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>14</td><td>10</td><td>4</td><td>1</td><td>11</td><td>3</td></tr><tr><td>1c2802c2199b6d15ecefe7ba0c39bfe44363de38</td><td>youtube_poses</td><td>YouTube Pose</td><td><a href="papers/1c2802c2199b6d15ecefe7ba0c39bfe44363de38.html" target="_blank">Personalizing Human Video Pose Estimation</a></td><td><a href="https://arxiv.org/pdf/1511.06676.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>66%</td><td>32</td><td>21</td><td>11</td><td>2</td><td>29</td><td>5</td></tr><tr><td>b92a1ed9622b8268ae3ac9090e25789fc41cc9b8</td><td>pornodb</td><td>Pornography DB</td><td><a href="papers/b92a1ed9622b8268ae3ac9090e25789fc41cc9b8.html" target="_blank">Pooling in image representation: The visual codeword point of view</a></td><td><a href="http://cedric.cnam.fr/~thomen/papers/avila_CVIU2012_final.pdf" target="_blank">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>32%</td><td>77</td><td>25</td><td>52</td><td>7</td><td>46</td><td>34</td></tr><tr><td>2830fb5282de23d7784b4b4bc37065d27839a412</td><td>h3d</td><td>H3D</td><td><a href="papers/2830fb5282de23d7784b4b4bc37065d27839a412.html" target="_blank">Poselets: Body part detectors trained using 3D human pose annotations</a></td><td><a href="http://http.cs.berkeley.edu/Research/Projects/CS/vision/human/poselets_iccv09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 12th International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>707</td><td>374</td><td>333</td><td>67</td><td>509</td><td>215</td></tr><tr><td>3765df816dc5a061bc261e190acc8bdd9d47bec0</td><td>rafd</td><td>RaFD</td><td><a href="papers/3765df816dc5a061bc261e190acc8bdd9d47bec0.html" target="_blank">Presentation and validation of the Radboud Faces Database</a></td><td><a href="https://pdfs.semanticscholar.org/3765/df816dc5a061bc261e190acc8bdd9d47bec0.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>446</td><td>180</td><td>266</td><td>43</td><td>322</td><td>136</td></tr><tr><td>636b8ffc09b1b23ff714ac8350bb35635e49fa3c</td><td>caltech_10k_web_faces</td><td>Caltech 10K Web Faces</td><td><a href="papers/636b8ffc09b1b23ff714ac8350bb35635e49fa3c.html" target="_blank">Pruning training sets for learning of object categories</a></td><td><a href="http://authors.library.caltech.edu/11469/1/ANGcvpr05.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td></td><td></td><td></td><td></td><td></td><td>68%</td><td>60</td><td>41</td><td>19</td><td>5</td><td>43</td><td>17</td></tr><tr><td>377f2b65e6a9300448bdccf678cde59449ecd337</td><td>ufdd</td><td>UFDD</td><td><a href="papers/377f2b65e6a9300448bdccf678cde59449ecd337.html" target="_blank">Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</a></td><td><a href="https://arxiv.org/pdf/1804.10275.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>2</td><td>0</td><td>2</td><td>0</td><td>2</td><td>0</td></tr><tr><td>140c95e53c619eac594d70f6369f518adfea12ef</td><td>ijb_c</td><td>IJB-A</td><td><a href="papers/140c95e53c619eac594d70f6369f518adfea12ef.html" target="_blank">Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Klareetal_UnconstrainedFaceDetectionRecognitionJanus_CVPR15.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>222</td><td>123</td><td>99</td><td>19</td><td>161</td><td>62</td></tr><tr><td>d80a3d1f3a438e02a6685e66ee908446766fefa9</td><td>megaage</td><td>MegaAge</td><td><a href="papers/d80a3d1f3a438e02a6685e66ee908446766fefa9.html" target="_blank">Quantifying Facial Age by Posterior of Age Comparisons</a></td><td><a href="https://arxiv.org/pdf/1708.09687.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>25%</td><td>4</td><td>1</td><td>3</td><td>1</td><td>4</td><td>0</td></tr><tr><td>922e0a51a3b8c67c4c6ac09a577ff674cbd28b34</td><td>v47</td><td>V47</td><td><a href="papers/922e0a51a3b8c67c4c6ac09a577ff674cbd28b34.html" target="_blank">Re-identification of pedestrians with variable occlusion and scale</a></td><td><span class="gray">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td>edu</td><td>Kingston University</td><td>United Kingdom</td><td>51.42930860</td><td>-0.26840440</td><td>10%</td><td>10</td><td>1</td><td>9</td><td>2</td><td>6</td><td>4</td></tr><tr><td>6f3c76b7c0bd8e1d122c6ea808a271fd4749c951</td><td>ward</td><td>WARD</td><td><a href="papers/6f3c76b7c0bd8e1d122c6ea808a271fd4749c951.html" target="_blank">Re-identify people in wide area camera network</a></td><td><a href="http://users.dimi.uniud.it/~niki.martinel/data/publications/2012/CVPR/MarMicCVPR2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>38%</td><td>55</td><td>21</td><td>34</td><td>2</td><td>35</td><td>19</td></tr><tr><td>54983972aafc8e149259d913524581357b0f91c3</td><td>reseed</td><td>ReSEED</td><td><a href="papers/54983972aafc8e149259d913524581357b0f91c3.html" target="_blank">ReSEED: social event dEtection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>6</td><td>4</td><td>2</td><td>1</td><td>1</td><td>5</td></tr><tr><td>65355cbb581a219bd7461d48b3afd115263ea760</td><td>complex_activities</td><td>Ongoing Complex Activities</td><td><a href="papers/65355cbb581a219bd7461d48b3afd115263ea760.html" target="_blank">Recognition of ongoing complex activities by sequence prediction over a hierarchical label space</a></td><td><a href="https://scalable.mpi-inf.mpg.de/files/2016/01/main_wacv.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Winter Conference on Applications of Computer Vision (WACV)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>e8de844fefd54541b71c9823416daa238be65546</td><td>visual_phrases</td><td>Phrasal Recognition</td><td><a href="papers/e8de844fefd54541b71c9823416daa238be65546.html" target="_blank">Recognition using visual phrases</a></td><td><a href="http://vision.cs.uiuc.edu/phrasal/recognition_using_visual_phrases.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>University of Illinois, Urbana-Champaign</td><td>United States</td><td>40.11116745</td><td>-88.22587665</td><td>58%</td><td>233</td><td>136</td><td>97</td><td>18</td><td>177</td><td>58</td></tr><tr><td>356b431d4f7a2a0a38cf971c84568207dcdbf189</td><td>wider</td><td>WIDER</td><td><a href="papers/356b431d4f7a2a0a38cf971c84568207dcdbf189.html" target="_blank">Recognize complex events from static images by fusing deep channels</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2015/supplemental/Xiong_Recognize_Complex_Events_2015_CVPR_supplemental.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>45</td><td>30</td><td>15</td><td>1</td><td>30</td><td>15</td></tr><tr><td>25474c21613607f6bb7687a281d5f9d4ffa1f9f3</td><td>faceplace</td><td>Face Place</td><td><a href="papers/25474c21613607f6bb7687a281d5f9d4ffa1f9f3.html" target="_blank">Recognizing disguised faces</a></td><td><a href="https://pdfs.semanticscholar.org/d936/7ceb0be378c3a9ddf7cb741c678c1a3c574c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>42%</td><td>24</td><td>10</td><td>14</td><td>0</td><td>18</td><td>6</td></tr><tr><td>4053e3423fb70ad9140ca89351df49675197196a</td><td>bio_id</td><td>BioID Face</td><td><a href="papers/4053e3423fb70ad9140ca89351df49675197196a.html" target="_blank">Robust Face Detection Using the Hausdorff Distance</a></td><td><a href="http://facedetection.homepage.t-online.de/downloads/AVBPA01BioID.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>498</td><td>249</td><td>249</td><td>56</td><td>330</td><td>179</td></tr><tr><td>2724ba85ec4a66de18da33925e537f3902f21249</td><td>cofw</td><td>COFW</td><td><a href="papers/2724ba85ec4a66de18da33925e537f3902f21249.html" target="_blank">Robust Face Landmark Estimation under Occlusion</a></td><td><a href="http://authors.library.caltech.edu/45988/1/ICCV13%20Burgos-Artizzu.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision</td><td>edu</td><td>California Institute of Technology</td><td>United States</td><td>34.13710185</td><td>-118.12527487</td><td>62%</td><td>305</td><td>188</td><td>117</td><td>16</td><td>192</td><td>116</td></tr><tr><td>c570d1247e337f91e555c3be0e8c8a5aba539d9f</td><td>mcgill</td><td>McGill Real World</td><td><a href="papers/c570d1247e337f91e555c3be0e8c8a5aba539d9f.html" target="_blank">Robust semi-automatic head pose labeling for real-world face video sequences</a></td><td><span class="gray">[pdf]</a></td><td>Multimedia Tools and Applications</td><td>edu</td><td>McGill University</td><td>Canada</td><td>45.50397610</td><td>-73.57496870</td><td>56%</td><td>18</td><td>10</td><td>8</td><td>0</td><td>13</td><td>7</td></tr><tr><td>e27ef52c641c2b5100a1b34fd0b819e84a31b4df</td><td>sarc3d</td><td>Sarc3D</td><td><a href="papers/e27ef52c641c2b5100a1b34fd0b819e84a31b4df.html" target="_blank">SARC3D: A New 3D Body Model for People Tracking and Re-identification</a></td><td><a href="https://pdfs.semanticscholar.org/e27e/f52c641c2b5100a1b34fd0b819e84a31b4df.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>41%</td><td>29</td><td>12</td><td>17</td><td>3</td><td>17</td><td>12</td></tr><tr><td>bd26dabab576adb6af30484183c9c9c8379bf2e0</td><td>scut_fbp</td><td>SCUT-FBP</td><td><a href="papers/bd26dabab576adb6af30484183c9c9c8379bf2e0.html" target="_blank">SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</a></td><td><a href="https://arxiv.org/pdf/1511.02459.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Systems, Man, and Cybernetics</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>14</td><td>7</td><td>7</td><td>3</td><td>5</td><td>9</td></tr><tr><td>29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d</td><td>scface</td><td>SCface</td><td><a href="papers/29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d.html" target="_blank">SCface – surveillance cameras face database</a></td><td><a href="http://scface.org/SCface%20-%20Surveillance%20Cameras%20Face%20Database.pdf" target="_blank">[pdf]</a></td><td>Multimedia Tools and Applications</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>178</td><td>97</td><td>81</td><td>15</td><td>90</td><td>89</td></tr><tr><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td><td>stair_actions</td><td>STAIR Action</td><td><a href="papers/d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9.html" target="_blank">STAIR Actions: A Video Dataset of Everyday Home Actions</a></td><td><a href="https://arxiv.org/pdf/1804.04326.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>833fa04463d90aab4a9fe2870d480f0b40df446e</td><td>sun_attributes</td><td>SUN</td><td><a href="papers/833fa04463d90aab4a9fe2870d480f0b40df446e.html" target="_blank">SUN attribute database: Discovering, annotating, and recognizing scene attributes</a></td><td><a href="http://static.cs.brown.edu/~gen/pub_papers/SUN_Attribute_Database_CVPR2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Brown University</td><td>United States</td><td>41.82686820</td><td>-71.40123146</td><td>58%</td><td>269</td><td>156</td><td>113</td><td>29</td><td>215</td><td>57</td></tr><tr><td>4308bd8c28e37e2ed9a3fcfe74d5436cce34b410</td><td>market_1501</td><td>Market 1501</td><td><a href="papers/4308bd8c28e37e2ed9a3fcfe74d5436cce34b410.html" target="_blank">Scalable Person Re-identification: A Benchmark</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>394</td><td>238</td><td>156</td><td>18</td><td>272</td><td>116</td></tr><tr><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td><td>facebook_100</td><td>Facebook100</td><td><a href="papers/9c23859ec7313f2e756a3e85575735e0c52249f4.html" target="_blank">Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</a></td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>Harvard University</td><td>United States</td><td>42.36782045</td><td>-71.12666653</td><td>58%</td><td>50</td><td>29</td><td>21</td><td>3</td><td>39</td><td>11</td></tr><tr><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td><td>pubfig_83</td><td>pubfig83</td><td><a href="papers/9c23859ec7313f2e756a3e85575735e0c52249f4.html" target="_blank">Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</a></td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>Harvard University</td><td>United States</td><td>42.36782045</td><td>-71.12666653</td><td>58%</td><td>50</td><td>29</td><td>21</td><td>3</td><td>39</td><td>11</td></tr><tr><td>51eba481dac6b229a7490f650dff7b17ce05df73</td><td>imsitu</td><td>imSitu</td><td><a href="papers/51eba481dac6b229a7490f650dff7b17ce05df73.html" target="_blank">Situation Recognition: Visual Semantic Role Labeling for Image Understanding</a></td><td><a href="http://allenai.org/content/publications/SituationRecognition.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>48</td><td>30</td><td>18</td><td>2</td><td>46</td><td>2</td></tr><tr><td>570f37ed63142312e6ccdf00ecc376341ec72b9f</td><td>stanford_drone</td><td>Stanford Drone</td><td><a href="papers/570f37ed63142312e6ccdf00ecc376341ec72b9f.html" target="_blank">Social LSTM: Human Trajectory Prediction in Crowded Spaces</a></td><td><a href="http://cs.stanford.edu/groups/vision/pdf/CVPR16_N_LSTM.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>229</td><td>106</td><td>123</td><td>5</td><td>150</td><td>79</td></tr><tr><td>23e824d1dfc33f3780dd18076284f07bd99f1c43</td><td>mifs</td><td>MIFS</td><td><a href="papers/23e824d1dfc33f3780dd18076284f07bd99f1c43.html" target="_blank">Spoofing faces using makeup: An investigative study</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenFaceMakeupSpoof_ISBA2017.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)</td><td>edu</td><td>INRIA Méditerranée</td><td>France</td><td>43.61581310</td><td>7.06838000</td><td>60%</td><td>5</td><td>3</td><td>2</td><td>0</td><td>1</td><td>4</td></tr><tr><td>1a40092b493c6b8840257ab7f96051d1a4dbfeb2</td><td>sports_videos_in_the_wild</td><td>SVW</td><td><a href="papers/1a40092b493c6b8840257ab7f96051d1a4dbfeb2.html" target="_blank">Sports Videos in the Wild (SVW): A video dataset for sports analysis</a></td><td><a href="http://cse.msu.edu/~liuxm/publication/Safdarnejad_Liu_Udpa_Andrus_Wood_Craven_FG2015.pdf" target="_blank">[pdf]</a></td><td>2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td></td><td></td><td></td><td></td><td></td><td>83%</td><td>6</td><td>5</td><td>1</td><td>1</td><td>5</td><td>1</td></tr><tr><td>9361b784e73e9238d5cefbea5ac40d35d1e3103f</td><td>towncenter</td><td>TownCenter</td><td><a href="papers/9361b784e73e9238d5cefbea5ac40d35d1e3103f.html" target="_blank">Stable multi-target tracking in real-time surveillance video</a></td><td><a href="http://ben.benfold.com/docs/benfold_reid_cvpr2011-preprint.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>310</td><td>142</td><td>168</td><td>24</td><td>180</td><td>131</td></tr><tr><td>c866a2afc871910e3282fd9498dce4ab20f6a332</td><td>qmul_surv_face</td><td>QMUL-SurvFace</td><td><a href="papers/c866a2afc871910e3282fd9498dce4ab20f6a332.html" target="_blank">Surveillance Face Recognition Challenge</a></td><td><a href="https://arxiv.org/pdf/1804.09691.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f</td><td>pku</td><td>PKU</td><td><a href="papers/f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f.html" target="_blank">Swiss-System Based Cascade Ranking for Gait-Based Person Re-Identification</a></td><td><a href="https://pdfs.semanticscholar.org/f6c8/d5e35d7e4d60a0104f233ac1a3ab757da53f.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>3</td><td>2</td><td>1</td><td>0</td><td>1</td><td>2</td></tr><tr><td>4d58f886f5150b2d5e48fd1b5a49e09799bf895d</td><td>texas_3dfrd</td><td>Texas 3DFRD</td><td><a href="papers/4d58f886f5150b2d5e48fd1b5a49e09799bf895d.html" target="_blank">Texas 3D Face Recognition Database</a></td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ssiai_may10.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>61</td><td>38</td><td>23</td><td>3</td><td>37</td><td>25</td></tr><tr><td>6d96f946aaabc734af7fe3fc4454cf8547fcd5ed</td><td>ar_facedb</td><td>AR Face</td><td><a href="papers/6d96f946aaabc734af7fe3fc4454cf8547fcd5ed.html" target="_blank">The AR face database</a></td><td><span class="gray">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>999</td><td>541</td><td>458</td><td>51</td><td>459</td><td>573</td></tr><tr><td>2485c98aa44131d1a2f7d1355b1e372f2bb148ad</td><td>cas_peal</td><td>CAS-PEAL</td><td><a href="papers/2485c98aa44131d1a2f7d1355b1e372f2bb148ad.html" target="_blank">The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</a></td><td><a href="http://www.jdl.ac.cn/peal/files/ieee_smc_a_gao_cas-peal.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>415</td><td>212</td><td>203</td><td>39</td><td>189</td><td>232</td></tr><tr><td>47662d1a368daf70ba70ef2d59eb6209f98b675d</td><td>fia</td><td>CMU FiA</td><td><a href="papers/47662d1a368daf70ba70ef2d59eb6209f98b675d.html" target="_blank">The CMU Face In Action (FIA) Database</a></td><td><a href="https://pdfs.semanticscholar.org/4766/2d1a368daf70ba70ef2d59eb6209f98b675d.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>55</td><td>24</td><td>31</td><td>5</td><td>41</td><td>17</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td>cmu_pie</td><td>CMU PIE</td><td><a href="papers/4d423acc78273b75134e2afd1777ba6d3a398973.html" target="_blank">The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces</a></td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>742</td><td>408</td><td>332</td><td>59</td><td>416</td><td>329</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td>multi_pie</td><td>MULTIPIE</td><td><a href="papers/4d423acc78273b75134e2afd1777ba6d3a398973.html" target="_blank">The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces</a></td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>742</td><td>408</td><td>332</td><td>59</td><td>416</td><td>329</td></tr><tr><td>4df3143922bcdf7db78eb91e6b5359d6ada004d2</td><td>cfd</td><td>CFD</td><td><a href="papers/4df3143922bcdf7db78eb91e6b5359d6ada004d2.html" target="_blank">The Chicago face database: A free stimulus set of faces and norming data.</a></td><td><a href="https://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf" target="_blank">[pdf]</a></td><td>Behavior research methods</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>83</td><td>40</td><td>43</td><td>2</td><td>63</td><td>19</td></tr><tr><td>20388099cc415c772926e47bcbbe554e133343d1</td><td>cafe</td><td>CAFE</td><td><a href="papers/20388099cc415c772926e47bcbbe554e133343d1.html" target="_blank">The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults</a></td><td><a href="https://pdfs.semanticscholar.org/2038/8099cc415c772926e47bcbbe554e133343d1.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>33</td><td>16</td><td>17</td><td>3</td><td>28</td><td>5</td></tr><tr><td>5ffd74d2873b7cba2cbc5fd295cc7fbdedca22a2</td><td>cityscapes</td><td>Cityscapes</td><td><a href="papers/5ffd74d2873b7cba2cbc5fd295cc7fbdedca22a2.html" target="_blank">The Cityscapes Dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>54</td><td>32</td><td>22</td><td>3</td><td>40</td><td>14</td></tr><tr><td>32cde90437ab5a70cf003ea36f66f2de0e24b3ab</td><td>cityscapes</td><td>Cityscapes</td><td><a href="papers/32cde90437ab5a70cf003ea36f66f2de0e24b3ab.html" target="_blank">The Cityscapes Dataset for Semantic Urban Scene Understanding</a></td><td><a href="https://arxiv.org/pdf/1604.01685.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>771</td><td>407</td><td>364</td><td>54</td><td>624</td><td>138</td></tr><tr><td>4e6ee936eb50dd032f7138702fa39b7c18ee8907</td><td>dartmouth_children</td><td>Dartmouth Children</td><td><a href="papers/4e6ee936eb50dd032f7138702fa39b7c18ee8907.html" target="_blank">The Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set</a></td><td><a href="https://pdfs.semanticscholar.org/4e6e/e936eb50dd032f7138702fa39b7c18ee8907.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>20</td><td>9</td><td>11</td><td>2</td><td>17</td><td>4</td></tr><tr><td>9e31e77f9543ab42474ba4e9330676e18c242e72</td><td>imdb_face</td><td>IMDB Face</td><td><a href="papers/9e31e77f9543ab42474ba4e9330676e18c242e72.html" target="_blank">The Devil of Face Recognition is in the Noise</a></td><td><a href="https://arxiv.org/pdf/1807.11649.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Nanyang Technological University</td><td>Singapore</td><td>1.34841040</td><td>103.68297965</td><td>20%</td><td>5</td><td>1</td><td>4</td><td>0</td><td>3</td><td>1</td></tr><tr><td>71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6</td><td>umd_faces</td><td>UMD</td><td><a href="papers/71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6.html" target="_blank">The Do’s and Don’ts for CNN-Based Face Verification</a></td><td><a href="https://arxiv.org/pdf/1705.07426.