summaryrefslogtreecommitdiff
path: root/scraper/reports/report_index.html
diff options
context:
space:
mode:
Diffstat (limited to 'scraper/reports/report_index.html')
-rw-r--r--scraper/reports/report_index.html2
1 files changed, 1 insertions, 1 deletions
diff --git a/scraper/reports/report_index.html b/scraper/reports/report_index.html
index 8296995e..bd98323e 100644
--- a/scraper/reports/report_index.html
+++ b/scraper/reports/report_index.html
@@ -1 +1 @@
-<!doctype html><html><head><meta charset='utf-8'><title>All Papers</title><link rel='stylesheet' href='reports.css'></head><body><h2>All Papers</h2><table border='1' cellpadding='3' cellspacing='3'><th>Paper ID</th><th>Megapixels Key</th><th>Megapixels Name</th><th>Report Link</th><th>PDF Link</th><th>Journal</th><th>Type</th><th>Address</th><th>Country</th><th>Lat</th><th>Lng</th><th>Coverage</th><th>Total Citations</th><th>Geocoded Citations</th><th>Unknown Citations</th><th>Empty Citations</th><th>With PDF</th><th>With DOI</th><tr><td>3325860c0c82a93b2eac654f5324dd6a776f609e</td><td>mpii_human_pose</td><td>MPII Human Pose</td><td><a href="papers/3325860c0c82a93b2eac654f5324dd6a776f609e.html" target="_blank">2D Human Pose Estimation: New Benchmark and State of the Art Analysis</a></td><td><a href="http://ei.is.tuebingen.mpg.de/uploads_file/attachment/attachment/168/andriluka14benchmark.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>356</td><td>221</td><td>135</td><td>21</td><td>304</td><td>53</td></tr><tr><td>e4754afaa15b1b53e70743880484b8d0736990ff</td><td>fiw_300</td><td>300-W</td><td><a href="papers/e4754afaa15b1b53e70743880484b8d0736990ff.html" target="_blank">300 Faces In-The-Wild Challenge: database and results</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>114</td><td>61</td><td>53</td><td>10</td><td>71</td><td>43</td></tr><tr><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td><td>fiw_300</td><td>300-W</td><td><a href="papers/044d9a8c61383312cdafbcc44b9d00d650b21c70.html" target="_blank">300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>324</td><td>200</td><td>124</td><td>29</td><td>211</td><td>118</td></tr><tr><td>2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e</td><td>3dpes</td><td>3DPeS</td><td><a href="papers/2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e.html" target="_blank">3DPeS: 3D people dataset for surveillance and forensics</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>122</td><td>60</td><td>62</td><td>11</td><td>71</td><td>51</td></tr><tr><td>9696ad8b164f5e10fcfe23aacf74bd6168aebb15</td><td>4dfab</td><td>4DFAB</td><td><a href="papers/9696ad8b164f5e10fcfe23aacf74bd6168aebb15.html" target="_blank">4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</a></td><td><a href="https://arxiv.org/pdf/1712.01443.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>4</td><td>0</td><td>4</td><td>0</td><td>2</td><td>2</td></tr><tr><td>31b58ced31f22eab10bd3ee2d9174e7c14c27c01</td><td>tiny_images</td><td>Tiny Images</td><td><a href="papers/31b58ced31f22eab10bd3ee2d9174e7c14c27c01.html" target="_blank">80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition</a></td><td><a href="http://cvcl.mit.edu/SUNSeminar/Torralba_80M_PAMI08.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>999</td><td>539</td><td>459</td><td>94</td><td>685</td><td>327</td></tr><tr><td>4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461</td><td>3dddb_unconstrained</td><td>3D Dynamic</td><td><a href="papers/4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461.html" target="_blank">A 3 D Dynamic Database for Unconstrained Face Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/4d4b/b462c9f1d4e4ab1e4aa6a75cc0bc71b38461.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td></tr><tr><td>d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae</td><td>b3d_ac</td><td>B3D(AC)</td><td><a href="papers/d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae.html" target="_blank">A 3-D Audio-Visual Corpus of Affective Communication</a></td><td><a href="http://files.is.tue.mpg.de/jgall/download/jgall_avcorpus_mm10.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Multimedia</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>39</td><td>19</td><td>20</td><td>2</td><td>27</td><td>12</td></tr><tr><td>639937b3a1b8bded3f7e9a40e85bd3770016cf3c</td><td>bfm</td><td>BFM</td><td><a href="papers/639937b3a1b8bded3f7e9a40e85bd3770016cf3c.html" target="_blank">A 3D Face Model for Pose and Illumination Invariant Face Recognition</a></td><td><a href="http://gravis.cs.unibas.ch/publications/2009/BFModel09.pdf" target="_blank">[pdf]</a></td><td>2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>323</td><td>176</td><td>147</td><td>29</td><td>226</td><td>98</td></tr><tr><td>cc589c499dcf323fe4a143bbef0074c3e31f9b60</td><td>bu_3dfe</td><td>BU-3DFE</td><td><a href="papers/cc589c499dcf323fe4a143bbef0074c3e31f9b60.html" target="_blank">A 3D facial expression database for facial behavior research</a></td><td><a href="http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR06_a.pdf" target="_blank">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>555</td><td>265</td><td>289</td><td>47</td><td>299</td><td>270</td></tr><tr><td>22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b</td><td>saivt</td><td>SAIVT SoftBio</td><td><a href="papers/22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b.html" target="_blank">A Database for Person Re-Identification in Multi-Camera Surveillance Networks</a></td><td><a href="http://eprints.qut.edu.au/53437/3/Bialkowski_Database4PersonReID_DICTA.pdf" target="_blank">[pdf]</a></td><td>2012 International Conference on Digital Image Computing Techniques and Applications (DICTA)</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>58</td><td>26</td><td>32</td><td>7</td><td>41</td><td>18</td></tr><tr><td>070de852bc6eb275d7ca3a9cdde8f6be8795d1a3</td><td>d3dfacs</td><td>D3DFACS</td><td><a href="papers/070de852bc6eb275d7ca3a9cdde8f6be8795d1a3.html" target="_blank">A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling</a></td><td><a href="http://www.cs.bath.ac.uk/~dpc/D3DFACS/ICCV_final_2011.pdf" target="_blank">[pdf]</a></td><td>2011 International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>52</td><td>30</td><td>22</td><td>5</td><td>37</td><td>15</td></tr><tr><td>563c940054e4b456661762c1ab858e6f730c3159</td><td>data_61</td><td>Data61 Pedestrian</td><td><a href="papers/563c940054e4b456661762c1ab858e6f730c3159.html" target="_blank">A Multi-modal Graphical Model for Scene Analysis</a></td><td><a href="http://www.nicta.com.au/wp-content/uploads/2015/02/TaghaviNaminetalWACV15.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Winter Conference on Applications of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>8</td><td>4</td><td>4</td><td>0</td><td>5</td><td>3</td></tr><tr><td>221c18238b829c12b911706947ab38fd017acef7</td><td>rap_pedestrian</td><td>RAP</td><td><a href="papers/221c18238b829c12b911706947ab38fd017acef7.html" target="_blank">A Richly Annotated Dataset for Pedestrian Attribute Recognition</a></td><td><a href="https://arxiv.org/pdf/1603.07054.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>21</td><td>14</td><td>7</td><td>0</td><td>18</td><td>3</td></tr><tr><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td><td>fiw_300</td><td>300-W</td><td><a href="papers/013909077ad843eb6df7a3e8e290cfd5575999d2.html" target="_blank">A Semi-automatic Methodology for Facial Landmark Annotation</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>185</td><td>111</td><td>74</td><td>15</td><td>124</td><td>64</td></tr><tr><td>3b4ec8af470948a72a6ed37a9fd226719a874ebc</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/3b4ec8af470948a72a6ed37a9fd226719a874ebc.html" target="_blank">A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</a></td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Liu_A_Spatio-Temporal_Appearance_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>85</td><td>53</td><td>32</td><td>9</td><td>51</td><td>34</td></tr><tr><td>6403117f9c005ae81f1e8e6d1302f4a045e3d99d</td><td>alert_airport</td><td>ALERT Airport</td><td><a href="papers/6403117f9c005ae81f1e8e6d1302f4a045e3d99d.html" target="_blank">A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets.</a></td><td><a href="https://arxiv.org/pdf/1605.09653.pdf" target="_blank">[pdf]</a></td><td>IEEE transactions on pattern analysis and machine intelligence</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>15</td><td>7</td><td>8</td><td>1</td><td>10</td><td>5</td></tr><tr><td>7ace44190729927e5cb0dd5d363fcae966fe13f7</td><td>nudedetection</td><td>#N/A</td><td><a href="papers/7ace44190729927e5cb0dd5d363fcae966fe13f7.html" target="_blank">A bag-of-features approach based on Hue-SIFT descriptor for nude detection</a></td><td><a href="http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569191772.pdf" target="_blank">[pdf]</a></td><td>2009 17th European Signal Processing Conference</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>51</td><td>31</td><td>20</td><td>1</td><td>18</td><td>33</td></tr><tr><td>0d3bb75852098b25d90f31d2f48fd0cb4944702b</td><td>face_scrub</td><td>FaceScrub</td><td><a href="papers/0d3bb75852098b25d90f31d2f48fd0cb4944702b.html" target="_blank">A data-driven approach to cleaning large face datasets</a></td><td><a href="http://stefan.winkler.net/Publications/icip2014a.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE International Conference on Image Processing (ICIP)</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>123</td><td>66</td><td>57</td><td>4</td><td>96</td><td>27</td></tr><tr><td>b91f54e1581fbbf60392364323d00a0cd43e493c</td><td>bp4d_spontanous</td><td>BP4D-Spontanous</td><td><a href="papers/b91f54e1581fbbf60392364323d00a0cd43e493c.html" target="_blank">A high-resolution spontaneous 3D dynamic facial expression database</a></td><td><a href="http://www.csee.usf.edu/~scanavan/papers/FG2013.pdf" target="_blank">[pdf]</a></td><td>2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td>edu</td><td>SUNY Binghamton</td><td>United States</td><td>42.08779975</td><td>-75.97066066</td><td>51%</td><td>151</td><td>77</td><td>74</td><td>7</td><td>87</td><td>65</td></tr><tr><td>8b56e33f33e582f3e473dba573a16b598ed9bcdc</td><td>fei</td><td>FEI</td><td><a href="papers/8b56e33f33e582f3e473dba573a16b598ed9bcdc.html" target="_blank">A new ranking method for principal components analysis and its application to face image analysis</a></td><td><span class="gray">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>169</td><td>78</td><td>91</td><td>6</td><td>72</td><td>101</td></tr><tr><td>2624d84503bc2f8e190e061c5480b6aa4d89277a</td><td>afew_va</td><td>AFEW-VA</td><td><a href="papers/2624d84503bc2f8e190e061c5480b6aa4d89277a.html" target="_blank">AFEW-VA database for valence and arousal estimation in-the-wild</a></td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/afew-va.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>15</td><td>7</td><td>8</td><td>1</td><td>10</td><td>4</td></tr><tr><td>2ad0ee93d029e790ebb50574f403a09854b65b7e</td><td>yale_faces</td><td>YaleFaces</td><td><a href="papers/2ad0ee93d029e790ebb50574f403a09854b65b7e.html" target="_blank">Acquiring linear subspaces for face recognition under variable lighting</a></td><td><a href="http://vision.cornell.edu/se3/wp-content/uploads/2014/09/pami05.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>999</td><td>485</td><td>514</td><td>110</td><td>525</td><td>485</td></tr><tr><td>57fe081950f21ca03b5b375ae3e84b399c015861</td><td>cvc_01_barcelona</td><td>CVC-01</td><td><a href="papers/57fe081950f21ca03b5b375ae3e84b399c015861.html" target="_blank">Adaptive Image Sampling and Windows Classification for On – board Pedestrian Detection</a></td><td><a href="https://pdfs.semanticscholar.org/57fe/081950f21ca03b5b375ae3e84b399c015861.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>39%</td><td>44</td><td>17</td><td>27</td><td>1</td><td>21</td><td>23</td></tr><tr><td>758d7e1be64cc668c59ef33ba8882c8597406e53</td><td>affectnet</td><td>AffectNet</td><td><a href="papers/758d7e1be64cc668c59ef33ba8882c8597406e53.html" target="_blank">AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild</a></td><td><a href="https://arxiv.org/pdf/1708.03985.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>38</td><td>21</td><td>17</td><td>1</td><td>26</td><td>11</td></tr><tr><td>47aeb3b82f54b5ae8142b4bdda7b614433e69b9a</td><td>am_fed</td><td>AM-FED</td><td><a href="papers/47aeb3b82f54b5ae8142b4bdda7b614433e69b9a.html" target="_blank">Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"</a></td><td><a href="http://affect.media.mit.edu/pdfs/13.McDuff-etal-AMFED.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>73</td><td>34</td><td>39</td><td>6</td><td>41</td><td>34</td></tr><tr><td>1be498d4bbc30c3bfd0029114c784bc2114d67c0</td><td>adience</td><td>Adience</td><td><a href="papers/1be498d4bbc30c3bfd0029114c784bc2114d67c0.html" target="_blank">Age and Gender Estimation of Unfiltered Faces</a></td><td><a href="http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Information Forensics and Security</td><td>edu</td><td>Open University of Israel</td><td>Israel</td><td>32.77824165</td><td>34.99565673</td><td>55%</td><td>168</td><td>92</td><td>76</td><td>5</td><td>94</td><td>78</td></tr><tr><td>6dcf418c778f528b5792104760f1fbfe90c6dd6a</td><td>agedb</td><td>AgeDB</td><td><a href="papers/6dcf418c778f528b5792104760f1fbfe90c6dd6a.html" target="_blank">AgeDB: The First Manually Collected, In-the-Wild Age Database</a></td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>91%</td><td>11</td><td>10</td><td>1</td><td>0</td><td>10</td><td>1</td></tr><tr><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td><td>aflw</td><td>AFLW</td><td><a href="papers/a74251efa970b92925b89eeef50a5e37d9281ad0.html" target="_blank">Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</a></td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/martin_koestinger-slides.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>292</td><td>175</td><td>117</td><td>37</td><td>212</td><td>84</td></tr><tr><td>2ce2560cf59db59ce313bbeb004e8ce55c5ce928</td><td>texas_3dfrd</td><td>Texas 3DFRD</td><td><a href="papers/2ce2560cf59db59ce313bbeb004e8ce55c5ce928.html" target="_blank">Anthropometric 3D Face Recognition</a></td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ijcv_june10.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>90</td><td>45</td><td>45</td><td>5</td><td>60</td><td>31</td></tr><tr><td>633c851ebf625ad7abdda2324e9de093cf623141</td><td>appa_real</td><td>APPA-REAL</td><td><a href="papers/633c851ebf625ad7abdda2324e9de093cf623141.html" target="_blank">Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database</a></td><td><a href="http://sergioescalera.com/wp-content/uploads/2017/05/APPA-REAL-Slides.pdf" target="_blank">[pdf]</a></td><td>2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>13</td><td>6</td><td>7</td><td>0</td><td>11</td><td>3</td></tr><tr><td>0df0d1adea39a5bef318b74faa37de7f3e00b452</td><td>mpii_gaze</td><td>MPIIGaze</td><td><a href="papers/0df0d1adea39a5bef318b74faa37de7f3e00b452.html" target="_blank">Appearance-based gaze estimation in the wild</a></td><td><a href="https://arxiv.org/pdf/1504.02863.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>138</td><td>90</td><td>48</td><td>3</td><td>97</td><td>42</td></tr><tr><td>759a3b3821d9f0e08e0b0a62c8b693230afc3f8d</td><td>pubfig</td><td>PubFig</td><td><a href="papers/759a3b3821d9f0e08e0b0a62c8b693230afc3f8d.html" target="_blank">Attribute and simile classifiers for face verification</a></td><td><a href="http://acberg.com/papers/kbbn09iccv.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 12th International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>894</td><td>544</td><td>350</td><td>56</td><td>604</td><td>300</td></tr><tr><td>faf40ce28857aedf183e193486f5b4b0a8c478a2</td><td>iit_dehli_ear</td><td>IIT Dehli Ear</td><td><a href="papers/faf40ce28857aedf183e193486f5b4b0a8c478a2.html" target="_blank">Automated Human Identification Using Ear Imaging</a></td><td><a href="https://pdfs.semanticscholar.org/faf4/0ce28857aedf183e193486f5b4b0a8c478a2.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>39%</td><td>70</td><td>27</td><td>43</td><td>6</td><td>28</td><td>42</td></tr><tr><td>2160788824c4c29ffe213b2cbeb3f52972d73f37</td><td>3d_rma</td><td>3D-RMA</td><td><a href="papers/2160788824c4c29ffe213b2cbeb3f52972d73f37.html" target="_blank">Automatic 3D face authentication</a></td><td><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.9190&rep=rep1&type=pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>95</td><td>44</td><td>51</td><td>8</td><td>61</td><td>35</td></tr><tr><td>213a579af9e4f57f071b884aa872651372b661fd</td><td>bbc_pose</td><td>BBC Pose</td><td><a href="papers/213a579af9e4f57f071b884aa872651372b661fd.html" target="_blank">Automatic and Efficient Human Pose Estimation for Sign Language Videos</a></td><td><a href="http://tomas.pfister.fi/files/charles13ijcv.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>76%</td><td>25</td><td>19</td><td>6</td><td>1</td><td>19</td><td>7</td></tr><tr><td>fcc6fe6007c322641796cb8792718641856a22a7</td><td>miw</td><td>MIW</td><td><a href="papers/fcc6fe6007c322641796cb8792718641856a22a7.html" target="_blank">Automatic facial makeup detection with application in face recognition</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td>2013 International Conference on Biometrics (ICB)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>74%</td><td>46</td><td>34</td><td>12</td><td>1</td><td>18</td><td>28</td></tr><tr><td>fcc6fe6007c322641796cb8792718641856a22a7</td><td>youtube_makeup</td><td>YMU</td><td><a href="papers/fcc6fe6007c322641796cb8792718641856a22a7.html" target="_blank">Automatic facial makeup detection with application in face recognition</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td>2013 International Conference on Biometrics (ICB)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>74%</td><td>46</td><td>34</td><td>12</td><td>1</td><td>18</td><td>28</td></tr><tr><td>0a85bdff552615643dd74646ac881862a7c7072d</td><td>pipa</td><td>PIPA</td><td><a href="papers/0a85bdff552615643dd74646ac881862a7c7072d.html" target="_blank">Beyond frontal faces: Improving Person Recognition using multiple cues</a></td><td><a href="https://arxiv.org/pdf/1501.05703.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>company</td><td>Facebook</td><td>United States</td><td>37.39367170</td><td>-122.08072620</td><td>72%</td><td>50</td><td>36</td><td>13</td><td>2</td><td>40</td><td>9</td></tr><tr><td>2acf7e58f0a526b957be2099c10aab693f795973</td><td>bosphorus</td><td>The Bosphorus</td><td><a href="papers/2acf7e58f0a526b957be2099c10aab693f795973.html" target="_blank">Bosphorus Database for 3D Face Analysis</a></td><td><a href="https://pdfs.semanticscholar.org/4254/fbba3846008f50671edc9cf70b99d7304543.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>328</td><td>161</td><td>167</td><td>19</td><td>149</td><td>183</td></tr><tr><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td><td>vmu</td><td>VMU</td><td><a href="papers/37d6f0eb074d207b53885bd2eb78ccc8a04be597.html" target="_blank">Can facial cosmetics affect the matching accuracy of face recognition systems?</a></td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>61%</td><td>49</td><td>30</td><td>19</td><td>0</td><td>18</td><td>31</td></tr><tr><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td><td>youtube_makeup</td><td>YMU</td><td><a href="papers/37d6f0eb074d207b53885bd2eb78ccc8a04be597.html" target="_blank">Can facial cosmetics affect the matching accuracy of face recognition systems?</a></td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>61%</td><td>49</td><td>30</td><td>19</td><td>0</td><td>18</td><td>31</td></tr><tr><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td><td>chalearn</td><td>ChaLearn</td><td><a href="papers/8d5998cd984e7cce307da7d46f155f9db99c6590.html" target="_blank">ChaLearn looking at people: A review of events and resources</a></td><td><a href="https://arxiv.org/pdf/1701.02664.pdf" target="_blank">[pdf]</a></td><td>2017 International Joint Conference on Neural Networks (IJCNN)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>10</td><td>5</td><td>5</td><td>1</td><td>6</td><td>4</td></tr><tr><td>2bf8541199728262f78d4dced6fb91479b39b738</td><td>clothing_co_parsing</td><td>CCP</td><td><a href="papers/2bf8541199728262f78d4dced6fb91479b39b738.html" target="_blank">Clothing Co-parsing by Joint Image Segmentation and Labeling</a></td><td><a href="https://arxiv.org/pdf/1502.00739.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>60</td><td>42</td><td>18</td><td>0</td><td>38</td><td>24</td></tr><tr><td>22ad2c8c0f4d6aa4328b38d894b814ec22579761</td><td>gallagher</td><td>Gallagher</td><td><a href="papers/22ad2c8c0f4d6aa4328b38d894b814ec22579761.html" target="_blank">Clothing cosegmentation for recognizing people</a></td><td><a href="http://amp.ece.cmu.edu/people/Andy/Andy_files/2670CVPR08Gallagher.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Carnegie Mellon University Silicon Valley</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>58%</td><td>177</td><td>103</td><td>74</td><td>7</td><td>101</td><td>84</td></tr><tr><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td><td>leeds_sports_pose</td><td>Leeds Sports Pose</td><td><a href="papers/4b1d23d17476fcf78f4cbadf69fb130b1aa627c0.html" target="_blank">Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</a></td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>278</td><td>180</td><td>98</td><td>13</td><td>208</td><td>78</td></tr><tr><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td><td>stickmen_buffy</td><td>Buffy Stickmen</td><td><a href="papers/4b1d23d17476fcf78f4cbadf69fb130b1aa627c0.html" target="_blank">Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</a></td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>278</td><td>180</td><td>98</td><td>13</td><td>208</td><td>78</td></tr><tr><td>45c31cde87258414f33412b3b12fc5bec7cb3ba9</td><td>jaffe</td><td>JAFFE</td><td><a href="papers/45c31cde87258414f33412b3b12fc5bec7cb3ba9.html" target="_blank">Coding Facial Expressions with Gabor Wavelets</a></td><td><a href="https://pdfs.semanticscholar.org/45c3/1cde87258414f33412b3b12fc5bec7cb3ba9.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>848</td><td>424</td><td>424</td><td>55</td><td>420</td><td>433</td></tr><tr><td>b1f4423c227fa37b9680787be38857069247a307</td><td>afew_va</td><td>AFEW-VA</td><td><a href="papers/b1f4423c227fa37b9680787be38857069247a307.html" target="_blank">Collecting Large, Richly Annotated Facial-Expression Databases from Movies</a></td><td><a href="http://users.cecs.anu.edu.au/~adhall/Dhall_Goecke_Lucey_Gedeon_M_2012.pdf" target="_blank">[pdf]</a></td><td>IEEE MultiMedia</td><td>edu</td><td>Australian National University</td><td>Australia</td><td>-35.27769990</td><td>149.11852700</td><td>60%</td><td>182</td><td>109</td><td>73</td><td>8</td><td>86</td><td>99</td></tr><tr><td>7f4040b482d16354d5938c1d1b926b544652bf5b</td><td>nova_emotions</td><td>Novaemötions Dataset</td><td><a href="papers/7f4040b482d16354d5938c1d1b926b544652bf5b.html" target="_blank">Competitive affective gaming: winning with a smile</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Universidade NOVA de Lisboa, Caparica, Portugal</td><td>Portugal</td><td>38.66096400</td><td>-9.20581300</td><td>75%</td><td>8</td><td>6</td><td>2</td><td>0</td><td>4</td><td>4</td></tr><tr><td>079a0a3bf5200994e1f972b1b9197bf2f90e87d4</td><td>mit_cbcl</td><td>MIT CBCL</td><td><a href="papers/079a0a3bf5200994e1f972b1b9197bf2f90e87d4.html" target="_blank">Component-Based Face Recognition with 3D Morphable Models</a></td><td><a href="http://cbcl.mit.edu/cbcl/publications/theses/thesis-huang.pdf" target="_blank">[pdf]</a></td><td>2004 Conference on Computer Vision and Pattern Recognition Workshop</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>12</td><td>4</td><td>8</td><td>0</td><td>8</td><td>4</td></tr><tr><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td><td>cohn_kanade</td><td>CK</td><td><a href="papers/23fc83c8cfff14a16df7ca497661264fc54ed746.html" target="_blank">Comprehensive Database for Facial Expression Analysis</a></td><td><a href="https://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>999</td><td>507</td><td>492</td><td>75</td><td>572</td><td>439</td></tr><tr><td>09d78009687bec46e70efcf39d4612822e61cb8c</td><td>raid</td><td>RAiD</td><td><a href="papers/09d78009687bec46e70efcf39d4612822e61cb8c.html" target="_blank">Consistent Re-identification in a Camera Network</a></td><td><a href="http://cs-people.bu.edu/dasabir/papers/ECCV14_Poster.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>45</td><td>23</td><td>22</td><td>7</td><td>34</td><td>11</td></tr><tr><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td><td>casablanca</td><td>Casablanca</td><td><a href="papers/0ceda9dae8b9f322df65ca2ef02caca9758aec6f.html" target="_blank">Context-Aware CNNs for Person Head Detection</a></td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>27</td><td>15</td><td>12</td><td>1</td><td>23</td><td>5</td></tr><tr><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td><td>hollywood_headset</td><td>HollywoodHeads</td><td><a href="papers/0ceda9dae8b9f322df65ca2ef02caca9758aec6f.html" target="_blank">Context-Aware CNNs for Person Head Detection</a></td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>27</td><td>15</td><td>12</td><td>1</td><td>23</td><td>5</td></tr><tr><td>c06b13d0ec3f5c43e2782cd22542588e233733c3</td><td>nova_emotions</td><td>Novaemötions Dataset</td><td><a href="papers/c06b13d0ec3f5c43e2782cd22542588e233733c3.html" target="_blank">Crowdsourcing facial expressions for affective-interaction</a></td><td><span class="gray">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td></tr><tr><td>8355d095d3534ef511a9af68a3b2893339e3f96b</td><td>imdb_wiki</td><td>IMDB</td><td><a href="papers/8355d095d3534ef511a9af68a3b2893339e3f96b.html" target="_blank">DEX: Deep EXpectation of Apparent Age from a Single Image</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Rothe_DEX_Deep_EXpectation_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision Workshop (ICCVW)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>120</td><td>67</td><td>53</td><td>5</td><td>74</td><td>47</td></tr><tr><td>5a5f0287484f0d480fed1ce585dbf729586f0edc</td><td>disfa</td><td>DISFA</td><td><a href="papers/5a5f0287484f0d480fed1ce585dbf729586f0edc.html" target="_blank">DISFA: A Spontaneous Facial Action Intensity Database</a></td><td><a href="http://mohammadmahoor.com/wp-content/uploads/2017/06/DiSFA_Paper_andAppendix_Final_OneColumn1-1.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Affective Computing</td><td>edu</td><td>University of Denver</td><td>United States</td><td>39.67665410</td><td>-104.96220300</td><td>49%</td><td>190</td><td>94</td><td>96</td><td>19</td><td>100</td><td>91</td></tr><tr><td>10195a163ab6348eef37213a46f60a3d87f289c5</td><td>imdb_wiki</td><td>IMDB</td><td><a href="papers/10195a163ab6348eef37213a46f60a3d87f289c5.html" target="_blank">Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks</a></td><td><a href="http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>ETH Zurich</td><td>Switzerland</td><td>47.37631300</td><td>8.54766990</td><td>53%</td><td>133</td><td>71</td><td>62</td><td>13</td><td>94</td><td>41</td></tr><tr><td>162ea969d1929ed180cc6de9f0bf116993ff6e06</td><td>vgg_faces</td><td>VGG Face</td><td><a href="papers/162ea969d1929ed180cc6de9f0bf116993ff6e06.html" target="_blank">Deep Face Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>999</td><td>546</td><td>453</td><td>70</td><td>635</td><td>370</td></tr><tr><td>6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4</td><td>celeba</td><td>CelebA</td><td><a href="papers/6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4.html" target="_blank">Deep Learning Face Attributes in the Wild</a></td><td><a href="https://arxiv.org/pdf/1411.7766.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td>edu</td><td>Chinese University of Hong Kong</td><td>China</td><td>22.41626320</td><td>114.21093180</td><td>52%</td><td>808</td><td>423</td><td>384</td><td>68</td><td>670</td><td>118</td></tr><tr><td>18010284894ed0edcca74e5bf768ee2e15ef7841</td><td>deep_fashion</td><td>DeepFashion</td><td><a href="papers/18010284894ed0edcca74e5bf768ee2e15ef7841.html" target="_blank">DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~lz013/papers/deepfashion_poster.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>150</td><td>97</td><td>53</td><td>4</td><td>111</td><td>38</td></tr><tr><td>6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3</td><td>cuhk03</td><td>CUHK03</td><td><a href="papers/6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3.html" target="_blank">DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>512</td><td>304</td><td>208</td><td>29</td><td>324</td><td>180</td></tr><tr><td>13f06b08f371ba8b5d31c3e288b4deb61335b462</td><td>eth_andreas_ess</td><td>ETHZ Pedestrian</td><td><a href="papers/13f06b08f371ba8b5d31c3e288b4deb61335b462.html" target="_blank">Depth and Appearance for Mobile Scene Analysis</a></td><td><a href="http://www.mmp.rwth-aachen.de/publications/pdf/ess-depthandappearance-iccv07-poster.pdf" target="_blank">[pdf]</a></td><td>2007 IEEE 11th International Conference on Computer Vision</td><td>edu</td><td>ETH Zurich</td><td>Switzerland</td><td>47.37631300</td><td>8.54766990</td><td>55%</td><td>319</td><td>177</td><td>142</td><td>27</td><td>195</td><td>127</td></tr><tr><td>4946ba10a4d5a7d0a38372f23e6622bd347ae273</td><td>coco_action</td><td>COCO-a</td><td><a href="papers/4946ba10a4d5a7d0a38372f23e6622bd347ae273.html" target="_blank">Describing Common Human Visual Actions in Images</a></td><td><a href="https://arxiv.org/pdf/1506.02203.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>26</td><td>15</td><td>11</td><td>0</td><td>25</td><td>1</td></tr><tr><td>2e384f057211426ac5922f1b33d2aa8df5d51f57</td><td>a_pascal_yahoo</td><td>#N/A</td><td><a href="papers/2e384f057211426ac5922f1b33d2aa8df5d51f57.html" target="_blank">Describing objects by their attributes</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0468.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>University of Illinois, Urbana-Champaign</td><td>United States</td><td>40.11116745</td><td>-88.22587665</td><td>57%</td><td>999</td><td>565</td><td>433</td><td>74</td><td>738</td><td>264</td></tr><tr><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td><td>bpad</td><td>BPAD</td><td><a href="papers/7808937b46acad36e43c30ae4e9f3fd57462853d.html" target="_blank">Describing people: A poselet-based approach to attribute classification</a></td><td><a href="http://ttic.uchicago.edu/~smaji/papers/attributes-iccv11.pdf" target="_blank">[pdf]</a></td><td>2011 International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>221</td><td>125</td><td>96</td><td>14</td><td>165</td><td>59</td></tr><tr><td>d3200d49a19a4a4e4e9745ee39649b65d80c834b</td><td>scut_head</td><td>SCUT HEAD</td><td><a href="papers/d3200d49a19a4a4e4e9745ee39649b65d80c834b.html" target="_blank">Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</a></td><td><a href="https://arxiv.org/pdf/1803.09256.pdf" target="_blank">[pdf]</a></td><td>2018 24th International Conference on Pattern Recognition (ICPR)</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>9cc8cf0c7d7fa7607659921b6ff657e17e135ecc</td><td>mafa</td><td>MAsked FAces</td><td><a href="papers/9cc8cf0c7d7fa7607659921b6ff657e17e135ecc.html" target="_blank">Detecting Masked Faces in the Wild with LLE-CNNs</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2017/papers/Ge_Detecting_Masked_Faces_CVPR_2017_paper.