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Computer Vision Workshops (ICCVW)</td><td></td><td></td><td></td><td></td><td></td><td>36%</td><td>25</td><td>9</td><td>16</td><td>3</td><td>17</td><td>6</td></tr><tr><td>f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4</td><td>europersons</td><td>EuroCity Persons</td><td><a href="papers/f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4.html" target="_blank">The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</a></td><td><a href="https://arxiv.org/pdf/1805.07193.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td></tr><tr><td>4d9a02d080636e9666c4d1cc438b9893391ec6c7</td><td>cohn_kanade_plus</td><td>CK+</td><td><a href="papers/4d9a02d080636e9666c4d1cc438b9893391ec6c7.html" target="_blank">The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression</a></td><td><a href="http://www.iainm.com/iainm/Publications_files/2010_The%20Extended.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops</td><td>edu</td><td>University of Pittsburgh</td><td>United States</td><td>40.44415295</td><td>-79.96243993</td><td>58%</td><td>975</td><td>569</td><td>405</td><td>67</td><td>475</td><td>510</td></tr><tr><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td><td>feret</td><td>FERET</td><td><a href="papers/0f0fcf041559703998abf310e56f8a2f90ee6f21.html" target="_blank">The FERET Evaluation Methodology for Face-Recognition Algorithms</a></td><td><a href="https://pdfs.semanticscholar.org/5099/7a5605c1f61e09e9a96789ed7495be6625aa.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>999</td><td>503</td><td>496</td><td>103</td><td>560</td><td>454</td></tr><tr><td>0c4a139bb87c6743c7905b29a3cfec27a5130652</td><td>feret</td><td>FERET</td><td><a href="papers/0c4a139bb87c6743c7905b29a3cfec27a5130652.html" target="_blank">The FERET Verification Testing Protocol for Face Recognition Algorithms</a></td><td><a href="https://pdfs.semanticscholar.org/8d2a/1c768fce6f71584dd993fb97e7b6419aaf60.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>112</td><td>50</td><td>62</td><td>11</td><td>79</td><td>35</td></tr><tr><td>dc8b25e35a3acb812beb499844734081722319b4</td><td>feret</td><td>FERET</td><td><a href="papers/dc8b25e35a3acb812beb499844734081722319b4.html" target="_blank">The FERET database and evaluation procedure for face-recognition algorithms</a></td><td><a href="http://biometrics.nist.gov/cs_links/face/frvt/feret/FERET_Database_evaluation_procedure.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>999</td><td>462</td><td>537</td><td>106</td><td>606</td><td>413</td></tr><tr><td>8f02ec0be21461fbcedf51d864f944cfc42c875f</td><td>hda_plus</td><td>HDA+</td><td><a href="papers/8f02ec0be21461fbcedf51d864f944cfc42c875f.html" target="_blank">The HDA+ Data Set for Research on Fully Automated Re-identification Systems</a></td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w19/11%20-%20The%20HDA%20data%20set%20for%20research%20on%20fully.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>35%</td><td>17</td><td>6</td><td>11</td><td>2</td><td>11</td><td>6</td></tr><tr><td>9a9877791945c6fa4c1743ec6d3fb32570ef8481</td><td>m2vts</td><td>m2vts</td><td><a href="papers/9a9877791945c6fa4c1743ec6d3fb32570ef8481.html" target="_blank">The M2VTS Multimodal Face Database (Release 1.00)</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Laboratoire de Télécommunications et Télédétection, UCL, Louvain-La-Neuve, Belgium</td><td>Belgium</td><td>50.66968750</td><td>4.61559090</td><td>44%</td><td>129</td><td>57</td><td>72</td><td>4</td><td>80</td><td>54</td></tr><tr><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td><td>mpi_large</td><td>Large MPI Facial Expression</td><td><a href="papers/ea050801199f98a1c7c1df6769f23f658299a3ae.html" target="_blank">The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</a></td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>28</td><td>13</td><td>15</td><td>4</td><td>24</td><td>4</td></tr><tr><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td><td>mpi_small</td><td>Small MPI Facial Expression</td><td><a href="papers/ea050801199f98a1c7c1df6769f23f658299a3ae.html" target="_blank">The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</a></td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>28</td><td>13</td><td>15</td><td>4</td><td>24</td><td>4</td></tr><tr><td>578d4ad74818086bb64f182f72e2c8bd31e3d426</td><td>mr2</td><td>MR2</td><td><a href="papers/578d4ad74818086bb64f182f72e2c8bd31e3d426.html" target="_blank">The MR2: A multi-racial, mega-resolution database of facial stimuli.</a></td><td><a href="https://pdfs.semanticscholar.org/be5b/455abd379240460d022a0e246615b0b86c14.pdf" target="_blank">[pdf]</a></td><td>Behavior research methods</td><td></td><td></td><td></td><td></td><td></td><td>14%</td><td>7</td><td>1</td><td>6</td><td>0</td><td>7</td><td>0</td></tr><tr><td>f1af714b92372c8e606485a3982eab2f16772ad8</td><td>mug_faces</td><td>MUG Faces</td><td><a href="papers/f1af714b92372c8e606485a3982eab2f16772ad8.html" target="_blank">The MUG facial expression database</a></td><td><span class="gray">[pdf]</a></td><td>11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10</td><td>edu</td><td>Aristotle University of Thessaloniki</td><td>Greece</td><td>40.62984145</td><td>22.95889350</td><td>50%</td><td>68</td><td>34</td><td>34</td><td>5</td><td>28</td><td>40</td></tr><tr><td>79828e6e9f137a583082b8b5a9dfce0c301989b8</td><td>mapillary</td><td>Mapillary</td><td><a href="papers/79828e6e9f137a583082b8b5a9dfce0c301989b8.html" target="_blank">The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</a></td><td><a href="http://openaccess.thecvf.com/content_ICCV_2017/papers/Neuhold_The_Mapillary_Vistas_ICCV_2017_paper.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>44</td><td>23</td><td>21</td><td>0</td><td>36</td><td>7</td></tr><tr><td>96e0cfcd81cdeb8282e29ef9ec9962b125f379b0</td><td>megaface</td><td>MegaFace</td><td><a href="papers/96e0cfcd81cdeb8282e29ef9ec9962b125f379b0.html" target="_blank">The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</a></td><td><a href="https://arxiv.org/pdf/1512.00596.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>121</td><td>71</td><td>50</td><td>9</td><td>98</td><td>22</td></tr><tr><td>0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a</td><td>voc</td><td>VOC</td><td><a href="papers/0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a.html" target="_blank">The Pascal Visual Object Classes (VOC) Challenge</a></td><td><a href="http://eprints.pascal-network.org/archive/00006187/01/PascalVOC_IJCV2009.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>59%</td><td>999</td><td>587</td><td>412</td><td>35</td><td>611</td><td>414</td></tr><tr><td>66e6f08873325d37e0ec20a4769ce881e04e964e</td><td>sun_attributes</td><td>SUN</td><td><a href="papers/66e6f08873325d37e0ec20a4769ce881e04e964e.html" target="_blank">The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</a></td><td><a href="http://www.cc.gatech.edu/~hays/papers/attribute_ijcv.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>63%</td><td>112</td><td>71</td><td>41</td><td>14</td><td>84</td><td>29</td></tr><tr><td>8b2dd5c61b23ead5ae5508bb8ce808b5ea266730</td><td>10k_US_adult_faces</td><td>10K US Adult Faces</td><td><a href="papers/8b2dd5c61b23ead5ae5508bb8ce808b5ea266730.html" target="_blank">The intrinsic memorability of face photographs.</a></td><td><a href="https://pdfs.semanticscholar.org/8b2d/d5c61b23ead5ae5508bb8ce808b5ea266730.pdf" target="_blank">[pdf]</a></td><td>Journal of experimental psychology. General</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>47</td><td>25</td><td>22</td><td>3</td><td>34</td><td>13</td></tr><tr><td>ae0aee03d946efffdc7af2362a42d3750e7dd48a</td><td>put_face</td><td>Put Face</td><td><a href="papers/ae0aee03d946efffdc7af2362a42d3750e7dd48a.html" target="_blank">The put face database</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>100</td><td>43</td><td>57</td><td>7</td><td>56</td><td>48</td></tr><tr><td>19d1b811df60f86cbd5e04a094b07f32fff7a32a</td><td>york_3d</td><td>UOY 3D Face Database</td><td><a href="papers/19d1b811df60f86cbd5e04a094b07f32fff7a32a.html" target="_blank">Three-dimensional face recognition: an eigensurface approach</a></td><td><a href="http://www-users.cs.york.ac.uk/~nep/research/3Dface/tomh/3DFaceRecognition-Eigensurface-ICIP(web)2.pdf" target="_blank">[pdf]</a></td><td>2004 International Conference on Image Processing, 2004. ICIP '04.</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>36</td><td>12</td><td>24</td><td>4</td><td>25</td><td>11</td></tr><tr><td>2edb87494278ad11641b6cf7a3f8996de12b8e14</td><td>qmul_grid</td><td>GRID</td><td><a href="papers/2edb87494278ad11641b6cf7a3f8996de12b8e14.html" target="_blank">Time-Delayed Correlation Analysis for Multi-Camera Activity Understanding</a></td><td><a href="http://www.eecs.qmul.ac.uk/~ccloy/files/ijcv_2010.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>Queen Mary University of London</td><td>United Kingdom</td><td>51.52472720</td><td>-0.03931035</td><td>52%</td><td>83</td><td>43</td><td>40</td><td>6</td><td>51</td><td>33</td></tr><tr><td>298cbc3dfbbb3a20af4eed97906650a4ea1c29e0</td><td>ferplus</td><td>FER+</td><td><a href="papers/298cbc3dfbbb3a20af4eed97906650a4ea1c29e0.html" target="_blank">Training deep networks for facial expression recognition with crowd-sourced label distribution</a></td><td><a href="https://arxiv.org/pdf/1608.01041.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>29</td><td>18</td><td>11</td><td>0</td><td>15</td><td>14</td></tr><tr><td>b5f2846a506fc417e7da43f6a7679146d99c5e96</td><td>ucf_101</td><td>UCF101</td><td><a href="papers/b5f2846a506fc417e7da43f6a7679146d99c5e96.html" target="_blank">UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</a></td><td><a href="https://arxiv.org/pdf/1212.0402.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>999</td><td>614</td><td>385</td><td>73</td><td>716</td><td>283</td></tr><tr><td>16e8b0a1e8451d5f697b94c0c2b32a00abee1d52</td><td>umb</td><td>UMB</td><td><a href="papers/16e8b0a1e8451d5f697b94c0c2b32a00abee1d52.html" target="_blank">UMB-DB: A database of partially occluded 3D faces</a></td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/claudio_cusano-slides.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>45</td><td>29</td><td>16</td><td>2</td><td>20</td><td>24</td></tr><tr><td>31b05f65405534a696a847dd19c621b7b8588263</td><td>umd_faces</td><td>UMD</td><td><a href="papers/31b05f65405534a696a847dd19c621b7b8588263.html" target="_blank">UMDFaces: An annotated face dataset for training deep networks</a></td><td><a href="https://arxiv.org/pdf/1611.01484.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Joint Conference on Biometrics (IJCB)</td><td>edu</td><td>University of Maryland</td><td>United States</td><td>39.28996850</td><td>-76.62196103</td><td>57%</td><td>35</td><td>20</td><td>15</td><td>4</td><td>28</td><td>7</td></tr><tr><td>8627f019882b024aef92e4eb9355c499c733e5b7</td><td>used</td><td>USED Social Event Dataset</td><td><a href="papers/8627f019882b024aef92e4eb9355c499c733e5b7.html" target="_blank">USED: a large-scale social event detection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Trento</td><td>Italy</td><td>46.06588360</td><td>11.11598940</td><td>71%</td><td>7</td><td>5</td><td>2</td><td>0</td><td>3</td><td>4</td></tr><tr><td>d4f1eb008eb80595bcfdac368e23ae9754e1e745</td><td>uccs</td><td>UCCS</td><td><a href="papers/d4f1eb008eb80595bcfdac368e23ae9754e1e745.html" target="_blank">Unconstrained Face Detection and Open-Set Face Recognition Challenge</a></td><td><a href="https://arxiv.org/pdf/1708.02337.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Joint Conference on Biometrics (IJCB)</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>5</td><td>2</td><td>3</td><td>0</td><td>4</td><td>1</td></tr><tr><td>4b4106614c1d553365bad75d7866bff0de6056ed</td><td>czech_news_agency</td><td>UFI</td><td><a href="papers/4b4106614c1d553365bad75d7866bff0de6056ed.html" target="_blank">Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions</a></td><td><a href="https://pdfs.semanticscholar.org/4b41/06614c1d553365bad75d7866bff0de6056ed.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>10</td><td>4</td><td>6</td><td>0</td><td>4</td><td>6</td></tr><tr><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7.html" target="_blank">Understanding Kin Relationships in a Photo</a></td><td><a href="http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Multimedia</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>96</td><td>61</td><td>35</td><td>2</td><td>34</td><td>63</td></tr><tr><td>21d9d0deed16f0ad62a4865e9acf0686f4f15492</td><td>images_of_groups</td><td>Images of Groups</td><td><a href="papers/21d9d0deed16f0ad62a4865e9acf0686f4f15492.html" target="_blank">Understanding images of groups of people</a></td><td><a href="http://chenlab.ece.cornell.edu/people/Andy/Andy_files/cvpr09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>56%</td><td>202</td><td>113</td><td>89</td><td>12</td><td>132</td><td>75</td></tr><tr><td>fd8168f1c50de85bac58a8d328df0a50248b16ae</td><td>nd_2006</td><td>ND-2006</td><td><a href="papers/fd8168f1c50de85bac58a8d328df0a50248b16ae.html" target="_blank">Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition</a></td><td><span class="gray">[pdf]</a></td><td>2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems</td><td>edu</td><td>University of Notre Dame</td><td>United States</td><td>41.70456775</td><td>-86.23822026</td><td>59%</td><td>32</td><td>19</td><td>13</td><td>3</td><td>17</td><td>15</td></tr><tr><td>4563b46d42079242f06567b3f2e2f7a80cb3befe</td><td>vadana</td><td>VADANA</td><td><a href="papers/4563b46d42079242f06567b3f2e2f7a80cb3befe.html" target="_blank">VADANA: A dense dataset for facial image analysis</a></td><td><a href="http://vims.cis.udel.edu/publications/VADANA_BeFIT2011.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td>edu</td><td>University of Delaware</td><td>United States</td><td>39.68103280</td><td>-75.75401840</td><td>44%</td><td>16</td><td>7</td><td>9</td><td>0</td><td>6</td><td>10</td></tr><tr><td>eb027969f9310e0ae941e2adee2d42cdf07d938c</td><td>vgg_faces2</td><td>VGG Face2</td><td><a href="papers/eb027969f9310e0ae941e2adee2d42cdf07d938c.html" target="_blank">VGGFace2: A Dataset for Recognising Faces across Pose and Age</a></td><td><a href="https://arxiv.org/pdf/1710.08092.pdf" target="_blank">[pdf]</a></td><td>2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>45%</td><td>56</td><td>25</td><td>31</td><td>6</td><td>50</td><td>6</td></tr><tr><td>01959ef569f74c286956024866c1d107099199f7</td><td>vqa</td><td>VQA</td><td><a href="papers/01959ef569f74c286956024866c1d107099199f7.html" target="_blank">VQA: Visual Question Answering</a></td><td><a href="https://arxiv.org/pdf/1505.00468.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>731</td><td>449</td><td>282</td><td>47</td><td>629</td><td>96</td></tr><tr><td>5194cbd51f9769ab25260446b4fa17204752e799</td><td>violent_flows</td><td>Violent Flows</td><td><a href="papers/5194cbd51f9769ab25260446b4fa17204752e799.html" target="_blank">Violent flows: Real-time detection of violent crowd behavior</a></td><td><a href="http://www.openu.ac.il/home/hassner/data/violentflows/violent_flows.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</td><td>edu</td><td>Open University of Israel</td><td>Israel</td><td>32.77824165</td><td>34.99565673</td><td>57%</td><td>83</td><td>47</td><td>36</td><td>6</td><td>44</td><td>41</td></tr><tr><td>026e3363b7f76b51cc711886597a44d5f1fd1de2</td><td>kitti</td><td>KITTI</td><td><a href="papers/026e3363b7f76b51cc711886597a44d5f1fd1de2.html" target="_blank">Vision meets robotics: The KITTI dataset</a></td><td><a href="https://pdfs.semanticscholar.org/026e/3363b7f76b51cc711886597a44d5f1fd1de2.pdf" target="_blank">[pdf]</a></td><td>I. J. Robotics Res.</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>999</td><td>538</td><td>461</td><td>37</td><td>570</td><td>448</td></tr><tr><td>066000d44d6691d27202896691f08b27117918b9</td><td>psu</td><td>PSU</td><td><a href="papers/066000d44d6691d27202896691f08b27117918b9.html" target="_blank">Vision-Based Analysis of Small Groups in Pedestrian Crowds</a></td><td><a href="http://vc.cs.nthu.edu.tw/home/paper/codfiles/htchiang/201212250411/newp12.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>151</td><td>78</td><td>73</td><td>9</td><td>79</td><td>73</td></tr><tr><td>dd65f71dac86e36eecbd3ed225d016c3336b4a13</td><td>families_in_the_wild</td><td>FIW</td><td><a href="papers/dd65f71dac86e36eecbd3ed225d016c3336b4a13.html" target="_blank">Visual Kinship Recognition of Families in the Wild</a></td><td><a href="https://web.northeastern.edu/smilelab/fiw/papers/Supplemental_PP.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>University of Massachusetts Dartmouth</td><td>United States</td><td>41.62772475</td><td>-71.00724501</td><td>100%</td><td>3</td><td>3</td><td>0</td><td>0</td><td>2</td><td>1</td></tr><tr><td>52d7eb0fbc3522434c13cc247549f74bb9609c5d</td><td>wider_face</td><td>WIDER FACE</td><td><a href="papers/52d7eb0fbc3522434c13cc247549f74bb9609c5d.html" target="_blank">WIDER FACE: A Face Detection Benchmark</a></td><td><a href="https://arxiv.org/pdf/1511.06523.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Chinese University of Hong Kong</td><td>China</td><td>22.41626320</td><td>114.21093180</td><td>58%</td><td>148</td><td>86</td><td>62</td><td>15</td><td>108</td><td>41</td></tr><tr><td>77c81c13a110a341c140995bedb98101b9e84f7f</td><td>wildtrack</td><td>WildTrack</td><td><a href="papers/77c81c13a110a341c140995bedb98101b9e84f7f.html" target="_blank">WILDTRACK : A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</a></td><td><a href="https://pdfs.semanticscholar.org/fe1c/ec4e4995b8615855572374ae3efc94949105.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>5ad4e9f947c1653c247d418f05dad758a3f9277b</td><td>wlfdb</td><td>WLFDB</td><td><a href="papers/5ad4e9f947c1653c247d418f05dad758a3f9277b.html" target="_blank">WLFDB: Weakly Labeled Face Databases</a></td><td><a href="https://pdfs.semanticscholar.org/5ad4/e9f947c1653c247d418f05dad758a3f9277b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td></tr><tr><td>0dc11a37cadda92886c56a6fb5191ded62099c28</td><td>stickmen_family</td><td>We Are Family Stickmen</td><td><a href="papers/0dc11a37cadda92886c56a6fb5191ded62099c28.html" target="_blank">We are family: joint pose estimation of multiple persons</a></td><td><a href="http://eprints.pascal-network.org/archive/00007964/01/eichner10eccv.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>66%</td><td>77</td><td>51</td><td>26</td><td>5</td><td>60</td><td>19</td></tr><tr><td>0c91808994a250d7be332400a534a9291ca3b60e</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/0c91808994a250d7be332400a534a9291ca3b60e.html" target="_blank">Weak Hypotheses and Boosting for Generic Object Detection and Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/0c91/808994a250d7be332400a534a9291ca3b60e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>247</td><td>125</td><td>122</td><td>18</td><td>177</td><td>78</td></tr><tr><td>2a75f34663a60ab1b04a0049ed1d14335129e908</td><td>mmi_facial_expression</td><td>MMI Facial Expression Dataset</td><td><a href="papers/2a75f34663a60ab1b04a0049ed1d14335129e908.html" target="_blank">Web-based database for facial expression analysis</a></td><td><a href="http://dev.pubs.doc.ic.ac.uk/Pantic-ICME05-2/Pantic-ICME05-2.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE International Conference on Multimedia and Expo</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>440</td><td>223</td><td>217</td><td>44</td><td>267</td><td>181</td></tr><tr><td>9b9bf5e623cb8af7407d2d2d857bc3f1b531c182</td><td>who_goes_there</td><td>WGT</td><td><a href="papers/9b9bf5e623cb8af7407d2d2d857bc3f1b531c182.html" target="_blank">Who goes there?: approaches to mapping facial appearance diversity</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Kentucky</td><td>United States</td><td>38.03337420</td><td>-84.50177580</td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>b62628ac06bbac998a3ab825324a41a11bc3a988</td><td>m2vtsdb_extended</td><td>xm2vtsdb</td><td><a href="papers/b62628ac06bbac998a3ab825324a41a11bc3a988.html" target="_blank">Xm2vtsdb: the Extended M2vts Database</a></td><td><a href="https://pdfs.semanticscholar.org/b626/28ac06bbac998a3ab825324a41a11bc3a988.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>906</td><td>491</td><td>415</td><td>44</td><td>542</td><td>408</td></tr><tr><td>010f0f4929e6a6644fb01f0e43820f91d0fad292</td><td>yfcc_100m</td><td>YFCC100M</td><td><a href="papers/010f0f4929e6a6644fb01f0e43820f91d0fad292.html" target="_blank">YFCC100M: the new data in multimedia research</a></td><td><a href="https://arxiv.org/pdf/1503.01817.pdf" target="_blank">[pdf]</a></td><td>Commun. ACM</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>56%</td><td>276</td><td>155</td><td>121</td><td>23</td><td>175</td><td>99</td></tr><tr><td>a94cae786d515d3450d48267e12ca954aab791c4</td><td>yawdd</td><td>YawDD</td><td><a href="papers/a94cae786d515d3450d48267e12ca954aab791c4.html" target="_blank">YawDD: a yawning detection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>14</td><td>8</td><td>6</td><td>1</td><td>2</td><td>12</td></tr></table></body></html> \ No newline at end of file