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>6</td><td>4</td><td>2</td><td>1</td><td>5</td><td>1</td></tr><tr><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td><td>cmdp</td><td>CMDP</td><td><a href="papers/56ae6d94fc6097ec4ca861f0daa87941d1c10b70.html" target="_blank">Distance Estimation of an Unknown Person from a Portrait</a></td><td><a href="https://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>9</td><td>4</td><td>5</td><td>0</td><td>6</td><td>3</td></tr><tr><td>2b89de1d81cee50552f10e26e865df3365e9bc88</td><td>ibm_dif</td><td>IBM Diversity in Faces</td><td><a href="papers/2b89de1d81cee50552f10e26e865df3365e9bc88.html" target="_blank">Diversity in Faces</a></td><td><a href="https://arxiv.org/pdf/1901.10436.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>84fe5b4ac805af63206012d29523a1e033bc827e</td><td>awe_ears</td><td>AWE Ears</td><td><a href="papers/84fe5b4ac805af63206012d29523a1e033bc827e.html" target="_blank">Ear Recognition: More Than a Survey</a></td><td><a href="https://arxiv.org/pdf/1611.06203.pdf" target="_blank">[pdf]</a></td><td>Neurocomputing</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>24</td><td>16</td><td>8</td><td>0</td><td>11</td><td>13</td></tr><tr><td>133f01aec1534604d184d56de866a4bd531dac87</td><td>lfw</td><td>LFW</td><td><a href="papers/133f01aec1534604d184d56de866a4bd531dac87.html" target="_blank">Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</a></td><td><a href="http://www.cs.tau.ac.il/~wolf/papers/jpatchlbp.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>177</td><td>98</td><td>79</td><td>15</td><td>104</td><td>75</td></tr><tr><td>c900e0ad4c95948baaf0acd8449fde26f9b4952a</td><td>emotio_net</td><td>EmotioNet Database</td><td><a href="papers/c900e0ad4c95948baaf0acd8449fde26f9b4952a.html" target="_blank">EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</a></td><td><a href="http://cbcsl.ece.ohio-state.edu/cvpr16.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>72</td><td>39</td><td>33</td><td>7</td><td>54</td><td>17</td></tr><tr><td>2161f6b7ee3c0acc81603b01dc0df689683577b9</td><td>large_scale_person_search</td><td>Large Scale Person Search</td><td><a href="papers/2161f6b7ee3c0acc81603b01dc0df689683577b9.html" target="_blank">End-to-End Deep Learning for Person Search</a></td><td><a href="https://pdfs.semanticscholar.org/2161/f6b7ee3c0acc81603b01dc0df689683577b9.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>41</td><td>22</td><td>19</td><td>2</td><td>27</td><td>12</td></tr><tr><td>1bd1645a629f1b612960ab9bba276afd4cf7c666</td><td>brainwash</td><td>Brainwash</td><td><a href="papers/1bd1645a629f1b612960ab9bba276afd4cf7c666.html" target="_blank">End-to-End People Detection in Crowded Scenes</a></td><td><a href="https://arxiv.org/pdf/1506.04878.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Stanford University</td><td>United States</td><td>37.43131385</td><td>-122.16936535</td><td>37%</td><td>49</td><td>18</td><td>31</td><td>1</td><td>23</td><td>21</td></tr><tr><td>6273b3491e94ea4dd1ce42b791d77bdc96ee73a8</td><td>viper</td><td>VIPeR</td><td><a href="papers/6273b3491e94ea4dd1ce42b791d77bdc96ee73a8.html" target="_blank">Evaluating Appearance Models for Recognition, Reacquisition, and Tracking</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>584</td><td>330</td><td>254</td><td>38</td><td>338</td><td>245</td></tr><tr><td>2258e01865367018ed6f4262c880df85b94959f8</td><td>mot</td><td>MOT</td><td><a href="papers/2258e01865367018ed6f4262c880df85b94959f8.html" target="_blank">Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</a></td><td><a href="https://pdfs.semanticscholar.org/2e0b/00f4043e2d4b04c59c88bb54bcd907d0dcd4.pdf" target="_blank">[pdf]</a></td><td>EURASIP J. Image and Video Processing</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>586</td><td>291</td><td>293</td><td>48</td><td>345</td><td>244</td></tr><tr><td>9e5378e7b336c89735d3bb15cf67eff96f86d39a</td><td>precarious</td><td>Precarious</td><td><a href="papers/9e5378e7b336c89735d3bb15cf67eff96f86d39a.html" target="_blank">Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters</a></td><td><a href="https://arxiv.org/pdf/1703.06283.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>17%</td><td>12</td><td>2</td><td>10</td><td>1</td><td>11</td><td>1</td></tr><tr><td>35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62</td><td>coco_qa</td><td>COCO QA</td><td><a href="papers/35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62.html" target="_blank">Exploring Models and Data for Image Question Answering</a></td><td><a href="https://arxiv.org/pdf/1505.02074.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>191</td><td>115</td><td>76</td><td>12</td><td>165</td><td>27</td></tr><tr><td>75da1df4ed319926c544eefe17ec8d720feef8c0</td><td>fddb</td><td>FDDB</td><td><a href="papers/75da1df4ed319926c544eefe17ec8d720feef8c0.html" target="_blank">FDDB: A benchmark for face detection in unconstrained settings</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td></tr><tr><td>31de9b3dd6106ce6eec9a35991b2b9083395fd0b</td><td>feret</td><td>FERET</td><td><a href="papers/31de9b3dd6106ce6eec9a35991b2b9083395fd0b.html" target="_blank">FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</a></td><td><a href="https://pdfs.semanticscholar.org/31de/9b3dd6106ce6eec9a35991b2b9083395fd0b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>82</td><td>39</td><td>43</td><td>5</td><td>62</td><td>20</td></tr><tr><td>0e986f51fe45b00633de9fd0c94d082d2be51406</td><td>afw</td><td>AFW</td><td><a href="papers/0e986f51fe45b00633de9fd0c94d082d2be51406.html" target="_blank">Face detection, pose estimation, and landmark localization in the wild</a></td><td><a href="http://crcv.ucf.edu/courses/CAP6412/Spring2013/papers/zhu-ramanan-face-cvpr12.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>999</td><td>608</td><td>391</td><td>59</td><td>622</td><td>387</td></tr><tr><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td><td>youtube_faces</td><td>YouTubeFaces</td><td><a href="papers/560e0e58d0059259ddf86fcec1fa7975dee6a868.html" target="_blank">Face recognition in unconstrained videos with matched background similarity</a></td><td><a href="http://www.cs.tau.ac.il/thesis/thesis/Maoz.Itay-MSc.Thesis.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>Tel Aviv University</td><td>Israel</td><td>32.11198890</td><td>34.80459702</td><td>60%</td><td>485</td><td>292</td><td>192</td><td>30</td><td>298</td><td>193</td></tr><tr><td>670637d0303a863c1548d5b19f705860a23e285c</td><td>face_tracer</td><td>FaceTracer</td><td><a href="papers/670637d0303a863c1548d5b19f705860a23e285c.html" target="_blank">Face swapping: automatically replacing faces in photographs</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>6204776d31359d129a582057c2d788a14f8aadeb</td><td>youtube_celebrities</td><td>YouTube Celebrities</td><td><a href="papers/6204776d31359d129a582057c2d788a14f8aadeb.html" target="_blank">Face tracking and recognition with visual constraints in real-world videos</a></td><td><span class="gray">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>32%</td><td>301</td><td>97</td><td>202</td><td>18</td><td>144</td><td>133</td></tr><tr><td>4c170a0dcc8de75587dae21ca508dab2f9343974</td><td>face_tracer</td><td>FaceTracer</td><td><a href="papers/4c170a0dcc8de75587dae21ca508dab2f9343974.html" target="_blank">FaceTracer: A Search Engine for Large Collections of Images with Faces</a></td><td><a href="https://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>218</td><td>125</td><td>92</td><td>17</td><td>152</td><td>71</td></tr><tr><td>7ebb153704706e457ab57b432793d2b6e5d12592</td><td>vgg_celebs_in_places</td><td>CIP</td><td><a href="papers/7ebb153704706e457ab57b432793d2b6e5d12592.html" target="_blank">Faces in Places: compound query retrieval</a></td><td><a href="https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>80%</td><td>5</td><td>4</td><td>1</td><td>0</td><td>4</td><td>1</td></tr><tr><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td><td>mafl</td><td>MAFL</td><td><a href="papers/8a3c5507237957d013a0fe0f082cab7f757af6ee.html" target="_blank">Facial Landmark Detection by Deep Multi-task Learning</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>383</td><td>231</td><td>152</td><td>25</td><td>265</td><td>121</td></tr><tr><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td><td>mtfl</td><td>MTFL</td><td><a href="papers/8a3c5507237957d013a0fe0f082cab7f757af6ee.html" target="_blank">Facial Landmark Detection by Deep Multi-task Learning</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>383</td><td>231</td><td>152</td><td>25</td><td>265</td><td>121</td></tr><tr><td>014b8df0180f33b9fea98f34ae611c6447d761d2</td><td>buhmap_db</td><td>#N/A</td><td><a href="papers/014b8df0180f33b9fea98f34ae611c6447d761d2.html" target="_blank">Facial feature tracking and expression recognition for sign language</a></td><td><a href="https://www.cmpe.boun.edu.tr/~ari/files/ari2008iscis.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 17th Signal Processing and Communications Applications Conference</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>25</td><td>13</td><td>12</td><td>1</td><td>11</td><td>15</td></tr><tr><td>4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7</td><td>deep_fashion</td><td>DeepFashion</td><td><a href="papers/4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7.html" target="_blank">Fashion Landmark Detection in the Wild</a></td><td><a href="https://arxiv.org/pdf/1608.03049.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>17</td><td>9</td></tr><tr><td>45e616093a92e5f1e61a7c6037d5f637aa8964af</td><td>malf</td><td>MALF</td><td><a href="papers/45e616093a92e5f1e61a7c6037d5f637aa8964af.html" target="_blank">Fine-grained evaluation on face detection in the wild</a></td><td><a href="http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf" target="_blank">[pdf]</a></td><td>2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>17</td><td>12</td><td>5</td><td>0</td><td>13</td><td>4</td></tr><tr><td>1aad2da473888cb7ebc1bfaa15bfa0f1502ce005</td><td>jpl_pose</td><td>JPL-Interaction dataset</td><td><a href="papers/1aad2da473888cb7ebc1bfaa15bfa0f1502ce005.html" target="_blank">First-Person Activity Recognition: What Are They Doing to Me?</a></td><td><a href="http://michaelryoo.com/papers/cvpr2013_ryoo.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>148</td><td>103</td><td>45</td><td>8</td><td>111</td><td>38</td></tr><tr><td>7b92d1e53cc87f7a4256695de590098a2f30261e</td><td>appa_real</td><td>APPA-REAL</td><td><a href="papers/7b92d1e53cc87f7a4256695de590098a2f30261e.html" target="_blank">From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w48/Clapes_From_Apparent_to_CVPR_2018_paper.pdf" target="_blank">[pdf]</a></td><td>2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>774cbb45968607a027ae4729077734db000a1ec5</td><td>urban_tribes</td><td>Urban Tribes</td><td><a href="papers/774cbb45968607a027ae4729077734db000a1ec5.html" target="_blank">From Bikers to Surfers: Visual Recognition of Urban Tribes</a></td><td><a href="https://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>17</td><td>11</td><td>6</td><td>1</td><td>12</td><td>5</td></tr><tr><td>22f656d0f8426c84a33a267977f511f127bfd7f3</td><td>expw</td><td>ExpW</td><td><a href="papers/22f656d0f8426c84a33a267977f511f127bfd7f3.html" target="_blank">From Facial Expression Recognition to Interpersonal Relation Prediction</a></td><td><a href="https://arxiv.org/pdf/1609.06426.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>78%</td><td>9</td><td>7</td><td>2</td><td>0</td><td>5</td><td>4</td></tr><tr><td>18c72175ddbb7d5956d180b65a96005c100f6014</td><td>yale_faces</td><td>YaleFaces</td><td><a href="papers/18c72175ddbb7d5956d180b65a96005c100f6014.html" target="_blank">From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</a></td><td><a href="https://pdfs.semanticscholar.org/97bb/c2b439a79d4dc0dc7199d71ed96ad5e3fd0e.pdf" target="_blank">[pdf]</a></td><td>IEEE Trans. Pattern Anal. Mach. Intell.</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>999</td><td>516</td><td>483</td><td>77</td><td>551</td><td>459</td></tr><tr><td>06f02199690961ba52997cde1527e714d2b3bf8f</td><td>columbia_gaze</td><td>Columbia Gaze</td><td><a href="papers/06f02199690961ba52997cde1527e714d2b3bf8f.html" target="_blank">Gaze locking: passive eye contact detection for human-object interaction</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Columbia University</td><td>United States</td><td>40.84198360</td><td>-73.94368971</td><td>65%</td><td>80</td><td>52</td><td>28</td><td>0</td><td>49</td><td>35</td></tr><tr><td>18858cc936947fc96b5c06bbe3c6c2faa5614540</td><td>pilot_parliament</td><td>PPB</td><td><a href="papers/18858cc936947fc96b5c06bbe3c6c2faa5614540.html" target="_blank">Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification</a></td><td><a href="https://pdfs.semanticscholar.org/03c1/fc9c3339813ed81ad0de540132f9f695a0f8.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>55</td><td>30</td><td>25</td><td>0</td><td>47</td><td>7</td></tr><tr><td>2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d.html" target="_blank">Genealogical face recognition based on UB KinFace database</a></td><td><span class="gray">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>SUNY Buffalo</td><td>United States</td><td>42.93362780</td><td>-78.88394479</td><td>47%</td><td>30</td><td>14</td><td>16</td><td>1</td><td>10</td><td>21</td></tr><tr><td>2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9.html" target="_blank">Generic object recognition with boosting</a></td><td><a href="http://www.cse.unr.edu/~bebis/CS773C/ObjectRecognition/Papers/Opelt06.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>TU Graz</td><td>Austria</td><td>47.07071400</td><td>15.43950400</td><td>48%</td><td>286</td><td>136</td><td>150</td><td>16</td><td>193</td><td>97</td></tr><tr><td>17b46e2dad927836c689d6787ddb3387c6159ece</td><td>geofaces</td><td>GeoFaces</td><td><a href="papers/17b46e2dad927836c689d6787ddb3387c6159ece.html" target="_blank">GeoFaceExplorer: exploring the geo-dependence of facial attributes</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>2</td><td>2</td><td>0</td><td>0</td><td>1</td><td>1</td></tr><tr><td>bd88bb2e4f351352d88ee7375af834360e223498</td><td>hda_plus</td><td>HDA+</td><td><a href="papers/bd88bb2e4f351352d88ee7375af834360e223498.html" target="_blank">HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance</a></td><td><a href="https://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>2</td><td>0</td><td>2</td><td>0</td><td>1</td><td>2</td></tr><tr><td>a8d0b149c2eadaa02204d3e4356fbc8eccf3b315</td><td>hi4d_adsip</td><td>Hi4D-ADSIP</td><td><a href="papers/a8d0b149c2eadaa02204d3e4356fbc8eccf3b315.html" target="_blank">Hi4D-ADSIP 3-D dynamic facial articulation database</a></td><td><span class="gray">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>18</td><td>11</td><td>7</td><td>1</td><td>7</td><td>11</td></tr><tr><td>a5a3bc3e5e9753769163cb30b16dbd12e266b93e</td><td>mcgill</td><td>McGill Real World</td><td><a href="papers/a5a3bc3e5e9753769163cb30b16dbd12e266b93e.html" target="_blank">Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos</a></td><td><span class="gray">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>8</td><td>4</td><td>4</td><td>1</td><td>5</td><td>3</td></tr><tr><td>3cd40bfa1ff193a96bde0207e5140a399476466c</td><td>tvhi</td><td>TVHI</td><td><a href="papers/3cd40bfa1ff193a96bde0207e5140a399476466c.html" target="_blank">High Five: Recognising human interactions in TV shows</a></td><td><a href="https://pdfs.semanticscholar.org/3cd4/0bfa1ff193a96bde0207e5140a399476466c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>91</td><td>47</td><td>44</td><td>11</td><td>64</td><td>27</td></tr><tr><td>04c2cda00e5536f4b1508cbd80041e9552880e67</td><td>hipsterwars</td><td>Hipsterwars</td><td><a href="papers/04c2cda00e5536f4b1508cbd80041e9552880e67.html" target="_blank">Hipster wars: Discovering elements of fashion styles</a></td><td><a href="http://acberg.com/papers/hipster_eccv14.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>66%</td><td>91</td><td>60</td><td>31</td><td>5</td><td>61</td><td>29</td></tr><tr><td>10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5</td><td>inria_person</td><td>INRIA Pedestrian</td><td><a href="papers/10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5.html" target="_blank">Histograms of oriented gradients for human detection</a></td><td><a href="http://courses.cs.washington.edu/courses/cse576/12sp/notes/CVPR2005_HOG.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td>edu</td><td>INRIA Rhone-Alps, Montbonnot, France</td><td>France</td><td>45.21788600</td><td>5.80736900</td><td>54%</td><td>999</td><td>542</td><td>457</td><td>67</td><td>537</td><td>477</td></tr><tr><td>041d3eedf5e45ce5c5229f0181c5c576ed1fafd6</td><td>ucf_selfie</td><td>UCF Selfie</td><td><a href="papers/041d3eedf5e45ce5c5229f0181c5c576ed1fafd6.html" target="_blank">How to Take a Good Selfie?</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>9</td><td>6</td><td>3</td><td>0</td><td>6</td><td>4</td></tr><tr><td>44d23df380af207f5ac5b41459c722c87283e1eb</td><td>wider_attribute</td><td>WIDER Attribute</td><td><a href="papers/44d23df380af207f5ac5b41459c722c87283e1eb.html" target="_blank">Human Attribute Recognition by Deep Hierarchical Contexts</a></td><td><a href="https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>78%</td><td>18</td><td>14</td><td>4</td><td>0</td><td>16</td><td>2</td></tr><tr><td>44484d2866f222bbb9b6b0870890f9eea1ffb2d0</td><td>cuhk01</td><td>CUHK01</td><td><a href="papers/44484d2866f222bbb9b6b0870890f9eea1ffb2d0.html" target="_blank">Human Reidentification with Transferred Metric Learning</a></td><td><a href="https://pdfs.semanticscholar.org/4448/4d2866f222bbb9b6b0870890f9eea1ffb2d0.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>258</td><td>160</td><td>98</td><td>12</td><td>142</td><td>115</td></tr><tr><td>57178b36c21fd7f4529ac6748614bb3374714e91</td><td>ijb_c</td><td>IJB-C</td><td><a href="papers/57178b36c21fd7f4529ac6748614bb3374714e91.html" target="_blank">IARPA Janus Benchmark - C: Face Dataset and Protocol</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Mazeetal_IARPAJanusBenchmarkCFaceDatasetAndProtocol_ICB2018.pdf" target="_blank">[pdf]</a></td><td>2018 International Conference on Biometrics (ICB)</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>9</td><td>3</td><td>6</td><td>2</td><td>9</td><td>0</td></tr><tr><td>0cb2dd5f178e3a297a0c33068961018659d0f443</td><td>ijb_c</td><td>IJB-C</td><td><a href="papers/0cb2dd5f178e3a297a0c33068961018659d0f443.html" target="_blank">IARPA Janus Benchmark-B Face Dataset</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Whitelametal_IARPAJanusBenchmark-BFaceDataset_CVPRW17.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td>edu</td><td>Michigan State University</td><td>United States</td><td>42.71856800</td><td>-84.47791571</td><td>28%</td><td>25</td><td>7</td><td>18</td><td>6</td><td>21</td><td>4</td></tr><tr><td>0297448f3ed948e136bb06ceff10eccb34e5bb77</td><td>ilids_mcts</td><td>i-LIDS Multiple-Camera</td><td><a href="papers/0297448f3ed948e136bb06ceff10eccb34e5bb77.html" target="_blank">Imagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems</a></td><td><span class="gray">[pdf]</a></td><td>Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology</td><td></td><td></td><td></td><td></td><td></td><td>38%</td><td>32</td><td>12</td><td>20</td><td>2</td><td>18</td><td>15</td></tr><tr><td>55c40cbcf49a0225e72d911d762c27bb1c2d14aa</td><td>ifad</td><td>IFAD</td><td><a href="papers/55c40cbcf49a0225e72d911d762c27bb1c2d14aa.html" target="_blank">Indian Face Age Database : A Database for Face Recognition with Age Variation</a></td><td><a href="https://pdfs.semanticscholar.org/55c4/0cbcf49a0225e72d911d762c27bb1c2d14aa.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>ca3e88d87e1344d076c964ea89d91a75c417f5ee</td><td>imfdb</td><td>IMFDB</td><td><a href="papers/ca3e88d87e1344d076c964ea89d91a75c417f5ee.html" target="_blank">Indian Movie Face Database: A benchmark for face recognition under wide variations</a></td><td><a href="http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/papers/Shankar2013Indian.pdf" target="_blank">[pdf]</a></td><td>2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)</td><td>edu</td><td>BVBCET, Hubli, India</td><td></td><td>15.36883320</td><td>75.12137960</td><td>60%</td><td>15</td><td>9</td><td>6</td><td>0</td><td>10</td><td>5</td></tr><tr><td>95f12d27c3b4914e0668a268360948bce92f7db3</td><td>helen</td><td>Helen</td><td><a href="papers/95f12d27c3b4914e0668a268360948bce92f7db3.html" target="_blank">Interactive Facial Feature Localization</a></td><td><a href="https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>company</td><td>Facebook</td><td>United States</td><td>37.39367170</td><td>-122.08072620</td><td>59%</td><td>339</td><td>201</td><td>138</td><td>29</td><td>219</td><td>129</td></tr><tr><td>ad01687649d95cd5b56d7399a9603c4b8e2217d7</td><td>mrp_drone</td><td>MRP Drone</td><td><a href="papers/ad01687649d95cd5b56d7399a9603c4b8e2217d7.html" target="_blank">Investigating Open-World Person Re-identification Using a Drone</a></td><td><a href="https://pdfs.semanticscholar.org/ad01/687649d95cd5b56d7399a9603c4b8e2217d7.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>5</td><td>2</td><td>3</td><td>0</td><td>3</td><td>2</td></tr><tr><td>2f43b614607163abf41dfe5d17ef6749a1b61304</td><td>hrt_transgender</td><td>HRT Transgender</td><td><a href="papers/2f43b614607163abf41dfe5d17ef6749a1b61304.html" target="_blank">Investigating the Periocular-Based Face Recognition Across Gender Transformation</a></td><td><span class="gray">[pdf]</a></td><td>IEEE Transactions on Information Forensics and Security</td><td>edu</td><td>University of North Carolina at Wilmington</td><td>United States</td><td>34.22498270</td><td>-77.86907744</td><td>69%</td><td>13</td><td>9</td><td>4</td><td>0</td><td>6</td><td>8</td></tr><tr><td>066d71fcd997033dce4ca58df924397dfe0b5fd1</td><td>ifdb</td><td>IFDB</td><td><a href="papers/066d71fcd997033dce4ca58df924397dfe0b5fd1.html" target="_blank">Iranian Face Database and Evaluation with a New Detection Algorithm</a></td><td><a href="https://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>b71d1aa90dcbe3638888725314c0d56640c1fef1</td><td>ifdb</td><td>IFDB</td><td><a href="papers/b71d1aa90dcbe3638888725314c0d56640c1fef1.html" target="_blank">Iranian Face Database with age, pose and expression</a></td><td><a href="http://www.iranprc.org/pdf/paper/2007-02.pdf" target="_blank">[pdf]</a></td><td>2007 International Conference on Machine Vision</td><td>edu</td><td>Islamic Azad University</td><td>Iran</td><td>34.84529990</td><td>48.55962120</td><td>35%</td><td>20</td><td>7</td><td>13</td><td>2</td><td>12</td><td>9</td></tr><tr><td>137aa2f891d474fce1e7a1d1e9b3aefe21e22b34</td><td>hrt_transgender</td><td>HRT Transgender</td><td><a href="papers/137aa2f891d474fce1e7a1d1e9b3aefe21e22b34.html" target="_blank">Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset</a></td><td><a href="http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%20139/PID2859389.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>7</td><td>4</td><td>3</td><td>1</td><td>3</td><td>5</td></tr><tr><td>0b440695c822a8e35184fb2f60dcdaa8a6de84ae</td><td>kinectface</td><td>KinectFaceDB</td><td><a href="papers/0b440695c822a8e35184fb2f60dcdaa8a6de84ae.html" target="_blank">KinectFaceDB: A Kinect Database for Face Recognition</a></td><td><a href="http://www.eurecom.fr/fr/publication/4393/download/mm-publi-4393.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Systems, Man, and Cybernetics: Systems</td><td>edu</td><td>University of North Carolina at Chapel Hill</td><td>United States</td><td>35.91139710</td><td>-79.05045290</td><td>61%</td><td>75</td><td>46</td><td>29</td><td>6</td><td>26</td><td>50</td></tr><tr><td>4793f11fbca4a7dba898b9fff68f70d868e2497c</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/4793f11fbca4a7dba898b9fff68f70d868e2497c.html" target="_blank">Kinship verification through transfer learning</a></td><td><a href="http://ijcai.org/Proceedings/11/Papers/422.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>71</td><td>39</td><td>32</td><td>2</td><td>29</td><td>43</td></tr><tr><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td><td>lfw</td><td>LFW</td><td><a href="papers/370b5757a5379b15e30d619e4d3fb9e8e13f3256.html" target="_blank">Labeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments</a></td><td><a href="https://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>999</td><td>577</td><td>420</td><td>71</td><td>639</td><td>371</td></tr><tr><td>7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22</td><td>lfw</td><td>LFW</td><td><a href="papers/7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22.html" target="_blank">Labeled Faces in the Wild : A Survey</a></td><td><a href="https://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Stevens Institute of Technology</td><td>United States</td><td>40.74225200</td><td>-74.02709490</td><td>45%</td><td>99</td><td>45</td><td>54</td><td>8</td><td>63</td><td>36</td></tr><tr><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td><td>lfw</td><td>LFW</td><td><a href="papers/2d3482dcff69c7417c7b933f22de606a0e8e42d4.html" target="_blank">Labeled Faces in the Wild : Updates and New Reporting Procedures</a></td><td><a href="https://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Massachusetts</td><td>United States</td><td>42.38897850</td><td>-72.52869870</td><td>58%</td><td>123</td><td>71</td><td>52</td><td>3</td><td>72</td><td>50</td></tr><tr><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td><td>lag</td><td>LAG</td><td><a href="papers/0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e.html" target="_blank">Large age-gap face verification by feature injection in deep networks</a></td><td><a href="https://arxiv.org/pdf/1602.06149.pdf" target="_blank">[pdf]</a></td><td>Pattern Recognition Letters</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>3</td><td>4</td></tr><tr><td>07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1</td><td>uccs</td><td>UCCS</td><td><a href="papers/07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1.html" target="_blank">Large scale unconstrained open set face database</a></td><td><a href="http://vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>University of Colorado at Colorado Springs</td><td>United States</td><td>38.89646790</td><td>-104.80505940</td><td>80%</td><td>5</td><td>4</td><td>1</td><td>0</td><td>3</td><td>2</td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>mafl</td><td>MAFL</td><td><a href="papers/a0fd85b3400c7b3e11122f44dc5870ae2de9009a.html" target="_blank">Learning Deep Representation for Face Alignment with Auxiliary Attributes</a></td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>110</td><td>60</td><td>50</td><td>12</td><td>69</td><td>43</td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>mtfl</td><td>MTFL</td><td><a href="papers/a0fd85b3400c7b3e11122f44dc5870ae2de9009a.html" target="_blank">Learning Deep Representation for Face Alignment with Auxiliary Attributes</a></td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>110</td><td>60</td><td>50</td><td>12</td><td>69</td><td>43</td></tr><tr><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td><td>casia_webface</td><td>CASIA Webface</td><td><a href="papers/853bd61bc48a431b9b1c7cab10c603830c488e39.html" target="_blank">Learning Face Representation from Scratch</a></td><td><a href="https://arxiv.org/pdf/1411.7923.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td>edu</td><td>Chinese Academy of Sciences</td><td>China</td><td>40.00447950</td><td>116.37023800</td><td>60%</td><td>436</td><td>260</td><td>176</td><td>30</td><td>288</td><td>150</td></tr><tr><td>2a171f8d14b6b8735001a11c217af9587d095848</td><td>social_relation</td><td>Social Relation</td><td><a href="papers/2a171f8d14b6b8735001a11c217af9587d095848.html" target="_blank">Learning Social Relation Traits from Face Images</a></td><td><a href="https://arxiv.org/pdf/1509.03936.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>20</td><td>8</td><td>12</td><td>5</td><td>15</td><td>5</td></tr><tr><td>4e4746094bf60ee83e40d8597a6191e463b57f76</td><td>leeds_sports_pose_extended</td><td>Leeds Sports Pose Extended</td><td><a href="papers/4e4746094bf60ee83e40d8597a6191e463b57f76.html" target="_blank">Learning effective human pose estimation from inaccurate annotation</a></td><td><a href="http://www.comp.leeds.ac.uk/mat4saj/publications/johnson11cvpr.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>University of Leeds</td><td>United Kingdom</td><td>53.80387185</td><td>-1.55245712</td><td>64%</td><td>173</td><td>111</td><td>62</td><td>10</td><td>122</td><td>56</td></tr><tr><td>287ddcb3db5562235d83aee318f318b8d5e43fb1</td><td>erce</td><td>ERCe</td><td><a href="papers/287ddcb3db5562235d83aee318f318b8d5e43fb1.html" target="_blank">Learning from Multiple Sources for Video Summarisation</a></td><td><a href="https://arxiv.org/pdf/1501.03069.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>7</td><td>4</td><td>3</td><td>0</td><td>4</td><td>3</td></tr><tr><td>287ddcb3db5562235d83aee318f318b8d5e43fb1</td><td>tisi</td><td>Times Square Intersection</td><td><a href="papers/287ddcb3db5562235d83aee318f318b8d5e43fb1.html" target="_blank">Learning from Multiple Sources for Video Summarisation</a></td><td><a href="https://arxiv.org/pdf/1501.03069.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>7</td><td>4</td><td>3</td><td>0</td><td>4</td><td>3</td></tr><tr><td>5981e6479c3fd4e31644db35d236bfb84ae46514</td><td>mot</td><td>MOT</td><td><a href="papers/5981e6479c3fd4e31644db35d236bfb84ae46514.html" target="_blank">Learning to associate: HybridBoosted multi-target tracker for crowded scene</a></td><td><a href="http://iris.usc.edu/Outlines/papers/2009/yuan-chang-nevatia-cvpr09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>University of Southern California</td><td>United States</td><td>34.02241490</td><td>-118.28634407</td><td>52%</td><td>330</td><td>173</td><td>156</td><td>27</td><td>196</td><td>139</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_buffy</td><td>Buffy Stickmen</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>215</td><td>157</td><td>35</td><td>251</td><td>129</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>215</td><td>157</td><td>35</td><td>251</td><td>129</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>215</td><td>157</td><td>35</td><td>251</td><td>129</td></tr><tr><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td><td>megaface</td><td>MegaFace</td><td><a href="papers/28d4e027c7e90b51b7d8908fce68128d1964668a.html" target="_blank">Level Playing Field for Million Scale Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1705.00393.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>University of Washington</td><td>United States</td><td>47.65432380</td><td>-122.30800894</td><td>39%</td><td>38</td><td>15</td><td>23</td><td>2</td><td>29</td><td>8</td></tr><tr><td>46a01565e6afe7c074affb752e7069ee3bf2e4ef</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/46a01565e6afe7c074affb752e7069ee3bf2e4ef.html" target="_blank">Local Descriptors Encoded by Fisher Vectors for Person Re-identification</a></td><td><a href="https://pdfs.semanticscholar.org/a105/f1ef67b4b02da38eadce8ffb4e13aa301a93.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>198</td><td>114</td><td>84</td><td>16</td><td>111</td><td>88</td></tr><tr><td>140438a77a771a8fb656b39a78ff488066eb6b50</td><td>lfpw</td><td>LFWP</td><td><a href="papers/140438a77a771a8fb656b39a78ff488066eb6b50.html" target="_blank">Localizing Parts of Faces Using a Consensus of Exemplars</a></td><td><a href="http://neerajkumar.org/projects/face-parts/base/papers/nk_cvpr2011_faceparts.