+<!doctype html><html><head><meta charset='utf-8'><title>All Papers</title><link rel='stylesheet' href='reports.css'></head><body><h2>All Papers</h2><table border='1' cellpadding='3' cellspacing='3'><th>Paper ID</th><th>Megapixels Key</th><th>Megapixels Name</th><th>Report Link</th><th>PDF Link</th><th>Journal</th><th>Type</th><th>Address</th><th>Country</th><th>Lat</th><th>Lng</th><th>Coverage</th><th>Total Citations</th><th>Geocoded Citations</th><th>Unknown Citations</th><th>Empty Citations</th><th>With PDF</th><th>With DOI</th><tr><td>3325860c0c82a93b2eac654f5324dd6a776f609e</td><td>mpii_human_pose</td><td>MPII Human Pose</td><td><a href="papers/3325860c0c82a93b2eac654f5324dd6a776f609e.html" target="_blank">2D Human Pose Estimation: New Benchmark and State of the Art Analysis</a></td><td><a href="http://ei.is.tuebingen.mpg.de/uploads_file/attachment/attachment/168/andriluka14benchmark.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>356</td><td>221</td><td>135</td><td>21</td><td>304</td><td>53</td></tr><tr><td>e4754afaa15b1b53e70743880484b8d0736990ff</td><td>fiw_300</td><td>300-W</td><td><a href="papers/e4754afaa15b1b53e70743880484b8d0736990ff.html" target="_blank">300 Faces In-The-Wild Challenge: database and results</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>114</td><td>61</td><td>53</td><td>10</td><td>71</td><td>43</td></tr><tr><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td><td>fiw_300</td><td>300-W</td><td><a href="papers/044d9a8c61383312cdafbcc44b9d00d650b21c70.html" target="_blank">300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>324</td><td>199</td><td>125</td><td>29</td><td>211</td><td>118</td></tr><tr><td>2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e</td><td>3dpes</td><td>3DPeS</td><td><a href="papers/2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e.html" target="_blank">3DPeS: 3D people dataset for surveillance and forensics</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>122</td><td>59</td><td>63</td><td>11</td><td>71</td><td>51</td></tr><tr><td>9696ad8b164f5e10fcfe23aacf74bd6168aebb15</td><td>4dfab</td><td>4DFAB</td><td><a href="papers/9696ad8b164f5e10fcfe23aacf74bd6168aebb15.html" target="_blank">4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</a></td><td><a href="https://arxiv.org/pdf/1712.01443.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>4</td><td>0</td><td>4</td><td>0</td><td>2</td><td>2</td></tr><tr><td>31b58ced31f22eab10bd3ee2d9174e7c14c27c01</td><td>tiny_images</td><td>Tiny Images</td><td><a href="papers/31b58ced31f22eab10bd3ee2d9174e7c14c27c01.html" target="_blank">80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition</a></td><td><a href="http://cvcl.mit.edu/SUNSeminar/Torralba_80M_PAMI08.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>999</td><td>535</td><td>463</td><td>94</td><td>685</td><td>327</td></tr><tr><td>4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461</td><td>3dddb_unconstrained</td><td>3D Dynamic</td><td><a href="papers/4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461.html" target="_blank">A 3 D Dynamic Database for Unconstrained Face Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/4d4b/b462c9f1d4e4ab1e4aa6a75cc0bc71b38461.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td></tr><tr><td>d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae</td><td>b3d_ac</td><td>B3D(AC)</td><td><a href="papers/d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae.html" target="_blank">A 3-D Audio-Visual Corpus of Affective Communication</a></td><td><a href="http://files.is.tue.mpg.de/jgall/download/jgall_avcorpus_mm10.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Multimedia</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>39</td><td>19</td><td>20</td><td>2</td><td>27</td><td>12</td></tr><tr><td>639937b3a1b8bded3f7e9a40e85bd3770016cf3c</td><td>bfm</td><td>BFM</td><td><a href="papers/639937b3a1b8bded3f7e9a40e85bd3770016cf3c.html" target="_blank">A 3D Face Model for Pose and Illumination Invariant Face Recognition</a></td><td><a href="http://gravis.cs.unibas.ch/publications/2009/BFModel09.pdf" target="_blank">[pdf]</a></td><td>2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>323</td><td>176</td><td>147</td><td>29</td><td>226</td><td>98</td></tr><tr><td>cc589c499dcf323fe4a143bbef0074c3e31f9b60</td><td>bu_3dfe</td><td>BU-3DFE</td><td><a href="papers/cc589c499dcf323fe4a143bbef0074c3e31f9b60.html" target="_blank">A 3D facial expression database for facial behavior research</a></td><td><a href="http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR06_a.pdf" target="_blank">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>555</td><td>263</td><td>291</td><td>47</td><td>299</td><td>270</td></tr><tr><td>22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b</td><td>saivt</td><td>SAIVT SoftBio</td><td><a href="papers/22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b.html" target="_blank">A Database for Person Re-Identification in Multi-Camera Surveillance Networks</a></td><td><a href="http://eprints.qut.edu.au/53437/3/Bialkowski_Database4PersonReID_DICTA.pdf" target="_blank">[pdf]</a></td><td>2012 International Conference on Digital Image Computing Techniques and Applications (DICTA)</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>58</td><td>26</td><td>32</td><td>7</td><td>41</td><td>18</td></tr><tr><td>070de852bc6eb275d7ca3a9cdde8f6be8795d1a3</td><td>d3dfacs</td><td>D3DFACS</td><td><a href="papers/070de852bc6eb275d7ca3a9cdde8f6be8795d1a3.html" target="_blank">A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling</a></td><td><a href="http://www.cs.bath.ac.uk/~dpc/D3DFACS/ICCV_final_2011.pdf" target="_blank">[pdf]</a></td><td>2011 International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>52</td><td>30</td><td>22</td><td>5</td><td>37</td><td>15</td></tr><tr><td>563c940054e4b456661762c1ab858e6f730c3159</td><td>data_61</td><td>Data61 Pedestrian</td><td><a href="papers/563c940054e4b456661762c1ab858e6f730c3159.html" target="_blank">A Multi-modal Graphical Model for Scene Analysis</a></td><td><a href="http://www.nicta.com.au/wp-content/uploads/2015/02/TaghaviNaminetalWACV15.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Winter Conference on Applications of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>8</td><td>4</td><td>4</td><td>0</td><td>5</td><td>3</td></tr><tr><td>221c18238b829c12b911706947ab38fd017acef7</td><td>rap_pedestrian</td><td>RAP</td><td><a href="papers/221c18238b829c12b911706947ab38fd017acef7.html" target="_blank">A Richly Annotated Dataset for Pedestrian Attribute Recognition</a></td><td><a href="https://arxiv.org/pdf/1603.07054.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>21</td><td>14</td><td>7</td><td>0</td><td>18</td><td>3</td></tr><tr><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td><td>fiw_300</td><td>300-W</td><td><a href="papers/013909077ad843eb6df7a3e8e290cfd5575999d2.html" target="_blank">A Semi-automatic Methodology for Facial Landmark Annotation</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>185</td><td>111</td><td>74</td><td>15</td><td>124</td><td>64</td></tr><tr><td>3b4ec8af470948a72a6ed37a9fd226719a874ebc</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/3b4ec8af470948a72a6ed37a9fd226719a874ebc.html" target="_blank">A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</a></td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Liu_A_Spatio-Temporal_Appearance_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>85</td><td>53</td><td>32</td><td>9</td><td>51</td><td>34</td></tr><tr><td>6403117f9c005ae81f1e8e6d1302f4a045e3d99d</td><td>alert_airport</td><td>ALERT Airport</td><td><a href="papers/6403117f9c005ae81f1e8e6d1302f4a045e3d99d.html" target="_blank">A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets.</a></td><td><a href="https://arxiv.org/pdf/1605.09653.pdf" target="_blank">[pdf]</a></td><td>IEEE transactions on pattern analysis and machine intelligence</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>15</td><td>7</td><td>8</td><td>1</td><td>10</td><td>5</td></tr><tr><td>7ace44190729927e5cb0dd5d363fcae966fe13f7</td><td>nudedetection</td><td>Nude Detection</td><td><a href="papers/7ace44190729927e5cb0dd5d363fcae966fe13f7.html" target="_blank">A bag-of-features approach based on Hue-SIFT descriptor for nude detection</a></td><td><a href="http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569191772.pdf" target="_blank">[pdf]</a></td><td>2009 17th European Signal Processing Conference</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>51</td><td>31</td><td>20</td><td>1</td><td>18</td><td>33</td></tr><tr><td>0d3bb75852098b25d90f31d2f48fd0cb4944702b</td><td>face_scrub</td><td>FaceScrub</td><td><a href="papers/0d3bb75852098b25d90f31d2f48fd0cb4944702b.html" target="_blank">A data-driven approach to cleaning large face datasets</a></td><td><a href="http://stefan.winkler.net/Publications/icip2014a.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE International Conference on Image Processing (ICIP)</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>123</td><td>66</td><td>57</td><td>4</td><td>96</td><td>27</td></tr><tr><td>b91f54e1581fbbf60392364323d00a0cd43e493c</td><td>bp4d_spontanous</td><td>BP4D-Spontanous</td><td><a href="papers/b91f54e1581fbbf60392364323d00a0cd43e493c.html" target="_blank">A high-resolution spontaneous 3D dynamic facial expression database</a></td><td><a href="http://www.csee.usf.edu/~scanavan/papers/FG2013.pdf" target="_blank">[pdf]</a></td><td>2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td>edu</td><td>SUNY Binghamton</td><td>United States</td><td>42.08779975</td><td>-75.97066066</td><td>51%</td><td>151</td><td>77</td><td>74</td><td>7</td><td>87</td><td>65</td></tr><tr><td>8b56e33f33e582f3e473dba573a16b598ed9bcdc</td><td>fei</td><td>FEI</td><td><a href="papers/8b56e33f33e582f3e473dba573a16b598ed9bcdc.html" target="_blank">A new ranking method for principal components analysis and its application to face image analysis</a></td><td><span class="gray">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>169</td><td>78</td><td>91</td><td>6</td><td>72</td><td>101</td></tr><tr><td>2624d84503bc2f8e190e061c5480b6aa4d89277a</td><td>afew_va</td><td>AFEW-VA</td><td><a href="papers/2624d84503bc2f8e190e061c5480b6aa4d89277a.html" target="_blank">AFEW-VA database for valence and arousal estimation in-the-wild</a></td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/afew-va.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>15</td><td>7</td><td>8</td><td>1</td><td>10</td><td>4</td></tr><tr><td>2ad0ee93d029e790ebb50574f403a09854b65b7e</td><td>yale_faces</td><td>YaleFaces</td><td><a href="papers/2ad0ee93d029e790ebb50574f403a09854b65b7e.html" target="_blank">Acquiring linear subspaces for face recognition under variable lighting</a></td><td><a href="http://vision.cornell.edu/se3/wp-content/uploads/2014/09/pami05.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>999</td><td>484</td><td>515</td><td>110</td><td>525</td><td>485</td></tr><tr><td>57fe081950f21ca03b5b375ae3e84b399c015861</td><td>cvc_01_barcelona</td><td>CVC-01</td><td><a href="papers/57fe081950f21ca03b5b375ae3e84b399c015861.html" target="_blank">Adaptive Image Sampling and Windows Classification for On – board Pedestrian Detection</a></td><td><a href="https://pdfs.semanticscholar.org/57fe/081950f21ca03b5b375ae3e84b399c015861.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>39%</td><td>44</td><td>17</td><td>27</td><td>1</td><td>21</td><td>23</td></tr><tr><td>758d7e1be64cc668c59ef33ba8882c8597406e53</td><td>affectnet</td><td>AffectNet</td><td><a href="papers/758d7e1be64cc668c59ef33ba8882c8597406e53.html" target="_blank">AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild</a></td><td><a href="https://arxiv.org/pdf/1708.03985.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>38</td><td>20</td><td>18</td><td>1</td><td>26</td><td>11</td></tr><tr><td>47aeb3b82f54b5ae8142b4bdda7b614433e69b9a</td><td>am_fed</td><td>AM-FED</td><td><a href="papers/47aeb3b82f54b5ae8142b4bdda7b614433e69b9a.html" target="_blank">Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"</a></td><td><a href="http://affect.media.mit.edu/pdfs/13.McDuff-etal-AMFED.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>73</td><td>34</td><td>39</td><td>6</td><td>41</td><td>34</td></tr><tr><td>1be498d4bbc30c3bfd0029114c784bc2114d67c0</td><td>adience</td><td>Adience</td><td><a href="papers/1be498d4bbc30c3bfd0029114c784bc2114d67c0.html" target="_blank">Age and Gender Estimation of Unfiltered Faces</a></td><td><a href="http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Information Forensics and Security</td><td>edu</td><td>Open University of Israel</td><td>Israel</td><td>32.77824165</td><td>34.99565673</td><td>55%</td><td>168</td><td>92</td><td>76</td><td>5</td><td>94</td><td>78</td></tr><tr><td>6dcf418c778f528b5792104760f1fbfe90c6dd6a</td><td>agedb</td><td>AgeDB</td><td><a href="papers/6dcf418c778f528b5792104760f1fbfe90c6dd6a.html" target="_blank">AgeDB: The First Manually Collected, In-the-Wild Age Database</a></td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>91%</td><td>11</td><td>10</td><td>1</td><td>0</td><td>10</td><td>1</td></tr><tr><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td><td>aflw</td><td>AFLW</td><td><a href="papers/a74251efa970b92925b89eeef50a5e37d9281ad0.html" target="_blank">Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</a></td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/martin_koestinger-slides.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>292</td><td>175</td><td>117</td><td>37</td><td>212</td><td>84</td></tr><tr><td>2ce2560cf59db59ce313bbeb004e8ce55c5ce928</td><td>texas_3dfrd</td><td>Texas 3DFRD</td><td><a href="papers/2ce2560cf59db59ce313bbeb004e8ce55c5ce928.html" target="_blank">Anthropometric 3D Face Recognition</a></td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ijcv_june10.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>90</td><td>45</td><td>45</td><td>5</td><td>60</td><td>31</td></tr><tr><td>0df0d1adea39a5bef318b74faa37de7f3e00b452</td><td>mpii_gaze</td><td>MPIIGaze</td><td><a href="papers/0df0d1adea39a5bef318b74faa37de7f3e00b452.html" target="_blank">Appearance-based gaze estimation in the wild</a></td><td><a href="https://arxiv.org/pdf/1504.02863.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>138</td><td>90</td><td>48</td><td>3</td><td>97</td><td>42</td></tr><tr><td>759a3b3821d9f0e08e0b0a62c8b693230afc3f8d</td><td>pubfig</td><td>PubFig</td><td><a href="papers/759a3b3821d9f0e08e0b0a62c8b693230afc3f8d.html" target="_blank">Attribute and simile classifiers for face verification</a></td><td><a href="http://acberg.com/papers/kbbn09iccv.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 12th International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>894</td><td>544</td><td>350</td><td>56</td><td>604</td><td>300</td></tr><tr><td>faf40ce28857aedf183e193486f5b4b0a8c478a2</td><td>iit_dehli_ear</td><td>IIT Dehli Ear</td><td><a href="papers/faf40ce28857aedf183e193486f5b4b0a8c478a2.html" target="_blank">Automated Human Identification Using Ear Imaging</a></td><td><a href="https://pdfs.semanticscholar.org/faf4/0ce28857aedf183e193486f5b4b0a8c478a2.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>37%</td><td>70</td><td>26</td><td>44</td><td>6</td><td>28</td><td>42</td></tr><tr><td>2160788824c4c29ffe213b2cbeb3f52972d73f37</td><td>3d_rma</td><td>3D-RMA</td><td><a href="papers/2160788824c4c29ffe213b2cbeb3f52972d73f37.html" target="_blank">Automatic 3D face authentication</a></td><td><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.9190&rep=rep1&type=pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>95</td><td>44</td><td>51</td><td>8</td><td>61</td><td>35</td></tr><tr><td>213a579af9e4f57f071b884aa872651372b661fd</td><td>bbc_pose</td><td>BBC Pose</td><td><a href="papers/213a579af9e4f57f071b884aa872651372b661fd.html" target="_blank">Automatic and Efficient Human Pose Estimation for Sign Language Videos</a></td><td><a href="http://tomas.pfister.fi/files/charles13ijcv.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>76%</td><td>25</td><td>19</td><td>6</td><td>1</td><td>19</td><td>7</td></tr><tr><td>fcc6fe6007c322641796cb8792718641856a22a7</td><td>miw</td><td>MIW</td><td><a href="papers/fcc6fe6007c322641796cb8792718641856a22a7.html" target="_blank">Automatic facial makeup detection with application in face recognition</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td>2013 International Conference on Biometrics (ICB)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>74%</td><td>46</td><td>34</td><td>12</td><td>1</td><td>18</td><td>28</td></tr><tr><td>fcc6fe6007c322641796cb8792718641856a22a7</td><td>youtube_makeup</td><td>YMU</td><td><a href="papers/fcc6fe6007c322641796cb8792718641856a22a7.html" target="_blank">Automatic facial makeup detection with application in face recognition</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td>2013 International Conference on Biometrics (ICB)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>74%</td><td>46</td><td>34</td><td>12</td><td>1</td><td>18</td><td>28</td></tr><tr><td>0a85bdff552615643dd74646ac881862a7c7072d</td><td>pipa</td><td>PIPA</td><td><a href="papers/0a85bdff552615643dd74646ac881862a7c7072d.html" target="_blank">Beyond frontal faces: Improving Person Recognition using multiple cues</a></td><td><a href="https://arxiv.org/pdf/1501.05703.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>company</td><td>Facebook</td><td>United States</td><td>37.39367170</td><td>-122.08072620</td><td>72%</td><td>50</td><td>36</td><td>13</td><td>2</td><td>40</td><td>9</td></tr><tr><td>2acf7e58f0a526b957be2099c10aab693f795973</td><td>bosphorus</td><td>The Bosphorus</td><td><a href="papers/2acf7e58f0a526b957be2099c10aab693f795973.html" target="_blank">Bosphorus Database for 3D Face Analysis</a></td><td><a href="https://pdfs.semanticscholar.org/4254/fbba3846008f50671edc9cf70b99d7304543.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>328</td><td>158</td><td>170</td><td>19</td><td>149</td><td>183</td></tr><tr><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td><td>vmu</td><td>VMU</td><td><a href="papers/37d6f0eb074d207b53885bd2eb78ccc8a04be597.html" target="_blank">Can facial cosmetics affect the matching accuracy of face recognition systems?</a></td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>61%</td><td>49</td><td>30</td><td>19</td><td>0</td><td>18</td><td>31</td></tr><tr><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td><td>youtube_makeup</td><td>YMU</td><td><a href="papers/37d6f0eb074d207b53885bd2eb78ccc8a04be597.html" target="_blank">Can facial cosmetics affect the matching accuracy of face recognition systems?</a></td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>61%</td><td>49</td><td>30</td><td>19</td><td>0</td><td>18</td><td>31</td></tr><tr><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td><td>chalearn</td><td>ChaLearn</td><td><a href="papers/8d5998cd984e7cce307da7d46f155f9db99c6590.html" target="_blank">ChaLearn looking at people: A review of events and resources</a></td><td><a href="https://arxiv.org/pdf/1701.02664.pdf" target="_blank">[pdf]</a></td><td>2017 International Joint Conference on Neural Networks (IJCNN)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>10</td><td>5</td><td>5</td><td>1</td><td>6</td><td>4</td></tr><tr><td>2bf8541199728262f78d4dced6fb91479b39b738</td><td>clothing_co_parsing</td><td>CCP</td><td><a href="papers/2bf8541199728262f78d4dced6fb91479b39b738.html" target="_blank">Clothing Co-parsing by Joint Image Segmentation and Labeling</a></td><td><a href="https://arxiv.org/pdf/1502.00739.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>60</td><td>42</td><td>18</td><td>0</td><td>38</td><td>24</td></tr><tr><td>22ad2c8c0f4d6aa4328b38d894b814ec22579761</td><td>gallagher</td><td>Gallagher</td><td><a href="papers/22ad2c8c0f4d6aa4328b38d894b814ec22579761.html" target="_blank">Clothing cosegmentation for recognizing people</a></td><td><a href="http://amp.ece.cmu.edu/people/Andy/Andy_files/2670CVPR08Gallagher.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>58%</td><td>177</td><td>103</td><td>74</td><td>7</td><td>101</td><td>84</td></tr><tr><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td><td>leeds_sports_pose</td><td>Leeds Sports Pose</td><td><a href="papers/4b1d23d17476fcf78f4cbadf69fb130b1aa627c0.html" target="_blank">Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</a></td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>278</td><td>180</td><td>98</td><td>13</td><td>208</td><td>78</td></tr><tr><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td><td>stickmen_buffy</td><td>Buffy Stickmen</td><td><a href="papers/4b1d23d17476fcf78f4cbadf69fb130b1aa627c0.html" target="_blank">Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</a></td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>278</td><td>180</td><td>98</td><td>13</td><td>208</td><td>78</td></tr><tr><td>45c31cde87258414f33412b3b12fc5bec7cb3ba9</td><td>jaffe</td><td>JAFFE</td><td><a href="papers/45c31cde87258414f33412b3b12fc5bec7cb3ba9.html" target="_blank">Coding Facial Expressions with Gabor Wavelets</a></td><td><a href="https://pdfs.semanticscholar.org/45c3/1cde87258414f33412b3b12fc5bec7cb3ba9.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>848</td><td>422</td><td>426</td><td>55</td><td>420</td><td>433</td></tr><tr><td>b1f4423c227fa37b9680787be38857069247a307</td><td>afew_va</td><td>AFEW-VA</td><td><a href="papers/b1f4423c227fa37b9680787be38857069247a307.html" target="_blank">Collecting Large, Richly Annotated Facial-Expression Databases from Movies</a></td><td><a href="http://users.cecs.anu.edu.au/~adhall/Dhall_Goecke_Lucey_Gedeon_M_2012.pdf" target="_blank">[pdf]</a></td><td>IEEE MultiMedia</td><td>edu</td><td>Australian National University</td><td>Australia</td><td>-35.27769990</td><td>149.11852700</td><td>60%</td><td>182</td><td>109</td><td>73</td><td>8</td><td>86</td><td>99</td></tr><tr><td>7f4040b482d16354d5938c1d1b926b544652bf5b</td><td>nova_emotions</td><td>Novaemötions Dataset</td><td><a href="papers/7f4040b482d16354d5938c1d1b926b544652bf5b.html" target="_blank">Competitive affective gaming: winning with a smile</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Universidade NOVA de Lisboa, Caparica, Portugal</td><td>Portugal</td><td>38.66096400</td><td>-9.20581300</td><td>75%</td><td>8</td><td>6</td><td>2</td><td>0</td><td>4</td><td>4</td></tr><tr><td>079a0a3bf5200994e1f972b1b9197bf2f90e87d4</td><td>mit_cbcl</td><td>MIT CBCL</td><td><a href="papers/079a0a3bf5200994e1f972b1b9197bf2f90e87d4.html" target="_blank">Component-Based Face Recognition with 3D Morphable Models</a></td><td><a href="http://cbcl.mit.edu/cbcl/publications/theses/thesis-huang.pdf" target="_blank">[pdf]</a></td><td>2004 Conference on Computer Vision and Pattern Recognition Workshop</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>12</td><td>4</td><td>8</td><td>0</td><td>8</td><td>4</td></tr><tr><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td><td>cohn_kanade</td><td>CK</td><td><a href="papers/23fc83c8cfff14a16df7ca497661264fc54ed746.html" target="_blank">Comprehensive Database for Facial Expression Analysis</a></td><td><a href="https://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>999</td><td>503</td><td>496</td><td>75</td><td>572</td><td>439</td></tr><tr><td>09d78009687bec46e70efcf39d4612822e61cb8c</td><td>raid</td><td>RAiD</td><td><a href="papers/09d78009687bec46e70efcf39d4612822e61cb8c.html" target="_blank">Consistent Re-identification in a Camera Network</a></td><td><a href="http://cs-people.bu.edu/dasabir/papers/ECCV14_Poster.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>45</td><td>23</td><td>22</td><td>7</td><td>34</td><td>11</td></tr><tr><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td><td>casablanca</td><td>Casablanca</td><td><a href="papers/0ceda9dae8b9f322df65ca2ef02caca9758aec6f.html" target="_blank">Context-Aware CNNs for Person Head Detection</a></td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>27</td><td>15</td><td>12</td><td>1</td><td>23</td><td>5</td></tr><tr><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td><td>hollywood_headset</td><td>HollywoodHeads</td><td><a href="papers/0ceda9dae8b9f322df65ca2ef02caca9758aec6f.html" target="_blank">Context-Aware CNNs for Person Head Detection</a></td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>27</td><td>15</td><td>12</td><td>1</td><td>23</td><td>5</td></tr><tr><td>c06b13d0ec3f5c43e2782cd22542588e233733c3</td><td>nova_emotions</td><td>Novaemötions Dataset</td><td><a href="papers/c06b13d0ec3f5c43e2782cd22542588e233733c3.html" target="_blank">Crowdsourcing facial expressions for affective-interaction</a></td><td><span class="gray">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td></tr><tr><td>8355d095d3534ef511a9af68a3b2893339e3f96b</td><td>imdb_wiki</td><td>IMDB</td><td><a href="papers/8355d095d3534ef511a9af68a3b2893339e3f96b.html" target="_blank">DEX: Deep EXpectation of Apparent Age from a Single Image</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Rothe_DEX_Deep_EXpectation_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision Workshop (ICCVW)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>120</td><td>67</td><td>53</td><td>5</td><td>74</td><td>47</td></tr><tr><td>5a5f0287484f0d480fed1ce585dbf729586f0edc</td><td>disfa</td><td>DISFA</td><td><a href="papers/5a5f0287484f0d480fed1ce585dbf729586f0edc.html" target="_blank">DISFA: A Spontaneous Facial Action Intensity Database</a></td><td><a href="http://mohammadmahoor.com/wp-content/uploads/2017/06/DiSFA_Paper_andAppendix_Final_OneColumn1-1.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Affective Computing</td><td>edu</td><td>University of Denver</td><td>United States</td><td>39.67665410</td><td>-104.96220300</td><td>49%</td><td>190</td><td>94</td><td>96</td><td>19</td><td>100</td><td>91</td></tr><tr><td>10195a163ab6348eef37213a46f60a3d87f289c5</td><td>imdb_wiki</td><td>IMDB</td><td><a href="papers/10195a163ab6348eef37213a46f60a3d87f289c5.html" target="_blank">Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks</a></td><td><a href="http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>ETH Zurich</td><td>Switzerland</td><td>47.37631300</td><td>8.54766990</td><td>53%</td><td>133</td><td>71</td><td>62</td><td>13</td><td>94</td><td>41</td></tr><tr><td>162ea969d1929ed180cc6de9f0bf116993ff6e06</td><td>vgg_faces</td><td>VGG Face</td><td><a href="papers/162ea969d1929ed180cc6de9f0bf116993ff6e06.html" target="_blank">Deep Face Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>999</td><td>543</td><td>456</td><td>70</td><td>635</td><td>370</td></tr><tr><td>6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4</td><td>celeba</td><td>CelebA</td><td><a href="papers/6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4.html" target="_blank">Deep Learning Face Attributes in the Wild</a></td><td><a href="https://arxiv.org/pdf/1411.7766.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td>edu</td><td>Chinese University of Hong Kong</td><td>China</td><td>22.41626320</td><td>114.21093180</td><td>52%</td><td>808</td><td>421</td><td>386</td><td>68</td><td>670</td><td>118</td></tr><tr><td>177bc509dd0c7b8d388bb47403f28d6228c14b5c</td><td>celeba_plus</td><td>CelebFaces+</td><td><a href="papers/177bc509dd0c7b8d388bb47403f28d6228c14b5c.html" target="_blank">Deep Learning Face Representation from Predicting 10,000 Classes</a></td><td><a href="http://mmlab.ie.cuhk.edu.hk/pdf/YiSun_CVPR14.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>660</td><td>397</td><td>263</td><td>25</td><td>340</td><td>330</td></tr><tr><td>18010284894ed0edcca74e5bf768ee2e15ef7841</td><td>deep_fashion</td><td>DeepFashion</td><td><a href="papers/18010284894ed0edcca74e5bf768ee2e15ef7841.html" target="_blank">DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~lz013/papers/deepfashion_poster.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>150</td><td>97</td><td>53</td><td>4</td><td>111</td><td>38</td></tr><tr><td>6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3</td><td>cuhk03</td><td>CUHK03</td><td><a href="papers/6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3.html" target="_blank">DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>512</td><td>304</td><td>208</td><td>29</td><td>324</td><td>180</td></tr><tr><td>13f06b08f371ba8b5d31c3e288b4deb61335b462</td><td>eth_andreas_ess</td><td>ETHZ Pedestrian</td><td><a href="papers/13f06b08f371ba8b5d31c3e288b4deb61335b462.html" target="_blank">Depth and Appearance for Mobile Scene Analysis</a></td><td><a href="http://www.mmp.rwth-aachen.de/publications/pdf/ess-depthandappearance-iccv07-poster.pdf" target="_blank">[pdf]</a></td><td>2007 IEEE 11th International Conference on Computer Vision</td><td>edu</td><td>ETH Zurich</td><td>Switzerland</td><td>47.37631300</td><td>8.54766990</td><td>55%</td><td>319</td><td>176</td><td>143</td><td>27</td><td>195</td><td>127</td></tr><tr><td>4946ba10a4d5a7d0a38372f23e6622bd347ae273</td><td>coco_action</td><td>COCO-a</td><td><a href="papers/4946ba10a4d5a7d0a38372f23e6622bd347ae273.html" target="_blank">Describing Common Human Visual Actions in Images</a></td><td><a href="https://arxiv.org/pdf/1506.02203.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>26</td><td>15</td><td>11</td><td>0</td><td>25</td><td>1</td></tr><tr><td>2e384f057211426ac5922f1b33d2aa8df5d51f57</td><td>a_pascal_yahoo</td><td>aPascal</td><td><a href="papers/2e384f057211426ac5922f1b33d2aa8df5d51f57.html" target="_blank">Describing objects by their attributes</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0468.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>University of Illinois, Urbana-Champaign</td><td>United States</td><td>40.11116745</td><td>-88.22587665</td><td>57%</td><td>999</td><td>565</td><td>433</td><td>74</td><td>738</td><td>264</td></tr><tr><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td><td>berkeley_pose</td><td>BPAD</td><td><a href="papers/7808937b46acad36e43c30ae4e9f3fd57462853d.html" target="_blank">Describing people: A poselet-based approach to attribute classification</a></td><td><a href="http://ttic.uchicago.edu/~smaji/papers/attributes-iccv11.pdf" target="_blank">[pdf]</a></td><td>2011 International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>221</td><td>125</td><td>96</td><td>14</td><td>165</td><td>59</td></tr><tr><td>d3200d49a19a4a4e4e9745ee39649b65d80c834b</td><td>scut_head</td><td>SCUT HEAD</td><td><a href="papers/d3200d49a19a4a4e4e9745ee39649b65d80c834b.html" target="_blank">Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</a></td><td><a href="https://arxiv.org/pdf/1803.09256.pdf" target="_blank">[pdf]</a></td><td>2018 24th International Conference on Pattern Recognition (ICPR)</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td><td>cmdp</td><td>CMDP</td><td><a href="papers/56ae6d94fc6097ec4ca861f0daa87941d1c10b70.html" target="_blank">Distance Estimation of an Unknown Person from a Portrait</a></td><td><a href="https://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>9</td><td>4</td><td>5</td><td>0</td><td>6</td><td>3</td></tr><tr><td>84fe5b4ac805af63206012d29523a1e033bc827e</td><td>awe_ears</td><td>AWE Ears</td><td><a href="papers/84fe5b4ac805af63206012d29523a1e033bc827e.html" target="_blank">Ear Recognition: More Than a Survey</a></td><td><a href="https://arxiv.org/pdf/1611.06203.pdf" target="_blank">[pdf]</a></td><td>Neurocomputing</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>24</td><td>16</td><td>8</td><td>0</td><td>11</td><td>13</td></tr><tr><td>133f01aec1534604d184d56de866a4bd531dac87</td><td>lfw_a</td><td>LFW-a</td><td><a href="papers/133f01aec1534604d184d56de866a4bd531dac87.html" target="_blank">Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</a></td><td><a href="http://www.cs.tau.ac.il/~wolf/papers/jpatchlbp.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>177</td><td>98</td><td>79</td><td>15</td><td>104</td><td>75</td></tr><tr><td>c900e0ad4c95948baaf0acd8449fde26f9b4952a</td><td>emotio_net</td><td>EmotioNet Database</td><td><a href="papers/c900e0ad4c95948baaf0acd8449fde26f9b4952a.html" target="_blank">EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</a></td><td><a href="http://cbcsl.ece.ohio-state.edu/cvpr16.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>72</td><td>39</td><td>33</td><td>7</td><td>54</td><td>17</td></tr><tr><td>2161f6b7ee3c0acc81603b01dc0df689683577b9</td><td>large_scale_person_search</td><td>Large Scale Person Search</td><td><a href="papers/2161f6b7ee3c0acc81603b01dc0df689683577b9.html" target="_blank">End-to-End Deep Learning for Person Search</a></td><td><a href="https://pdfs.semanticscholar.org/2161/f6b7ee3c0acc81603b01dc0df689683577b9.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>41</td><td>22</td><td>19</td><td>2</td><td>27</td><td>12</td></tr><tr><td>6273b3491e94ea4dd1ce42b791d77bdc96ee73a8</td><td>viper</td><td>VIPeR</td><td><a href="papers/6273b3491e94ea4dd1ce42b791d77bdc96ee73a8.html" target="_blank">Evaluating Appearance Models for Recognition, Reacquisition, and Tracking</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>584</td><td>329</td><td>255</td><td>38</td><td>338</td><td>245</td></tr><tr><td>2258e01865367018ed6f4262c880df85b94959f8</td><td>mot</td><td>MOT</td><td><a href="papers/2258e01865367018ed6f4262c880df85b94959f8.html" target="_blank">Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</a></td><td><a href="https://pdfs.semanticscholar.org/2e0b/00f4043e2d4b04c59c88bb54bcd907d0dcd4.pdf" target="_blank">[pdf]</a></td><td>EURASIP J. Image and Video Processing</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>586</td><td>290</td><td>294</td><td>48</td><td>345</td><td>244</td></tr><tr><td>9e5378e7b336c89735d3bb15cf67eff96f86d39a</td><td>precarious</td><td>Precarious</td><td><a href="papers/9e5378e7b336c89735d3bb15cf67eff96f86d39a.html" target="_blank">Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters</a></td><td><a href="https://arxiv.org/pdf/1703.06283.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>17%</td><td>12</td><td>2</td><td>10</td><td>1</td><td>11</td><td>1</td></tr><tr><td>35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62</td><td>coco_qa</td><td>COCO QA</td><td><a href="papers/35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62.html" target="_blank">Exploring Models and Data for Image Question Answering</a></td><td><a href="https://arxiv.org/pdf/1505.02074.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>191</td><td>115</td><td>76</td><td>12</td><td>165</td><td>27</td></tr><tr><td>75da1df4ed319926c544eefe17ec8d720feef8c0</td><td>fddb</td><td>FDDB</td><td><a href="papers/75da1df4ed319926c544eefe17ec8d720feef8c0.html" target="_blank">FDDB: A benchmark for face detection in unconstrained settings</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td></tr><tr><td>31de9b3dd6106ce6eec9a35991b2b9083395fd0b</td><td>feret</td><td>FERET</td><td><a href="papers/31de9b3dd6106ce6eec9a35991b2b9083395fd0b.html" target="_blank">FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</a></td><td><a href="https://pdfs.semanticscholar.org/31de/9b3dd6106ce6eec9a35991b2b9083395fd0b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>82</td><td>38</td><td>44</td><td>5</td><td>62</td><td>20</td></tr><tr><td>0e986f51fe45b00633de9fd0c94d082d2be51406</td><td>afw</td><td>AFW</td><td><a href="papers/0e986f51fe45b00633de9fd0c94d082d2be51406.html" target="_blank">Face detection, pose estimation, and landmark localization in the wild</a></td><td><a href="http://crcv.ucf.edu/courses/CAP6412/Spring2013/papers/zhu-ramanan-face-cvpr12.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>999</td><td>608</td><td>391</td><td>59</td><td>622</td><td>387</td></tr><tr><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td><td>youtube_faces</td><td>YouTubeFaces</td><td><a href="papers/560e0e58d0059259ddf86fcec1fa7975dee6a868.html" target="_blank">Face recognition in unconstrained videos with matched background similarity</a></td><td><a href="http://www.cs.tau.ac.il/thesis/thesis/Maoz.Itay-MSc.Thesis.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>Tel Aviv University</td><td>Israel</td><td>32.11198890</td><td>34.80459702</td><td>60%</td><td>485</td><td>292</td><td>192</td><td>30</td><td>298</td><td>193</td></tr><tr><td>670637d0303a863c1548d5b19f705860a23e285c</td><td>face_tracer</td><td>FaceTracer</td><td><a href="papers/670637d0303a863c1548d5b19f705860a23e285c.html" target="_blank">Face swapping: automatically replacing faces in photographs</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>4c170a0dcc8de75587dae21ca508dab2f9343974</td><td>face_tracer</td><td>FaceTracer</td><td><a href="papers/4c170a0dcc8de75587dae21ca508dab2f9343974.html" target="_blank">FaceTracer: A Search Engine for Large Collections of Images with Faces</a></td><td><a href="https://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>218</td><td>125</td><td>92</td><td>17</td><td>152</td><td>71</td></tr><tr><td>7ebb153704706e457ab57b432793d2b6e5d12592</td><td>vgg_celebs_in_places</td><td>CIP</td><td><a href="papers/7ebb153704706e457ab57b432793d2b6e5d12592.html" target="_blank">Faces in Places: compound query retrieval</a></td><td><a href="https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>80%</td><td>5</td><td>4</td><td>1</td><td>0</td><td>4</td><td>1</td></tr><tr><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td><td>mafl</td><td>MAFL</td><td><a href="papers/8a3c5507237957d013a0fe0f082cab7f757af6ee.html" target="_blank">Facial Landmark Detection by Deep Multi-task Learning</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>383</td><td>231</td><td>152</td><td>25</td><td>265</td><td>121</td></tr><tr><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td><td>mtfl</td><td>MTFL</td><td><a href="papers/8a3c5507237957d013a0fe0f082cab7f757af6ee.html" target="_blank">Facial Landmark Detection by Deep Multi-task Learning</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>383</td><td>231</td><td>152</td><td>25</td><td>265</td><td>121</td></tr><tr><td>014b8df0180f33b9fea98f34ae611c6447d761d2</td><td>buhmap_db</td><td>BUHMAP-DB</td><td><a href="papers/014b8df0180f33b9fea98f34ae611c6447d761d2.html" target="_blank">Facial feature tracking and expression recognition for sign language</a></td><td><a href="https://www.cmpe.boun.edu.tr/~ari/files/ari2008iscis.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 17th Signal Processing and Communications Applications Conference</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>25</td><td>12</td><td>13</td><td>1</td><td>11</td><td>15</td></tr><tr><td>4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7</td><td>deep_fashion</td><td>DeepFashion</td><td><a href="papers/4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7.html" target="_blank">Fashion Landmark Detection in the Wild</a></td><td><a href="https://arxiv.org/pdf/1608.03049.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>26</td><td>17</td><td>9</td><td>1</td><td>17</td><td>9</td></tr><tr><td>45e616093a92e5f1e61a7c6037d5f637aa8964af</td><td>malf</td><td>MALF</td><td><a href="papers/45e616093a92e5f1e61a7c6037d5f637aa8964af.html" target="_blank">Fine-grained evaluation on face detection in the wild</a></td><td><a href="http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf" target="_blank">[pdf]</a></td><td>2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>17</td><td>12</td><td>5</td><td>0</td><td>13</td><td>4</td></tr><tr><td>1aad2da473888cb7ebc1bfaa15bfa0f1502ce005</td><td>jpl_pose</td><td>JPL-Interaction dataset</td><td><a href="papers/1aad2da473888cb7ebc1bfaa15bfa0f1502ce005.html" target="_blank">First-Person Activity Recognition: What Are They Doing to Me?</a></td><td><a href="http://michaelryoo.com/papers/cvpr2013_ryoo.