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>521</td><td>315</td><td>206</td><td>42</td><td>337</td><td>195</td></tr><tr><td>38b55d95189c5e69cf4ab45098a48fba407609b4</td><td>cuhk02</td><td>CUHK02</td><td><a href="papers/38b55d95189c5e69cf4ab45098a48fba407609b4.html" target="_blank">Locally Aligned Feature Transforms across Views</a></td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d594.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>242</td><td>129</td><td>113</td><td>17</td><td>139</td><td>102</td></tr><tr><td>8990cdce3f917dad622e43e033db686b354d057c</td><td>tiny_faces</td><td>TinyFace</td><td><a href="papers/8990cdce3f917dad622e43e033db686b354d057c.html" target="_blank">Low-Resolution Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1811.08965.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>c0387e788a52f10bf35d4d50659cfa515d89fbec</td><td>mars</td><td>MARS</td><td><a href="papers/c0387e788a52f10bf35d4d50659cfa515d89fbec.html" target="_blank">MARS: A Video Benchmark for Large-Scale Person Re-Identification</a></td><td><a href="http://liangzheng.org/1320.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>146</td><td>85</td><td>61</td><td>6</td><td>97</td><td>49</td></tr><tr><td>3dc3f0b64ef80f573e3a5f96e456e52ee980b877</td><td>georgia_tech_face_database</td><td>Georgia Tech Face</td><td><a href="papers/3dc3f0b64ef80f573e3a5f96e456e52ee980b877.html" target="_blank">MAXIMUM LIKELIHOOD TRAINING OF THE EMBEDDED HMM FOR FACE DETECTION AND RECOGNITION Ara V. Ne an and Monson H. Hayes III Center for Signal and Image Processing School of Electrical and Computer Engineering</a></td><td><a href="https://pdfs.semanticscholar.org/3dc3/f0b64ef80f573e3a5f96e456e52ee980b877.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>3</td><td>1</td><td>2</td><td>0</td><td>2</td><td>1</td></tr><tr><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td><td>morph</td><td>MORPH Commercial</td><td><a href="papers/9055b155cbabdce3b98e16e5ac9c0edf00f9552f.html" target="_blank">MORPH: a longitudinal image database of normal adult age-progression</a></td><td><span class="gray">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>424</td><td>226</td><td>197</td><td>26</td><td>239</td><td>190</td></tr><tr><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td><td>morph_nc</td><td>MORPH Non-Commercial</td><td><a href="papers/9055b155cbabdce3b98e16e5ac9c0edf00f9552f.html" target="_blank">MORPH: a longitudinal image database of normal adult age-progression</a></td><td><span class="gray">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>424</td><td>226</td><td>197</td><td>26</td><td>239</td><td>190</td></tr><tr><td>291265db88023e92bb8c8e6390438e5da148e8f5</td><td>msceleb</td><td>MsCeleb</td><td><a href="papers/291265db88023e92bb8c8e6390438e5da148e8f5.html" target="_blank">MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1607.08221.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>167</td><td>91</td><td>76</td><td>14</td><td>131</td><td>36</td></tr><tr><td>e58dd160a76349d46f881bd6ddbc2921f08d1050</td><td>gfw</td><td>Grouping Face in the Wild</td><td><a href="papers/e58dd160a76349d46f881bd6ddbc2921f08d1050.html" target="_blank">Merge or Not? Learning to Group Faces via Imitation Learning</a></td><td><a href="https://arxiv.org/pdf/1707.03986.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td><td>50_people_one_question</td><td>50 People One Question</td><td><a href="papers/5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725.html" target="_blank">Merging Pose Estimates Across Space and Time</a></td><td><a href="https://pdfs.semanticscholar.org/63b2/f5348af0f969dfc2afb4977732393c6459ec.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>87%</td><td>15</td><td>13</td><td>2</td><td>0</td><td>12</td><td>4</td></tr><tr><td>5e0f8c355a37a5a89351c02f174e7a5ddcb98683</td><td>coco</td><td>COCO</td><td><a href="papers/5e0f8c355a37a5a89351c02f174e7a5ddcb98683.html" target="_blank">Microsoft COCO: Common Objects in Context</a></td><td><a href="https://arxiv.org/pdf/1405.0312.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>999</td><td>574</td><td>425</td><td>29</td><td>799</td><td>193</td></tr><tr><td>a5a44a32a91474f00a3cda671a802e87c899fbb4</td><td>moments_in_time</td><td>Moments in Time</td><td><a href="papers/a5a44a32a91474f00a3cda671a802e87c899fbb4.html" target="_blank">Moments in Time Dataset: one million videos for event understanding</a></td><td><a href="https://arxiv.org/pdf/1801.03150.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>25</td><td>16</td><td>9</td><td>2</td><td>25</td><td>0</td></tr><tr><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td><td>tud_multiview</td><td>TUD-Multiview</td><td><a href="papers/436f798d1a4e54e5947c1e7d7375c31b2bdb4064.html" target="_blank">Monocular 3D pose estimation and tracking by detection</a></td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>TU Darmstadt</td><td>Germany</td><td>49.87482770</td><td>8.65632810</td><td>54%</td><td>302</td><td>164</td><td>138</td><td>34</td><td>207</td><td>100</td></tr><tr><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td><td>tud_stadtmitte</td><td>TUD-Stadtmitte</td><td><a href="papers/436f798d1a4e54e5947c1e7d7375c31b2bdb4064.html" target="_blank">Monocular 3D pose estimation and tracking by detection</a></td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>TU Darmstadt</td><td>Germany</td><td>49.87482770</td><td>8.65632810</td><td>54%</td><td>302</td><td>164</td><td>138</td><td>34</td><td>207</td><td>100</td></tr><tr><td>3b5b6d19d4733ab606c39c69a889f9e67967f151</td><td>qmul_grid</td><td>GRID</td><td><a href="papers/3b5b6d19d4733ab606c39c69a889f9e67967f151.html" target="_blank">Multi-camera activity correlation analysis</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0163.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Queen Mary University of London</td><td>United Kingdom</td><td>51.52472720</td><td>-0.03931035</td><td>62%</td><td>138</td><td>86</td><td>52</td><td>8</td><td>79</td><td>61</td></tr><tr><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td><td>tud_brussels</td><td>TUD-Brussels</td><td><a href="papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html" target="_blank">Multi-cue onboard pedestrian detection</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>217</td><td>122</td><td>95</td><td>14</td><td>133</td><td>86</td></tr><tr><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td><td>tud_motionpairs</td><td>TUD-Motionparis</td><td><a href="papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html" target="_blank">Multi-cue onboard pedestrian detection</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>217</td><td>122</td><td>95</td><td>14</td><td>133</td><td>86</td></tr><tr><td>32c801cb7fbeb742edfd94cccfca4934baec71da</td><td>ucf_crowd</td><td>UCF-CC-50</td><td><a href="papers/32c801cb7fbeb742edfd94cccfca4934baec71da.html" target="_blank">Multi-source Multi-scale Counting in Extremely Dense Crowd Images</a></td><td><a href="http://crcv-web.eecs.ucf.edu/papers/cvpr2013/Counting_V3o.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>125</td><td>88</td><td>37</td><td>6</td><td>73</td><td>52</td></tr><tr><td>1e3df3ca8feab0b36fd293fe689f93bb2aaac591</td><td>immediacy</td><td>Immediacy</td><td><a href="papers/1e3df3ca8feab0b36fd293fe689f93bb2aaac591.html" target="_blank">Multi-task Recurrent Neural Network for Immediacy Prediction</a></td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Chu_Multi-Task_Recurrent_Neural_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>25</td><td>16</td><td>9</td><td>2</td><td>21</td><td>5</td></tr><tr><td>2b926b3586399d028b46315d7d9fb9d879e4f79c</td><td>frav3d</td><td>FRAV3D</td><td><a href="papers/2b926b3586399d028b46315d7d9fb9d879e4f79c.html" target="_blank">Multimodal 2D, 2.5D & 3D Face Verification</a></td><td><a href="http://www.researchgate.net/profile/Enrique_Cabello/publication/224057733_Multimodal_2D_2.5D__3D_Face_Verification/links/0912f50f522298fa95000000.pdf" target="_blank">[pdf]</a></td><td>2006 International Conference on Image Processing</td><td>edu</td><td>Universidad Rey Juan Carlos, Spain</td><td></td><td>40.33586610</td><td>-3.87694320</td><td>50%</td><td>14</td><td>7</td><td>7</td><td>0</td><td>2</td><td>12</td></tr><tr><td>53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4</td><td>bp4d_plus</td><td>BP4D+</td><td><a href="papers/53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4.html" target="_blank">Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Multimodal_Spontaneous_Emotion_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>40</td><td>20</td><td>20</td><td>0</td><td>21</td><td>20</td></tr><tr><td>2fda164863a06a92d3a910b96eef927269aeb730</td><td>names_and_faces</td><td>News Dataset</td><td><a href="papers/2fda164863a06a92d3a910b96eef927269aeb730.html" target="_blank">Names and faces in the news</a></td><td><a href="http://ttic.uchicago.edu/~mmaire/papers/pdf/names_faces_cvpr2004.pdf" target="_blank">[pdf]</a></td><td>Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>294</td><td>152</td><td>141</td><td>29</td><td>215</td><td>82</td></tr><tr><td>4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06</td><td>distance_nighttime</td><td>Long Distance Heterogeneous Face</td><td><a href="papers/4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06.html" target="_blank">Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching</a></td><td><a href="https://pdfs.semanticscholar.org/4156/b7e88f2e0ab0a7c095b9bab199ae2b23bd06.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>21</td><td>9</td><td>12</td><td>3</td><td>11</td><td>10</td></tr><tr><td>3394168ff0719b03ff65bcea35336a76b21fe5e4</td><td>penn_fudan</td><td>Penn Fudan</td><td><a href="papers/3394168ff0719b03ff65bcea35336a76b21fe5e4.html" target="_blank">Object Detection Combining Recognition and Segmentation</a></td><td><a href="https://pdfs.semanticscholar.org/3394/168ff0719b03ff65bcea35336a76b21fe5e4.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>101</td><td>51</td><td>50</td><td>11</td><td>58</td><td>42</td></tr><tr><td>12ad3b5bbbf407f8e54ea692c07633d1a867c566</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/12ad3b5bbbf407f8e54ea692c07633d1a867c566.html" target="_blank">Object recognition using segmentation for feature detection</a></td><td><span class="gray">[pdf]</a></td><td>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.</td><td>edu</td><td>Inst. of Comput. Sci., Univ. of Leoben, Austria</td><td>Austria</td><td>47.38473720</td><td>15.09302010</td><td>41%</td><td>29</td><td>12</td><td>17</td><td>1</td><td>21</td><td>8</td></tr><tr><td>4f93cd09785c6e77bf4bc5a788e079df524c8d21</td><td>soton</td><td>SOTON HiD</td><td><a href="papers/4f93cd09785c6e77bf4bc5a788e079df524c8d21.html" target="_blank">On a Large Sequence-Based Human Gait Database</a></td><td><a href="https://eprints.soton.ac.uk/257901/1/Shutler_2002.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>148</td><td>88</td><td>60</td><td>17</td><td>104</td><td>49</td></tr><tr><td>6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c</td><td>afad</td><td>AFAD</td><td><a href="papers/6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c.html" target="_blank">Ordinal Regression with Multiple Output CNN for Age Estimation</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Niu_Ordinal_Regression_With_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>68</td><td>36</td><td>32</td><td>8</td><td>49</td><td>17</td></tr><tr><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td><td>market1203</td><td>Market 1203</td><td><a href="papers/a7fe834a0af614ce6b50dc093132b031dd9a856b.html" target="_blank">Orientation Driven Bag of Appearances for Person Re-identification</a></td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>4</td><td>4</td></tr><tr><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td><td>pku_reid</td><td>PKU-Reid</td><td><a href="papers/a7fe834a0af614ce6b50dc093132b031dd9a856b.html" target="_blank">Orientation Driven Bag of Appearances for Person Re-identification</a></td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>4</td><td>4</td></tr><tr><td>18ae7c9a4bbc832b8b14bc4122070d7939f5e00e</td><td>frgc</td><td>FRGC</td><td><a href="papers/18ae7c9a4bbc832b8b14bc4122070d7939f5e00e.html" target="_blank">Overview of the face recognition grand challenge</a></td><td><a href="http://ivizlab.sfu.ca/arya/Papers/IEEE/Proceedings/C%20V%20P%20R-%2005/Face%20Recognition%20Grand%20Challenge.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td>edu</td><td>NIST</td><td>United States</td><td>39.14004000</td><td>-77.21850600</td><td>50%</td><td>999</td><td>500</td><td>498</td><td>114</td><td>594</td><td>424</td></tr><tr><td>22909dd19a0ec3b6065334cb5be5392cb24d839d</td><td>pets</td><td>PETS 2017</td><td><a href="papers/22909dd19a0ec3b6065334cb5be5392cb24d839d.html" target="_blank">PETS 2017: Dataset and Challenge</a></td><td><a href="http://tahirnawaz.com/papers/2017_CVPRW_PETS2017Dataset_Luis_Nawaz_Cane_Ferryman.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>8</td><td>0</td><td>8</td><td>0</td><td>2</td><td>6</td></tr><tr><td>56ffa7d906b08d02d6d5a12c7377a57e24ef3391</td><td>unbc_shoulder_pain</td><td>UNBC-McMaster Pain</td><td><a href="papers/56ffa7d906b08d02d6d5a12c7377a57e24ef3391.html" target="_blank">Painful data: The UNBC-McMaster shoulder pain expression archive database</a></td><td><a href="http://www.iainm.com/iainm/Publications_files/2011_PAINFUL.pdf" target="_blank">[pdf]</a></td><td>Face and Gesture 2011</td><td>edu</td><td>Carnegie Mellon University Silicon Valley</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>52%</td><td>184</td><td>96</td><td>88</td><td>23</td><td>112</td><td>71</td></tr><tr><td>55206f0b5f57ce17358999145506cd01e570358c</td><td>orl</td><td>ORL</td><td><a href="papers/55206f0b5f57ce17358999145506cd01e570358c.html" target="_blank">Parameterisation of a stochastic model for human face identification</a></td><td><a href="https://pdfs.semanticscholar.org/5520/6f0b5f57ce17358999145506cd01e570358c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>999</td><td>447</td><td>552</td><td>97</td><td>569</td><td>445</td></tr><tr><td>0486214fb58ee9a04edfe7d6a74c6d0f661a7668</td><td>chokepoint</td><td>ChokePoint</td><td><a href="papers/0486214fb58ee9a04edfe7d6a74c6d0f661a7668.html" target="_blank">Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition</a></td><td><a href="https://arxiv.org/pdf/1304.0869.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>128</td><td>69</td><td>59</td><td>6</td><td>73</td><td>60</td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>apis</td><td>APiS1.0</td><td><a href="papers/488e475eeb3bb39a145f23ede197cd3620f1d98a.html" target="_blank">Pedestrian Attribute Classification in Surveillance: Database and Evaluation</a></td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>13</td><td>13</td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>svs</td><td>SVS</td><td><a href="papers/488e475eeb3bb39a145f23ede197cd3620f1d98a.html" target="_blank">Pedestrian Attribute Classification in Surveillance: Database and Evaluation</a></td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>13</td><td>13</td></tr><tr><td>2a4bbee0b4cf52d5aadbbc662164f7efba89566c</td><td>peta</td><td>PETA</td><td><a href="papers/2a4bbee0b4cf52d5aadbbc662164f7efba89566c.html" target="_blank">Pedestrian Attribute Recognition At Far Distance</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>68%</td><td>80</td><td>54</td><td>26</td><td>2</td><td>51</td><td>28</td></tr><tr><td>f72f6a45ee240cc99296a287ff725aaa7e7ebb35</td><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td><a href="papers/f72f6a45ee240cc99296a287ff725aaa7e7ebb35.html" target="_blank">Pedestrian Detection: An Evaluation of the State of the Art</a></td><td><a href="http://vision.caltech.edu/Image_Datasets/CaltechPedestrians/files/PAMI12pedestrians.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>California Institute of Technology</td><td>United States</td><td>34.13710185</td><td>-118.12527487</td><td>49%</td><td>999</td><td>490</td><td>509</td><td>71</td><td>541</td><td>464</td></tr><tr><td>1dc35905a1deff8bc74688f2d7e2f48fd2273275</td><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td><a href="papers/1dc35905a1deff8bc74688f2d7e2f48fd2273275.html" target="_blank">Pedestrian detection: A benchmark</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1378.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>519</td><td>261</td><td>258</td><td>27</td><td>289</td><td>233</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_campus</td><td>TUD-Campus</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>529</td><td>280</td><td>248</td><td>40</td><td>324</td><td>213</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_crossing</td><td>TUD-Crossing</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>529</td><td>280</td><td>248</td><td>40</td><td>324</td><td>213</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_pedestrian</td><td>TUD-Pedestrian</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>529</td><td>280</td><td>248</td><td>40</td><td>324</td><td>213</td></tr><tr><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td><td>duke_mtmc</td><td>Duke MTMC</td><td><a href="papers/27a2fad58dd8727e280f97036e0d2bc55ef5424c.html" target="_blank">Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</a></td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>136</td><td>79</td><td>57</td><td>7</td><td>108</td><td>27</td></tr><tr><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td><td>mot</td><td>MOT</td><td><a href="papers/27a2fad58dd8727e280f97036e0d2bc55ef5424c.html" target="_blank">Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</a></td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>136</td><td>79</td><td>57</td><td>7</td><td>108</td><td>27</td></tr><tr><td>16c7c31a7553d99f1837fc6e88e77b5ccbb346b8</td><td>prid</td><td>PRID</td><td><a href="papers/16c7c31a7553d99f1837fc6e88e77b5ccbb346b8.html" target="_blank">Person Re-identification by Descriptive and Discriminative Classification</a></td><td><a href="https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>352</td><td>206</td><td>146</td><td>27</td><td>196</td><td>157</td></tr><tr><td>98bb029afe2a1239c3fdab517323066f0957b81b</td><td>ilids_vid_reid</td><td>iLIDS-VID</td><td><a href="papers/98bb029afe2a1239c3fdab517323066f0957b81b.html" target="_blank">Person Re-identification by Video Ranking</a></td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>210</td><td>121</td><td>89</td><td>10</td><td>115</td><td>94</td></tr><tr><td>98bb029afe2a1239c3fdab517323066f0957b81b</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/98bb029afe2a1239c3fdab517323066f0957b81b.html" target="_blank">Person Re-identification by Video Ranking</a></td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>210</td><td>121</td><td>89</td><td>10</td><td>115</td><td>94</td></tr><tr><td>0b84f07af44f964817675ad961def8a51406dd2e</td><td>prw</td><td>PRW</td><td><a href="papers/0b84f07af44f964817675ad961def8a51406dd2e.html" target="_blank">Person Re-identification in the Wild</a></td><td><a href="https://arxiv.org/pdf/1604.02531.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>65</td><td>33</td><td>32</td><td>1</td><td>46</td><td>17</td></tr><tr><td>ec792ad2433b6579f2566c932ee414111e194537</td><td>msmt_17</td><td>MSMT17</td><td><a href="papers/ec792ad2433b6579f2566c932ee414111e194537.html" target="_blank">Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</a></td><td><a href="https://arxiv.org/pdf/1711.08565.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>14</td><td>10</td><td>4</td><td>1</td><td>11</td><td>3</td></tr><tr><td>1c2802c2199b6d15ecefe7ba0c39bfe44363de38</td><td>youtube_poses</td><td>YouTube Pose</td><td><a href="papers/1c2802c2199b6d15ecefe7ba0c39bfe44363de38.html" target="_blank">Personalizing Human Video Pose Estimation</a></td><td><a href="https://arxiv.org/pdf/1511.06676.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>66%</td><td>32</td><td>21</td><td>11</td><td>2</td><td>29</td><td>5</td></tr><tr><td>b92a1ed9622b8268ae3ac9090e25789fc41cc9b8</td><td>pornodb</td><td>#N/A</td><td><a href="papers/b92a1ed9622b8268ae3ac9090e25789fc41cc9b8.html" target="_blank">Pooling in image representation: The visual codeword point of view</a></td><td><a href="http://cedric.cnam.fr/~thomen/papers/avila_CVIU2012_final.pdf" target="_blank">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>32%</td><td>77</td><td>25</td><td>52</td><td>7</td><td>46</td><td>34</td></tr><tr><td>2830fb5282de23d7784b4b4bc37065d27839a412</td><td>h3d</td><td>H3D</td><td><a href="papers/2830fb5282de23d7784b4b4bc37065d27839a412.html" target="_blank">Poselets: Body part detectors trained using 3D human pose annotations</a></td><td><a href="http://http.cs.berkeley.edu/Research/Projects/CS/vision/human/poselets_iccv09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 12th International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>707</td><td>368</td><td>339</td><td>67</td><td>509</td><td>215</td></tr><tr><td>3765df816dc5a061bc261e190acc8bdd9d47bec0</td><td>rafd</td><td>RaFD</td><td><a href="papers/3765df816dc5a061bc261e190acc8bdd9d47bec0.html" target="_blank">Presentation and validation of the Radboud Faces Database</a></td><td><a href="https://pdfs.semanticscholar.org/3765/df816dc5a061bc261e190acc8bdd9d47bec0.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>39%</td><td>446</td><td>176</td><td>270</td><td>43</td><td>322</td><td>136</td></tr><tr><td>636b8ffc09b1b23ff714ac8350bb35635e49fa3c</td><td>caltech_10k_web_faces</td><td>Caltech 10K Web Faces</td><td><a href="papers/636b8ffc09b1b23ff714ac8350bb35635e49fa3c.html" target="_blank">Pruning training sets for learning of object categories</a></td><td><a href="http://authors.library.caltech.edu/11469/1/ANGcvpr05.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>60</td><td>40</td><td>20</td><td>5</td><td>43</td><td>17</td></tr><tr><td>377f2b65e6a9300448bdccf678cde59449ecd337</td><td>ufdd</td><td>UFDD</td><td><a href="papers/377f2b65e6a9300448bdccf678cde59449ecd337.html" target="_blank">Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</a></td><td><a href="https://arxiv.org/pdf/1804.10275.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>2</td><td>0</td><td>2</td><td>0</td><td>2</td><td>0</td></tr><tr><td>140c95e53c619eac594d70f6369f518adfea12ef</td><td>ijb_c</td><td>IJB-C</td><td><a href="papers/140c95e53c619eac594d70f6369f518adfea12ef.html" target="_blank">Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Klareetal_UnconstrainedFaceDetectionRecognitionJanus_CVPR15.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>222</td><td>123</td><td>99</td><td>19</td><td>161</td><td>62</td></tr><tr><td>d80a3d1f3a438e02a6685e66ee908446766fefa9</td><td>megaage</td><td>MegaAge</td><td><a href="papers/d80a3d1f3a438e02a6685e66ee908446766fefa9.html" target="_blank">Quantifying Facial Age by Posterior of Age Comparisons</a></td><td><a href="https://arxiv.org/pdf/1708.09687.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>25%</td><td>4</td><td>1</td><td>3</td><td>1</td><td>4</td><td>0</td></tr><tr><td>922e0a51a3b8c67c4c6ac09a577ff674cbd28b34</td><td>v47</td><td>V47</td><td><a href="papers/922e0a51a3b8c67c4c6ac09a577ff674cbd28b34.html" target="_blank">Re-identification of pedestrians with variable occlusion and scale</a></td><td><span class="gray">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td>edu</td><td>Kingston University</td><td>United Kingdom</td><td>51.42930860</td><td>-0.26840440</td><td>10%</td><td>10</td><td>1</td><td>9</td><td>2</td><td>6</td><td>4</td></tr><tr><td>6f3c76b7c0bd8e1d122c6ea808a271fd4749c951</td><td>ward</td><td>WARD</td><td><a href="papers/6f3c76b7c0bd8e1d122c6ea808a271fd4749c951.html" target="_blank">Re-identify people in wide area camera network</a></td><td><a href="http://users.dimi.uniud.it/~niki.martinel/data/publications/2012/CVPR/MarMicCVPR2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>38%</td><td>55</td><td>21</td><td>34</td><td>2</td><td>35</td><td>19</td></tr><tr><td>54983972aafc8e149259d913524581357b0f91c3</td><td>reseed</td><td>ReSEED</td><td><a href="papers/54983972aafc8e149259d913524581357b0f91c3.html" target="_blank">ReSEED: social event dEtection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>6</td><td>4</td><td>2</td><td>1</td><td>1</td><td>5</td></tr><tr><td>65355cbb581a219bd7461d48b3afd115263ea760</td><td>complex_activities</td><td>Ongoing Complex Activities</td><td><a href="papers/65355cbb581a219bd7461d48b3afd115263ea760.html" target="_blank">Recognition of ongoing complex activities by sequence prediction over a hierarchical label space</a></td><td><a href="https://scalable.mpi-inf.mpg.de/files/2016/01/main_wacv.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Winter Conference on Applications of Computer Vision (WACV)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>e8de844fefd54541b71c9823416daa238be65546</td><td>visual_phrases</td><td>Phrasal Recognition</td><td><a href="papers/e8de844fefd54541b71c9823416daa238be65546.html" target="_blank">Recognition using visual phrases</a></td><td><a href="http://vision.cs.uiuc.edu/phrasal/recognition_using_visual_phrases.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>University of Illinois, Urbana-Champaign</td><td>United States</td><td>40.11116745</td><td>-88.22587665</td><td>58%</td><td>233</td><td>135</td><td>98</td><td>18</td><td>177</td><td>58</td></tr><tr><td>356b431d4f7a2a0a38cf971c84568207dcdbf189</td><td>wider</td><td>WIDER</td><td><a href="papers/356b431d4f7a2a0a38cf971c84568207dcdbf189.html" target="_blank">Recognize complex events from static images by fusing deep channels</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2015/supplemental/Xiong_Recognize_Complex_Events_2015_CVPR_supplemental.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>45</td><td>29</td><td>16</td><td>1</td><td>30</td><td>15</td></tr><tr><td>25474c21613607f6bb7687a281d5f9d4ffa1f9f3</td><td>faceplace</td><td>Face Place</td><td><a href="papers/25474c21613607f6bb7687a281d5f9d4ffa1f9f3.html" target="_blank">Recognizing disguised faces</a></td><td><a href="https://pdfs.semanticscholar.org/d936/7ceb0be378c3a9ddf7cb741c678c1a3c574c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>24</td><td>8</td><td>16</td><td>0</td><td>18</td><td>6</td></tr><tr><td>4053e3423fb70ad9140ca89351df49675197196a</td><td>bio_id</td><td>BioID Face</td><td><a href="papers/4053e3423fb70ad9140ca89351df49675197196a.html" target="_blank">Robust Face Detection Using the Hausdorff Distance</a></td><td><a href="http://facedetection.homepage.t-online.de/downloads/AVBPA01BioID.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>498</td><td>242</td><td>256</td><td>56</td><td>330</td><td>179</td></tr><tr><td>2724ba85ec4a66de18da33925e537f3902f21249</td><td>cofw</td><td>COFW</td><td><a href="papers/2724ba85ec4a66de18da33925e537f3902f21249.html" target="_blank">Robust Face Landmark Estimation under Occlusion</a></td><td><a href="http://authors.library.caltech.edu/45988/1/ICCV13%20Burgos-Artizzu.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision</td><td>edu</td><td>California Institute of Technology</td><td>United States</td><td>34.13710185</td><td>-118.12527487</td><td>61%</td><td>305</td><td>186</td><td>119</td><td>16</td><td>192</td><td>116</td></tr><tr><td>c570d1247e337f91e555c3be0e8c8a5aba539d9f</td><td>mcgill</td><td>McGill Real World</td><td><a href="papers/c570d1247e337f91e555c3be0e8c8a5aba539d9f.html" target="_blank">Robust semi-automatic head pose labeling for real-world face video sequences</a></td><td><span class="gray">[pdf]</a></td><td>Multimedia Tools and Applications</td><td>edu</td><td>McGill University</td><td>Canada</td><td>45.50397610</td><td>-73.57496870</td><td>44%</td><td>18</td><td>8</td><td>10</td><td>0</td><td>13</td><td>7</td></tr><tr><td>e27ef52c641c2b5100a1b34fd0b819e84a31b4df</td><td>sarc3d</td><td>Sarc3D</td><td><a href="papers/e27ef52c641c2b5100a1b34fd0b819e84a31b4df.html" target="_blank">SARC3D: A New 3D Body Model for People Tracking and Re-identification</a></td><td><a href="https://pdfs.semanticscholar.org/e27e/f52c641c2b5100a1b34fd0b819e84a31b4df.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>41%</td><td>29</td><td>12</td><td>17</td><td>3</td><td>17</td><td>12</td></tr><tr><td>bd26dabab576adb6af30484183c9c9c8379bf2e0</td><td>scut_fbp</td><td>SCUT-FBP</td><td><a href="papers/bd26dabab576adb6af30484183c9c9c8379bf2e0.html" target="_blank">SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</a></td><td><a href="https://arxiv.org/pdf/1511.02459.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Systems, Man, and Cybernetics</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>14</td><td>6</td><td>8</td><td>3</td><td>5</td><td>9</td></tr><tr><td>29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d</td><td>scface</td><td>SCface</td><td><a href="papers/29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d.html" target="_blank">SCface – surveillance cameras face database</a></td><td><a href="http://scface.org/SCface%20-%20Surveillance%20Cameras%20Face%20Database.pdf" target="_blank">[pdf]</a></td><td>Multimedia Tools and Applications</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>178</td><td>90</td><td>88</td><td>15</td><td>90</td><td>89</td></tr><tr><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td><td>stair_actions</td><td>STAIR Action</td><td><a href="papers/d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9.html" target="_blank">STAIR Actions: A Video Dataset of Everyday Home Actions</a></td><td><a href="https://arxiv.org/pdf/1804.04326.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>833fa04463d90aab4a9fe2870d480f0b40df446e</td><td>sun_attributes</td><td>SUN</td><td><a href="papers/833fa04463d90aab4a9fe2870d480f0b40df446e.html" target="_blank">SUN attribute database: Discovering, annotating, and recognizing scene attributes</a></td><td><a href="http://static.cs.brown.edu/~gen/pub_papers/SUN_Attribute_Database_CVPR2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Brown University</td><td>United States</td><td>41.82686820</td><td>-71.40123146</td><td>58%</td><td>269</td><td>156</td><td>113</td><td>29</td><td>215</td><td>57</td></tr><tr><td>4308bd8c28e37e2ed9a3fcfe74d5436cce34b410</td><td>market_1501</td><td>Market 1501</td><td><a href="papers/4308bd8c28e37e2ed9a3fcfe74d5436cce34b410.html" target="_blank">Scalable Person Re-identification: A Benchmark</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>394</td><td>238</td><td>156</td><td>18</td><td>272</td><td>116</td></tr><tr><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td><td>facebook_100</td><td>Facebook100</td><td><a href="papers/9c23859ec7313f2e756a3e85575735e0c52249f4.html" target="_blank">Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</a></td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>Harvard University</td><td>United States</td><td>42.36782045</td><td>-71.12666653</td><td>58%</td><td>50</td><td>29</td><td>21</td><td>3</td><td>39</td><td>11</td></tr><tr><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td><td>pubfig_83</td><td>pubfig83</td><td><a href="papers/9c23859ec7313f2e756a3e85575735e0c52249f4.html" target="_blank">Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</a></td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>Harvard University</td><td>United States</td><td>42.36782045</td><td>-71.12666653</td><td>58%</td><td>50</td><td>29</td><td>21</td><td>3</td><td>39</td><td>11</td></tr><tr><td>51eba481dac6b229a7490f650dff7b17ce05df73</td><td>imsitu</td><td>imSitu</td><td><a href="papers/51eba481dac6b229a7490f650dff7b17ce05df73.html" target="_blank">Situation Recognition: Visual Semantic Role Labeling for Image Understanding</a></td><td><a href="http://allenai.org/content/publications/SituationRecognition.