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>148</td><td>103</td><td>45</td><td>8</td><td>111</td><td>38</td></tr><tr><td>774cbb45968607a027ae4729077734db000a1ec5</td><td>urban_tribes</td><td>Urban Tribes</td><td><a href="papers/774cbb45968607a027ae4729077734db000a1ec5.html" target="_blank">From Bikers to Surfers: Visual Recognition of Urban Tribes</a></td><td><a href="https://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>17</td><td>11</td><td>6</td><td>1</td><td>12</td><td>5</td></tr><tr><td>22f656d0f8426c84a33a267977f511f127bfd7f3</td><td>expw</td><td>ExpW</td><td><a href="papers/22f656d0f8426c84a33a267977f511f127bfd7f3.html" target="_blank">From Facial Expression Recognition to Interpersonal Relation Prediction</a></td><td><a href="https://arxiv.org/pdf/1609.06426.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>78%</td><td>9</td><td>7</td><td>2</td><td>0</td><td>5</td><td>4</td></tr><tr><td>18c72175ddbb7d5956d180b65a96005c100f6014</td><td>yale_faces</td><td>YaleFaces</td><td><a href="papers/18c72175ddbb7d5956d180b65a96005c100f6014.html" target="_blank">From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</a></td><td><a href="https://pdfs.semanticscholar.org/97bb/c2b439a79d4dc0dc7199d71ed96ad5e3fd0e.pdf" target="_blank">[pdf]</a></td><td>IEEE Trans. Pattern Anal. Mach. Intell.</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>999</td><td>514</td><td>485</td><td>77</td><td>551</td><td>459</td></tr><tr><td>06f02199690961ba52997cde1527e714d2b3bf8f</td><td>columbia_gaze</td><td>Columbia Gaze</td><td><a href="papers/06f02199690961ba52997cde1527e714d2b3bf8f.html" target="_blank">Gaze locking: passive eye contact detection for human-object interaction</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Columbia University</td><td>United States</td><td>40.84198360</td><td>-73.94368971</td><td>64%</td><td>80</td><td>51</td><td>29</td><td>0</td><td>49</td><td>35</td></tr><tr><td>18858cc936947fc96b5c06bbe3c6c2faa5614540</td><td>pilot_parliament</td><td>PPB</td><td><a href="papers/18858cc936947fc96b5c06bbe3c6c2faa5614540.html" target="_blank">Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification</a></td><td><a href="https://pdfs.semanticscholar.org/03c1/fc9c3339813ed81ad0de540132f9f695a0f8.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>55</td><td>29</td><td>26</td><td>0</td><td>47</td><td>7</td></tr><tr><td>2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d.html" target="_blank">Genealogical face recognition based on UB KinFace database</a></td><td><span class="gray">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>SUNY Buffalo</td><td>United States</td><td>42.93362780</td><td>-78.88394479</td><td>47%</td><td>30</td><td>14</td><td>16</td><td>1</td><td>10</td><td>21</td></tr><tr><td>2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9.html" target="_blank">Generic object recognition with boosting</a></td><td><a href="http://www.cse.unr.edu/~bebis/CS773C/ObjectRecognition/Papers/Opelt06.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>TU Graz</td><td>Austria</td><td>47.07071400</td><td>15.43950400</td><td>48%</td><td>286</td><td>136</td><td>150</td><td>16</td><td>193</td><td>97</td></tr><tr><td>17b46e2dad927836c689d6787ddb3387c6159ece</td><td>geofaces</td><td>GeoFaces</td><td><a href="papers/17b46e2dad927836c689d6787ddb3387c6159ece.html" target="_blank">GeoFaceExplorer: exploring the geo-dependence of facial attributes</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>2</td><td>2</td><td>0</td><td>0</td><td>1</td><td>1</td></tr><tr><td>bd88bb2e4f351352d88ee7375af834360e223498</td><td>hda_plus</td><td>HDA+</td><td><a href="papers/bd88bb2e4f351352d88ee7375af834360e223498.html" target="_blank">HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance</a></td><td><a href="https://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>2</td><td>0</td><td>2</td><td>0</td><td>1</td><td>2</td></tr><tr><td>a8d0b149c2eadaa02204d3e4356fbc8eccf3b315</td><td>hi4d_adsip</td><td>Hi4D-ADSIP</td><td><a href="papers/a8d0b149c2eadaa02204d3e4356fbc8eccf3b315.html" target="_blank">Hi4D-ADSIP 3-D dynamic facial articulation database</a></td><td><span class="gray">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>18</td><td>11</td><td>7</td><td>1</td><td>7</td><td>11</td></tr><tr><td>a5a3bc3e5e9753769163cb30b16dbd12e266b93e</td><td>mcgill</td><td>McGill Real World</td><td><a href="papers/a5a3bc3e5e9753769163cb30b16dbd12e266b93e.html" target="_blank">Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos</a></td><td><span class="gray">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>8</td><td>4</td><td>4</td><td>1</td><td>5</td><td>3</td></tr><tr><td>3cd40bfa1ff193a96bde0207e5140a399476466c</td><td>tvhi</td><td>TVHI</td><td><a href="papers/3cd40bfa1ff193a96bde0207e5140a399476466c.html" target="_blank">High Five: Recognising human interactions in TV shows</a></td><td><a href="https://pdfs.semanticscholar.org/3cd4/0bfa1ff193a96bde0207e5140a399476466c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>91</td><td>47</td><td>44</td><td>11</td><td>64</td><td>27</td></tr><tr><td>04c2cda00e5536f4b1508cbd80041e9552880e67</td><td>hipsterwars</td><td>Hipsterwars</td><td><a href="papers/04c2cda00e5536f4b1508cbd80041e9552880e67.html" target="_blank">Hipster wars: Discovering elements of fashion styles</a></td><td><a href="http://acberg.com/papers/hipster_eccv14.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>66%</td><td>91</td><td>60</td><td>31</td><td>5</td><td>61</td><td>29</td></tr><tr><td>10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5</td><td>inria_person</td><td>INRIA Pedestrian</td><td><a href="papers/10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5.html" target="_blank">Histograms of oriented gradients for human detection</a></td><td><a href="http://courses.cs.washington.edu/courses/cse576/12sp/notes/CVPR2005_HOG.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td>edu</td><td>INRIA Rhone-Alps, Montbonnot, France</td><td>France</td><td>45.21788600</td><td>5.80736900</td><td>54%</td><td>999</td><td>539</td><td>460</td><td>67</td><td>537</td><td>477</td></tr><tr><td>041d3eedf5e45ce5c5229f0181c5c576ed1fafd6</td><td>ucf_selfie</td><td>UCF Selfie</td><td><a href="papers/041d3eedf5e45ce5c5229f0181c5c576ed1fafd6.html" target="_blank">How to Take a Good Selfie?</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>9</td><td>6</td><td>3</td><td>0</td><td>6</td><td>4</td></tr><tr><td>44d23df380af207f5ac5b41459c722c87283e1eb</td><td>wider_attribute</td><td>WIDER Attribute</td><td><a href="papers/44d23df380af207f5ac5b41459c722c87283e1eb.html" target="_blank">Human Attribute Recognition by Deep Hierarchical Contexts</a></td><td><a href="https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>78%</td><td>18</td><td>14</td><td>4</td><td>0</td><td>16</td><td>2</td></tr><tr><td>44484d2866f222bbb9b6b0870890f9eea1ffb2d0</td><td>cuhk01</td><td>CUHK01</td><td><a href="papers/44484d2866f222bbb9b6b0870890f9eea1ffb2d0.html" target="_blank">Human Reidentification with Transferred Metric Learning</a></td><td><a href="https://pdfs.semanticscholar.org/4448/4d2866f222bbb9b6b0870890f9eea1ffb2d0.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>258</td><td>160</td><td>98</td><td>12</td><td>142</td><td>115</td></tr><tr><td>57178b36c21fd7f4529ac6748614bb3374714e91</td><td>ijb_c</td><td>IJB-C</td><td><a href="papers/57178b36c21fd7f4529ac6748614bb3374714e91.html" target="_blank">IARPA Janus Benchmark - C: Face Dataset and Protocol</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Mazeetal_IARPAJanusBenchmarkCFaceDatasetAndProtocol_ICB2018.pdf" target="_blank">[pdf]</a></td><td>2018 International Conference on Biometrics (ICB)</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>9</td><td>3</td><td>6</td><td>2</td><td>9</td><td>0</td></tr><tr><td>0cb2dd5f178e3a297a0c33068961018659d0f443</td><td>ijb_c</td><td>IJB-B</td><td><a href="papers/0cb2dd5f178e3a297a0c33068961018659d0f443.html" target="_blank">IARPA Janus Benchmark-B Face Dataset</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Whitelametal_IARPAJanusBenchmark-BFaceDataset_CVPRW17.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td>edu</td><td>Michigan State University</td><td>United States</td><td>42.71856800</td><td>-84.47791571</td><td>28%</td><td>25</td><td>7</td><td>18</td><td>6</td><td>21</td><td>4</td></tr><tr><td>0297448f3ed948e136bb06ceff10eccb34e5bb77</td><td>ilids_mcts</td><td>i-LIDS</td><td><a href="papers/0297448f3ed948e136bb06ceff10eccb34e5bb77.html" target="_blank">Imagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems</a></td><td><span class="gray">[pdf]</a></td><td>Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology</td><td></td><td></td><td></td><td></td><td></td><td>38%</td><td>32</td><td>12</td><td>20</td><td>2</td><td>18</td><td>15</td></tr><tr><td>55c40cbcf49a0225e72d911d762c27bb1c2d14aa</td><td>ifad</td><td>IFAD</td><td><a href="papers/55c40cbcf49a0225e72d911d762c27bb1c2d14aa.html" target="_blank">Indian Face Age Database : A Database for Face Recognition with Age Variation</a></td><td><a href="https://pdfs.semanticscholar.org/55c4/0cbcf49a0225e72d911d762c27bb1c2d14aa.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>ca3e88d87e1344d076c964ea89d91a75c417f5ee</td><td>imfdb</td><td>IMFDB</td><td><a href="papers/ca3e88d87e1344d076c964ea89d91a75c417f5ee.html" target="_blank">Indian Movie Face Database: A benchmark for face recognition under wide variations</a></td><td><a href="http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/papers/Shankar2013Indian.pdf" target="_blank">[pdf]</a></td><td>2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)</td><td>edu</td><td>CVIT, IIITH, India</td><td>India</td><td>17.44595810</td><td>78.34959940</td><td>60%</td><td>15</td><td>9</td><td>6</td><td>0</td><td>10</td><td>5</td></tr><tr><td>95f12d27c3b4914e0668a268360948bce92f7db3</td><td>helen</td><td>Helen</td><td><a href="papers/95f12d27c3b4914e0668a268360948bce92f7db3.html" target="_blank">Interactive Facial Feature Localization</a></td><td><a href="https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>company</td><td>Facebook</td><td>United States</td><td>37.39367170</td><td>-122.08072620</td><td>59%</td><td>339</td><td>201</td><td>138</td><td>29</td><td>219</td><td>129</td></tr><tr><td>ad01687649d95cd5b56d7399a9603c4b8e2217d7</td><td>mrp_drone</td><td>MRP Drone</td><td><a href="papers/ad01687649d95cd5b56d7399a9603c4b8e2217d7.html" target="_blank">Investigating Open-World Person Re-identification Using a Drone</a></td><td><a href="https://pdfs.semanticscholar.org/ad01/687649d95cd5b56d7399a9603c4b8e2217d7.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>5</td><td>2</td><td>3</td><td>0</td><td>3</td><td>2</td></tr><tr><td>2f43b614607163abf41dfe5d17ef6749a1b61304</td><td>hrt_transgender</td><td>HRT Transgender</td><td><a href="papers/2f43b614607163abf41dfe5d17ef6749a1b61304.html" target="_blank">Investigating the Periocular-Based Face Recognition Across Gender Transformation</a></td><td><span class="gray">[pdf]</a></td><td>IEEE Transactions on Information Forensics and Security</td><td>edu</td><td>University of North Carolina at Wilmington</td><td>United States</td><td>34.22498270</td><td>-77.86907744</td><td>69%</td><td>13</td><td>9</td><td>4</td><td>0</td><td>6</td><td>8</td></tr><tr><td>066d71fcd997033dce4ca58df924397dfe0b5fd1</td><td>ifdb</td><td>IFDB</td><td><a href="papers/066d71fcd997033dce4ca58df924397dfe0b5fd1.html" target="_blank">Iranian Face Database and Evaluation with a New Detection Algorithm</a></td><td><a href="https://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>b71d1aa90dcbe3638888725314c0d56640c1fef1</td><td>ifdb</td><td>IFDB</td><td><a href="papers/b71d1aa90dcbe3638888725314c0d56640c1fef1.html" target="_blank">Iranian Face Database with age, pose and expression</a></td><td><a href="http://www.iranprc.org/pdf/paper/2007-02.pdf" target="_blank">[pdf]</a></td><td>2007 International Conference on Machine Vision</td><td>edu</td><td>Islamic Azad University</td><td>Iran</td><td>34.84529990</td><td>48.55962120</td><td>35%</td><td>20</td><td>7</td><td>13</td><td>2</td><td>12</td><td>9</td></tr><tr><td>137aa2f891d474fce1e7a1d1e9b3aefe21e22b34</td><td>hrt_transgender</td><td>HRT Transgender</td><td><a href="papers/137aa2f891d474fce1e7a1d1e9b3aefe21e22b34.html" target="_blank">Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset</a></td><td><a href="http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%20139/PID2859389.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>7</td><td>4</td><td>3</td><td>1</td><td>3</td><td>5</td></tr><tr><td>0b440695c822a8e35184fb2f60dcdaa8a6de84ae</td><td>kinectface</td><td>KinectFaceDB</td><td><a href="papers/0b440695c822a8e35184fb2f60dcdaa8a6de84ae.html" target="_blank">KinectFaceDB: A Kinect Database for Face Recognition</a></td><td><a href="http://www.eurecom.fr/fr/publication/4393/download/mm-publi-4393.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Systems, Man, and Cybernetics: Systems</td><td>edu</td><td>University of North Carolina at Chapel Hill</td><td>United States</td><td>35.91139710</td><td>-79.05045290</td><td>61%</td><td>75</td><td>46</td><td>29</td><td>6</td><td>26</td><td>50</td></tr><tr><td>4793f11fbca4a7dba898b9fff68f70d868e2497c</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/4793f11fbca4a7dba898b9fff68f70d868e2497c.html" target="_blank">Kinship verification through transfer learning</a></td><td><a href="http://ijcai.org/Proceedings/11/Papers/422.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>71</td><td>39</td><td>32</td><td>2</td><td>29</td><td>43</td></tr><tr><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td><td>lfw</td><td>LFW</td><td><a href="papers/370b5757a5379b15e30d619e4d3fb9e8e13f3256.html" target="_blank">Labeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments</a></td><td><a href="https://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>999</td><td>575</td><td>422</td><td>71</td><td>639</td><td>371</td></tr><tr><td>7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22</td><td>lfw</td><td>LFW</td><td><a href="papers/7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22.html" target="_blank">Labeled Faces in the Wild : A Survey</a></td><td><a href="https://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Stevens Institute of Technology</td><td>United States</td><td>40.74225200</td><td>-74.02709490</td><td>45%</td><td>99</td><td>45</td><td>54</td><td>8</td><td>63</td><td>36</td></tr><tr><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td><td>lfw</td><td>LFW</td><td><a href="papers/2d3482dcff69c7417c7b933f22de606a0e8e42d4.html" target="_blank">Labeled Faces in the Wild : Updates and New Reporting Procedures</a></td><td><a href="https://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Massachusetts</td><td>United States</td><td>42.38897850</td><td>-72.52869870</td><td>58%</td><td>123</td><td>71</td><td>52</td><td>3</td><td>72</td><td>50</td></tr><tr><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td><td>lag</td><td>LAG</td><td><a href="papers/0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e.html" target="_blank">Large age-gap face verification by feature injection in deep networks</a></td><td><a href="https://arxiv.org/pdf/1602.06149.pdf" target="_blank">[pdf]</a></td><td>Pattern Recognition Letters</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>3</td><td>4</td></tr><tr><td>07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1</td><td>uccs</td><td>UCCS</td><td><a href="papers/07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1.html" target="_blank">Large scale unconstrained open set face database</a></td><td><a href="http://vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>University of Colorado at Colorado Springs</td><td>United States</td><td>38.89646790</td><td>-104.80505940</td><td>80%</td><td>5</td><td>4</td><td>1</td><td>0</td><td>3</td><td>2</td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>mafl</td><td>MAFL</td><td><a href="papers/a0fd85b3400c7b3e11122f44dc5870ae2de9009a.html" target="_blank">Learning Deep Representation for Face Alignment with Auxiliary Attributes</a></td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>110</td><td>60</td><td>50</td><td>12</td><td>69</td><td>43</td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>mtfl</td><td>MTFL</td><td><a href="papers/a0fd85b3400c7b3e11122f44dc5870ae2de9009a.html" target="_blank">Learning Deep Representation for Face Alignment with Auxiliary Attributes</a></td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>110</td><td>60</td><td>50</td><td>12</td><td>69</td><td>43</td></tr><tr><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td><td>casia_webface</td><td>CASIA Webface</td><td><a href="papers/853bd61bc48a431b9b1c7cab10c603830c488e39.html" target="_blank">Learning Face Representation from Scratch</a></td><td><a href="https://arxiv.org/pdf/1411.7923.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td>edu</td><td>Chinese Academy of Sciences</td><td>China</td><td>40.00447950</td><td>116.37023800</td><td>60%</td><td>436</td><td>260</td><td>176</td><td>30</td><td>288</td><td>150</td></tr><tr><td>2a171f8d14b6b8735001a11c217af9587d095848</td><td>social_relation</td><td>Social Relation</td><td><a href="papers/2a171f8d14b6b8735001a11c217af9587d095848.html" target="_blank">Learning Social Relation Traits from Face Images</a></td><td><a href="https://arxiv.org/pdf/1509.03936.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>20</td><td>8</td><td>12</td><td>5</td><td>15</td><td>5</td></tr><tr><td>4e4746094bf60ee83e40d8597a6191e463b57f76</td><td>leeds_sports_pose_extended</td><td>Leeds Sports Pose Extended</td><td><a href="papers/4e4746094bf60ee83e40d8597a6191e463b57f76.html" target="_blank">Learning effective human pose estimation from inaccurate annotation</a></td><td><a href="http://www.comp.leeds.ac.uk/mat4saj/publications/johnson11cvpr.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>University of Leeds</td><td>United Kingdom</td><td>53.80387185</td><td>-1.55245712</td><td>64%</td><td>173</td><td>111</td><td>62</td><td>10</td><td>122</td><td>56</td></tr><tr><td>5981e6479c3fd4e31644db35d236bfb84ae46514</td><td>mot</td><td>MOT</td><td><a href="papers/5981e6479c3fd4e31644db35d236bfb84ae46514.html" target="_blank">Learning to associate: HybridBoosted multi-target tracker for crowded scene</a></td><td><a href="http://iris.usc.edu/Outlines/papers/2009/yuan-chang-nevatia-cvpr09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>University of Southern California</td><td>United States</td><td>34.02241490</td><td>-118.28634407</td><td>52%</td><td>330</td><td>172</td><td>157</td><td>27</td><td>196</td><td>139</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_buffy</td><td>Buffy Stickmen</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>215</td><td>157</td><td>35</td><td>251</td><td>129</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>215</td><td>157</td><td>35</td><td>251</td><td>129</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>215</td><td>157</td><td>35</td><td>251</td><td>129</td></tr><tr><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td><td>megaface</td><td>MegaFace</td><td><a href="papers/28d4e027c7e90b51b7d8908fce68128d1964668a.html" target="_blank">Level Playing Field for Million Scale Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1705.00393.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>University of Washington</td><td>United States</td><td>47.65432380</td><td>-122.30800894</td><td>39%</td><td>38</td><td>15</td><td>23</td><td>2</td><td>29</td><td>8</td></tr><tr><td>46a01565e6afe7c074affb752e7069ee3bf2e4ef</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/46a01565e6afe7c074affb752e7069ee3bf2e4ef.html" target="_blank">Local Descriptors Encoded by Fisher Vectors for Person Re-identification</a></td><td><a href="https://pdfs.semanticscholar.org/a105/f1ef67b4b02da38eadce8ffb4e13aa301a93.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>198</td><td>114</td><td>84</td><td>16</td><td>111</td><td>88</td></tr><tr><td>140438a77a771a8fb656b39a78ff488066eb6b50</td><td>lfw_p</td><td>LFWP</td><td><a href="papers/140438a77a771a8fb656b39a78ff488066eb6b50.html" target="_blank">Localizing Parts of Faces Using a Consensus of Exemplars</a></td><td><a href="http://neerajkumar.org/projects/face-parts/base/papers/nk_cvpr2011_faceparts.