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>48</td><td>30</td><td>18</td><td>2</td><td>46</td><td>2</td></tr><tr><td>570f37ed63142312e6ccdf00ecc376341ec72b9f</td><td>stanford_drone</td><td>Stanford Drone</td><td><a href="papers/570f37ed63142312e6ccdf00ecc376341ec72b9f.html" target="_blank">Social LSTM: Human Trajectory Prediction in Crowded Spaces</a></td><td><a href="http://cs.stanford.edu/groups/vision/pdf/CVPR16_N_LSTM.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>229</td><td>106</td><td>123</td><td>5</td><td>150</td><td>79</td></tr><tr><td>23e824d1dfc33f3780dd18076284f07bd99f1c43</td><td>mifs</td><td>MIFS</td><td><a href="papers/23e824d1dfc33f3780dd18076284f07bd99f1c43.html" target="_blank">Spoofing faces using makeup: An investigative study</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenFaceMakeupSpoof_ISBA2017.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)</td><td>edu</td><td>INRIA Méditerranée</td><td>France</td><td>43.61581310</td><td>7.06838000</td><td>60%</td><td>5</td><td>3</td><td>2</td><td>0</td><td>1</td><td>4</td></tr><tr><td>1a40092b493c6b8840257ab7f96051d1a4dbfeb2</td><td>sports_videos_in_the_wild</td><td>SVW</td><td><a href="papers/1a40092b493c6b8840257ab7f96051d1a4dbfeb2.html" target="_blank">Sports Videos in the Wild (SVW): A video dataset for sports analysis</a></td><td><a href="http://cse.msu.edu/~liuxm/publication/Safdarnejad_Liu_Udpa_Andrus_Wood_Craven_FG2015.pdf" target="_blank">[pdf]</a></td><td>2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td></td><td></td><td></td><td></td><td></td><td>83%</td><td>6</td><td>5</td><td>1</td><td>1</td><td>5</td><td>1</td></tr><tr><td>9361b784e73e9238d5cefbea5ac40d35d1e3103f</td><td>towncenter</td><td>TownCenter</td><td><a href="papers/9361b784e73e9238d5cefbea5ac40d35d1e3103f.html" target="_blank">Stable multi-target tracking in real-time surveillance video</a></td><td><a href="http://ben.benfold.com/docs/benfold_reid_cvpr2011-preprint.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>310</td><td>138</td><td>172</td><td>24</td><td>180</td><td>131</td></tr><tr><td>c866a2afc871910e3282fd9498dce4ab20f6a332</td><td>qmul_surv_face</td><td>QMUL-SurvFace</td><td><a href="papers/c866a2afc871910e3282fd9498dce4ab20f6a332.html" target="_blank">Surveillance Face Recognition Challenge</a></td><td><a href="https://arxiv.org/pdf/1804.09691.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f</td><td>pku</td><td>PKU</td><td><a href="papers/f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f.html" target="_blank">Swiss-System Based Cascade Ranking for Gait-Based Person Re-Identification</a></td><td><a href="https://pdfs.semanticscholar.org/f6c8/d5e35d7e4d60a0104f233ac1a3ab757da53f.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>3</td><td>2</td><td>1</td><td>0</td><td>1</td><td>2</td></tr><tr><td>4d58f886f5150b2d5e48fd1b5a49e09799bf895d</td><td>texas_3dfrd</td><td>Texas 3DFRD</td><td><a href="papers/4d58f886f5150b2d5e48fd1b5a49e09799bf895d.html" target="_blank">Texas 3D Face Recognition Database</a></td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ssiai_may10.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)</td><td></td><td></td><td></td><td></td><td></td><td>41%</td><td>61</td><td>25</td><td>36</td><td>3</td><td>37</td><td>25</td></tr><tr><td>6d96f946aaabc734af7fe3fc4454cf8547fcd5ed</td><td>ar_facedb</td><td>AR Face</td><td><a href="papers/6d96f946aaabc734af7fe3fc4454cf8547fcd5ed.html" target="_blank">The AR face database</a></td><td><span class="gray">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>999</td><td>526</td><td>473</td><td>51</td><td>459</td><td>573</td></tr><tr><td>2485c98aa44131d1a2f7d1355b1e372f2bb148ad</td><td>cas_peal</td><td>CAS-PEAL</td><td><a href="papers/2485c98aa44131d1a2f7d1355b1e372f2bb148ad.html" target="_blank">The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</a></td><td><a href="http://www.jdl.ac.cn/peal/files/ieee_smc_a_gao_cas-peal.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>415</td><td>210</td><td>205</td><td>39</td><td>189</td><td>232</td></tr><tr><td>47662d1a368daf70ba70ef2d59eb6209f98b675d</td><td>fia</td><td>CMU FiA</td><td><a href="papers/47662d1a368daf70ba70ef2d59eb6209f98b675d.html" target="_blank">The CMU Face In Action (FIA) Database</a></td><td><a href="https://pdfs.semanticscholar.org/4766/2d1a368daf70ba70ef2d59eb6209f98b675d.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>55</td><td>24</td><td>31</td><td>5</td><td>41</td><td>17</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td>cmu_pie</td><td>CMU PIE</td><td><a href="papers/4d423acc78273b75134e2afd1777ba6d3a398973.html" target="_blank">The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces</a></td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>742</td><td>397</td><td>343</td><td>59</td><td>416</td><td>329</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td>multi_pie</td><td>MULTIPIE</td><td><a href="papers/4d423acc78273b75134e2afd1777ba6d3a398973.html" target="_blank">The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces</a></td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>742</td><td>397</td><td>343</td><td>59</td><td>416</td><td>329</td></tr><tr><td>4df3143922bcdf7db78eb91e6b5359d6ada004d2</td><td>cfd</td><td>CFD</td><td><a href="papers/4df3143922bcdf7db78eb91e6b5359d6ada004d2.html" target="_blank">The Chicago face database: A free stimulus set of faces and norming data.</a></td><td><a href="https://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf" target="_blank">[pdf]</a></td><td>Behavior research methods</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>83</td><td>40</td><td>43</td><td>2</td><td>63</td><td>19</td></tr><tr><td>20388099cc415c772926e47bcbbe554e133343d1</td><td>cafe</td><td>#N/A</td><td><a href="papers/20388099cc415c772926e47bcbbe554e133343d1.html" target="_blank">The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults</a></td><td><a href="https://pdfs.semanticscholar.org/2038/8099cc415c772926e47bcbbe554e133343d1.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>33</td><td>16</td><td>17</td><td>3</td><td>28</td><td>5</td></tr><tr><td>4e6ee936eb50dd032f7138702fa39b7c18ee8907</td><td>dartmouth_children</td><td>Dartmouth Children</td><td><a href="papers/4e6ee936eb50dd032f7138702fa39b7c18ee8907.html" target="_blank">The Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set</a></td><td><a href="https://pdfs.semanticscholar.org/4e6e/e936eb50dd032f7138702fa39b7c18ee8907.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>20</td><td>9</td><td>11</td><td>2</td><td>17</td><td>4</td></tr><tr><td>9e31e77f9543ab42474ba4e9330676e18c242e72</td><td>imdb_face</td><td>IMDb Face</td><td><a href="papers/9e31e77f9543ab42474ba4e9330676e18c242e72.html" target="_blank">The Devil of Face Recognition is in the Noise</a></td><td><a href="https://arxiv.org/pdf/1807.11649.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Nanyang Technological University</td><td>Singapore</td><td>1.34841040</td><td>103.68297965</td><td>20%</td><td>5</td><td>1</td><td>4</td><td>0</td><td>3</td><td>1</td></tr><tr><td>71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6</td><td>umd_faces</td><td>UMD</td><td><a href="papers/71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6.html" target="_blank">The Do’s and Don’ts for CNN-Based Face Verification</a></td><td><a href="https://arxiv.org/pdf/1705.07426.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Computer Vision Workshops (ICCVW)</td><td></td><td></td><td></td><td></td><td></td><td>36%</td><td>25</td><td>9</td><td>16</td><td>3</td><td>17</td><td>6</td></tr><tr><td>f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4</td><td>europersons</td><td>EuroCity Persons</td><td><a href="papers/f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4.html" target="_blank">The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</a></td><td><a href="https://arxiv.org/pdf/1805.07193.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td></tr><tr><td>4d9a02d080636e9666c4d1cc438b9893391ec6c7</td><td>cohn_kanade_plus</td><td>CK+</td><td><a href="papers/4d9a02d080636e9666c4d1cc438b9893391ec6c7.html" target="_blank">The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression</a></td><td><a href="http://www.iainm.com/iainm/Publications_files/2010_The%20Extended.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops</td><td>edu</td><td>University of Pittsburgh</td><td>United States</td><td>40.44415295</td><td>-79.96243993</td><td>55%</td><td>975</td><td>536</td><td>438</td><td>67</td><td>475</td><td>510</td></tr><tr><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td><td>feret</td><td>FERET</td><td><a href="papers/0f0fcf041559703998abf310e56f8a2f90ee6f21.html" target="_blank">The FERET Evaluation Methodology for Face-Recognition Algorithms</a></td><td><a href="https://pdfs.semanticscholar.org/5099/7a5605c1f61e09e9a96789ed7495be6625aa.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>999</td><td>483</td><td>516</td><td>103</td><td>560</td><td>454</td></tr><tr><td>0c4a139bb87c6743c7905b29a3cfec27a5130652</td><td>feret</td><td>FERET</td><td><a href="papers/0c4a139bb87c6743c7905b29a3cfec27a5130652.html" target="_blank">The FERET Verification Testing Protocol for Face Recognition Algorithms</a></td><td><a href="https://pdfs.semanticscholar.org/8d2a/1c768fce6f71584dd993fb97e7b6419aaf60.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>112</td><td>49</td><td>63</td><td>11</td><td>79</td><td>35</td></tr><tr><td>dc8b25e35a3acb812beb499844734081722319b4</td><td>feret</td><td>FERET</td><td><a href="papers/dc8b25e35a3acb812beb499844734081722319b4.html" target="_blank">The FERET database and evaluation procedure for face-recognition algorithms</a></td><td><a href="http://biometrics.nist.gov/cs_links/face/frvt/feret/FERET_Database_evaluation_procedure.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>999</td><td>445</td><td>554</td><td>106</td><td>606</td><td>413</td></tr><tr><td>8f02ec0be21461fbcedf51d864f944cfc42c875f</td><td>hda_plus</td><td>HDA+</td><td><a href="papers/8f02ec0be21461fbcedf51d864f944cfc42c875f.html" target="_blank">The HDA+ Data Set for Research on Fully Automated Re-identification Systems</a></td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w19/11%20-%20The%20HDA%20data%20set%20for%20research%20on%20fully.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>35%</td><td>17</td><td>6</td><td>11</td><td>2</td><td>11</td><td>6</td></tr><tr><td>9a9877791945c6fa4c1743ec6d3fb32570ef8481</td><td>m2vts</td><td>m2vts</td><td><a href="papers/9a9877791945c6fa4c1743ec6d3fb32570ef8481.html" target="_blank">The M2VTS Multimodal Face Database (Release 1.00)</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Laboratoire de Télécommunications et Télédétection, UCL, Louvain-La-Neuve, Belgium</td><td>Belgium</td><td>50.66968750</td><td>4.61559090</td><td>43%</td><td>129</td><td>55</td><td>74</td><td>4</td><td>80</td><td>54</td></tr><tr><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td><td>mpi_large</td><td>Large MPI Facial Expression</td><td><a href="papers/ea050801199f98a1c7c1df6769f23f658299a3ae.html" target="_blank">The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</a></td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>28</td><td>13</td><td>15</td><td>4</td><td>24</td><td>4</td></tr><tr><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td><td>mpi_small</td><td>Small MPI Facial Expression</td><td><a href="papers/ea050801199f98a1c7c1df6769f23f658299a3ae.html" target="_blank">The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</a></td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>28</td><td>13</td><td>15</td><td>4</td><td>24</td><td>4</td></tr><tr><td>578d4ad74818086bb64f182f72e2c8bd31e3d426</td><td>mr2</td><td>MR2</td><td><a href="papers/578d4ad74818086bb64f182f72e2c8bd31e3d426.html" target="_blank">The MR2: A multi-racial, mega-resolution database of facial stimuli.</a></td><td><a href="https://pdfs.semanticscholar.org/be5b/455abd379240460d022a0e246615b0b86c14.pdf" target="_blank">[pdf]</a></td><td>Behavior research methods</td><td></td><td></td><td></td><td></td><td></td><td>14%</td><td>7</td><td>1</td><td>6</td><td>0</td><td>7</td><td>0</td></tr><tr><td>f1af714b92372c8e606485a3982eab2f16772ad8</td><td>mug_faces</td><td>MUG Faces</td><td><a href="papers/f1af714b92372c8e606485a3982eab2f16772ad8.html" target="_blank">The MUG facial expression database</a></td><td><span class="gray">[pdf]</a></td><td>11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10</td><td>edu</td><td>Aristotle University of Thessaloniki</td><td>Greece</td><td>40.62984145</td><td>22.95889350</td><td>43%</td><td>68</td><td>29</td><td>39</td><td>5</td><td>28</td><td>40</td></tr><tr><td>79828e6e9f137a583082b8b5a9dfce0c301989b8</td><td>mapillary</td><td>Mapillary</td><td><a href="papers/79828e6e9f137a583082b8b5a9dfce0c301989b8.html" target="_blank">The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</a></td><td><a href="http://openaccess.thecvf.com/content_ICCV_2017/papers/Neuhold_The_Mapillary_Vistas_ICCV_2017_paper.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>44</td><td>23</td><td>21</td><td>0</td><td>36</td><td>7</td></tr><tr><td>96e0cfcd81cdeb8282e29ef9ec9962b125f379b0</td><td>megaface</td><td>MegaFace</td><td><a href="papers/96e0cfcd81cdeb8282e29ef9ec9962b125f379b0.html" target="_blank">The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</a></td><td><a href="https://arxiv.org/pdf/1512.00596.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>121</td><td>71</td><td>50</td><td>9</td><td>98</td><td>22</td></tr><tr><td>0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a</td><td>voc</td><td>VOC</td><td><a href="papers/0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a.html" target="_blank">The Pascal Visual Object Classes (VOC) Challenge</a></td><td><a href="http://eprints.pascal-network.org/archive/00006187/01/PascalVOC_IJCV2009.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>58%</td><td>999</td><td>575</td><td>424</td><td>35</td><td>613</td><td>414</td></tr><tr><td>66e6f08873325d37e0ec20a4769ce881e04e964e</td><td>sun_attributes</td><td>SUN</td><td><a href="papers/66e6f08873325d37e0ec20a4769ce881e04e964e.html" target="_blank">The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</a></td><td><a href="http://www.cc.gatech.edu/~hays/papers/attribute_ijcv.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>112</td><td>70</td><td>42</td><td>14</td><td>84</td><td>29</td></tr><tr><td>8b2dd5c61b23ead5ae5508bb8ce808b5ea266730</td><td>10k_US_adult_faces</td><td>10K US Adult Faces</td><td><a href="papers/8b2dd5c61b23ead5ae5508bb8ce808b5ea266730.html" target="_blank">The intrinsic memorability of face photographs.</a></td><td><a href="https://pdfs.semanticscholar.org/8b2d/d5c61b23ead5ae5508bb8ce808b5ea266730.pdf" target="_blank">[pdf]</a></td><td>Journal of experimental psychology. General</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>47</td><td>24</td><td>23</td><td>3</td><td>34</td><td>13</td></tr><tr><td>ae0aee03d946efffdc7af2362a42d3750e7dd48a</td><td>put_face</td><td>Put Face</td><td><a href="papers/ae0aee03d946efffdc7af2362a42d3750e7dd48a.html" target="_blank">The put face database</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>42%</td><td>100</td><td>42</td><td>58</td><td>7</td><td>56</td><td>48</td></tr><tr><td>19d1b811df60f86cbd5e04a094b07f32fff7a32a</td><td>york_3d</td><td>UOY 3D Face Database</td><td><a href="papers/19d1b811df60f86cbd5e04a094b07f32fff7a32a.html" target="_blank">Three-dimensional face recognition: an eigensurface approach</a></td><td><a href="http://www-users.cs.york.ac.uk/~nep/research/3Dface/tomh/3DFaceRecognition-Eigensurface-ICIP(web)2.pdf" target="_blank">[pdf]</a></td><td>2004 International Conference on Image Processing, 2004. ICIP '04.</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>36</td><td>12</td><td>24</td><td>4</td><td>25</td><td>11</td></tr><tr><td>2edb87494278ad11641b6cf7a3f8996de12b8e14</td><td>qmul_grid</td><td>GRID</td><td><a href="papers/2edb87494278ad11641b6cf7a3f8996de12b8e14.html" target="_blank">Time-Delayed Correlation Analysis for Multi-Camera Activity Understanding</a></td><td><a href="http://www.eecs.qmul.ac.uk/~ccloy/files/ijcv_2010.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>Queen Mary University of London</td><td>United Kingdom</td><td>51.52472720</td><td>-0.03931035</td><td>49%</td><td>83</td><td>41</td><td>42</td><td>6</td><td>51</td><td>33</td></tr><tr><td>298cbc3dfbbb3a20af4eed97906650a4ea1c29e0</td><td>ferplus</td><td>FER+</td><td><a href="papers/298cbc3dfbbb3a20af4eed97906650a4ea1c29e0.html" target="_blank">Training deep networks for facial expression recognition with crowd-sourced label distribution</a></td><td><a href="https://arxiv.org/pdf/1608.01041.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>29</td><td>18</td><td>11</td><td>0</td><td>15</td><td>14</td></tr><tr><td>4eab317b5ac436a949849ed286baa3de2a541eef</td><td>laofiw</td><td>LAOFIW</td><td><a href="papers/4eab317b5ac436a949849ed286baa3de2a541eef.html" target="_blank">Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings</a></td><td><a href="https://arxiv.org/pdf/1809.02169.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>b5f2846a506fc417e7da43f6a7679146d99c5e96</td><td>ucf_101</td><td>UCF101</td><td><a href="papers/b5f2846a506fc417e7da43f6a7679146d99c5e96.html" target="_blank">UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</a></td><td><a href="https://arxiv.org/pdf/1212.0402.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>999</td><td>615</td><td>384</td><td>73</td><td>716</td><td>283</td></tr><tr><td>16e8b0a1e8451d5f697b94c0c2b32a00abee1d52</td><td>umb</td><td>UMB</td><td><a href="papers/16e8b0a1e8451d5f697b94c0c2b32a00abee1d52.html" target="_blank">UMB-DB: A database of partially occluded 3D faces</a></td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/claudio_cusano-slides.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>45</td><td>27</td><td>18</td><td>2</td><td>20</td><td>24</td></tr><tr><td>31b05f65405534a696a847dd19c621b7b8588263</td><td>umd_faces</td><td>UMD</td><td><a href="papers/31b05f65405534a696a847dd19c621b7b8588263.html" target="_blank">UMDFaces: An annotated face dataset for training deep networks</a></td><td><a href="https://arxiv.org/pdf/1611.01484.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Joint Conference on Biometrics (IJCB)</td><td>edu</td><td>University of Maryland</td><td>United States</td><td>39.28996850</td><td>-76.62196103</td><td>57%</td><td>35</td><td>20</td><td>15</td><td>4</td><td>28</td><td>7</td></tr><tr><td>8627f019882b024aef92e4eb9355c499c733e5b7</td><td>used</td><td>USED Social Event Dataset</td><td><a href="papers/8627f019882b024aef92e4eb9355c499c733e5b7.html" target="_blank">USED: a large-scale social event detection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Trento</td><td>Italy</td><td>46.06588360</td><td>11.11598940</td><td>71%</td><td>7</td><td>5</td><td>2</td><td>0</td><td>3</td><td>4</td></tr><tr><td>d4f1eb008eb80595bcfdac368e23ae9754e1e745</td><td>uccs</td><td>UCCS</td><td><a href="papers/d4f1eb008eb80595bcfdac368e23ae9754e1e745.html" target="_blank">Unconstrained Face Detection and Open-Set Face Recognition Challenge</a></td><td><a href="https://arxiv.org/pdf/1708.02337.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Joint Conference on Biometrics (IJCB)</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>5</td><td>2</td><td>3</td><td>0</td><td>4</td><td>1</td></tr><tr><td>4b4106614c1d553365bad75d7866bff0de6056ed</td><td>czech_news_agency</td><td>UFI</td><td><a href="papers/4b4106614c1d553365bad75d7866bff0de6056ed.html" target="_blank">Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions</a></td><td><a href="https://pdfs.semanticscholar.org/4b41/06614c1d553365bad75d7866bff0de6056ed.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>10</td><td>4</td><td>6</td><td>0</td><td>4</td><td>6</td></tr><tr><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7.html" target="_blank">Understanding Kin Relationships in a Photo</a></td><td><a href="http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Multimedia</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>96</td><td>55</td><td>41</td><td>2</td><td>34</td><td>63</td></tr><tr><td>21d9d0deed16f0ad62a4865e9acf0686f4f15492</td><td>images_of_groups</td><td>Images of Groups</td><td><a href="papers/21d9d0deed16f0ad62a4865e9acf0686f4f15492.html" target="_blank">Understanding images of groups of people</a></td><td><a href="http://chenlab.ece.cornell.edu/people/Andy/Andy_files/cvpr09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Carnegie Mellon University Silicon Valley</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>54%</td><td>202</td><td>110</td><td>92</td><td>12</td><td>132</td><td>75</td></tr><tr><td>fd8168f1c50de85bac58a8d328df0a50248b16ae</td><td>nd_2006</td><td>ND-2006</td><td><a href="papers/fd8168f1c50de85bac58a8d328df0a50248b16ae.html" target="_blank">Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition</a></td><td><span class="gray">[pdf]</a></td><td>2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems</td><td>edu</td><td>University of Notre Dame</td><td>United States</td><td>41.70456775</td><td>-86.23822026</td><td>56%</td><td>32</td><td>18</td><td>14</td><td>3</td><td>17</td><td>15</td></tr><tr><td>4563b46d42079242f06567b3f2e2f7a80cb3befe</td><td>vadana</td><td>VADANA</td><td><a href="papers/4563b46d42079242f06567b3f2e2f7a80cb3befe.html" target="_blank">VADANA: A dense dataset for facial image analysis</a></td><td><a href="http://vims.cis.udel.edu/publications/VADANA_BeFIT2011.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td>edu</td><td>University of Delaware</td><td>United States</td><td>39.68103280</td><td>-75.75401840</td><td>44%</td><td>16</td><td>7</td><td>9</td><td>0</td><td>6</td><td>10</td></tr><tr><td>eb027969f9310e0ae941e2adee2d42cdf07d938c</td><td>vgg_faces2</td><td>VGG Face2</td><td><a href="papers/eb027969f9310e0ae941e2adee2d42cdf07d938c.html" target="_blank">VGGFace2: A Dataset for Recognising Faces across Pose and Age</a></td><td><a href="https://arxiv.org/pdf/1710.08092.pdf" target="_blank">[pdf]</a></td><td>2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>45%</td><td>56</td><td>25</td><td>31</td><td>6</td><td>50</td><td>6</td></tr><tr><td>01959ef569f74c286956024866c1d107099199f7</td><td>vqa</td><td>VQA</td><td><a href="papers/01959ef569f74c286956024866c1d107099199f7.html" target="_blank">VQA: Visual Question Answering</a></td><td><a href="https://arxiv.org/pdf/1505.00468.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>731</td><td>445</td><td>286</td><td>47</td><td>629</td><td>96</td></tr><tr><td>b6c293f0420f7e945b5916ae44269fb53e139275</td><td>erce</td><td>ERCe</td><td><a href="papers/b6c293f0420f7e945b5916ae44269fb53e139275.html" target="_blank">Video Synopsis by Heterogeneous Multi-source Correlation</a></td><td><span class="gray">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>29%</td><td>31</td><td>9</td><td>22</td><td>2</td><td>15</td><td>13</td></tr><tr><td>b6c293f0420f7e945b5916ae44269fb53e139275</td><td>tisi</td><td>Times Square Intersection</td><td><a href="papers/b6c293f0420f7e945b5916ae44269fb53e139275.html" target="_blank">Video Synopsis by Heterogeneous Multi-source Correlation</a></td><td><span class="gray">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>29%</td><td>31</td><td>9</td><td>22</td><td>2</td><td>15</td><td>13</td></tr><tr><td>5194cbd51f9769ab25260446b4fa17204752e799</td><td>violent_flows</td><td>Violent Flows</td><td><a href="papers/5194cbd51f9769ab25260446b4fa17204752e799.html" target="_blank">Violent flows: Real-time detection of violent crowd behavior</a></td><td><a href="http://www.openu.ac.il/home/hassner/data/violentflows/violent_flows.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</td><td>edu</td><td>Open University of Israel</td><td>Israel</td><td>32.77824165</td><td>34.99565673</td><td>55%</td><td>83</td><td>46</td><td>37</td><td>6</td><td>44</td><td>41</td></tr><tr><td>026e3363b7f76b51cc711886597a44d5f1fd1de2</td><td>kitti</td><td>KITTI</td><td><a href="papers/026e3363b7f76b51cc711886597a44d5f1fd1de2.html" target="_blank">Vision meets robotics: The KITTI dataset</a></td><td><a href="https://pdfs.semanticscholar.org/026e/3363b7f76b51cc711886597a44d5f1fd1de2.pdf" target="_blank">[pdf]</a></td><td>I. J. Robotics Res.</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>999</td><td>537</td><td>462</td><td>37</td><td>571</td><td>448</td></tr><tr><td>066000d44d6691d27202896691f08b27117918b9</td><td>psu</td><td>PSU</td><td><a href="papers/066000d44d6691d27202896691f08b27117918b9.html" target="_blank">Vision-Based Analysis of Small Groups in Pedestrian Crowds</a></td><td><a href="http://vc.cs.nthu.edu.tw/home/paper/codfiles/htchiang/201212250411/newp12.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>151</td><td>75</td><td>76</td><td>9</td><td>79</td><td>73</td></tr><tr><td>dd65f71dac86e36eecbd3ed225d016c3336b4a13</td><td>families_in_the_wild</td><td>FIW</td><td><a href="papers/dd65f71dac86e36eecbd3ed225d016c3336b4a13.html" target="_blank">Visual Kinship Recognition of Families in the Wild</a></td><td><a href="https://web.northeastern.edu/smilelab/fiw/papers/Supplemental_PP.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>University of Massachusetts Dartmouth</td><td>United States</td><td>41.62772475</td><td>-71.00724501</td><td>100%</td><td>3</td><td>3</td><td>0</td><td>0</td><td>2</td><td>1</td></tr><tr><td>52d7eb0fbc3522434c13cc247549f74bb9609c5d</td><td>wider_face</td><td>WIDER FACE</td><td><a href="papers/52d7eb0fbc3522434c13cc247549f74bb9609c5d.html" target="_blank">WIDER FACE: A Face Detection Benchmark</a></td><td><a href="https://arxiv.org/pdf/1511.06523.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Chinese University of Hong Kong</td><td>China</td><td>22.41626320</td><td>114.21093180</td><td>57%</td><td>148</td><td>85</td><td>63</td><td>15</td><td>108</td><td>41</td></tr><tr><td>77c81c13a110a341c140995bedb98101b9e84f7f</td><td>wildtrack</td><td>WildTrack</td><td><a href="papers/77c81c13a110a341c140995bedb98101b9e84f7f.html" target="_blank">WILDTRACK : A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</a></td><td><a href="https://pdfs.semanticscholar.org/fe1c/ec4e4995b8615855572374ae3efc94949105.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>5ad4e9f947c1653c247d418f05dad758a3f9277b</td><td>wlfdb</td><td>WLFDB</td><td><a href="papers/5ad4e9f947c1653c247d418f05dad758a3f9277b.html" target="_blank">WLFDB: Weakly Labeled Face Databases</a></td><td><a href="https://pdfs.semanticscholar.org/5ad4/e9f947c1653c247d418f05dad758a3f9277b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td></tr><tr><td>0dc11a37cadda92886c56a6fb5191ded62099c28</td><td>stickmen_family</td><td>We Are Family Stickmen</td><td><a href="papers/0dc11a37cadda92886c56a6fb5191ded62099c28.html" target="_blank">We are family: joint pose estimation of multiple persons</a></td><td><a href="http://eprints.pascal-network.org/archive/00007964/01/eichner10eccv.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>66%</td><td>77</td><td>51</td><td>26</td><td>5</td><td>60</td><td>19</td></tr><tr><td>0c91808994a250d7be332400a534a9291ca3b60e</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/0c91808994a250d7be332400a534a9291ca3b60e.html" target="_blank">Weak Hypotheses and Boosting for Generic Object Detection and Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/0c91/808994a250d7be332400a534a9291ca3b60e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>247</td><td>127</td><td>120</td><td>18</td><td>177</td><td>78</td></tr><tr><td>2a75f34663a60ab1b04a0049ed1d14335129e908</td><td>mmi_facial_expression</td><td>MMI Facial Expression Dataset</td><td><a href="papers/2a75f34663a60ab1b04a0049ed1d14335129e908.html" target="_blank">Web-based database for facial expression analysis</a></td><td><a href="http://dev.pubs.doc.ic.ac.uk/Pantic-ICME05-2/Pantic-ICME05-2.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE International Conference on Multimedia and Expo</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>440</td><td>213</td><td>227</td><td>44</td><td>267</td><td>181</td></tr><tr><td>9b9bf5e623cb8af7407d2d2d857bc3f1b531c182</td><td>who_goes_there</td><td>WGT</td><td><a href="papers/9b9bf5e623cb8af7407d2d2d857bc3f1b531c182.html" target="_blank">Who goes there?: approaches to mapping facial appearance diversity</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Kentucky</td><td>United States</td><td>38.03337420</td><td>-84.50177580</td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>b62628ac06bbac998a3ab825324a41a11bc3a988</td><td>m2vtsdb_extended</td><td>xm2vtsdb</td><td><a href="papers/b62628ac06bbac998a3ab825324a41a11bc3a988.html" target="_blank">Xm2vtsdb: the Extended M2vts Database</a></td><td><a href="https://pdfs.semanticscholar.org/b626/28ac06bbac998a3ab825324a41a11bc3a988.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>906</td><td>484</td><td>422</td><td>44</td><td>542</td><td>408</td></tr><tr><td>010f0f4929e6a6644fb01f0e43820f91d0fad292</td><td>yfcc_100m</td><td>YFCC100M</td><td><a href="papers/010f0f4929e6a6644fb01f0e43820f91d0fad292.html" target="_blank">YFCC100M: the new data in multimedia research</a></td><td><a href="https://arxiv.org/pdf/1503.01817.pdf" target="_blank">[pdf]</a></td><td>Commun. ACM</td><td>edu</td><td>Carnegie Mellon University Silicon Valley</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>57%</td><td>276</td><td>156</td><td>120</td><td>23</td><td>175</td><td>99</td></tr><tr><td>a94cae786d515d3450d48267e12ca954aab791c4</td><td>yawdd</td><td>YawDD</td><td><a href="papers/a94cae786d515d3450d48267e12ca954aab791c4.html" target="_blank">YawDD: a yawning detection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>14</td><td>8</td><td>6</td><td>1</td><td>2</td><td>12</td></tr></table></body></html> \ No newline at end of file
+<!doctype html><html><head><meta charset='utf-8'><title>All Papers</title><link rel='stylesheet' href='reports.css'></head><body><h2>All Papers</h2><table border='1' cellpadding='3' cellspacing='3'><th>Paper ID</th><th>Megapixels Key</th><th>Megapixels Name</th><th>Report Link</th><th>PDF Link</th><th>Journal</th><th>Type</th><th>Address</th><th>Country</th><th>Lat</th><th>Lng</th><th>Coverage</th><th>Total Citations</th><th>Geocoded Citations</th><th>Unknown Citations</th><th>Empty Citations</th><th>With PDF</th><th>With DOI</th><tr><td>3325860c0c82a93b2eac654f5324dd6a776f609e</td><td>mpii_human_pose</td><td>MPII Human Pose</td><td><a href="papers/3325860c0c82a93b2eac654f5324dd6a776f609e.html" target="_blank">2D Human Pose Estimation: New Benchmark and State of the Art Analysis</a></td><td><a href="http://ei.is.tuebingen.mpg.de/uploads_file/attachment/attachment/168/andriluka14benchmark.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>356</td><td>222</td><td>134</td><td>21</td><td>304</td><td>53</td></tr><tr><td>e4754afaa15b1b53e70743880484b8d0736990ff</td><td>fiw_300</td><td>300-W</td><td><a href="papers/e4754afaa15b1b53e70743880484b8d0736990ff.html" target="_blank">300 Faces In-The-Wild Challenge: database and results</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>114</td><td>61</td><td>53</td><td>10</td><td>71</td><td>43</td></tr><tr><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td><td>fiw_300</td><td>300-W</td><td><a href="papers/044d9a8c61383312cdafbcc44b9d00d650b21c70.html" target="_blank">300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>324</td><td>200</td><td>124</td><td>29</td><td>211</td><td>118</td></tr><tr><td>2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e</td><td>3dpes</td><td>3DPeS</td><td><a href="papers/2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e.html" target="_blank">3DPeS: 3D people dataset for surveillance and forensics</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>122</td><td>64</td><td>58</td><td>11</td><td>71</td><td>51</td></tr><tr><td>9696ad8b164f5e10fcfe23aacf74bd6168aebb15</td><td>4dfab</td><td>4DFAB</td><td><a href="papers/9696ad8b164f5e10fcfe23aacf74bd6168aebb15.html" target="_blank">4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</a></td><td><a href="https://arxiv.org/pdf/1712.01443.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>4</td><td>0</td><td>4</td><td>0</td><td>2</td><td>2</td></tr><tr><td>31b58ced31f22eab10bd3ee2d9174e7c14c27c01</td><td>tiny_images</td><td>Tiny Images</td><td><a href="papers/31b58ced31f22eab10bd3ee2d9174e7c14c27c01.html" target="_blank">80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition</a></td><td><a href="http://cvcl.mit.edu/SUNSeminar/Torralba_80M_PAMI08.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>999</td><td>545</td><td>453</td><td>94</td><td>685</td><td>327</td></tr><tr><td>4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461</td><td>3dddb_unconstrained</td><td>3D Dynamic</td><td><a href="papers/4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461.html" target="_blank">A 3 D Dynamic Database for Unconstrained Face Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/4d4b/b462c9f1d4e4ab1e4aa6a75cc0bc71b38461.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td></tr><tr><td>d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae</td><td>b3d_ac</td><td>B3D(AC)</td><td><a href="papers/d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae.html" target="_blank">A 3-D Audio-Visual Corpus of Affective Communication</a></td><td><a href="http://files.is.tue.mpg.de/jgall/download/jgall_avcorpus_mm10.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Multimedia</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>39</td><td>19</td><td>20</td><td>2</td><td>27</td><td>12</td></tr><tr><td>639937b3a1b8bded3f7e9a40e85bd3770016cf3c</td><td>bfm</td><td>BFM</td><td><a href="papers/639937b3a1b8bded3f7e9a40e85bd3770016cf3c.html" target="_blank">A 3D Face Model for Pose and Illumination Invariant Face Recognition</a></td><td><a href="http://gravis.cs.unibas.ch/publications/2009/BFModel09.pdf" target="_blank">[pdf]</a></td><td>2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>323</td><td>181</td><td>142</td><td>29</td><td>226</td><td>98</td></tr><tr><td>cc589c499dcf323fe4a143bbef0074c3e31f9b60</td><td>bu_3dfe</td><td>BU-3DFE</td><td><a href="papers/cc589c499dcf323fe4a143bbef0074c3e31f9b60.html" target="_blank">A 3D facial expression database for facial behavior research</a></td><td><a href="http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR06_a.pdf" target="_blank">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>555</td><td>270</td><td>284</td><td>47</td><td>299</td><td>270</td></tr><tr><td>22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b</td><td>saivt</td><td>SAIVT SoftBio</td><td><a href="papers/22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b.html" target="_blank">A Database for Person Re-Identification in Multi-Camera Surveillance Networks</a></td><td><a href="http://eprints.qut.edu.au/53437/3/Bialkowski_Database4PersonReID_DICTA.pdf" target="_blank">[pdf]</a></td><td>2012 International Conference on Digital Image Computing Techniques and Applications (DICTA)</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>58</td><td>27</td><td>31</td><td>7</td><td>41</td><td>18</td></tr><tr><td>070de852bc6eb275d7ca3a9cdde8f6be8795d1a3</td><td>d3dfacs</td><td>D3DFACS</td><td><a href="papers/070de852bc6eb275d7ca3a9cdde8f6be8795d1a3.html" target="_blank">A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling</a></td><td><a href="http://www.cs.bath.ac.uk/~dpc/D3DFACS/ICCV_final_2011.pdf" target="_blank">[pdf]</a></td><td>2011 International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>52</td><td>30</td><td>22</td><td>5</td><td>37</td><td>15</td></tr><tr><td>563c940054e4b456661762c1ab858e6f730c3159</td><td>data_61</td><td>Data61 Pedestrian</td><td><a href="papers/563c940054e4b456661762c1ab858e6f730c3159.html" target="_blank">A Multi-modal Graphical Model for Scene Analysis</a></td><td><a href="http://www.nicta.com.au/wp-content/uploads/2015/02/TaghaviNaminetalWACV15.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Winter Conference on Applications of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>8</td><td>4</td><td>4</td><td>0</td><td>5</td><td>3</td></tr><tr><td>221c18238b829c12b911706947ab38fd017acef7</td><td>rap_pedestrian</td><td>RAP</td><td><a href="papers/221c18238b829c12b911706947ab38fd017acef7.html" target="_blank">A Richly Annotated Dataset for Pedestrian Attribute Recognition</a></td><td><a href="https://arxiv.org/pdf/1603.07054.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>21</td><td>14</td><td>7</td><td>0</td><td>18</td><td>3</td></tr><tr><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td><td>fiw_300</td><td>300-W</td><td><a href="papers/013909077ad843eb6df7a3e8e290cfd5575999d2.html" target="_blank">A Semi-automatic Methodology for Facial Landmark Annotation</a></td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>185</td><td>111</td><td>74</td><td>15</td><td>124</td><td>64</td></tr><tr><td>3b4ec8af470948a72a6ed37a9fd226719a874ebc</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/3b4ec8af470948a72a6ed37a9fd226719a874ebc.html" target="_blank">A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</a></td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Liu_A_Spatio-Temporal_Appearance_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>85</td><td>53</td><td>32</td><td>9</td><td>51</td><td>34</td></tr><tr><td>6403117f9c005ae81f1e8e6d1302f4a045e3d99d</td><td>alert_airport</td><td>ALERT Airport</td><td><a href="papers/6403117f9c005ae81f1e8e6d1302f4a045e3d99d.html" target="_blank">A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets.</a></td><td><a href="https://arxiv.org/pdf/1605.09653.pdf" target="_blank">[pdf]</a></td><td>IEEE transactions on pattern analysis and machine intelligence</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>15</td><td>7</td><td>8</td><td>1</td><td>10</td><td>5</td></tr><tr><td>7ace44190729927e5cb0dd5d363fcae966fe13f7</td><td>nudedetection</td><td>#N/A</td><td><a href="papers/7ace44190729927e5cb0dd5d363fcae966fe13f7.html" target="_blank">A bag-of-features approach based on Hue-SIFT descriptor for nude detection</a></td><td><a href="http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569191772.pdf" target="_blank">[pdf]</a></td><td>2009 17th European Signal Processing Conference</td><td></td><td></td><td></td><td></td><td></td><td>63%</td><td>51</td><td>32</td><td>19</td><td>1</td><td>18</td><td>33</td></tr><tr><td>0d3bb75852098b25d90f31d2f48fd0cb4944702b</td><td>face_scrub</td><td>FaceScrub</td><td><a href="papers/0d3bb75852098b25d90f31d2f48fd0cb4944702b.html" target="_blank">A data-driven approach to cleaning large face datasets</a></td><td><a href="http://stefan.winkler.net/Publications/icip2014a.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE International Conference on Image Processing (ICIP)</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>123</td><td>66</td><td>57</td><td>4</td><td>96</td><td>27</td></tr><tr><td>b91f54e1581fbbf60392364323d00a0cd43e493c</td><td>bp4d_spontanous</td><td>BP4D-Spontanous</td><td><a href="papers/b91f54e1581fbbf60392364323d00a0cd43e493c.html" target="_blank">A high-resolution spontaneous 3D dynamic facial expression database</a></td><td><a href="http://www.csee.usf.edu/~scanavan/papers/FG2013.pdf" target="_blank">[pdf]</a></td><td>2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td>edu</td><td>SUNY Binghamton</td><td>United States</td><td>42.08779975</td><td>-75.97066066</td><td>51%</td><td>151</td><td>77</td><td>74</td><td>7</td><td>87</td><td>65</td></tr><tr><td>8b56e33f33e582f3e473dba573a16b598ed9bcdc</td><td>fei</td><td>FEI</td><td><a href="papers/8b56e33f33e582f3e473dba573a16b598ed9bcdc.html" target="_blank">A new ranking method for principal components analysis and its application to face image analysis</a></td><td><span class="gray">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>169</td><td>81</td><td>88</td><td>5</td><td>72</td><td>101</td></tr><tr><td>2624d84503bc2f8e190e061c5480b6aa4d89277a</td><td>afew_va</td><td>AFEW-VA</td><td><a href="papers/2624d84503bc2f8e190e061c5480b6aa4d89277a.html" target="_blank">AFEW-VA database for valence and arousal estimation in-the-wild</a></td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/afew-va.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>15</td><td>7</td><td>8</td><td>1</td><td>10</td><td>4</td></tr><tr><td>2ad0ee93d029e790ebb50574f403a09854b65b7e</td><td>yale_faces</td><td>YaleFaces</td><td><a href="papers/2ad0ee93d029e790ebb50574f403a09854b65b7e.html" target="_blank">Acquiring linear subspaces for face recognition under variable lighting</a></td><td><a href="http://vision.cornell.edu/se3/wp-content/uploads/2014/09/pami05.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>999</td><td>488</td><td>511</td><td>110</td><td>525</td><td>485</td></tr><tr><td>57fe081950f21ca03b5b375ae3e84b399c015861</td><td>cvc_01_barcelona</td><td>CVC-01</td><td><a href="papers/57fe081950f21ca03b5b375ae3e84b399c015861.html" target="_blank">Adaptive Image Sampling and Windows Classification for On – board Pedestrian Detection</a></td><td><a href="https://pdfs.semanticscholar.org/57fe/081950f21ca03b5b375ae3e84b399c015861.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>39%</td><td>44</td><td>17</td><td>27</td><td>1</td><td>21</td><td>23</td></tr><tr><td>758d7e1be64cc668c59ef33ba8882c8597406e53</td><td>affectnet</td><td>AffectNet</td><td><a href="papers/758d7e1be64cc668c59ef33ba8882c8597406e53.html" target="_blank">AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild</a></td><td><a href="https://arxiv.org/pdf/1708.03985.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>38</td><td>21</td><td>17</td><td>1</td><td>26</td><td>11</td></tr><tr><td>47aeb3b82f54b5ae8142b4bdda7b614433e69b9a</td><td>am_fed</td><td>AM-FED</td><td><a href="papers/47aeb3b82f54b5ae8142b4bdda7b614433e69b9a.html" target="_blank">Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"</a></td><td><a href="http://affect.media.mit.edu/pdfs/13.McDuff-etal-AMFED.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>73</td><td>35</td><td>38</td><td>6</td><td>41</td><td>34</td></tr><tr><td>1be498d4bbc30c3bfd0029114c784bc2114d67c0</td><td>adience</td><td>Adience</td><td><a href="papers/1be498d4bbc30c3bfd0029114c784bc2114d67c0.html" target="_blank">Age and Gender Estimation of Unfiltered Faces</a></td><td><a href="http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Information Forensics and Security</td><td>edu</td><td>Open University of Israel</td><td>Israel</td><td>32.77824165</td><td>34.99565673</td><td>55%</td><td>168</td><td>93</td><td>75</td><td>5</td><td>94</td><td>78</td></tr><tr><td>6dcf418c778f528b5792104760f1fbfe90c6dd6a</td><td>agedb</td><td>AgeDB</td><td><a href="papers/6dcf418c778f528b5792104760f1fbfe90c6dd6a.html" target="_blank">AgeDB: The First Manually Collected, In-the-Wild Age Database</a></td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>91%</td><td>11</td><td>10</td><td>1</td><td>0</td><td>10</td><td>1</td></tr><tr><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td><td>aflw</td><td>AFLW</td><td><a href="papers/a74251efa970b92925b89eeef50a5e37d9281ad0.html" target="_blank">Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</a></td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/martin_koestinger-slides.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>292</td><td>175</td><td>117</td><td>37</td><td>212</td><td>84</td></tr><tr><td>2ce2560cf59db59ce313bbeb004e8ce55c5ce928</td><td>texas_3dfrd</td><td>Texas 3DFRD</td><td><a href="papers/2ce2560cf59db59ce313bbeb004e8ce55c5ce928.html" target="_blank">Anthropometric 3D Face Recognition</a></td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ijcv_june10.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>90</td><td>47</td><td>43</td><td>5</td><td>60</td><td>31</td></tr><tr><td>633c851ebf625ad7abdda2324e9de093cf623141</td><td>appa_real</td><td>APPA-REAL</td><td><a href="papers/633c851ebf625ad7abdda2324e9de093cf623141.html" target="_blank">Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database</a></td><td><a href="http://sergioescalera.com/wp-content/uploads/2017/05/APPA-REAL-Slides.pdf" target="_blank">[pdf]</a></td><td>2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>13</td><td>6</td><td>7</td><td>0</td><td>11</td><td>3</td></tr><tr><td>0df0d1adea39a5bef318b74faa37de7f3e00b452</td><td>mpii_gaze</td><td>MPIIGaze</td><td><a href="papers/0df0d1adea39a5bef318b74faa37de7f3e00b452.html" target="_blank">Appearance-based gaze estimation in the wild</a></td><td><a href="https://arxiv.org/pdf/1504.02863.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>66%</td><td>138</td><td>91</td><td>47</td><td>3</td><td>97</td><td>42</td></tr><tr><td>759a3b3821d9f0e08e0b0a62c8b693230afc3f8d</td><td>pubfig</td><td>PubFig</td><td><a href="papers/759a3b3821d9f0e08e0b0a62c8b693230afc3f8d.html" target="_blank">Attribute and simile classifiers for face verification</a></td><td><a href="http://acberg.com/papers/kbbn09iccv.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 12th International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>894</td><td>546</td><td>348</td><td>56</td><td>604</td><td>300</td></tr><tr><td>faf40ce28857aedf183e193486f5b4b0a8c478a2</td><td>iit_dehli_ear</td><td>IIT Dehli Ear</td><td><a href="papers/faf40ce28857aedf183e193486f5b4b0a8c478a2.html" target="_blank">Automated Human Identification Using Ear Imaging</a></td><td><a href="https://pdfs.semanticscholar.org/faf4/0ce28857aedf183e193486f5b4b0a8c478a2.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>70</td><td>28</td><td>42</td><td>6</td><td>28</td><td>42</td></tr><tr><td>2160788824c4c29ffe213b2cbeb3f52972d73f37</td><td>3d_rma</td><td>3D-RMA</td><td><a href="papers/2160788824c4c29ffe213b2cbeb3f52972d73f37.html" target="_blank">Automatic 3D face authentication</a></td><td><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.9190&rep=rep1&type=pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>95</td><td>44</td><td>51</td><td>8</td><td>61</td><td>35</td></tr><tr><td>213a579af9e4f57f071b884aa872651372b661fd</td><td>bbc_pose</td><td>BBC Pose</td><td><a href="papers/213a579af9e4f57f071b884aa872651372b661fd.html" target="_blank">Automatic and Efficient Human Pose Estimation for Sign Language Videos</a></td><td><a href="http://tomas.pfister.fi/files/charles13ijcv.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>76%</td><td>25</td><td>19</td><td>6</td><td>1</td><td>19</td><td>7</td></tr><tr><td>fcc6fe6007c322641796cb8792718641856a22a7</td><td>miw</td><td>MIW</td><td><a href="papers/fcc6fe6007c322641796cb8792718641856a22a7.html" target="_blank">Automatic facial makeup detection with application in face recognition</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td>2013 International Conference on Biometrics (ICB)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>74%</td><td>46</td><td>34</td><td>12</td><td>1</td><td>18</td><td>28</td></tr><tr><td>fcc6fe6007c322641796cb8792718641856a22a7</td><td>youtube_makeup</td><td>YMU</td><td><a href="papers/fcc6fe6007c322641796cb8792718641856a22a7.html" target="_blank">Automatic facial makeup detection with application in face recognition</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf" target="_blank">[pdf]</a></td><td>2013 International Conference on Biometrics (ICB)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>74%</td><td>46</td><td>34</td><td>12</td><td>1</td><td>18</td><td>28</td></tr><tr><td>0a85bdff552615643dd74646ac881862a7c7072d</td><td>pipa</td><td>PIPA</td><td><a href="papers/0a85bdff552615643dd74646ac881862a7c7072d.html" target="_blank">Beyond frontal faces: Improving Person Recognition using multiple cues</a></td><td><a href="https://arxiv.org/pdf/1501.05703.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>company</td><td>Facebook</td><td>United States</td><td>37.39367170</td><td>-122.08072620</td><td>72%</td><td>50</td><td>36</td><td>13</td><td>2</td><td>40</td><td>9</td></tr><tr><td>2acf7e58f0a526b957be2099c10aab693f795973</td><td>bosphorus</td><td>The Bosphorus</td><td><a href="papers/2acf7e58f0a526b957be2099c10aab693f795973.html" target="_blank">Bosphorus Database for 3D Face Analysis</a></td><td><a href="https://pdfs.semanticscholar.org/4254/fbba3846008f50671edc9cf70b99d7304543.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>328</td><td>168</td><td>160</td><td>19</td><td>149</td><td>183</td></tr><tr><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td><td>vmu</td><td>VMU</td><td><a href="papers/37d6f0eb074d207b53885bd2eb78ccc8a04be597.html" target="_blank">Can facial cosmetics affect the matching accuracy of face recognition systems?</a></td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>63%</td><td>49</td><td>31</td><td>18</td><td>0</td><td>18</td><td>31</td></tr><tr><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td><td>youtube_makeup</td><td>YMU</td><td><a href="papers/37d6f0eb074d207b53885bd2eb78ccc8a04be597.html" target="_blank">Can facial cosmetics affect the matching accuracy of face recognition systems?</a></td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>West Virginia University</td><td>United States</td><td>39.65404635</td><td>-79.96475355</td><td>63%</td><td>49</td><td>31</td><td>18</td><td>0</td><td>18</td><td>31</td></tr><tr><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td><td>chalearn</td><td>ChaLearn</td><td><a href="papers/8d5998cd984e7cce307da7d46f155f9db99c6590.html" target="_blank">ChaLearn looking at people: A review of events and resources</a></td><td><a href="https://arxiv.org/pdf/1701.02664.pdf" target="_blank">[pdf]</a></td><td>2017 International Joint Conference on Neural Networks (IJCNN)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>10</td><td>5</td><td>5</td><td>1</td><td>6</td><td>4</td></tr><tr><td>2bf8541199728262f78d4dced6fb91479b39b738</td><td>clothing_co_parsing</td><td>CCP</td><td><a href="papers/2bf8541199728262f78d4dced6fb91479b39b738.html" target="_blank">Clothing Co-parsing by Joint Image Segmentation and Labeling</a></td><td><a href="https://arxiv.org/pdf/1502.00739.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>60</td><td>42</td><td>18</td><td>0</td><td>38</td><td>24</td></tr><tr><td>22ad2c8c0f4d6aa4328b38d894b814ec22579761</td><td>gallagher</td><td>Gallagher</td><td><a href="papers/22ad2c8c0f4d6aa4328b38d894b814ec22579761.html" target="_blank">Clothing cosegmentation for recognizing people</a></td><td><a href="http://amp.ece.cmu.edu/people/Andy/Andy_files/2670CVPR08Gallagher.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Carnegie Mellon University Silicon Valley</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>59%</td><td>177</td><td>104</td><td>73</td><td>7</td><td>101</td><td>84</td></tr><tr><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td><td>leeds_sports_pose</td><td>Leeds Sports Pose</td><td><a href="papers/4b1d23d17476fcf78f4cbadf69fb130b1aa627c0.html" target="_blank">Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</a></td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>278</td><td>182</td><td>96</td><td>13</td><td>208</td><td>78</td></tr><tr><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td><td>stickmen_buffy</td><td>Buffy Stickmen</td><td><a href="papers/4b1d23d17476fcf78f4cbadf69fb130b1aa627c0.html" target="_blank">Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</a></td><td><a href="https://pdfs.semanticscholar.org/c327/15b5106f46eb6761531704cd2a9b5571832e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>278</td><td>182</td><td>96</td><td>13</td><td>208</td><td>78</td></tr><tr><td>45c31cde87258414f33412b3b12fc5bec7cb3ba9</td><td>jaffe</td><td>JAFFE</td><td><a href="papers/45c31cde87258414f33412b3b12fc5bec7cb3ba9.html" target="_blank">Coding Facial Expressions with Gabor Wavelets</a></td><td><a href="https://pdfs.semanticscholar.org/45c3/1cde87258414f33412b3b12fc5bec7cb3ba9.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>848</td><td>429</td><td>419</td><td>55</td><td>420</td><td>433</td></tr><tr><td>b1f4423c227fa37b9680787be38857069247a307</td><td>afew_va</td><td>AFEW-VA</td><td><a href="papers/b1f4423c227fa37b9680787be38857069247a307.html" target="_blank">Collecting Large, Richly Annotated Facial-Expression Databases from Movies</a></td><td><a href="http://users.cecs.anu.edu.au/~adhall/Dhall_Goecke_Lucey_Gedeon_M_2012.pdf" target="_blank">[pdf]</a></td><td>IEEE MultiMedia</td><td>edu</td><td>Australian National University</td><td>Australia</td><td>-35.27769990</td><td>149.11852700</td><td>62%</td><td>182</td><td>112</td><td>70</td><td>8</td><td>86</td><td>99</td></tr><tr><td>7f4040b482d16354d5938c1d1b926b544652bf5b</td><td>nova_emotions</td><td>Novaemötions Dataset</td><td><a href="papers/7f4040b482d16354d5938c1d1b926b544652bf5b.html" target="_blank">Competitive affective gaming: winning with a smile</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Universidade NOVA de Lisboa, Caparica, Portugal</td><td>Portugal</td><td>38.66096400</td><td>-9.20581300</td><td>75%</td><td>8</td><td>6</td><td>2</td><td>0</td><td>4</td><td>4</td></tr><tr><td>079a0a3bf5200994e1f972b1b9197bf2f90e87d4</td><td>mit_cbcl</td><td>MIT CBCL</td><td><a href="papers/079a0a3bf5200994e1f972b1b9197bf2f90e87d4.html" target="_blank">Component-Based Face Recognition with 3D Morphable Models</a></td><td><a href="http://cbcl.mit.edu/cbcl/publications/theses/thesis-huang.pdf" target="_blank">[pdf]</a></td><td>2004 Conference on Computer Vision and Pattern Recognition Workshop</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>12</td><td>4</td><td>8</td><td>0</td><td>8</td><td>4</td></tr><tr><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td><td>cohn_kanade</td><td>CK</td><td><a href="papers/23fc83c8cfff14a16df7ca497661264fc54ed746.html" target="_blank">Comprehensive Database for Facial Expression Analysis</a></td><td><a href="https://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>999</td><td>516</td><td>483</td><td>75</td><td>572</td><td>439</td></tr><tr><td>09d78009687bec46e70efcf39d4612822e61cb8c</td><td>raid</td><td>RAiD</td><td><a href="papers/09d78009687bec46e70efcf39d4612822e61cb8c.html" target="_blank">Consistent Re-identification in a Camera Network</a></td><td><a href="http://cs-people.bu.edu/dasabir/papers/ECCV14_Poster.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>51%</td><td>45</td><td>23</td><td>22</td><td>7</td><td>34</td><td>11</td></tr><tr><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td><td>casablanca</td><td>Casablanca</td><td><a href="papers/0ceda9dae8b9f322df65ca2ef02caca9758aec6f.html" target="_blank">Context-Aware CNNs for Person Head Detection</a></td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>27</td><td>15</td><td>12</td><td>1</td><td>23</td><td>5</td></tr><tr><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td><td>hollywood_headset</td><td>HollywoodHeads</td><td><a href="papers/0ceda9dae8b9f322df65ca2ef02caca9758aec6f.html" target="_blank">Context-Aware CNNs for Person Head Detection</a></td><td><a href="https://arxiv.org/pdf/1511.07917.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>27</td><td>15</td><td>12</td><td>1</td><td>23</td><td>5</td></tr><tr><td>c06b13d0ec3f5c43e2782cd22542588e233733c3</td><td>nova_emotions</td><td>Novaemötions Dataset</td><td><a href="papers/c06b13d0ec3f5c43e2782cd22542588e233733c3.html" target="_blank">Crowdsourcing facial expressions for affective-interaction</a></td><td><span class="gray">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td></tr><tr><td>8355d095d3534ef511a9af68a3b2893339e3f96b</td><td>imdb_wiki</td><td>IMDB</td><td><a href="papers/8355d095d3534ef511a9af68a3b2893339e3f96b.html" target="_blank">DEX: Deep EXpectation of Apparent Age from a Single Image</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Rothe_DEX_Deep_EXpectation_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision Workshop (ICCVW)</td><td></td><td></td><td></td><td></td><td></td><td>56%</td><td>120</td><td>67</td><td>53</td><td>5</td><td>74</td><td>47</td></tr><tr><td>5a5f0287484f0d480fed1ce585dbf729586f0edc</td><td>disfa</td><td>DISFA</td><td><a href="papers/5a5f0287484f0d480fed1ce585dbf729586f0edc.html" target="_blank">DISFA: A Spontaneous Facial Action Intensity Database</a></td><td><a href="http://mohammadmahoor.com/wp-content/uploads/2017/06/DiSFA_Paper_andAppendix_Final_OneColumn1-1.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Affective Computing</td><td>edu</td><td>University of Denver</td><td>United States</td><td>39.67665410</td><td>-104.96220300</td><td>49%</td><td>190</td><td>94</td><td>96</td><td>19</td><td>100</td><td>91</td></tr><tr><td>10195a163ab6348eef37213a46f60a3d87f289c5</td><td>imdb_wiki</td><td>IMDB</td><td><a href="papers/10195a163ab6348eef37213a46f60a3d87f289c5.html" target="_blank">Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks</a></td><td><a href="http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>ETH Zurich</td><td>Switzerland</td><td>47.37631300</td><td>8.54766990</td><td>53%</td><td>133</td><td>71</td><td>62</td><td>13</td><td>94</td><td>41</td></tr><tr><td>162ea969d1929ed180cc6de9f0bf116993ff6e06</td><td>vgg_faces</td><td>VGG Face</td><td><a href="papers/162ea969d1929ed180cc6de9f0bf116993ff6e06.html" target="_blank">Deep Face Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>999</td><td>548</td><td>451</td><td>70</td><td>635</td><td>370</td></tr><tr><td>6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4</td><td>celeba</td><td>CelebA</td><td><a href="papers/6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4.html" target="_blank">Deep Learning Face Attributes in the Wild</a></td><td><a href="https://arxiv.org/pdf/1411.7766.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td>edu</td><td>Chinese University of Hong Kong</td><td>China</td><td>22.41626320</td><td>114.21093180</td><td>53%</td><td>808</td><td>425</td><td>382</td><td>68</td><td>670</td><td>118</td></tr><tr><td>18010284894ed0edcca74e5bf768ee2e15ef7841</td><td>deep_fashion</td><td>DeepFashion</td><td><a href="papers/18010284894ed0edcca74e5bf768ee2e15ef7841.html" target="_blank">DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~lz013/papers/deepfashion_poster.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>66%</td><td>150</td><td>99</td><td>51</td><td>4</td><td>111</td><td>38</td></tr><tr><td>6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3</td><td>cuhk03</td><td>CUHK03</td><td><a href="papers/6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3.html" target="_blank">DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf" target="_blank">[pdf]</a></td><td>2014 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>512</td><td>308</td><td>204</td><td>29</td><td>324</td><td>180</td></tr><tr><td>13f06b08f371ba8b5d31c3e288b4deb61335b462</td><td>eth_andreas_ess</td><td>ETHZ Pedestrian</td><td><a href="papers/13f06b08f371ba8b5d31c3e288b4deb61335b462.html" target="_blank">Depth and Appearance for Mobile Scene Analysis</a></td><td><a href="http://www.mmp.rwth-aachen.de/publications/pdf/ess-depthandappearance-iccv07-poster.pdf" target="_blank">[pdf]</a></td><td>2007 IEEE 11th International Conference on Computer Vision</td><td>edu</td><td>ETH Zurich</td><td>Switzerland</td><td>47.37631300</td><td>8.54766990</td><td>57%</td><td>319</td><td>183</td><td>136</td><td>27</td><td>195</td><td>127</td></tr><tr><td>4946ba10a4d5a7d0a38372f23e6622bd347ae273</td><td>coco_action</td><td>COCO-a</td><td><a href="papers/4946ba10a4d5a7d0a38372f23e6622bd347ae273.html" target="_blank">Describing Common Human Visual Actions in Images</a></td><td><a href="https://arxiv.org/pdf/1506.02203.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>26</td><td>15</td><td>11</td><td>0</td><td>25</td><td>1</td></tr><tr><td>2e384f057211426ac5922f1b33d2aa8df5d51f57</td><td>a_pascal_yahoo</td><td>#N/A</td><td><a href="papers/2e384f057211426ac5922f1b33d2aa8df5d51f57.html" target="_blank">Describing objects by their attributes</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0468.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>University of Illinois, Urbana-Champaign</td><td>United States</td><td>40.11116745</td><td>-88.22587665</td><td>57%</td><td>999</td><td>566</td><td>432</td><td>74</td><td>738</td><td>264</td></tr><tr><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td><td>bpad</td><td>BPAD</td><td><a href="papers/7808937b46acad36e43c30ae4e9f3fd57462853d.html" target="_blank">Describing people: A poselet-based approach to attribute classification</a></td><td><a href="http://ttic.uchicago.edu/~smaji/papers/attributes-iccv11.pdf" target="_blank">[pdf]</a></td><td>2011 International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>221</td><td>125</td><td>96</td><td>14</td><td>165</td><td>59</td></tr><tr><td>d3200d49a19a4a4e4e9745ee39649b65d80c834b</td><td>scut_head</td><td>SCUT HEAD</td><td><a href="papers/d3200d49a19a4a4e4e9745ee39649b65d80c834b.html" target="_blank">Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</a></td><td><a href="https://arxiv.org/pdf/1803.09256.pdf" target="_blank">[pdf]</a></td><td>2018 24th International Conference on Pattern Recognition (ICPR)</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>9cc8cf0c7d7fa7607659921b6ff657e17e135ecc</td><td>mafa</td><td>MAsked FAces</td><td><a href="papers/9cc8cf0c7d7fa7607659921b6ff657e17e135ecc.html" target="_blank">Detecting Masked Faces in the Wild with LLE-CNNs</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2017/papers/Ge_Detecting_Masked_Faces_CVPR_2017_paper.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>6</td><td>4</td><td>2</td><td>1</td><td>5</td><td>1</td></tr><tr><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td><td>cmdp</td><td>CMDP</td><td><a href="papers/56ae6d94fc6097ec4ca861f0daa87941d1c10b70.html" target="_blank">Distance Estimation of an Unknown Person from a Portrait</a></td><td><a href="https://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>9</td><td>4</td><td>5</td><td>0</td><td>6</td><td>3</td></tr><tr><td>2b89de1d81cee50552f10e26e865df3365e9bc88</td><td>ibm_dif</td><td>IBM Diversity in Faces</td><td><a href="papers/2b89de1d81cee50552f10e26e865df3365e9bc88.html" target="_blank">Diversity in Faces</a></td><td><a href="https://arxiv.org/pdf/1901.10436.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>84fe5b4ac805af63206012d29523a1e033bc827e</td><td>awe_ears</td><td>AWE Ears</td><td><a href="papers/84fe5b4ac805af63206012d29523a1e033bc827e.html" target="_blank">Ear Recognition: More Than a Survey</a></td><td><a href="https://arxiv.org/pdf/1611.06203.pdf" target="_blank">[pdf]</a></td><td>Neurocomputing</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>24</td><td>17</td><td>7</td><td>0</td><td>11</td><td>13</td></tr><tr><td>133f01aec1534604d184d56de866a4bd531dac87</td><td>lfw</td><td>LFW</td><td><a href="papers/133f01aec1534604d184d56de866a4bd531dac87.html" target="_blank">Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</a></td><td><a href="http://www.cs.tau.ac.il/~wolf/papers/jpatchlbp.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>177</td><td>98</td><td>79</td><td>15</td><td>104</td><td>75</td></tr><tr><td>c900e0ad4c95948baaf0acd8449fde26f9b4952a</td><td>emotio_net</td><td>EmotioNet Database</td><td><a href="papers/c900e0ad4c95948baaf0acd8449fde26f9b4952a.html" target="_blank">EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</a></td><td><a href="http://cbcsl.ece.ohio-state.edu/cvpr16.