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>521</td><td>315</td><td>206</td><td>42</td><td>337</td><td>195</td></tr><tr><td>38b55d95189c5e69cf4ab45098a48fba407609b4</td><td>cuhk02</td><td>CUHK02</td><td><a href="papers/38b55d95189c5e69cf4ab45098a48fba407609b4.html" target="_blank">Locally Aligned Feature Transforms across Views</a></td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d594.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>242</td><td>129</td><td>113</td><td>17</td><td>139</td><td>102</td></tr><tr><td>8990cdce3f917dad622e43e033db686b354d057c</td><td>tiny_faces</td><td>TinyFace</td><td><a href="papers/8990cdce3f917dad622e43e033db686b354d057c.html" target="_blank">Low-Resolution Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1811.08965.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>c0387e788a52f10bf35d4d50659cfa515d89fbec</td><td>mars</td><td>MARS</td><td><a href="papers/c0387e788a52f10bf35d4d50659cfa515d89fbec.html" target="_blank">MARS: A Video Benchmark for Large-Scale Person Re-Identification</a></td><td><a href="http://liangzheng.org/1320.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>146</td><td>85</td><td>61</td><td>6</td><td>97</td><td>49</td></tr><tr><td>3dc3f0b64ef80f573e3a5f96e456e52ee980b877</td><td>georgia_tech_face_database</td><td>Georgia Tech Face</td><td><a href="papers/3dc3f0b64ef80f573e3a5f96e456e52ee980b877.html" target="_blank">MAXIMUM LIKELIHOOD TRAINING OF THE EMBEDDED HMM FOR FACE DETECTION AND RECOGNITION Ara V. Ne an and Monson H. Hayes III Center for Signal and Image Processing School of Electrical and Computer Engineering</a></td><td><a href="https://pdfs.semanticscholar.org/3dc3/f0b64ef80f573e3a5f96e456e52ee980b877.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>3</td><td>1</td><td>2</td><td>0</td><td>2</td><td>1</td></tr><tr><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td><td>morph</td><td>MORPH Commercial</td><td><a href="papers/9055b155cbabdce3b98e16e5ac9c0edf00f9552f.html" target="_blank">MORPH: a longitudinal image database of normal adult age-progression</a></td><td><span class="gray">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>424</td><td>225</td><td>198</td><td>26</td><td>239</td><td>190</td></tr><tr><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td><td>morph_nc</td><td>MORPH Non-Commercial</td><td><a href="papers/9055b155cbabdce3b98e16e5ac9c0edf00f9552f.html" target="_blank">MORPH: a longitudinal image database of normal adult age-progression</a></td><td><span class="gray">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>424</td><td>225</td><td>198</td><td>26</td><td>239</td><td>190</td></tr><tr><td>291265db88023e92bb8c8e6390438e5da148e8f5</td><td>msceleb</td><td>MsCeleb</td><td><a href="papers/291265db88023e92bb8c8e6390438e5da148e8f5.html" target="_blank">MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1607.08221.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>167</td><td>91</td><td>76</td><td>14</td><td>131</td><td>36</td></tr><tr><td>e58dd160a76349d46f881bd6ddbc2921f08d1050</td><td>gfw</td><td>YouTube Pose</td><td><a href="papers/e58dd160a76349d46f881bd6ddbc2921f08d1050.html" target="_blank">Merge or Not? Learning to Group Faces via Imitation Learning</a></td><td><a href="https://arxiv.org/pdf/1707.03986.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td><td>50_people_one_question</td><td>50 People One Question</td><td><a href="papers/5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725.html" target="_blank">Merging Pose Estimates Across Space and Time</a></td><td><a href="https://pdfs.semanticscholar.org/63b2/f5348af0f969dfc2afb4977732393c6459ec.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>87%</td><td>15</td><td>13</td><td>2</td><td>0</td><td>12</td><td>4</td></tr><tr><td>5e0f8c355a37a5a89351c02f174e7a5ddcb98683</td><td>coco</td><td>COCO</td><td><a href="papers/5e0f8c355a37a5a89351c02f174e7a5ddcb98683.html" target="_blank">Microsoft COCO: Common Objects in Context</a></td><td><a href="https://arxiv.org/pdf/1405.0312.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>999</td><td>569</td><td>430</td><td>29</td><td>799</td><td>193</td></tr><tr><td>a5a44a32a91474f00a3cda671a802e87c899fbb4</td><td>moments_in_time</td><td>Moments in Time</td><td><a href="papers/a5a44a32a91474f00a3cda671a802e87c899fbb4.html" target="_blank">Moments in Time Dataset: one million videos for event understanding</a></td><td><a href="https://arxiv.org/pdf/1801.03150.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>25</td><td>16</td><td>9</td><td>2</td><td>25</td><td>0</td></tr><tr><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td><td>tud_multiview</td><td>TUD-Multiview</td><td><a href="papers/436f798d1a4e54e5947c1e7d7375c31b2bdb4064.html" target="_blank">Monocular 3D pose estimation and tracking by detection</a></td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>TU Darmstadt</td><td>Germany</td><td>49.87482770</td><td>8.65632810</td><td>54%</td><td>302</td><td>164</td><td>138</td><td>34</td><td>207</td><td>100</td></tr><tr><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td><td>tud_stadtmitte</td><td>TUD-Stadtmitte</td><td><a href="papers/436f798d1a4e54e5947c1e7d7375c31b2bdb4064.html" target="_blank">Monocular 3D pose estimation and tracking by detection</a></td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>TU Darmstadt</td><td>Germany</td><td>49.87482770</td><td>8.65632810</td><td>54%</td><td>302</td><td>164</td><td>138</td><td>34</td><td>207</td><td>100</td></tr><tr><td>3b5b6d19d4733ab606c39c69a889f9e67967f151</td><td>qmul_grid</td><td>GRID</td><td><a href="papers/3b5b6d19d4733ab606c39c69a889f9e67967f151.html" target="_blank">Multi-camera activity correlation analysis</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0163.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Queen Mary University of London</td><td>United Kingdom</td><td>51.52472720</td><td>-0.03931035</td><td>62%</td><td>138</td><td>86</td><td>52</td><td>8</td><td>79</td><td>61</td></tr><tr><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td><td>tud_brussels</td><td>TUD-Brussels</td><td><a href="papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html" target="_blank">Multi-cue onboard pedestrian detection</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>217</td><td>121</td><td>96</td><td>14</td><td>133</td><td>86</td></tr><tr><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td><td>tud_motionpairs</td><td>TUD-Motionparis</td><td><a href="papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html" target="_blank">Multi-cue onboard pedestrian detection</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>217</td><td>121</td><td>96</td><td>14</td><td>133</td><td>86</td></tr><tr><td>32c801cb7fbeb742edfd94cccfca4934baec71da</td><td>ucf_crowd</td><td>UCF-CC-50</td><td><a href="papers/32c801cb7fbeb742edfd94cccfca4934baec71da.html" target="_blank">Multi-source Multi-scale Counting in Extremely Dense Crowd Images</a></td><td><a href="http://crcv-web.eecs.ucf.edu/papers/cvpr2013/Counting_V3o.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>125</td><td>88</td><td>37</td><td>6</td><td>73</td><td>52</td></tr><tr><td>1e3df3ca8feab0b36fd293fe689f93bb2aaac591</td><td>immediacy</td><td>Immediacy</td><td><a href="papers/1e3df3ca8feab0b36fd293fe689f93bb2aaac591.html" target="_blank">Multi-task Recurrent Neural Network for Immediacy Prediction</a></td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Chu_Multi-Task_Recurrent_Neural_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>25</td><td>16</td><td>9</td><td>2</td><td>21</td><td>5</td></tr><tr><td>2b926b3586399d028b46315d7d9fb9d879e4f79c</td><td>frav3d</td><td>FRAV3D</td><td><a href="papers/2b926b3586399d028b46315d7d9fb9d879e4f79c.html" target="_blank">Multimodal 2D, 2.5D & 3D Face Verification</a></td><td><a href="http://www.researchgate.net/profile/Enrique_Cabello/publication/224057733_Multimodal_2D_2.5D__3D_Face_Verification/links/0912f50f522298fa95000000.pdf" target="_blank">[pdf]</a></td><td>2006 International Conference on Image Processing</td><td>edu</td><td>Universidad Rey Juan Carlos, Spain</td><td></td><td>40.33586610</td><td>-3.87694320</td><td>50%</td><td>14</td><td>7</td><td>7</td><td>0</td><td>2</td><td>12</td></tr><tr><td>53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4</td><td>bp4d_plus</td><td>BP4D+</td><td><a href="papers/53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4.html" target="_blank">Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Multimodal_Spontaneous_Emotion_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>40</td><td>20</td><td>20</td><td>0</td><td>21</td><td>20</td></tr><tr><td>2fda164863a06a92d3a910b96eef927269aeb730</td><td>names_and_faces_news</td><td>News Dataset</td><td><a href="papers/2fda164863a06a92d3a910b96eef927269aeb730.html" target="_blank">Names and faces in the news</a></td><td><a href="http://ttic.uchicago.edu/~mmaire/papers/pdf/names_faces_cvpr2004.pdf" target="_blank">[pdf]</a></td><td>Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>294</td><td>150</td><td>143</td><td>29</td><td>215</td><td>82</td></tr><tr><td>4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06</td><td>distance_nighttime</td><td>Long Distance Heterogeneous Face</td><td><a href="papers/4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06.html" target="_blank">Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching</a></td><td><a href="https://pdfs.semanticscholar.org/4156/b7e88f2e0ab0a7c095b9bab199ae2b23bd06.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>21</td><td>9</td><td>12</td><td>3</td><td>11</td><td>10</td></tr><tr><td>3394168ff0719b03ff65bcea35336a76b21fe5e4</td><td>penn_fudan</td><td>Penn Fudan</td><td><a href="papers/3394168ff0719b03ff65bcea35336a76b21fe5e4.html" target="_blank">Object Detection Combining Recognition and Segmentation</a></td><td><a href="https://pdfs.semanticscholar.org/3394/168ff0719b03ff65bcea35336a76b21fe5e4.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>101</td><td>50</td><td>51</td><td>11</td><td>58</td><td>42</td></tr><tr><td>12ad3b5bbbf407f8e54ea692c07633d1a867c566</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/12ad3b5bbbf407f8e54ea692c07633d1a867c566.html" target="_blank">Object recognition using segmentation for feature detection</a></td><td><span class="gray">[pdf]</a></td><td>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.</td><td>edu</td><td>Inst. of Comput. Sci., Univ. of Leoben, Austria</td><td>Austria</td><td>47.38473720</td><td>15.09302010</td><td>41%</td><td>29</td><td>12</td><td>17</td><td>1</td><td>21</td><td>8</td></tr><tr><td>4f93cd09785c6e77bf4bc5a788e079df524c8d21</td><td>soton</td><td>SOTON HiD</td><td><a href="papers/4f93cd09785c6e77bf4bc5a788e079df524c8d21.html" target="_blank">On a Large Sequence-Based Human Gait Database</a></td><td><a href="https://eprints.soton.ac.uk/257901/1/Shutler_2002.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>148</td><td>86</td><td>62</td><td>17</td><td>104</td><td>49</td></tr><tr><td>6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c</td><td>afad</td><td>AFAD</td><td><a href="papers/6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c.html" target="_blank">Ordinal Regression with Multiple Output CNN for Age Estimation</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Niu_Ordinal_Regression_With_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>68</td><td>36</td><td>32</td><td>8</td><td>49</td><td>17</td></tr><tr><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td><td>market1203</td><td>Market 1203</td><td><a href="papers/a7fe834a0af614ce6b50dc093132b031dd9a856b.html" target="_blank">Orientation Driven Bag of Appearances for Person Re-identification</a></td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>4</td><td>4</td></tr><tr><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td><td>pku_reid</td><td>PKU-Reid</td><td><a href="papers/a7fe834a0af614ce6b50dc093132b031dd9a856b.html" target="_blank">Orientation Driven Bag of Appearances for Person Re-identification</a></td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>4</td><td>4</td></tr><tr><td>18ae7c9a4bbc832b8b14bc4122070d7939f5e00e</td><td>frgc</td><td>FRGC</td><td><a href="papers/18ae7c9a4bbc832b8b14bc4122070d7939f5e00e.html" target="_blank">Overview of the face recognition grand challenge</a></td><td><a href="http://ivizlab.sfu.ca/arya/Papers/IEEE/Proceedings/C%20V%20P%20R-%2005/Face%20Recognition%20Grand%20Challenge.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td>edu</td><td>NIST</td><td>United States</td><td>39.14004000</td><td>-77.21850600</td><td>50%</td><td>999</td><td>497</td><td>501</td><td>114</td><td>594</td><td>424</td></tr><tr><td>22909dd19a0ec3b6065334cb5be5392cb24d839d</td><td>pets</td><td>PETS 2017</td><td><a href="papers/22909dd19a0ec3b6065334cb5be5392cb24d839d.html" target="_blank">PETS 2017: Dataset and Challenge</a></td><td><a href="http://tahirnawaz.com/papers/2017_CVPRW_PETS2017Dataset_Luis_Nawaz_Cane_Ferryman.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>8</td><td>0</td><td>8</td><td>0</td><td>2</td><td>6</td></tr><tr><td>56ffa7d906b08d02d6d5a12c7377a57e24ef3391</td><td>unbc_shoulder_pain</td><td>UNBC-McMaster Pain</td><td><a href="papers/56ffa7d906b08d02d6d5a12c7377a57e24ef3391.html" target="_blank">Painful data: The UNBC-McMaster shoulder pain expression archive database</a></td><td><a href="http://www.iainm.com/iainm/Publications_files/2011_PAINFUL.pdf" target="_blank">[pdf]</a></td><td>Face and Gesture 2011</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>52%</td><td>184</td><td>95</td><td>89</td><td>23</td><td>112</td><td>71</td></tr><tr><td>55206f0b5f57ce17358999145506cd01e570358c</td><td>orl</td><td>ORL</td><td><a href="papers/55206f0b5f57ce17358999145506cd01e570358c.html" target="_blank">Parameterisation of a stochastic model for human face identification</a></td><td><a href="https://pdfs.semanticscholar.org/5520/6f0b5f57ce17358999145506cd01e570358c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>999</td><td>442</td><td>557</td><td>97</td><td>569</td><td>445</td></tr><tr><td>0486214fb58ee9a04edfe7d6a74c6d0f661a7668</td><td>chokepoint</td><td>ChokePoint</td><td><a href="papers/0486214fb58ee9a04edfe7d6a74c6d0f661a7668.html" target="_blank">Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition</a></td><td><a href="https://arxiv.org/pdf/1304.0869.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>128</td><td>68</td><td>60</td><td>6</td><td>73</td><td>60</td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>apis</td><td>APiS1.0</td><td><a href="papers/488e475eeb3bb39a145f23ede197cd3620f1d98a.html" target="_blank">Pedestrian Attribute Classification in Surveillance: Database and Evaluation</a></td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>13</td><td>13</td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>svs</td><td>SVS</td><td><a href="papers/488e475eeb3bb39a145f23ede197cd3620f1d98a.html" target="_blank">Pedestrian Attribute Classification in Surveillance: Database and Evaluation</a></td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>13</td><td>13</td></tr><tr><td>2a4bbee0b4cf52d5aadbbc662164f7efba89566c</td><td>peta</td><td>PETA</td><td><a href="papers/2a4bbee0b4cf52d5aadbbc662164f7efba89566c.html" target="_blank">Pedestrian Attribute Recognition At Far Distance</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>68%</td><td>80</td><td>54</td><td>26</td><td>2</td><td>51</td><td>28</td></tr><tr><td>f72f6a45ee240cc99296a287ff725aaa7e7ebb35</td><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td><a href="papers/f72f6a45ee240cc99296a287ff725aaa7e7ebb35.html" target="_blank">Pedestrian Detection: An Evaluation of the State of the Art</a></td><td><a href="http://vision.caltech.edu/Image_Datasets/CaltechPedestrians/files/PAMI12pedestrians.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>California Institute of Technology</td><td>United States</td><td>34.13710185</td><td>-118.12527487</td><td>49%</td><td>999</td><td>485</td><td>514</td><td>71</td><td>541</td><td>464</td></tr><tr><td>1dc35905a1deff8bc74688f2d7e2f48fd2273275</td><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td><a href="papers/1dc35905a1deff8bc74688f2d7e2f48fd2273275.html" target="_blank">Pedestrian detection: A benchmark</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1378.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>519</td><td>261</td><td>258</td><td>27</td><td>289</td><td>233</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_campus</td><td>TUD-Campus</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>529</td><td>280</td><td>248</td><td>40</td><td>324</td><td>213</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_crossing</td><td>TUD-Crossing</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>529</td><td>280</td><td>248</td><td>40</td><td>324</td><td>213</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_pedestrian</td><td>TUD-Pedestrian</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>529</td><td>280</td><td>248</td><td>40</td><td>324</td><td>213</td></tr><tr><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td><td>duke_mtmc</td><td>Duke MTMC</td><td><a href="papers/27a2fad58dd8727e280f97036e0d2bc55ef5424c.html" target="_blank">Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</a></td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>136</td><td>79</td><td>57</td><td>7</td><td>108</td><td>27</td></tr><tr><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td><td>mot</td><td>MOT</td><td><a href="papers/27a2fad58dd8727e280f97036e0d2bc55ef5424c.html" target="_blank">Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</a></td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>136</td><td>79</td><td>57</td><td>7</td><td>108</td><td>27</td></tr><tr><td>16c7c31a7553d99f1837fc6e88e77b5ccbb346b8</td><td>prid</td><td>PRID</td><td><a href="papers/16c7c31a7553d99f1837fc6e88e77b5ccbb346b8.html" target="_blank">Person Re-identification by Descriptive and Discriminative Classification</a></td><td><a href="https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>352</td><td>204</td><td>148</td><td>27</td><td>196</td><td>157</td></tr><tr><td>98bb029afe2a1239c3fdab517323066f0957b81b</td><td>ilids_vid_reid</td><td>iLIDS-VID</td><td><a href="papers/98bb029afe2a1239c3fdab517323066f0957b81b.html" target="_blank">Person Re-identification by Video Ranking</a></td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>210</td><td>120</td><td>90</td><td>10</td><td>115</td><td>94</td></tr><tr><td>98bb029afe2a1239c3fdab517323066f0957b81b</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/98bb029afe2a1239c3fdab517323066f0957b81b.html" target="_blank">Person Re-identification by Video Ranking</a></td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>210</td><td>120</td><td>90</td><td>10</td><td>115</td><td>94</td></tr><tr><td>0b84f07af44f964817675ad961def8a51406dd2e</td><td>prw</td><td>PRW</td><td><a href="papers/0b84f07af44f964817675ad961def8a51406dd2e.html" target="_blank">Person Re-identification in the Wild</a></td><td><a href="https://arxiv.org/pdf/1604.02531.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>65</td><td>33</td><td>32</td><td>1</td><td>46</td><td>17</td></tr><tr><td>ec792ad2433b6579f2566c932ee414111e194537</td><td>msmt_17</td><td>MSMT17</td><td><a href="papers/ec792ad2433b6579f2566c932ee414111e194537.html" target="_blank">Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</a></td><td><a href="https://arxiv.org/pdf/1711.08565.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>14</td><td>10</td><td>4</td><td>1</td><td>11</td><td>3</td></tr><tr><td>1c2802c2199b6d15ecefe7ba0c39bfe44363de38</td><td>youtube_poses</td><td>YouTube Pose</td><td><a href="papers/1c2802c2199b6d15ecefe7ba0c39bfe44363de38.html" target="_blank">Personalizing Human Video Pose Estimation</a></td><td><a href="https://arxiv.org/pdf/1511.06676.