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>72</td><td>39</td><td>33</td><td>7</td><td>54</td><td>17</td></tr><tr><td>2161f6b7ee3c0acc81603b01dc0df689683577b9</td><td>large_scale_person_search</td><td>Large Scale Person Search</td><td><a href="papers/2161f6b7ee3c0acc81603b01dc0df689683577b9.html" target="_blank">End-to-End Deep Learning for Person Search</a></td><td><a href="https://pdfs.semanticscholar.org/2161/f6b7ee3c0acc81603b01dc0df689683577b9.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>41</td><td>22</td><td>19</td><td>2</td><td>27</td><td>12</td></tr><tr><td>1bd1645a629f1b612960ab9bba276afd4cf7c666</td><td>brainwash</td><td>Brainwash</td><td><a href="papers/1bd1645a629f1b612960ab9bba276afd4cf7c666.html" target="_blank">End-to-End People Detection in Crowded Scenes</a></td><td><a href="https://arxiv.org/pdf/1506.04878.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Stanford University</td><td>United States</td><td>37.43131385</td><td>-122.16936535</td><td>47%</td><td>49</td><td>23</td><td>26</td><td>1</td><td>23</td><td>21</td></tr><tr><td>6273b3491e94ea4dd1ce42b791d77bdc96ee73a8</td><td>viper</td><td>VIPeR</td><td><a href="papers/6273b3491e94ea4dd1ce42b791d77bdc96ee73a8.html" target="_blank">Evaluating Appearance Models for Recognition, Reacquisition, and Tracking</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>584</td><td>342</td><td>242</td><td>38</td><td>338</td><td>245</td></tr><tr><td>2258e01865367018ed6f4262c880df85b94959f8</td><td>mot</td><td>MOT</td><td><a href="papers/2258e01865367018ed6f4262c880df85b94959f8.html" target="_blank">Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</a></td><td><a href="https://pdfs.semanticscholar.org/2e0b/00f4043e2d4b04c59c88bb54bcd907d0dcd4.pdf" target="_blank">[pdf]</a></td><td>EURASIP J. Image and Video Processing</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>586</td><td>295</td><td>289</td><td>48</td><td>345</td><td>244</td></tr><tr><td>9e5378e7b336c89735d3bb15cf67eff96f86d39a</td><td>precarious</td><td>Precarious</td><td><a href="papers/9e5378e7b336c89735d3bb15cf67eff96f86d39a.html" target="_blank">Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters</a></td><td><a href="https://arxiv.org/pdf/1703.06283.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>17%</td><td>12</td><td>2</td><td>10</td><td>1</td><td>11</td><td>1</td></tr><tr><td>35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62</td><td>coco_qa</td><td>COCO QA</td><td><a href="papers/35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62.html" target="_blank">Exploring Models and Data for Image Question Answering</a></td><td><a href="https://arxiv.org/pdf/1505.02074.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>191</td><td>116</td><td>75</td><td>12</td><td>165</td><td>27</td></tr><tr><td>75da1df4ed319926c544eefe17ec8d720feef8c0</td><td>fddb</td><td>FDDB</td><td><a href="papers/75da1df4ed319926c544eefe17ec8d720feef8c0.html" target="_blank">FDDB: A benchmark for face detection in unconstrained settings</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td></tr><tr><td>31de9b3dd6106ce6eec9a35991b2b9083395fd0b</td><td>feret</td><td>FERET</td><td><a href="papers/31de9b3dd6106ce6eec9a35991b2b9083395fd0b.html" target="_blank">FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</a></td><td><a href="https://pdfs.semanticscholar.org/31de/9b3dd6106ce6eec9a35991b2b9083395fd0b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>82</td><td>39</td><td>43</td><td>5</td><td>62</td><td>20</td></tr><tr><td>0e986f51fe45b00633de9fd0c94d082d2be51406</td><td>afw</td><td>AFW</td><td><a href="papers/0e986f51fe45b00633de9fd0c94d082d2be51406.html" target="_blank">Face detection, pose estimation, and landmark localization in the wild</a></td><td><a href="http://crcv.ucf.edu/courses/CAP6412/Spring2013/papers/zhu-ramanan-face-cvpr12.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>999</td><td>613</td><td>386</td><td>59</td><td>622</td><td>387</td></tr><tr><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td><td>youtube_faces</td><td>YouTubeFaces</td><td><a href="papers/560e0e58d0059259ddf86fcec1fa7975dee6a868.html" target="_blank">Face recognition in unconstrained videos with matched background similarity</a></td><td><a href="http://www.cs.tau.ac.il/thesis/thesis/Maoz.Itay-MSc.Thesis.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>Tel Aviv University</td><td>Israel</td><td>32.11198890</td><td>34.80459702</td><td>60%</td><td>485</td><td>292</td><td>192</td><td>30</td><td>298</td><td>193</td></tr><tr><td>670637d0303a863c1548d5b19f705860a23e285c</td><td>face_tracer</td><td>FaceTracer</td><td><a href="papers/670637d0303a863c1548d5b19f705860a23e285c.html" target="_blank">Face swapping: automatically replacing faces in photographs</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>6204776d31359d129a582057c2d788a14f8aadeb</td><td>youtube_celebrities</td><td>YouTube Celebrities</td><td><a href="papers/6204776d31359d129a582057c2d788a14f8aadeb.html" target="_blank">Face tracking and recognition with visual constraints in real-world videos</a></td><td><span class="gray">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Rutgers University</td><td>United States</td><td>40.47913175</td><td>-74.43168868</td><td>51%</td><td>301</td><td>153</td><td>146</td><td>18</td><td>144</td><td>133</td></tr><tr><td>4c170a0dcc8de75587dae21ca508dab2f9343974</td><td>face_tracer</td><td>FaceTracer</td><td><a href="papers/4c170a0dcc8de75587dae21ca508dab2f9343974.html" target="_blank">FaceTracer: A Search Engine for Large Collections of Images with Faces</a></td><td><a href="https://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>218</td><td>125</td><td>92</td><td>17</td><td>152</td><td>71</td></tr><tr><td>7ebb153704706e457ab57b432793d2b6e5d12592</td><td>vgg_celebs_in_places</td><td>CIP</td><td><a href="papers/7ebb153704706e457ab57b432793d2b6e5d12592.html" target="_blank">Faces in Places: compound query retrieval</a></td><td><a href="https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>5</td><td>5</td><td>0</td><td>0</td><td>4</td><td>1</td></tr><tr><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td><td>mafl</td><td>MAFL</td><td><a href="papers/8a3c5507237957d013a0fe0f082cab7f757af6ee.html" target="_blank">Facial Landmark Detection by Deep Multi-task Learning</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>383</td><td>233</td><td>150</td><td>25</td><td>265</td><td>121</td></tr><tr><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td><td>mtfl</td><td>MTFL</td><td><a href="papers/8a3c5507237957d013a0fe0f082cab7f757af6ee.html" target="_blank">Facial Landmark Detection by Deep Multi-task Learning</a></td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>383</td><td>233</td><td>150</td><td>25</td><td>265</td><td>121</td></tr><tr><td>014b8df0180f33b9fea98f34ae611c6447d761d2</td><td>buhmap_db</td><td>#N/A</td><td><a href="papers/014b8df0180f33b9fea98f34ae611c6447d761d2.html" target="_blank">Facial feature tracking and expression recognition for sign language</a></td><td><a href="https://www.cmpe.boun.edu.tr/~ari/files/ari2008iscis.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 17th Signal Processing and Communications Applications Conference</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>25</td><td>13</td><td>12</td><td>1</td><td>11</td><td>15</td></tr><tr><td>4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7</td><td>deep_fashion</td><td>DeepFashion</td><td><a href="papers/4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7.html" target="_blank">Fashion Landmark Detection in the Wild</a></td><td><a href="https://arxiv.org/pdf/1608.03049.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>17</td><td>9</td></tr><tr><td>45e616093a92e5f1e61a7c6037d5f637aa8964af</td><td>malf</td><td>MALF</td><td><a href="papers/45e616093a92e5f1e61a7c6037d5f637aa8964af.html" target="_blank">Fine-grained evaluation on face detection in the wild</a></td><td><a href="http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf" target="_blank">[pdf]</a></td><td>2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>17</td><td>12</td><td>5</td><td>0</td><td>13</td><td>4</td></tr><tr><td>1aad2da473888cb7ebc1bfaa15bfa0f1502ce005</td><td>jpl_pose</td><td>JPL-Interaction dataset</td><td><a href="papers/1aad2da473888cb7ebc1bfaa15bfa0f1502ce005.html" target="_blank">First-Person Activity Recognition: What Are They Doing to Me?</a></td><td><a href="http://michaelryoo.com/papers/cvpr2013_ryoo.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>148</td><td>103</td><td>45</td><td>8</td><td>111</td><td>38</td></tr><tr><td>7b92d1e53cc87f7a4256695de590098a2f30261e</td><td>appa_real</td><td>APPA-REAL</td><td><a href="papers/7b92d1e53cc87f7a4256695de590098a2f30261e.html" target="_blank">From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w48/Clapes_From_Apparent_to_CVPR_2018_paper.pdf" target="_blank">[pdf]</a></td><td>2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>774cbb45968607a027ae4729077734db000a1ec5</td><td>urban_tribes</td><td>Urban Tribes</td><td><a href="papers/774cbb45968607a027ae4729077734db000a1ec5.html" target="_blank">From Bikers to Surfers: Visual Recognition of Urban Tribes</a></td><td><a href="https://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>65%</td><td>17</td><td>11</td><td>6</td><td>1</td><td>12</td><td>5</td></tr><tr><td>22f656d0f8426c84a33a267977f511f127bfd7f3</td><td>expw</td><td>ExpW</td><td><a href="papers/22f656d0f8426c84a33a267977f511f127bfd7f3.html" target="_blank">From Facial Expression Recognition to Interpersonal Relation Prediction</a></td><td><a href="https://arxiv.org/pdf/1609.06426.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>78%</td><td>9</td><td>7</td><td>2</td><td>0</td><td>5</td><td>4</td></tr><tr><td>18c72175ddbb7d5956d180b65a96005c100f6014</td><td>yale_faces</td><td>YaleFaces</td><td><a href="papers/18c72175ddbb7d5956d180b65a96005c100f6014.html" target="_blank">From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</a></td><td><a href="https://pdfs.semanticscholar.org/97bb/c2b439a79d4dc0dc7199d71ed96ad5e3fd0e.pdf" target="_blank">[pdf]</a></td><td>IEEE Trans. Pattern Anal. Mach. Intell.</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>999</td><td>517</td><td>482</td><td>77</td><td>551</td><td>459</td></tr><tr><td>06f02199690961ba52997cde1527e714d2b3bf8f</td><td>columbia_gaze</td><td>Columbia Gaze</td><td><a href="papers/06f02199690961ba52997cde1527e714d2b3bf8f.html" target="_blank">Gaze locking: passive eye contact detection for human-object interaction</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Columbia University</td><td>United States</td><td>40.84198360</td><td>-73.94368971</td><td>68%</td><td>80</td><td>54</td><td>26</td><td>0</td><td>49</td><td>35</td></tr><tr><td>18858cc936947fc96b5c06bbe3c6c2faa5614540</td><td>pilot_parliament</td><td>PPB</td><td><a href="papers/18858cc936947fc96b5c06bbe3c6c2faa5614540.html" target="_blank">Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification</a></td><td><a href="https://pdfs.semanticscholar.org/03c1/fc9c3339813ed81ad0de540132f9f695a0f8.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>55</td><td>30</td><td>25</td><td>0</td><td>47</td><td>7</td></tr><tr><td>2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d.html" target="_blank">Genealogical face recognition based on UB KinFace database</a></td><td><span class="gray">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>SUNY Buffalo</td><td>United States</td><td>42.93362780</td><td>-78.88394479</td><td>53%</td><td>30</td><td>16</td><td>14</td><td>1</td><td>10</td><td>21</td></tr><tr><td>2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9.html" target="_blank">Generic object recognition with boosting</a></td><td><a href="http://www.cse.unr.edu/~bebis/CS773C/ObjectRecognition/Papers/Opelt06.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>TU Graz</td><td>Austria</td><td>47.07071400</td><td>15.43950400</td><td>48%</td><td>286</td><td>138</td><td>148</td><td>16</td><td>193</td><td>97</td></tr><tr><td>17b46e2dad927836c689d6787ddb3387c6159ece</td><td>geofaces</td><td>GeoFaces</td><td><a href="papers/17b46e2dad927836c689d6787ddb3387c6159ece.html" target="_blank">GeoFaceExplorer: exploring the geo-dependence of facial attributes</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>2</td><td>2</td><td>0</td><td>0</td><td>1</td><td>1</td></tr><tr><td>bd88bb2e4f351352d88ee7375af834360e223498</td><td>hda_plus</td><td>HDA+</td><td><a href="papers/bd88bb2e4f351352d88ee7375af834360e223498.html" target="_blank">HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance</a></td><td><a href="https://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>2</td><td>0</td><td>2</td><td>0</td><td>1</td><td>2</td></tr><tr><td>a8d0b149c2eadaa02204d3e4356fbc8eccf3b315</td><td>hi4d_adsip</td><td>Hi4D-ADSIP</td><td><a href="papers/a8d0b149c2eadaa02204d3e4356fbc8eccf3b315.html" target="_blank">Hi4D-ADSIP 3-D dynamic facial articulation database</a></td><td><span class="gray">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>18</td><td>11</td><td>7</td><td>1</td><td>7</td><td>11</td></tr><tr><td>a5a3bc3e5e9753769163cb30b16dbd12e266b93e</td><td>mcgill</td><td>McGill Real World</td><td><a href="papers/a5a3bc3e5e9753769163cb30b16dbd12e266b93e.html" target="_blank">Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos</a></td><td><span class="gray">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>8</td><td>4</td><td>4</td><td>1</td><td>5</td><td>3</td></tr><tr><td>3cd40bfa1ff193a96bde0207e5140a399476466c</td><td>tvhi</td><td>TVHI</td><td><a href="papers/3cd40bfa1ff193a96bde0207e5140a399476466c.html" target="_blank">High Five: Recognising human interactions in TV shows</a></td><td><a href="https://pdfs.semanticscholar.org/3cd4/0bfa1ff193a96bde0207e5140a399476466c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>91</td><td>48</td><td>43</td><td>11</td><td>64</td><td>27</td></tr><tr><td>04c2cda00e5536f4b1508cbd80041e9552880e67</td><td>hipsterwars</td><td>Hipsterwars</td><td><a href="papers/04c2cda00e5536f4b1508cbd80041e9552880e67.html" target="_blank">Hipster wars: Discovering elements of fashion styles</a></td><td><a href="http://acberg.com/papers/hipster_eccv14.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>66%</td><td>91</td><td>60</td><td>31</td><td>5</td><td>61</td><td>29</td></tr><tr><td>10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5</td><td>inria_person</td><td>INRIA Pedestrian</td><td><a href="papers/10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5.html" target="_blank">Histograms of oriented gradients for human detection</a></td><td><a href="http://courses.cs.washington.edu/courses/cse576/12sp/notes/CVPR2005_HOG.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td>edu</td><td>INRIA Rhone-Alps, Montbonnot, France</td><td>France</td><td>45.21788600</td><td>5.80736900</td><td>56%</td><td>999</td><td>556</td><td>443</td><td>67</td><td>537</td><td>477</td></tr><tr><td>041d3eedf5e45ce5c5229f0181c5c576ed1fafd6</td><td>ucf_selfie</td><td>UCF Selfie</td><td><a href="papers/041d3eedf5e45ce5c5229f0181c5c576ed1fafd6.html" target="_blank">How to Take a Good Selfie?</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>9</td><td>6</td><td>3</td><td>0</td><td>6</td><td>4</td></tr><tr><td>44d23df380af207f5ac5b41459c722c87283e1eb</td><td>wider_attribute</td><td>WIDER Attribute</td><td><a href="papers/44d23df380af207f5ac5b41459c722c87283e1eb.html" target="_blank">Human Attribute Recognition by Deep Hierarchical Contexts</a></td><td><a href="https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>78%</td><td>18</td><td>14</td><td>4</td><td>0</td><td>16</td><td>2</td></tr><tr><td>44484d2866f222bbb9b6b0870890f9eea1ffb2d0</td><td>cuhk01</td><td>CUHK01</td><td><a href="papers/44484d2866f222bbb9b6b0870890f9eea1ffb2d0.html" target="_blank">Human Reidentification with Transferred Metric Learning</a></td><td><a href="https://pdfs.semanticscholar.org/4448/4d2866f222bbb9b6b0870890f9eea1ffb2d0.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>258</td><td>160</td><td>98</td><td>12</td><td>142</td><td>115</td></tr><tr><td>57178b36c21fd7f4529ac6748614bb3374714e91</td><td>ijb_c</td><td>IJB-C</td><td><a href="papers/57178b36c21fd7f4529ac6748614bb3374714e91.html" target="_blank">IARPA Janus Benchmark - C: Face Dataset and Protocol</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Mazeetal_IARPAJanusBenchmarkCFaceDatasetAndProtocol_ICB2018.pdf" target="_blank">[pdf]</a></td><td>2018 International Conference on Biometrics (ICB)</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>9</td><td>3</td><td>6</td><td>2</td><td>9</td><td>0</td></tr><tr><td>0cb2dd5f178e3a297a0c33068961018659d0f443</td><td>ijb_c</td><td>IJB-C</td><td><a href="papers/0cb2dd5f178e3a297a0c33068961018659d0f443.html" target="_blank">IARPA Janus Benchmark-B Face Dataset</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Whitelametal_IARPAJanusBenchmark-BFaceDataset_CVPRW17.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td>edu</td><td>Michigan State University</td><td>United States</td><td>42.71856800</td><td>-84.47791571</td><td>28%</td><td>25</td><td>7</td><td>18</td><td>6</td><td>21</td><td>4</td></tr><tr><td>0297448f3ed948e136bb06ceff10eccb34e5bb77</td><td>ilids_mcts</td><td>i-LIDS Multiple-Camera</td><td><a href="papers/0297448f3ed948e136bb06ceff10eccb34e5bb77.html" target="_blank">Imagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems</a></td><td><span class="gray">[pdf]</a></td><td>Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology</td><td></td><td></td><td></td><td></td><td></td><td>38%</td><td>32</td><td>12</td><td>20</td><td>2</td><td>18</td><td>15</td></tr><tr><td>55c40cbcf49a0225e72d911d762c27bb1c2d14aa</td><td>ifad</td><td>IFAD</td><td><a href="papers/55c40cbcf49a0225e72d911d762c27bb1c2d14aa.html" target="_blank">Indian Face Age Database : A Database for Face Recognition with Age Variation</a></td><td><a href="https://pdfs.semanticscholar.org/55c4/0cbcf49a0225e72d911d762c27bb1c2d14aa.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>ca3e88d87e1344d076c964ea89d91a75c417f5ee</td><td>imfdb</td><td>IMFDB</td><td><a href="papers/ca3e88d87e1344d076c964ea89d91a75c417f5ee.html" target="_blank">Indian Movie Face Database: A benchmark for face recognition under wide variations</a></td><td><a href="http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/papers/Shankar2013Indian.pdf" target="_blank">[pdf]</a></td><td>2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)</td><td>edu</td><td>BVBCET, Hubli, India</td><td>India</td><td>15.36883320</td><td>75.12137960</td><td>67%</td><td>15</td><td>10</td><td>5</td><td>0</td><td>10</td><td>5</td></tr><tr><td>95f12d27c3b4914e0668a268360948bce92f7db3</td><td>helen</td><td>Helen</td><td><a href="papers/95f12d27c3b4914e0668a268360948bce92f7db3.html" target="_blank">Interactive Facial Feature Localization</a></td><td><a href="https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>company</td><td>Facebook</td><td>United States</td><td>37.39367170</td><td>-122.08072620</td><td>59%</td><td>339</td><td>201</td><td>138</td><td>29</td><td>219</td><td>129</td></tr><tr><td>ad01687649d95cd5b56d7399a9603c4b8e2217d7</td><td>mrp_drone</td><td>MRP Drone</td><td><a href="papers/ad01687649d95cd5b56d7399a9603c4b8e2217d7.html" target="_blank">Investigating Open-World Person Re-identification Using a Drone</a></td><td><a href="https://pdfs.semanticscholar.org/ad01/687649d95cd5b56d7399a9603c4b8e2217d7.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>5</td><td>2</td><td>3</td><td>0</td><td>3</td><td>2</td></tr><tr><td>2f43b614607163abf41dfe5d17ef6749a1b61304</td><td>hrt_transgender</td><td>HRT Transgender</td><td><a href="papers/2f43b614607163abf41dfe5d17ef6749a1b61304.html" target="_blank">Investigating the Periocular-Based Face Recognition Across Gender Transformation</a></td><td><span class="gray">[pdf]</a></td><td>IEEE Transactions on Information Forensics and Security</td><td>edu</td><td>University of North Carolina at Wilmington</td><td>United States</td><td>34.22498270</td><td>-77.86907744</td><td>69%</td><td>13</td><td>9</td><td>4</td><td>0</td><td>6</td><td>8</td></tr><tr><td>066d71fcd997033dce4ca58df924397dfe0b5fd1</td><td>ifdb</td><td>IFDB</td><td><a href="papers/066d71fcd997033dce4ca58df924397dfe0b5fd1.html" target="_blank">Iranian Face Database and Evaluation with a New Detection Algorithm</a></td><td><a href="https://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>b71d1aa90dcbe3638888725314c0d56640c1fef1</td><td>ifdb</td><td>IFDB</td><td><a href="papers/b71d1aa90dcbe3638888725314c0d56640c1fef1.html" target="_blank">Iranian Face Database with age, pose and expression</a></td><td><a href="http://www.iranprc.org/pdf/paper/2007-02.pdf" target="_blank">[pdf]</a></td><td>2007 International Conference on Machine Vision</td><td>edu</td><td>Islamic Azad University</td><td>Iran</td><td>34.84529990</td><td>48.55962120</td><td>35%</td><td>20</td><td>7</td><td>13</td><td>2</td><td>12</td><td>9</td></tr><tr><td>137aa2f891d474fce1e7a1d1e9b3aefe21e22b34</td><td>hrt_transgender</td><td>HRT Transgender</td><td><a href="papers/137aa2f891d474fce1e7a1d1e9b3aefe21e22b34.html" target="_blank">Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset</a></td><td><a href="http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%20139/PID2859389.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>7</td><td>4</td><td>3</td><td>1</td><td>3</td><td>5</td></tr><tr><td>0b440695c822a8e35184fb2f60dcdaa8a6de84ae</td><td>kinectface</td><td>KinectFaceDB</td><td><a href="papers/0b440695c822a8e35184fb2f60dcdaa8a6de84ae.html" target="_blank">KinectFaceDB: A Kinect Database for Face Recognition</a></td><td><a href="http://www.eurecom.fr/fr/publication/4393/download/mm-publi-4393.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Systems, Man, and Cybernetics: Systems</td><td>edu</td><td>University of North Carolina at Chapel Hill</td><td>United States</td><td>35.91139710</td><td>-79.05045290</td><td>61%</td><td>75</td><td>46</td><td>29</td><td>6</td><td>26</td><td>50</td></tr><tr><td>4793f11fbca4a7dba898b9fff68f70d868e2497c</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/4793f11fbca4a7dba898b9fff68f70d868e2497c.html" target="_blank">Kinship verification through transfer learning</a></td><td><a href="http://ijcai.org/Proceedings/11/Papers/422.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>71</td><td>41</td><td>30</td><td>2</td><td>29</td><td>43</td></tr><tr><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td><td>lfw</td><td>LFW</td><td><a href="papers/370b5757a5379b15e30d619e4d3fb9e8e13f3256.html" target="_blank">Labeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments</a></td><td><a href="https://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>999</td><td>582</td><td>415</td><td>71</td><td>639</td><td>371</td></tr><tr><td>7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22</td><td>lfw</td><td>LFW</td><td><a href="papers/7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22.html" target="_blank">Labeled Faces in the Wild : A Survey</a></td><td><a href="https://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Stevens Institute of Technology</td><td>United States</td><td>40.74225200</td><td>-74.02709490</td><td>46%</td><td>99</td><td>46</td><td>53</td><td>8</td><td>63</td><td>36</td></tr><tr><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td><td>lfw</td><td>LFW</td><td><a href="papers/2d3482dcff69c7417c7b933f22de606a0e8e42d4.html" target="_blank">Labeled Faces in the Wild : Updates and New Reporting Procedures</a></td><td><a href="https://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Massachusetts</td><td>United States</td><td>42.38897850</td><td>-72.52869870</td><td>59%</td><td>123</td><td>72</td><td>51</td><td>3</td><td>72</td><td>50</td></tr><tr><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td><td>lag</td><td>LAG</td><td><a href="papers/0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e.html" target="_blank">Large age-gap face verification by feature injection in deep networks</a></td><td><a href="https://arxiv.org/pdf/1602.06149.pdf" target="_blank">[pdf]</a></td><td>Pattern Recognition Letters</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>3</td><td>4</td></tr><tr><td>07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1</td><td>uccs</td><td>UCCS</td><td><a href="papers/07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1.html" target="_blank">Large scale unconstrained open set face database</a></td><td><a href="http://vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</td><td>edu</td><td>University of Colorado at Colorado Springs</td><td>United States</td><td>38.89646790</td><td>-104.80505940</td><td>80%</td><td>5</td><td>4</td><td>1</td><td>0</td><td>3</td><td>2</td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>mafl</td><td>MAFL</td><td><a href="papers/a0fd85b3400c7b3e11122f44dc5870ae2de9009a.html" target="_blank">Learning Deep Representation for Face Alignment with Auxiliary Attributes</a></td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>110</td><td>60</td><td>50</td><td>12</td><td>69</td><td>43</td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>mtfl</td><td>MTFL</td><td><a href="papers/a0fd85b3400c7b3e11122f44dc5870ae2de9009a.html" target="_blank">Learning Deep Representation for Face Alignment with Auxiliary Attributes</a></td><td><a href="https://arxiv.org/pdf/1408.3967.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>110</td><td>60</td><td>50</td><td>12</td><td>69</td><td>43</td></tr><tr><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td><td>casia_webface</td><td>CASIA Webface</td><td><a href="papers/853bd61bc48a431b9b1c7cab10c603830c488e39.html" target="_blank">Learning Face Representation from Scratch</a></td><td><a href="https://arxiv.org/pdf/1411.7923.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td>edu</td><td>Chinese Academy of Sciences</td><td>China</td><td>40.00447950</td><td>116.37023800</td><td>60%</td><td>436</td><td>262</td><td>174</td><td>30</td><td>288</td><td>150</td></tr><tr><td>2a171f8d14b6b8735001a11c217af9587d095848</td><td>social_relation</td><td>Social Relation</td><td><a href="papers/2a171f8d14b6b8735001a11c217af9587d095848.html" target="_blank">Learning Social Relation Traits from Face Images</a></td><td><a href="https://arxiv.org/pdf/1509.03936.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>20</td><td>8</td><td>12</td><td>5</td><td>15</td><td>5</td></tr><tr><td>4e4746094bf60ee83e40d8597a6191e463b57f76</td><td>leeds_sports_pose_extended</td><td>Leeds Sports Pose Extended</td><td><a href="papers/4e4746094bf60ee83e40d8597a6191e463b57f76.html" target="_blank">Learning effective human pose estimation from inaccurate annotation</a></td><td><a href="http://www.comp.leeds.ac.uk/mat4saj/publications/johnson11cvpr.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>University of Leeds</td><td>United Kingdom</td><td>53.80387185</td><td>-1.55245712</td><td>64%</td><td>173</td><td>111</td><td>62</td><td>10</td><td>122</td><td>56</td></tr><tr><td>287ddcb3db5562235d83aee318f318b8d5e43fb1</td><td>erce</td><td>ERCe</td><td><a href="papers/287ddcb3db5562235d83aee318f318b8d5e43fb1.html" target="_blank">Learning from Multiple Sources for Video Summarisation</a></td><td><a href="https://arxiv.org/pdf/1501.03069.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>7</td><td>4</td><td>3</td><td>0</td><td>4</td><td>3</td></tr><tr><td>287ddcb3db5562235d83aee318f318b8d5e43fb1</td><td>tisi</td><td>Times Square Intersection</td><td><a href="papers/287ddcb3db5562235d83aee318f318b8d5e43fb1.html" target="_blank">Learning from Multiple Sources for Video Summarisation</a></td><td><a href="https://arxiv.org/pdf/1501.03069.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>7</td><td>4</td><td>3</td><td>0</td><td>4</td><td>3</td></tr><tr><td>5981e6479c3fd4e31644db35d236bfb84ae46514</td><td>mot</td><td>MOT</td><td><a href="papers/5981e6479c3fd4e31644db35d236bfb84ae46514.html" target="_blank">Learning to associate: HybridBoosted multi-target tracker for crowded scene</a></td><td><a href="http://iris.usc.edu/Outlines/papers/2009/yuan-chang-nevatia-cvpr09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>University of Southern California</td><td>United States</td><td>34.02241490</td><td>-118.28634407</td><td>53%</td><td>330</td><td>176</td><td>153</td><td>27</td><td>196</td><td>139</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_buffy</td><td>Buffy Stickmen</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>217</td><td>155</td><td>35</td><td>251</td><td>129</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>217</td><td>155</td><td>35</td><td>251</td><td>129</td></tr><tr><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td><a href="papers/6dd0597f8513dc100cd0bc1b493768cde45098a9.html" target="_blank">Learning to parse images of articulated bodies</a></td><td><a href="https://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>373</td><td>217</td><td>155</td><td>35</td><td>251</td><td>129</td></tr><tr><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td><td>megaface</td><td>MegaFace</td><td><a href="papers/28d4e027c7e90b51b7d8908fce68128d1964668a.html" target="_blank">Level Playing Field for Million Scale Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1705.00393.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>University of Washington</td><td>United States</td><td>47.65432380</td><td>-122.30800894</td><td>39%</td><td>38</td><td>15</td><td>23</td><td>2</td><td>29</td><td>8</td></tr><tr><td>46a01565e6afe7c074affb752e7069ee3bf2e4ef</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/46a01565e6afe7c074affb752e7069ee3bf2e4ef.html" target="_blank">Local Descriptors Encoded by Fisher Vectors for Person Re-identification</a></td><td><a href="https://pdfs.semanticscholar.org/a105/f1ef67b4b02da38eadce8ffb4e13aa301a93.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>198</td><td>114</td><td>84</td><td>16</td><td>111</td><td>88</td></tr><tr><td>140438a77a771a8fb656b39a78ff488066eb6b50</td><td>lfpw</td><td>LFWP</td><td><a href="papers/140438a77a771a8fb656b39a78ff488066eb6b50.html" target="_blank">Localizing Parts of Faces Using a Consensus of Exemplars</a></td><td><a href="http://neerajkumar.org/projects/face-parts/base/papers/nk_cvpr2011_faceparts.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>521</td><td>317</td><td>204</td><td>42</td><td>337</td><td>195</td></tr><tr><td>38b55d95189c5e69cf4ab45098a48fba407609b4</td><td>cuhk02</td><td>CUHK02</td><td><a href="papers/38b55d95189c5e69cf4ab45098a48fba407609b4.html" target="_blank">Locally Aligned Feature Transforms across Views</a></td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d594.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>242</td><td>132</td><td>110</td><td>17</td><td>139</td><td>102</td></tr><tr><td>8990cdce3f917dad622e43e033db686b354d057c</td><td>tiny_faces</td><td>TinyFace</td><td><a href="papers/8990cdce3f917dad622e43e033db686b354d057c.html" target="_blank">Low-Resolution Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1811.08965.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>c0387e788a52f10bf35d4d50659cfa515d89fbec</td><td>mars</td><td>MARS</td><td><a href="papers/c0387e788a52f10bf35d4d50659cfa515d89fbec.html" target="_blank">MARS: A Video Benchmark for Large-Scale Person Re-Identification</a></td><td><a href="http://liangzheng.org/1320.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>146</td><td>87</td><td>59</td><td>6</td><td>97</td><td>49</td></tr><tr><td>3dc3f0b64ef80f573e3a5f96e456e52ee980b877</td><td>georgia_tech_face_database</td><td>Georgia Tech Face</td><td><a href="papers/3dc3f0b64ef80f573e3a5f96e456e52ee980b877.html" target="_blank">MAXIMUM LIKELIHOOD TRAINING OF THE EMBEDDED HMM FOR FACE DETECTION AND RECOGNITION Ara V. Ne an and Monson H. Hayes III Center for Signal and Image Processing School of Electrical and Computer Engineering</a></td><td><a href="https://pdfs.semanticscholar.org/3dc3/f0b64ef80f573e3a5f96e456e52ee980b877.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>3</td><td>1</td><td>2</td><td>0</td><td>2</td><td>1</td></tr><tr><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td><td>morph</td><td>MORPH Commercial</td><td><a href="papers/9055b155cbabdce3b98e16e5ac9c0edf00f9552f.html" target="_blank">MORPH: a longitudinal image database of normal adult age-progression</a></td><td><span class="gray">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>424</td><td>228</td><td>195</td><td>26</td><td>239</td><td>190</td></tr><tr><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td><td>morph_nc</td><td>MORPH Non-Commercial</td><td><a href="papers/9055b155cbabdce3b98e16e5ac9c0edf00f9552f.html" target="_blank">MORPH: a longitudinal image database of normal adult age-progression</a></td><td><span class="gray">[pdf]</a></td><td>7th International Conference on Automatic Face and Gesture Recognition (FGR06)</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>424</td><td>228</td><td>195</td><td>26</td><td>239</td><td>190</td></tr><tr><td>291265db88023e92bb8c8e6390438e5da148e8f5</td><td>msceleb</td><td>MsCeleb</td><td><a href="papers/291265db88023e92bb8c8e6390438e5da148e8f5.html" target="_blank">MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</a></td><td><a href="https://arxiv.org/pdf/1607.08221.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>167</td><td>92</td><td>75</td><td>14</td><td>131</td><td>36</td></tr><tr><td>e58dd160a76349d46f881bd6ddbc2921f08d1050</td><td>gfw</td><td>Grouping Face in the Wild</td><td><a href="papers/e58dd160a76349d46f881bd6ddbc2921f08d1050.html" target="_blank">Merge or Not? Learning to Group Faces via Imitation Learning</a></td><td><a href="https://arxiv.org/pdf/1707.03986.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td><td>50_people_one_question</td><td>50 People One Question</td><td><a href="papers/5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725.html" target="_blank">Merging Pose Estimates Across Space and Time</a></td><td><a href="https://pdfs.semanticscholar.org/63b2/f5348af0f969dfc2afb4977732393c6459ec.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>87%</td><td>15</td><td>13</td><td>2</td><td>0</td><td>12</td><td>4</td></tr><tr><td>5e0f8c355a37a5a89351c02f174e7a5ddcb98683</td><td>coco</td><td>COCO</td><td><a href="papers/5e0f8c355a37a5a89351c02f174e7a5ddcb98683.html" target="_blank">Microsoft COCO: Common Objects in Context</a></td><td><a href="https://arxiv.org/pdf/1405.0312.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>999</td><td>577</td><td>422</td><td>29</td><td>799</td><td>193</td></tr><tr><td>a5a44a32a91474f00a3cda671a802e87c899fbb4</td><td>moments_in_time</td><td>Moments in Time</td><td><a href="papers/a5a44a32a91474f00a3cda671a802e87c899fbb4.html" target="_blank">Moments in Time Dataset: one million videos for event understanding</a></td><td><a href="https://arxiv.org/pdf/1801.03150.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>25</td><td>16</td><td>9</td><td>2</td><td>25</td><td>0</td></tr><tr><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td><td>tud_multiview</td><td>TUD-Multiview</td><td><a href="papers/436f798d1a4e54e5947c1e7d7375c31b2bdb4064.html" target="_blank">Monocular 3D pose estimation and tracking by detection</a></td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>TU Darmstadt</td><td>Germany</td><td>49.87482770</td><td>8.65632810</td><td>55%</td><td>302</td><td>167</td><td>135</td><td>34</td><td>207</td><td>100</td></tr><tr><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td><td>tud_stadtmitte</td><td>TUD-Stadtmitte</td><td><a href="papers/436f798d1a4e54e5947c1e7d7375c31b2bdb4064.html" target="_blank">Monocular 3D pose estimation and tracking by detection</a></td><td><a href="http://videolectures.net/site/normal_dl/tag=81522/cvpr2010_andriluka_m3de_01.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>TU Darmstadt</td><td>Germany</td><td>49.87482770</td><td>8.65632810</td><td>55%</td><td>302</td><td>167</td><td>135</td><td>34</td><td>207</td><td>100</td></tr><tr><td>3b5b6d19d4733ab606c39c69a889f9e67967f151</td><td>qmul_grid</td><td>GRID</td><td><a href="papers/3b5b6d19d4733ab606c39c69a889f9e67967f151.html" target="_blank">Multi-camera activity correlation analysis</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/0163.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Queen Mary University of London</td><td>United Kingdom</td><td>51.52472720</td><td>-0.03931035</td><td>62%</td><td>138</td><td>86</td><td>52</td><td>8</td><td>79</td><td>61</td></tr><tr><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td><td>tud_brussels</td><td>TUD-Brussels</td><td><a href="papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html" target="_blank">Multi-cue onboard pedestrian detection</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>217</td><td>124</td><td>93</td><td>14</td><td>133</td><td>86</td></tr><tr><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td><td>tud_motionpairs</td><td>TUD-Motionparis</td><td><a href="papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html" target="_blank">Multi-cue onboard pedestrian detection</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1454.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>217</td><td>124</td><td>93</td><td>14</td><td>133</td><td>86</td></tr><tr><td>32c801cb7fbeb742edfd94cccfca4934baec71da</td><td>ucf_crowd</td><td>UCF-CC-50</td><td><a href="papers/32c801cb7fbeb742edfd94cccfca4934baec71da.html" target="_blank">Multi-source Multi-scale Counting in Extremely Dense Crowd Images</a></td><td><a href="http://crcv-web.eecs.ucf.edu/papers/cvpr2013/Counting_V3o.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>125</td><td>88</td><td>37</td><td>6</td><td>73</td><td>52</td></tr><tr><td>1e3df3ca8feab0b36fd293fe689f93bb2aaac591</td><td>immediacy</td><td>Immediacy</td><td><a href="papers/1e3df3ca8feab0b36fd293fe689f93bb2aaac591.html" target="_blank">Multi-task Recurrent Neural Network for Immediacy Prediction</a></td><td><a href="http://openaccess.thecvf.com/content_iccv_2015/papers/Chu_Multi-Task_Recurrent_Neural_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>25</td><td>16</td><td>9</td><td>2</td><td>21</td><td>5</td></tr><tr><td>2b926b3586399d028b46315d7d9fb9d879e4f79c</td><td>frav3d</td><td>FRAV3D</td><td><a href="papers/2b926b3586399d028b46315d7d9fb9d879e4f79c.html" target="_blank">Multimodal 2D, 2.5D & 3D Face Verification</a></td><td><a href="http://www.researchgate.net/profile/Enrique_Cabello/publication/224057733_Multimodal_2D_2.5D__3D_Face_Verification/links/0912f50f522298fa95000000.pdf" target="_blank">[pdf]</a></td><td>2006 International Conference on Image Processing</td><td>edu</td><td>Universidad Rey Juan Carlos, Spain</td><td></td><td>40.33586610</td><td>-3.87694320</td><td>50%</td><td>14</td><td>7</td><td>7</td><td>0</td><td>2</td><td>12</td></tr><tr><td>53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4</td><td>bp4d_plus</td><td>BP4D+</td><td><a href="papers/53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4.html" target="_blank">Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Multimodal_Spontaneous_Emotion_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>40</td><td>20</td><td>20</td><td>0</td><td>21</td><td>20</td></tr><tr><td>2fda164863a06a92d3a910b96eef927269aeb730</td><td>names_and_faces</td><td>News Dataset</td><td><a href="papers/2fda164863a06a92d3a910b96eef927269aeb730.html" target="_blank">Names and faces in the news</a></td><td><a href="http://ttic.uchicago.edu/~mmaire/papers/pdf/names_faces_cvpr2004.pdf" target="_blank">[pdf]</a></td><td>Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>294</td><td>153</td><td>140</td><td>29</td><td>215</td><td>82</td></tr><tr><td>4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06</td><td>distance_nighttime</td><td>Long Distance Heterogeneous Face</td><td><a href="papers/4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06.html" target="_blank">Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching</a></td><td><a href="https://pdfs.semanticscholar.org/4156/b7e88f2e0ab0a7c095b9bab199ae2b23bd06.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>21</td><td>10</td><td>11</td><td>3</td><td>11</td><td>10</td></tr><tr><td>3394168ff0719b03ff65bcea35336a76b21fe5e4</td><td>penn_fudan</td><td>Penn Fudan</td><td><a href="papers/3394168ff0719b03ff65bcea35336a76b21fe5e4.html" target="_blank">Object Detection Combining Recognition and Segmentation</a></td><td><a href="https://pdfs.semanticscholar.org/3394/168ff0719b03ff65bcea35336a76b21fe5e4.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>101</td><td>51</td><td>50</td><td>11</td><td>58</td><td>42</td></tr><tr><td>12ad3b5bbbf407f8e54ea692c07633d1a867c566</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/12ad3b5bbbf407f8e54ea692c07633d1a867c566.html" target="_blank">Object recognition using segmentation for feature detection</a></td><td><span class="gray">[pdf]</a></td><td>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.</td><td>edu</td><td>Inst. of Comput. Sci., Univ. of Leoben, Austria</td><td>Austria</td><td>47.38473720</td><td>15.09302010</td><td>41%</td><td>29</td><td>12</td><td>17</td><td>1</td><td>21</td><td>8</td></tr><tr><td>4f93cd09785c6e77bf4bc5a788e079df524c8d21</td><td>soton</td><td>SOTON HiD</td><td><a href="papers/4f93cd09785c6e77bf4bc5a788e079df524c8d21.html" target="_blank">On a Large Sequence-Based Human Gait Database</a></td><td><a href="https://eprints.soton.ac.uk/257901/1/Shutler_2002.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>148</td><td>89</td><td>59</td><td>17</td><td>104</td><td>49</td></tr><tr><td>6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c</td><td>afad</td><td>AFAD</td><td><a href="papers/6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c.html" target="_blank">Ordinal Regression with Multiple Output CNN for Age Estimation</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2016/papers/Niu_Ordinal_Regression_With_CVPR_2016_paper.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>68</td><td>36</td><td>32</td><td>8</td><td>49</td><td>17</td></tr><tr><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td><td>market1203</td><td>Market 1203</td><td><a href="papers/a7fe834a0af614ce6b50dc093132b031dd9a856b.html" target="_blank">Orientation Driven Bag of Appearances for Person Re-identification</a></td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>4</td><td>4</td></tr><tr><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td><td>pku_reid</td><td>PKU-Reid</td><td><a href="papers/a7fe834a0af614ce6b50dc093132b031dd9a856b.html" target="_blank">Orientation Driven Bag of Appearances for Person Re-identification</a></td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>7</td><td>3</td><td>4</td><td>0</td><td>4</td><td>4</td></tr><tr><td>18ae7c9a4bbc832b8b14bc4122070d7939f5e00e</td><td>frgc</td><td>FRGC</td><td><a href="papers/18ae7c9a4bbc832b8b14bc4122070d7939f5e00e.html" target="_blank">Overview of the face recognition grand challenge</a></td><td><a href="http://ivizlab.sfu.ca/arya/Papers/IEEE/Proceedings/C%20V%20P%20R-%2005/Face%20Recognition%20Grand%20Challenge.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td>edu</td><td>NIST</td><td>United States</td><td>39.14004000</td><td>-77.21850600</td><td>51%</td><td>999</td><td>507</td><td>491</td><td>114</td><td>594</td><td>424</td></tr><tr><td>22909dd19a0ec3b6065334cb5be5392cb24d839d</td><td>pets</td><td>PETS 2017</td><td><a href="papers/22909dd19a0ec3b6065334cb5be5392cb24d839d.html" target="_blank">PETS 2017: Dataset and Challenge</a></td><td><a href="http://tahirnawaz.com/papers/2017_CVPRW_PETS2017Dataset_Luis_Nawaz_Cane_Ferryman.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</td><td></td><td></td><td></td><td></td><td></td><td>12%</td><td>8</td><td>1</td><td>7</td><td>0</td><td>2</td><td>6</td></tr><tr><td>56ffa7d906b08d02d6d5a12c7377a57e24ef3391</td><td>unbc_shoulder_pain</td><td>UNBC-McMaster Pain</td><td><a href="papers/56ffa7d906b08d02d6d5a12c7377a57e24ef3391.html" target="_blank">Painful data: The UNBC-McMaster shoulder pain expression archive database</a></td><td><a href="http://www.iainm.com/iainm/Publications_files/2011_PAINFUL.pdf" target="_blank">[pdf]</a></td><td>Face and Gesture 2011</td><td>edu</td><td>Carnegie Mellon University Silicon Valley</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>53%</td><td>184</td><td>97</td><td>87</td><td>23</td><td>112</td><td>71</td></tr><tr><td>55206f0b5f57ce17358999145506cd01e570358c</td><td>orl</td><td>ORL</td><td><a href="papers/55206f0b5f57ce17358999145506cd01e570358c.html" target="_blank">Parameterisation of a stochastic model for human face identification</a></td><td><a href="https://pdfs.semanticscholar.org/5520/6f0b5f57ce17358999145506cd01e570358c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>999</td><td>454</td><td>545</td><td>97</td><td>569</td><td>445</td></tr><tr><td>0486214fb58ee9a04edfe7d6a74c6d0f661a7668</td><td>chokepoint</td><td>ChokePoint</td><td><a href="papers/0486214fb58ee9a04edfe7d6a74c6d0f661a7668.html" target="_blank">Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition</a></td><td><a href="https://arxiv.org/pdf/1304.0869.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>128</td><td>69</td><td>59</td><td>6</td><td>73</td><td>60</td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>apis</td><td>APiS1.0</td><td><a href="papers/488e475eeb3bb39a145f23ede197cd3620f1d98a.html" target="_blank">Pedestrian Attribute Classification in Surveillance: Database and Evaluation</a></td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>13</td><td>13</td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>svs</td><td>SVS</td><td><a href="papers/488e475eeb3bb39a145f23ede197cd3620f1d98a.html" target="_blank">Pedestrian Attribute Classification in Surveillance: Database and Evaluation</a></td><td><a href="http://www.cbsr.ia.ac.cn/english/APiS_1.0_paper.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision Workshops</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>26</td><td>18</td><td>8</td><td>1</td><td>13</td><td>13</td></tr><tr><td>2a4bbee0b4cf52d5aadbbc662164f7efba89566c</td><td>peta</td><td>PETA</td><td><a href="papers/2a4bbee0b4cf52d5aadbbc662164f7efba89566c.html" target="_blank">Pedestrian Attribute Recognition At Far Distance</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>70%</td><td>80</td><td>56</td><td>24</td><td>2</td><td>51</td><td>28</td></tr><tr><td>f72f6a45ee240cc99296a287ff725aaa7e7ebb35</td><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td><a href="papers/f72f6a45ee240cc99296a287ff725aaa7e7ebb35.html" target="_blank">Pedestrian Detection: An Evaluation of the State of the Art</a></td><td><a href="http://vision.caltech.edu/Image_Datasets/CaltechPedestrians/files/PAMI12pedestrians.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>California Institute of Technology</td><td>United States</td><td>34.13710185</td><td>-118.12527487</td><td>50%</td><td>999</td><td>499</td><td>500</td><td>71</td><td>541</td><td>464</td></tr><tr><td>1dc35905a1deff8bc74688f2d7e2f48fd2273275</td><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td><a href="papers/1dc35905a1deff8bc74688f2d7e2f48fd2273275.html" target="_blank">Pedestrian detection: A benchmark</a></td><td><a href="http://vision.lbl.gov/Conferences/cvpr/Papers/data/papers/1378.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>519</td><td>268</td><td>251</td><td>27</td><td>289</td><td>233</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_campus</td><td>TUD-Campus</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>529</td><td>286</td><td>242</td><td>40</td><td>324</td><td>213</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_crossing</td><td>TUD-Crossing</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>529</td><td>286</td><td>242</td><td>40</td><td>324</td><td>213</td></tr><tr><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td><td>tud_pedestrian</td><td>TUD-Pedestrian</td><td><a href="papers/3316521a5527c7700af8ae6aef32a79a8b83672c.html" target="_blank">People-tracking-by-detection and people-detection-by-tracking</a></td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf" target="_blank">[pdf]</a></td><td>2008 IEEE Conference on Computer Vision and Pattern Recognition</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>529</td><td>286</td><td>242</td><td>40</td><td>324</td><td>213</td></tr><tr><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td><td>duke_mtmc</td><td>Duke MTMC</td><td><a href="papers/27a2fad58dd8727e280f97036e0d2bc55ef5424c.html" target="_blank">Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</a></td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>136</td><td>79</td><td>57</td><td>7</td><td>108</td><td>27</td></tr><tr><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td><td>mot</td><td>MOT</td><td><a href="papers/27a2fad58dd8727e280f97036e0d2bc55ef5424c.html" target="_blank">Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</a></td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>136</td><td>79</td><td>57</td><td>7</td><td>108</td><td>27</td></tr><tr><td>16c7c31a7553d99f1837fc6e88e77b5ccbb346b8</td><td>prid</td><td>PRID</td><td><a href="papers/16c7c31a7553d99f1837fc6e88e77b5ccbb346b8.html" target="_blank">Person Re-identification by Descriptive and Discriminative Classification</a></td><td><a href="https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>352</td><td>211</td><td>141</td><td>27</td><td>196</td><td>157</td></tr><tr><td>98bb029afe2a1239c3fdab517323066f0957b81b</td><td>ilids_vid_reid</td><td>iLIDS-VID</td><td><a href="papers/98bb029afe2a1239c3fdab517323066f0957b81b.html" target="_blank">Person Re-identification by Video Ranking</a></td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>210</td><td>124</td><td>86</td><td>10</td><td>115</td><td>94</td></tr><tr><td>98bb029afe2a1239c3fdab517323066f0957b81b</td><td>sdu_vid</td><td>SDU-VID</td><td><a href="papers/98bb029afe2a1239c3fdab517323066f0957b81b.html" target="_blank">Person Re-identification by Video Ranking</a></td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>210</td><td>124</td><td>86</td><td>10</td><td>115</td><td>94</td></tr><tr><td>0b84f07af44f964817675ad961def8a51406dd2e</td><td>prw</td><td>PRW</td><td><a href="papers/0b84f07af44f964817675ad961def8a51406dd2e.html" target="_blank">Person Re-identification in the Wild</a></td><td><a href="https://arxiv.org/pdf/1604.02531.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>65</td><td>34</td><td>31</td><td>1</td><td>46</td><td>17</td></tr><tr><td>ec792ad2433b6579f2566c932ee414111e194537</td><td>msmt_17</td><td>MSMT17</td><td><a href="papers/ec792ad2433b6579f2566c932ee414111e194537.html" target="_blank">Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</a></td><td><a href="https://arxiv.org/pdf/1711.08565.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>71%</td><td>14</td><td>10</td><td>4</td><td>1</td><td>11</td><td>3</td></tr><tr><td>1c2802c2199b6d15ecefe7ba0c39bfe44363de38</td><td>youtube_poses</td><td>YouTube Pose</td><td><a href="papers/1c2802c2199b6d15ecefe7ba0c39bfe44363de38.html" target="_blank">Personalizing Human Video Pose Estimation</a></td><td><a href="https://arxiv.org/pdf/1511.06676.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>66%</td><td>32</td><td>21</td><td>11</td><td>2</td><td>29</td><td>5</td></tr><tr><td>b92a1ed9622b8268ae3ac9090e25789fc41cc9b8</td><td>pornodb</td><td>#N/A</td><td><a href="papers/b92a1ed9622b8268ae3ac9090e25789fc41cc9b8.html" target="_blank">Pooling in image representation: The visual codeword point of view</a></td><td><a href="http://cedric.cnam.fr/~thomen/papers/avila_CVIU2012_final.pdf" target="_blank">[pdf]</a></td><td>Computer Vision and Image Understanding</td><td></td><td></td><td></td><td></td><td></td><td>34%</td><td>77</td><td>26</td><td>51</td><td>7</td><td>46</td><td>34</td></tr><tr><td>2830fb5282de23d7784b4b4bc37065d27839a412</td><td>h3d</td><td>H3D</td><td><a href="papers/2830fb5282de23d7784b4b4bc37065d27839a412.html" target="_blank">Poselets: Body part detectors trained using 3D human pose annotations</a></td><td><a href="http://http.cs.berkeley.edu/Research/Projects/CS/vision/human/poselets_iccv09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE 12th International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>707</td><td>371</td><td>336</td><td>67</td><td>509</td><td>215</td></tr><tr><td>3765df816dc5a061bc261e190acc8bdd9d47bec0</td><td>rafd</td><td>RaFD</td><td><a href="papers/3765df816dc5a061bc261e190acc8bdd9d47bec0.html" target="_blank">Presentation and validation of the Radboud Faces Database</a></td><td><a href="https://pdfs.semanticscholar.org/3765/df816dc5a061bc261e190acc8bdd9d47bec0.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>446</td><td>177</td><td>269</td><td>43</td><td>322</td><td>136</td></tr><tr><td>636b8ffc09b1b23ff714ac8350bb35635e49fa3c</td><td>caltech_10k_web_faces</td><td>Caltech 10K Web Faces</td><td><a href="papers/636b8ffc09b1b23ff714ac8350bb35635e49fa3c.html" target="_blank">Pruning training sets for learning of object categories</a></td><td><a href="http://authors.library.caltech.edu/11469/1/ANGcvpr05.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)</td><td></td><td></td><td></td><td></td><td></td><td>68%</td><td>60</td><td>41</td><td>19</td><td>5</td><td>43</td><td>17</td></tr><tr><td>377f2b65e6a9300448bdccf678cde59449ecd337</td><td>ufdd</td><td>UFDD</td><td><a href="papers/377f2b65e6a9300448bdccf678cde59449ecd337.html" target="_blank">Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</a></td><td><a href="https://arxiv.org/pdf/1804.10275.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>2</td><td>0</td><td>2</td><td>0</td><td>2</td><td>0</td></tr><tr><td>140c95e53c619eac594d70f6369f518adfea12ef</td><td>ijb_c</td><td>IJB-C</td><td><a href="papers/140c95e53c619eac594d70f6369f518adfea12ef.html" target="_blank">Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A</a></td><td><a href="http://biometrics.cse.msu.edu/Publications/Face/Klareetal_UnconstrainedFaceDetectionRecognitionJanus_CVPR15.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>222</td><td>123</td><td>99</td><td>19</td><td>161</td><td>62</td></tr><tr><td>d80a3d1f3a438e02a6685e66ee908446766fefa9</td><td>megaage</td><td>MegaAge</td><td><a href="papers/d80a3d1f3a438e02a6685e66ee908446766fefa9.html" target="_blank">Quantifying Facial Age by Posterior of Age Comparisons</a></td><td><a href="https://arxiv.org/pdf/1708.09687.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>25%</td><td>4</td><td>1</td><td>3</td><td>1</td><td>4</td><td>0</td></tr><tr><td>922e0a51a3b8c67c4c6ac09a577ff674cbd28b34</td><td>v47</td><td>V47</td><td><a href="papers/922e0a51a3b8c67c4c6ac09a577ff674cbd28b34.html" target="_blank">Re-identification of pedestrians with variable occlusion and scale</a></td><td><span class="gray">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td>edu</td><td>Kingston University</td><td>United Kingdom</td><td>51.42930860</td><td>-0.26840440</td><td>20%</td><td>10</td><td>2</td><td>8</td><td>2</td><td>6</td><td>4</td></tr><tr><td>6f3c76b7c0bd8e1d122c6ea808a271fd4749c951</td><td>ward</td><td>WARD</td><td><a href="papers/6f3c76b7c0bd8e1d122c6ea808a271fd4749c951.html" target="_blank">Re-identify people in wide area camera network</a></td><td><a href="http://users.dimi.uniud.it/~niki.martinel/data/publications/2012/CVPR/MarMicCVPR2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</td><td>edu</td><td>University of Udine</td><td>Italy</td><td>46.08107230</td><td>13.21194740</td><td>40%</td><td>55</td><td>22</td><td>33</td><td>2</td><td>35</td><td>19</td></tr><tr><td>54983972aafc8e149259d913524581357b0f91c3</td><td>reseed</td><td>ReSEED</td><td><a href="papers/54983972aafc8e149259d913524581357b0f91c3.html" target="_blank">ReSEED: social event dEtection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>6</td><td>4</td><td>2</td><td>1</td><td>1</td><td>5</td></tr><tr><td>65355cbb581a219bd7461d48b3afd115263ea760</td><td>complex_activities</td><td>Ongoing Complex Activities</td><td><a href="papers/65355cbb581a219bd7461d48b3afd115263ea760.html" target="_blank">Recognition of ongoing complex activities by sequence prediction over a hierarchical label space</a></td><td><a href="https://scalable.mpi-inf.mpg.de/files/2016/01/main_wacv.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Winter Conference on Applications of Computer Vision (WACV)</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>e8de844fefd54541b71c9823416daa238be65546</td><td>visual_phrases</td><td>Phrasal Recognition</td><td><a href="papers/e8de844fefd54541b71c9823416daa238be65546.html" target="_blank">Recognition using visual phrases</a></td><td><a href="http://vision.cs.uiuc.edu/phrasal/recognition_using_visual_phrases.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td>edu</td><td>University of Illinois, Urbana-Champaign</td><td>United States</td><td>40.11116745</td><td>-88.22587665</td><td>59%</td><td>233</td><td>137</td><td>96</td><td>18</td><td>177</td><td>58</td></tr><tr><td>356b431d4f7a2a0a38cf971c84568207dcdbf189</td><td>wider</td><td>WIDER</td><td><a href="papers/356b431d4f7a2a0a38cf971c84568207dcdbf189.html" target="_blank">Recognize complex events from static images by fusing deep channels</a></td><td><a href="http://openaccess.thecvf.com/content_cvpr_2015/supplemental/Xiong_Recognize_Complex_Events_2015_CVPR_supplemental.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>64%</td><td>45</td><td>29</td><td>16</td><td>1</td><td>30</td><td>15</td></tr><tr><td>25474c21613607f6bb7687a281d5f9d4ffa1f9f3</td><td>faceplace</td><td>Face Place</td><td><a href="papers/25474c21613607f6bb7687a281d5f9d4ffa1f9f3.html" target="_blank">Recognizing disguised faces</a></td><td><a href="https://pdfs.semanticscholar.org/d936/7ceb0be378c3a9ddf7cb741c678c1a3c574c.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>33%</td><td>24</td><td>8</td><td>16</td><td>0</td><td>18</td><td>6</td></tr><tr><td>4053e3423fb70ad9140ca89351df49675197196a</td><td>bio_id</td><td>BioID Face</td><td><a href="papers/4053e3423fb70ad9140ca89351df49675197196a.html" target="_blank">Robust Face Detection Using the Hausdorff Distance</a></td><td><a href="http://facedetection.homepage.t-online.de/downloads/AVBPA01BioID.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>498</td><td>246</td><td>252</td><td>56</td><td>330</td><td>179</td></tr><tr><td>2724ba85ec4a66de18da33925e537f3902f21249</td><td>cofw</td><td>COFW</td><td><a href="papers/2724ba85ec4a66de18da33925e537f3902f21249.html" target="_blank">Robust Face Landmark Estimation under Occlusion</a></td><td><a href="http://authors.library.caltech.edu/45988/1/ICCV13%20Burgos-Artizzu.pdf" target="_blank">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision</td><td>edu</td><td>California Institute of Technology</td><td>United States</td><td>34.13710185</td><td>-118.12527487</td><td>61%</td><td>305</td><td>187</td><td>118</td><td>16</td><td>192</td><td>116</td></tr><tr><td>c570d1247e337f91e555c3be0e8c8a5aba539d9f</td><td>mcgill</td><td>McGill Real World</td><td><a href="papers/c570d1247e337f91e555c3be0e8c8a5aba539d9f.html" target="_blank">Robust semi-automatic head pose labeling for real-world face video sequences</a></td><td><span class="gray">[pdf]</a></td><td>Multimedia Tools and Applications</td><td>edu</td><td>McGill University</td><td>Canada</td><td>45.50397610</td><td>-73.57496870</td><td>44%</td><td>18</td><td>8</td><td>10</td><td>0</td><td>13</td><td>7</td></tr><tr><td>e27ef52c641c2b5100a1b34fd0b819e84a31b4df</td><td>sarc3d</td><td>Sarc3D</td><td><a href="papers/e27ef52c641c2b5100a1b34fd0b819e84a31b4df.html" target="_blank">SARC3D: A New 3D Body Model for People Tracking and Re-identification</a></td><td><a href="https://pdfs.semanticscholar.org/e27e/f52c641c2b5100a1b34fd0b819e84a31b4df.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>29</td><td>13</td><td>16</td><td>3</td><td>17</td><td>12</td></tr><tr><td>bd26dabab576adb6af30484183c9c9c8379bf2e0</td><td>scut_fbp</td><td>SCUT-FBP</td><td><a href="papers/bd26dabab576adb6af30484183c9c9c8379bf2e0.html" target="_blank">SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</a></td><td><a href="https://arxiv.org/pdf/1511.02459.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Systems, Man, and Cybernetics</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>14</td><td>6</td><td>8</td><td>3</td><td>5</td><td>9</td></tr><tr><td>29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d</td><td>scface</td><td>SCface</td><td><a href="papers/29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d.html" target="_blank">SCface – surveillance cameras face database</a></td><td><a href="http://scface.org/SCface%20-%20Surveillance%20Cameras%20Face%20Database.pdf" target="_blank">[pdf]</a></td><td>Multimedia Tools and Applications</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>178</td><td>92</td><td>86</td><td>15</td><td>90</td><td>89</td></tr><tr><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td><td>stair_actions</td><td>STAIR Action</td><td><a href="papers/d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9.html" target="_blank">STAIR Actions: A Video Dataset of Everyday Home Actions</a></td><td><a href="https://arxiv.org/pdf/1804.04326.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>833fa04463d90aab4a9fe2870d480f0b40df446e</td><td>sun_attributes</td><td>SUN</td><td><a href="papers/833fa04463d90aab4a9fe2870d480f0b40df446e.html" target="_blank">SUN attribute database: Discovering, annotating, and recognizing scene attributes</a></td><td><a href="http://static.cs.brown.edu/~gen/pub_papers/SUN_Attribute_Database_CVPR2012.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Brown University</td><td>United States</td><td>41.82686820</td><td>-71.40123146</td><td>58%</td><td>269</td><td>156</td><td>113</td><td>29</td><td>215</td><td>57</td></tr><tr><td>4308bd8c28e37e2ed9a3fcfe74d5436cce34b410</td><td>market_1501</td><td>Market 1501</td><td><a href="papers/4308bd8c28e37e2ed9a3fcfe74d5436cce34b410.html" target="_blank">Scalable Person Re-identification: A Benchmark</a></td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>394</td><td>240</td><td>154</td><td>18</td><td>272</td><td>116</td></tr><tr><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td><td>facebook_100</td><td>Facebook100</td><td><a href="papers/9c23859ec7313f2e756a3e85575735e0c52249f4.html" target="_blank">Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</a></td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>Harvard University</td><td>United States</td><td>42.36782045</td><td>-71.12666653</td><td>58%</td><td>50</td><td>29</td><td>21</td><td>3</td><td>39</td><td>11</td></tr><tr><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td><td>pubfig_83</td><td>pubfig83</td><td><a href="papers/9c23859ec7313f2e756a3e85575735e0c52249f4.html" target="_blank">Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</a></td><td><a href="http://klab.tch.harvard.edu/academia/classes/Neuro230/2012/lectures/Lecture_11_Reading.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011 WORKSHOPS</td><td>edu</td><td>Harvard University</td><td>United States</td><td>42.36782045</td><td>-71.12666653</td><td>58%</td><td>50</td><td>29</td><td>21</td><td>3</td><td>39</td><td>11</td></tr><tr><td>51eba481dac6b229a7490f650dff7b17ce05df73</td><td>imsitu</td><td>imSitu</td><td><a href="papers/51eba481dac6b229a7490f650dff7b17ce05df73.html" target="_blank">Situation Recognition: Visual Semantic Role Labeling for Image Understanding</a></td><td><a href="http://allenai.org/content/publications/SituationRecognition.