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>66%</td><td>32</td><td>21</td><td>11</td><td>2</td><td>29</td><td>5</td></tr><tr><td>b92a1ed9622b8268ae3ac9090e25789fc41cc9b8</td><td>pornodb</td><td>Pornography DB</td><td><a href="papers/b92a1ed9622b8268ae3ac9090e25789fc41cc9b8.html" target="_blank">Pooling in image representation: The visual codeword point of view</a></td><td><a href="http://cedric.cnam.fr/~thomen/papers/avila_CVIU2012_final.pdf" target="_blank">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>32%</td><td>77</td><td>25</td><td>52</td><td>7</td><td>46</td><td>34</td></tr><tr><td>2830fb5282de23d7784b4b4bc37065d27839a412</td><td>h3d</td><td>H3D</td><td><a href="papers/2830fb5282de23d7784b4b4bc37065d27839a412.html" target="_blank">Poselets: Body part detectors trained using 3D human pose annotations</a></td><td><a href="http://http.cs.berkeley.edu/Research/Projects/CS/vision/human/poselets_iccv09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 12th International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>707</td><td>368</td><td>339</td><td>67</td><td>509</td><td>215</td></tr><tr><td>3765df816dc5a061bc261e190acc8bdd9d47bec0</td><td>rafd</td><td>RaFD</td><td><a href="papers/3765df816dc5a061bc261e190acc8bdd9d47bec0.html" target="_blank">Presentation and validation of the Radboud Faces Database</a></td><td><a href="https://pdfs.semanticscholar.org/3765/df816dc5a061bc261e190acc8bdd9d47bec0.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>39%</td><td>446</td><td>175</td><td>271</td><td>43</td><td>322</td><td>136</td></tr><tr><td>636b8ffc09b1b23ff714ac8350bb35635e49fa3c</td><td>caltech_10k_web_faces</td><td>Caltech 10K Web Faces</td><td><a href="papers/636b8ffc09b1b23ff714ac8350bb35635e49fa3c.html" target="_blank">Pruning training sets for learning of object categories</a></td><td><a href="http://authors.library.caltech.edu/11469/1/ANGcvpr05.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>60</td><td>39</td><td>21</td><td>5</td><td>43</td><td>17</td></tr><tr><td>377f2b65e6a9300448bdccf678cde59449ecd337</td><td>ufdd</td><td>UFDD</td><td><a href="papers/377f2b65e6a9300448bdccf678cde59449ecd337.html" target="_blank">Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</a></td><td><a href="https://arxiv.org/pdf/1804.10275.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>2</td><td>0</td><td>2</td><td>0</td><td>2</td><td>0</td></tr><tr><td>140c95e53c619eac594d70f6369f518adfea12ef</td><td>ijb_c</td><td>IJB-A</td><td><a href="papers/140c95e53c619eac594d70f6369f518adfea12ef.html" target="_blank">Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Klareetal_UnconstrainedFaceDetectionRecognitionJanus_CVPR15.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>222</td><td>123</td><td>99</td><td>19</td><td>161</td><td>62</td></tr><tr><td>d80a3d1f3a438e02a6685e66ee908446766fefa9</td><td>megaage</td><td>MegaAge</td><td><a href="papers/d80a3d1f3a438e02a6685e66ee908446766fefa9.html" target="_blank">Quantifying Facial Age by Posterior of Age Comparisons</a></td><td><a href="https://arxiv.org/pdf/1708.09687.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>25%</td><td>4</td><td>1</td><td>3</td><td>1</td><td>4</td><td>0</td></tr><tr><td>922e0a51a3b8c67c4c6ac09a577ff674cbd28b34</td><td>v47</td><td>V47</td><td><a href="papers/922e0a51a3b8c67c4c6ac09a577ff674cbd28b34.html" target="_blank">Re-identification of pedestrians with variable occlusion and scale</a></td><td><span class="gray">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td>edu</td><td>Kingston University</td><td>United Kingdom</td><td>51.42930860</td><td>-0.26840440</td><td>10%</td><td>10</td><td>1</td><td>9</td><td>2</td><td>6</td><td>4</td></tr><tr><td>6f3c76b7c0bd8e1d122c6ea808a271fd4749c951</td><td>ward</td><td>WARD</td><td><a href="papers/6f3c76b7c0bd8e1d122c6ea808a271fd4749c951.html" target="_blank">Re-identify people in wide area camera network</a></td><td><a href="http://users.dimi.uniud.it/~niki.martinel/data/publications/2012/CVPR/MarMicCVPR2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>38%</td><td>55</td><td>21</td><td>34</td><td>2</td><td>35</td><td>19</td></tr><tr><td>54983972aafc8e149259d913524581357b0f91c3</td><td>reseed</td><td>ReSEED</td><td><a href="papers/54983972aafc8e149259d913524581357b0f91c3.html" target="_blank">ReSEED: social event dEtection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>6</td><td>4</td><td>2</td><td>1</td><td>1</td><td>5</td></tr><tr><td>65355cbb581a219bd7461d48b3afd115263ea760</td><td>complex_activities</td><td>Ongoing Complex Activities</td><td><a href="papers/65355cbb581a219bd7461d48b3afd115263ea760.html" target="_blank">Recognition of ongoing complex activities by sequence prediction over a hierarchical label space</a></td><td><a href="https://scalable.mpi-inf.mpg.de/files/2016/01/main_wacv.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Winter Conference on Applications of Computer Vision (WACV)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>e8de844fefd54541b71c9823416daa238be65546</td><td>visual_phrases</td><td>Phrasal Recognition</td><td><a href="papers/e8de844fefd54541b71c9823416daa238be65546.html" target="_blank">Recognition using visual phrases</a></td><td><a href="http://vision.cs.uiuc.edu/phrasal/recognition_using_visual_phrases.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>University of Illinois, Urbana-Champaign</td><td>United States</td><td>40.11116745</td><td>-88.22587665</td><td>58%</td><td>233</td><td>135</td><td>98</td><td>18</td><td>177</td><td>58</td></tr><tr><td>356b431d4f7a2a0a38cf971c84568207dcdbf189</td><td>wider</td><td>WIDER</td><td><a href="papers/356b431d4f7a2a0a38cf971c84568207dcdbf189.html" target="_blank">Recognize complex events from static images by fusing deep channels</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2015/supplemental/Xiong_Recognize_Complex_Events_2015_CVPR_supplemental.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>45</td><td>29</td><td>16</td><td>1</td><td>30</td><td>15</td></tr><tr><td>25474c21613607f6bb7687a281d5f9d4ffa1f9f3</td><td>faceplace</td><td>Face Place</td><td><a href="papers/25474c21613607f6bb7687a281d5f9d4ffa1f9f3.html" target="_blank">Recognizing disguised faces</a></td><td><a href="https://pdfs.semanticscholar.org/d936/7ceb0be378c3a9ddf7cb741c678c1a3c574c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>24</td><td>8</td><td>16</td><td>0</td><td>18</td><td>6</td></tr><tr><td>4053e3423fb70ad9140ca89351df49675197196a</td><td>bio_id</td><td>BioID Face</td><td><a href="papers/4053e3423fb70ad9140ca89351df49675197196a.html" target="_blank">Robust Face Detection Using the Hausdorff Distance</a></td><td><a href="http://facedetection.homepage.t-online.de/downloads/AVBPA01BioID.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>498</td><td>237</td><td>261</td><td>56</td><td>330</td><td>179</td></tr><tr><td>2724ba85ec4a66de18da33925e537f3902f21249</td><td>cofw</td><td>COFW</td><td><a href="papers/2724ba85ec4a66de18da33925e537f3902f21249.html" target="_blank">Robust Face Landmark Estimation under Occlusion</a></td><td><a href="http://authors.library.caltech.edu/45988/1/ICCV13%20Burgos-Artizzu.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision</td><td>edu</td><td>California Institute of Technology</td><td>United States</td><td>34.13710185</td><td>-118.12527487</td><td>61%</td><td>305</td><td>186</td><td>119</td><td>16</td><td>192</td><td>116</td></tr><tr><td>c570d1247e337f91e555c3be0e8c8a5aba539d9f</td><td>mcgill</td><td>McGill Real World</td><td><a href="papers/c570d1247e337f91e555c3be0e8c8a5aba539d9f.html" target="_blank">Robust semi-automatic head pose labeling for real-world face video sequences</a></td><td><span class="gray">[pdf]</a></td><td>Multimedia Tools and Applications</td><td>edu</td><td>McGill University</td><td>Canada</td><td>45.50397610</td><td>-73.57496870</td><td>44%</td><td>18</td><td>8</td><td>10</td><td>0</td><td>13</td><td>7</td></tr><tr><td>e27ef52c641c2b5100a1b34fd0b819e84a31b4df</td><td>sarc3d</td><td>Sarc3D</td><td><a href="papers/e27ef52c641c2b5100a1b34fd0b819e84a31b4df.html" target="_blank">SARC3D: A New 3D Body Model for People Tracking and Re-identification</a></td><td><a href="https://pdfs.semanticscholar.org/e27e/f52c641c2b5100a1b34fd0b819e84a31b4df.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>41%</td><td>29</td><td>12</td><td>17</td><td>3</td><td>17</td><td>12</td></tr><tr><td>bd26dabab576adb6af30484183c9c9c8379bf2e0</td><td>scut_fbp</td><td>SCUT-FBP</td><td><a href="papers/bd26dabab576adb6af30484183c9c9c8379bf2e0.html" target="_blank">SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</a></td><td><a href="https://arxiv.org/pdf/1511.02459.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Systems, Man, and Cybernetics</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>14</td><td>6</td><td>8</td><td>3</td><td>5</td><td>9</td></tr><tr><td>29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d</td><td>scface</td><td>SCface</td><td><a href="papers/29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d.html" target="_blank">SCface – surveillance cameras face database</a></td><td><a href="http://scface.org/SCface%20-%20Surveillance%20Cameras%20Face%20Database.pdf" target="_blank">[pdf]</a></td><td>Multimedia Tools and Applications</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>178</td><td>90</td><td>88</td><td>15</td><td>90</td><td>89</td></tr><tr><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td><td>stair_actions</td><td>STAIR Action</td><td><a href="papers/d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9.html" target="_blank">STAIR Actions: A Video Dataset of Everyday Home Actions</a></td><td><a href="https://arxiv.org/pdf/1804.04326.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>833fa04463d90aab4a9fe2870d480f0b40df446e</td><td>sun_attributes</td><td>SUN</td><td><a href="papers/833fa04463d90aab4a9fe2870d480f0b40df446e.html" target="_blank">SUN attribute database: Discovering, annotating, and recognizing scene attributes</a></td><td><a href="http://static.cs.brown.edu/~gen/pub_papers/SUN_Attribute_Database_CVPR2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Brown University</td><td>United States</td><td>41.82686820</td><td>-71.40123146</td><td>58%</td><td>269</td><td>156</td><td>113</td><td>29</td><td>215</td><td>57</td></tr><tr><td>4308bd8c28e37e2ed9a3fcfe74d5436cce34b410</td><td>market_1501</td><td>Market 1501</td><td><a href="papers/4308bd8c28e37e2ed9a3fcfe74d5436cce34b410.html" target="_blank">Scalable Person Re-identification: A Benchmark</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>394</td><td>238</td><td>156</td><td>18</td><td>272</td><td>116</td></tr><tr><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td><td>facebook_100</td><td>Facebook100</td><td><a href="papers/9c23859ec7313f2e756a3e85575735e0c52249f4.html" target="_blank">Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</a></td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>Harvard University</td><td>United States</td><td>42.36782045</td><td>-71.12666653</td><td>58%</td><td>50</td><td>29</td><td>21</td><td>3</td><td>39</td><td>11</td></tr><tr><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td><td>pubfig_83</td><td>pubfig83</td><td><a href="papers/9c23859ec7313f2e756a3e85575735e0c52249f4.html" target="_blank">Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</a></td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>Harvard University</td><td>United States</td><td>42.36782045</td><td>-71.12666653</td><td>58%</td><td>50</td><td>29</td><td>21</td><td>3</td><td>39</td><td>11</td></tr><tr><td>51eba481dac6b229a7490f650dff7b17ce05df73</td><td>imsitu</td><td>imSitu</td><td><a href="papers/51eba481dac6b229a7490f650dff7b17ce05df73.html" target="_blank">Situation Recognition: Visual Semantic Role Labeling for Image Understanding</a></td><td><a href="http://allenai.org/content/publications/SituationRecognition.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>48</td><td>30</td><td>18</td><td>2</td><td>46</td><td>2</td></tr><tr><td>570f37ed63142312e6ccdf00ecc376341ec72b9f</td><td>stanford_drone</td><td>Stanford Drone</td><td><a href="papers/570f37ed63142312e6ccdf00ecc376341ec72b9f.html" target="_blank">Social LSTM: Human Trajectory Prediction in Crowded Spaces</a></td><td><a href="http://cs.stanford.edu/groups/vision/pdf/CVPR16_N_LSTM.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>229</td><td>106</td><td>123</td><td>5</td><td>150</td><td>79</td></tr><tr><td>23e824d1dfc33f3780dd18076284f07bd99f1c43</td><td>mifs</td><td>MIFS</td><td><a href="papers/23e824d1dfc33f3780dd18076284f07bd99f1c43.html" target="_blank">Spoofing faces using makeup: An investigative study</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenFaceMakeupSpoof_ISBA2017.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)</td><td>edu</td><td>INRIA Méditerranée</td><td>France</td><td>43.61581310</td><td>7.06838000</td><td>60%</td><td>5</td><td>3</td><td>2</td><td>0</td><td>1</td><td>4</td></tr><tr><td>1a40092b493c6b8840257ab7f96051d1a4dbfeb2</td><td>sports_videos_in_the_wild</td><td>SVW</td><td><a href="papers/1a40092b493c6b8840257ab7f96051d1a4dbfeb2.html" target="_blank">Sports Videos in the Wild (SVW): A video dataset for sports analysis</a></td><td><a href="http://cse.msu.edu/~liuxm/publication/Safdarnejad_Liu_Udpa_Andrus_Wood_Craven_FG2015.pdf" target="_blank">[pdf]</a></td><td>2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td></td><td></td><td></td><td></td><td></td><td>83%</td><td>6</td><td>5</td><td>1</td><td>1</td><td>5</td><td>1</td></tr><tr><td>9361b784e73e9238d5cefbea5ac40d35d1e3103f</td><td>towncenter</td><td>TownCenter</td><td><a href="papers/9361b784e73e9238d5cefbea5ac40d35d1e3103f.html" target="_blank">Stable multi-target tracking in real-time surveillance video</a></td><td><a href="http://ben.benfold.com/docs/benfold_reid_cvpr2011-preprint.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>310</td><td>137</td><td>173</td><td>24</td><td>180</td><td>131</td></tr><tr><td>c866a2afc871910e3282fd9498dce4ab20f6a332</td><td>qmul_surv_face</td><td>QMUL-SurvFace</td><td><a href="papers/c866a2afc871910e3282fd9498dce4ab20f6a332.html" target="_blank">Surveillance Face Recognition Challenge</a></td><td><a href="https://arxiv.org/pdf/1804.09691.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f</td><td>pku</td><td>PKU</td><td><a href="papers/f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f.html" target="_blank">Swiss-System Based Cascade Ranking for Gait-Based Person Re-Identification</a></td><td><a href="https://pdfs.semanticscholar.org/f6c8/d5e35d7e4d60a0104f233ac1a3ab757da53f.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>3</td><td>2</td><td>1</td><td>0</td><td>1</td><td>2</td></tr><tr><td>4d58f886f5150b2d5e48fd1b5a49e09799bf895d</td><td>texas_3dfrd</td><td>Texas 3DFRD</td><td><a href="papers/4d58f886f5150b2d5e48fd1b5a49e09799bf895d.html" target="_blank">Texas 3D Face Recognition Database</a></td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ssiai_may10.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)</td><td></td><td></td><td></td><td></td><td></td><td>39%</td><td>61</td><td>24</td><td>37</td><td>3</td><td>37</td><td>25</td></tr><tr><td>6d96f946aaabc734af7fe3fc4454cf8547fcd5ed</td><td>ar_facedb</td><td>AR Face</td><td><a href="papers/6d96f946aaabc734af7fe3fc4454cf8547fcd5ed.html" target="_blank">The AR face database</a></td><td><span class="gray">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>999</td><td>526</td><td>473</td><td>51</td><td>459</td><td>573</td></tr><tr><td>2485c98aa44131d1a2f7d1355b1e372f2bb148ad</td><td>cas_peal</td><td>CAS-PEAL</td><td><a href="papers/2485c98aa44131d1a2f7d1355b1e372f2bb148ad.html" target="_blank">The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</a></td><td><a href="http://www.jdl.ac.cn/peal/files/ieee_smc_a_gao_cas-peal.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>415</td><td>209</td><td>206</td><td>39</td><td>189</td><td>232</td></tr><tr><td>47662d1a368daf70ba70ef2d59eb6209f98b675d</td><td>fia</td><td>CMU FiA</td><td><a href="papers/47662d1a368daf70ba70ef2d59eb6209f98b675d.html" target="_blank">The CMU Face In Action (FIA) Database</a></td><td><a href="https://pdfs.semanticscholar.org/4766/2d1a368daf70ba70ef2d59eb6209f98b675d.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>55</td><td>24</td><td>31</td><td>5</td><td>41</td><td>17</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td>cmu_pie</td><td>CMU PIE</td><td><a href="papers/4d423acc78273b75134e2afd1777ba6d3a398973.html" target="_blank">The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces</a></td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>742</td><td>396</td><td>344</td><td>59</td><td>416</td><td>329</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td>multi_pie</td><td>MULTIPIE</td><td><a href="papers/4d423acc78273b75134e2afd1777ba6d3a398973.html" target="_blank">The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces</a></td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>742</td><td>396</td><td>344</td><td>59</td><td>416</td><td>329</td></tr><tr><td>4df3143922bcdf7db78eb91e6b5359d6ada004d2</td><td>cfd</td><td>CFD</td><td><a href="papers/4df3143922bcdf7db78eb91e6b5359d6ada004d2.html" target="_blank">The Chicago face database: A free stimulus set of faces and norming data.</a></td><td><a href="https://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf" target="_blank">[pdf]</a></td><td>Behavior research methods</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>83</td><td>40</td><td>43</td><td>2</td><td>63</td><td>19</td></tr><tr><td>20388099cc415c772926e47bcbbe554e133343d1</td><td>cafe</td><td>CAFE</td><td><a href="papers/20388099cc415c772926e47bcbbe554e133343d1.html" target="_blank">The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults</a></td><td><a href="https://pdfs.semanticscholar.org/2038/8099cc415c772926e47bcbbe554e133343d1.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>33</td><td>16</td><td>17</td><td>3</td><td>28</td><td>5</td></tr><tr><td>5ffd74d2873b7cba2cbc5fd295cc7fbdedca22a2</td><td>cityscapes</td><td>Cityscapes</td><td><a href="papers/5ffd74d2873b7cba2cbc5fd295cc7fbdedca22a2.html" target="_blank">The Cityscapes Dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>54</td><td>32</td><td>22</td><td>3</td><td>40</td><td>14</td></tr><tr><td>32cde90437ab5a70cf003ea36f66f2de0e24b3ab</td><td>cityscapes</td><td>Cityscapes</td><td><a href="papers/32cde90437ab5a70cf003ea36f66f2de0e24b3ab.html" target="_blank">The Cityscapes Dataset for Semantic Urban Scene Understanding</a></td><td><a href="https://arxiv.org/pdf/1604.01685.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>771</td><td>403</td><td>368</td><td>54</td><td>624</td><td>138</td></tr><tr><td>4e6ee936eb50dd032f7138702fa39b7c18ee8907</td><td>dartmouth_children</td><td>Dartmouth Children</td><td><a href="papers/4e6ee936eb50dd032f7138702fa39b7c18ee8907.html" target="_blank">The Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set</a></td><td><a href="https://pdfs.semanticscholar.org/4e6e/e936eb50dd032f7138702fa39b7c18ee8907.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>20</td><td>9</td><td>11</td><td>2</td><td>17</td><td>4</td></tr><tr><td>9e31e77f9543ab42474ba4e9330676e18c242e72</td><td>imdb_face</td><td>IMDB Face</td><td><a href="papers/9e31e77f9543ab42474ba4e9330676e18c242e72.html" target="_blank">The Devil of Face Recognition is in the Noise</a></td><td><a href="https://arxiv.org/pdf/1807.11649.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Nanyang Technological University</td><td>Singapore</td><td>1.34841040</td><td>103.68297965</td><td>20%</td><td>5</td><td>1</td><td>4</td><td>0</td><td>3</td><td>1</td></tr><tr><td>71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6</td><td>umd_faces</td><td>UMD</td><td><a href="papers/71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6.html" target="_blank">The Do’s and Don’ts for CNN-Based Face Verification</a></td><td><a href="https://arxiv.org/pdf/1705.07426.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Computer Vision Workshops (ICCVW)</td><td></td><td></td><td></td><td></td><td></td><td>36%</td><td>25</td><td>9</td><td>16</td><td>3</td><td>17</td><td>6</td></tr><tr><td>f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4</td><td>europersons</td><td>EuroCity Persons</td><td><a href="papers/f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4.html" target="_blank">The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</a></td><td><a href="https://arxiv.org/pdf/1805.07193.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td></tr><tr><td>4d9a02d080636e9666c4d1cc438b9893391ec6c7</td><td>cohn_kanade_plus</td><td>CK+</td><td><a href="papers/4d9a02d080636e9666c4d1cc438b9893391ec6c7.html" target="_blank">The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression</a></td><td><a href="http://www.iainm.com/iainm/Publications_files/2010_The%20Extended.