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>48</td><td>30</td><td>18</td><td>2</td><td>46</td><td>2</td></tr><tr><td>570f37ed63142312e6ccdf00ecc376341ec72b9f</td><td>stanford_drone</td><td>Stanford Drone</td><td><a href="papers/570f37ed63142312e6ccdf00ecc376341ec72b9f.html" target="_blank">Social LSTM: Human Trajectory Prediction in Crowded Spaces</a></td><td><a href="http://cs.stanford.edu/groups/vision/pdf/CVPR16_N_LSTM.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>47%</td><td>229</td><td>107</td><td>122</td><td>5</td><td>150</td><td>79</td></tr><tr><td>23e824d1dfc33f3780dd18076284f07bd99f1c43</td><td>mifs</td><td>MIFS</td><td><a href="papers/23e824d1dfc33f3780dd18076284f07bd99f1c43.html" target="_blank">Spoofing faces using makeup: An investigative study</a></td><td><a href="http://www.cse.msu.edu/~rossarun/pubs/ChenFaceMakeupSpoof_ISBA2017.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)</td><td>edu</td><td>INRIA Méditerranée</td><td>France</td><td>43.61581310</td><td>7.06838000</td><td>60%</td><td>5</td><td>3</td><td>2</td><td>0</td><td>1</td><td>4</td></tr><tr><td>1a40092b493c6b8840257ab7f96051d1a4dbfeb2</td><td>sports_videos_in_the_wild</td><td>SVW</td><td><a href="papers/1a40092b493c6b8840257ab7f96051d1a4dbfeb2.html" target="_blank">Sports Videos in the Wild (SVW): A video dataset for sports analysis</a></td><td><a href="http://cse.msu.edu/~liuxm/publication/Safdarnejad_Liu_Udpa_Andrus_Wood_Craven_FG2015.pdf" target="_blank">[pdf]</a></td><td>2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)</td><td></td><td></td><td></td><td></td><td></td><td>83%</td><td>6</td><td>5</td><td>1</td><td>1</td><td>5</td><td>1</td></tr><tr><td>9361b784e73e9238d5cefbea5ac40d35d1e3103f</td><td>towncenter</td><td>TownCenter</td><td><a href="papers/9361b784e73e9238d5cefbea5ac40d35d1e3103f.html" target="_blank">Stable multi-target tracking in real-time surveillance video</a></td><td><a href="http://ben.benfold.com/docs/benfold_reid_cvpr2011-preprint.pdf" target="_blank">[pdf]</a></td><td>CVPR 2011</td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>310</td><td>142</td><td>168</td><td>24</td><td>180</td><td>131</td></tr><tr><td>c866a2afc871910e3282fd9498dce4ab20f6a332</td><td>qmul_surv_face</td><td>QMUL-SurvFace</td><td><a href="papers/c866a2afc871910e3282fd9498dce4ab20f6a332.html" target="_blank">Surveillance Face Recognition Challenge</a></td><td><a href="https://arxiv.org/pdf/1804.09691.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f</td><td>pku</td><td>PKU</td><td><a href="papers/f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f.html" target="_blank">Swiss-System Based Cascade Ranking for Gait-Based Person Re-Identification</a></td><td><a href="https://pdfs.semanticscholar.org/f6c8/d5e35d7e4d60a0104f233ac1a3ab757da53f.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>67%</td><td>3</td><td>2</td><td>1</td><td>0</td><td>1</td><td>2</td></tr><tr><td>4d58f886f5150b2d5e48fd1b5a49e09799bf895d</td><td>texas_3dfrd</td><td>Texas 3DFRD</td><td><a href="papers/4d58f886f5150b2d5e48fd1b5a49e09799bf895d.html" target="_blank">Texas 3D Face Recognition Database</a></td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ssiai_may10.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>61</td><td>27</td><td>34</td><td>3</td><td>37</td><td>25</td></tr><tr><td>6d96f946aaabc734af7fe3fc4454cf8547fcd5ed</td><td>ar_facedb</td><td>AR Face</td><td><a href="papers/6d96f946aaabc734af7fe3fc4454cf8547fcd5ed.html" target="_blank">The AR face database</a></td><td><span class="gray">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>999</td><td>530</td><td>469</td><td>51</td><td>459</td><td>573</td></tr><tr><td>2485c98aa44131d1a2f7d1355b1e372f2bb148ad</td><td>cas_peal</td><td>CAS-PEAL</td><td><a href="papers/2485c98aa44131d1a2f7d1355b1e372f2bb148ad.html" target="_blank">The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</a></td><td><a href="http://www.jdl.ac.cn/peal/files/ieee_smc_a_gao_cas-peal.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>415</td><td>214</td><td>201</td><td>39</td><td>189</td><td>232</td></tr><tr><td>47662d1a368daf70ba70ef2d59eb6209f98b675d</td><td>fia</td><td>CMU FiA</td><td><a href="papers/47662d1a368daf70ba70ef2d59eb6209f98b675d.html" target="_blank">The CMU Face In Action (FIA) Database</a></td><td><a href="https://pdfs.semanticscholar.org/4766/2d1a368daf70ba70ef2d59eb6209f98b675d.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>55</td><td>24</td><td>31</td><td>5</td><td>41</td><td>17</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td>cmu_pie</td><td>CMU PIE</td><td><a href="papers/4d423acc78273b75134e2afd1777ba6d3a398973.html" target="_blank">The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces</a></td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>742</td><td>398</td><td>342</td><td>59</td><td>416</td><td>329</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td>multi_pie</td><td>MULTIPIE</td><td><a href="papers/4d423acc78273b75134e2afd1777ba6d3a398973.html" target="_blank">The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces</a></td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>742</td><td>398</td><td>342</td><td>59</td><td>416</td><td>329</td></tr><tr><td>4df3143922bcdf7db78eb91e6b5359d6ada004d2</td><td>cfd</td><td>CFD</td><td><a href="papers/4df3143922bcdf7db78eb91e6b5359d6ada004d2.html" target="_blank">The Chicago face database: A free stimulus set of faces and norming data.</a></td><td><a href="https://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf" target="_blank">[pdf]</a></td><td>Behavior research methods</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>83</td><td>41</td><td>42</td><td>2</td><td>63</td><td>19</td></tr><tr><td>20388099cc415c772926e47bcbbe554e133343d1</td><td>cafe</td><td>#N/A</td><td><a href="papers/20388099cc415c772926e47bcbbe554e133343d1.html" target="_blank">The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults</a></td><td><a href="https://pdfs.semanticscholar.org/2038/8099cc415c772926e47bcbbe554e133343d1.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>48%</td><td>33</td><td>16</td><td>17</td><td>3</td><td>28</td><td>5</td></tr><tr><td>4e6ee936eb50dd032f7138702fa39b7c18ee8907</td><td>dartmouth_children</td><td>Dartmouth Children</td><td><a href="papers/4e6ee936eb50dd032f7138702fa39b7c18ee8907.html" target="_blank">The Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set</a></td><td><a href="https://pdfs.semanticscholar.org/4e6e/e936eb50dd032f7138702fa39b7c18ee8907.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>20</td><td>9</td><td>11</td><td>2</td><td>17</td><td>4</td></tr><tr><td>9e31e77f9543ab42474ba4e9330676e18c242e72</td><td>imdb_face</td><td>IMDb Face</td><td><a href="papers/9e31e77f9543ab42474ba4e9330676e18c242e72.html" target="_blank">The Devil of Face Recognition is in the Noise</a></td><td><a href="https://arxiv.org/pdf/1807.11649.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Nanyang Technological University</td><td>Singapore</td><td>1.34841040</td><td>103.68297965</td><td>20%</td><td>5</td><td>1</td><td>4</td><td>0</td><td>3</td><td>1</td></tr><tr><td>71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6</td><td>umd_faces</td><td>UMD</td><td><a href="papers/71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6.html" target="_blank">The Do’s and Don’ts for CNN-Based Face Verification</a></td><td><a href="https://arxiv.org/pdf/1705.07426.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Computer Vision Workshops (ICCVW)</td><td></td><td></td><td></td><td></td><td></td><td>36%</td><td>25</td><td>9</td><td>16</td><td>3</td><td>17</td><td>6</td></tr><tr><td>f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4</td><td>europersons</td><td>EuroCity Persons</td><td><a href="papers/f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4.html" target="_blank">The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</a></td><td><a href="https://arxiv.org/pdf/1805.07193.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>0%</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td></tr><tr><td>4d9a02d080636e9666c4d1cc438b9893391ec6c7</td><td>cohn_kanade_plus</td><td>CK+</td><td><a href="papers/4d9a02d080636e9666c4d1cc438b9893391ec6c7.html" target="_blank">The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression</a></td><td><a href="http://www.iainm.com/iainm/Publications_files/2010_The%20Extended.pdf" target="_blank">[pdf]</a></td><td>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops</td><td>edu</td><td>University of Pittsburgh</td><td>United States</td><td>40.44415295</td><td>-79.96243993</td><td>56%</td><td>975</td><td>545</td><td>429</td><td>67</td><td>475</td><td>510</td></tr><tr><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td><td>feret</td><td>FERET</td><td><a href="papers/0f0fcf041559703998abf310e56f8a2f90ee6f21.html" target="_blank">The FERET Evaluation Methodology for Face-Recognition Algorithms</a></td><td><a href="https://pdfs.semanticscholar.org/5099/7a5605c1f61e09e9a96789ed7495be6625aa.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>999</td><td>494</td><td>505</td><td>103</td><td>560</td><td>454</td></tr><tr><td>0c4a139bb87c6743c7905b29a3cfec27a5130652</td><td>feret</td><td>FERET</td><td><a href="papers/0c4a139bb87c6743c7905b29a3cfec27a5130652.html" target="_blank">The FERET Verification Testing Protocol for Face Recognition Algorithms</a></td><td><a href="https://pdfs.semanticscholar.org/8d2a/1c768fce6f71584dd993fb97e7b6419aaf60.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>44%</td><td>112</td><td>49</td><td>63</td><td>11</td><td>79</td><td>35</td></tr><tr><td>dc8b25e35a3acb812beb499844734081722319b4</td><td>feret</td><td>FERET</td><td><a href="papers/dc8b25e35a3acb812beb499844734081722319b4.html" target="_blank">The FERET database and evaluation procedure for face-recognition algorithms</a></td><td><a href="http://biometrics.nist.gov/cs_links/face/frvt/feret/FERET_Database_evaluation_procedure.pdf" target="_blank">[pdf]</a></td><td>Image Vision Comput.</td><td></td><td></td><td></td><td></td><td></td><td>45%</td><td>999</td><td>453</td><td>546</td><td>106</td><td>606</td><td>413</td></tr><tr><td>8f02ec0be21461fbcedf51d864f944cfc42c875f</td><td>hda_plus</td><td>HDA+</td><td><a href="papers/8f02ec0be21461fbcedf51d864f944cfc42c875f.html" target="_blank">The HDA+ Data Set for Research on Fully Automated Re-identification Systems</a></td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/workshops/w19/11%20-%20The%20HDA%20data%20set%20for%20research%20on%20fully.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>41%</td><td>17</td><td>7</td><td>10</td><td>2</td><td>11</td><td>6</td></tr><tr><td>9a9877791945c6fa4c1743ec6d3fb32570ef8481</td><td>m2vts</td><td>m2vts</td><td><a href="papers/9a9877791945c6fa4c1743ec6d3fb32570ef8481.html" target="_blank">The M2VTS Multimodal Face Database (Release 1.00)</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>Laboratoire de Télécommunications et Télédétection, UCL, Louvain-La-Neuve, Belgium</td><td>Belgium</td><td>50.66968750</td><td>4.61559090</td><td>43%</td><td>129</td><td>56</td><td>73</td><td>4</td><td>80</td><td>54</td></tr><tr><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td><td>mpi_large</td><td>Large MPI Facial Expression</td><td><a href="papers/ea050801199f98a1c7c1df6769f23f658299a3ae.html" target="_blank">The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</a></td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>28</td><td>13</td><td>15</td><td>4</td><td>24</td><td>4</td></tr><tr><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td><td>mpi_small</td><td>Small MPI Facial Expression</td><td><a href="papers/ea050801199f98a1c7c1df6769f23f658299a3ae.html" target="_blank">The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</a></td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46%</td><td>28</td><td>13</td><td>15</td><td>4</td><td>24</td><td>4</td></tr><tr><td>578d4ad74818086bb64f182f72e2c8bd31e3d426</td><td>mr2</td><td>MR2</td><td><a href="papers/578d4ad74818086bb64f182f72e2c8bd31e3d426.html" target="_blank">The MR2: A multi-racial, mega-resolution database of facial stimuli.</a></td><td><a href="https://pdfs.semanticscholar.org/be5b/455abd379240460d022a0e246615b0b86c14.pdf" target="_blank">[pdf]</a></td><td>Behavior research methods</td><td></td><td></td><td></td><td></td><td></td><td>14%</td><td>7</td><td>1</td><td>6</td><td>0</td><td>7</td><td>0</td></tr><tr><td>f1af714b92372c8e606485a3982eab2f16772ad8</td><td>mug_faces</td><td>MUG Faces</td><td><a href="papers/f1af714b92372c8e606485a3982eab2f16772ad8.html" target="_blank">The MUG facial expression database</a></td><td><span class="gray">[pdf]</a></td><td>11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10</td><td>edu</td><td>Aristotle University of Thessaloniki</td><td>Greece</td><td>40.62984145</td><td>22.95889350</td><td>46%</td><td>68</td><td>31</td><td>37</td><td>5</td><td>28</td><td>40</td></tr><tr><td>79828e6e9f137a583082b8b5a9dfce0c301989b8</td><td>mapillary</td><td>Mapillary</td><td><a href="papers/79828e6e9f137a583082b8b5a9dfce0c301989b8.html" target="_blank">The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</a></td><td><a href="http://openaccess.thecvf.com/content_ICCV_2017/papers/Neuhold_The_Mapillary_Vistas_ICCV_2017_paper.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>44</td><td>24</td><td>20</td><td>0</td><td>36</td><td>7</td></tr><tr><td>96e0cfcd81cdeb8282e29ef9ec9962b125f379b0</td><td>megaface</td><td>MegaFace</td><td><a href="papers/96e0cfcd81cdeb8282e29ef9ec9962b125f379b0.html" target="_blank">The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</a></td><td><a href="https://arxiv.org/pdf/1512.00596.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td></td><td></td><td></td><td></td><td></td><td>59%</td><td>121</td><td>71</td><td>50</td><td>9</td><td>98</td><td>22</td></tr><tr><td>0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a</td><td>voc</td><td>VOC</td><td><a href="papers/0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a.html" target="_blank">The Pascal Visual Object Classes (VOC) Challenge</a></td><td><a href="http://eprints.pascal-network.org/archive/00006187/01/PascalVOC_IJCV2009.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>58%</td><td>999</td><td>580</td><td>419</td><td>35</td><td>613</td><td>414</td></tr><tr><td>66e6f08873325d37e0ec20a4769ce881e04e964e</td><td>sun_attributes</td><td>SUN</td><td><a href="papers/66e6f08873325d37e0ec20a4769ce881e04e964e.html" target="_blank">The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</a></td><td><a href="http://www.cc.gatech.edu/~hays/papers/attribute_ijcv.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>112</td><td>70</td><td>42</td><td>14</td><td>84</td><td>29</td></tr><tr><td>8b2dd5c61b23ead5ae5508bb8ce808b5ea266730</td><td>10k_US_adult_faces</td><td>10K US Adult Faces</td><td><a href="papers/8b2dd5c61b23ead5ae5508bb8ce808b5ea266730.html" target="_blank">The intrinsic memorability of face photographs.</a></td><td><a href="https://pdfs.semanticscholar.org/8b2d/d5c61b23ead5ae5508bb8ce808b5ea266730.pdf" target="_blank">[pdf]</a></td><td>Journal of experimental psychology. General</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>47</td><td>25</td><td>22</td><td>3</td><td>34</td><td>13</td></tr><tr><td>ae0aee03d946efffdc7af2362a42d3750e7dd48a</td><td>put_face</td><td>Put Face</td><td><a href="papers/ae0aee03d946efffdc7af2362a42d3750e7dd48a.html" target="_blank">The put face database</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>43%</td><td>100</td><td>43</td><td>57</td><td>7</td><td>56</td><td>48</td></tr><tr><td>19d1b811df60f86cbd5e04a094b07f32fff7a32a</td><td>york_3d</td><td>UOY 3D Face Database</td><td><a href="papers/19d1b811df60f86cbd5e04a094b07f32fff7a32a.html" target="_blank">Three-dimensional face recognition: an eigensurface approach</a></td><td><a href="http://www-users.cs.york.ac.uk/~nep/research/3Dface/tomh/3DFaceRecognition-Eigensurface-ICIP(web)2.pdf" target="_blank">[pdf]</a></td><td>2004 International Conference on Image Processing, 2004. ICIP '04.</td><td></td><td></td><td></td><td></td><td></td><td>36%</td><td>36</td><td>13</td><td>23</td><td>4</td><td>25</td><td>11</td></tr><tr><td>2edb87494278ad11641b6cf7a3f8996de12b8e14</td><td>qmul_grid</td><td>GRID</td><td><a href="papers/2edb87494278ad11641b6cf7a3f8996de12b8e14.html" target="_blank">Time-Delayed Correlation Analysis for Multi-Camera Activity Understanding</a></td><td><a href="http://www.eecs.qmul.ac.uk/~ccloy/files/ijcv_2010.pdf" target="_blank">[pdf]</a></td><td>International Journal of Computer Vision</td><td>edu</td><td>Queen Mary University of London</td><td>United Kingdom</td><td>51.52472720</td><td>-0.03931035</td><td>52%</td><td>83</td><td>43</td><td>40</td><td>6</td><td>51</td><td>33</td></tr><tr><td>298cbc3dfbbb3a20af4eed97906650a4ea1c29e0</td><td>ferplus</td><td>FER+</td><td><a href="papers/298cbc3dfbbb3a20af4eed97906650a4ea1c29e0.html" target="_blank">Training deep networks for facial expression recognition with crowd-sourced label distribution</a></td><td><a href="https://arxiv.org/pdf/1608.01041.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>69%</td><td>29</td><td>20</td><td>9</td><td>0</td><td>15</td><td>14</td></tr><tr><td>4eab317b5ac436a949849ed286baa3de2a541eef</td><td>laofiw</td><td>LAOFIW</td><td><a href="papers/4eab317b5ac436a949849ed286baa3de2a541eef.html" target="_blank">Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings</a></td><td><a href="https://arxiv.org/pdf/1809.02169.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>50%</td><td>2</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td></tr><tr><td>b5f2846a506fc417e7da43f6a7679146d99c5e96</td><td>ucf_101</td><td>UCF101</td><td><a href="papers/b5f2846a506fc417e7da43f6a7679146d99c5e96.html" target="_blank">UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</a></td><td><a href="https://arxiv.org/pdf/1212.0402.pdf" target="_blank">[pdf]</a></td><td>CoRR</td><td></td><td></td><td></td><td></td><td></td><td>62%</td><td>999</td><td>615</td><td>384</td><td>73</td><td>716</td><td>283</td></tr><tr><td>16e8b0a1e8451d5f697b94c0c2b32a00abee1d52</td><td>umb</td><td>UMB</td><td><a href="papers/16e8b0a1e8451d5f697b94c0c2b32a00abee1d52.html" target="_blank">UMB-DB: A database of partially occluded 3D faces</a></td><td><a href="http://face.cs.kit.edu/befit/workshop2011/pdf/slides/claudio_cusano-slides.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>45</td><td>27</td><td>18</td><td>2</td><td>20</td><td>24</td></tr><tr><td>31b05f65405534a696a847dd19c621b7b8588263</td><td>umd_faces</td><td>UMD</td><td><a href="papers/31b05f65405534a696a847dd19c621b7b8588263.html" target="_blank">UMDFaces: An annotated face dataset for training deep networks</a></td><td><a href="https://arxiv.org/pdf/1611.01484.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Joint Conference on Biometrics (IJCB)</td><td>edu</td><td>University of Maryland</td><td>United States</td><td>39.28996850</td><td>-76.62196103</td><td>57%</td><td>35</td><td>20</td><td>15</td><td>4</td><td>28</td><td>7</td></tr><tr><td>8627f019882b024aef92e4eb9355c499c733e5b7</td><td>used</td><td>USED Social Event Dataset</td><td><a href="papers/8627f019882b024aef92e4eb9355c499c733e5b7.html" target="_blank">USED: a large-scale social event detection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Trento</td><td>Italy</td><td>46.06588360</td><td>11.11598940</td><td>71%</td><td>7</td><td>5</td><td>2</td><td>0</td><td>3</td><td>4</td></tr><tr><td>d4f1eb008eb80595bcfdac368e23ae9754e1e745</td><td>uccs</td><td>UCCS</td><td><a href="papers/d4f1eb008eb80595bcfdac368e23ae9754e1e745.html" target="_blank">Unconstrained Face Detection and Open-Set Face Recognition Challenge</a></td><td><a href="https://arxiv.org/pdf/1708.02337.pdf" target="_blank">[pdf]</a></td><td>2017 IEEE International Joint Conference on Biometrics (IJCB)</td><td></td><td></td><td></td><td></td><td></td><td>60%</td><td>5</td><td>3</td><td>2</td><td>0</td><td>4</td><td>1</td></tr><tr><td>4b4106614c1d553365bad75d7866bff0de6056ed</td><td>czech_news_agency</td><td>UFI</td><td><a href="papers/4b4106614c1d553365bad75d7866bff0de6056ed.html" target="_blank">Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions</a></td><td><a href="https://pdfs.semanticscholar.org/4b41/06614c1d553365bad75d7866bff0de6056ed.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>40%</td><td>10</td><td>4</td><td>6</td><td>0</td><td>4</td><td>6</td></tr><tr><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td><td>kin_face</td><td>UB KinFace</td><td><a href="papers/08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7.html" target="_blank">Understanding Kin Relationships in a Photo</a></td><td><a href="http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Multimedia</td><td></td><td></td><td></td><td></td><td></td><td>58%</td><td>96</td><td>56</td><td>40</td><td>2</td><td>34</td><td>63</td></tr><tr><td>21d9d0deed16f0ad62a4865e9acf0686f4f15492</td><td>images_of_groups</td><td>Images of Groups</td><td><a href="papers/21d9d0deed16f0ad62a4865e9acf0686f4f15492.html" target="_blank">Understanding images of groups of people</a></td><td><a href="http://chenlab.ece.cornell.edu/people/Andy/Andy_files/cvpr09.pdf" target="_blank">[pdf]</a></td><td>2009 IEEE Conference on Computer Vision and Pattern Recognition</td><td>edu</td><td>Carnegie Mellon University Silicon Valley</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>55%</td><td>202</td><td>111</td><td>91</td><td>12</td><td>132</td><td>75</td></tr><tr><td>fd8168f1c50de85bac58a8d328df0a50248b16ae</td><td>nd_2006</td><td>ND-2006</td><td><a href="papers/fd8168f1c50de85bac58a8d328df0a50248b16ae.html" target="_blank">Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition</a></td><td><span class="gray">[pdf]</a></td><td>2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems</td><td>edu</td><td>University of Notre Dame</td><td>United States</td><td>41.70456775</td><td>-86.23822026</td><td>59%</td><td>32</td><td>19</td><td>13</td><td>3</td><td>17</td><td>15</td></tr><tr><td>4563b46d42079242f06567b3f2e2f7a80cb3befe</td><td>vadana</td><td>VADANA</td><td><a href="papers/4563b46d42079242f06567b3f2e2f7a80cb3befe.html" target="_blank">VADANA: A dense dataset for facial image analysis</a></td><td><a href="http://vims.cis.udel.edu/publications/VADANA_BeFIT2011.pdf" target="_blank">[pdf]</a></td><td>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</td><td>edu</td><td>University of Delaware</td><td>United States</td><td>39.68103280</td><td>-75.75401840</td><td>50%</td><td>16</td><td>8</td><td>8</td><td>0</td><td>6</td><td>10</td></tr><tr><td>eb027969f9310e0ae941e2adee2d42cdf07d938c</td><td>vgg_faces2</td><td>VGG Face2</td><td><a href="papers/eb027969f9310e0ae941e2adee2d42cdf07d938c.html" target="_blank">VGGFace2: A Dataset for Recognising Faces across Pose and Age</a></td><td><a href="https://arxiv.org/pdf/1710.08092.pdf" target="_blank">[pdf]</a></td><td>2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)</td><td>edu</td><td>Oxford University</td><td>United Kingdom</td><td>51.75208490</td><td>-1.25166460</td><td>45%</td><td>56</td><td>25</td><td>31</td><td>6</td><td>50</td><td>6</td></tr><tr><td>01959ef569f74c286956024866c1d107099199f7</td><td>vqa</td><td>VQA</td><td><a href="papers/01959ef569f74c286956024866c1d107099199f7.html" target="_blank">VQA: Visual Question Answering</a></td><td><a href="https://arxiv.org/pdf/1505.00468.pdf" target="_blank">[pdf]</a></td><td>2015 IEEE International Conference on Computer Vision (ICCV)</td><td></td><td></td><td></td><td></td><td></td><td>61%</td><td>731</td><td>445</td><td>286</td><td>47</td><td>629</td><td>96</td></tr><tr><td>b6c293f0420f7e945b5916ae44269fb53e139275</td><td>erce</td><td>ERCe</td><td><a href="papers/b6c293f0420f7e945b5916ae44269fb53e139275.html" target="_blank">Video Synopsis by Heterogeneous Multi-source Correlation</a></td><td><span class="gray">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>31</td><td>17</td><td>14</td><td>2</td><td>15</td><td>13</td></tr><tr><td>b6c293f0420f7e945b5916ae44269fb53e139275</td><td>tisi</td><td>Times Square Intersection</td><td><a href="papers/b6c293f0420f7e945b5916ae44269fb53e139275.html" target="_blank">Video Synopsis by Heterogeneous Multi-source Correlation</a></td><td><span class="gray">[pdf]</a></td><td>2013 IEEE International Conference on Computer Vision</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>31</td><td>17</td><td>14</td><td>2</td><td>15</td><td>13</td></tr><tr><td>5194cbd51f9769ab25260446b4fa17204752e799</td><td>violent_flows</td><td>Violent Flows</td><td><a href="papers/5194cbd51f9769ab25260446b4fa17204752e799.html" target="_blank">Violent flows: Real-time detection of violent crowd behavior</a></td><td><a href="http://www.openu.ac.il/home/hassner/data/violentflows/violent_flows.pdf" target="_blank">[pdf]</a></td><td>2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops</td><td>edu</td><td>Open University of Israel</td><td>Israel</td><td>32.77824165</td><td>34.99565673</td><td>55%</td><td>83</td><td>46</td><td>37</td><td>6</td><td>44</td><td>41</td></tr><tr><td>026e3363b7f76b51cc711886597a44d5f1fd1de2</td><td>kitti</td><td>KITTI</td><td><a href="papers/026e3363b7f76b51cc711886597a44d5f1fd1de2.html" target="_blank">Vision meets robotics: The KITTI dataset</a></td><td><a href="https://pdfs.semanticscholar.org/026e/3363b7f76b51cc711886597a44d5f1fd1de2.pdf" target="_blank">[pdf]</a></td><td>I. J. Robotics Res.</td><td></td><td></td><td></td><td></td><td></td><td>55%</td><td>999</td><td>546</td><td>453</td><td>37</td><td>571</td><td>448</td></tr><tr><td>066000d44d6691d27202896691f08b27117918b9</td><td>psu</td><td>PSU</td><td><a href="papers/066000d44d6691d27202896691f08b27117918b9.html" target="_blank">Vision-Based Analysis of Small Groups in Pedestrian Crowds</a></td><td><a href="http://vc.cs.nthu.edu.tw/home/paper/codfiles/htchiang/201212250411/newp12.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td></td><td></td><td></td><td></td><td></td><td>52%</td><td>151</td><td>78</td><td>73</td><td>9</td><td>79</td><td>73</td></tr><tr><td>dd65f71dac86e36eecbd3ed225d016c3336b4a13</td><td>families_in_the_wild</td><td>FIW</td><td><a href="papers/dd65f71dac86e36eecbd3ed225d016c3336b4a13.html" target="_blank">Visual Kinship Recognition of Families in the Wild</a></td><td><a href="https://web.northeastern.edu/smilelab/fiw/papers/Supplemental_PP.pdf" target="_blank">[pdf]</a></td><td>IEEE Transactions on Pattern Analysis and Machine Intelligence</td><td>edu</td><td>University of Massachusetts Dartmouth</td><td>United States</td><td>41.62772475</td><td>-71.00724501</td><td>100%</td><td>3</td><td>3</td><td>0</td><td>0</td><td>2</td><td>1</td></tr><tr><td>52d7eb0fbc3522434c13cc247549f74bb9609c5d</td><td>wider_face</td><td>WIDER FACE</td><td><a href="papers/52d7eb0fbc3522434c13cc247549f74bb9609c5d.html" target="_blank">WIDER FACE: A Face Detection Benchmark</a></td><td><a href="https://arxiv.org/pdf/1511.06523.pdf" target="_blank">[pdf]</a></td><td>2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</td><td>edu</td><td>Chinese University of Hong Kong</td><td>China</td><td>22.41626320</td><td>114.21093180</td><td>58%</td><td>148</td><td>86</td><td>62</td><td>15</td><td>108</td><td>41</td></tr><tr><td>77c81c13a110a341c140995bedb98101b9e84f7f</td><td>wildtrack</td><td>WildTrack</td><td><a href="papers/77c81c13a110a341c140995bedb98101b9e84f7f.html" target="_blank">WILDTRACK : A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</a></td><td><a href="https://pdfs.semanticscholar.org/fe1c/ec4e4995b8615855572374ae3efc94949105.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>5ad4e9f947c1653c247d418f05dad758a3f9277b</td><td>wlfdb</td><td>WLFDB</td><td><a href="papers/5ad4e9f947c1653c247d418f05dad758a3f9277b.html" target="_blank">WLFDB: Weakly Labeled Face Databases</a></td><td><a href="https://pdfs.semanticscholar.org/5ad4/e9f947c1653c247d418f05dad758a3f9277b.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>100%</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td></tr><tr><td>0dc11a37cadda92886c56a6fb5191ded62099c28</td><td>stickmen_family</td><td>We Are Family Stickmen</td><td><a href="papers/0dc11a37cadda92886c56a6fb5191ded62099c28.html" target="_blank">We are family: joint pose estimation of multiple persons</a></td><td><a href="http://eprints.pascal-network.org/archive/00007964/01/eichner10eccv.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>66%</td><td>77</td><td>51</td><td>26</td><td>5</td><td>60</td><td>19</td></tr><tr><td>0c91808994a250d7be332400a534a9291ca3b60e</td><td>graz</td><td>Graz Pedestrian</td><td><a href="papers/0c91808994a250d7be332400a534a9291ca3b60e.html" target="_blank">Weak Hypotheses and Boosting for Generic Object Detection and Recognition</a></td><td><a href="https://pdfs.semanticscholar.org/0c91/808994a250d7be332400a534a9291ca3b60e.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td>247</td><td>131</td><td>116</td><td>18</td><td>177</td><td>78</td></tr><tr><td>2a75f34663a60ab1b04a0049ed1d14335129e908</td><td>mmi_facial_expression</td><td>MMI Facial Expression Dataset</td><td><a href="papers/2a75f34663a60ab1b04a0049ed1d14335129e908.html" target="_blank">Web-based database for facial expression analysis</a></td><td><a href="http://dev.pubs.doc.ic.ac.uk/Pantic-ICME05-2/Pantic-ICME05-2.pdf" target="_blank">[pdf]</a></td><td>2005 IEEE International Conference on Multimedia and Expo</td><td></td><td></td><td></td><td></td><td></td><td>49%</td><td>440</td><td>214</td><td>226</td><td>44</td><td>267</td><td>181</td></tr><tr><td>9b9bf5e623cb8af7407d2d2d857bc3f1b531c182</td><td>who_goes_there</td><td>WGT</td><td><a href="papers/9b9bf5e623cb8af7407d2d2d857bc3f1b531c182.html" target="_blank">Who goes there?: approaches to mapping facial appearance diversity</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td>edu</td><td>University of Kentucky</td><td>United States</td><td>38.03337420</td><td>-84.50177580</td><td>100%</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>b62628ac06bbac998a3ab825324a41a11bc3a988</td><td>m2vtsdb_extended</td><td>xm2vtsdb</td><td><a href="papers/b62628ac06bbac998a3ab825324a41a11bc3a988.html" target="_blank">Xm2vtsdb: the Extended M2vts Database</a></td><td><a href="https://pdfs.semanticscholar.org/b626/28ac06bbac998a3ab825324a41a11bc3a988.pdf" target="_blank">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>54%</td><td>906</td><td>490</td><td>416</td><td>44</td><td>542</td><td>408</td></tr><tr><td>010f0f4929e6a6644fb01f0e43820f91d0fad292</td><td>yfcc_100m</td><td>YFCC100M</td><td><a href="papers/010f0f4929e6a6644fb01f0e43820f91d0fad292.html" target="_blank">YFCC100M: the new data in multimedia research</a></td><td><a href="https://arxiv.org/pdf/1503.01817.pdf" target="_blank">[pdf]</a></td><td>Commun. ACM</td><td>edu</td><td>Carnegie Mellon University Silicon Valley</td><td>United States</td><td>37.41021930</td><td>-122.05965487</td><td>57%</td><td>276</td><td>156</td><td>120</td><td>23</td><td>175</td><td>99</td></tr><tr><td>a94cae786d515d3450d48267e12ca954aab791c4</td><td>yawdd</td><td>YawDD</td><td><a href="papers/a94cae786d515d3450d48267e12ca954aab791c4.html" target="_blank">YawDD: a yawning detection dataset</a></td><td><span class="gray">[pdf]</a></td><td>Unknown</td><td></td><td></td><td></td><td></td><td></td><td>57%</td><td>14</td><td>8</td><td>6</td><td>1</td><td>2</td><td>12</td></tr></table></body></html> \ No newline at end of file