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops</td><td>edu</td><td>University of Pittsburgh</td><td>United States</td><td>40.44415295</td><td>-79.96243993</td><td>55%</td><td>975</td><td>535</td><td>439</td><td>67</td><td>475</td><td>510</td></tr><tr><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td><td>feret</td><td>FERET</td><td><a href="papers/0f0fcf041559703998abf310e56f8a2f90ee6f21.html" target="_blank">The FERET Evaluation Methodology for Face-Recognition Algorithms</a></td><td><a href="https://pdfs.semanticscholar.org/5099/7a5605c1f61e09e9a96789ed7495be6625aa.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>999</td><td>482</td><td>517</td><td>103</td><td>560</td><td>454</td></tr><tr><td>0c4a139bb87c6743c7905b29a3cfec27a5130652</td><td>feret</td><td>FERET</td><td><a href="papers/0c4a139bb87c6743c7905b29a3cfec27a5130652.html" target="_blank">The FERET Verification Testing Protocol for Face Recognition Algorithms</a></td><td><a href="https://pdfs.semanticscholar.org/8d2a/1c768fce6f71584dd993fb97e7b6419aaf60.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>112</td><td>49</td><td>63</td><td>11</td><td>79</td><td>35</td></tr><tr><td>dc8b25e35a3acb812beb499844734081722319b4</td><td>feret</td><td>FERET</td><td><a href="papers/dc8b25e35a3acb812beb499844734081722319b4.html" target="_blank">The FERET database and evaluation procedure for face-recognition algorithms</a></td><td><a href="http://biometrics.nist.gov/cs_links/face/frvt/feret/FERET_Database_evaluation_procedure.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>999</td><td>443</td><td>556</td><td>106</td><td>606</td><td>413</td></tr><tr><td>8f02ec0be21461fbcedf51d864f944cfc42c875f</td><td>hda_plus</td><td>HDA+</td><td><a href="papers/8f02ec0be21461fbcedf51d864f944cfc42c875f.html" target="_blank">The HDA+ Data Set for Research on Fully Automated Re-identification Systems</a></td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w19/11%20-%20The%20HDA%20data%20set%20for%20research%20on%20fully.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>35%</td><td>17</td><td>6</td><td>11</td><td>2</td><td>11</td><td>6</td></tr><tr><td>9a9877791945c6fa4c1743ec6d3fb32570ef8481</td><td>m2vts</td><td>m2vts</td><td><a href="papers/9a9877791945c6fa4c1743ec6d3fb32570ef8481.html" target="_blank">The M2VTS Multimodal Face Database (Release 1.00)</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Laboratoire de Télécommunications et Télédétection, UCL, Louvain-La-Neuve, Belgium</td><td>Belgium</td><td>50.66968750</td><td>4.61559090</td><td>43%</td><td>129</td><td>55</td><td>74</td><td>4</td><td>80</td><td>54</td></tr><tr><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td><td>mpi_large</td><td>Large MPI Facial Expression</td><td><a href="papers/ea050801199f98a1c7c1df6769f23f658299a3ae.html" target="_blank">The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</a></td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>28</td><td>13</td><td>15</td><td>4</td><td>24</td><td>4</td></tr><tr><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td><td>mpi_small</td><td>Small MPI Facial Expression</td><td><a href="papers/ea050801199f98a1c7c1df6769f23f658299a3ae.html" target="_blank">The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</a></td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>28</td><td>13</td><td>15</td><td>4</td><td>24</td><td>4</td></tr><tr><td>578d4ad74818086bb64f182f72e2c8bd31e3d426</td><td>mr2</td><td>MR2</td><td><a href="papers/578d4ad74818086bb64f182f72e2c8bd31e3d426.html" target="_blank">The MR2: A multi-racial, mega-resolution database of facial stimuli.</a></td><td><a href="https://pdfs.semanticscholar.org/be5b/455abd379240460d022a0e246615b0b86c14.pdf" target="_blank">[pdf]</a></td><td>Behavior research methods</td><td></td><td></td><td></td><td></td><td></td><td>14%</td><td>7</td><td>1</td><td>6</td><td>0</td><td>7</td><td>0</td></tr><tr><td>f1af714b92372c8e606485a3982eab2f16772ad8</td><td>mug_faces</td><td>MUG Faces</td><td><a href="papers/f1af714b92372c8e606485a3982eab2f16772ad8.html" target="_blank">The MUG facial expression database</a></td><td><span class="gray">[pdf]</a></td><td>11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10</td><td>edu</td><td>Aristotle University of Thessaloniki</td><td>Greece</td><td>40.62984145</td><td>22.95889350</td><td>43%</td><td>68</td><td>29</td><td>39</td><td>5</td><td>28</td><td>40</td></tr><tr><td>79828e6e9f137a583082b8b5a9dfce0c301989b8</td><td>mapillary</td><td>Mapillary</td><td><a href="papers/79828e6e9f137a583082b8b5a9dfce0c301989b8.html" target="_blank">The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</a></td><td><a href="http://openaccess.thecvf.com/content_ICCV_2017/papers/Neuhold_The_Mapillary_Vistas_ICCV_2017_paper.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>44</td><td>23</td><td>21</td><td>0</td><td>36</td><td>7</td></tr><tr><td>96e0cfcd81cdeb8282e29ef9ec9962b125f379b0</td><td>megaface</td><td>MegaFace</td><td><a href="papers/96e0cfcd81cdeb8282e29ef9ec9962b125f379b0.html" target="_blank">The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</a></td><td><a href="https://arxiv.org/pdf/1512.00596.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>121</td><td>71</td><td>50</td><td>9</td><td>98</td><td>22</td></tr><tr><td>0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a</td><td>voc</td><td>VOC</td><td><a href="papers/0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a.html" target="_blank">The Pascal Visual Object Classes (VOC) Challenge</a></td><td><a href="http://eprints.pascal-network.org/archive/00006187/01/PascalVOC_IJCV2009.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>58%</td><td>999</td><td>575</td><td>424</td><td>35</td><td>611</td><td>414</td></tr><tr><td>66e6f08873325d37e0ec20a4769ce881e04e964e</td><td>sun_attributes</td><td>SUN</td><td><a href="papers/66e6f08873325d37e0ec20a4769ce881e04e964e.html" target="_blank">The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</a></td><td><a href="http://www.cc.gatech.edu/~hays/papers/attribute_ijcv.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>112</td><td>70</td><td>42</td><td>14</td><td>84</td><td>29</td></tr><tr><td>8b2dd5c61b23ead5ae5508bb8ce808b5ea266730</td><td>10k_US_adult_faces</td><td>10K US Adult Faces</td><td><a href="papers/8b2dd5c61b23ead5ae5508bb8ce808b5ea266730.html" target="_blank">The intrinsic memorability of face photographs.</a></td><td><a href="https://pdfs.semanticscholar.org/8b2d/d5c61b23ead5ae5508bb8ce808b5ea266730.pdf" target="_blank">[pdf]</a></td><td>Journal of experimental psychology. General</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>47</td><td>24</td><td>23</td><td>3</td><td>34</td><td>13</td></tr><tr><td>ae0aee03d946efffdc7af2362a42d3750e7dd48a</td><td>put_face</td><td>Put Face</td><td><a href="papers/ae0aee03d946efffdc7af2362a42d3750e7dd48a.html" target="_blank">The put face database</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>42%</td><td>100</td><td>42</td><td>58</td><td>7</td><td>56</td><td>48</td></tr><tr><td>19d1b811df60f86cbd5e04a094b07f32fff7a32a</td><td>york_3d</td><td>UOY 3D Face Database</td><td><a href="papers/19d1b811df60f86cbd5e04a094b07f32fff7a32a.html" target="_blank">Three-dimensional face recognition: an eigensurface approach</a></td><td><a href="http://www-users.cs.york.ac.uk/~nep/research/3Dface/tomh/3DFaceRecognition-Eigensurface-ICIP(web)2.pdf" target="_blank">[pdf]</a></td><td>2004 International Conference on Image Processing, 2004. ICIP '04.</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>36</td><td>12</td><td>24</td><td>4</td><td>25</td><td>11</td></tr><tr><td>2edb87494278ad11641b6cf7a3f8996de12b8e14</td><td>qmul_grid</td><td>GRID</td><td><a href="papers/2edb87494278ad11641b6cf7a3f8996de12b8e14.html" target="_blank">Time-Delayed Correlation Analysis for Multi-Camera Activity Understanding</a></td><td><a href="http://www.eecs.qmul.ac.uk/~ccloy/files/ijcv_2010.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>Queen Mary University of London</td><td>United Kingdom</td><td>51.52472720</td><td>-0.03931035</td><td>49%</td><td>83</td><td>41</td><td>42</td><td>6</td><td>51</td><td>33</td></tr><tr><td>298cbc3dfbbb3a20af4eed97906650a4ea1c29e0</td><td>ferplus</td><td>FER+</td><td><a href="papers/298cbc3dfbbb3a20af4eed97906650a4ea1c29e0.html" target="_blank">Training deep networks for facial expression recognition with crowd-sourced label distribution</a></td><td><a href="https://arxiv.org/pdf/1608.01041.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>29</td><td>18</td><td>11</td><td>0</td><td>15</td><td>14</td></tr><tr><td>b5f2846a506fc417e7da43f6a7679146d99c5e96</td><td>ucf_101</td><td>UCF101</td><td><a href="papers/b5f2846a506fc417e7da43f6a7679146d99c5e96.html" target="_blank">UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</a></td><td><a href="https://arxiv.org/pdf/1212.0402.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>999</td><td>611</td><td>388</td><td>73</td><td>716</td><td>283</td></tr><tr><td>16e8b0a1e8451d5f697b94c0c2b32a00abee1d52</td><td>umb</td><td>UMB</td><td><a href="papers/16e8b0a1e8451d5f697b94c0c2b32a00abee1d52.html" target="_blank">UMB-DB: A database of partially occluded 3D faces</a></td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/claudio_cusano-slides.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>45</td><td>27</td><td>18</td><td>2</td><td>20</td><td>24</td></tr><tr><td>31b05f65405534a696a847dd19c621b7b8588263</td><td>umd_faces</td><td>UMD</td><td><a href="papers/31b05f65405534a696a847dd19c621b7b8588263.html" target="_blank">UMDFaces: An annotated face dataset for training deep networks</a></td><td><a href="https://arxiv.org/pdf/1611.01484.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Joint Conference on Biometrics (IJCB)</td><td>edu</td><td>University of Maryland</td><td>United States</td><td>39.28996850</td><td>-76.62196103</td><td>57%</td><td>35</td><td>20</td><td>15</td><td>4</td><td>28</td><td>7</td></tr><tr><td>8627f019882b024aef92e4eb9355c499c733e5b7</td><td>used</td><td>USED Social Event Dataset</td><td><a href="papers/8627f019882b024aef92e4eb9355c499c733e5b7.html" target="_blank">USED: a large-scale social event detection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Trento</td><td>Italy</td><td>46.06588360</td><td>11.11598940</td><td>71%</td><td>7</td><td>5</td><td>2</td><td>0</td><td>3</td><td>4</td></tr><tr><td>d4f1eb008eb80595bcfdac368e23ae9754e1e745</td><td>uccs</td><td>UCCS</td><td><a href="papers/d4f1eb008eb80595bcfdac368e23ae9754e1e745.html" target="_blank">Unconstrained Face Detection and Open-Set Face Recognition Challenge</a></td><td><a href="https://arxiv.org/pdf/1708.02337.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Joint Conference on Biometrics (IJCB)</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>5</td><td>2</td><td>3</td><td>0</td><td>4</td><td>1</td></tr><tr><td>4b4106614c1d553365bad75d7866bff0de6056ed</td><td>czech_news_agency</td><td>UFI</td><td><a href="papers/4b4106614c1d553365bad75d7866bff0de6056ed.html" target="_blank">Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions</a></td><td><a href="https://pdfs.semanticscholar.org/4b41/06614c1d553365bad75d7866bff0de6056ed.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>10</td><td>4</td><td>6</td><td>0</td><td>4</td><td>6</td></tr><tr><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7.html" target="_blank">Understanding Kin Relationships in a Photo</a></td><td><a href="http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Multimedia</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>96</td><td>55</td><td>41</td><td>2</td><td>34</td><td>63</td></tr><tr><td>21d9d0deed16f0ad62a4865e9acf0686f4f15492</td><td>images_of_groups</td><td>Images of Groups</td><td><a href="papers/21d9d0deed16f0ad62a4865e9acf0686f4f15492.html" target="_blank">Understanding images of groups of people</a></td><td><a href="http://chenlab.ece.cornell.edu/people/Andy/Andy_files/cvpr09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>54%</td><td>202</td><td>110</td><td>92</td><td>12</td><td>132</td><td>75</td></tr><tr><td>fd8168f1c50de85bac58a8d328df0a50248b16ae</td><td>nd_2006</td><td>ND-2006</td><td><a href="papers/fd8168f1c50de85bac58a8d328df0a50248b16ae.html" target="_blank">Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition</a></td><td><span class="gray">[pdf]</a></td><td>2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems</td><td>edu</td><td>University of Notre Dame</td><td>United States</td><td>41.70456775</td><td>-86.23822026</td><td>56%</td><td>32</td><td>18</td><td>14</td><td>3</td><td>17</td><td>15</td></tr><tr><td>4563b46d42079242f06567b3f2e2f7a80cb3befe</td><td>vadana</td><td>VADANA</td><td><a href="papers/4563b46d42079242f06567b3f2e2f7a80cb3befe.html" target="_blank">VADANA: A dense dataset for facial image analysis</a></td><td><a href="http://vims.cis.udel.edu/publications/VADANA_BeFIT2011.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td>edu</td><td>University of Delaware</td><td>United States</td><td>39.68103280</td><td>-75.75401840</td><td>44%</td><td>16</td><td>7</td><td>9</td><td>0</td><td>6</td><td>10</td></tr><tr><td>eb027969f9310e0ae941e2adee2d42cdf07d938c</td><td>vgg_faces2</td><td>VGG Face2</td><td><a href="papers/eb027969f9310e0ae941e2adee2d42cdf07d938c.html" target="_blank">VGGFace2: A Dataset for Recognising Faces across Pose and Age</a></td><td><a href="https://arxiv.org/pdf/1710.08092.pdf" target="_blank">[pdf]</a></td><td>2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>45%</td><td>56</td><td>25</td><td>31</td><td>6</td><td>50</td><td>6</td></tr><tr><td>01959ef569f74c286956024866c1d107099199f7</td><td>vqa</td><td>VQA</td><td><a href="papers/01959ef569f74c286956024866c1d107099199f7.html" target="_blank">VQA: Visual Question Answering</a></td><td><a href="https://arxiv.org/pdf/1505.00468.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>731</td><td>444</td><td>287</td><td>47</td><td>629</td><td>96</td></tr><tr><td>5194cbd51f9769ab25260446b4fa17204752e799</td><td>violent_flows</td><td>Violent Flows</td><td><a href="papers/5194cbd51f9769ab25260446b4fa17204752e799.html" target="_blank">Violent flows: Real-time detection of violent crowd behavior</a></td><td><a href="http://www.openu.ac.il/home/hassner/data/violentflows/violent_flows.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</td><td>edu</td><td>Open University of Israel</td><td>Israel</td><td>32.77824165</td><td>34.99565673</td><td>55%</td><td>83</td><td>46</td><td>37</td><td>6</td><td>44</td><td>41</td></tr><tr><td>026e3363b7f76b51cc711886597a44d5f1fd1de2</td><td>kitti</td><td>KITTI</td><td><a href="papers/026e3363b7f76b51cc711886597a44d5f1fd1de2.html" target="_blank">Vision meets robotics: The KITTI dataset</a></td><td><a href="https://pdfs.semanticscholar.org/026e/3363b7f76b51cc711886597a44d5f1fd1de2.pdf" target="_blank">[pdf]</a></td><td>I. J. Robotics Res.</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>999</td><td>532</td><td>467</td><td>37</td><td>570</td><td>448</td></tr><tr><td>066000d44d6691d27202896691f08b27117918b9</td><td>psu</td><td>PSU</td><td><a href="papers/066000d44d6691d27202896691f08b27117918b9.html" target="_blank">Vision-Based Analysis of Small Groups in Pedestrian Crowds</a></td><td><a href="http://vc.cs.nthu.edu.tw/home/paper/codfiles/htchiang/201212250411/newp12.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>151</td><td>74</td><td>77</td><td>9</td><td>79</td><td>73</td></tr><tr><td>dd65f71dac86e36eecbd3ed225d016c3336b4a13</td><td>families_in_the_wild</td><td>FIW</td><td><a href="papers/dd65f71dac86e36eecbd3ed225d016c3336b4a13.html" target="_blank">Visual Kinship Recognition of Families in the Wild</a></td><td><a href="https://web.northeastern.edu/smilelab/fiw/papers/Supplemental_PP.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>University of Massachusetts Dartmouth</td><td>United States</td><td>41.62772475</td><td>-71.00724501</td><td>100%</td><td>3</td><td>3</td><td>0</td><td>0</td><td>2</td><td>1</td></tr><tr><td>52d7eb0fbc3522434c13cc247549f74bb9609c5d</td><td>wider_face</td><td>WIDER FACE</td><td><a href="papers/52d7eb0fbc3522434c13cc247549f74bb9609c5d.html" target="_blank">WIDER FACE: A Face Detection Benchmark</a></td><td><a href="https://arxiv.org/pdf/1511.06523.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Chinese University of Hong Kong</td><td>China</td><td>22.41626320</td><td>114.21093180</td><td>57%</td><td>148</td><td>85</td><td>63</td><td>15</td><td>108</td><td>41</td></tr><tr><td>77c81c13a110a341c140995bedb98101b9e84f7f</td><td>wildtrack</td><td>WildTrack</td><td><a href="papers/77c81c13a110a341c140995bedb98101b9e84f7f.html" target="_blank">WILDTRACK : A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</a></td><td><a href="https://pdfs.semanticscholar.org/fe1c/ec4e4995b8615855572374ae3efc94949105.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>5ad4e9f947c1653c247d418f05dad758a3f9277b</td><td>wlfdb</td><td>WLFDB</td><td><a href="papers/5ad4e9f947c1653c247d418f05dad758a3f9277b.html" target="_blank">WLFDB: Weakly Labeled Face Databases</a></td><td><a href="https://pdfs.semanticscholar.org/5ad4/e9f947c1653c247d418f05dad758a3f9277b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td></tr><tr><td>0dc11a37cadda92886c56a6fb5191ded62099c28</td><td>stickmen_family</td><td>We Are Family Stickmen</td><td><a href="papers/0dc11a37cadda92886c56a6fb5191ded62099c28.html" target="_blank">We are family: joint pose estimation of multiple persons</a></td><td><a href="http://eprints.pascal-network.org/archive/00007964/01/eichner10eccv.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>66%</td><td>77</td><td>51</td><td>26</td><td>5</td><td>60</td><td>19</td></tr><tr><td>0c91808994a250d7be332400a534a9291ca3b60e</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/0c91808994a250d7be332400a534a9291ca3b60e.html" target="_blank">Weak Hypotheses and Boosting for Generic Object Detection and Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/0c91/808994a250d7be332400a534a9291ca3b60e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>247</td><td>125</td><td>122</td><td>18</td><td>177</td><td>78</td></tr><tr><td>2a75f34663a60ab1b04a0049ed1d14335129e908</td><td>mmi_facial_expression</td><td>MMI Facial Expression Dataset</td><td><a href="papers/2a75f34663a60ab1b04a0049ed1d14335129e908.html" target="_blank">Web-based database for facial expression analysis</a></td><td><a href="http://dev.pubs.doc.ic.ac.uk/Pantic-ICME05-2/Pantic-ICME05-2.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE International Conference on Multimedia and Expo</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>440</td><td>212</td><td>228</td><td>44</td><td>267</td><td>181</td></tr><tr><td>9b9bf5e623cb8af7407d2d2d857bc3f1b531c182</td><td>who_goes_there</td><td>WGT</td><td><a href="papers/9b9bf5e623cb8af7407d2d2d857bc3f1b531c182.html" target="_blank">Who goes there?: approaches to mapping facial appearance diversity</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Kentucky</td><td>United States</td><td>38.03337420</td><td>-84.50177580</td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>b62628ac06bbac998a3ab825324a41a11bc3a988</td><td>m2vtsdb_extended</td><td>xm2vtsdb</td><td><a href="papers/b62628ac06bbac998a3ab825324a41a11bc3a988.html" target="_blank">Xm2vtsdb: the Extended M2vts Database</a></td><td><a href="https://pdfs.semanticscholar.org/b626/28ac06bbac998a3ab825324a41a11bc3a988.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>906</td><td>481</td><td>425</td><td>44</td><td>542</td><td>408</td></tr><tr><td>010f0f4929e6a6644fb01f0e43820f91d0fad292</td><td>yfcc_100m</td><td>YFCC100M</td><td><a href="papers/010f0f4929e6a6644fb01f0e43820f91d0fad292.html" target="_blank">YFCC100M: the new data in multimedia research</a></td><td><a href="https://arxiv.org/pdf/1503.01817.pdf" target="_blank">[pdf]</a></td><td>Commun. ACM</td><td>edu</td><td>Carnegie Mellon University</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>56%</td><td>276</td><td>155</td><td>121</td><td>23</td><td>175</td><td>99</td></tr><tr><td>a94cae786d515d3450d48267e12ca954aab791c4</td><td>yawdd</td><td>YawDD</td><td><a href="papers/a94cae786d515d3450d48267e12ca954aab791c4.html" target="_blank">YawDD: a yawning detection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>14</td><td>8</td><td>6</td><td>1</td><td>2</td><td>12</td></tr></table></body></html> \ No newline at end of file